

Appendix F-2: RSK Group, Twickenham Railway Station, London Road, Geotechnical Report, August 2010 (Ref: 241458-01(00)

ref:

00081

Solum Regeneration

Twickenham Railway Station, London Road.

Geotechnical Report

Project no. 241458-01(01)

August 2010

Safeguarding your business environment

CONTENTS

Report No. 241458-01(01)

		Page
1. INTRODUCTION 1.1 Instructions 1.2 Project Brief 1.3 Standards 1.4 Limitations		6 6 6 6
2.2 Reconnaissance	Geographic Setting Survey orical Development	8 8 8 9
3.1 Geology 3.1.1 Published Ge 3.1.2 Regal House 3.2 Hydrogeology 3.2.1 General Chai	Site Investigation Proven Ground Conditions	10 10 10 10 11 11 12 12
4. GROUND INVESTIG 4.1 Site Work 4.1.1 Rationale 4.1.2 Scope of Work 4.1.3 Limitations of 4.2 Laboratory Testiff 4.2.1 Introduction 4.2.2 Geotechnical 4.2.3 Chemical Test	rks f Fieldwork ng I Testing	13 13 13 14 14 14 14 15
5.1.2 Made Ground	and Investigation cession of Strata d k Gravel Formation Formation	17 17 17 17 18 18 19
6.2 Geotechnical Haz 6.3 Foundations 6.3.1 General Suita 6.3.2 Spread Found 6.3.3 Piled Founda 6.4 Ground Floor Sla 6.5 Retaining Wall Do 6.6 Roads and Hards	oposed Development zards ability dations ations abs esign	20 20 21 21 22 23 24 24 25 26

TABLES

2.1	Site Description
3.1	Conjectural Geological Succession beneath the Site
3.2	Proven Ground Conditions for Regal House
4.1	Summary of Ground Investigation Activities
4.2	Summary of Geotechnical Testing Programme
4.3	Summary of Chemical Testing Programme on soils
4.4	Summary of Chemical Testing Programme on Waters
5.1	General Succession of Strata Encountered
5.2	Summary of Soil Parameters for Made Ground
5.3	Summary of Soil Parameters for Kempton Park Gravel
5.4	Summary of Soil Parameters for London Clay Formation
6.1	Summary of Main Potential Geotechnical Hazards that May Affect Site
6.2	Design and Construction of Spread Foundations
6.3	Design and Construction of Piled Foundations
6.4	Typical Pre-contract Test Pile Loads for Bored Cast-in-situ Piles (GSF = 3.0)
6.5	Typical Pre-contract Test Pile Loads for Bored Cast-in-situ Piles (GSF = 2.1)
6.6	Preliminary Retaining Wall Parameters
6.7	Summary of CBR Values Derived from In Situ Clegg Hammer Tests

FIGURES

Figure 1	Site Location Plan
Figures 2 to 3	Site Layout & Exploratory Point Location Plans
Figure 4	Proposed Development Plan
Figure 5	Moisture Content against Elevation Profile
Figure 6	Plasticity Classification Chart
Figure 7	SPT against Elevation Profile
Figure 8	Shear Strength against Elevation Profile
Figure 9	Geological Cross Section

APPENDICES

Appendix A Existing Information

BGS Borehole Records

Regal House Site Investigation Records and Laboratory Testing

Twickenham Railway Station

Appendix B Fieldwork Records

Borehole Records

Window Sampler Borehole Records

Dynamic Probing Records

Photo-ionisation Detector Results

Results of Clegg Hammer tests for CBR Gas/Water Monitoring Record Sheet

Appendix C Geotechnical Laboratory Test Records

Moisture Content

Plasticity Index of Soil

Particle Size Distribution Results

Triaxial Test Results

Consolidation Test Results

Appendix D Chemical Laboratory Test Records

Chemical Analysis of Soils, including Sulfate and pH Analysis Test Results

Chemical Analysis of Waters

Waste Acceptance Criteria Testing

DOCUMENT CONTROL

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Document Title: Geotechnical Report

Telephone: +44 (0)1442 437500 Fax: +44 (0)1442 437550

Twickenham Railway Station, London Road

www.rsk.co.uk

UK

The Client: Solum Regeneration

Kier Property/NetworK Rail

6 Cavendish Place

London W1G 9NB

RSK STATS Geoconsult Ltd (RSK) has prepared this report in accordance with the instructions of Waterman Structures acting on behalf of Solum Regeneration ("the Client") by letter reference 16683/letter/RP/PS, March 2010 and under the terms of appointment for RSK. This report is confidential and non-assignable by the Client and RSK shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared and provided. Should the Client require to pass copies of the report to other parties for information, the whole of the report should be so copied, but no professional liability or warranty shall be extended to other parties by RSK in this connection without the explicit written agreement thereto by RSK.

Report Number Status Date of issue 241458-01(01) FINAL 18th August 2010

Author Andrea Grossey

Senior Geo-environmental Engineer

Project Manager Svetislav Trajkovski

Principal Geotechnical Engineer

Associate Director

Page no. 4 of 26

1. INTRODUCTION

1.1 Instructions

On the instructions of Waterman Structures, on behalf of Solum Regeneration (the 'Client'), RSK STATS Geoconsult (RSK) has carried out a ground investigation of Twickenham Railway Station, London Road, in Twickenham.

The project was commissioned in connection with a proposal by the Client to redevelop the site with a new ticket office and station entrance, with residential apartments overlying the railway on a raised deck, ranging between 3 and 15 storey high.

1.2 Project Brief

The project was carried out to an agreed brief as set out in RSK's proposal letter of 31st March 2010, reference 241458/01JDB Rev 01. The agreed scope of work also included the requirements of Waterman Energy, Environment & Design Limited, as set out in their Environmental Ground Investigation Specification, EED11251-100/S/1.1.1/CWS.

The work undertaken included the following tasks:

Site Investigation

- Seven light cable percussive boreholes to depths ranging between 15.0m and 35mbgl.
- Four drive-in window sampler boreholes to a nominal depth of 5.0m, with follow on dynamic probing to find the London Clay interface beneath the site;
- Installation of three gas and groundwater monitoring wells;
- Off site analysis for geotechnical and geoenvironmental purposes; and
- Interpretative geotechnical reporting.

1.3 Standards

The intrusive aspects of the investigation were generally carried out following guidance given in BS 5930:1999 - Code of Practice for Site Investigations.

The collection and recovery of environmental samples were generally carried out following guidance given in BS 10175:2001, Investigation of potentially Contaminated Sites.

1.4 Limitations

This report should be considered in the light of any changes in legislation, statutory requirement or industry practices that may have occurred subsequent to the date of issue.

The opinions and recommendations expressed in this report are based on the ground conditions encountered during the site work, the results of field and laboratory testing and interpretation between exploratory holes. The material encountered and samples obtained represent only a small proportion of the materials present on-site, therefore other conditions may prevail at the site which have not been revealed by this investigation.

The interpretation of issues relating to ground contamination was outside the agreed scope of this report.

The results of RSK laboratory tests are covered by UKAS accreditation, but opinions and interpretations expressed in the report and on the site work records are outside the scope of this accreditation. Where laboratory testing has been carried out at a sub-contractor laboratory, this laboratory is an approved sub-contractor in accordance with the requirements of the RSK quality management system and is UKAS accredited for the relevant range of tests undertaken.

The results of a site investigation by Ground Investigation & Piling Ltd on an adjacent site "Regal House" have been incorporated (where appropriate) into this report on the instruction of Waterman Structures. RSK cannot accept any liability for the veracity or accuracy of this information.

2. SITE DETAILS

2.1 Description and Geographic Setting

The site is located at Twickenham Railway Station in London at National Grid reference 516130, 173700, as shown on **Figure 1**.

The site is roughly triangular in shape and covers an area of approximately 1 hectare. The site is occupied by an active railway station and associated car park for Twickenham Railway Station. There are five rail tracks and associated platforms in the southern half of the site, four of which are active, and the station ticket office is located at western boundary with London Road. A concrete footbridge crosses the tracks at the eastern site boundary. An iron footbridge crosses the tracks on the sites western boundary. The current layout of the site is as shown on **Figure 2**.

The area around the site is a mixture of residential and commercial uses, as detailed below:

To the North:	The River Crane bounds the north of the site, with residential properties beyond.
To the East:	The railway and station platforms are present to the east.
To the South:	Marys Terrace, followed by a large commercial building Regal House and residential terrace properties, bound the south of the site.
To the West:	London Road, followed by the Post Office sorting office and a number of smaller commercial practises, bound the west of the site.

2.2 Reconnaissance Survey

The site was visited on 1st June 2010. The characteristics of the site observed during the site reconnaissance visit and obtained from current Ordnance Survey maps are summarised in **Table 2.1**.

Table 2.1 - Site description

Feature	Description			
Physical characteristics				
Area of site	Approximately 1 hectare.			
Ground levels	The ground slopes generally downwards towards the east with ground levels at the site ranging from around 12.5mAOD to 8.0mAOD.			
Depressions in the ground surface	None observed.			
Waterlogged or marshy ground	None observed.			
Surface water	The River Crane flows in an easterly direction past the northern site boundary.			
Trees and hedges	Trees are present along the northern site boundary with the River Crane, as on shown on Figure 2 . Japanese Knotweed has also been identified by others in the planters near the car park access road and within an area of rough waste ground between the railway and car park / ticket office.			
Existing buildings and basements on site	The site contains a ticket office with semi-basement level at the western boundary.			

Feature	Description
External hardstanding	Buildings and areas of external hard surfacing cover the majority of the site.
Retaining walls and adjacent buildings on or close to site	Retaining structures incorporated within the semi-basement level of the ticket office building presumably facilitate the drop in ground level from London Road.
boundary	The banks of the River Crane are retained.
Made ground, earthworks and quarrying	A variable thickness of made ground would be anticipated across the site.
Potentially unstable slopes on or close to site	None observed.
Buried services present	There are a number of manhole covers on site, as well as surface water drainage. High voltage electric cables and gas also run across the site.

2.3 Summary of Historical Development

The history of the site's land-use and development from Victorian times onwards has been obtained from a Phase 1 Ground Contamination Desk Study Report of the site, written by Capita Symonds in October 2007.

The southern portion of the site was occupied by the Twickenham Junction railway line pre 1870's, whilst the northern portion of the site was open land used for agricultural purposes. During the mid 1890's, the railway expanded further northwards across the site, and by the 1914, several small buildings were located on the northern half of the site.

During the early 1960's, most of the northern portion of the site was developed into a car park, which expanded round to the west of the site by the 1970's. A ticket office, footbridge and storage building were later developed to the west of the site, together with three platforms and associated railways lines at the time.

By the early 2000's, two more footbridges were developed, one concrete bridge, crossing the tracks to the east of the site and one leading off London Road, allowing access to the platforms. There is little change at the site from this period of time to present day.

3. GEOLOGY, HYDROGEOLOGY AND HYDROLOGY

3.1 Geology

3.1.1 Published Geology

The published 1:50,000 scale geological map of the area (Sheet No 270 'South London') indicates that the site is underlain by the Kempton Park Gravel Formation, which is further underlain by London Clay Formation.

Two borehole records have been obtained from the British Geological Survey and copies are presented in **Appendix A**. The first was sunk for London Road Bridge at the western site boundary (Ref: TQ17SE172, 516110, 173640) and the second at the brewery site some 100m west of the site (TQ17SE3, 516030, 173690). The first record indicates made ground to 0.33m over Gravel and sand (Kempton Park Gravel) overlying Blue clay (London Clay) at a depth of 3.96m, which extends beyond the terminal depth of the borehole at 18.28m bgl. The second record indicates made ground to 2.13m over River Gravel (Kempton Park Gravel) to 4.57m over Blue Clay (London Clay) to 53.04m over Woolwich and Reading Beds (Lambeth Group) to 77.42m over Thanet Sand to 79.86, with the Chalk (White Chalk Sub-group) at depth.

On the basis of the published geological maps and borehole records of the area, the full succession of natural strata in the vicinity of the site is likely to comprise:

Table 3.1 - Conjectural Geological Succession beneath the Site

Geological Unit	Brief Description	Anticipated Thickness			
Superficial Soils/Drift	Superficial Soils/Drift				
Kempton Park Gravel Formation	Sand and Gravel	Variable (up to 8m)			
Solid Geology Deposits	Solid Geology Deposits				
London Clay Formation	Clay and Silt	>50m			
Lambeth Group	Sand, Clay and Pebbles	~ 25m			
Thanet Sand Formation	Fine Sand	Few metres			
White Chalk Sub-group	White Micritic Limestone	Up to 100m			

The existing topography and history of development of the site suggests that, in addition to these natural strata, made ground is likely to be present beneath the site due to the sites development as a railway station.

3.1.2 Regal House Site Investigation Proven Ground Conditions

The results of a site investigation undertaken by Ground Investigation & Piling Ltd (GIP) in April 2010 at Regal House adjacent to the southern site boundary have been made available for review and the results are to be incorporated into this report. The information provided includes records of four cable percussive boreholes (BH1 to BH4) sunk to depths ranging from 5.5m to 40.05m bgl and associated laboratory testing results. Copies of the borehole records and laboratory test results are presented in **Appendix A**. A borehole location plan has not been provided.

The results of the Regal House site investigation generally confirm the published geology outlined above in that beneath a variable thickness of made ground, it revealed a ground profile comprising deposits of Kempton Park Gravels overlying the London Clay Formation.

The ground conditions encountered are summarised in **Table 3.2** below.

Table 3.2 – Proven Ground Conditions for Regal House

Strata	Depth to top of stratum m.bgl (mOD)*	Thickness (m)
Made Ground	0.00 (8.50)	1.00 to 1.90
Kempton Park Gravel	1.00 to 1.90 (7.50 to 6.60)	6.60 to 7.10
London Clay	8.20 to 8.50 (0.30 to 0.00)	Proven to 35.00mbgl (-31.90mOD

^{*}Assumes a general site level of 8.5mAOD.

The Kempton Park Gravel was recorded as a dense to very dense yellow brown and brown sand and gravel and gravely sand. SPT N Values in the stratum ranged from 28 to >50.

The London Clay formation was described as very stiff, becoming hard in parts, dark grey silty clay with rare shelly fossils and rare intact mudstone fragments between 22m and 22.45mbgl. Some sandy pockets and further mudstone fragments were identified below 30m.

The results of three quick undrained triaxial tests are provided that indicate undrained strengths for the London Clay ranging from 109 to 185kN/m². Two consolidation tests are also included that indicate the clays can be classified as being of low compressibility.

A start of shift water level reading of 25m bgl in the London Clay is recorded on the record for BH2, but the casing seals groundwater in the overlying Kempton Park Gravel out, so this is unlikely to reflect a true standing water level. No other groundwater information is recorded on the records.

3.2 Hydrogeology

3.2.1 General Characteristics

Based on the published geological map referred to above, the hydrogeology of the site is likely to be characterised by the presence of an unconfined shallow aquifer comprising the Kempton Park Gravel Formation overlying the London Clay Formation (an aquiclude).

The Kempton Park Gravel Formation is classified by the Environment Agency (EA) as a Principal Aquifer (as indicated on the Environment Website).

Confined by the London Clay Formation is a deep aquifer, comprising a sequence of deposits consisting of the lower part of the Lambeth Group and Thanet Sands (Basal Sands) and the White Chalk. These units are expected to be in hydraulic continuity.

The anticipated depth to the water table in the Kempton Park Gravel, i.e. the thickness of the unsaturated zone, is in the order of a few metres below ground level. Shallow groundwater in the site area is anticipated to flow in a north / north east direction, i.e. towards and in the direction of flow of the River Crane.

It is also possible that localised perched water may also be present in the Made Ground on site.

3.2.2 Risk from Rising Groundwater Levels in the Deep Aquifer

The site does not lie within the critical areas in the London basin defined by Simpson *et al* (CIRIA SP69) in which exceptional structures are potentially at risk from the rising groundwater levels in the deep aquifer.

3.3 Hydrology

The River Crane flows in an easterly direction past the northern site boundary.

4. GROUND INVESTIGATION

4.1 Site Work

4.1.1 Rationale

The purpose of the intrusive investigation is to aid confirmation of the ground conditions underlying the site. The techniques adopted for the investigation have been chosen considering the anticipated ground conditions and the proposed development.

Environmental sampling of soils, groundwater and surface waters, along with post-fieldwork gas and groundwater monitoring, was undertaken on behalf of Waterman Energy, Environment & Design Limited. The factual results relating to the above are presented in the relevant appendices.

4.1.2 Scope of Works

The main site work was carried out between the 1st June and 18th June 2010 and the trackside window sampling was undertaken during night possessions between the 6th July and 8th July 2010. The work comprised the activities summarised in **Table 4.1** below, which includes a justification for each exploratory hole location. The investigation and the soil descriptions were carried out in general accordance with BS5930:1999 - Code of Practice for Site Investigations. The exploratory hole logs and other site work records are presented in **Appendix B**.

Table 4.1 – Summary of Ground Investigation Activities

Investigation Type	No.	Designation	Rationale
			To prove the geological succession beneath the site and obtain geotechnical data from the underlying strata;
Boreholes - by light cable percussive methods	7	BHA to BHG	To enable sampling of the made ground and natural soils beneath the site, to allow Waterman Environmental to determine the contamination status of the ground; and
			To install dual purpose groundwater and gas monitoring wells within three of the boreholes for ongoing monitoring.
Boreholes – by drive-in-sampler with	4	WS1 to WS4	To confirm the shallow geological succession and obtain geotechnical data in areas with difficult access.
follow on dynamic probing	4	W31 to W34	Dynamic Probing was used to confirm the depth to the underlying London Clay Formation.
PID screening of samples	All BHs*	N/A	Detection of volatile organic compounds
Water level monitoring in piezometer/ monitoring well installations	3 (6) occasions	BHA, BHD and BHF	Measurement of depth to groundwater, within the Kempton Park Gravel.
Obtain water sample	1 (2)	BHA, BHD and BHF and	Measurement of groundwater quality.

Designation Rationale Investigation Type No. from: occasions three Measurement of surface water quality of river samples adjacent to the site, pre construction phase. Monitoring well from the installations after River Crane. purging well; and Samples from the River Crane at location up stream, down stream and adjacent to the site. Measurement of ground gas emission rates, Ground gas 3 (6) BHA, BHD originating from beneath the site. monitoring in and BHF monitoring well occasions installations

The investigation points were agreed with the Waterman Structures and Network Rail and located approximately by reference to physical features present on the site at the time of investigation. The ground levels at the borehole locations were interpolated from the levels shown on the site plan provided by Waterman Structures.

4.1.3 Limitations of Fieldwork

During the site investigation, access to drive in window sampler borehole location WS4 could not be achievable safely and therefore the hole was terminated at a depth of 1.20mbgl (i.e. the base of the hand pit).

4.2 Laboratory Testing

4.2.1 Introduction

A programme of geotechnical testing, scheduled by RSK and as detailed below, was carried out on selected samples taken from various strata. Chemical laboratory testing, scheduled by Waterman Environmental was undertaken on selected samples of soil, groundwater and surface water. The laboratory results are presented in **Appendices C** and **D**, respectively.

4.2.2 Geotechnical Testing

The programme of geotechnical tests undertaken on samples obtained from the intrusive investigation is presented in **Table 4.2**, the main purpose of which was to assess the engineering characteristic of the underlying strata. Where appropriate, testing was undertaken in accordance with BS 1377:1990 Method of Tests for Soils for Civil Engineering Purposes within RSK's UKAS accredited laboratory.

Tests carried out in order to classify the concrete class required on site have been undertaken following the procedures within BRE SD1:2005 by a UKAS accredited laboratory (Chemtest).

^{*} All shallow samples of made ground and natural underlying soils tested.

() 3 monitoring visits and 1 groundwater sampling visit still to be completed

Table 4.2 – Summary of Geotechnical Testing Programme

Strata	Tests undertaken	No of Tests
Kempton Park Gravels	Particle Size Distribution Test	7
	Particle Size Distribution Test with Hydrometer Analysis.	4
	Unconsolidated Undrained Triaxial Test	31
	Particle Size Distribution Test with Hydrometer Analysis.	1
London Clay Formation	Consolidation Testing	4
	Moisture Content	55
	Plasticity Index	9
	pH and water soluble Sulfate	17

4.2.3 Chemical Testing

The programme of chemical tests was scheduled by Waterman Energy, Environment & Design Limited and was undertaken on samples obtained from the intrusive investigation as presented in **Table 4.3** and **4.4**.

Testing of soils was carried out to assess the levels of contamination within the made ground and natural soils encountered on the site. Groundwater samples were collected after the completion of the site investigation from monitoring wells installed on site and from three locations along the River Crane, namely upstream of the site (River 1), opposite the site (River 2) an downstream of the site (River 3).

Testing was undertaken by a UKAS accredited laboratory (Chemtest). MCERTS accredited test methods were specified where applicable.

Table 4.3 – Summary of Chemical Testing Programme on soils

Tests undertaken	No of Tests
Total Organic Carbon	
Heavy Metals and Metalloids	
BRE SD1 Suite - pH, ws SO4, total SO4, total sulphur, ws Mg, ws ammonium, ws nitrate, ws chloride	
Asbestos Screen	
TPH Total (C6-C40) by GC-FID	30 (1)
Speciated PAH (16 USEPA, plus coronene and benzo(j)fluoranthene)	
Phenols – Speciated HPLC	
VOCs/SVOCs IncTICs (target list based on EPA8270) TIC VOCs 0.01//SVOCs 1mg/kg	
Polychlorinated Biphenyls by GC/MS	
Full solid waste plus 2 batch leach test (WAC-E) plus As, Cd, Cr,Pb, Hg, Se, Cu, Ni, Zn	5
	Total Organic Carbon Heavy Metals and Metalloids BRE SD1 Suite - pH, ws SO4, total SO4, total sulphur, ws Mg, ws ammonium, ws nitrate, ws chloride Asbestos Screen TPH Total (C6-C40) by GC-FID Speciated PAH (16 USEPA, plus coronene and benzo(j)fluoranthene) Phenols – Speciated HPLC VOCs/SVOCs IncTICs (target list based on EPA8270) TIC VOCs 0.01//SVOCs 1mg/kg Polychlorinated Biphenyls by GC/MS Full solid waste plus 2 batch leach test (WAC-E) plus As,

() One chemical test is outstanding and will be included in the final report

Table 4.4 – Summary of Chemical Testing Programme on Waters

Strata	Tests undertaken	No of Tests	
	pH EC, Ammoniacal Nitrogen, Cl, SO4, tCN, Sulphide, TPH CWG (Spec. TPH), Speciated PAH (GC/MS), As, Cd, Cr, Cu, Hg, Pb, Ni, Se, Zn, Total Alkalinity.		
Groundwater	Phenols – Speciated HPLC		
and River Water Samples	VOCs/SVOCs IncTICs (target list based on EPA8270) TIC VOCs 0.01//SVOCs 1mg/kg	6	
	Polychlorinated Biphenyls by GC/MS		
	Herbicides		

5. PHYSICAL GROUND CONDITIONS

5.1 Findings of Ground Investigation

5.1.1 General Succession of Strata

The exploratory holes revealed that the site is underlain by a variable thickness of made ground over the Kempton Park Gravel Formation, with the London Clay Formation at depth. This appears to confirm the stratigraphical succession described within the published geology and those encountered during the site investigation for Regal House.

For the purpose of discussion, the ground conditions encountered during this and the Regal House investigation are summarised in **Table 5.1** below. A geological cross section through the site is also presented on **Figure 9**.

Table 5.1 – General Succession of Strata Encountered

Strata	Exploratory Holes Encountered	Depth to top of stratum m.bgl (mOD)	Thickness (m)
Made Ground	All	0.00 to 0.30	1.15 to 4.80*
Kempton Park Gravel Formation	All	1.15 to 4.80* (7.30 to 4.40)*	2.10 to 7.10
London Clay Formation	All deep BH's	5.10 to 8.50 (3.95 to 0.00)	Proven to 40.40mbgl. (-31.90mAOD)

^{*}Only references recent RSK boreholes sunk on site.

5.1.2 Made Ground

The exploratory holes encountered a variable thickness of made ground across the site ranging from 1.15m to 4.80m. The greatest thickness of made ground was encountered in the west of the site within the borehole located at higher level to front of the ticket office.

In general, the made ground comprises dark brown slightly silty sandy gravel of flint, with frequent red brick, crushed stone and concrete. Occasional ash and clinker was also apparent within some of the boreholes, together with rare tile, glass, and pottery.

Cohesive layers were also present locally within the made ground, recovered as brown orange mottled sandy gravelly clay, with frequent concrete, crushed stone, red brick and occasional ash.

Generally, visual/olfactory evidence of contamination was not encountered within the boreholes and drive in window samplers on site. Some occasional contamination in the form of ash and clinker was evident within some of the made ground on site. A slight hydrocarbon odour was noted within BHB between 3.00m and 4.80mbgl. On-site PID screening of disturbed samples indicated concentrations of volatile organic compounds (VOCs) between <0.1 and 7.5ppm. Results of the PID screening are presented within **Appendix B**.

5.1.3 Kempton Park Gravel Formation

The Kempton Park Gravel stratum typically comprised to medium dense to very dense, locally loose in near in surface in BHE, orange brown occasionally slightly silty and clayey, sandy to very sandy gravel. The gravel consists of angular to subrounded, fine to coarse flint gravel. Locally, pockets and partings of clayey sand were also encountered in some of the exploratory holes. Further, relatively thin layers (0.4 to 0.9m thick) of firm orange brown silty clay and slightly sandy slightly gravelly clay were encountered at the surface of the stratum in BHE and BHF, located near to the River Crane.

Eleven Particle Size Distribution tests (PSD) were undertaken on samples of the Kempton Park Gravel. The results of the PSD testing confirm the descriptions given on the exploratory hole records and indicate the following proportions of material: Cobbles - 0%, Gravel - 31 to 90%, Sand - 9 to 54% and clay / silt - 1 to 10%. A PSD on the near surface layer of cohesive material in BHF recorded: Gravel - 0 to 3%, Sand - 27 to 39%, Silt - 37 to 40% and Clay 21 to 33%.

Visual/olfactory evidence of contamination was not encountered within the Kempton Park Gravel stratum. On-site PID screening of near surface disturbed samples indicated concentrations of volatile organic compounds (VOCs) between <0.1 and 6.5ppm.

Dynamic probing was carried out within Window Sampler boreholes WS1, WS2 and WS4, where the drive-in window sampling terminated due to the density of the Kempton Park Gravel. The purpose of the dynamic probing was to identify the boundary between the gravel and the underlying London Clay Formation. From the results of the dynamic probing, the surface of the London Clay stratum is inferred at depths ranging between 5.2m to 6.4m bgl (1.75 to 0.85mAOD). The results of the dynamic probing are presented within **Appendix B**.

The measured and inferred soil parameters for the stratum are listed in **Table 5.2** below.

Table 5.2 – Summary of Soil Parameters for Kempton Park Gravel

Soil Parameters	Range	Results
SPT 'N' Values	(8) 13 to >50	Figure 7
Density Term	Generally Medium to Dense	-

⁽⁾ Locally loose in BHE adjacent to the River Crane

5.1.4 London Clay Formation

The London Clay Formation generally comprised stiff to very stiff, locally hard, fissured, dark grey slightly silty, fine sandy clay, with occasional partings of grey silt, pyrite veins and gleying. Occasional nodules of claystone were recovered between 13m and 19mbgl. Regular thin bands of claystone were encountered at a depth of 20.50mbgl (~ -12.0mOD) within BHG on site. Further, the GIP BH2 records chiselling due to siltstone between 18.7 to 18.9m (~ -10.2mAOD) and 28.3 to 28.4m bgl (~ -19.8mAOD).

Visual/olfactory evidence of contamination was not encountered within the London Clay Strata.

The measured and inferred soil parameters for the stratum are listed in **Table 5.3** overleaf.

Table 5.3 – Summary of Soil Parameters for London Clay Formation

Soil Parameters	Range	Results
Moisture Content (%)	22 to 35	Figure 5
Liquid Limit (%)	70 to 75	Appendix C
Plastic Limit (%)	26 to 32	Appendix C
Plastic Index (%)	38 to 45	Appendix C
Plasticity Term	Very High Plasticity	Figure 6
SPT 'N' Values	21 to 69	Figure 7
Undrained Shear Strength (kN/m2) measured by Triaxial Testing	79 to 248	Figure 8
Undrained Shear Strength (kN/m2) inferred from SPT 'N' values	88 to 290	Figure 8
Consistency Index (I _c)	1.00 to 1.21	-
Consistency Term	Stiff to Very Stiff	Appendix C
Strength Term	High to Very High	-

5.2 Groundwater

The findings groundwater monitoring completed to date reflect a general groundwater table in the Kempton Park Gravel ranging between depths of 3.88m and 5.10mbgl, which corresponds to elevations of 4.50m to 3.11mAOD.

It should be noted that groundwater levels might fluctuate for a number of reasons including seasonal variations. On-going monitoring would be required to establish both the full range of conditions and any trends in groundwater levels.

5.3 Ground Gas Monitoring

Ground gases have been monitored in the well installation on three return visits to the site after the main fieldwork and the results are presented in **Appendix A**. Three additional visits are scheduled to take place over the next month and the results will be provided as an addendum to this report.

6. ENGINEERING CONSIDERATIONS

6.1 Details of the Proposed Development

It is understood that the proposed development will comprise a new ticket office and station entrance, with residential apartments overlying the railway on a raised deck, ranging between 3 and 15 storeys high.

The building and deck within the zone of the Network Rail will be designed and constructed in accordance with the guidelines of Network Rail. This will restrict the size of the pilling rig that can be used within the vicinity of the railway infrastructure. Additionally, new access stairs and passenger lifts are to be constructed at the western end of the existing platform

Preliminary scheme calculations by Waterman Structures for the structure over the rail has identified that the piles will need to resist vertical loads of approximately 900kN and horizontal loads of 150kN. The majority of the horizontal load is understood to be generated from the impact load criteria required to meet Network Rail guidelines.

The main building beyond the rail will be designed and constructed with conventional pilling rigs. Preliminary calculations for the building in this area, as supplied by Waterman Structures, indicate typical column loads will be approximately 1800 to 4000kN and up to 8000kN.

6.2 Geotechnical Hazards

A summary of commonly occurring geotechnical hazards is given in **Table 6.1** together with an assessment of whether the site may be affected by each of the stated hazards.

Table 6.1 – Summary of Main Potential Geotechnical Hazards that May Affect Site

Hazard category Hazard status based on investigation Engineering					
(excluding contamination issues)	findings and proposed development			considerations if hazard affects site	
	Found to be present on site	Could be present but not found	Unlikely to be present and/or affect site		
Sudden lateral changes in ground conditions	✓	made grou	n depth of the und beneath the 1.15 to 4.80m.	Likely to affect ground engineering and foundation design and construction	
Shrinkable clay soils			~	Design to NHBC Standards Chapter 4 or similar	
Highly compressible and low bearing capacity soils, (including peat and soft clay)		√		Likely to affect ground engineering and foundation design and construction	
Silt-rich soils susceptible to loss of strength in wet conditions	✓	Silt layers present within the London Clay Formation		Likely to affect ground engineering and foundation design and construction	
Running sand at and below water table			√	Likely to affect ground engineering and foundation design and construction	
Karstic dissolution features (including 'swallow holes' in Chalk terrain)			√	May affect ground engineering and foundation design and construction – refer to Section 4.1.2	

Hazard category (excluding contamination issues)	Hazard status based on investigation findings and proposed development			Engineering considerations if hazard affects site
,	Found to be present on site	Could be present but not found	Unlikely to be present and/or affect site	
Evaporite dissolution features and/or subsidence			√	May affect ground engineering and foundation design and construction
Ground subject to or at risk from landslides			✓	Likely to require special stabilisation measures
Ground subject to peri-glacial valley cambering with gulls possibly present			√	Likely to affect ground engineering and foundation design and construction
Ground subject to or at risk from coastal or river erosion			√	Likely to require special protection/stabilisation measures
High groundwater table (including waterlogged ground)		√		May affect temporary and permanent works
Rising groundwater table due to diminishing abstraction in urban area			√	May affect deep foundations, basements and tunnels
Underground mining		√		Likely to require special stabilisation measures
Existing sub-structures (e.g. tunnels, foundations, basements, and adjacent sub-structures)	√	Existing building foundations and bridge foundations. Previous railway infrastructure. Existing services are also present on site.		Likely to affect ground engineering and foundation design and construction
Filled and made ground (including embankments, infilled ponds and quarries)	√	Ranging in depth from 1.15 to 4.80m.		Likely to affect ground engineering and foundation design and construction
Adverse ground chemistry (including expansive slags and weathering of sulphides to sulphates)	√	Elevated sulfates detected. See Section 6.7.		May affect ground engineering and foundation design and construction

Note: Seismicity is not included in the above Table as this is not normally a design consideration in the UK.

6.3 Foundations

6.3.1 General Suitability

In view of the high column loads associated with the proposed development and sensitive nature of the adjacent railway and highway infrastructure, piles are considered to be the most suitable foundation solution to support the main building loads.

The current Stage D drawings indicate that piles will need to be constructed in close proximity to the live railway tracks and existing London Road bridge piers. Furthermore, it is understood that archive drawings indicate that the bridge piers are supported on conventional spread foundations placed on the Kempton Park Gravel at approximately 1.0m below existing ground

level. Careful consideration will therefore need to be given to the pile construction method and design in the vicinity of these sensitive structures to ensure that ground vibration / movements remain within acceptable levels.

It is anticipated that Network Rail will require a comprehensive geotechnical / ground movement assessment to demonstrate that the proposed development will not have any detrimental impact on the rail infrastructure.

Whilst piling is recommended for supporting the main building loads, the Kempton Park Gravel deposits generally encountered at relatively shallow depths beneath the site will be suitable for spread foundations to support any moderately loaded structural elements within the proposed development.

Recommendations for spread and piled foundations are outlined in the following sections.

6.3.2 Spread Foundations

The recommendations for the design and construction of spread foundations in relation to the ground conditions are set out in **Table 6.2** below.

Table 6.2 - Design and Construction of Spread Foundations

Design/construction considerations	Design/construction recommendations						
Founding stratum	Kempton	Park Grav	el – Mediu	m dense / d	dense San	d & Gravel	
Depth	ground le	vel and at	least 0.1m		•	1m below tum below	
Bearing pressures for		Net	allowable	bearing p	ressure kN	l/m²	
range of strip footings		St	rip Footin	gs	S	quare base	es
and square bases founded in the	Width	0.5m	1.0m	1.5m	2.0m	3.0m	4.0m
Kempton Park Gravel	Depth						
	1.0m+	300	280	215	270	205	170
Basis of allowable bearing pressures Stability of excavations	against be with the b	Each allowable bearing pressure includes an overall factor of safety of 3 against bearing capacity failure and with total settlements associated with the bearing pressure estimated to be less than 25mm. The made ground and Kempton Park Gravel deposits may become unstable in open excavations. It is therefore recommended that excavation support systems are made available during the groundwork stage of the development.					
Dewatering	Groundwater monitoring has recorded a highest level of 4.5mAOD. Dewatering is therefore unlikely to be required to facilitate relatively shallow foundation excavations. Heavy pumping from open sumps in non-cohesive soils should be avoided as this can result in instability and general loosening of the soils at the base of the excavation. It is likely that dewatering in non-cohesive soils will require the use of well-pointing systems.						
Construction considerations	soft, orga		rwise unsu	•		any made ved and rep	-

6.3.3 Piled Foundations

The recommendations for the design and construction of piled foundations in relation to the ground conditions are set out in **Table 6.3** overleaf.

Table 6.3 - Design and Construction of Piled Foundations

Design/construction considerations	Design/construct	ion recommendations		
Pile type	The construction of both conventional rotary bored and CFA piles is considered technically feasible at this site.			
Possible constraints on choice of pile type		Given the close proximity of the rail infrastructure the use of driven piles will not be acceptable due to ground vibration, heave and noise related problems.		
Temporary casing where groundwater is present	Bored piles will require temporary supporting and water bearing Ken Alternatively, the use of continuou piles usually overcomes this issue	npton Park Gravel deposits. is-flight-auger (CFA) injected bored		
Man-made obstructions	The presence of buried sub-structures or other obstructions within made ground may lead to some difficulty during piling. It is recommended that once the proposed pile layout has been determined, pre-pile probing be carried out at each of the pile positions. Where buried obstructions are encountered, it will be necessary to either relocate the pile(s) or make allowance for removing the obstruction.			
Hard strata	An allowance should be made for within the London Clay.	chiselling thin 'rock' bands (claystone)		
Soil and pile design	Adhesion Factor (α)	0.6		
parameters for London Clay	Bearing Capacity Factor (N _c)	9		
(cohesive soils)	Undrained Shear Strength (c _u)	80 + 6.66z kN/m ² where z = depth into clay		
	Global Safety Factor	2.1 - 1% Load test on 1% of precontract test pile (non-working).		
		3.0 - No load test on pre-contract test pile.		
	Limiting Shaft Friction	140 kN/m ²		
	Limiting Concrete Stress 7.5N/mm²			
Bored pile shafts and bases	Bored pile concrete should be cast as soon after the completion of boring as possible and in any event the same day as boring.			
	Prior to casting the base of the pile bore should be clean otherwise a reduced safe working load will be required. Similarly, if the pile bore is left open the shaft walls may relax/soften, leading to a reduced safe working load.			

The design procedure for piles varies considerably, depending on the proposed type of pile. However, for illustrative purposes the following **Tables 6.4** and **6.5** give preliminary precontract test pile (non working) loads for traditional bored, cast-in-situ concrete piles of various diameters, lengths, and global factors of safety (GSF), based on the design parameters given in **Table 6.3** above and worst case ground profile at BHA.

Table 6.4 Typical Pre-contract Test Pile Loads for Bored Cast-in-situ Piles (GSF = 3.0)

Typical Pre-contract Test Pile (non-working) Loads (kN)						
Depth of pile below the	Pile Diameter					
London Clay surface (m)	450mm	600mm	750mm	900mm		
10.0	374	526	692	872		
15.0	589	818	1064	1326		
20.0	839	1158	1495	1852		
25.0	1126	1545	1989	2450		
30.0	1193	1981	2537	3119		

Table 6.5 Typical Pre-contract Test Pile Loads for Bored Cast-in-situ Piles (GSF = 2.1)

Typical Pre-contract Test Pile (non-working) Loads (kN)							
Depth of pile below the		Pile Diameter					
London Clay surface (m)	450mm	600mm	750mm	900mm			
10.0	561	789	1039	1321			
15.0	883	1227	1596	1990			
20.0	1193	1737	2243	2778			
25.0	1193	2121	2980	3674			
30.0	1193	2121	3313	4678			

6.4 Ground Floor Slabs

The stated design loading for the proposed ground floor slabs at grade is 7.5kN/m². Assuming a formation level of approximately 7.45mAOD, the sub-grade soil conditions are anticipated from the investigation findings comprise a relatively thin layer of predominantly granular made ground overlying medium dense to dense sand and gravel deposits. The main exceptions to this appear to be at BHA in the northwest site corner toward the River Crane that encountered some 1.5m of soft / firm sandy gravelly clay below the proposed formation level and BHG, where some 4m or so of made ground would remain below the formation. In the case of the deeper made ground encountered at BHG, the results of the in-situ testing would appear to indicate that this is reasonably compact in nature.

Relatively lighted loaded reinforced concrete ground bearing floor slabs constructed on the predominantly granular made ground or natural soils are considered appropriate. Careful examination and rolling of the formation, replacement of exceptionally hard and soft material (i.e. as encountered at BHA) with suitable granular fill, and placement of a suitable blanket of well-compacted granular fill will be necessary.

6.5 Retaining Wall Design

It is understood that the construction of the semi-basement level to Block A will involve the construction of a secant piled wall along the boundary with London Road and gravity reinforced concrete retaining structure along the northern flank wall.

The following soil parameters in **Table 6.6** overleaf are recommended for preliminary design purposes.

Table 6.6 Preliminary Retaining Wall Parameters

Soil Type	N Value / c _u (kN/m²)			Term teristics	Long Term Strength Characteristics	
			Cu (kN/m²)	Ø' (°)	c' (kN/m²)	Ø' (°)
Made ground – sandy Gravel	-	18	0	30	0	30
Kempton Park Gravel – Medium dense to dense Sand & Gravel	13 to >50	20 Moist 22 Sat.	0	38	0	38
London Clay – Stiff fissured Clay	79 to 290	1.95	80 + 6.66z	0	3	25

The results of the groundwater monitoring completed to date has recorded a highest water level of 4.5mAOD, i.e. well below the proposed semi-basement level. However, some allowance should be made in design for the potential build up of hydrostatic pressures behind retaining structures unless effective drainage measures can be ensured.

In order to prevent damage to adjacent structures, the design of the retaining wall and basement excavation must address the risk of excessive deformation of the wall and bracing, both in the temporary and permanent condition, to ensure that the horizontal and vertical soil movement around and below the excavation remain within acceptable levels.

6.6 Roads and Hardstanding

In the 1m to 1.5m below the proposed finished ground level the exploratory holes have revealed a soil profile comprising predominantly granular Made Ground over Kempton Park Gravel.

In pavement design terms, the groundwater conditions are anticipated to comprise a low water table, i.e. at least 1m below the pavement formation level.

The results of in situ Clegg Hammer testing are summarised in **Table 6.7**.

Table 6.7 – Summary of CBR Values Derived from In Situ Clegg Hammer Tests

Test Location	Material Type	Minimum CBR value determined at or just below anticipated formation level
ВНА	Made Ground	8%
внс	Made Ground	8%
BHD	Made Ground	6%
BHF	Made Ground	9%

The recommended sub-grade soil CBR value for road pavement design is therefore 6%. This value assumes that during construction the formation level will be carefully compacted and any soft spots removed and replaced with well-compacted granular fill. The sub-grade soils in the vicinity of test locations are likely to be susceptible to improvement by rolling with

conventional compaction plant and therefore consideration may be given to undertaking additional in-situ CBR testing once the formation has been prepared to confirm design values.

The sub-grade soils can be regarded as non-frost-susceptible, after the criteria given in Appendix 1 of TRRL Report Road Note 29 (1970).

6.7 Chemical Attack on Buried Concrete

The results of chemical tests carried out on soil samples indicate 2:1 water soil extract sulfate contents of up to 1,200mg/l with pH values ranging from 6.2 to 10.1. Chemical tests on samples of groundwater recovered from the borehole installations recorded soluble sulphate concentrations up to a maximum of 180mg/l and pH values ranging from 6.3 to 6.5.

These current results indicate that, in accordance with BRE Special Digest 1: 2005 Concrete in aggressive ground, the Aggressive Chemical Environment for Concrete (ACEC) Classification is **AC-2** with a Design Sulphate Class for the site of **DS-2**. This assumes nominally mobile groundwater conditions and that no significantly disturbed clay comes into contact with concrete foundations or structures.

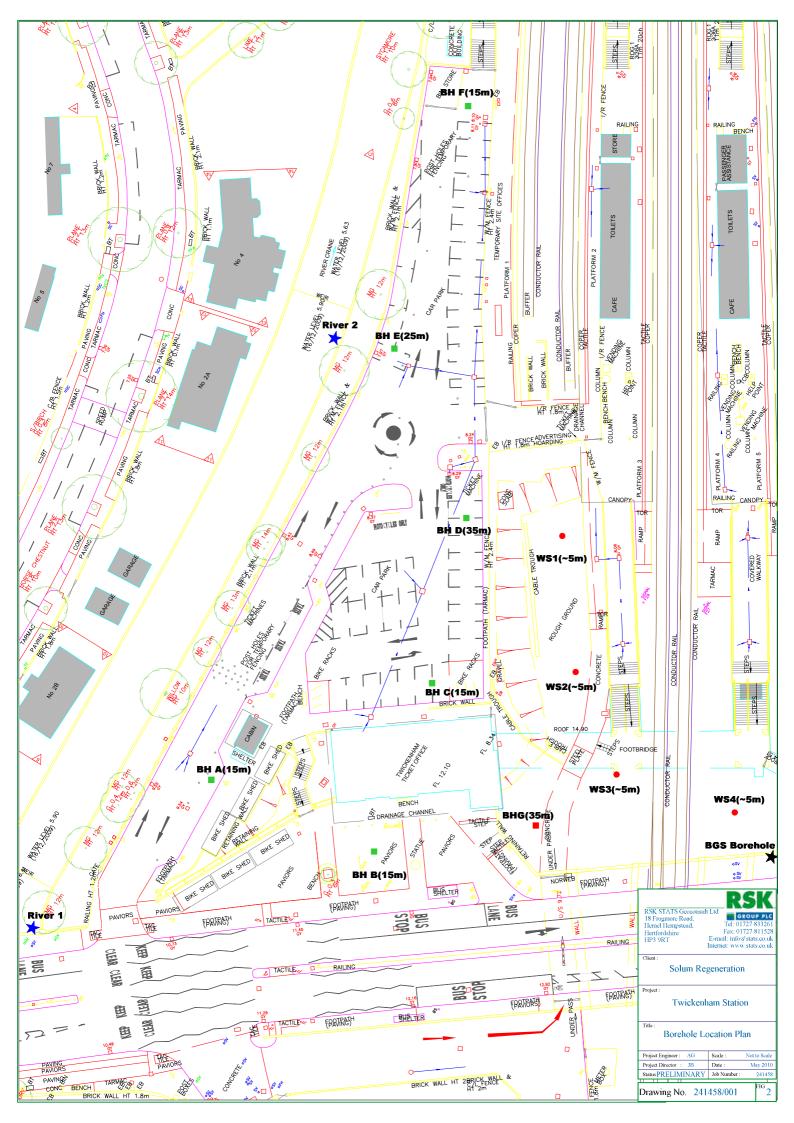
If significantly disturbed London Clay (i.e. pile arisings) were to be reused on site in any location where it is likely to come into contact with buried concrete structures, the ACEC Classification and Design Sulphate Class should be increased to **AC-3** with a Design Sulphate Class for the site of **DS-3**.

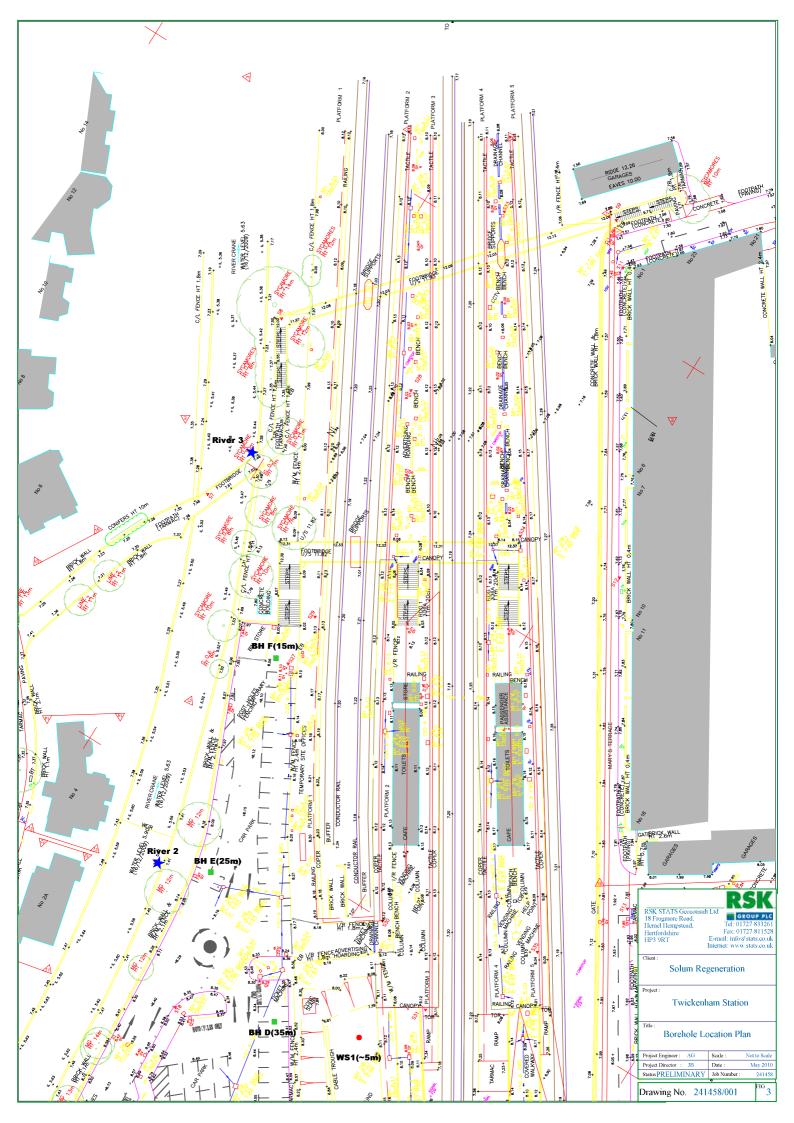
6.8 Soakaways

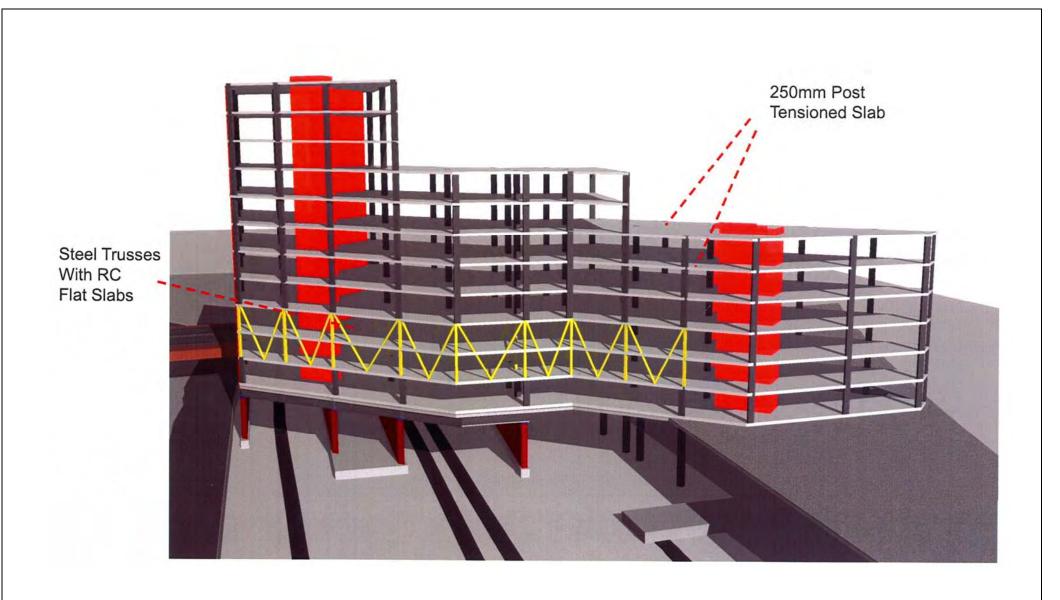
The ground conditions appear suitable from a geotechnical viewpoint for the use of pit soakaways to discharge surface run-off water into the Kempton Park Gravel. However, it is stressed that to-date no infiltration tests have been performed to confirm this preliminary assessment and the actual infiltration characteristics of the sub-soils.

The Environment Agency should be contacted at the design stage in order to obtain a 'consent to discharge'. This may not be forthcoming where soakage will be into or just above the water table, particularly in the Agency's sensitive aquifer protection zones.

FIGURES



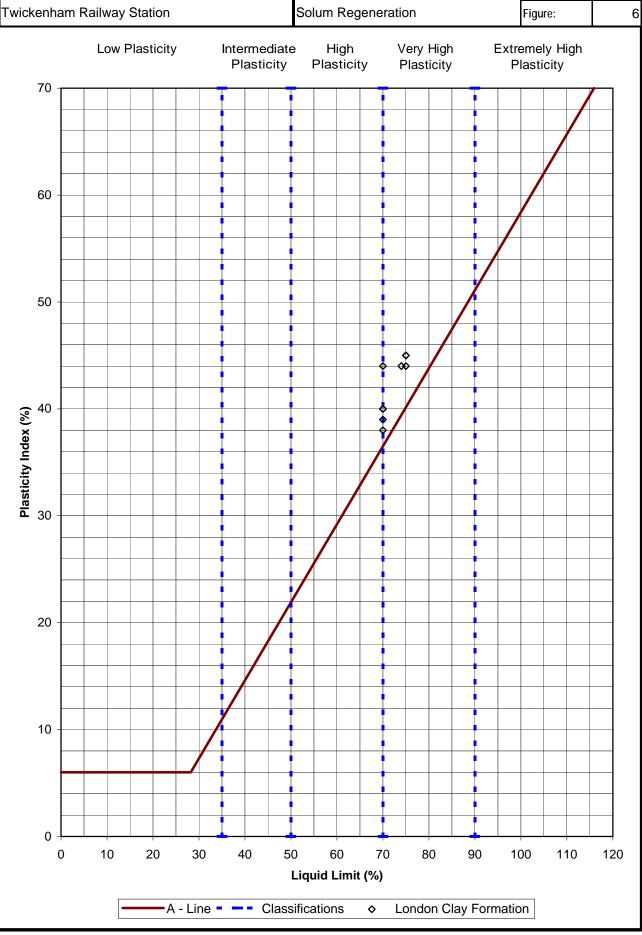




SITE LOCATION PLAN

Client:	Solum Regeneration	Figure: 1
Site:	Twickenham Railway Station, London Road	Job No: 241458
Scale:	not to scale	Source:

PROPOSED DEVELOPMENT PLAN


Client:	Solum Regeneration	Figure No:	4
Site:	Twickenham Railway Station, London Road	Job No:	241458
Scale:	NTS	Source:	Waterman

RSK GROUP PLC				MOISTURE CONTENT vs ELEVATION					
Site:					ient:			Job Number:	241458
Twick	enham Rai	lway Station	1	S	olum Reger	eration	<u> </u>	Figure:	5
			Na	itural Moist	ure Conter	nt (%)			
	0 10 	5	10	15	20	25	5 30	35	40
	5								
							ш		
	0								
Œ Œ	-5								
e datu						¢			
Elevation of test (m above datum)							_ [_]		
test (m	-10					_			
on of t									
levati	-15								
						.			
	-20								
							1		
	-25						1		

□ London Clay Formation

RSK GROUP PLC		PLASTICITY CLASSIFICATION CHART					
Site:	Client:	Job Number:	24145				
Twickenham Railway Station	Solum Regeneration	Figure:					

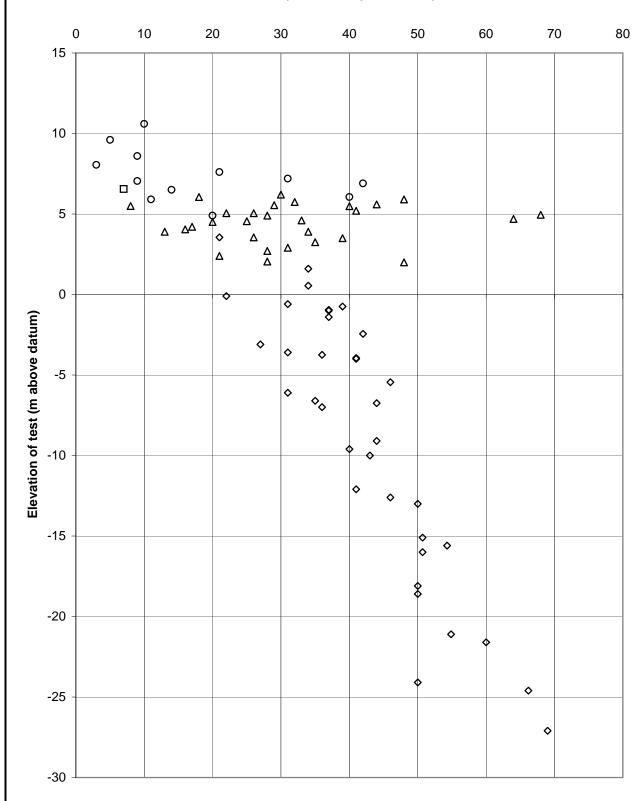
241458

RSK
GROUP PLC

SPT 'N' VALUES vs Elevation

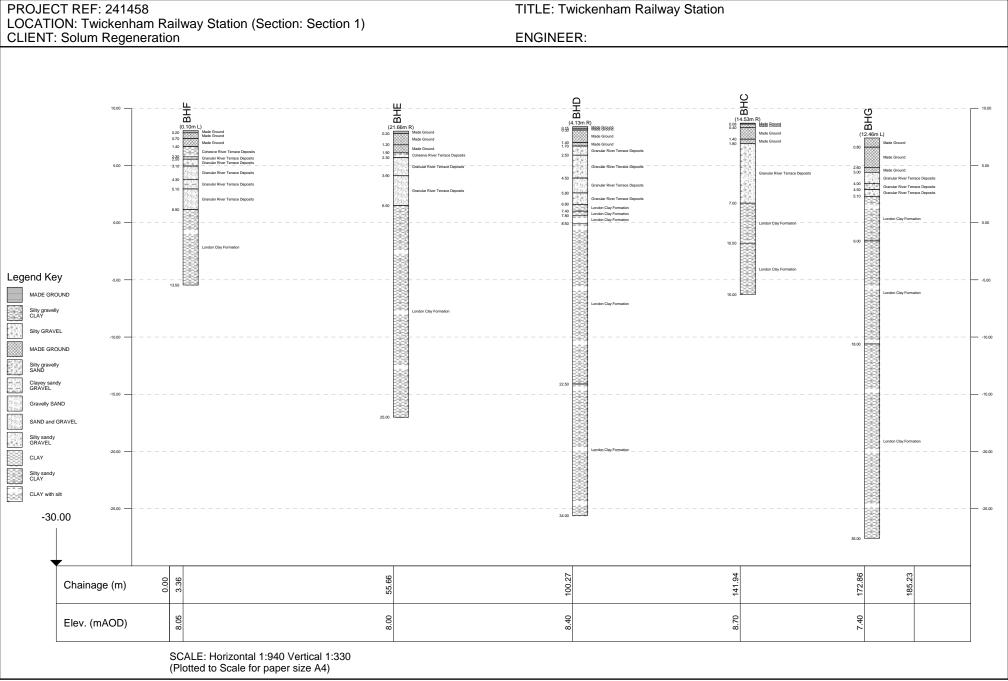
Site

Client:


Job Number: 241458

Twickenham Railway Station

Solum Regeneration


Figure: 7

SPT 'N' Value (for 300mm penetration)

RS GROUP	PLC			8	HEAR	STRE	NGTH	vs ELEVA	TION
Site:				Cli	ent:			Job Number:	24145
Twickenh	am Railw	ay Station		So	olum Regen	eration		Figure:	
			SHEA	AR STRI	ENGTH (kP	a)			
	0	50	100	150) 2	00	250	300	350
10									
		A							
5	i 								
C			• •						
C			Δ	Δ	•				
			■	Δ	•				
-5 ਵ	i 		*			8			
datur				Δ Δ					
- apove	,]		♦		■ Δ				
m) uc					.	*			
Elevation (m above datum)					Δ Δ	0			
ш -15	i 		•			Δ			
				\$					
-20	,					Δ			
						Δ	Δ		
			*		♦	Δ			
-25	;				♦			Δ	
	ПВН	D PP Londo	n Clay Format	ion	∧ RL	 D SPT L/	andon Clav	Formation	
	1 1		n Clay Format				-	Formation	
0.0			n Clay Format					er Terrace Depo	osits
-30			on Clay Forma				idon Clay F		
	■BH	G PP Londo	n Clay Format	tion	ΔBH	IG SPT L	ondon Clav	Formation	

♦ BHG TX London Clay Formation

APPENDIX A

Existing Information

TERRESEARCH LIMITED

BOREHOLE SECTION SHEET

Date May

CONTRACT NAME

Twickenham Bridge.

REPORT NO.

S.144/9

Bored for:

Middlesex County Council.

Address:

20, Vauxhall Bridge Road, S.W.1.

Address of Site:

London Road Bridge.

County:

Middlesex.

District or Town:

Twickenham,

Standing Water Level: 20° 0"

below surface

Dia. of Borehole:

Inches.

Water Struck (1)

(2)

(3)

Ground Level:

Boring Commenced: 28.4.59.

Boring Completed: 5.5.59.

Special Remarks:

Water level was observed after withdrawal of casing.

actual water table is probably at the level of the clay.

Jar Samples:

5819+ 2 0"; 48834 10"; 5821: 6 0"; 5823: 10 0"; 5825: 13 0"

5827: 16 0"; 5829: 22 0"; 5831: 27 0"; 5833: 31 0"; 5835: 37 0"; 5837: 41 0"

44, 0"; 5841: 51 6"; 5843: 56 0"; 5845: 20 0" (water)

5826: 13' 6" - 15' 0"; 5828: 18' 6" - 20' 0"; 5830: 23' 6" - 25' 0";

5832: 28' 8" - 30' 0"; 5834: 33' 6" - 35' 0"; 5836: 38' 6" - 40' 0"; 5838: 43'6" - **45' 0": 58**4c: **48' 6" - 50' 0": 58**42: 53' **6" - 55' 0"**: 5844: 58' 6" - 60⁰ 0";

5822: 8' 0": 5824: 12' 0":

	DESCRIPTION OF STRAT	A		Thici Feet	kness Inches	Dept St Feet	h Below Irface Inches
The descriptions Practice No. I Sit descriptions and client	are given in accordance with the imparigations." No responsible should examine the samples subm	Civil Engineer dity is accepte nitted.	ng Code of I for these		·		
	No. 5 Boring						
	Made ground			1	0	1	0
K?				15	0	13	0
	Blue clay.			47	0	б0	0
		-		-			
		_		***			
a a server the territory	The second control of the second seco						
distant a see week							
	مسيد د د د بين د د	mare a					
						-	
and the first section of	المستداد السداد المستداد المست		V	-		-	
			ÚS1,	n. Beginnerstern v			
					ļ	<u> </u>	
		TOTAL FROM	UR7AC3	60	0	60	٥

Page

Name and Number of Shaft or Borehole:

10 17 SE3

National Grid Reference

1603 7369

Brewey, Twickerham.

	1000 1001	
Geological Classification	Description of Strata Thickness metres	Depth metres
	Develo F	
	Brought Forward	· · · · · · · · · · · · · · · · · · ·
	From London Marriar, USIII, p170	
	•	
	TWICKENHAM. Brewery, N. of Railway, near Station. 1881.	
,	Communicated by MB. G. F. Cole.	
	30 feet above Ordnance Datum. Shaft 35 feet, the rest bored.	
	Water-level about 30 feet down (? higher. Water pumped direct from	
	bore-hole). Good supply. THICKNESS. DEPTH.	
	Made ground 7 7 2 75	
	Mottled clay 34 208 63.40 Sand 12 220 64-06	
	Light-red clay 8 228 ६१९५२	
	Yellow sand - 6 234 **32 Light [-coloured] fine sand - 11 2351 74.48	
	Reading Beds. < Grey clay - 1 236 Figs	
	Dark grey clay 2 238 7254 Clay and sand, with flints 2 240 73.65	
	Green sand, with flints - 6 246 +4-98 Green sand [F may be Thanet	
	sand - 8 254 74 42	
	[Thanet Sand, Dark-grey sand - 6 260 79.25]	
	8 feet.] Flints 1 262 70.56	***************************************
	Chalk 138 400 21-12	
	A somewhat different version of this section has been communicated by	
	Messas, Legrann and Surcliff, as follows:—	
	THICKNESS. DEPTH.	
	Blue [London Clay - 135 174	
	Mottled clay - 34 208	
	Brown sand - 4 212 Brown clay - 8 220	
	Woolwich and Sand - 14 234 Reading Beds, Light-blue clay - 3½ 237½	
	74 feet. Dark blue clay 1 238	
	Blue clay and pebbles 2 240 Sand and pebbles 2 242 Green sand [P Thanet] 6 248	
	Green sand [P Thanet] - 6 248	
*	17 ft. Dead sand and clay 9 265	
•	Chalk and flints - 137 402 (given as 400)	
		3
		· · · · · · · · · · · · · · · · · · ·
		-
		···
	Y P	

GeoRecords Terms & Conditions

Our guarantee

The BGS will make reasonable endeavours to ensure that the records you order are delivered promptly and at a reasonable cost. If you find that your purchase does not match what you have ordered, you will be provided with a full refund for the item(s) if you inform us within 7 days of receiving the item. If the delivery is defective in any way, we will send you a replacement within 7 days or again give you a full refund (including postage costs) if a replacement is unavailable. This guarantee does not affect your statutory rights.

The BGS Enquiry Service (contact details below) will be happy to help you if you have queries or difficulties in ordering products or have problems with delivery.

Exclusion of Liability

Your use of information provided by the BGS is at your own risk. Please read any warnings given about the limitations of the information, including those listed below.

If the file on which the information is delivered to you is corrupt or is otherwise unusable then please inform the BGS Central Enquiries Desk (contact details below) within 7 days and we will replace it.

The BGS gives no warranty as to the quality or accuracy of the information, or the medium on which it is provided, or its suitability for any use. All conditions, implied or otherwise, relating to the quality or suitability of the information and the medium, and all liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law.

The BGS warrants that the information will conform to any specification agreed with the customer and will be suitable for any purpose communicated to the BGS by the customer. The liability, howsoever arising, of the BGS under this warranty and otherwise in connection with the provision of the information is limited to ten times the cost payable by the customer or £50,000, whichever is the lesser.

The BGS excludes all liability arising from any errors or omissions in any data provided by you. Except as stated above, the BGS accepts no liability for any loss or damage which may be caused by the condition of the disk or file in which the information is provided to you, and you are expected to operate suitable anti-virus software before loading it into your computer system. You are responsible for ensuring that the form of the information you have ordered is compatible with your computer system and any other data with which the information is to be used.

Nothing in these terms and conditions excludes or limits the liability of BGS for death or personal injury arising from its negligence, or for fraud, or for any other liability that, by law, cannot be excluded or limited.

Customers should be aware of the following factors and limitations that may affect the quality or accuracy of records information supplied:

- 1. Geological observations are made according to the prevailing understanding of the subject at the time. The quality of such observations may be affected by subsequent advances in knowledge or improved methods of interpretation.
- Raw data may have been transcribed from analogue to digital format, or may have been acquired by means of automated measuring techniques. Although such processes are subjected to quality control to ensure reliability where possible, some raw data may have been processed without human intervention and may in consequence contain undetected errors.

- 3. Although records are maintained with all reasonable care, there may be some deterioration in the long term.
- 4. The most appropriate techniques for copying original records are used, but there may be some loss of detail and dimensional distortion when such records are copied.
- 5. Data supplied by external organisations to the BGS, and which the BGS makes available to others, is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of fitness for a purpose.
- 6. Data, information and related records that have been donated to BGS have been produced for a specific purpose, and that may affect the type and completeness of the data recorded and any interpretation. The nature and purpose of data collection, and the age of the resultant material may render it unsuitable for certain applications/uses. Customers/recipients of such material are advised that it is their responsibility to verify the suitability of the material for their intended usage.
- 7. The data, information and related records supplied by the BGS should not be taken as a substitute for specialist interpretations, professional advice and/or detailed site investigations. Professional advice should be sought before making technical interpretations on the basis of the materials provided.

Availability of goods

The maps provided on this website show where the various records are available. However, if for some reason, after you have paid for a record, the BGS is unable to provide it (for example, due to data or computing problems), we will inform you and offer an alternative record or a full refund.

Some of the records held in the National Geoscience Data Centre (NGDC) were donated under conditions of confidentiality. For most of these confidential records, the BGS is able to tell you that the records exist, and their location will, therefore, be displayed on the index maps on this website but we will not be able to provide you with a copy immediately. You will, however, be able to place a request to obtain details about the owners of the records who you can then contact to request release of the data. Once this is obtained you will then have to supply the BGS with written confirmation of release, and we will then be able provide you with a copy of the records concerned.

Prices, payment and VAT

Prices quoted in printed leaflets and internet pages are liable to change without prior notice.

Payment can currently only be accepted in Sterling, but may be made by credit or debit card (not by charge card, e.g. Amex), International Money Order, or Bankers' Draft. Electronic Fund Transfers, such as BACS (Bank Automated Clearing System) are also possible, please contact us for details.

The BGS reserve the right not to supply goods to purchasers who have previously defaulted on payment, or where there is reasonable evidence that a fraudulent credit card payment may be involved.

Value Added Tax (VAT) will be charged in accordance with current regulations.

The charges for obtaining copies of records are detailed on this website. There is a minimum charge of £26+VAT on all orders to reflect our minimum administration costs.

Delivery

Records ordered through this website will be dispatched using your requested method, options being: prints/photocopies by standard post/special delivery/faxing, or digital files (secure PDF format) by e-mail (if file size allows) or on CD by post. Records will normally be dispatched within 10 working days from receipt of the order. However, a special 24 hour

Premium delivery can be requested at an additional charge, details of which can be found on this website.

On top of these quoted dispatch times, please allow five days for postage in the UK, seven days in the EU and up to 30 days elsewhere. If your order is delayed beyond this time, please contact the Central Enquiries Desk immediately (contact details below). Standard Postal Delivery charges are included in the price of the records. You will only be charged the amount quoted. If you require special delivery arrangements to be made, please contact us before placing your order.

Lost, damaged or incorrectly supplied goods

The BGS will take all reasonable steps to replace items damaged in transit or those that have been supplied in error. Where this is not possible, a full refund will be made (please see Availability above).

If goods are lost or damaged in transit, or have been incorrectly supplied, you should retain them together with all packaging and documents, and notify the BGS immediately. You should do this by letter, fax or email within 7 days of receiving the goods: beyond this period we cannot guarantee that replacements will be available. You then have the choice of having a replacement item or a full refund. Please ensure you quote any customer order numbers and include your full name and address in any communications.

Please do not return any faulty or incorrect goods unless asked to do so. We will give you instructions on how, or whether, to return these items, and may ask you to supply appropriate documents.

Complaints

We would hope that the vast majority of potential problems can be resolved by simply contacting the BGS through the Central Enquiries Desk. If, however, you are not satisfied that the problem has been resolved or handled to your satisfaction, you may wish to make a formal complaint. Your complaint can be sent to the BGS by post, fax or e-mail. In all cases you should aim to provide as much relevant information as possible so that we can deal with your complaint as promptly as possible. Please also include your contact details in case we need to obtain more details from you.

All complaints should be sent to the Central Enquiries Desk (contact details below).

You will receive an acknowledgement within five working days that your complaint has been received. If you do not receive an acknowledgement, please contact the Head of Enquiry Service at the same address.

When acknowledging receipt of your complaint, we will give an indication of how long it will take to send you a detailed response. In most cases, we would aim to provide a detailed response within ten working days. However, this may not always prove possible, especially if we need to obtain further information. In these cases, we will keep you fully informed on the progress of your complaint, and endeavour to provide you with as full a response as possible as soon as we can.

Legal issues

In the event of a dispute over the description or supply of goods, payment, or ownership, the contract will be deemed to have been made within England and will therefore be subject to the laws of England and Wales.

The BGS regret that we are only able to handle enquiries and conduct business matters in English.

Data protection

Please see our 'Privacy policy'.

Copyright

The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council (NERC) and/or the commissioning authority under whose auspices the relevant work was carried out. No part of these materials supplied through the GeoRecords service may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior written permission of NERC, through the Director, British Geological Survey.

Permission to reproduce BGS materials

Guidance on commercial and non-commercial use of BGS material is available on the BGS website at :-

http://www.bgs.ac.uk/about/copyright/home.html

Specific permission to reproduce such materials must be sought in writing from the Head of Intellectual Property Rights, BGS, Keyworth.

A basic BGS copyright licence may be taken out which authorises a licensee to include extracts of BGS maps and other documents passed to third parties for a 12 month period.

Third parties receiving copies of BGS materials under a licence may not recopy them unless prior permission has been obtained from BGS.

A basic BGS licence does not cover any form of digital copying or manipulation; digital data are subject to specific licensing and royalty arrangements, for which specific permission is required.

Ownership and conditions of use

In order to comply with ownership rights and any express conditions of deposit, information supplied by BGS is provided on the strict understanding that it is for the sole use of the customer, and will not be passed in whole or in part to a third party. This does not preclude its use for the purpose of satisfying a consultancy contract for which the information was sought.

Contact details for all enquiries

Central Enquiries Desk British Geological Survey Keyworth Nottingham NG12 5GG

Tel: +44 (0)115 936 3143 Fax: +44 (0)115 936 3276 Email: Enquiries@bgs.ac.uk

Level (mAD): Date: 20/04/2010

to 21/04/2010

Coordinates E:-

N:-

Location: Regal House, Twickenham (Proposed Travelodge Hotel)

Borehole No. BH1

Sheet 1 of 3

Cased (m):

8.80

Client:

Angio Holt

Diameter (mm): 150

Engineer:

ŀ	Ligites								
	DESCRIPTION OF STRATA	Legend	Depth (m bgl)	Level (m AOD)	Water Level	Samples/Tests Type Depti		U100 Blows	Piezo
F	MADE GROUND - Tarmac onto roadstone.				(m bgl)	(m bgi)	Value	DIDWS	/Gas Pipe
	MADE GROUND - Firm dark brown slightly sandy slightly gravelly CLAY. Gravel is brick and siltstone.		0.10 0.20			D 0.10 0.20			5 6
	MADE GROUND - Loose (from 1.20m) dark brown and in parts black slightly clayey to clayey sandy GRAVEL with occasional clay pockets and cobbles. Gravel is brick, concrete, hardcore, tarmac, glass and siltstone. Cobbles are concrete.			war mag pipel shapman an yan yan magana da mara a sa]:	D 1.00 S 1.20 B 1.50	N=6		50505050 50505050
	Very dense (from 2.00m) brown and yellow brown sandy GRAVEL. Gravel is chert, flint and siltstone. (Superficial Deposits)	0.0000	1.90	HERRETT MANAGEMENT CONTENTION OF THE STATE O		1.90 2.00 3 2.50	50 for 190mп	Andreas establishment and andreas establishm	0.00.00.00.00.00.00.00.00.00.00.00.00.0
	Very dense (at 3.00m) becoming dense (from 4.00m) brown and yellow brown SAND and GRAVEL. Gravel is chert, flint and sandstone. (Superficial Deposits)	00000 00000	3.00	desemble for the case of the same			50 for 145mm		
			Management of the State of the	November of the second	S		N=39		0,0000
		00000	A STATE OF THE STA	CO CANDINA POLICE DE REPUBBLICA CON LANGO	B	5.00	N=48		
		1000 1000 1000	Andreas and Anna Principles Control	SALESCE OF THE PROPERTY OF THE	В	5.50			
		000 000 000 000	likos ado descrimina por esta de la composição de la comp		S	6.00 6.50	N=35		
			50	Maddina, arrive contample of School 14 a to be present	Accessed with the contract of				
= = 2.	Brown clayey gravelly SAND with many clay pockets. Gravel is chert. (Superficial Deposits)	10.1	50		s	7.50	N=28		3163
-	Very stiff grey slightly gravelly CLAY. Gravel - is siltstone and quartz. (Superficial Deposits)	0 0 7.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SE ENGLISHE STATE OF THE SECOND		В	7.80	endanci i i i i i i i i i i i i i i i i i i		
, , , , , , , , , , , , , , , , , , ,	Very stiff grey and in parts dark greenish brown silty CLAY. (London Clay)	8.6	50	NO ARTHUR SERVICES	ט	8.50 9.00		80	
1	√ery stiff dark grey silty CLAY. (London Clay)	9.4	.5	NG Oblider annumption (Chapters	D	9.45			
	[Continued on next sheet]								EXX
SA	MPLES / TESTS OTHER INFORMATION				THE PERSON NAMED IN COLUMN TWO	ar managana and an			IXX.

U Undisturbed Sample

D Disturbed

В Bulk

W Water

S/C SPT/CPT

 ∇ Water strike

V Water level

NR No Sample Recovery

ER INFORMATION

Hand excavated service avoidance pit to 1.20m - 1.00hr.
 Water added to assist drilling from 1.90m to 7.80m.
 Chiselling from 3.20m to 3.60m - 1.00hr.

4. 63mm OD HDPE gas / groundwater monitoring standpipe installed to 8.00m in a gravel filter medium, bentonite seal from 1.00m to 0.30m, concrete from 0.30m and a security cover fitted at surface.

5. Reinstating borehole position - 1.00hr.

Logged by ATP	*********
Project No. 1	7636
Checked by AJM	

Level (mAD): Date: 20/04/2010

to 21/04/2010

Coordinates E:-

Cased (m):

N:-

Location: Regal House, Twickenham (Proposed Travelodge Hotel)

Client:

Anglo Holt

Diameter (mm): 150

8.80

Engineer:

Borehole No. BH1

Sheet 2 of 3

- 1			-	The state of the s		_				
- 1			Depth	Level	Water	Sample	≈s/Tests	SPT	U100	Piezo
- 1	DESCRIPTION OF STRATA	Lagend	(m bgl)	(m AOD)	Level	Туре	Depth	'N'	2100	
L		1		' '-'	(m bgl)	())	Deptil		Blows	/Gas
F	Very stiff dark grey silty CLAY. (London Clay)				(in ogr)	(m i	ogi)	Value		Pipe
r	, and gray and active (Editadi) diay)	-	1		İ	D	10.00			VV
	-							1	1	KXX
L	-		1					1		NN
-	-	writeleter ga	1			S	10.50	N=33		
-		-	1				10.50	IN-33		KXX1
Ľ]		!						1	(XX)
L		m100m00 CC	1 1		- 1					IXX)
-	-			1	1	В	11.00		1	\sim
F	4			1	į		11.00			KXXH
-		HITTOGRAM AND	1 1	1	1	•				KXX1
r]			ı	į		į		1	
Е)	1	Į	7	44 50			KXX1
-	- <u>-</u> i			ı	[D	11.50		1	\mathbb{N}^{1}
-	1		1	\$	- 1	I	1			FXXI
F	Ţ.			- 1	- 1	1	- 1			
	e construction of the cons	-	1	Į.	- 1	1			l	KXXI
	4		ŀ	I	1	U	12.00		85	\times \times \times \times
-	4		-	- 1	1	Î	1		1	\mathbb{R}^{\times}
F	1-		1	1	1	- 1	1		•	FXX3
r	1	1	1	1	1	D	12.45		•	\mathbb{L}^{\times}
			1	1	- 1	- I	12.40			$\mathbb{K}XXI$
-	+		j	1		ĺ	1			$\times \times 1$
F	1			Ì		1	1		1	KXX +
I			1	ı	- 1	1			ı	(XX)
	<u></u>		- 1	2	1	i		i		L(XXI
L				ì	1	•]			NX1
	-t .	Marketon no	ļ	1	- 1	J	- 1			KXX1
r	<u>"</u>		j	1	į	_				
-	<u></u>]		1	ļ	11	D .	13.50		ı	$\times \times 1$
	4	economic and	1	I	- 1	į	l	1		EXXX
L	4		-	1	- 1	1	İ	ı	1	$\times\times\times$
	† -		1	I		- 1	1		1	F(XX)
r	7_					S [1	14.00 N	√=34	ľ	
	4		[1		1	Į		K	$(\mathbf{X}\mathbf{X})$
L			1	1	1	1	1	1	Į.	\sim
H	+		- 1	1	i		1	1	ſ	$+\infty$ X
h	1		1	i i	E	3 11	14.50		ř	LXX
Ľ			I	1	į.	1.			k	(XX)
	<u>-</u>		1	1	- 1	1	- 1	1	l	XXX1
L	4_	1	1	ı	ì	ı		}	1	\times
⊦			1		1	1	- 1	1	K	+xx
r			ı	-	ı	1	[}	V	
Ľ			1	l	[Î	1	i	ľ.	
	4	-	- 1	1	1	- [- 1	ĺ	K	XXI
L	al and a second and a second and a second and a second and a second and a second and a second and a second and		1	- 1	10) [4	5.50	į	k	$\sim\sim$ 4
-				1	1-	, I,	5.50		D	F(XX
r			ě	1	- 1	1	- 1		ľ	\sim
r		No.	1	į	1	1	- 1	1	K	
			1	Į.	s		م مم اب		12	\sim
L	4_		l	1	0	, 11	6.00 N	=31	D	$+\infty$
-	1		1	1	ı	- 1	1	1	K	FXX.
_			ı	1		g s	I	1	K	$\times \times 1$
	<u> </u>		ı	ı	В	140		1	<i>D</i>	∞ 4
_	ન -		1	1	10	130	6.50		P	<>>>1
-			- 1	ì	1	- 1			K	LXX
-			ĺ	i	1	ı	1		· · · · · · · · · · · · · · · · · · ·	\times
2000 2000				1	ı	Į	- 1	1	\triangleright	$\langle X \rangle 1$
_	m ,	marketon page	1	ŀ	ļ	-		1	N	\sim H $^{-}$
-			1	- 1	- 1	j	Man .	1	K	XX1
90	<u></u>]	Ì	1	- 1	1	1	Ĵ	<i>Y</i>	$\nabla \nabla \mathbf{J}$
-			- 1	ı	-			1	>	$\langle X \rangle I$
_	- 		Į		D	11/	7.50	1	ſ.	$\times \times 1$
-			ĺ	ı	1	1	- 1	1	K.	+xx
-	1.	9000an 40	į	ı	- 1	1	Ī			L EVV
-	englistatute. enged		1]	1_	١			<u>N</u>	∞ 1
			-	1	s	J 18	.00 N=	38	K	$\times \times 1$
			1	į	į	1	1		<i>\</i>	\times \times $+$
•	1 -	4	1	1	I	I	1	1	\triangleright	\times
	Tones -	*******	ļ	I	1_	1.	_	I	ſ.	
	and the second s		- 1	1	ΙB	18	.50	ı	K)	$\times \times 1$
	- په	1	ĺ		l	- 1	1	ŀ	IX.	$\checkmark\checkmark$ 1
	and the same of th		4	l	ı	ė,	1	ļ	\sim	\times 1
-			Ī	1	Į	1	1		K	ĹXŢ
	1	1	Į.	1		- CO		AND THE PROPERTY OF THE PROPER	K	- EXX
			1	1	September 1		1	I	i×	\times
			1	•	-	- 1	ĺ			$+\infty$
			1	1		į	I		K)	X.X.1
	Con			1	D	19.	.50	1	K	×\1
	to make the same to the same t		I	ĺ	1		1	I	i×	-F (X)
	(Continued on part short)		l	Ī	ı	ı		I	\sim	\sim 1
	[Continued on next sheet]		1	I	1		I	1	K	LXX
SA	MPLES / TESTS OTHER INFORMATION								X	ΔJ
	Undisturbed Comple 1 Hand excavated continues									
4.1	Undeturbed Comple 1 1 Hand exequated confee avaidance	A 14 4 4 4 4								

S

U Undisturbed Sample

D Disturbed

В Bulk

W Water

S/C SPT/CPT

 ∇ Water strike

Y Water level

NR No Sample Recovery Hand excavated service avoidance pit to 1.20m - 1.00hr. Water added to assist drilling from 1.90m to 7.80m. Chiselling from 3.20m to 3.60m - 1.00hr.

5. Glassing from 3.20m to 3.30m - 1.30m.
4. 63mm OD HDPE gas / groundwater monitoring standpipe installed to 8.00m in a gravel filter medium, bentonite seal from 1.00m to 0.30m, concrete from 0.30m and a security cover fitted at surface.

5. Reinstating borehole position - 1.00hr.

Logged by	ATP		
Checked by	AJM	Project No.	17636

Level (mAD):

Date: 20/04/2010 to 21/04/2010

8.80

Coordinates E:-

Cased (m):

N:-

Location: Regal House, Twickenham (Proposed Travelodge Hotel)

Client:

Anglo Holt

Diameter (mm): 150

Engineer:

Borehole No. BH1

Sheet 3 of 3

	DESCE	PTION OF STRATA	Legend	Depth (m bgi)	Level (m AOD)	Water Level	Samples/Te		SPT	U100	Piezo
ŀ					(III AOD)	(m bgi)	(m bgl)	epth	'N' Value	Blows	/Gas Pipe
ŀ	Very stiff dark grey silty (Complete (London Clay)		20.05			S 20	.05	N=46		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
ļ	solelide	: Complete	1								
F	•		1								1
F	•	-									l i
Е	.										E
E		a a									E
þ											4
þ		1			ĺ						
F		.		1	ĺ	l					1
F		7	1	l	-						
F		3			1	I				Maria de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de	7
E		_		- 1							3
E			o de la companya della companya della companya de la companya della							=	
F		_		-					į	ĺ	4
þ		1						-	1	-	7
F		-		-	-			l		[1
E		[- Contraction of the Contraction	- 1		-			1	1	3
E		#	1	1	200						3
F		7	-	1							4
F			Ì		1	į					1
E		-		1							3
-		1		1		ĺ		l		and the same of th	3
F			1		1			and the same of th	ĺ	and the second	1
F		3			***			1			7
E]		Westernand		***					3
E			l		l	l		ı			3
Ł		4									=
F		**************************************		ĺ	***************************************						4
E		3	1	Management			l		E A	Market Spirit	4
E					- Company		ı				-
F		-	7	I	ŧ					1	4
-		4	- 1		-				i		1
F		E			į						7
E		4	ĺ		- 1	l					3
F		1		- 1							4
L		1	l			l	l				1
F		3	l	ĺ							4
E]		-							3
E		‡						ĺ			3
F		7		1							4
F		4					940	alto planta		accountry.	4
F]				l	M approprie			Topological Control of the Control o	7
		3								annia vi gran	3
L		L. Company			September 1	No.		- CONTRACTOR			1
<u> </u>											‡
	MPLES / TESTS	OTHER INFORMATION						<u></u>	L		
U	Undisturbed Sample	Hand excavated service avoidance	pit to 1.2	20m - 1.0	00իг.						-
D	Disturbed	3 Chiselling from 3 20m to 2 com	1.90m ta	o 7.80m.							
B W	Bulk Water	d. 63mm OD HDPE gas / groundwate bentonite seal from 1.00m to 0.30m, o 5. Reinstating borehole position - 1.00	er monito	ring stan	dpipe in:	stalled to	8.00m in a	grave	el filter medium	1.	
S/C		Reinstating borehole position - 1.00	concrete Ohr.	trom 0.3	Om and a	a securit	y cover fitted	at su	urface.	-,	- 1
570											

Water strike

Water level

No Sample Recovery

 ∇

Y

NR

Logged by

ATP

Project No. 17636

Level (mAD):

to 19/04/2010

Date: 15/04/2010 Coordinates E:-

Cased (m):

N÷

9.00

Client: Engineer:

Diameter (mm): 150

Anglo Holt

Regal House, Twickenham (Proposed Travelodge Hotel)

Borehole No.BH2

Sheet 1 of 5

	J								
DESCRIPTION OF STRATA	Legend	Depth (m bgl)	Levei (m AOD)	Water Level	↑ Samples/	Tests Depth	SPT 'N'	U100 Blows	Piezo
MADE GROUND: Tarmac (Driller's description)				(m bgl)	(m bgl)	Value	Diows	/Gas Pipe
MADE GROUND: Brownish grey SAND and GRAVEL. Gravel is fine to coarse subangular to angular brick, sandstone and tarmac with occasional fine to medium subangular to angular brick and sandstone cobbles.		0.10			В О	.10 .35			
MADE GROUND: Brownish grey slightly clayey gravelly SAND with many soft chalk rich clay pockets. Gravel is fine to coarse subangular to subrounded flint, brick and tarmac.	o o	1.00 1.10			S 1	.00 .20 .50	N=39 (5,7,8,9	9,10,12)	
POSSIBLE MADE GROUND: Very stiff brown slightly silty sandy gravelly CLAY. Gravel is fine to coarse subangular to subrounded quartz, chert, flint and rare brick.					S 2.	00	N=56 (6,8,10	, 18,15,13)	
Dense and in parts very dense orange brown gravelly SAND. Gravel is fine to coarse subangular to angular flint and chert with						50			
rare quartz and sandstone. (Superficial Deposits)	- 6 - C - C				S 3.9		N=44 (4,7,8,1	0 ,12,14)	
- - -					S 4.0	00	N=45 (5,8,9,1	Ø,12,1 4)	
	G.				B 4.5	50			
 - - -	- a - a - a			;	5.0	00 1	N=33 (3,4,6,7,	9,11)	
• • • •	0				3 5.5				
• • • •				S			l=4 6 (2,3,5,8,	15,18)	
	; o .	944	The state of the s						
	- ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °			s	7.50) N	=30 (4,5,6,6,	3,10)	
Very stiff with depth becoming hard in parts grey slightly silty CLAY with rare shelly fossils. (London Clay)	- O 8	20		В	8.20				
- (s	9.00	Z:	=27 (4,6,6,6,7	(8,	
- Between 9.50m and 10.00m - rare subrounded mudstone gravel. [Continued on next sheet]				В	9.50				

SAMPLES / TESTS

IJ Undisturbed Sample

D Disturbed

В Bulk

W Water

S/C SPT/CPT

 ∇ Water strike

Water level No Sample Recovery NR

OTHER INFORMATION

1. Hand dug service avoidance pit to 1.20m - 1.0 hour.
2. Water added from 1.20m to 8.20m to aid drilling.
3. Chiselling from 2.50m to 2.70m due to cobbles - 0.5 hours.
4. Chiselling from 6.40m to 6.60m due to cobbles 0.5 hours.
5. Chiselling from 18.70m to 18.90m due to sittetone - 0.5 hours.

5. Chiselling from 18.70m to 18.90m due to siltstone - 0.5 hours. 6. Chiselling from 28.30m to 28.40m due to siltstone - 0.5 hours.

7. Water level at start of shift on 19/04/2010 at 25.00m with 9.00m of casing, borehole 30.00m deep.

8. Unable to move to next borehole due to parked cars - 2.0 hours.

Logged by	SAG	Project No.	47000
Checked by	ASM	Project No.	17636

P

Level (mAD): Date: 15/04/2010

to 19/04/2010

Coordinates E:-

Cased (m):

N:

Location: Regal House, Twickenham (Proposed Travelodge Hotel)

Borehole No.BH2

Sheet 2 of 5

Client: Anglo Holt

Diameter (mm): 150

9.00

Engineer:

			Depth	Level	Water	Com	ples/Tests	1	1	
	DESCRIPTION OF STRATA	Legend	(m bgl)	(m AOD)	Level	Type		SPT 'N'	U100 Blows	Piezo /Gas
					(m bgl)	(m bgl)	Value	blows	Pipe
F	Very stiff with depth becoming hard in parts grey slightly silty CLAY with rare shelly fossils. (London Clay)					D	10.00	T		
F	fossils. (London Clav)	十	į							- KXX
E	(Landon Clay)	1	1			<u></u>	10.50			- KXX
F		 _				B U	10.50		İ	
F		<u> </u>								KXX:
F	•									- KXX:
Ŀ		 				ļ			•	
H							1			
F						D	11.50			
F		}								
L		1		1				İ		
-	•	<u> </u>	1			S	12.00	N=35 (5,6,7,8	9.11)	
F			1	1					1	- XX:
-		7-1							l	→ >>>
E			l			В	12.50			\longrightarrow
F		1-1	1							
_	_	上	Ī	I						XX
F		-	1	1	1					\times
Ė		 	1	- 1						
E			1	- 1	-	D	40.50			
F			1		l	υ	13.50			
F			- 1							KXX1
F			- 1	l		U	14.00		0.0	FXXX
t					Ì	•	14.00		88	\otimes
F			İ							KXX1
F		T	1	1	l	D	14.45			$+ \times \times \cdot \cdot \cdot$
ţ					1					- KXX-1
Ł			1							KXX1
F		<u></u>		ı		D	15.00			
F	•	F-7	- 1	- 1				1		KXX-1
Ė	-		ĺ	Ì	1					FXX3
Ł					1			ľ		[XXX]
F	<u> </u>		ı	1	- 1			f		
F	<u>_</u>					_		ſ		
-	-				- '	3	16.00	V=40 (7,8,9,1 ¢	,10,11)	\vdash
ļ.			1	l						FXX
Ŀ	3		1	Į		3	16.50			\bowtie
F			l		1,	1	10.50	- 1		EXX
F					1	- 1		- 1		
F			1		l			1		XXX
Ė	7		- 1			l		ĺ		FXXX
Ŀ						- 1	1	1		KXX1
F)	17.50	1		
F	-			1		- 1				
L	7			- 1		- 1				\sim
Ė	7				s	; [18.00 N	l=43 (5,7,9,1 ¢ ,	12,12)	\bowtie
ŀ	‡		l		- 1			Ī	•	
F	+	1	-		_					[XXX]
F	7]			В		18.50			[XXX]
Ė	7		1		I					EXXI
_	<u>†</u>							-		
-	t]	- 1	1	İ		I			[XX]
	7]	l		- 1			-		EXX
_	‡]			ם	1.	19.50	l		KXX1
_	‡		1	-	10	- 1	13.50			\times
-	[Continued on next sheet]]				- 1				LXXX
C A		l_								\mathbb{R}^{\times}
36	MPLES / TESTS OTHER INFORMATION									

Undisturbed Sample U

D Disturbed

В Bulk

W

Water S/C SPT/CPT

 ∇ Water strike V

Water level NR No Sample Recovery 1. Hand dug service avoidance pit to 1.20m - 1.0 hour.

- Hand dug service avoidance pit to 1.20m 1.0 mour.
 Water added from 1.20m to 8.20m to aid drilling.
 Chiselling from 2.50m to 2.70m due to cobbles 0.5 hours.
 Chiselling from 6.40m to 6.60m due to cobbles 0.5 hours.
 Chiselling from 18.70m to 18.90m due to siltstone 0.5 hours.
 Chiselling from 28.30m to 28.40m due to siltstone 0.5 hours.
 Water level at start of shift on 19/04/2010 at 25 00m with 9.00m 7. Water level at start of shift on 19/04/2010 at 25.00m with 9.00m of casing, borehole 30.00m deep.
- 8. Unable to move to next borehole due to parked cars 2.0 hours.

Logged by	SAG	Desired No. 4	7000
Checked by	ASM	Project No. 1	7636

Anglo Holt

Level (mAD):

to 19/04/2010

Date: 15/04/2010 Coordinates E:-

Cased (m):

N:

Location: Regal House, Twickenham (Proposed Travelodge Hotel)

9.00

Client:

Diameter (mm): 150

Engineer:

Borehole No.BH2 Sheet 3 of 5

DESCRIPTION	OE STRATA	Legend	Depth Level (m bgl) (m AOE		Samples/Tests	SPT	U100
				(m bgl)	Type Depth (m bgl)	'N' Value	Blows
Very stiff with depth becoming grey slightly silty CLAY with rar	hard in parts			s	20.00		2,12,13)
fossils. (London Clay)	e shelly	<u> </u>					,,
			1	В	20.50		
			1				
		<u> </u>					
				D	21.50		
- Between 22.00m and 22.45m.							
nudstone fragments.	Rare intact		ĺ	s	22.00	N=44 (4,7,9,10	,12,13)
3							
				В	22.50	1	
		1	İ		į .		
		‡ ===f					
		1 -j		D	23.50		
		 -					
				s	24.00	N=40 (0 0 40	
				l s	24.00	N=49 (6,8,10,	2,13,14)
		***************************************					k
		1-1		В	24.50		Ė
		 					Į.
							ĵ.
		1					k
							K
				D	25.50		K
						ľ	
		+1		s	26.00	V=50 (5,8,10, 2	12.15
]]			25.55	1-30 (3,0, 10, 12,	, 13, 15) K
		-					K
		<u> </u>		В	26.50		1
							\triangleright
							R
						į	K
		intercepts and					K
				D	27.50		5
				-		1	\triangleright
		1-1		s	28.00 5	0/115mm (8, 0,	12.38)
		┼ <u></u>				(-)	
etween 28.50m and 29.00m - o	oogalay at	‡]		B	30.50	1	K
careous pockets.	ccasional	 		В	28.50		\mathbb{K}
•		-					\triangleright
		1-1				- Appendix	\mathbb{R}
							K
		1-1		D	29.40		K
							\Diamond
[Continued on next sheet]		+				1	\bowtie
PLES / TESTS OTH	ER INFORMATION						
	and dug service avoida ater added from 1.20m	ance pit to 1.20m = 1	0 hour				
Diatumb and 2. W	ater added from 1.20m	n to 8 20m to aid deil	line				

S

Disturbed

В Bulk

D

W Water

S/C SPT/CPT

 ∇ Water strike **W** Water level

No Sample Recovery

1. Hand dug service avoidance pit to 1.20m - 1.0 hour.
2. Water added from 1.20m to 8.20m to aid drilling.
3. Chiselling from 2.50m to 2.70m due to cobbles - 0.5 hours.
4. Chiselling from 6.40m to 6.60m due to cobbles 0.5 hours.
5. Chiselling from 18.70m to 18.90m due to siltstone - 0.5 hours.
6. Chiselling from 28.30m to 28.40m due to siltstone - 0.5 hours.
7. Water level at start of shift on 19/04/2010 at 25.00m with 0.00m

7. Water level at start of shift on 19/04/2010 at 25.00m with 9.00m of casing, borehole 30.00m deep. 8. Unable to move to next borehole due to parked cars - 2.0 hours.

Logged by	SAG	D	
Checked by	ASM	Project No.	17636

Level (mAD):

Date: 15/04/2010 to 19/04/2010

Coordinates E:-

N۶

Location: Regal House, Twickenham (Proposed Travelodge Hotel)

Cased (m):

9.00

Client:

Anglo Holt

Diameter (mm): 150

Engineer:

Crassed weekt gather & Alling stime a		G	bor & J	
---------------------------------------	--	---	---------	--

Borehole No.BH2

Sheet 4 of 5

				T	Depth	T	T	T .			-	
	DESCRI	PTION OF STRATA		Legend	(m bgl)	Level (m AOD)	Water Level	Sar Typ	mples/Tests e Depth	SPT 'N'	U100 Blows	Piezo
þ	Very stiff with depth bec			 			(m bgl)		(m bgl)	Value		/Gas Pipe
F	grey slightly silty CLAY i	with rare shelly				ĺ		S	30.00	50/275mm (6	6,9,11,14,15,10)	XX
E	fossils. (London Clay)									l		\otimes
E	 Between 30.50m and 3 pockets. 	31.60m - some sandy	=					В	30.50			
E	•		-									
F											İ	
ļ			-				l					XXX :
F			7					D	31.50			\times
F			=						101.50			\bigotimes :
F			E			1	1	_	1	1		\bigotimes :
E			3		ı			S	32.00	50/245mm (7	,9,10,13,14,13)	
E			<u> </u>									\bowtie
E			‡		1	- 1		В	32.50			
þ			#				1					\bigotimes :
F			4		1	-						
F			1		İ		1		ļ	ĺ	Ì	\mathbb{K}
F			}					_				\mathbb{K}
E			<u>-</u>		- 1	- 1	[1	D	33.50			EXX
E			1			- 1	- 1					\mathbb{K}
E			4					S	34.00	50/235mm (8.	1,12,16,17,5)	\bowtie
F			‡		- 1					``	,,,,,,,,,,	XX:
F			‡			- 1	-	3	34.50			XX :1
þ			ŧ					•	34.50			₩
F			7			ĺ	1					\Leftrightarrow
F			3-				l				ľ	XX1
E			}-									EXX
E	- Between 35.50m and 37.	.60m - some sandy	于)	35.50		k	£₩
ŀ	pockets.	,									K	\mathbb{K}
F			#		i		s	,	36.00	ED/045 10		XX
þ			+		1		3	,	30.00	50/245mm (6,	J,11,15,17,7)	XX4
F	_		+								k	!
F	- From 36.50m to 37.00m - intact fine sandstone and n	contains many					В	1	36.50	1	8	XX1
E	made into sariasione and n	nuusione iragments.]					i				₩.
E			_		- 1	l	1			ŀ	R	\mathbb{E}
ţ			+								K	\times
F			===				D		37.50		5	XX:1
Ė			-						37.50		8	₩ 1
F										1	R	\times
E			<u>-</u>			- 1	s		38.00 5	0/235mm (9,12	2,14,14,16,6)	\times
E			===								>	₩.
-	- From 38.50m to 39.00m -	occasional sandy	1				В		38.50		R	£\$\$
<u> </u>	pockets.	•	‡		- 1		ĺ	- 1			K	\times 1
_						l					K	\times :
-			‡-					l		-	[>	₩
-			<u></u>		ł						\triangleright	₩
-]				D	1	39.50		K	X
-	[Continued on ne	xt sheet]]-]					1	l		\triangleright	EX
SA	MPLES / TESTS	OTHER INFORMATI	 _									\boxtimes
U	Undisturbed Sample	1. Hand dug service :	avoidance nit to	1.20m -	1.0 hou	r						
D	Disturbed	2. Water added from	1.20m to 8.20m	to aid d	rillina							
В	Bulk	3. Chiselling from 2.5d 4. Chiselling from 6.4d 5. Chiselling from 4.8d	UM TO 6 60m du	ia ta nahi	100 O E	L						İ
W	Water	I O Chiselling Hom 18.	/Um to 1x unm	dua ta ci	itatana	0 E E	rs.					
S/C		6. Chiselling from 28.3 7. Water level at start 8. Unable to move to										
∇	Water strike	8. Unable to move to	next horehole d	lue to nar	rked oor	i with 9.0	of c	asing	, borehole	30.00m deep		

 ∇ Water strike $\overline{\mathbf{x}}$

Water level NR No Sample Recovery 8. Unable to move to next borehole due to parked cars - 2.0 hours.

Logged by SAG Project No. 17636 Checked by ASM

Level (mAD):

Date: 15/04/2010 to 19/04/2010

Coordinates E:- N:- Cased (m): 9.00 Diameter (mm): 150	Location: Client: Engineer:	Regal Hou		ckenham	ı (Propo	sed Travelodge I	Hotel)	Godine mestasta	L Lud of A Richts Learners	
DESCRIPTION OF STRATA		Legend	Depth (m bgl)	Level (m AOD)	Water Level (m bgl)	Samples/Tests Type Depth (m bgl)	SPT 'N' Value	U100 Blows	Piezo /Gas Pipe	

		Looped	Depth	Level	Water		es/Tests	SPT	U100	Piezo
DESCRIPTION OF STRATA		Legend	(m bgl)	(m AOD)		Туре	Depth	'N'	Blows	/Gas
Very stiff with depth becoming hard in parts grey slightly silty CLAY with rare shelly fossils. (London Clay)				<u> </u>	(m bgi)	S	bgi)	Value		Pipe
grey slightly silty CLAY with rare shelly	7		1			15	40.00	50/225mm (10	,14,15,17,18)	\times
fossils. (London Clav)	1		40.40	1		1				\bowtie
			40.40		l	İ				1
Borehole Complete	Ė									
<u>t</u>	7									
F	Ŀ									1
-										-
Ę.	-									
F	1									
<u></u>	4	j								
E .	7									
F										
	-	l						-		1
-		l								-
t	7	į								1
F	j					Į				
<u>t</u>	4					l				
]		- 1					1		:
L	4	1				ļ	1			
	7	1	ľ	[1		- 1			-
Į.	7	i	İ	I	j	j	İ	j		['
 -		I	1	1	- 1		ļ			:
t	4	- 1	1	1	ı			I		1
 	1	- 1			1	l	1			
<u> </u>		- 1	İ				ĺ			1 :
-		- 1	ľ	1	- 1	1	ŀ	1		
<u>-</u>	4	- 1	- 1	į	1					-
-	1	1	- 1	1	1	j	1	Į.		-
	4			į			l			
-	1									-
-	4	- [l	1	- 1			
-	3		1	1			1			_
<u></u>	-		1		1	1	- 1			
-	1	- 1	- 1	1		- 1		i	I	. 4
	1	- 1			- 1				1	
-	7	- 1		-	- 1		1		I	-
		1			1	į	[1	1	_
	7	i		1	- 1		1	İ		_
	j	1			ŀ				•	-
<u>.</u>	-	ı		- 1	-	1	- 1		l	_
- -	1	- 1	- 1		1	1		1	1	7
- -	4		1	- 1					ĺ	-
-	1					ı		Ī		_
	4	1	- 1				l			_
•	1			ŀ		- 1	1			-
•••	-			-	1	- 1	- 1		1	_
•	1	1		ı	i				1	-
•	4	1	1	- 1				1	1	_
•	1					i				-
•	-					- 1	- 1		1	1
•	1		ľ		ĺ					4
<u> </u>	4		l					1	-	
	ᆿ		-					1	1	_
	4				- 1					t
	1	1	1					alecca	and the second	7
	4			I			- 1	1		Ė
	1				1	1		Į		7
	-	l	1	l						
-				1				-		7
	4		1	ļ			1			ᅼ
	1		Į	1		ļ	ł	1		7
	4					- 1		1	1	
	İ		j		- 1				I	1
	4	- 1			- 1			1		+
	j				İ]			İ	1
										+
SAMPLES / TESTS OTHER INFORM	TATION									
U Undisturbed Semple 1. Hand dun sen	rice avoidance nit to	. 1 20	40-							,

U Undisturbed Sample

Disturbed

D В Bulk

W Water

S/C SPT/CPT

 ∇ Water strike

W Water level

NR No Sample Recovery 1. Hand dug service avoidance pit to 1.20m - 1.0 hour.

2. Water added from 1.20m to 8.20m to aid drilling.

3. Chiselling from 2.50m to 2.70m due to cobbles - 0.5 hours.

4. Chiselling from 6.40m to 6.60m due to cobbles 0.5 hours.

5. Chiselling from 18.70m to 18.90m due to siltstone - 0.5 hours.
6. Chiselling from 28.30m to 28.40m due to siltstone - 0.5 hours.

7. Water level at start of shift on 19/04/2010 at 25.00m with 9.00m of casing, borehole 30.00m deep.

8. Unable to move to next borehole due to parked cars - 2.0 hours.

1	Logged by	SAG	D	43000
	Checked by	ASM	Project No.	17636

Borehole No.BH2

Sheet 5 of 5

Level (mAD):

to 21/04/2010

Date: 21/04/2010 Coordinates E:-

Diameter (mm): 150

N:-

Engineer:

Location: Regal House, Twickenham (Proposed Travelodge Hotel)

Cased (m):

4.90

Client:

Anglo Holt

Borehole No.BH3

Sheet 1 of 1

T			Depth	Level	Water	Sarr	ples/Tests	SPT	14400	
-	DESCRIPTION OF STRATA	Legend		(m AOD)	Level	Туре	Depth	'N'	U100 Blows	Piezo /Gas
k	MADE GROUND - Tarmac (driller's description).		0.10		(m bgl)	<u>В</u>	m bgl)	Value		Pipe
E	MADE GROUND - Dark brown gravelly SAND. Gravel is brick, tarmac, hardcore and concrete.		0.30			В	0.10 0.30			
	MADE GROUND - Dense (from 1.20m) dark brown and reddish brown SAND and GRAVEL with many cobbles. Gravel and cobbles are brick.					D S	1.00	N=44		
	Dense (from 2.00m) brown and yellow brown slightly sandy GRAVEL. Gravel is chert, flint and quartz. (Superficial Deposits)		1.50			B S	2.00	N=48		
	Dense (from 3.00m) becoming very dense yellow brown and brown slightly clayey SAND and GRAVEL with occasional clay pockets. Gravel is chert, flint and quartz. (Superficial Deposits)		2.50			B S	2.50	N=38		
						В	3.50			
			a de la companya de l			S	4.00	N=43		
		000				В	4.50			
					,	S	5.05	N=53		
	Borehole Camplete	-	5.50	el de la constantina						××:
			TANKS TO THE REAL PROPERTY.							
		dass					Barrier and the state of the st			
						oli				
-				lad an and speciments and speciments and speciments and speciments and speciments and speciments and speciments and speciments and speciments are speciments and speciments and speciments are speciments and speciments are speciments and speciments are speciments and speciments are speciments and speciments are speciments	Manage Constitution of the					1
										1
•					West of the Property of the Pr					1
]								=
SA	MPLES / TESTS OTHER INFORMATION									-

SAMPLES / TESTS

U Undisturbed Sample

D Disturbed

В Bulk

W Water

S/C SPT/CPT

 ∇ Water strike V Water level

NR No Sample Recovery OTHER INFORMATION

Hand excavated service avoidance pit to 1.20m - 1.00hr.

Water added to assist drilling from 1.20m.

3. Hole backfilled with arisings.

Reinstating borehole position - 0.50hrs.

Logged by ATP Project No. 17636

Level (mAD): Date: 22/04/2010

to 22/04/2010

Coordinates E:-

Diameter (mm): 150

N:-

Location: Regal House, Twickenham (Proposed Travelodge Hotel)

Cased (m):

5.00

Client: Engineer:

Anglo Holt

Borehole No.BH4

Sheet 1 of 1

Depth Level Water Samples/Tests SPT U100 Piezo (m bgl) (m AOD) DESCRIPTION OF STRATA Level Type Depth /Gas (m bgl.) (m bgl) Value Pipe MADE GROUND - Tarmac (driller's description) 0.10 В 0.10 MADE GROUND - Dark brown and reddish brown SAND and GRAVEL with many cobbles. Gravel and 0.50 В 0.50 cobbles are brick. MADE GROUND - Dark brown clayey gravelly SAND. Gravel is brick and chert. 1.20 Very dense becoming dense from 4.00m yellow S 1.20 51 for 160mm brown and brown SAND and GRAVEL. Gravel is chert, flint and siltstone. (Superficial В 1.50 Deposits) S 2.00 60 for 245mm В 2.50 S 3.00 50 for 70mm В 3.50 S 4.00 N=44 Dense (from 5.05m) yellow brown, white and dark grey slightly sandy GRAVEL. Gravel is chert, 4.50 В 4.50 flint and siltstone. (Superficial Deposits) s 5.05 N=45 5.50 Borehole Complete SAMPLES / TESTS

Undisturbed Sample

D Disturbed

В Bulk

W Water

SPT/CPT S/C

 ∇ Water strike

¥ Water level

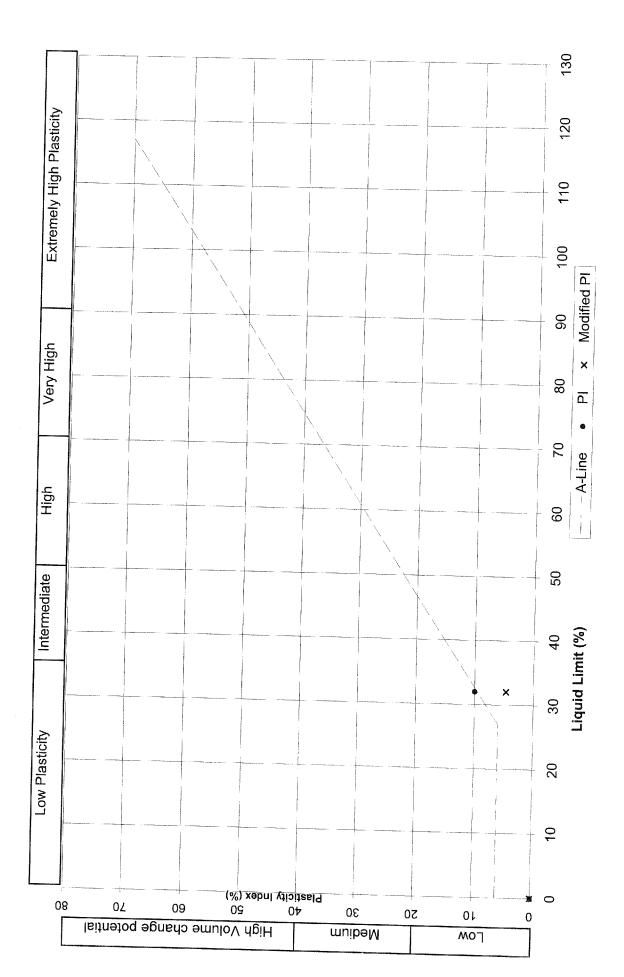
NR No Sample Recovery OTHER INFORMATION

Hand excavated service avoidance pit to 1.20m - 1.00hr.

Water added to aid drilling from 1.20m. Chiselling from 3.30m to 3.60m - 1.00hr.

Hole backfilled with arisings.

5. Reinstating borehole position - 0.50hrs.


Logged by ATP Project No. 17636 Checked by AJM

APPENDIX B

ND CHEMICAL TESTING)
REPORT FOR INDEX PROPERTY A	
LABORATORY REPOR	
	1 · · · · · · · · · · · · · · · · · · ·
	1000

£	Page 1 of 1	Devonshire House, Ettingshall Road,	Wolverhampton. WV2 2JT	Phone 01902 459558, Fax 01902 459085	***		UKAS UKAS Jesting	1897	Tests marked * are not UKAS accredited.	The reported results relate only to samples received.		REMARKS	See exploratory hole log for sample description																					
LABORATORY REPORT FOR INDEX PROPERTY AND CHEMICAL TESTING					pH Value BS1377:PART3:1990:9						% PASSING	SIZI	2.00 0.425 mm mm	$\frac{ }{ }$		44/																		
TY AND CHE				statod	990:5.5	BS1377:PART3:1990:5.5 Approved signatories:-						*Soluble	บี %						+															
X PROPER	#			Test methods - Unless otherwise stated	*BS1377:P/	BS1377:P/ Ap				ctor		*LOI *ORG	%						1															-
FOR INDE	Anglo Hott			est methods - U	04	3 304		J.P.Hughes, Director		R.I.H.Williamson, Director.	CHEMICAL	+	° 504																					
REPORT	CLIENT:				Tot:	.3	4		2	R.I.H.		Soluble pH	g/l Value					-																
RATORY	S		14.5.2010		BS1377:PART2:1990:3 BS1377-PART2:1990:4 344 4	BS1377:PART2:1990:5.3	BS1377:PART2:1990:5.4 BS1377:PART3:1990:4 RS1377:DADT3:1000:3	BS1377:PART3:1990;3 BS1377:PART2:1990;8.2 BS1377:PART3:1990;7.27.3	tion	the laboratory.		PD Si														1			+					
LABO	/elodge)							BS1377;	Opinions and interpretations are outside the scope of UKAS accreditation	SAMPLE DETAILS TEST STEET CLASSIFICATION Without written approval by the laboratory	operties	σ <u> </u>			10																			
	oposed Trav	Page 1 of 1	DATE ISSUED:		tent		ion 'LO!	ide ide	ne scope of U	without writte	Index Properties	WL WP	%	+	32 22		+											1						
	cenham (pro	ď		Test abbreviations	Moisture content Liquid limit	Plastic limit	Loss on ignition Organic content	Particle Density Soluble chloride	are outside th	except in full		≥	%	-	70	+				1	-		1		+		1							
	Regal House, Twickenham (proposed Travelodge)	17636	26.4.2010	Test a		Μg	_ (n	5 5	nterpretations	e reproduced	DATE				28.4.2010																	1		
	Regal H		JLED:-	hype	ed sturbed	Undisturbed SPT solit soon	water		pinions and ir	ort shall not b		A SAMPLE TYPE			8				1															4.42
	CONTRACT:	F:-	DATE SCHEDULED	<u>«ا</u>		U Undisturbed S SPT solit sor			O	AMPLE DE		BH/IF DEPTH	E 0	++	BHZ 0.35							1	-											Document 4.42
L	<u>ರ</u> _	 REF:-	ă	\perp					\perp	\perp	Ī	꾸	Š		ñ																		[_

۷.
ď
Ž
_
⊢
Ċſ
Ŭ,
I
\equiv
כי
Ž
ш
X
S
α
ㅗ
\circ
Ŗ
α
$\overline{}$
\sim
щ.
Ш
묎
$\overline{}$
≥.
Ř
$\overline{\circ}$
ĬΑ
⋖
œ
$\overline{\sim}$
\simeq
₽ W
⋖
_

Page 1 of 1		Devonshire House, Ettingshall Road,	Wolverhampton. WV2 2JT	Phone 01902 459558, Fax 01902 459085	7-10-10-10-10-10-10-10-10-10-10-10-10-10-				LETING	Tests marked * page 1878	The reported results relate only to sometimes	The samples received.	REMARKS	See exploratory hole log for sample description																											
REPORT FOR STRENGTH TESTING					ons	Cell pressure	Cohesion value	jec	R.I.H.Williamson, Director		ď	VANE	GTH	74 Q		>167	>167	>167	>167		>167	>167																			
NGTH T					ğ			ear resistance Approved signatories:-	4	,	7	*HAND VANE	Position Cu			┥	Base	- 8 -	+	\vdash	Тор	\dashv	+	- -	+									+	+			+	+		
2 STRE				ð	5	Deviator stress	Cu Andle of shear resistance	Appro			7		o _o																									†			
RT FO	o Holt								J.P.Hughes, Director	<i>`</i>	2272	Ξ	S	А Б		10,	2	185			30,	108																			
	NT: Anglo Holt			-		01-03	- ê	-	H.G.	<u> </u>	1	STRENGTH	Q1-Q3	↑ Ag	\vdash	70,	Ì	185		50,	103	115		_			Î	-				1									
4TORY	S. E.	T	1	Se stated	0.3	? œ	9. 6.0	, , , , , , , , , , , , , , , , , , ,	7 values		tory.	*I KIAXIAL	R	Ā B	2	8 8	<u> </u>	06		8	36	360	3																		
LABORATORY			14.5.2010	Test methods - Unless otherwise stated	BS1377-PART2-1090-3	BS1377.PART7-1990-8	BS1377:PART7:1990;9	Pilcon hand vane test.	Corrected to obtain BS1377 values	ation	the labora	<u>-</u>	DIAMETER	mm	100	2		100		100	3																				
	_		14	ods - Unk	BS1377	BS1377	BS1377.F	Pilcon ha	ected to ob	S accredit	pproval by		TEST	TYPE	No.			SO		MC		 						T	I			+	-					\dagger		H	
-	avelodge	of 1	SUED:	Test meth	3	SÖ	Ø	主	Corre	pe of UKA	*NEMICOUT WRITTED	0	DRY	Mg/m³	1.48			1.52		1.57												1				1	+	+			
F	posed II	Page 1 of	DATE ISSUED:-	St	tent	peu			st	ide the sco	*DENIS		BULK	Mg/m³	1.90			1.93		2.01						1						1			1		+	 -		1	
, wo 40	(Sec. 1) case, 1 wickei i I all (proposed 1 ravelodge)		010	Test abbreviations	Moisture content	Quick undrained	Single stage	Multi stage	Hand vane test	Opinions and interpretations are outside the scope of UKAS accreditation and in the reproduced according to the control of the	IPLE DETAILS TEST MAISTIBE * * NEWSTIES	CONTENT	8	%	28			27		28																+				1	
Twick of	e, - wiche		26.4.2010	Test	3	ø			± : 全 -	interpretati	TEST IN	DATE			11.5.2010			11.5.2010		11.5.2010					$\frac{1}{1}$	1	$\frac{1}{1}$							1	+	+	-	H			
and House	30		<u>:</u> -			- 0		- E		t shall not	- S		SAMPLE		U 11		7	2	$\frac{1}{1}$		В			1	+	+				+	1			+	+	+			+	-	
- 1		17636	HEDULE	Sample type	Disturbed	Bulk disturbed	Undisturbed	SPT split spoon	Ground water	s test reon	SAMPLE DETAILS		DEPTH SAI	ε	9.00		40.00	\perp	+	Ш	0.35		+	+	+	+			+	+	-				-	\downarrow			+	+	Document 4.44
CONTRACT		 REF: 1	DATE SCHEDULED:-	Sal	۵				5 ≱	Thi	SAMPL		BH BH	No.	BH1 9				+	Н	BH2 0		+	+	1				+	+					+			+	+	-	

Document 4.44

GROUND INVESTIGATION & PILING LIMITED TEST REPORT FOR PARTICLE SIZE DISTRIBUTION

Customer: - Anglo Holt Construction Limited.

Job No:-

17636

Site:- Regal House, Twickenham (proposed Travelodge).

Received: 26.04.10

Tested:-28.04.10 Report:-07.05.10

TEST METHODS:-

Particle Size Distribution:-

BS 1377: Part 2: 1990

Clause 9.2 & 9.3

Sedimentation:-BS 1377: Part 2: 1990 Clause 9.4

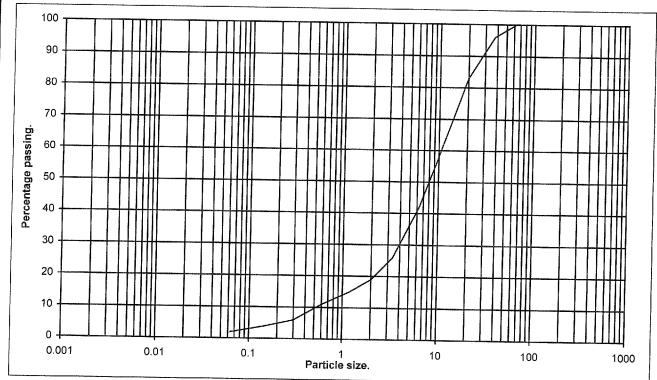
Sample Description:

See Exploratory Log.

Depth:-2.50m

Page 1 of 2

TEST METHODS:-


Sample Preparation:

BS1377:Part1:1990:

Clause 7.3.4, 7.3.5, 7.4.5

Authorized by P.R.Smart Laboratory Manager

	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	William Comment		ï
CLAY		SILT			SAND			GRAVEL	00/1102	COBBLES	BOULDERS	

Sieve S	ize %		Sieve Size	%
mm	Passing		mm	Passing
200	100		3.35	26
150	100		2	19
125	100		1.18	15
90	100		0.6	11
75	100		0.3	6
63	100		0.15	4
37.5	96		0.063	2
20	83			
10	58	ĺ		
6.3	42			

% Clay & Silt 2 % Sand 17 % Gravel 81 % Cobbles 0

Sample mass < BS1377 requirements

The reported results relate only to samples received

GROUND INVESTIGATION & PILING LIMITED TEST REPORT FOR PARTICLE SIZE DISTRIBUTION

Job No:-

17636

Site:- Regal House, Twickenham (proposed Travelodge). Customer:- Anglo Holt Construction Limited.

Received:- 26.04.10

Tested:-

29.04.10

Report:-07.05.10 TEST METHODS:-

Particle Size Distribution:-

BS 1377: Part 2: 1990

Clause 9.2 & 9.3

Sedimentation:-

BS 1377: Part 2: 1990 Clause 9.4

Sample Description:

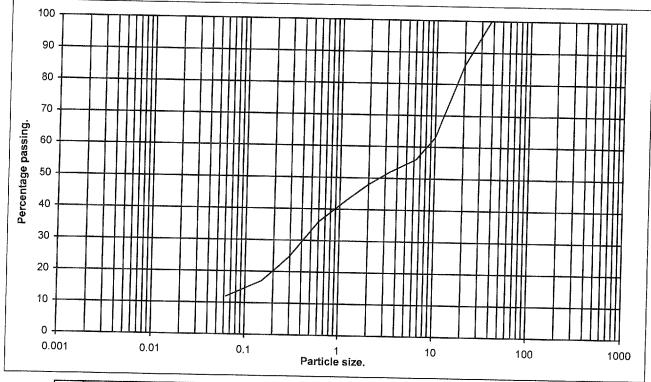
See Exploratory Log.

Depth:-

2 1.50m

Page 2 of 2

TEST METHODS:-


Sample Preparation:

BS1377:Part1:1990:

Clause 7.3.4, 7.3.5, 7.4.5

Authorized by P.R.Smart

Laboratory Manager

-												
	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE			1
CLAY		SILT			SAND			GRAVEL		COBBLES	BOULDERS	

Sieve Si	ze %	***************************************	Sieve Size	%	
mm	Passing	_	mm	Passing	
200	100		3.35	52	7
150	100		2	48	
125	100		1.18	43	ļ
90	100		0.6	36	
75	100		0.3	25	
63	100		0.15	17	
37.5	100		0.063	12	
20	86	į			
10	63				
6.3	56				
		ı.			

% Clay & Silt 12 % Sand 36 % Gravel 52 % Cobbles 0

Sample mass < BS1377 requirements

GROUND INVESTIGATION & PILING LIMITED CONSOLIDATION TEST REPORT

Job No:-17636 Received: - 26.04.10 28.04.10 Tested:-Report:-

11.05.10

Site:- Regal House, Twickenham. (Proposed Travelodge)

Customer:- Anglo Holt.

Depth:-

TEST METHODS:-One-Dimensional

Initial Diameter: Initial Height: **Initial Moisture Content:** Initial Bulk Density:

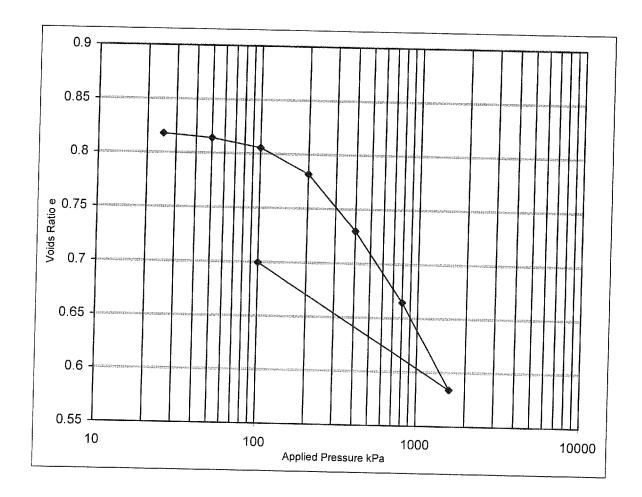
76 mm 19 mm 30 %

9.00m

Consolidation Test BS1377:Part 5:1990 Clause 3

Initial Voids Ratio: Assumed particle density

1.89 Mg/m³ 0.8229 2.65 Mg/m³


Particle Density: BS1377:Part2:1990: Clause 8.3	
Sample Preparations:	
BS1377:Part1:1990:	
Clause 8.6	

	1-01-01-0
	Pressure Stage kPa
	0 -25
	25 -50
	50 -100
ı	100 -200
	200 -400
l	400 -800
ı	800 -1600

on Cárras L.D.		2.00 ing/iii
re Stage kPa	Compressibility m²/MN (mv)	Consolidation m²/ year (Cv)
0 -25	Sample	Swelled
25 -50	Sample	Swelled
50 -100	Sample	Swelled
100 -200	0.13	1.62
200 -400	0.15	0.93
400 -800	0.09	0.58
800 -1600	0.06	0.69
1600 -100		0.09

Duration of Test (Days)	Sample description	See Exploratory Log.
	oumpic description.	see exploratory Log.
5		
3		

Page 1 of 2

GROUND INVESTIGATION & PILING LIMITED CONSOLIDATION TEST REPORT

14.00m

Job No:-17636 Received: - 26.04.10 Tested:-28.04.10

12.05.10

Report:-

Site:- Regal House, Twickenham. (Proposed Travelodge)

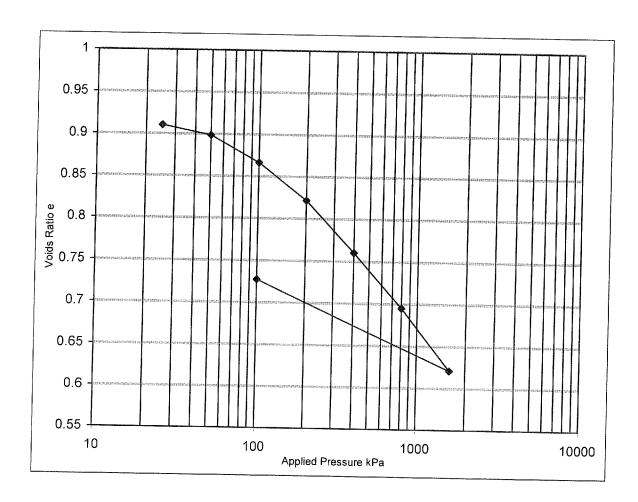
Customer:- Anglo Holt.

Depth:-

TEST METHODS:-One-Dimensional Consolidation Test BS1377:Part 5:1990 Clause 3

Initial Diameter: Initial Height: **Initial Moisture Content:** Initial Bulk Density: Initial Voids Ratio:

76 mm 19 mm 29 % 1.79 Mg/m³


Assumed particle density

0.9158 2.65 Mg/m³

Particle Density: BS1377:Part2:1990:	Pressure Stage kPa 0 -25 25 -50	Compressibility m²/MN (mv) Sample Sample	Consolidation m²/ year (Cv) Swelled
Clause 8.3	50 -100 100 -200	0.34 0.24	Swelled 2.29
Sample Preparations: BS1377:Part1:1990:	200 -400 400 -800	0.17 0.09	1.86 1.37 0.89
Clause 8.6	800 -1600 1600 -100	0.05	0.77

Duration of Test (Days): Sample description: See Exploratory Log.

Page 2 of 2

APPENDIX B

Field Records

	SK ROUP P	(ST	AT:	5	(Perc	EHOLE ussive)	RECORD	Boreh	er:
e: /icl	kenhar	n Rail	way Statio	า				Location: Twickenh Station	am Railway		ВНА	.
en	t:							Ground Le	evel:	Date:	Job No:	
lur	n Reg	enerat	ion					9.55mAO	D	11 Jun 10	241458	
οι	JND W	ATER		SAMPLES	S/TEST	s			STRATA RE	CORD	Sheet 1	1 of
ke	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
200		- (111)	(111)	OI O BIOWS	0.08 -	9.47	0.08 0.12		MADE GROU	ND: Black bituminous pav	ving.	
111111111111111111111111111111111111111	8 8		0.50 J 1		0.20	9.35		$\times\!\!\times\!\!\times\!\!\times$	MADE GROU	ND: Concrete		
10000			0.60 TB 1		-			$\times\!\!\times\!\!\times\!\!\times$		ND: Dark brown slightly s EL. Sand is fine to coarse.		
SHOW		-1	1.00 D 2	2			4.00	$\times\!\!\times\!\!\times\!\!\times$	Gravel is sub-	rounded to angular fine to		
111100	8 8		J 2 TB 2				1.80	$\times\!\!\times\!\!\times\!\!\times$	Contains freq	uent red brick, crushed sto and occasional ash and	one	
170000			1.40 D 3 1.50-1.95 B 1 1.50 J 3]s_				$\times\!\!\times\!\!\times\!\!\times$	clinker.		r olovov	
100000			1.50-1.95 TB 3 D 4	1 1				$\times\!\!\times\!\!\times\!\!\times$	and lo	m 1.60m depth, becoming oose.	, clayey	
37770		_2	2.00 J 4 TB 4		2.00	7.55				ND: Soft, dark brown sligh		
1100011			2.40 D 5	5			1.00	$\times\!\!\times\!\!\times\!\!\times$	coarse. Grave	avelly CLAY. Sand is fine I is sub-rounded to angul		
00000			2.50-2.95 B 2 2.50 J 5 2.50-2.95 TB 5	5			1.00		and frequent	with rare cobbles of flint concrete, crushed stone a	nd	
2000		-3	3.00 J 6	N=9 [1,2](2,2,3,2)	3.00	6.55		$\times\!\!\times\!\!\times\!\!\times$		occasional ash.		
2000			TB 6	6			0.50	$\otimes\!\!\!\otimes\!\!\!\otimes\!\!\!\otimes$	mottled slightl	ND: Soft to firm, brown/or y gravelly sandy CLAY. S	and	
2000			3.40 D 7 3.50-3.95 B 3 3.50 J 7	s	3.50	6.05		\times	angular fine to	se. Gravel is sub-rounded coarse flint with		
			3.50-3.95 TB 7 D 8	N=18 [3,4](5,5,4,4)						e red brick fragments and		
1 8		- 4		[0,7](0,0,4,4)	=		1.10		Medium dens	e brown clayey sandy GR	AVEL.	
3			4.40 D S	,					Sand is fine to	o coarse. Gravel is o angular fine to coarse v		
			4.50-4.95 D 10 4.50 B 4 J 8		4.60	4.95		* * * * *		of flint. (KEMPTON PARK		
1 8		- -5	TB 8	N=26 [4,4](5,7,7,7)				× × × ×	be	ween 4.0m to 4.60m dep	th,	
3							1.00	× × × ×	Medium dens	e orange/brown sandy GF	RAVEL.	
			5.50 J 9 5.60 TB 9		5.60	3.95		x × x		o coarse. Gravel is o angular fine to coarse fl	int	
9			D 11		3.00	J.3J		$\overline{\times} \stackrel{\sim}{-} \overline{\times}^{\times}$	with occasion	al partings and lenses of KEMPTON PARK GRAVI		
1111		6	5.90 D 12 6.00-6.45 D 13 B 5	s s	=			××	Stiff thinly lam	inated dark grey/orange	-7-	
2000				N=21 [4,5](5,6,5,5)				X		y silty fine sandy CLAY. Isional sub-angular to ang	gular	
111000								$\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$	fine flint grave	l within the upper surface . (LONDON CLAY FORM		
270077		7						×	3		- · - / -	
No.							3.40					
Section 1			7.40 D 14 7.50-7.95 UT 1	U3	, -		J.+U	\times $ \times$				
00000								\times $ \times$ \times				
2000		-8	7.95-8.05 D 15	5	-			$\times \times - \times$	3			
30000								<u> </u>				
3								XX				
3	****	- -9	8.90 D 16 9.00-9.45 D 17		9.00	0.55		$-\overline{x}$	Ser II			
3		9	B 6	S	3.00	0.55				hinly laminated dark grey andy CLAY. Contains		
3		-		[7,8](8,8,10,8)					occasional thi	n partings of grey silt and DON CLAY FORMATION		
3	****										,	
ma	arks an	d Wate	r Observat	tions	1 1			- 1-W-1	Continued ne	ext sneet	Scale:	4.
id p	oit excuv the hand	ated to	1.20mbgl prio epths of 0.25r	r to commence n, 0.50m, 0.75	m and 1	.0mbgl. C	asing	determinations g from ground l	evel to			1:
)ml	bgl. Upoi	n comple							ater monitoring		Logged by:	A
٠.۵٢	- 5 10 u		y								Figure:	В

-	S ROUP P	LC _			57/	AT:	5	(Perc	EHOLE ussive)	RECORD	Borel Numb	er:
te: vicl	kenhar	n Rail\	way Station	1				Location: Twickenham Station	am Railway		ВНА	
ien	t:							Ground Le	evel:	Date:	Job No:	
olur	m Rege	enerat	ion					9.55mAO	D	11 Jun 10	241458	
ROL	JND W	ATER		SAMPLES	/TEST	s			STRATA RE	CORD	Sheet 2	2 of
ke	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		11	10.40 D 18 10.50-10.95 UT 2 10.95-11.05 D 19 11.90 D 20 12.00-12.45 D 21 B 7	U53 S N=42 [8.8](10,10,11,11) U59 S N=46 [11,10](12,12,11,	13.00	-3.45	2.00		Very stiff fissu grey CLAY. C partings of gr FORMATION fro becom	irred thinly laminated dark ontains occasional thin ey silt. (LONDON CLAY).  m 14.0m depth, silt partinming frequent.		
		-			<u>-</u>							
nd p	oit excuv	ated to '	er Observati 1.20mbgl prior	to commence	ment of	drilling. C	BR c	determinations	were carried		Scale:	1:
in t	the hand bgl. Upor	pit at de n comple	epths of 0.25m etion the boreh	, 0.50m, 0.75i	m and 1	.0mbgl. C	asing	from ground I	evel to ater monitoring		Logged by:	A
	ipe to a					_	-					

te:	SK ROUP P	( _				<b>5</b> T/	ATS	5		EHOLE ussive)	RECORD	Borel Numb	er:
	kenhan	n Rail\	way Sta	tion						am Railway	,	סווט	
ient	t:								Ground Le	evel:	Date:	Job No:	
olun	n Rege	enerat	on						12.10mA	DD	10 Jun 10	241458	
ROL	JND W	ATER			SAMPLES	/TEST	S			STRATA RE	CORD	Sheet 1	1 of 2
ike	Well	Depth (m)	Depth/Ty (m)	/pe	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
3	<b>****</b>					0.08 -	12.02	0.08			ND: Brick paving		
		_	1.40 1.50-1.95 1.50 1.50-1.95 1.50 1.50-2.95 1.50 3.40 3.50 3.50 3.50 3.50 3.50 3.60 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.5	JED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S-N=10 [1,2](3,3,2,2) S-N=5 [2,2](1,1,2,1) S-N=9 [1,2](3,2,2,2)	1.00	11.10 10.70 9.10	0.92		GRAVEL. Sar sub-rounded to crushed stor with occasion-broken tile an of clayey fine  MADE GROU sandy GRAVE Gravel is sub-to medium ocrare red brick  MADE GROU loose, dark brine to coarse sub-rounded till, find sub-a grave  MADE GROU slightly silty slightly silty slightly silty slightly occasional co	ND: Medium dense beco own slightly slity slightly of sandy GRAVEL. Gravel it to sub-angular fine to coal crushed stone with rare rete. Localised small pool m 2.0m depth, occasiona ngular fine to medium chall. ND: Loose dark brown/bl ightly clayey sandy nd is fine to coarse. Grave to angular fine to medium or crushed stone and norete, ash and clinker. F	el is silint e kets y silty ne ming elayey s rise kets l alk	
		_6 _	5.50 J TE 5.90 D 6.00-6.45 D	) 12 ) 13 B 2	[3,3](4,6,6,5)			2.70		Dense orange is fine to coars angular fine to	Slight hydrocarbon odour e/brown very sandy GRA\ se. Gravel is sub-rounded o coarse with occasional KEMPTON PARK GRAV	/EL. Sand I to	
		7			N=44 [8,10](11,12,10,1	) -		e	× × × × × × ×				
		8	7.50 J 7.50-7.95 TE D	B 12 D 15 B 3	N=33 [6,6](10,11,6,6)	7.50 -	4.60	1.00	× × × × × × × × × × × × × × × × × × ×	Sand is fine to sub-rounded to occasionally of pockets and	e/brown silty very sandy Go o coarse. Gravel is to angular fine to medium coarse flint. Localised partings of clayey fine to . (KEMPTON PARK GRA		
		9	8.90 D	) 16 ) 17 JT 1	U32	8.50 -	3.60	1.90	X X X X X X X X X X X X X X X X X X X	Stiff, dark greg slightly silty C laminations of	y fine slightly sandy LAY. Contains thin silt and rare partings of sand. (LONDON CLAY		
ma	orke an	d Wate	r Obser	vati.	ons	_			× × ×	Continued ne	ext sheet	Coale	
nd p 30mb	oit excuva ogl. Upor	ated to	1.20mbgl p	orior t	to commence				from ground l .0mbgl, and be			Scale:	1:5
	llevel.	•					3		<b>3</b>			Logged by:	AG
												Figure:	В

Site:	ROUP F		way Station		<u>51</u>	ATS	BORI (Percilla Location: Twickenhistation	Borehole Number BHB				
Clien	t:						Ground Le	evel:	Date:	Job No:		
Solur	m Reg	enerati	ion				12.10mA0	)D	10 Jun 10	241458		
Solum Regeneration  SAMPLES/TESTS							STRATA RE	CORD	Sheet 2	of		
rike	Well	Depth (m)	Depth/Type	SPT 'N'	Depth	Level (mAOD)		Key	Description			
***************************************		112	(m)  10.40 D 18 10.50-10.95 D 19 B 4  11.90 D 20 12.00-12.45 UT 2  12.45-12.55 D 21	N=34 [5.5](7,9,9,9)	10.40	1.70	4.50		Stiff thinly laminated fissured dark grey slightly silty slightly sandy CLAY. Contains rare partings of grey silt. (LONDON CLAY FORMATION).  Stiff thinly laminated fissured dark grey slightly silty CLAY. Contains rare parting of grey silt. (LONDON CLAY FORMATION).  from 13.00m depth, occasions sub-angular to angular fine to medium claystone nodules.		ON).	
	*****	16	15.45-15.55 D 25		15.50	-3.40		XX =	End of Boreh	ole at 15.50 m		
		- <b>17</b>										
		-18 18			- - - - - - -							
		- -19			- - - - - - - - - - - - - - - - - - -							
ema	arks an	d Wate	er Observati	ons							Scale:	1:5
and p 80ml	pit excuv bgl. Upo	ated to	1.20mbgl prior	to commence	ement of filled wit	drilling.Ca h arisings	sing to 2.	from ground le Ombgl, and be	evel to ntonite to		Logged by:	AC
rounc	dlevel.											
											Figure:	В

e:	kenhar		wav Si	ation			ATS		Location:	ussive) am Railway		Numb BHC	
					•				Station		I		
en	t:								Ground Le	evel:	Date:	Job No:	
OUND WATER SAMPLES/TESTS  Well Borth Borth Time SPT IN Borth Lovel									8.70mAO	D	14 Jun 10	241458	
οι	JND W	ATER			SAMPLES	/TEST	S			STRATA RE	CORD	Sheet 1	1 o
œ	Well	Depth (m)	Depth/ (m)	Туре	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
07/0			()		0. 0 2.0	0.08 -	8.62	0.08	XXXXX		ND: Bituminous paving a	at the	
00000			0.50	. 1		0.40	8.30	0.32	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	surface.	ND: Brown slightly silty s	sandy.	
10000		<u> </u>	0.60	J 1 TB 1 D 1		- -			$\times\!\!\times\!\!\times\!\!\times$	GRAVEL. Sar	nd is fine to coarse. Graves sub-angular fine to coa	el is	
Millo		- -1	1.00	D 2		_		1.00	$\times\!\!\times\!\!\times\!\!\times$	flint with frequ	ent red brick, concrete a e and occasional ash and	nd	
COLONIA				J 2 TB 2		1 40	7 20				oockets of clayey sand.	1	
O POSITI		-	1.40 1.50-1.95 1.50	D 3 B 1 J 3	s_	1.40 -	7.30	0.40			ND: Dark brown/grey sil D. Contains frequent sub		
WILL				TB 3	N=31 [3,4](4,7,10,10)	1.80	6.90	1	XXXX	to angular me	dium to coarse flint grav al fragments of red brick	el	
N. S. C.			2.00	J 4 TB 4		-			× × × ×	concrete.	a nagmonto or rea brick	u.iu	
3		=	2.40 2.50-2.95	D 4 B 2	s <del>_</del>	-			× × × ×		ND: Dense brown slightl		
3			2.50	J 5 TB 5		=		+	× × × *	Gravel is subr	ounded to angular fine to uent cobbles of flint with	0	
XX		-3			[4,5](7,7,9,7)				×××	occasional red	d brick fragments and ncrete. Rare ash presen		
3			3.40	D 5		-			×××		brown sandy GRAVEL.		
3		2	3.50-3.95 3.50	B 3 J 6	sT	-			××××	medium to coa	arse. Gravel is sub-angu predominantly coarse f	lar to	
3	****	4		TB 6	_{N=41} [9,10](10,11,10,10	)) –			×	with occasion	al sub-angular cobbles okets of clayey sand.		
3		_4 -							× ^ ×   ×	(KEMPTON P	ARK GRAVEL). n 2.50m depth, mostly co	narse	
3		<u> </u>	4.40 4.50-4.95	D 6 B 4	s _T	=		5.20	× × ×	flint a	nd frequent cobbles.		
3	****				N=17	-			$\times$ $\times$ $\times$	tror	n 4.0m depth, medium d	ense.	
3		5			[4,4](4,5,4,4)	-			x				
3						=			× × × ×				
2						-			××××				
3		-6	5.90 6.00-6.45	D 7 B 5	S-				×××				
3						=			×××××××××××××××××××××××××××××××××××××××	fror	n 6.00m depth, very san	dy.	
X		2			[4,5](5,6,8,9)				X				
3						_			×				
3		-7	7.00	D 8		7.00-	1.70	, is	XX_X		slightly silty fine sandy		
3			7.40 7.50-7.95	D 9 UT 1	U37	=			× × ×	fine to mediun	ns occasional thin partin n sand. (LONDON CLAY		
3			55-1.55	J1 1	037				$\overline{\mathbf{x}} = \overline{\mathbf{x}} = \hat{\mathbf{x}}$	FORMATION)	).		
3	****	-8	7.95-8.05	D 10		-			-x				
3									××				
3						=			<u>×</u> - ×				
3			8.90	D 11				3.50	$\overline{\times}$ $\overline{-}$ $\overline{\times}^{\times}$				
3		-9 -	9.00-9.45	В 6					$\times$ $\times$ $\times$				
3		5			s _T	=			$\frac{\times}{\times}$				
3					N=39				$\overline{x}$				
Š	××××	ط ۱۸۱۵۰	vr Obs	OF COF	[7,7](10,10,10,9)	-				Continued ne	ext sheet		
nd p		ated to	1.20mbg	l prior	to commence				eterminations v			Scale:	1
)ml	bgl. Upoı								g from ground l .0mbgl, and be			Logged by:	Α
ınc	llevel.	•					-					1	

R Gite:	SK ROUP P	IG _			ST	AT:	5		EHOLE ussive)	RECORD	Boreh Numb	er:
Twicl	kenhan	n Railv	way Station					Twickenh Station	am Railway			
Clien	t:							Ground Level: Date:			Job No:	
Solur	m Rege	enerat	ion					8.70mAO	D	14 Jun 10	241458	
	JND W								STRATA RE	CORD	Sheet 2	2 of 2
trike	Well	<b>Depth</b> (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
XXX			10.40 D 12		-			XX_X XX		m 10.00m depth, thinly lan slightly sandy.	ninated	
		-11	10.50-10.95 UT 2	U51	10.50 -	-1.80		× × × × × × × × × × × × × × × × × × ×	slightly silty C thin laminatio	thinly laminated dark grey LAY. Contains occasional ns of light grey silt. AY FORMATION).		
		-12 -13	11.90 D 14 12.00-12.45 B 7	S	- - - - - - - - -		4.50	x	fror rare r	m 12.00m depth, occasion oot marking visible.	al to	
*********			13.40 D 15 13.50-13.95 UT 3	U56	- - - - - - - -			× × ×				
***********		-14  -15	14.90 D 17	S	15.00	-6.30		X X X X X X X X X X X X X X X X X X X	End of Borel	nole at 15.00 m		
		16		—N=44 [8,10](10,10,12,1:	a)							
		- -17 -			- - - - - - - - - - - - - - - - - - -							
		18			- - - - - - - - -							
		19 -19			- - - - - - - - -							
			er Observati				DD :				Scale:	1:50
ut in t	the hand	pit at de	epths of 0.25m	, 0.50m, 0.75	m and 1	.0mbgl. C	asing	eterminations of g from ground I .0mbgl, and be	evel to		Logged by:	AG
	dlevel.	COMPR	Priori (HE DOIE)	ioi <del>c</del> was Dack	ını <del>c</del> u Wil	ıı arısırıys	10 2	ombyl, and be	monite to	-		В

e:	roup p		vay St	ation			AT:		Location:	Twickenham Railway			
en	t:									Ground Level: Date:			
lur	n Rege	enerati	ion						8.40mAOI		7 Jun 10	241458	
	JND W				SAMPLES	/TEST	<u> </u>			STRATA RE		Sheet 1	
ce C	Well	Depth	Depth/	Tyne	SPT 'N'	Depth	Level		Key	Description	CORD	J OHEEL I	<u> </u>
	222 1222	(m)	(m)	. ypc	or U Blows	(m)	(mAOD)	0.15	····				
		-1 -2	0.50 0.60 1.00 1.40 1.50-1.95 1.50	J 1 1 TB 1 D 1 D 2 2 TB 2 D 3 TB 3 TB 3 TB 4 D 4	S	0.15 _ 0.30	8.25 8.10 7.00 6.70	0.15		MADE GROU GRAVEL. Sar rounded to su predominately fragments of r stone and occ clinker. MADE GROU slightly clayey Gravel is sub- coarse to occa Occasional re	ND: Black bituminous pa ND: Dark brown/red sand of is medium to coarse. Oub-rounded angular fine to coarse flint with frequented brick, concrete, crush assional ash, bitumen and ND: Dark brown slightly of silty CLAY. Sand is med rounded to angular fine to assional cobbles of flint. d brick fragments and rai sed pockets of orange classions.	dy Gravel is o t ed d rare gravelly ium. o	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		-3	2.50-2.95 2.50 3.40 3.50-3.95 3.50	B J 5 5 5 3 6 6 TB 6	C N=48 (8.8)(10,11,15,12)  C N=28 (5.5)(6,5,9,8)	2.50 -	5.90	2.00		MADE GROU Sand is fine to to sub-angula coarse flint with and rare ash a of clayey sand Dense orange Gravel is sub- medium occas	ND: Dense brown sandy o medium. Gravel is sub- r fine to medium occasion the fragments of red brick and clinker. Localised lend. e slightly silty sandy GRA rounded to angular fine to sionally coarse flint. Rare ey sand. (KEMPTON PA	rounded nally ses VEL.	
		5	4.40 4.50-4.95 4.50	D 6 B 4 J 7 TB 7	C	4.50	3.90	1.30	× ^ × .	GRAVEL. Grafine to coarse silty coarse sa fro becor	lium dense orange silty s ivel is rounded to sub-rou flint. Occasional lenses of and. (KEMPTON PARK Om m 3.50m depth, medium ning sandy gravel. e orange gravelly SAND. n. Gravel is sub-rounded	unded of BRAVEL). dense, Sand is	
The same of the same of		-6 -	5.90 6.00-6.45 7.00	D 7 B 5	C	5.80 -	<ul><li>2.60</li><li>1.60</li></ul>	1.00	× × × × × × × × × × × × × × × × × × ×	GRAVEL).  Medium dense GRAVEL with clayey fine sa medium. Grav predominantly	e orange / brown silty sar occasional pockets/lens nd. Sand is generally fine rel is sub-rounded to ang of fine to medium flint. ARK GRAVEL).	ndy es of e to	
County County			7.40 7.50-7.95	D 9 UT 1	U37	7.40 -	1.00	0.60	<u>x</u> <u>x</u> x	Contains thin sand. (LONDO	I brown/grey silty CLAY. Iaminations of fine to me DN CLAY FORMATION). Drown/grey slightly sandy		
Charles and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st	***	0	7.95-8.05 8.90 9.00-9.45	D 10	s_	7.80 <u> </u>	-0.10	0.70	x	silty CLAY wit sand and silt. Stiff brown/gre silt lamination Stiff fissured of	the thin laminations of fine (LONDON CLAY FORM) by CLAY with rare sand a s. (LONDON CLAY FORM) grey slightly silty CLAY LONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CONDON CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMAL CLAY FORMA	ATION). and MATION).	
nd p		ated to 1	1.20mbg	l prior	to commence				× × × × × × × × × × × × × × × × × × ×		ext sheet	Scale:	1:
in t	he hand	pit at de	epths of	o.25m		n and 1	.0mbgl. C	asing	from ground le	evel to		Logged by:	Α
				וסוכו	was mas misigl	VVILI	a urourid						

G e:	S ROUP F	14			STA	ATS			EHOLE ussive)	RECORD	Borel Numb	oer
	kenhar	n Rail\	way Station						am Railway		БПО	
ent	t:							Ground Le	evel:	Date:	Job No:	
lur	n Reg	enerat	ion					8.40mAO	D	7 Jun 10	241458	
ROUND WATER SAMPLES/TESTS								STRATA RI	CORD	Sheet 2	2 o	
æ	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
2	XXXX	- (111)	(111)	OI O BIOWS	- (111)	(IIIAOD)		× ~ ×				
3			10.40 D 12					<u>x</u> x				
3	****	2	10.40 D 12 10.50-10.95 UT 2	U40			4	××-				
3			10.95-11.05 D 13				13	× ×				
3	⋘	-11	10.95-11.05 D					× × ×				
3					=							
3	****	5						<u>×</u> ×				
3		- -12	11.90 D 14 12.00-12.45 B 7	e	_			X				
3		12	12.00-12.45 B 7				45	<u>×</u> ×				
3				N=31 [6,6](8,8,7,8)				×××				
3					=			xx				
3		-13			]							
3								××				
3	XXX		13.40 D 15 13.50-13.95 UT 3	U36	=			<u></u>				
3					_			* × ×				
3		14	13.95-14.05 D 16					<u>x</u> x				
3		5						<u>x</u>				
3		Ē			=			××				
3		-			- -			××				
3		15	14.90 D 17 15.00-15.45 B 8	s_				<u>×</u> ×				
3	****			N=35 [7,8](8,9,8,10)	=			<u>x</u> x				
3	****	5		[7,0](0,0,0,10)	-		14.00	_xx	fro	m 15.50m depth, sub rou	nded	
3								XX^	fine to	o medium claystone nodu	les.	
3		_16			_			~_^_×				
3			16.40 D 18					<u> </u>				
3	<b>****</b>		16.50-16.95 UT 4	U43				<u>x</u> x				
3		17	16.95-17.05 D 19					<u>x</u>				
3		-17 -	3.5500 10					× - ×				
3		-					-	×××				
3		2						X_X_X				
3	<b>****</b>	_ -18	17.90 D 20 18.00-18.45 B 9	S <del>_</del>								
3		10	3.55 .0.10 D						fro	m 18.00m depth, very stiff		
3				[⊥] N=40 [7,8](8,11,10,11)				<u>× - ×</u>				
3								<del>y_x_</del> _x				
3		_ -19			]							
3	<b>XXXX</b>	7					•	<u>×</u>				
3			19.40 D 21 19.50-19.95 UT 5	U56				× ×				
3								××				
ma ma	orke an	d Wate	19.95-20.05D 22 er Observati	one				<u>×</u> ×	Continued n	ext sheet	01-	
nd p	oit excuv	ated to	1.20mbgl prior	to commence	ment of	drilling.CE	BR de	eterminations	were carried		Scale:	1
)mb	bgl. Upo	n comple	epths of 0.25m etion the boreh	, 0.50m, 0.75ı ıole was insta	m and 1 lled with	umbgl. Ca. a ground	asing gas a	trom ground l and ground wa	evel to ater monitoring		Logged by:	Α
ndn	ipe to 7.	0mbgl.				-	-	-	Ŭ		Figure:	В

	S ROUP P	(			ST	ATS		ussive	E RECORD	Numb	oer
e: icl	kenhar	n Rail\	way Station				Location: Twickenl Station	: ham Railwa	/	BHD	)
en	t:						Ground L	_evel:	Date:	Job No:	
lur	n Rege	enerat	ion				8.40mAC	DD	7 Jun 10	241458	
οι	JND W	ATER		SAMPLES	/TEST	S		STRATA	RECORD	Sheet 3	3 o
æ	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)	Key	Description			
		-22 -23 -24 -25	20.90 D 23 21.00-21.45 B 10 22.40 D 24 22.50-22.95 UT 6 22.95-23.05 D 25 23.90 D 26 24.00-24.45 B 11 25.95-26.05 D 28 25.95-26.05 D 28 26.90 D 29 27.00-27.45 B 12	N=46 [9,12](12,10,12,12)  U73  S	22.50	-14.1		gleying. (L	issured grey silty CLAY with ONDON CLAY FORMATIO	N).	
NAME OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERS			28.40 D 30 28.50-28.95 UT 8 28.95-29.05 D 31	U100	-		11.50 XXXXXXXXX	×			
NANANANANANANANANANANANANANANANANANANA		-29 - - - -					X X X X X X X X X X X X X X X X X X X	×			
B	xke an		29.90 D 32	one	-		× ×	Continue	d next sheet	01	
id p	oit excuv	ated to 1	er Observati 1.20mbgl prior	to commence	ment of	drilling.CE	BR determinations	were carried		Scale:	1:
)ml	bgl. Upoi	n comple	etion the boreh	, 0.50m, 0.75h iole was instal	lled with	a ground	asing from ground gas and ground v	vater monitoring	I	Logged by:	Α
ıap	ipe to 7.	omagi.								Figure:	В

te:	IP PLC	0		STA	<u>ATS</u>	Location:	ussive)	RECORD	Boreh Numb BHD	oer
wicken	ham Rai	way Station	1			I wickenh Station	am Railway			
lient:						Ground Le	evel:	Date:	Job No:	
olum R	egenera	tion				8.40mAO	D	7 Jun 10	241458	
ROUNE	WATER		SAMPLES	/TEST	S		STRATA RI	ECORD	Sheet 4	4 of
ike W	ell Depth	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	<b>Level</b> (mAOD)	Key	Description			
	-31 -32 -33 -34 -35 -36 -37	31.40 D 33 31.50-31.95 UT 9 31.95-32.05 D 34	S	34.00	-25.6		End of Borel	hole at 34.00 m		
emarks	and Wat	er Observat	ions		delline e ODD	dotowe-i			Scale:	1:
and pit ex It in the h	cuvated to and pit at c	1.20mbgl prior lepths of 0.25m	to commence n, 0.50m, 0.75r	m and 1	.0mbgl. Casi	determinations on the determinations of the determinations of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determ	evel to	_	Scale: Logged by:	1:

-	S ROUP P	IG =			STA	AT:	5	(Perc	EHOLE ussive)	RECORD	Boreh Numb	oer
e: vicl	kenhar	n Rail\	way Statio	n				Location: Twickenh Station	am Railway		BHE	
en	t:							Ground Le	evel:	Date:	Job No:	
lur	m Rege	enerat	ion					8.00mAO	D	2 Jun 10	241458	
Οl	JND W	ATER		SAMPLES	/TEST	S	1		STRATA RE	CORD	Sheet 1	l of
е	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)	1	Key	Description			
10000					0.20	7.80	0.20			ND: Black bituminous pav		
TO THE PROPERTY.			0.50 J 0.60 TB D	1 1 1 1 1 1	-		1.00		Gravel compri	ND: Brown / grey gravelly ises broken brick, mortar , clinker, bituminous grave	and	
10000		_1	1.00 D J TB	2 2 2 2	1.20 -	6.80	Ź	$\times\!\!\times\!\!\times\!\!\times$				
ON THE OWNER			1.40 D 1.50-1.95 B 1.50 J	3 1 S — 3 3		0.00	0.70		sandy gravelly	ND: Firm orange / brown	3	
NOW W	××××	-2	2.00 D	[3,4](3,3,4,4)	1.90	6.10	0.40	XXXXX	Firm, orange	brown slightly sandy		
SAAAAA			TB 2.40 D	5 2 C—	2.30	5.70	0.40	*	rounded to su flint. (KEMPT)	ly CLAY. Gravel comprise b-angular fine to medium DN PARK GRAVEL).		
XXXXXX		-3	3.00 J TB	N=8 [2,2](1,2,2,3)			1.60		orange / brow gravelly SANI sub-angular fi	becoming medium dense n very sandy GRAVEL, lo D. Gravel is rounded to ne to medium occasionall	cally y	
VVVV			3.40 D 3.50-3.95 B	6 3 C—						EMPTON PARK GRAVE		
VVVVV		- -4 -	4.00 J TB	L _{N=20} [2,2](3,4,7,6)	3.90	4.10			locally gravelly	/ grey slightly sandy GRA y SAND. Gravel is rounde	d to	
VVVVV			4.40 D 4.50-4.95 B	7 4 C—	- - - - -				sub-angular fi coarse flint. (k	ne to medium occasionall KEMPTON PARK GRAVE	y L).	
VVVVV.		5		-LN=39 [7,10](10,10,9,10)			2.60					
**********		6	5.90 D 6.00-6.45 B	8 5 C— 	- - - - - - - - - - - - - - - - - - -	1.50						
VVVVV					-			× × ×	CLAY. Contai	ssured grey / brown silty ns discrete pyrite veins. AY FORMATION).		
********			7.30 D 7.40 D 1 7.50-7.95 B	9 0 6	- - - - - - -		1	× × × × × × × × × × × × × × × × × × ×				
AAAAAAAA		-8			-   -  -  -  -  -			× × ×				
VANAAAA			8.90 D 1 9.00-9.45 B		- - - - - -			<u> </u>				
VVV		<u>F</u>						× - ×				
XXX	****			<u> </u>	_			×××	Continued ne	ext sheet		
nd p	oit excuv	ated to 1		r to commence							Scale:	1:
s us	sed from	groundle	evel to 7.50.	groundwater er Upon completion	ntering to on the b	ne boreho orehole w	ole ar as ba	na tneretore 20 ackfilled with a	oum casing risings to		Logged by:	Α
mb	gi, and b	entonite	to groundlev	el.							Figure:	В

R	SK ROUP F	( 			ST	ATS			EHOLE ussive)	RECORD	Boreh Numb	
Site: Twic		n Rail	way Station					Location: Twickenham	am Railway		ВНЕ	
Clier	nt:							Ground Le	evel:	Date:	Job No:	
Solu	m Reg	enerat	ion					8.00mAO	D	2 Jun 10	241458	
	UND W			SAMPLES		S			STRATA RE	CORD	Sheet 2	of 3
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
			(m)  10.40 D 12 10.50-10.95 U 1  10.95 D 13  11.90 D 14 12.00-12.45 B 8  13.40 D 15 13.50-13.95 U 2  13.95-14.05 D 16  14.90 D 17 15.00-15.45 B 9  16.40 D 18 16.50-16.95 U 3  16.95 D 19 17.05 D 20  17.90 D 21 18.00-18.45 B 10	Or U Blows  U39  S  N=41 [7,6](8,11,11,11)  U51  S  N=36 [6,7](7,10,10,9)  U57	(m)		18.50					
			19.50-19.95 U 4	U74				× × ×	Continued ne	ext sheet		
Rem	arks an	d Wate	er Observati 1.20mbgl prior	ons to commence	ment of	drilling Co	asina	from ground b			Scale:	1:50
10.50 was u	mbgl. Ca sed from	sing faile groundl	ed to seal off g evel to 7.50. U to groundleve	roundwater er pon completion	nterina th	ne boreho	le an	d therefore 20	0m casing		Logged by:	AK B

Site:	SI ROUP F		way Station		ST	ATS	Location:	EHOLE ussive)	RECORD	Borel Numb BHE	er:
							Station				
Clier							Ground L		Date:	Job No:	
	m Reg		ion				8.00mAO		2 Jun 10	241458	2 (0
GRO Strike	UND W. Well	ATER Depth	Depth/Type	SAMPLES SPT 'N'	Depth	S Level	Key	STRATA R Description	ECORD	Sheet 3	3 OT 3
Rem	arks an	-22 -23 -24 -25 -26 -27	20.90 D 23 21.00-21.45 B 11 22.40 D 24 22.50-22.95 U 5 22.95-23.05 D 25 23.90 D 26 24.00-24.42 B 12	S	25.00	-17.0		End of Bore	24.00m depth, possible cl les.	aystone  Scale:	1:50
Hand	pit excuv	ated to	1.20mbgl prior	to commence	ment of	drilling.Casi	ing from ground	level to		Scale:	1:50
was u	sed from	groundl	evel to 7.50. U	pon completion	ntering to on the b	he borehole orehole was	and therefore 20 backfilled with a	00m casing risings to		Logged by:	AK
2.0mb	gi, and b	entonite	to groundleve	II.						Figure:	В

e:	ROUP P		way St	ation			AT:		(Perco	ussive)	RECORD	Boreh Numb BHF	
en	4.								Station  Ground Le	aval·	Date:	Job No:	
	r. n Rege	anorat	ion						8.05mAO		1 Jun 10	241458	
					SAMPLES	/TEST	<u> </u>		0.0011170			Sheet 1	
ke	JND W. Well	Depth	Depth/	Tyne	SPT 'N'	Depth	Level		Key	STRATA RE Description	CORD	Silecti	<u> </u>
3		(m)	(m)	. , po	or U Blows	(m)	(mAOD)		**************	<u> </u>			
		1	0.50 0.60 1.00 1.40 1.50-1.95	J 1 TB 1 D 1 D 2 J 2 TB 2 D 3 B 1 J 3	s _Ţ	0.20 -	7.85 7.35 6.65	0.20 0.50 0.70	X	MADE GROU gravelly SANE sub-angular fil frequent inclus concrete, ash, MADE GROU SAND. Gravel sub-angular fil	ND: Black bituminous par ND: Brown locally slightly D. Gravel is rounded to ne to coarse flint with sions of broken brick and clinker and crushed stor ND: Brown slightly gravel comprises rounded to ne to medium flint and ra	orange ne. Ily clayey	
CONTROL OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE		-2	2.00 2.40 2.50-2.95	TB 3  D 4  J 4  TB 4  D 5  B 2	N=7 [1,2](2,1,2,2)  S N=29	2.30 -	5.75 5.55	0.90	× × × × × × × × × × × × × × × × × × ×	Contains rare sub-angular fillocalised sand GRAVEL).  Orange / yello	rown mottled silty CLAY. gravels rounded to ne to medium flint and ly clay lenses. (KEMPTO w gravelly fine to medium	N PARK	
		3	3.40 3.50-3.95	J 5 TB 5 D 6 B 3	S N=25 [10,12](7,7,5,6)	3.10 -	4.95	1.20	×	SAND. Gravel sub-angular fil localised claye GRAVEL). Medium dense Gravel compri	comprises rounded to ne to medium flint and ey sand lenses. (KEMPTO e orange / yellow sandy O ses rounded to sub-angun flint. (KEMPTON PARK	ON PARK  GRAVEL. ilar	
		-4    5	4.40 4.50-4.95	D 7 B 4		4.30 =	3.75 2.95	0.80		Medium dense GRAVEL, loca rounded to su occasionally c GRAVEL).  Medium dense	e orange / brown slightly ally gravelly SAND. Grave b-angular fine to medium oarse flint. (KEMPTON P	sandy el is PARK ghtly	
100000000000000000000000000000000000000		6	5.90 6.00-6.45	D 8 B 5	C	- - - - - - - - - - - - - - - - - - -		1.80		sub-rounded f PARK GRAVE Medium dense GRAVEL, loca rounded to su	ine to medium flint. (KEN	IPTON andy el is	
Sel Contract		7	7.00	D 9		6.90_	1.15		××	stiff slightly fis	sured grey / brown silty		
10000			7.40	D 11					× × ×		AY FORMATION).		
NA NAME OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR		8	7.50-7.95 7.95	UT 1	U37				x _ x x _ x x _ x				
*************		9	8.90 9.00-9.45	D 13 B 6	S				^ × - × - × × × × × × × × × × × × × × ×				
K	****					_				Continued ne	ext sheet		
nd p		ated to	1.20mbg	l prior	to commence				eterminations y			Scale:	1:
)ml	bgl.Upon	comple	tion the	0.25m boreh	, 0.50m, 0.75ı ole was install	m and 1 ed with	.0mbgl. C a ground	asing gas a	g from ground l and ground wa	evel to ter monitoring		Logged by:	Al
	ipe to 6.						-	-	-	•			

te:	ROUP P		way Station		ST	AT:	5	(Perc	EHOLE ussive) am Railway	RECORD	Boreh Numb BHF	
lien	t:							Station  Ground Le	evel:	Date:	Job No:	
	 m Rege	enerat	ion					8.05mAO		1 Jun 10	241458	
	JND W			SAMPLES	/TEST	S			STRATA RE		Sheet 2	2 of 2
ike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth	Level (mAOD)		Key	Description		•	
***************************************		-11	10.40 D 14 10.50-10.95 UT 2	U4§		-5.45	6.60			n 12.0m depth, very stiff.		
ema	arks an	d Wate	er Observati	ons							Scale:	1:5
ind p	oit excuvathe hand	ated to	1.20mbgl prior epths of 0.25m	to commence, 0.50m, 0.75	m and 1	.0mbgl. C	asing	eterminations of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	were carried evel to	-		
l III l 10'	halller-	compl-	tion the barel	olo waa iaat-I	المارية المار	a arainad	~~~	and ground wa	tor monitorina	l	Logged by:	AK

R	SI ROUP P	( 			ST	AT:			EHOLE ussive)	RECORD	Boreh Numb	
Site: Twic	kenhar	n Rail	way Statio	า				Location: Twickenham	am Railway		BHG	
Clien	t:							Ground Le	evel:	Date:	Job No:	
Solu	m Rege	enerat	ion					7.40mAO	D	14 Jun 10	241458	
	UND W	ATER		SAMPLES	/TEST	<u>s</u>			STRATA RE	CORD	Sheet 1	of 4
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
Strike	Well	(m) -1 -2 -3 -4 -7	(m)  0.30 D 1  1.00 D 2  1.40 D 3  1.50 D 4  2.50-2.95 B 1  3.40 D 5 3.50-3.95 B 2	N=11 [2.2](3,2,3,3) S- N=20 [4.5](5.5,4,6) S- N=34 [5.5](8,8,8,10)	2.60 - 3.00 - 4.50 - 5.10 - 5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.10 - 7.5.		0.80  1.80  0.40  1.00  0.50  0.60	<b>2 y x x x x x x x x x x</b>	MADE GROU including Japa brown fine to a is subangular flint, concrete ash and clinked.  MADE GROU brown silty sal coarse. Grave fine to coarse brick, flint, clin concrete.  MADE GROU clayey sandy of coarse. Grave fine to coarse brick and ash flint.  Dense orange coarse very sal subangular to occasional colpockets/partin PARK GRAVE.  Orange brown to coarse SAN angular fine to (KEMPTON P)  Dense orange coarse sandy to angular fine frequent cobb GRAVEL).  Stiff dark grey sandy CLAY we sandy CLAY we say and coarse sandy clayers.	ND: Medium dense black andy GRAVEL. Sand is fine all is subrounded to angular PFA, crushed stone, red alker and ash. Occasional ND: Medium dense brown GRAVEL. Sand is fine to all is sub-rounded to angular flint with occasional red present. Rare cobbles of the brown slightly silty fine to angular fine to coarse to bbles of flint with rare gs of clayey sand. (KEMP)	co dark to slightly r  TON  Gular to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to constant to const	
			8.90 D 11 9.00-9.45 UT 2	: U67	9.00	-1.60			slightly silty sli with with gleyi	hinly laminated dark grey ightly fine sandy CLAY ng and thin laminations of IDON CLAY FORMATION ext sheet	).	
			er Observat		ement of	drillina C:	asing	from ground l	evel to		Scale:	1:50
	bgl. Upoı							Ombgl, and be			Logged by:	AS
J - 4.10											Figure:	В

G	S ROUP P	IC =				AT:	(Pe		:HOLE ussive)	RECORD	Borel Numb	
e: icl	kenhar	n Rail\	way Station				Locat Twick Statio	kenha	ım Railway		BHG	Ì
en	t:						Groui	nd Le	vel:	Date:	Job No:	
lur	n Rege	enerati	ion				7.40n	nAOE	)	14 Jun 10	241458	
οι	JND W	ATER		SAMPLES	/TEST	S			STRATA RE	CORD	Sheet 2	2 of
æ	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	<b>Level</b> (mAOD)	Ke	у	Description			
***************************************		-11 -12 -13 -14 -15 -16	11.90 D 13 12.00-12.45 UT 3  12.45 D 14  13.40 D 15 13.50-13.95 B 6  13.90 D 25  14.90 D 16 15.00-15.45 UT 4  15.45 D 17  16.40 D 18 16.50-16.95 B 7	ST		-10.6	9.00		Very stiff fissu grey slightly s thin lamination subrounded to		d I I	
ms	rke an	d Wate	er Observati				_×-		Continued ne	ext sneet	Cooler	
d p	oit excuv	ated to 1	1.20mbgl prior etion the boreh	to commence	ment of	drilling.Ca	asing from gro	ound le	vel to		Scale:	1:
ınc	ogi. Upoi dlevel.	ii comple	euon me boren	ole was dack	illea Wit	n ansings	ω ∠.υποgi, a	ııu ber	norme to		Logged by:	AS
												В

R	SK ROUP P	(			ST	ATS			EHOLE ussive)	RECORD	Boreh Numb	
Site: Twic	kenhar	n Rail\	way Station					Location: Twickenha Station	am Railway		BHG	
Clien	t:							Ground Le	evel:	Date:	Job No:	
Solu	m Rege	enerat	ion					7.40mAOI	)	14 Jun 10	241458	
GRO	UND W	ATER		SAMPLES	/TEST	S			STRATA RE	CORD	Sheet 3	of 4
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	<b>Level</b> (mAOD)		Key	Description			
		-22 -23 -24 -25 -26 -27 -28	20.90 D 22 21.00-21.45 UT 6 21.45 D 23 22.40 D 24 22.50-22.95 B 9 24.00-24.45 UT 7 24.46 D 26 25.40 D 26 25.50-25.89 B 10 26.90 D 28 27.00-27.45 UT 8 27.45 D 29 28.40 D 30 28.50-28.91 B 11	50/270mm (50) [21/150](50/270)			17.00		bands to coa cobble	n 20.50m depth, regular to of subrounded to angula irse gravel and occasional es of moderately strong grone gravel.	r fine I	
		d Wate	er Observati							At SHOCK	Scale:	1:50
Hand   5.60m	pit excuv bgl. Upoi	ated to 1	1.20mbgl prior etion the boreh	to commence	ment of illed with	drilling.Ca n arisings	sing to 2.0	from ground le 0mbgl, and be	evel to ntonite to	-	Logged by:	
ground	dievel.										Figure:	AS B
											. 194101	

R	SK ROUP P	( <u> </u>			ST	ATS			EHOLE ussive)	RECORD	Boreh Numb	
Site: Twic		n Rail\	way Station	1			•	<b>Location:</b> Twickenha Station	am Railway		BHG	
Clien	nt:						- [	Ground Le	vel:	Date:	Job No:	
Solu	m Rege	enerati	ion					7.40mAOI	)	14 Jun 10	241458	
GRO	UND W	ATER		SAMPLES	/TEST	S			STRATA RE	CORD	Sheet 4	of 4
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	<b>Level</b> (mAOD)		Key	Description			
		-31 -32 -33 -34 -35 -36	30.00-30.45 UT 9 30.45 D 32 31.50-31.92 B 12 32.90 D 33 33.00-33.45UT 10	ST_N=50 [11,14](14,13,14,15)  U1000  ST_N=69 [12,13](16,16,16,16,16)	9)	-27.6			End of Boreh	ole at 35.00 m		
Hand	pit excuv	ated to 1	er Observati 1.20mbgl prior	to commence	ement of	drilling.Cas	sing fr	om ground le	evel to		Scale:	1:50
5.60m	bgl. Upoi dlevel.	n comple	etion the boreh	nole was back	filled wit	h arisings to	to 2.0r	mbgl, and bei	ntonite to		Logged by:	AS
-											Figure:	В

G	ROUP PL	<u> </u>				AT:	5		EHOLE dow Sar	RECORD mpler)	Numb	
Site: Twick		Railw	ay Station	1				<b>Location</b> Twickenh	າ: am Railway S	station	WS1	
Clier	nt:							Ground	Level:	Dates:	Job No.	:
Solur	n Rege	neratio	n					6.95mAO	D	16 Jun 10	241458	
ROL	JND W	ATER		SAMPLES	/TES	TS			STRATA RI	ECORD	Sheet 1	of 2
Strike	Well	Depth	Type/Depth	In-situ Tests	Depth	Level		Key	Description		1	
SITIKE	well	-1 -1234	ES1 0.25 ES2 0.50 ES3 0.75 TB11.00-1.20 ES4 1.00 ES5 1.20 TB22.00-2.20 TB3 2.50	S	- 1.10	5.85	1.10		MADE GROU brown silty gr medium. Gra fine to mediu with frequent stone. from concret  Dense orang GRAVEL. Sa subangular to occasional or GRAVEL). betw	UND: Vegetation at surfaravelly SAND. Sand is fin the lis subrounded to subtend to occasionally coarse concrete, red brick and the present.  The brown slightly silty sand is fine to coarse. Graph of angular fine to coarse to obbles of flint. (KEMPTO)  The een 1.80m to 2.00m depth, hole continition probing.	e to angular flint crushed  and  dy vel is o N PARK  th, clayey.	
	F	-		<ul><li>4.80= 10</li><li>4.90= 9</li></ul>				× °× × ×	Continued	vt about		
Ram	arke a	nd W	ater Ohe	ervations	<u> </u>				Continued nex	kt sheet	Scale:	
				rior to comme		ent of				Koy for Incity toota		1:25
drilling	.Window	ı sampli	ng commer	nced in the batto density of	ase of the	he hand				Key for Insitu tests HV-Hand Vane (kN/m2)	Logged by:	AS
	nic Prob	ing con	tinued from	the base of t	he wind					ket Penotometer (kN/m2) Mackintosh Probe (N150)	Figure:	В

R G	STAT								EHOLE dow Sar	RECORD npler)	Numb	
Site: Twick		n Railw	ay Statior	1				<b>Location</b> Twickenh	<b>1:</b> am Railway S	tation	WS1	l
Clier	nt:							Ground	Level:	Dates:	Job No	.:
Solun	n Rege	eneratio	n					6.95mAO	D	16 Jun 10	241458	
GROL	JND W	ATER		SAMPLES	/TES	TS			STRATA RE	CORD	Sheet 2	of 2
Strike	Well	Depth		In-situ Tests	Depth	Level		Key	Description			
Strike	Well	Depth (m)	Type/Depth (m)	In-situ Tests	Depth (m) - 5.20 - 5.90	1.75 1.05	0.70	Key		AY: inferred from dynam	ic probing.	
		-			-							
D ====	داسم	m el 147									Cooler	
				ervations		ent of					Scale:	1:25
drilling	.Windov	v sampli	ng commer	nced in the ba	ase of the	he hand				Key for Insitu tests HV-Hand Vane (kN/m2)	Logged by:	AS
Dynan	rilling.Window sampling commenced in the base of the hand it and terminated at 2.5mbgl due to density of the gravels. Synamic Probing continued from the base of the window								PP-Pock	et Penotometer (kN/m2) lackintosh Probe (N150)	Figure:	В

G	ROUP PL	<b>G</b>				AI:			EHOLE dow Sar	RECORD npler)	Numb	
<b>Site:</b> Twick	enham	Railw	ay Station	l				<b>Location</b> Twickenh	າ: am Railway S	tation	WS2	2
Clier	nt:							Ground	Level:	Dates:	Job No.	:
Solun	n Rege	neratio	n					7.25mAO	D	16 Jun 10	241458	
GROL	JND W	ATER		SAMPLES	/TES	TS			STRATA RI	ECORD	Sheet 1	of 2
Strike	Well	Depth		In-situ Tests	Depth	Level		Key	Description			
		(m) 	ES1 0.25 J1 0.25 J2 0.50 J2 ES3 0.75 J3 1.00 J4	s —	(m)	(mAOD)	The best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the be		covering dark SAND. Sand subangular to and occasior concrete. Oc	JND: Vegetation at the say brown slightly gravelly says is fine to medium. Grave of subrounded fine to coatal cobbles of flint, brick accasional cobbles of control fragments of glass. Of er.	silty el is irse gravel and crete and	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			TB11.50-1.70 ES5 1.50 J5	N=40 [1,4](8,9,12,11)	- 1.40 - - -	5.85	1.40		GRAVEL. Sa subangular to occasional co GRAVEL).	e brown slightly silty san nd is fine to coarse. Gra o angular fine to coarse to obbles of flint. (KEMPTO een 1.80m and 2.00m de	vel is to N PARK	
		-2 -	TB22.20-2.50	s —	2.00 - - 2.20 -	5.25 5.05	0.60	** * * * ** * * * * * * * *	fine to mediu angular fine t GRAVEL).	n slightly silty slightly gra m SAND. Gravel is suba o medium flint. (KEMPT	ingular to ON PARK	/
		- - - -3		N=22 [2,5](5,6,6,5)				* * * * * * * * * * * * * * * * * * *	to medium S.	se orange brown slightly AND.(KEMPTON PARK Oom depth, water strike.	silty fine GRAVEL).	
4			TB33.50-4.00	S	- - - - 3.50	3.75	1.30	* * * * * * * * * * * *		een 3.40m and 3.50m de silty fine sand.	epth, band of	/
				S	- - - - - - -				coarse sandy angular fine t flint with rare	e brown slightly silty fine GRAVEL. Gravel is sub o medium to frequent co localised clayey sand MPTON PARK GRAVEL:	oangular to oarse	
								×.°× ×.°	Continued nex	rt sheet		
				ervations							Scale:	1:25
drilling hand p	. Window oit and te	w sampl rminate	ing commer d at 5.0mbg	rior to commonced in the b gl due to den	ase of t	the he				Key for Insitu tests HV-Hand Vane (kN/m2) tet Penotometer (kN/m2)	Logged by:	
		er boreb	ole to termi	ned from the nated depth,	once ir	nterface				lackintosh Probe (N150)	rigule.	В

G	SOUP P	LC				AIS			EHOLE dow Sai	mpler)	Numb	
Site: Twick		n Railwa	ay Statior	1				<b>Locatior</b> Twickenh	<b>1:</b> am Railway S	Station	WS2	2
Clier	nt:							Ground	Level:	Dates:	Job No.	.:
Solun	n Rege	eneratio	n					7.25mAO	D	16 Jun 10	241458	
GROL	JND W	ATER		SAMPLES	/TES	rs			STRATA R	ECORD	Sheet 2	of 2
Strike	Well	Depth (m)	Type/Depth	In-situ Tests	Depth (m)	Level (mAOD)		Key	Description			
				@ 5.00= 2 @ 5.10= 6 @ 5.20= 10 @ 5.30= 11 @ 5.40= 9 @ 5.50= 13 @ 5.60= 13 @ 5.70= 13 @ 5.80= 14 @ 6.00= 11 @ 6.10= 10 @ 6.20= 7 @ 6.30= 4 @ 6.40= 3 @ 6.50= 3 @ 6.60= 3 @ 6.70= 2 @ 6.80= 3 @ 6.90= 2	- 6.40	0.85 0.35	2.90		probing	_AY: inferred from dynam	ic probing	
				ervations		ont of					Scale:	1:25
drilling	. Windo	w sampli	ing comme	rior to common nced in the b	ase of t	:he				Key for Insitu tests HV-Hand Vane (kN/m2)	Logged by:	AS
gravels	s. Dynaı	mic Prob	oing continu	gl due to densued from the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the least the	base of	the				ket Penotometer (kN/m2) Mackintosh Probe (N150)	Figure:	В

Site			ay Statior		ST	AT:	5	(Wind	dow Sa		Boreh Numb WS3	er:
		I Italiw	ay Station									
Clie								Ground		Dates:	Job No	.:
	m Rege							6.70mAO		16 Jun 10	241458	
RO rike	UND W	ATER Depth		SAMPLES In-situ Tests				Key	STRATA R  Description	ECORD	Sheet 1	of 1
		-1	(m)  ES1 0.25  ES2 0.50  ES3 0.75  ES4 1.00		(m) - 0.80 - 1.20 - 1.20 1.20	5.90 5.50	0.80		MADE GRO the surface of fine to mediu angular fine cobbles of fli frequent glas ash, clinker of fragments pro  Orange and Sand is fine to angular fir	brown slightly silty sandy to coarse. Gravel is suba ne to coarse flint with rare ckets of fine clay. (KEMP	silty ounded to asional e with Occasional os	
Rem	narks a	nd Wa	ater Obs	ervations	<u> </u>	<u> </u>	I	•			Scale:	4.05
and	pit excu	ated to	1.20mbgl p	rior to comm	enceme	ent of				Key for Insitu tests	Logged by:	1:25
				t continued pa ble to get the		depth				HV-Hand Vane (kN/m2)	Logged by:	AS
f the catio		,		3					PP-Poc	ket Penotometer (kN/m2)	Figure:	В

Twickenham Railway  Client:  Solum Regeneration  GROUND WATER  SAMPLES/TESTS  STRATA F  Strike Well Depth (m) Type/Depth In-situ Tests Depth (m) (m) (mAOD)  MADE GROUND WATER  STRATA F  Strike Well Depth (m) Type/Depth In-situ Tests Depth (mAOD)  MADE GROUND WATER SAMPLES/TESTS  STRATA F  Ground Level:  6.69mAOD  MADE GROUND WATER SAMPLES/TESTS  STRATA F  Strike Well Depth (m) (mAOD)  MADE GROUND WATER SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE STRATE SUPPRINTED THE SUPPRINTED THE SUPPRINTED THE SUPPRINTED THE SUPPRINTED THE SUPPRINTED THE SUPPRINTED THE SUPPRINTED THE SUPPRINTED THE SUPPRINTE	Station  Dates: 7 Jun 10	WS4 Job No.:	r:
Twickenham Railway  Client:  Solum Regeneration  GROUND WATER  Strike Well Depth (m)  J1 0.25 TB1  J2 0.50  Twickenham Railway  Twickenham Railway  Twickenham Railway  Twickenham Railway  Twickenham Railway  Twickenham Railway  Twickenham Railway  Twickenham Railway  Twickenham Railway  Twickenham Railway  Twickenham Railway  Twickenham Railway  Twickenham Railway  Twickenham Railway  Twickenham Railway  Twickenham Railway  Twickenham Railway  And Level:  6.69mAOD  STRATA F  Key Description  MADE GRO Surface over Gravel is su predominat cobbles of i and rare wo	Dates: 7 Jun 10		
Solum Regeneration  GROUND WATER SAMPLES/TESTS STRATA F  Strike Well Depth (m) Type/Depth In-situ Tests Depth (m) (mAOD)  MADE GROUND WATER SAMPLES/TESTS  STRATA F  Key Description  MADE GROUND WATER STRATA F  Strike Well Depth (m) (mAOD)  J1 0.25 TB1  J2 0.50	7 Jun 10	Job No.:	
Strike Well Depth (m) Type/Depth (m) In-situ Tests Depth (m) (m) Experimental Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m			
Strike Well Depth (m) Type/Depth In-situ Tests Depth (m) Level (mAOD)  MADE GRO surface over Gravel is su predominat cobbles of and rare wo		241458	
(m) (m) (m) (m) (mAOD)  MADE GRO surface ove Gravel is su predominat cobbles of and rare wo	RECORD	Sheet 1 of	2
J1 0.25 TB1  J2 0.50  MADE GRO surface ove Gravel is su predominat cobbles of and rare wo			
SAND. Grant flint, with or flint and po PARK GRA in the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of th	1.20m depth, water seepa mably from unknown pipe southeast.  n 2.2m, hole continued by ig.	RAVEL. to uent ick e. edium ngular oles of EMPTON ge into pit, struck 1m	
Pomerks and Water Observations	ext sheet	Soaler	
Remarks and Water Observations Hand pit excuvated to 1.20mbgl prior to commencement of			:25
drilling. Original hand pit located an unknown service (waste	Key for Insitu tests HV-Hand Vane (kN/m2)	Logged by: A	s
moved normwest by 1 um Window sambling commenced in	cket Penotometer (kN/m2) Mackintosh Probe (N150)	Figure: B	

R G	S ROUP P	LC				AI			EHOLE dow Sar	RECORD npler)	Numb	
Site: Twick		n Railwa	ay Station	1				Location Twickenh	<b>า:</b> am Railway Տ	tation	WS4	1
Clier	nt:							Ground	Level:	Dates:	Job No.	.:
Solun	n Rege	eneratio	n					6.69mAO	D	7 Jun 10	241458	
GROL	JND W	ATER		SAMPLES	/TES	ΓS			STRATA RE	CORD	Sheet 2	of 2
Strike	Well	Depth (m)	Type/Depth	In-situ Tests	Depth (m)	Level		Key	Description			
		(111)	(m)	@ 5.00= 6 @ 5.10= 3	(111)	(mAOD)			£),			
		-		@ 5.20= 2	- 5.20	1.49	4.40		LONDONICI	AY inferred by dynamic	orobina	
		_		@ 5.30= 2	_				LONDON CL	AY interred by dynamic	probing.	
				@ 5.40= 3 @ 5.50= 3								
		_		@ 5.60= 2	_		7					
		-		@ 5.70= 1	_							
		_		@ 5.80= 2	_							
		- -6		@ 5.90= 2 @ 6.00= 2	_				e 3			
		0		@ 6.10= 2	_							
		_		@ 6.20= 2	_							
		_		@ 6.30= 2	_							
		-		@ 6.40= 2 @ 6.50= 2	_							
				@ 6.60= 2								
		_		@ 6.70= 1	_				e =			
		-		@ 6.80= 2	-		D. d					
		- -7		@ 6.90= 1	- 6.90	-0.21	1.70		End of Boreho			
		_ /										
		_			_			0 0 0				
		_			_							
		_			_							
		_			_							
		-			_							
		-8										
		-			_							
		-			_							
		-			_							
		_			_							
		_			_							
		_			_							
		-9										
		-			_							
		-			_							
		-			-							
		-			-							
		-			-							
		_										
Dom	arka a	and M	otor Oho	ervations				<u> </u>			Scale:	
Hand	oit excu	vated to	1.20mbgl p	rior to comm	enceme	ent of				Key for Insitu tests		1:25
drilling water	. Origina	al hand p	oit located a	in unknown s of the WS ho	ervice ole was	(waste				HV-Hand Vane (kN/m2)	Logged by:	AS
moved	I northw	est by 1.	0m. Windo	w sampling o	ommer	nced in				et Penotometer (kN/m2) ackintosh Probe (N150)	Figure:	В

Hole No	Depth of Headspace Test Sample	Test Number	Test Date	Details of PID Used and Method Description	Result of PID Analysis
ВНА	0.5	1	14-Jun-10		1.8
ВНА	1	2	14-Jun-10		0.1
ВНА	1.5	3	14-Jun-10		2
ВНА	2	4	14-Jun-10		3.5
ВНА	2.5	5	14-Jun-10		2.8
ВНА	3	6	14-Jun-10		3.5
ВНА	3.5	7	14-Jun-10		2.6
ВНА	4.5	8	14-Jun-10		1.6
ВНА	5.5	9	14-Jun-10		0.3
ВНВ	0.5	1	14-Jun-10		0
ВНВ	1	2	14-Jun-10		0
BHB	1.5	3	14-Jun-10		0
BHB	2	4	14-Jun-10		0
BHB	2.5	5	14-Jun-10		0
BHB	3	6	14-Jun-10		7.5
BHB	3.5	7	14-Jun-10		4.3
ВНВ	4	8	14-Jun-10		5.70
BHB	4.50	9	14-Jun-10		3.7
BHB	5.00	10	14-Jun-10		2.8
BHB	6.00	11	14-Jun-10		3.3
BHB	7.00	12	14-Jun-10		4.1
BHC	0.50	1	14-Jun-10		4.2
BHC	1.00	2	14-Jun-10		2.1
BHC	1.50	3	14-Jun-10		1.2
BHC	2.00	4	14-Jun-10		6.4
BHC	2.50	5	14-Jun-10		6.5
BHC	3.50	6	14-Jun-10		5.2
BHC	4.50	7	14-Jun-10		3.2
BHD	0.50	1	14-Jun-10		7.3

Hole No	Depth of Headspace Test Sample	Test Number	Test Date	Details of PID Used and Method Description	Result of PID Analysis
BHD	1.00	2	14-Jun-10		4.1
BHD	1.50	3	14-Jun-10		6.4
BHD	2.00	4	14-Jun-10		5.8
BHD	2.50	5	14-Jun-10		4.1
BHD	3.50	6	14-Jun-10		2.2
BHD	4.50	7	14-Jun-10		1.4
BHG	0.00	1	14-Jun-10		0.8
BHG	1.00	2	14-Jun-10		2.1
BHG	1.50	3	14-Jun-10		2.3
BHG	2.00	4	14-Jun-10		4.2
BHG	2.50	5	14-Jun-10		1.7
BHG	3.00	6	14-Jun-10		0.2
BHG	4.00	7	14-Jun-10		3.2
BHE	0.50	1	14-Jun-10		2.8
BHE	1.00	2	14-Jun-10		4.6
BHE	1.50	3	14-Jun-10		3.9
BHE	2.00	4	14-Jun-10		2.5
BHE	3.00	5	14-Jun-10		2.7
BHE	4.00	6	14-Jun-10		1.8
BHF	0.50	1	14-Jun-10		4.7
BHF	1.00	2	14-Jun-10		5.1
BHF	1.50	3	14-Jun-10		3.9
BHF	2.00	4	14-Jun-10		5.5
BHF	3.00	5	14-Jun-10		2.3
BHF	4.00	6	14-Jun-10		1.2
				1	

### Twickenham Railway Station, London Road

Hole No.	Depth (m) to Top of Test	CBR Test Type	Test Number	In-situ CBR Remarks	Clegg Hammer Impact Value	In-situ CBR (%) Value
BHA	0.25	Clegg Hammer	1			12
ВНА		Clegg Hammer	2			13
ВНА	0.75	Clegg Hammer	3			7
BHA	1	Clegg Hammer	4			8
BHC	0.25	Clegg Hammer	1			12
BHC	0.5	Clegg Hammer	2			12
BHC	0.75	Clegg Hammer	3			8 8
BHC	1	Clegg Hammer	4			8
BHD	0.2	Clegg Hammer	1			15
BHD	0.5	Clegg Hammer	2			12
BHD	0.75	Clegg Hammer	3			6 6
BHD	1	Clegg Hammer	4			6
BHF	0.2	Clegg Hammer	1			10
BHF	0.5	Clegg Hammer	2			13
BHF		Clegg Hammer	3			9
BHF	1	Clegg Hammer	4			9

### **Gas Summary Sheet**

Location	Date	Baro Pressure	Rel Pressure	Flow Rate	CH (% v		O2 vol)	O2 vol)	Water Level	Base of Borehole	Comments
		(m.bar)	(m.bar)	(l/hr)		steady	steady	steady	(m.bgl)	(m.bgl)	
	1st JULY10	1009	0.84	0.2		<0.1	6.8	10.2	5.100	5.60	
	15th JULY 10	1006	0.08	0.1		<0.1	3.5	15.8	5.060	5.57	
ВНА	5th AUG 10	1010	-0.12	0		<0.1	6.2	12.9	5.100	5.57	
БПА	19th AUG 10										
	2nd SEPT 10										
	16th SEPT 10										
	1st JULY10	1009	0.57	0.2		<0.1	6	12	4.180	7.00	
	15th JULY 10	1006	0.08	0.1		<0.1	10.5	6.7	3.900	6.11	
BHD	5th AUG 10	1010	-0.12	0		<0.1	7.3	9.9	4.230	6.94	
BIID	19th AUG 10										
	2nd SEPT 10										
	16th SEPT 10										
	1st JULY10	1009	0.57	0.2		<0.1	10.7	5	3.880	6.12	
	15th JULY 10	1006	0.08	0.1		<0.1	6.8	11.2	4.190	6.93	
BHF	5th AUG 10	1010	-0.12	0.1		<0.1	14.3	4	4.940	6.09	
5	19th AUG 10										
	2nd SEPT 10										
	16th SEPT 10										

### Twickenham Railway Station, London Road

#### **Water Monitoring Record**

Location	Date (am/pm)	Conductivity uS/cm (at 25 degrees)	Total Dissolved Soilds (ppm)	Dissolved Oxygen (ppm)	рН	Temperature (deg C)	Sampling Method	Water Level (m.bgl)	Base of Borehole (m.bgl)	Comments
ВНА	1st JULY10 (pm)	950	665	17.19	6.29	15.23	Bailer	5.100	5.60	light brown, cloudy-medium solid content, no odour, no sheen, no floating product
21	19th AUGUST 10									
BHD	1st JULY10 (pm)	354	248	45.74	5.22	15.96	Bailer	4.180	7.00	light brown, cloudy-medium solid content, no odour, no sheen, no floating product
Silb	19th AUGUST 10									
BHF	1st JULY10 (pm)	610	428	24.34	6.27	14.96	Bailer	3.880	6.12	light brown/orange, cloudy-medium solid content, no odour, no sheen, no floating product
5111	19th AUGUST 10									
River 1	1st JULY10 (pm)	616	431	14.84	7.74	22.1	Bucket	n/a	n/a	Clear, no odour, no sheen
111001 1	19th AUGUST 10							n/a	n/a	
River 2	1st JULY10 (pm)	659	463	8.15	7.95	24.1	Bucket	n/a	n/a	Clear, no odour, no sheen
THIVET Z	19th AUGUST 10							n/a	n/a	
River 3	1st JULY10 (pm)	631	442	8.59	8.11	23.2	Bucket	n/a	n/a	Clear, no odour, no sheen
111701 3	19th AUGUST 10							n/a	n/a	

#### **APPENDIX C**

**Geotechnical Laboratory Test results** 







Andrew Kent RSK STATS Geoconsult Limited 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

7th July 2010

### STRUCTURAL SOILS LTD

SITE INVESTIGATION

SOIL, ROCK &
MATERIAL TESTING

GEOTECHNICAL CONSULTANCY

CONTAMINATED
LAND ASSESSMENT

#### **TESTING REPORT**

YOUR REF: 241458

SITE: TWICKENHAM STATION

CERTIFICATE NUMBER: 581177

DATE SAMPLES RECEIVED: 16th June 2010 DATE TESTING COMMENCED: 16th June 2010

DATE OF SAMPLE DISPOSAL: 7th August 2010

INSTRUCTIONS: Please carry out Moisture Content, Atterberg Limit, Oedometer and Quick Undrained Triaxial tests on the samples provided.

Dear Mr Kent,

I have pleasure in enclosing the test report for the above project that you submitted to us for testing.

Yours sincerely

Flat.

Paul Kent Laboratory Manager

Enc.

18 FROGMORE ROAD HEMEL HEMPSTEAD HERTS HP3 9RT TEL: 01442 416660 FAX: 01442 437550 hemel@soils.co.uk www.soils.co.uk

> HEAD OFFICE: Bristo

BRANCH OFFICE: Castleford West Yorkshire

Template Issue: 4

Filename: 581177 / 01_SD.XLS



Borehole	Depth (m)	Moisture Content (%)	Sample Description	
ВНА	7.50-7.95	30	Dark brownish grey CLAY	
ВНА	10.50-10.95	30	Dark brownish grey CLAY	
вна	13.50-13.95	28	Dark brownish grey CLAY	
внв	9.00-9.45	27	Dark grey CLAY	
ВНВ	12.00-12.45	30	Dark grey CLAY	
внв	15.00-15.45	29	Dark grey CLAY	
ВНС	7.50-7.95	30	Dark grey CLAY	
ВНС	10.50-10.95	30	Dark grey CLAY	
внс	13.50-13.95	29	Dark brownish grey CLAY	
BHD	7.50-7.95	30	Dark brownish grey CLAY	

Moisture contents tested in accordance with BS 1377: Part 2: 1990: Clause 3

Key to Gravel Sizes: f

fine - 2 to 6mm

medium - 6 to 20mm coarse - 20 to 60mm

#### SUMMARY OF SAMPLE DESCRIPTIONS AND MOISTURE CONTENT

Certificate No: 581177 Page 2 of 34



	<del>.,</del>	B.F. * 4	
Borehole	Depth (m)	Moisture Content (%)	Sample Description
BHD	10.50-10.95	29	Dark brownish grey CLAY
BHD	13.50-13.95	26	Dark brownish grey CLAY
BHD	16.50-16.95	27	Dark brownish grey CLAY
BHD	19.50-19.95	27	Dark brownish grey CLAY
BHD	22.50-22.95	28	Dark brownish grey CLAY
BHD	25.50-25.95	22	Dark brownish grey CLAY
BHD	28.50-28.95	28	Dark brownish grey CLAY
BHD	31.50-31.95	25	Dark brownish grey CLAY
ВНЕ	10.50-10.95	29	Dark brownish grey CLAY
ВНЕ	13.50-13.95	25	Dark brownish grey CLAY

Moisture contents tested in accordance with BS 1377: Part 2: 1990: Clause 3

Key to Gravel Sizes:

fine

2 to 6mm

medium coarse

6 to 20mm 20 to 60mm

### SUMMARY OF SAMPLE DESCRIPTIONS AND MOISTURE CONTENT

Page 3 of 34 Certificate No: 581177

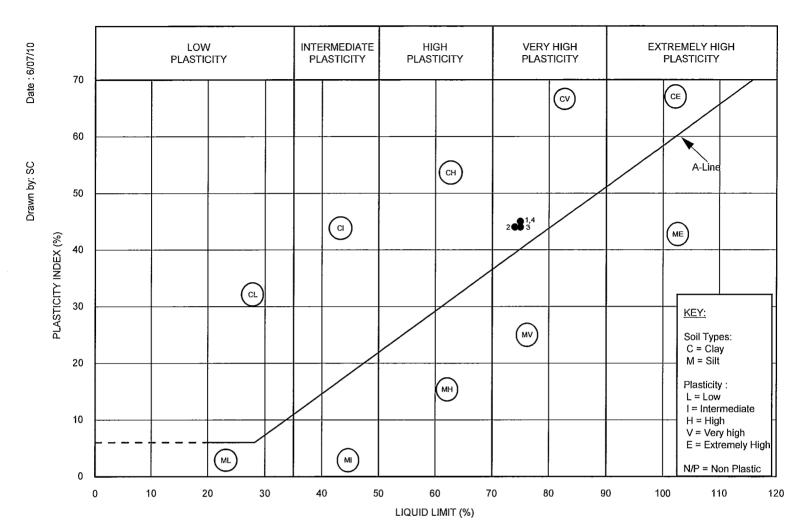
Template Issue: 4



<del></del>		• • • • •	
Borehole	Depth (m)	Moisture Content (%)	Sample Description
BHE	16.50-16.95	26	Dark brownish grey CLAY
BHE	19.50-19.95	24	Dark brownish grey CLAY
BHE	22.50-22.95	27	Dark brownish grey CLAY
BHF	7.50-7.95	30	Dark brownish grey CLAY
BHF	10.50-10.95	26	Dark brownish grey CLAY

Moisture contents tested in accordance with BS 1377: Part 2: 1990: Clause 3

Key to Gravel Sizes:


fine - 2 to 6mm

medium - 6 to 20mm coarse - 20 to 60mm

#### SUMMARY OF SAMPLE DESCRIPTIONS AND MOISTURE CONTENT

#### **RSK STATS GEOCONSULT LIMITED TWICKENHAM STATION 241458**





Plot Number	Borehole	Sample	Depth (m)	BS Test Method*	Preparation Method †	% Passing 425 micron Sieve	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%
1	BHD	-	7.50	4.4/5.3/5.4	4.2.3	100	75 74	30	45
2	BHD BHD	-	16.50 25.50	4.4/5.3/5.4 4.4/5.3/5.4	4.2.3 4.2.3	100 100	7 <del>4</del> 75	30 31	44 44
4	BHD	_	31.50	4.4/5.3/5.4	4.2.3	100	75	30	45

*Tested in accordance with the following clauses of BS 1377:Part 2:1990: 4.3 - Cone Penetrometer Method 4.4 - One point Cone Penetrometer Method 4.5 - Casagrande Method 4.6 - One point Casagrande Method 5.3 - Plastic Limit Method 5.4 - Plasticity Index

†Tested in accordance with the following clauses of BS 1377:Part 2:1990: 4.2.3 - Natural Soil 4.2.4 - Sieved Specimen

#### ATTERBERG LIMITS TEST RESULTS

Page 5 of 34 Certificate No: 581177

0



160 Undisturbed : Specimen 1

160 80 80 40

8

		<del>                                     </del>
Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	210.3
Sample diameter	mm	103.3
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	1.98
Dry density	Mg/m ³	1.53
Moisture content	%	29
Failure Conditions		
Cell pressure	kPa	150
Membrane correction	kPa	0.39
Corrected deviator stress	kPa	186
Strain at failure	%	7.0
Undrained shear strength	kPa	93
Sample Details		Failure shape
Borehole : E	BHA	
Sample : -		
Depth (m)	7.50	

12 AXIAL STRAIN (%) 16

20

24

Tested in accordance with BS 1377: Part 7: 1990: Clause 8



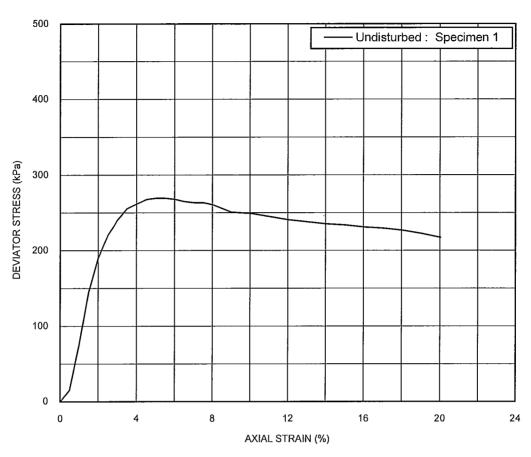
200 Undisturbed : Specimen 1

160

80

40

0

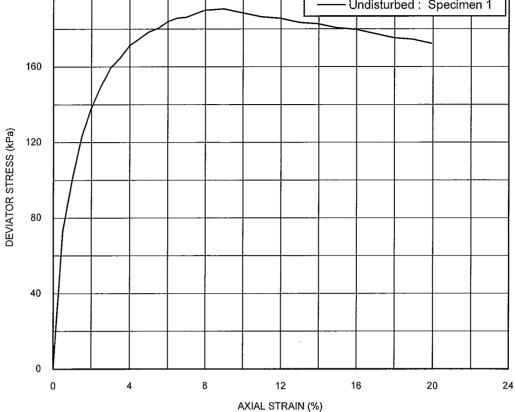

40

AXIAL STRAIN (%)

<del></del>		
Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	209.6
Sample diameter	mm	103.2
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	1.93
Dry density	Mg/m ³	1.49
Moisture content	%	29
Failure Conditions		
Cell pressure	kPa	210
Membrane correction	kPa	0.44
Corrected deviator stress	kPa	197
Strain at failure	%	8.0
Undrained shear strength	kPa	99
Sample Details		Failure shape
Borehole .	вна	
Sample	<u>.</u>	
Depth (m)	10.50	Y

Tested in accordance with BS 1377: Part 7: 1990: Clause 8

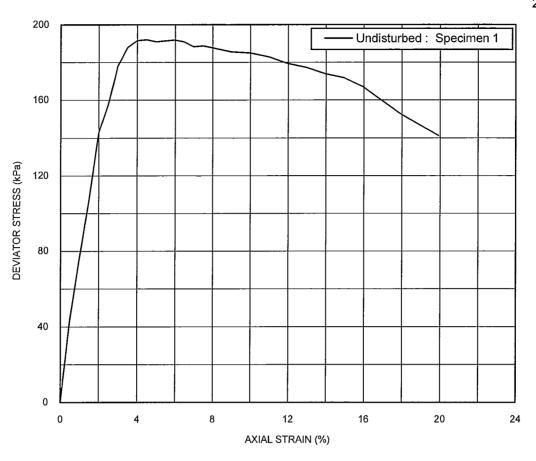





Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	209.6
Sample diameter	mm	103.5
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	1.97
Dry density	Mg/m³	1.54
Moisture content	%	28
Failure Conditions	_	
Cell pressure	kPa	270
Membrane correction	kPa	0
Corrected deviator stress	kPa	269
Strain at failure	%	5.5
Undrained shear strength	kPa	135
Sample Details		Failure shape
Borehole : E	ЗНА	
Sample		
Depth (m)	13.50	
		<b>L</b>

Tested in accordance with BS 1377: Part 7: 1990: Clause 8

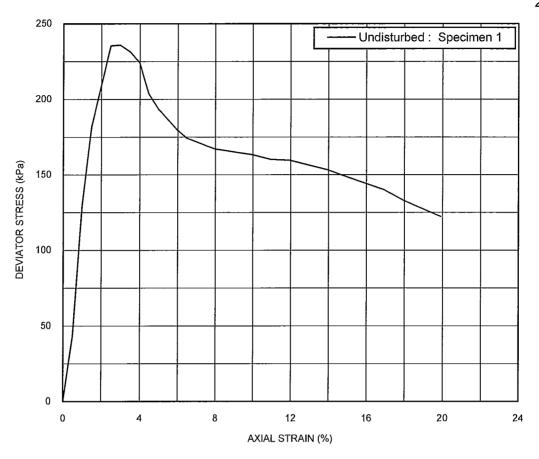



Undisturbed: Specimen 1



		<u> </u>
Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	208.8
Sample diameter	mm	103.2
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	2.00
Dry density	Mg/m ³	1.57
Moisture content	%	27
Failure Conditions		
Cell pressure	kPa	180
Membrane correction	kPa	0.49
Corrected deviator stress	kPa	191
Strain at failure	%	9.0
Undrained shear strength	kPa	95
Sample Details		Failure shape
Borehole :	внв	
Sample	- · · <del>-</del>	
Depth (m)	9.00	

Tested in accordance with BS 1377: Part 7: 1990: Clause 8

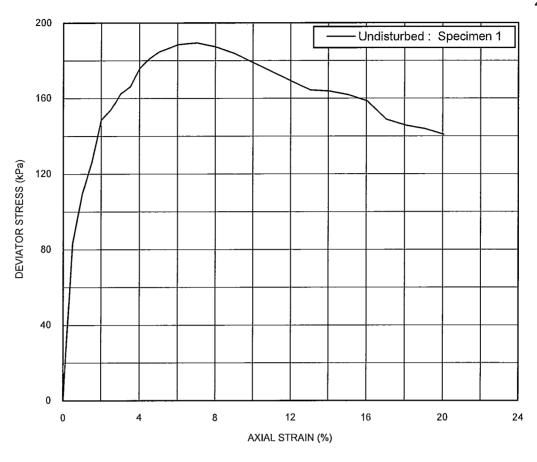





Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	208.8
Sample diameter	mm	102.6
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m ³	1.97
Dry density	Mg/m ³	1.53
Moisture content	%	29
Failure Conditions		
Cell pressure	kPa	240
Membrane correction	kPa	0.27
Corrected deviator stress	kPa	192
Strain at failure	%	4.5
Undrained shear strength	kPa	96
Sample Details		Failure shape
Borehole .	внв	
Sample		
Depth (m)	12.00	

Tested in accordance with BS 1377: Part 7: 1990: Clause 8

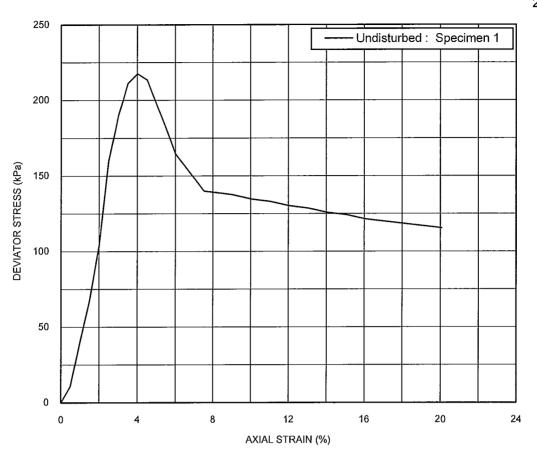





Initial Conditions	<u>Units</u>	<u>Specimen 1</u>
Sample length	mm	208.8
Sample diameter	mm	103.1
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	1.98
Dry density	Mg/m ³	1.54
Moisture content	%	29
Failure Conditions		
Cell pressure	kPa	300
Membrane correction	kPa	0.18
Corrected deviator stress	kPa	236
Strain at failure	%	3.0
Undrained shear strength	kPa	118
Sample Details		Failure shape
Borehole .	знв	
Sample		h
Depth (m)	15.00	

Tested in accordance with BS 1377: Part 7: 1990: Clause 8



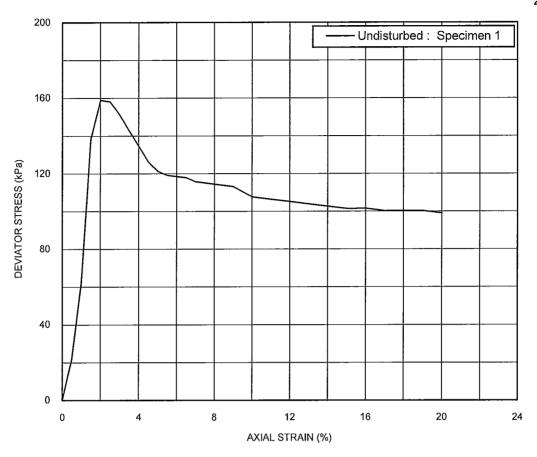

2652



Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	187.4
Sample diameter	mm	102.7
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	2.00
Dry density	Mg/m ³	1.55
Moisture content	%	29
Failure Conditions		
Cell pressure	kPa	150
Membrane correction	kPa	0.40
Corrected deviator stress	kPa	189
Strain at failure	%	7.0
Undrained shear strength	kPa	95
Sample Details		Failure shape
Borehole : E	ВНС	
Sample : _		
Depth (m)	7.50	
		المستوسلا

Tested in accordance with BS 1377: Part 7: 1990: Clause 8






Initial Conditions	Units	Specimen 1
Sample length	<u>onus</u> mm	209.2
Sample diameter		103.3
Membrane thickness	mm	0.24
Rate of strain	mm or territor	1.0
	%/min	
Bulk density	Mg/m ³	1.97
Dry density	Mg/m³	1.52
Moisture content	%	30
Failure Conditions		
Cell pressure	kPa	210
Membrane correction	kPa	0
Corrected deviator stress	kPa	218
Strain at failure	%	4.0
Undrained shear strength	kPa	109
Sample Details		Failure shape
Borehole .	BHC	
Sample :	ыю	
Depth (m)	10.50	
	10.50	

Tested in accordance with BS 1377: Part 7: 1990: Clause 8



2652



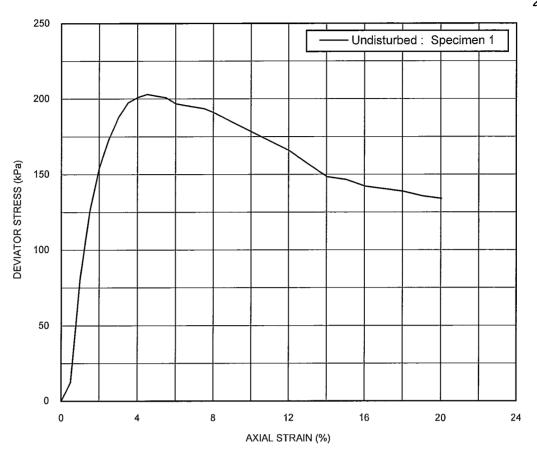
Membrane thickness Rate of strain Bulk density Dry density Moisture content	mm %/min Mg/m³ Mg/m³ %	0.24 1.0 1.99 1.55 28
Failure Conditions Cell pressure Membrane correction Corrected deviator stress Strain at failure Undrained shear strength	kPa kPa kPa % kPa	270 0 159 2.0 79
Sample : _	3.50	Failure shape

Tested in accordance with BS 1377: Part 7: 1990: Clause 8



200
160
160
40
40
Undisturbed: Specimen 1
0 4 8 12 16 20 24
AXIAL STRAIN (%)

Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	209.9
Sample diameter	mm	103.6
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	1.98
Dry density	Mg/m³	1.53
Moisture content	%	30
Failure Conditions		
Cell pressure	kPa	150
Membrane correction	kPa	0.44
Corrected deviator stress	kPa	198
Strain at failure	%	8.0
Undrained shear strength	kPa	99
Sample Details	<del></del>	Failure shape
Borehole .	BHD	
Sample :		
Depth (m)	7.50	Y /

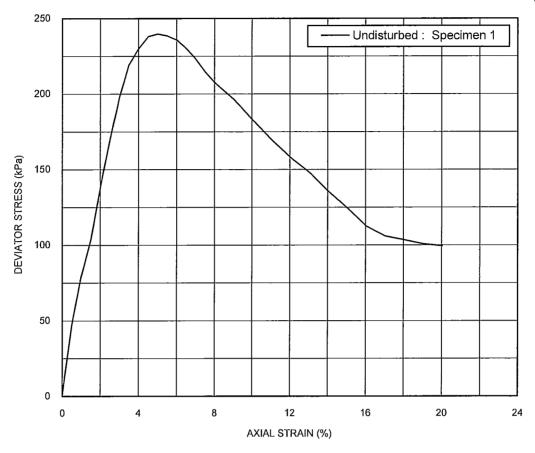

Tested in accordance with BS 1377: Part 7: 1990: Clause 8

# UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Certificate: 581177 Page 15 of 34



2652

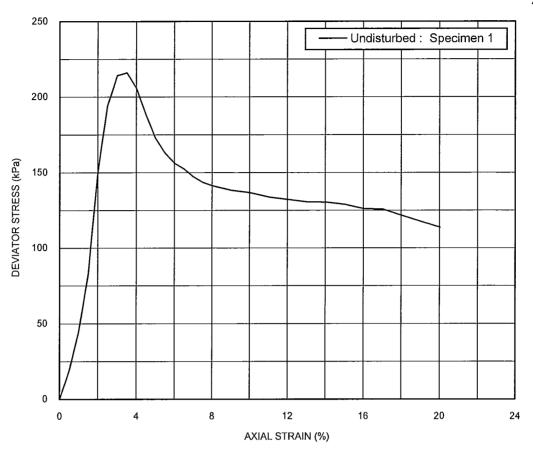



Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	209.5
Sample diameter	mm	102.9
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	1.98
Dry density	Mg/m³	1.54
Moisture content	%	29
Failure Conditions		
Cell pressure	kPa	210
Membrane correction	kPa	0
Corrected deviator stress	kPa	203
Strain at failure	%	4.5
Undrained shear strength	kPa	101
Sample Details		Failure shape
Borehole :	3HD	
Sample	•	
Depth (m)	10.50	

Tested in accordance with BS 1377: Part 7: 1990: Clause 8



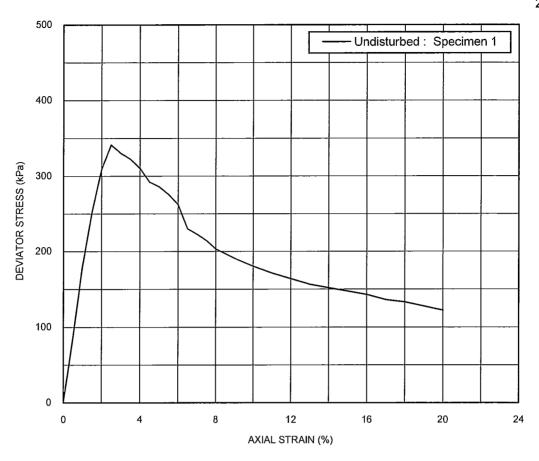
2652




<u>Initial Conditions</u>	<u>Units</u>	Specimen 1
Sample length	mm	209.5
Sample diameter	mm	103.1
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	2.02
Dry density	Mg/m³	1.60
Moisture content	%	26
Failure Conditions		
Cell pressure	kPa	270
Membrane correction	kPa	0.29
Corrected deviator stress	kPa	240
Strain at failure	%	5.0
Undrained shear strength	kPa	120
Sample Details		Failure shape
Borehole : E	3HD	
Sample : -		
Depth (m) : 1	3.50	
		Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix App

Tested in accordance with BS 1377: Part 7: 1990: Clause 8



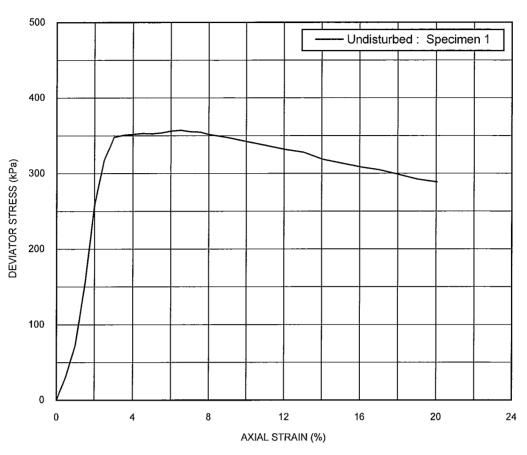

2652



		<u> </u>
Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	209.6
Sample diameter	mm	103.6
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	1.97
Dry density	Mg/m³	1.55
Moisture content	%	27
Failure Conditions		
Cell pressure	kPa	330
Membrane correction	kPa	0
Corrected deviator stress	kPa	216
Strain at failure	%	3.5
Undrained shear strength	kPa	108
Sample Details		Failure shape
Borehole : F	BHD	
Sample		
Depth (m)	6.50	
<u> </u>		

Tested in accordance with BS 1377: Part 7: 1990: Clause 8



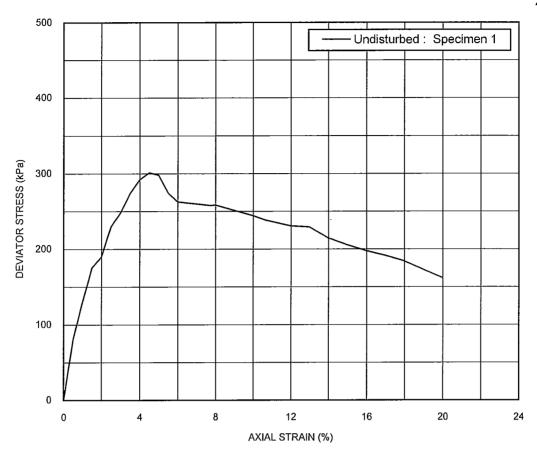



Initial Conditions	Linita	Specimen 1
	<u>Units</u>	209.9
Sample length	mm	
Sample diameter	mm	103.1
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m ³	2.05
Dry density	Mg/m ³	1.63
Moisture content	%	26
Failure Conditions		
Cell pressure	kPa	390
Membrane correction	kPa	0.15
Corrected deviator stress	kPa	341
Strain at failure	%	2.5
Undrained shear strength	kPa	171
Sample Details		Failure shape
Borehole .	BHD	
Sample :	טווט	
Donth (m)		
:	19.50	

Tested in accordance with BS 1377: Part 7: 1990: Clause 8



2652

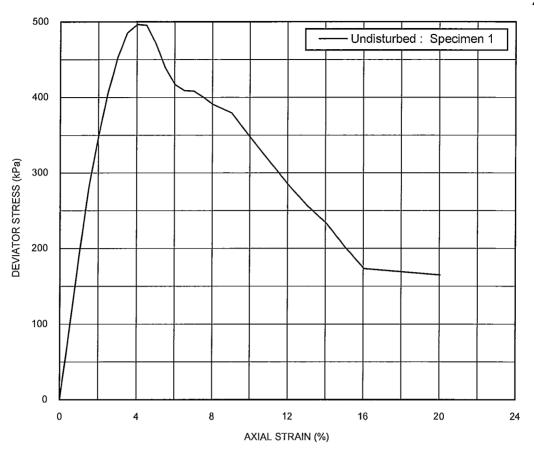



Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	209.4
Sample diameter	mm	103.0
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	2.01
Dry density	Mg/m³	1.58
Moisture content	%	28
Failure Conditions		
Cell pressure	kPa	450
Membrane correction	kPa	0.37
Corrected deviator stress	kPa	357
Strain at failure	%	6.5
Undrained shear strength	kPa	179
Sample Details		Failure shape
Borehole .	BHD	
Sample :		
Depth (m)	22.50	

Tested in accordance with BS 1377: Part 7: 1990: Clause 8



2652




Sample length Sample diameter	<u>Units</u> mm mm	162.3 103.6
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m ³	1.99
Dry density	Mg/m³	1.58
Moisture content	%	26
Failure Conditions		
Cell pressure	kPa	510
Membrane correction	kPa	0.26
Corrected deviator stress	kPa	301
Strain at failure	%	4.5
Undrained shear strength	kPa	151
Sample Details		Failure shape
Borehole : BI	HD	
Sample	· <del>· =</del>	1 1
Depth (m)	5.50	

Tested in accordance with BS 1377: Part 7: 1990: Clause 8



2653



Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	209.5
Sample diameter	mm	103.5
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	2.07
Dry density	Mg/m³	1.61
Moisture content	%	29
Failure Conditions		
Cell pressure	kPa	570
Membrane correction	kPa	0.24
Corrected deviator stress	kPa	496
Strain at failure	%	4.0
Undrained shear strength	kPa	248
Sample Details	<del></del> -	Failure shape
Borehole :	3HD	
Sample		
Depth (m)	28.50	
		T

Tested in accordance with BS 1377: Part 7: 1990: Clause 8

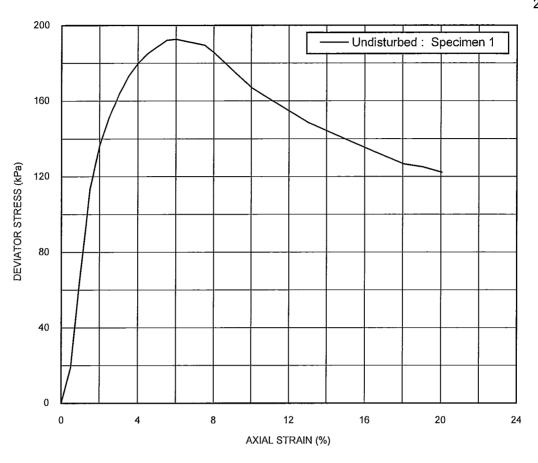


68) 300 Undisturbed: Specimen 1

400

100

0 4 8 12 16 20 24


Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	158.3
Sample diameter	mm	103.3
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	2.02
Dry density	Mg/m³	1.62
Moisture content	%	25
Failure Conditions		
Cell pressure	kPa	630
Membrane correction	kPa	0.34
Corrected deviator stress	kPa	382
Strain at failure	%	6.0
Undrained shear strength	kPa	191
Sample Details		Failure shape
Borehole .	BHD	
Sample		
Depth (m)	31.50	
		Vi.

AXIAL STRAIN (%)

Tested in accordance with BS 1377: Part 7: 1990: Clause 8



2652

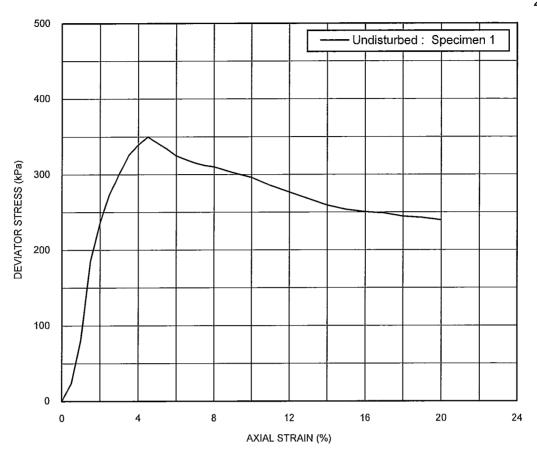


· · · · · · · · · · · · · · · · · · ·		,
Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	209.4
Sample diameter	mm	102.0
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	1.99
Dry density	Mg/m³	1.54
Moisture content	%	29
Failure Conditions		
Cell pressure	kPa	210
Membrane correction	kPa	0.35
Corrected deviator stress	kPa	193
Strain at failure	%	6.0
Undrained shear strength	kPa	96
Sample Details		Failure shape
Borehole .	BHE	
Sample	-··-	
Depth (m)	10.50	

Tested in accordance with BS 1377: Part 7: 1990: Clause 8



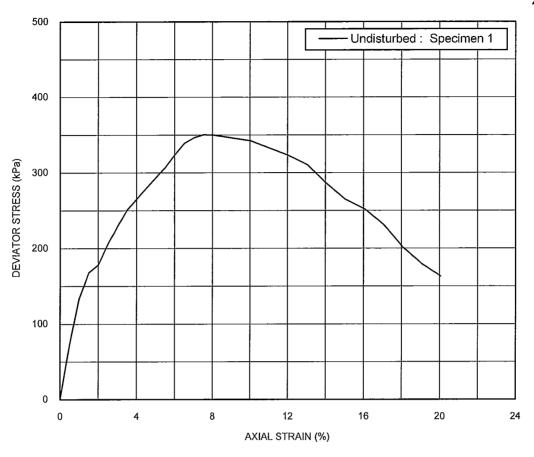
250
200
200
150
50
Undisturbed : Specimen 1


		<del></del>
Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	209.5
Sample diameter	mm	101.9
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	2.03
Dry density	Mg/m ³	1.62
Moisture content	%	25
Failure Conditions	-	
Cell pressure	kPa	270
Membrane correction	kPa	0.50
Corrected deviator stress	kPa	243
Strain at failure	%	9.0
Undrained shear strength	kPa	121
Sample Details		Failure shape
Borehole . F	3HE	
Sample	··· <del>··</del>	
Depth (m)	3.50	Y
. '		

AXIAL STRAIN (%)

Tested in accordance with BS 1377: Part 7: 1990: Clause 8



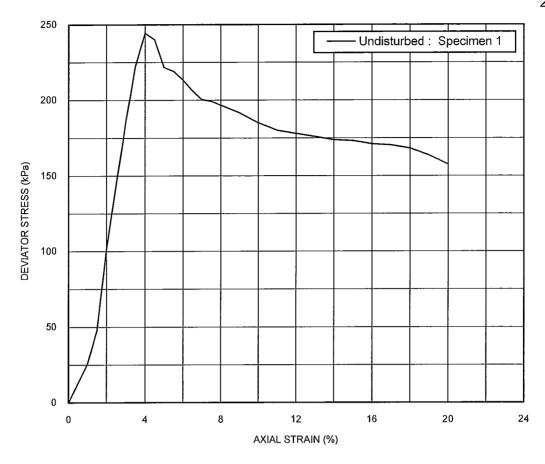

2652



Initial Conditions	<u>Units</u>	<u>Specimen 1</u>
Sample length	mm	210.2
Sample diameter	mm	101.9
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	2.02
Dry density	Mg/m³	1.59
Moisture content	%	27
Failure Conditions		
Cell pressure	kPa	330
Membrane correction	kPa	0.27
Corrected deviator stress	kPa	350
Strain at failure	%	4.5
Undrained shear strength	kPa	175
Sample Details		Failure shape
Borehole : E	BHE	
Sample		
Depth (m)	16.50	l Y T

Tested in accordance with BS 1377: Part 7: 1990: Clause 8






Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	209.4
Sample diameter	mm	101.3
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	2.04
Dry density	Mg/m³	1.64
Moisture content	%	24
Failure Conditions		
Cell pressure	kPa	390
Membrane correction	kPa	0.43
Corrected deviator stress	kPa	350
Strain at failure	%	7.5
Undrained shear strength	kPa	175
Sample Details		Failure shape
Borehole :	BHE	
Sample		
Depth (m)	19.50	

Tested in accordance with BS 1377: Part 7: 1990: Clause 8



2652



Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	208.0
Sample diameter	mm	101.4
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	1.97
Dry density	Mg/m³	1.55
Moisture content	%	27
Failure Conditions		
Cell pressure	kPa	450
Membrane correction	kPa	0.24
Corrected deviator stress	kPa	244
Strain at failure	%	4.0
Undrained shear strength	kPa	122
Sample Details		Failure shape
Borehole : E	BHE	
Sample	· · · <del>-</del>	
Depth (m)	2.50	T 4 1

Tested in accordance with BS 1377: Part 7: 1990: Clause 8



DENATOR Specimen 1

160

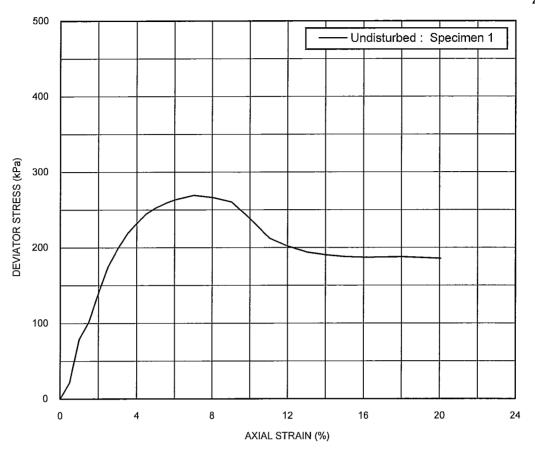
160

40

40

0

40

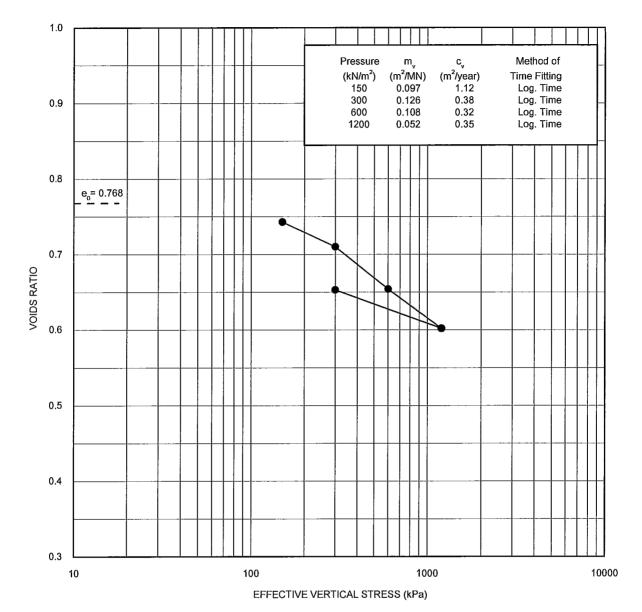

AXIAL STRAIN (%)

Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	209.3
Sample diameter	mm	102.6
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	1.98
Dry density	Mg/m ³	1.53
Moisture content	%	30
Failure Conditions		
Cell pressure	kPa	150
Membrane correction	kPa	0.35
Corrected deviator stress	kPa	178
Strain at failure	%	6.0
Undrained shear strength	kPa	89
Sample Details		Failure shape
Borehole .	BHF	
Sample		
Depth (m)	7.50	

Tested in accordance with BS 1377: Part 7: 1990: Clause 8



2652




Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	209.4
Sample diameter	mm	102.9
Membrane thickness	mm	0.24
Rate of strain	%/min	1.0
Bulk density	Mg/m³	2.00
Dry density	Mg/m³	1.59
Moisture content	%	26
Failure Conditions		
Cell pressure	kPa	210
Membrane correction	kPa	0.40
Corrected deviator stress	kPa	269
Strain at failure	%	7.0
Undrained shear strength	kPa	135
Sample Details		Failure shape
Borehole .	BHF	
Sample	•	
Depth (m)	10.50	\ <b>\ \</b>

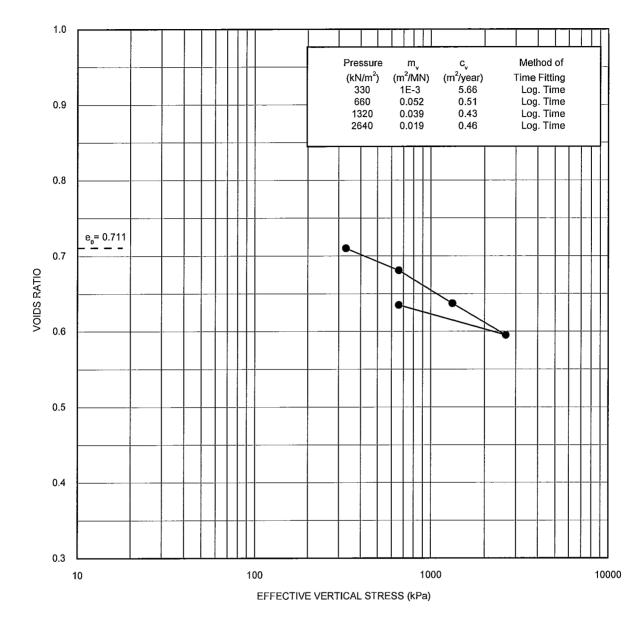
Tested in accordance with BS 1377: Part 7: 1990: Clause 8

Drawn by: SC Date: 07/07/2010

Filename: 581177 \ COMPRESS \ BHD_7.50_OD.OPJ



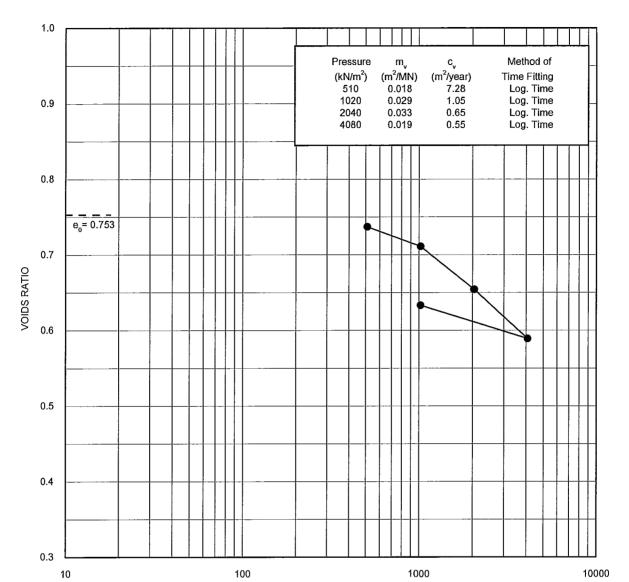
Initial Conditions Borehole : BHD : 20.0 mm Specimen height Bulk density : 1.97 Mg/m³ Specimen diameter : 75.0 mm Dry density : 1.53 Mg/m³ Sample Degree of saturation : 100 % Moisture content : 29 % : 2.70 Mg/m³ Particle density Depth (m) : 7.50 : 20 °C Lab. temperature (Assumed) : N/A kPa Swelling pressure Specimen condition : Undisturbed Specimen Depth (m) : 7.55


Tested in accordance with BS1377: Part 5: 1990: Clause 3

# ONE - DIMENSIONAL CONSOLIDATION TEST (OEDOMETER)



Drawn by: SC Date: 07/07/2010


Filename: 581177\COMPRESS\BHD_16.50_OD.OPJ



	Initial Conditions			
Specimen diameter : 75.0 mm  Degree of saturation : 100 %  Particle density : 2.70 Mg/m³  (Assumed)	Bulk density Dry density Moisture content Lab. temperature Swelling pressure	: 2.00 Mg/m³ : 1.58 Mg/m³ : 26 % : 20 °C : N/A kPa	Borehole Sample Depth (m) Specimen	: BHD : - : 16.50

Tested in accordance with BS1377: Part 5: 1990: Clause 3

### **ONE - DIMENSIONAL CONSOLIDATION TEST (OEDOMETER)**



Initial Conditions				]	
Specimen height	: 20.0 mm	Bulk density	: 1.95 Mg/m³	Borehole	: BHD
Specimen diameter Degree of saturation	: 50.0 mm : 96 %	Dry density	: 1.54 Mg/m³ : 27 %	Sample	: -
Particle density	: 2.70 Mg/m³ (Assumed)	Moisture content Lab. temperature	: 20 °C	Depth (m)	: 25.50
Specimen condition	: Undisturbed	Swelling pressure	: N/A kPa	Specimen Depth (m)	: 25.55

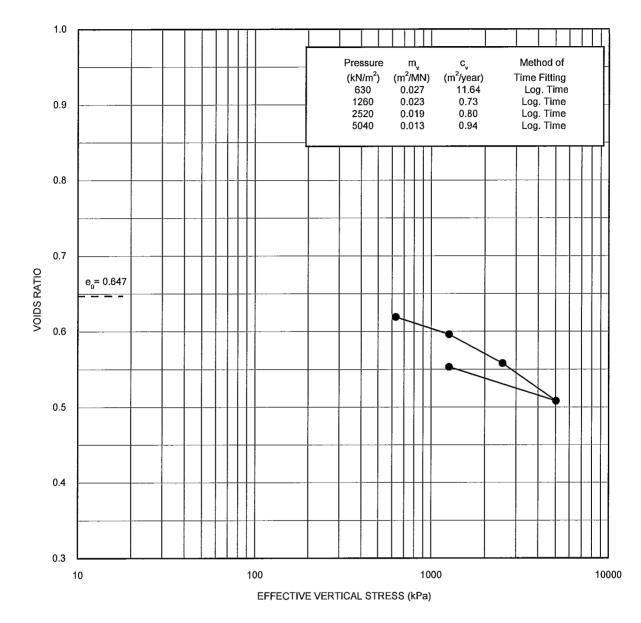
EFFECTIVE VERTICAL STRESS (kPa)

Tested in accordance with BS1377: Part 5: 1990: Clause 3

### **ONE - DIMENSIONAL CONSOLIDATION TEST (OEDOMETER)**

Page 33 of 34 Certificate No: 581177

Filename: 581177 \ COMPRESS \ BHD_25.50_OD.OPJ


Drawn by: SC Date: 07/07/2010



Drawn by: SC Date: 07/07/2010

Filename: 581177 \ COMPRESS \ BHD_31.50_OD.OPJ

Template Issue:



Initial Conditions					
Specimen height	: 20.0 mm	Bulk density	: 2.04 Mg/m³	Borehole	: BHD
Specimen diameter Degree of saturation	: 50.0 mm : 100 %	Dry density Moisture content	: 1.64 Mg/m³ : 24 %	Sample	: -
Particle density	: 2.70 Mg/m³ (Assumed)	Lab. temperature	: 20 °C	Depth (m)	: 31.50
Specimen condition	: Ùndisturbed	Swelling pressure	: <b>N</b> /A kPa 	Specimen Depth (m)	: 31.55

Tested in accordance with BS1377: Part 5: 1990: Clause 3

### **ONE - DIMENSIONAL CONSOLIDATION TEST (OEDOMETER)**





Andrew Kent RSK STATS Geoconsult Limited 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

16th July 2010

### STRUCTURAL SOILS LTD

SITE INVESTIGATION

SOIL, ROCK & MATERIAL TESTING

GEOTECHNICAL CONSULTANCY

CONTAMINATED LAND ASSESSMENT

### **TESTING REPORT**

YOUR REF: 241458

SITE: TWICKENHAM STATION

CERTIFICATE NUMBER: 581203

DATE SAMPLES RECEIVED: 2nd July 2010 DATE TESTING COMMENCED: 2nd July 2010

DATE OF SAMPLE DISPOSAL: 16th August 2010

INSTRUCTIONS: Please carry out Moisture Content, Atterberg Limit, Particle Size Distribution and Quick Undrained Triaxial tests on the samples provided.

Dear Mr Kent,

I have pleasure in enclosing the test report for the above project that you submitted to us for testing.

Yours sincerely

that.

Paul Kent Laboratory Manager

Enc.

18 FROGMORE ROAD HEMEL HEMPSTEAD HERTS HP3 9RT TEL: 01442 416660 FAX: 01442 437550 hemel@soils.co.uk www.soils.co.uk

> HEAD OFFICE: Bristol

BRANCH OFFICE: Castleford West Yorkshire

### SUMMARY OF MOISTURE CONTENT TESTING

Exploratory Position ID	Depth (m)	Sample Ref	Sample Type	Moisture Content (%)
ВНА	9.00		D	29
ВНА	12.00		D	29
ВНА	14.90		D	28
внв	8.50		D	26
внв	13.40		D	28
внс	7.00		D	28
ВНС	11.90		D	30
внс	14.90		D	27
внр	8.90		D	29
вно	11.90		D	27
вно	17.90		D	27
ВНО	23.90		D	27
BHD	30.00		D	24
вне	7.00		D	27
вне	14.90		D	26
вне	23.90		D	25
BHF	8.90		D	35
BHF	12.00		D	29
BHG	6.00		U	29
внс	10.40		D	29
BHG	12.00		U	27
BHG	15.45		D	24
внс	18.00		U	26
BHG	21.45		D	26
внс	24.00		U	28
внс	27.45		D	24
BHG	30.00		U	25
BHG	33.00		U	24
BHG	34.40		D	22

STRUCTURAL SOILS
18 Frogmore Road
Hemel Hempstead
Hertfordshire
HP3 9RT

50

Date 21/07/10

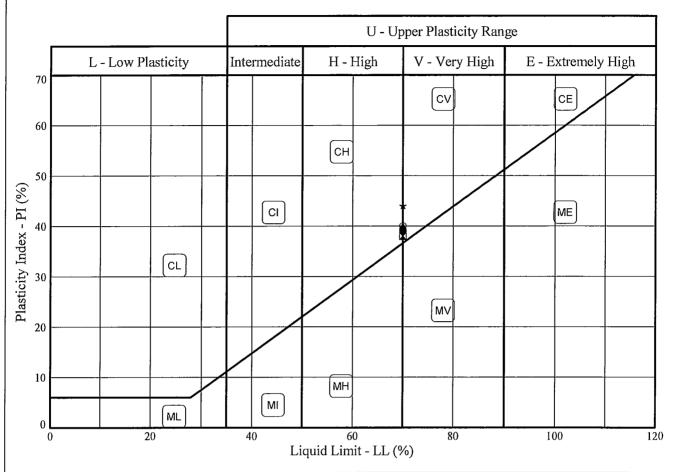
Checked By

 $\mathbf{of}$ 

Date

Contract:

**Twickenham Station 241458** 


Compiled By

Contract Ref: 581203

Page:

AGS

PLASTICITY CHART - PI Vs LL
In accordance with clause 42.3 of BS5930:1981
Testing in accordance with BS1377-2:1990



	Sample I	dentificat	tion	BS Test	Preparation	MC	LL	PL	PI	<425um
	Exploratory Position ID	Sample	Depth (m)	Method #	Method +	%	%	%	%	%
•	BHG	D	10.40	3.2/4.4/5.3/5.4	4.2.3	29	70	31	39	100
×	BHG	D	15.45	3.2/4.4/5.3/5.4	4.2.3	24	70	32	38	100
lack	BHG	D	21.45	3.2/4.4/5.3/5.4	4.2.3	26	70	30	40	100
*	BHG	D	27.45	3.2/4.4/5.3/5.4	4.2.3	24	70	26	44	100
0	BHG	D	34.40	3.2/4.4/5.3/5.4	4.2.3	22	70	30	40	100
$\mathbb{H}$										
		_								
Ш										
										ļ

# Tested in accordance with the following clauses of BS1377-2:1990.

- 3.2 Moisture Content 4.3 Cone Penetrometer Method
- 4.4 One Point Cone Penetrometer Method
- 4.6 One Point Casagrande Method 5.3 Plastic Limit Method 5.4 Plasticity Index

+ Tested in accordance with the following clauses of BS1377-2:1990.

4.2.3 - Natural State 4.2.4 - Wet Sieved

Key: * = Non standard test, NP = Non plastic.



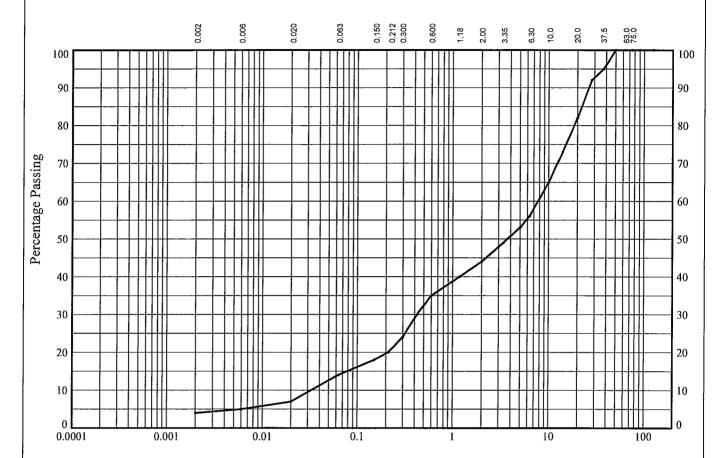
STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By						
56-	SH	SHARON CAIRNS				
Contract Twickenham Station 24		No No	5812	03		
2 11 22 22 22 22 22 22 22 22 22 22 22 22	Pa	^{ge} 3	of	21	AGS	

# GINT_LIBRARY_V8_03.GLB!L - PSD - EC7 | 581203-TWICKENHAM STATION-RSK STATS GEO-241458.GPJ - v8_03 | 16)07/10 - 13:16 | SC

### PARTICLE SIZE DISTRIBUTION TEST

In accordance with clauses 9.2,9.4 of BS1377:Part 2:1990


Borehole: BHA

Sample Ref:

Sample Type:

**B** Depth (m):

3.50



CLAV	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	COBBLES
CLAI	SILT				SAND			GRAVEL		CODDLES

BS Test	Percentage
Sieve (mm)	Passing
125	100
90	100
75	100
63	100
50	100
37.5	95
28	92
20	82
14	73
10	65
6.3	56
5	53
3.35	49
2	44
1.18	40
0.6	35
0.425	30
0.3	24
0.212	20
0.15	18
0.063	14

Particle	Percentage
Diameter	Passing
0.02	7
0.006	5
0.002	4

Soil	Sieve
Fraction	Percentage
GRAVEL	56
SAND	30
SILT	10
CLAY	4

Soil Description:



STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Compiled By

SHARON CAIRNS

atract

Tryick on hom Station 241458

581203

Twickenham Station 241458

Page 4 of 21

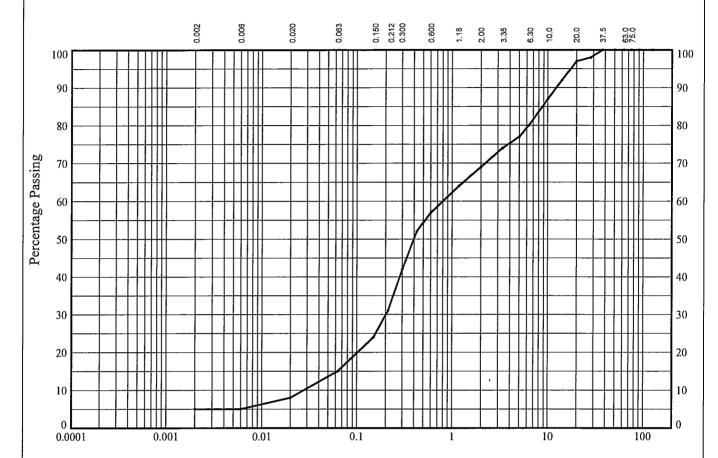
AGS

Date

16/07/10

# GINT_LIBRARY_V8_03.GLB!L - PSD - EC7 | 581203-TWICKENHAM STATION-RSK STATS GEO-241458.GPJ - v8_03 | 16/07/10 - 13:16 | SC.

# PARTICLE SIZE DISTRIBUTION TEST In accordance with clauses 9.2,9.4 of BS1377:Part 2:1990


Borehole: BHA

Sample Ref:

Sample Type:

Depth (m):

4.50



CLAV	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	COBBLES
CLAI	SILT		SAND			GRAVEL			COBBLES	

BS Test	Percentage
Sieve (mm)	Passing
125	100
90	100
75	100
63	100
50	100
37.5	100
28	98
20	97
14	92
10	87
6.3	80
5	77
3.35	74
2	69
1.18	64
0.6	57
0.425	52
0.3	42
0.212	31
0.15	24
1 0.063	15

Particle	Percentage
Diameter	Passing
0.02	8
0.006	5
0.002	5

Soil	Sieve
Fraction	Percentage
GRAVEL	31
SAND	54
SILT	10
CLAY	5

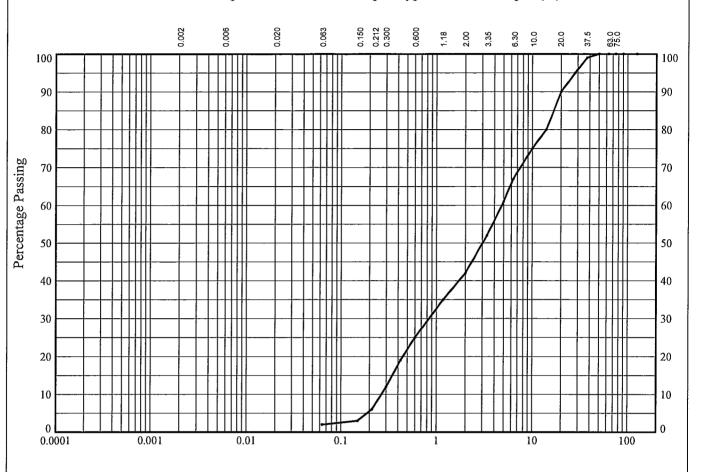
Soil Description:



STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

•	50-
	Contract
	Twickenhar

Compiled By Date SHARON CAIRNS 16/07/10 Job No


m Station 241458

581203

Page of 21

# PARTICLE SIZE DISTRIBUTION TEST In accordance with clauses 9.2,9.5 of BS1377:Part 2:1990

Borehole: BHB Sample Ref: Sample Type: В Depth (m): 6.00



CLAV	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	CODDIES
CLAY	SILT			SAND			(	COBBLES		

BS Test	Percentage
Sieve (mm)	Passing
125	100
90	100
75	100
63	100
50	100
37.5	99
28	95
20	90
14	80
10	75
6.3	67
5	61
3.35	52
2	42
1.18	35
0.6	25
0.425	19
0.3	12
0.212	6
0.15	3
0.063	2

Particle	Percentage
Diameter	Passing
	l

Soil	Sieve
Fraction	Percentage
GRAVEL	58
SAND	40
SILT/CLAY	2

Soil Description:



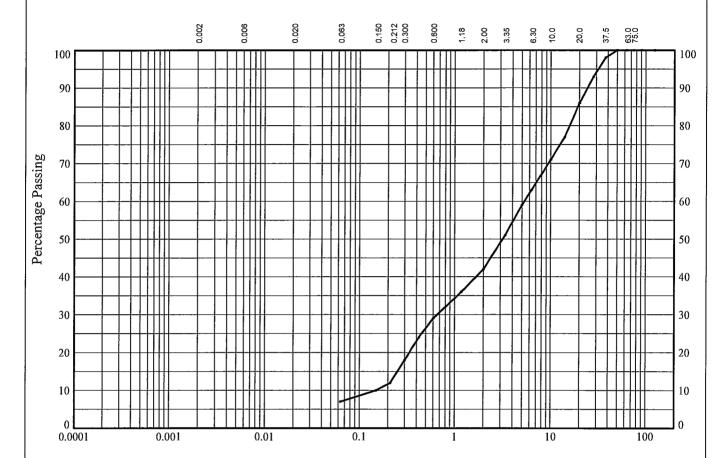
STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By Date 50 SHARON CAIRNS 16/07/10 Contract Job No 581203 **Twickenham Station 241458** Page

6 of 21

# GINT_LIBRARY_V8_03.GLBIL - PSD - EC7 | 581203-TWICKENHAM STATION-RSK STATS GEO-241468.GPJ - v8_03 | 16/07/10 - 13:16 | SC.

# PARTICLE SIZE DISTRIBUTION TEST In accordance with clauses 9.2,9.5 of BS1377:Part 2:1990


Borehole: BHB

Sample Ref:

Sample Type: B

Depth (m):

7.50



CLAV	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	COBBLES
CLAI		SILT			SAND		(	GRAVEL		COBBLES

BS Test	Percentage
Sieve (mm)	Passing
125	100
90	100
75	100
63	100
50	100
37.5	98
28	93
20	86
14	77
10	71
6.3	63
5	59
3.35	51
2	42
1.18	36
0.6	29
0.425	24
0.3	18
0.212	12
0.15	10
0.063	7

Particle	Percentage
Diameter	Passing

Soil	Sieve
Fraction	Percentage
GRAVEL	58
SAND	35
SILT/CLAY	7

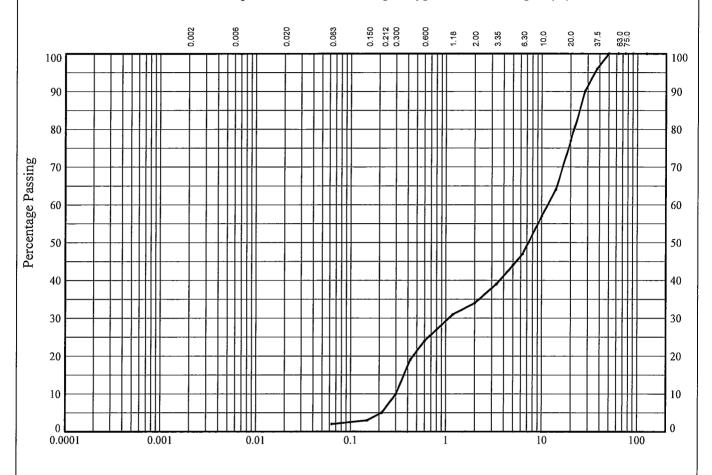
Soil Description:



STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By				
56-		SHARON	CAIRNS	16/07/10
Contract		Job No	581203	

Twickenham Station 241458


Page 7 of 21



# GINT_LIBRARY_VB_03.GLBIL - PSD - EC7 | 581203-TWICKENHAM STATION-RSK STATS GE0-241468.GPJ - v8_03 | 16/07/10 - 13:16 | SC.

# PARTICLE SIZE DISTRIBUTION TEST In accordance with clauses 9.2,9.5 of BS1377:Part 2:1990

Borehole: BHC Sample Ref: Sample Type: Depth (m): 4.50



and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s										
CLAV	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	CODDIES
CLAT		SILT			SAND		·	GRAVEL	,	CODDLES

BS Test	Percentage
Sieve (mm)	Passing
125	100
90	100
75	100
63	100
50	100
37.5	96
28	90
20	77
14	64
10	57
6.3	47
5	44
3.35	39
2	34
1.18	31
0.6	24
0.425	19
0.3	10
0.212	5 3 2
0.15	3
0.063	L

Particle	Percentage
Diameter	Passing
	ĺ

Soil	Sieve
Fraction	Percentage
GRAVEL	66
SAND	32
SILT/CLAY	2

Soil Description:



STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compi	led By	
56-	SHARON	٧
Contract	Job No	_
Twickenham Station 241	1458	

581203 Page 8 of 21

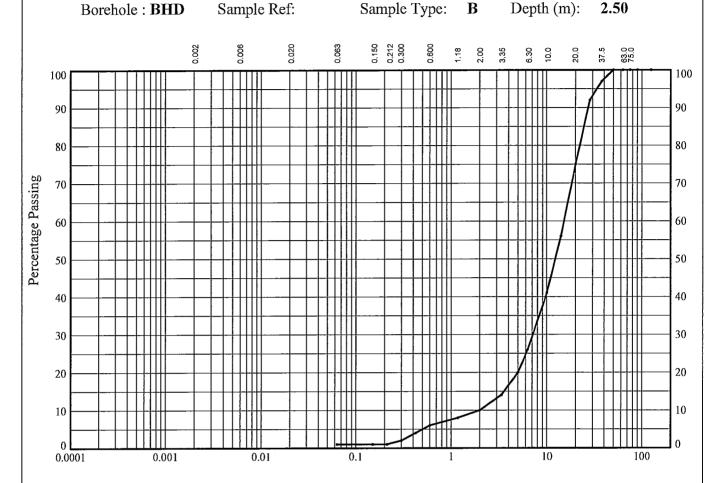
**CAIRNS** 

Date

16/07/10

# GINT_LIBRARY_V8_03.GLBIL - PSD - EC7 | 581203-TWICKENHAM STATION-RSK STATS GEO-241458.GPJ - v8_03 | 16/07/10 - 13:16 | SC.

# PARTICLE SIZE DISTRIBUTION TEST In accordance with clauses 9.2,9.5 of BS1377:Part 2:1990


Borehole: BHD

Sample Ref:

Sample Type:

Depth (m):

2.50



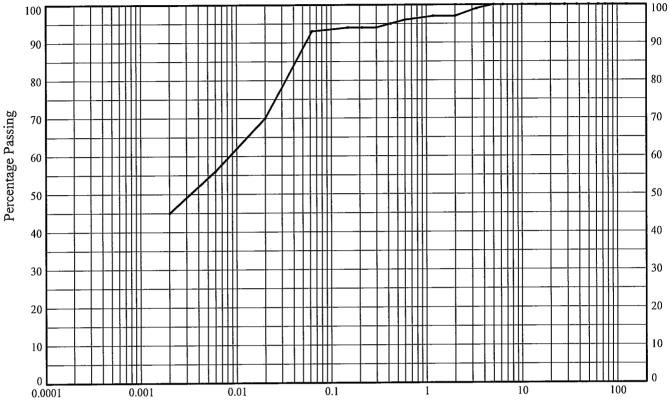
CLAV	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	COBBLES
CLAY		SILT			SAND		(	GRAVEI		COBBLES

BS Test	Percentage
Sieve (mm)	Passing
125	100
90	100
75	100
63	100
50	100
37.5	97
28	92
20	75
14	56
10	41
6.3	26
5	20
3.35	14
2	10
1.18	8
0.6	6
0.425	4
0.423	2
0.3	1
0.212	1
0.063	1

Particle	Percentage
Diameter	Passing

Soil	Sieve
Fraction	Percentage
GRAVEL	90
SAND	9
SILT/CLAY	1

Soil Description:




STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By					
50-	SHARON CAIRNS	16/07/10			
Contract Twickenham Station 241	Job No 581203	3			
1 WICHMININ SULTON 2 11	Page 9 of	21 AGS			

# PARTICLE SIZE DISTRIBUTION TEST In accordance with clauses 9.2,9.4 of BS1377:Part 2:1990

7.00 Borehole: BHD Sample Ref: Sample Type: В Depth (m): 0.150



CHAN	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	COBBLES
CLAY		SILT			SAND		(	GRAVEI		CODDLLS

BS Test	Percentage
Sieve (mm)	Passing
125	100
90	100
75	100
63	100
50	100
37.5	100
28	100
20	100
14	100
10	100
6.3	100
5	100
3.35	99
2	97
1.18	97
0.6	96
0.425	95 94
0.3 0.212	94
0.212	94
0.063	93
0.005	1 /3

Particle	Percentage	Soil	Sieve
Diameter	Passing	Fraction_	Percentage
0.02	70	GRAVEL	3
0.006		SAND	4
0.006	56	SILT	48
0.002	45	CLAY	45

Compiled By

Soil Description:



STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Contract

50

SHARON CAIRNS

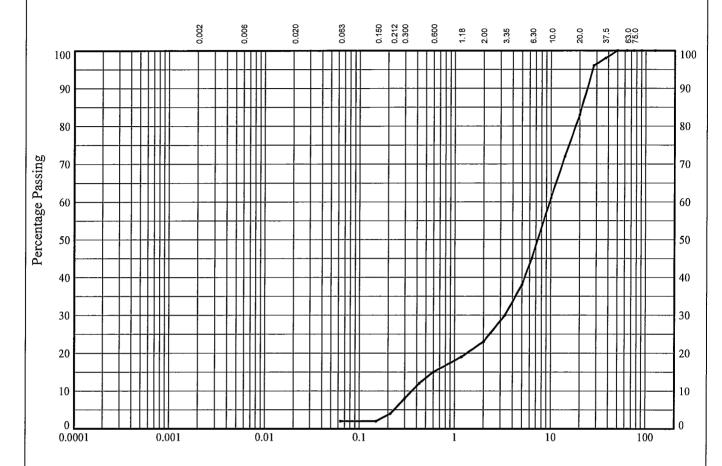
Date 16/07/10

**Twickenham Station 241458** 

Job No 581203

Page of 21 10

Borehole: BHE


Sample Ref:

Sample Type:

В

Depth (m):

3.50



CLAV	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	COBBLES
CLAI		SILT			SAND		•	GRAVEL		COBBLES

BS Test	Percentage
Sieve (mm)	Passing
125	100
90	100
75	100
63	100
50	100
37.5	98
28	96
20	83
14	72
10	61
6.3	45
5	38
3.35	30
2	23
1.18	19
0.6	15
0.425	12
0.3	8
0.212	4 2 2
0.15	2
0.063	2

Particle	Percentage
Diameter	Passing
1	

Soil	Sieve
Fraction	Percentage
GRAVEL	77
SAND	21
SILT/CLAY	2

Soil Description:



STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Contract

Twickenham Station 241458

50

Compiled By SHARON CAIRNS

16/07/10

Date

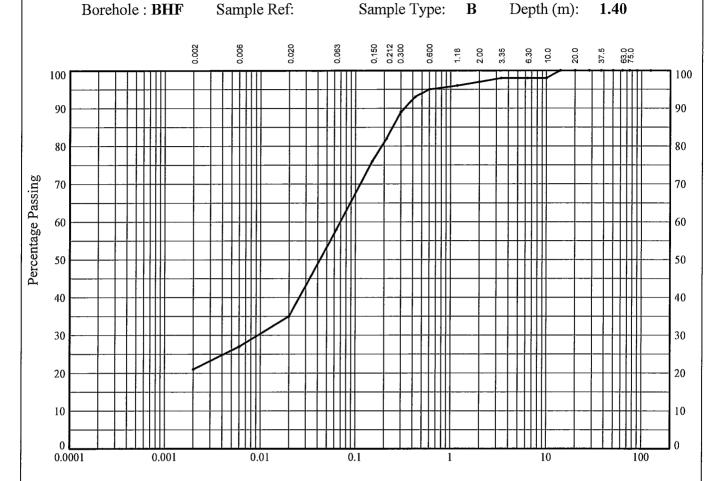
Job No

Page 11 of 21

581203

# GINT_LIBRARY_V8_03.GLB!L - PSD - EC7 | 581203-TWICKENHAM STATION-RSK STATS GEO-241458.GPJ - v8_03 | 16/07/10 - 13:16 | SC.

# PARTICLE SIZE DISTRIBUTION TEST In accordance with clauses 9.2,9.4 of BS1377:Part 2:1990


Borehole: BHF

Sample Ref:

Sample Type:

Depth (m):

1.40



CLAV	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	CODDI ES
CLA I		SILT			SAND		(	GRAVEL	,	CODDLES

BS Test	Percentage
Sieve (mm)	Passing
125	100
90	100
75	100
63	100
50	100
37.5	100
28	100
20	100
14	100
10	98
6.3	98
5	98
3.35	98
2	97
1.18	96
0.6	95
0.425	93
0.3	89
0.212	82 76
0.15	
0.063	58

Particle	Percentage
Diameter	Passing
0.02	35
0.006	27
0.002	21
1	

Soil	Sieve
Fraction	Percentage
GRAVEL	3
SAND	39
SILT	37
CLAY	21

Soil Description:

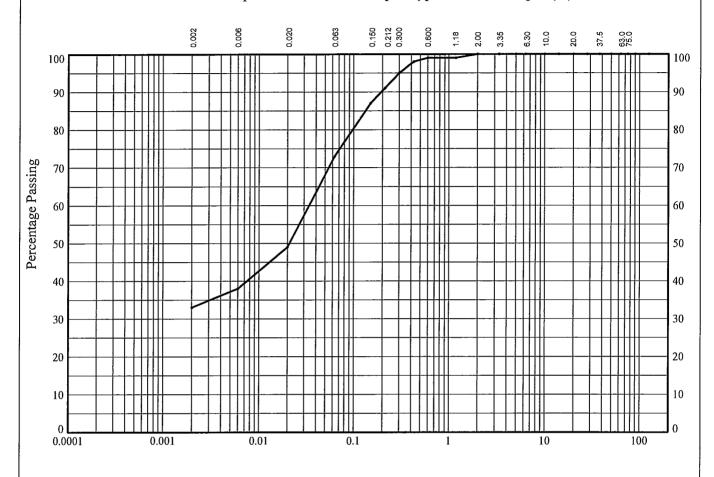


STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By				
56-	SHARON CAIRNS	16/07/10		
Contract	Job No			

**Twickenham Station 241458** 

581203


Page 12 of 21



# GINT_LIBRARY_VE_03.GLBIL - PSD - EC7 | 581203-TWICKENHAM STATION-RSK STATS GE0-241458.GPJ - v8_03 | 16/07/10 - 13:16 | SC.

# PARTICLE SIZE DISTRIBUTION TEST In accordance with clauses 9.2,9.4 of BS1377:Part 2:1990

Sample Type: Borehole: BHF Sample Ref: В Depth (m): 1.50



CLAV	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	COBBLES
CLAY		SILT			SAND		C	GRAVEL	,	COBBLES

BS Test	Percentage
Sieve (mm)	Passing
125	100
90	100
75	100
63	100
50	100
37.5	100
28	100
20	100
14	100
10	100
6.3	100
5	100
3.35	100
2	100
1.18	99
0.6	99
0.425	98
0.3	95
0.212	91
0.15	87
0.063	73

	Particle	Percentage
:	Diameter	Passing
	0.02	49
	0.006	38
	0.002	33

Soil	Sieve
Fraction	Percentage
GRAVEL	0
SAND	27
SILT	40
CLAY	33

Soil Description:



STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Contract

50

Compiled By SHARON CAIRNS

Date 16/07/10

Twickenham Station 241458

Job No 581203

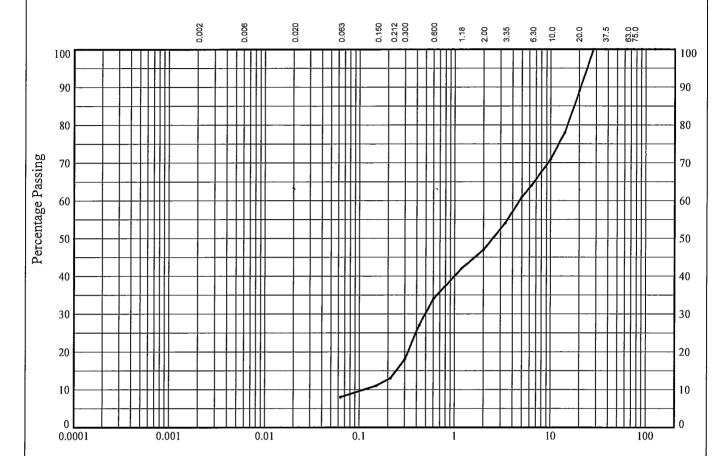
Page 13 of 21



# GINT_LIBRARY_V8_03.GLB!L - PSD - EC7 | 581203-TWICKENHAM STATION-RSK STATS GEO-241458.GPJ - v8_03 | 16/07/10 - 13:16 | SC.

# PARTICLE SIZE DISTRIBUTION TEST In accordance with clauses 9.2,9.5 of BS1377:Part 2:1990

Borehole: BHF


Sample Ref:

Sample Type:

Depth (m):

В

4.50



CLAV	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	COBBLES
CLAI		SILT			SAND		(	GRAVEL	,	COBBLES

BS Test	Percentage
Sieve (mm)	Passing
125	100
90	100
75	100
63	100
50	100
37.5	100
28	100
20	89
14	78
10	71
6.3	64
5	61
3.35	54
2	47
1.18	42
0.6	34
0.425	27
0.3	18
0.212	13
0.15	11
0.063	8 _

Particle	Percentage
Diameter	Passing

Soil	Sieve
Fraction	Percentage
GRAVEL	53
SAND	39
SILT/CLAY	8

Soil Description:



STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

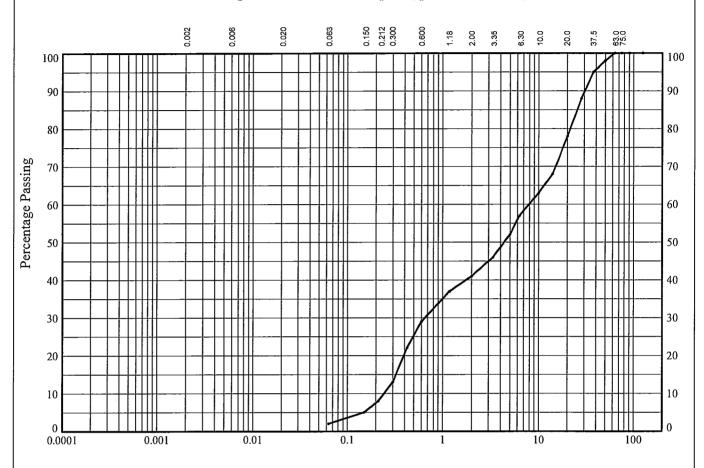
Compiled By		
56-	SHARON CAIRNS	
Contract Training to the Contract	Job No 581	

Twickenham Station 241458

581203 Page

Date

16/07/10


AGS

14 21 of

# GINT_LIBRARY_V8_03.GLBIL - PSD - EC7 | 581203-TWICKENHAM STATION-RSK STATS GEO-241458.GPJ - v8_03 | 16/07/10 - 13:16 | SC.

# PARTICLE SIZE DISTRIBUTION TEST In accordance with clauses 9.2,9.5 of BS1377:Part 2:1990

Borehole: BHG Sample Ref: Sample Type:  $\mathbf{B}$ Depth (m): 3.50



CLAY	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	COBBLES
		SILT			SAND		(	GRAVEL		COBBLES

BS Test	Percentage
Sieve (mm)	Passing
125	100
90	100
75	100
63	100
50	98
37.5	95
28	88
20	78
14	68
10	63
6.3	57
5	52
3.35	46
2	41
1.18	37
0.6	29
0.425 0.3	22 13
0.3	8
0.212	5
0.063	2
0.003	

Particle	Percentage
Diameter	Passing
i	

Soil	Sieve
Fraction	Percentage
GRAVEL	59
SAND	39
SILT/CLAY	2

Soil Description:



STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

50 Contract

Compiled By SHARON CAIRNS

Date 16/07/10

**Twickenham Station 241458** 

Job No 581203

Page 15 of 21

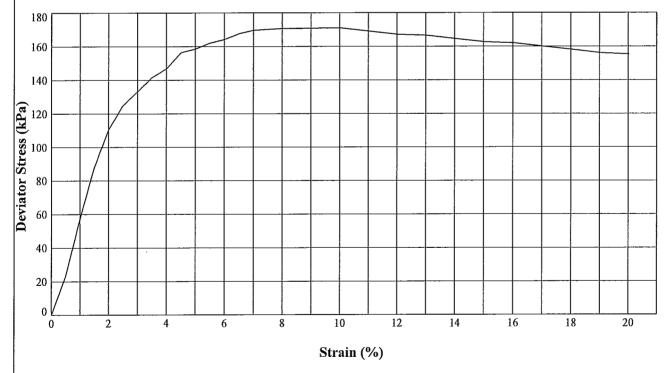


In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BHG

Sample Ref:

Sample Type:


U

Depth (m):

6.00

Description: Very dark brown CLAY with a trace of fine to medium pyrites.

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.34		
	Height	(mm)	209.65		
	Moisture Content	(%)	30		
	Bulk Density	(Mg/m³)	1.98		
	Dry Density (Mg/n		1.52		
TEST DETAILS	Membrane Thickness	(mm)	0.24		
	Rate of Axial Displacement	(%/min)	2.00		
	Cell Pressure	(kPa)	120		
	Membrane Correction	(kPa)	0.54		
	Corrected Deviator Stress	(kPa)	171		
	Undrained Shear Strength (kPa)		86		
	Strain at Failure	(%)	10.0		
	Mode of Failure		Brittle		



50



STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Contract

Twickenham Station 241458

Compiled By

SHARON CAIRNS Job No

Page

16 of 21

581203



Date

16/07/10

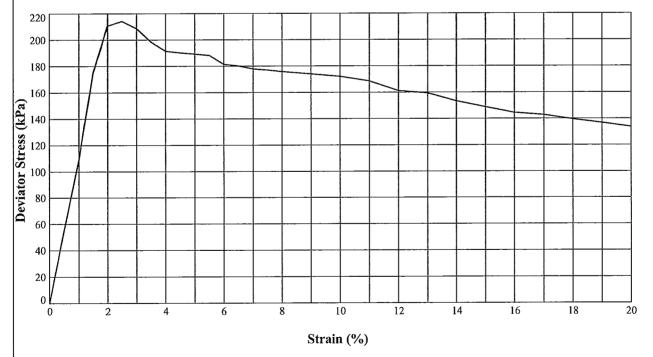
GINT_LIBRARY_V8_03.GLBIL - TRIAXIAL TEST - BS VERSION | 581203-TVNCKENHAM STATION-RSK STATS GEO-241458.GPJ - v8_03 | 16/07/10 - 13:23 | SC.

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BHG

Sample Ref:

Sample Type:


 $\mathbf{U}$ 

Depth (m):

12.00

Description: Very dark brown CLAY.

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.08		
	Height	(mm)	210.07		
	Moisture Content	(%)	27		
	Bulk Density	(Mg/m³)	1.99		
	Dry Density	(Mg/m³)	1.56		
TEST DETAILS	Membrane Thickness	(mm)	0.24		
	Rate of Axial Displacement	(%/min)	2.00		
	Cell Pressure	(kPa)	240		
	Membrane Correction	(kPa)	0.16		
	Corrected Deviator Stress	(kPa)	214		
	Undrained Shear Strength (kPa)		107		
	Strain at Failure (%)		2.5		
	Mode of Failure		Brittle		





STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Contract

**Twickenham Station 241458** 

50

Compiled By

SHARON CAIRNS Job No

21/07/10

Date

AGS

Page

of

581203

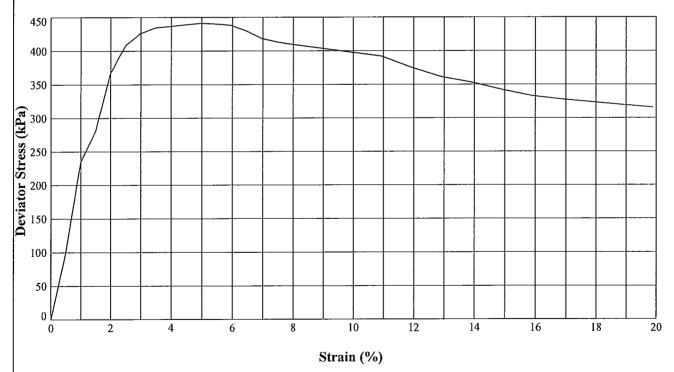
GINT_LIBRARY_V8_03.GLBIL - TRIAXIAL TEST - BS VERSION | 581203-TWICKENHAM STATION-RSK STATS GEO-241458.GPJ - v8_03 | 21/07/10 - 12:18 | SC.

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BHG

Sample Ref:

Sample Type:


U

Depth (m):

18.00

Description: Very dark brown CLAY.

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.77		
	Height	(mm)	209.24	**	
	Moisture Content	(%)	26		
	Bulk Density	(Mg/m³)	1.87		
	Dry Density	(Mg/m³)	(Mg/m³) 1.48		
TEST DETAILS	Membrane Thickness	(mm)	0.24		
	Rate of Axial Displacement	(%/min)	2.00		
	Cell Pressure	(kPa)	360		
	Membrane Correction	(kPa)	0.32		
	Corrected Deviator Stress	(kPa)	441		
	Undrained Shear Strength (		221		
	Strain at Failure (%)		5.0		
	Mode of Failure		Brittle		





STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Contract

50

Twickenham Station 241458

Compiled By

SHARON CAIRNS

581203

Page

Job No

of 21 18

Date

16/07/10

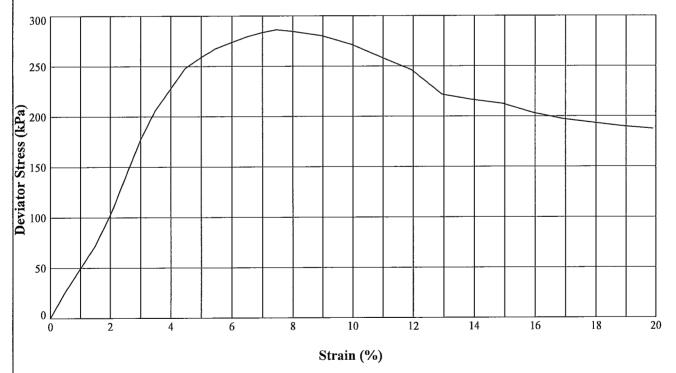
GINT_LIBRARY_V8_03.GLBIL - TRIAXIAL TEST - BS VERSION | 581203-TVNICKENHAM STATION-RSK STATS GEO-241468.GPJ - v8_03 | 16/07/10 - 13:34 | SC.

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BHG

Sample Ref:

Sample Type:


 $\mathbf{U}$ 

Depth (m):

24.00

Description: Very dark brown CLAY with a traces if fine pyrites.

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.52		
	Height	(mm)	190.95		
	Moisture Content	(%)	28		
	Bulk Density	(Mg/m³)	1.99		
	Dry Density	(Mg/m³)	1.56		
TEST DETAILS	Membrane Thickness	(mm)	0.24		
	Rate of Axial Displacement	(%/min)	2.00		
	Cell Pressure	(kPa)	480		
	Membrane Correction	(kPa)	0.42		
	Corrected Deviator Stress	(kPa)	286		
	Undrained Shear Strength	(kPa)	143		
	Strain at Failure	(%)	7.5		
	Mode of Failure		Brittle		





STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

50 Contract

SHARON CAIRNS

21/07/10

Date

**Twickenham Station 241458** 

Compiled By

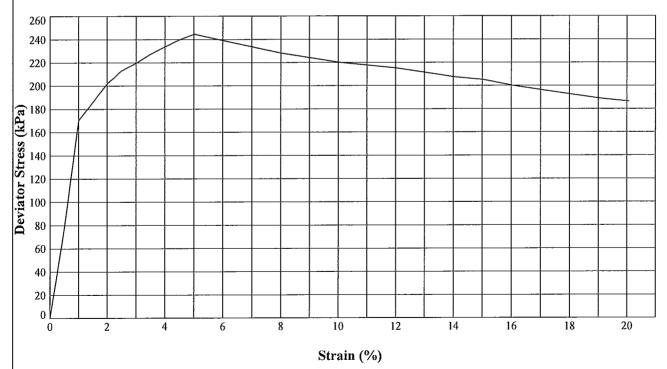
Job No 581203

Page of

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BHG

Sample Ref:


Sample Type:

Depth (m):  $\mathbf{U}$ 

30.00

Description: Very dark brown CLAY.

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.35		
	Height (mm)		209.24		
	Moisture Content	(%)	25		
	Bulk Density	(Mg/m³)	2.05		
	Dry Density (Mg		1.65		
TEST DETAILS	Membrane Thickness	(mm)	0.24		
	Rate of Axial Displacement	(%/min)	2.00		
	Cell Pressure	(kPa)	600		
	Membrane Correction	(kPa)	0.32		
	Corrected Deviator Stress	(kPa)	245		
	Undrained Shear Strength (kl		122		
	Strain at Failure (%)		5.0		
	Mode of Failure		Brittle		



50



STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Contract

**Twickenham Station 241458** 

Compiled By

SHARON CAIRNS Job No

581203

Page 20 of 21

Date

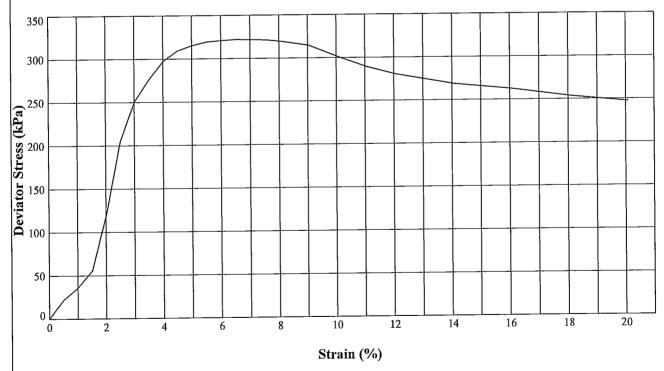
16/07/10

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BHG

Sample Ref:

Sample Type:


U

Depth (m):

33.00

Description: Very dark brown CLAY.

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition	-	Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.18		
	Height	(mm)	209.05		
	Moisture Content	(%)	25		
	Bulk Density	(Mg/m³)	2.01		
	Dry Density	(Mg/m³)	1.61		
TEST DETAILS	Membrane Thickness	(mm)	0.24		
	Rate of Axial Displacement	(%/min)	2.00		
	Cell Pressure	(kPa)	660		
	Membrane Correction	(kPa)	0.38		
	Corrected Deviator Stress	(kPa)	322		
į.	Undrained Shear Strength	(kPa)	161		
	Strain at Failure	(%)	6.5		
	Mode of Failure		Brittle		





STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Contract **Twickenham Station 241458** 

50

Compiled By

SHARON CAIRNS Job No

581203

Page 21 of 21



Date

16/07/10

GINT_LIBRARY_V8_03.GLB!L - TRIAXIAL TEST - BS VERSION | 581203-TWICKENHAM STATION-RSK STATS GEO-241458.GPJ - v8_03 | 16/07/10 - 14:21 | SC.

### **APPENDIX D**

**Chemical Laboratory Test Records** 



FAO Andrea Grossey

# LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

Login E	Batch No							895	511			
Chemte	est LIMS ID				AF09639	AF09640	AF09641	AF09642	AF09643	AF09644	AF09645	AF09646
Sample	ID				BHA	BHA	BHA	BHB	BHB	BHB	BHB	BHC
Sample	· No											
Samplir	ng Date				14/06/2010	14/06/2010	14/06/2010	10/06/2010	10/06/2010	10/06/2010	10/06/2010	14/06/2010
Depth					0.5m	1.5m	3.5m	1m	2m	3m	4.5m	0.5m
Matrix					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Determinand↓	CAS No↓	Units↓	*								
	Sulfur (elemental)	7704349	mg kg-1	M	24	9.4	10	<1.0	42	16	36	25
2300	Cyanide (free)	57125	mg kg-1	M	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	Cyanide (total)	57125	mg kg-1	M	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	Thiocyanate	302045	mg kg-1	M	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	Sulfide	18496258	mg kg-1	M	2.7	0.99	1.1	1.6	1.3	3.1	1.6	1.3
2625	Total Organic Carbon		%	M	4.6	3.7	0.55	0.32	1.2	6.8	4.7	1.0
	Nitrate (extractable)	14797558	g l-¹	N	0.019	0.047	0.034	<0.010	0.097	0.14	0.18	0.011
2120	Boron (hot water soluble)	7440428	mg kg-1	M	0.8	1.4	0.8	0.9	1.0	2.2	2.7	1.0
	Sulfate (2:1 water soluble) as SO4	14808798	g l-¹	M	0.19	0.08	0.12	0.55	0.99	1.2	0.71	0.05
2425	Ammonium (extractable)	7664417	mg kg-1	M	< 0.5	2.4	2.8	< 0.5	2.3	< 0.5	< 0.5	< 0.5
2450	Arsenic	7440382	mg kg-1	M	30	19	6.8	7.9	13	18	18	12
	Barium	7440393	mg kg-1	М	270	160	47	35	140	210	200	84
	Beryllium	7440417	mg kg-1	U	1.3	1.2	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
	Cadmium	7440439	mg kg-1	М	0.44	0.16	<0.10	<0.10	0.15	0.32	0.26	0.13
	Chromium	7440473	mg kg-1	М	38	21	15	8.0	12	34	23	13
	Copper	7440508	mg kg-1	М	93	93	12	6.3	26	67	73	18
	Mercury	7439976	mg kg-1	М	1.8	1.1	0.18	0.12	0.57	2.4	1.9	0.34
	Nickel	7440020	mg kg-1	М	35	25	12	9.7	14	22	24	16
	Lead	7439921	mg kg-1	М	380	410	33	29	570	360	490	160
	Antimony	7440364	mg kg-1	N	3.7	3.9	<2.0	<2.0	<2.0	3.1	4.9	<2.0
	Selenium	7782492	mg kg-1	М	<0.20	0.23	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	Vanadium	7440622	mg kg-1	М	51	42	22	18	28	31	33	28
	Zinc	7440666	mg kg-1	М	180	120	35	25	110	180	190	69
2670	TPH >C6-C10		mg kg-1	N	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	TPH >C10-C25		mg kg-1	N	43	22	< 1	4	190	52	190	200
	TPH >C25-C40		mg kg-1	N	33	21	< 1	1	59	22	120	92
	Total Petroleum Hydrocarbons		mg kg-1	М	76	43	< 10	< 10	250	74	310	300
2675	TPH aliphatic >C5-C6		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	TPH aliphatic >C6-C8		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 1 Report page 1 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

Login	Batch No				89511								
Chemt	est LIMS ID				AF09647	AF09648	AF09649	AF09650	AF09651	AF09652	AF09653	AF09654	
Sample	e ID				BHC	BHC	BHD	BHD	BHD	BHE	BHE	BHE	
Sample	e No												
	ing Date				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	
Depth					1m	2m	0.5m	1.5m	2m	1m	2m	3m	
Matrix					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
	Determinand↓	CAS No↓	Units↓	*									
	Sulfur (elemental)	7704349	mg kg-1	M	4.2	<1.0	9.0	<1.0	<1.0	9.5	2.0	2.1	
2300	Cyanide (free)	57125	mg kg-1	M	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
	Cyanide (total)	57125	mg kg-1	M	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
	Thiocyanate	302045	mg kg-1	M	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
	Sulfide	18496258	mg kg-1	M	1.1	1.5	1.3	1.4	1.2	2.5	1.0	1.6	
2625	Total Organic Carbon		%	M	2.0	< 0.20	1.4	0.78	< 0.20	1.9	0.47	0.32	
2220	Nitrate (extractable)	14797558	g l-¹	N	0.013	<0.010	0.012	0.018	<0.010	0.018	<0.010	<0.010	
2120	Boron (hot water soluble)	7440428	mg kg-1	M	2.3	<0.4	0.7	0.5	<0.4	0.9	0.5	<0.4	
	Sulfate (2:1 water soluble) as SO4	14808798	g l-¹	M	0.03	0.07	0.08	0.23	0.14	0.12	0.08	0.29	
2425	Ammonium (extractable)	7664417	mg kg-1	M	2.7	< 0.5	2.3	4.7	< 0.5	< 0.5	3.5	< 0.5	
2450	Arsenic	7440382	mg kg-1	M	13	7.2	12	17	5.3	19	4.2	7.3	
	Barium	7440393	mg kg-1	М	100	14	65	61	<10	170	66	13	
	Beryllium	7440417	mg kg-1	U	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	
	Cadmium	7440439	mg kg-1	М	0.18	<0.10	0.32	0.20	<0.10	0.24	<0.10	0.16	
	Chromium	7440473	mg kg-1	М	13	16	17	51	24	15	12	24	
	Copper	7440508	mg kg-1	M	46	6.7	31	35	<5.0	30	8.7	38	
	Mercury	7439976	mg kg-1	M	0.76	<0.10	0.36	0.22	<0.10	0.74	0.12	<0.10	
	Nickel	7440020	mg kg-1	М	18	17	22	51	20	21	8.2	27	
	Lead	7439921	mg kg-1	М	310	18	98	65	<5.0	540	26	13	
	Antimony	7440364	mg kg-1	N	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
	Selenium	7782492	mg kg-1	М	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
	Vanadium	7440622	mg kg-1	М	31	16	28	44	15	36	21	16	
	Zinc	7440666	mg kg-1	М	94	18	200	68	<10	230	35	29	
2670	TPH >C6-C10		mg kg-1	N	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
	TPH >C10-C25		mg kg-1	N	11	< 1	11	< 1	< 1	30	< 1	< 1	
	TPH >C25-C40		mg kg-1	N	11	< 1	7	< 1	< 1	18	< 1	< 1	
	Total Petroleum Hydrocarbons		mg kg-1	М	22	< 10	19	< 10	< 10	48	< 10	< 10	
2675	TPH aliphatic >C5-C6		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	TPH aliphatic >C6-C8		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 2
Report page 1 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

Login	Batch No							899	511			
Chemt	est LIMS ID				AF09655	AF09656	AF09657	AF09658	AF09659	AF09660	AF09661	AF09662
Sampl	e ID				BHF	BHF	BHF	BHG	BHG	BHG	BHG	BHG
Sampl	e No											
	ing Date				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010
Depth					0.5m	1.5m	3m	0.5m	1m	1.5m	2.5m	4m
Matrix					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Determinand↓	CAS No↓	Units↓	*								
	Sulfur (elemental)	7704349	mg kg-1	M	37	7.8	4.1	56	66	55	1.4	<1.0
2300	Cyanide (free)	57125	mg kg-1	M	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	Cyanide (total)	57125	mg kg-1	M	<0.50	<0.50	<0.50	<0.50	0.70	<0.50	<0.50	<0.50
	Thiocyanate	302045	mg kg-1	M	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2325	Sulfide	18496258	mg kg-1	M	1.8	3.1	1.5	36	3.4	15	2.3	1.4
	Total Organic Carbon		%	M	2.2	1.0	0.55	0.75	14	4.5	0.68	< 0.20
2220	Nitrate (extractable)	14797558	g l-¹	N	<0.010	0.037	0.041	<0.010	0.024	0.014	<0.010	<0.010
2120	Boron (hot water soluble)	7440428	mg kg-1	M	1.5	1.8	0.9	0.9	3.3	1.9	1.3	<0.4
	Sulfate (2:1 water soluble) as SO4	14808798	g l-¹	М	0.29	0.19	0.22	0.19	0.17	0.17	0.17	0.07
2425	Ammonium (extractable)	7664417	mg kg-1	М	2.7	2.7	2.6	4.4	3.7	< 0.5	< 0.5	< 0.5
2450	Arsenic	7440382	mg kg-1	М	9.3	15	4.4	16	75	24	11	9.7
	Barium	7440393	mg kg-1	М	100	99	43	160	680	140	31	<10
	Beryllium	7440417	mg kg-1	U	<1.00	1.1	<1.00	1.1	5.2	1.6	<1.00	<1.00
	Cadmium	7440439	mg kg-1	М	0.19	0.24	<0.10	0.11	<0.10	0.20	<0.10	<0.10
	Chromium	7440473	mg kg-1	М	12	26	13	14	26	20	17	19
	Copper	7440508	mg kg-1	М	35	37	9.2	18	250	70	17	<5.0
	Mercury	7439976	mg kg-1	М	3.3	1.1	0.25	0.20	1.6	1.00	0.20	<0.10
	Nickel	7440020	mg kg-1	М	14	27	9.0	11	72	31	19	19
	Lead	7439921	mg kg-1	М	260	130	47	200	1500	370	31	<5.0
	Antimony	7440364	mg kg-1	N	2.1	<2.0	<2.0	4.5	16	3.0	<2.0	<2.0
	Selenium	7782492	mg kg-1	М	<0.20	0.46	<0.20	<0.20	1.00	<0.20	<0.20	<0.20
	Vanadium	7440622	mg kg-1	М	24	45	17	31	94	41	22	20
	Zinc	7440666	mg kg-1	М	88	69	26	120	1600	210	35	15
2670	TPH >C6-C10		mg kg-1	N	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	TPH >C10-C25		mg kg-1	N	22	3	7	68	320	110	9	< 1
	TPH >C25-C40		mg kg-1	N	18	3	4	40	230	77	10	< 1
	Total Petroleum Hydrocarbons		mg kg-1	M	40	< 10	11	110	560	190	19	< 10
2675	TPH aliphatic >C5-C6		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	TPH aliphatic >C6-C8		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 3
Report page 1 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



**Report Date** 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

Login I	Batch No						899	511		
Chemte	est LIMS ID				AF09663	AF09664	AF09665	AF09666	AF09667	AF09668
Sample	e ID				WS1	WS1	WS2	WS2	WS3	WS3
Sample	e No									
Sampli	ng Date				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010
Depth					0.25m	1m	0.5m	1m	0.25m	0.75m
Matrix					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Determinand↓	CAS No↓	Units↓	*						
2180	Sulfur (elemental)	7704349	mg kg-1	М	32	24	44	85	42	2.6
2300	Cyanide (free)	57125	mg kg-1	M	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	Cyanide (total)	57125	mg kg-1	M	<0.50	<0.50	1.6	0.70	3.0	<0.50
	Thiocyanate	302045	mg kg-1	М	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2325	Sulfide	18496258	mg kg-1	М	10	2.4	13	3.2	14	3.4
2625	Total Organic Carbon		%	М	3.8	7.4	8.5	7.9	6.9	0.51
2220	Nitrate (extractable)	14797558	g l-¹	N	<0.010	<0.010	0.063	0.042	0.41	0.062
2120	Boron (hot water soluble)	7440428	mg kg-1	М	2.3	1.8	1.7	1.3	1.9	<0.4
	Sulfate (2:1 water soluble) as SO4	14808798	g I-¹	М	0.06	0.05	0.03	0.03	0.17	0.04
2425	Ammonium (extractable)	7664417	mg kg-1	М	18	2.7	4.7	4.2	120	3.8
2450	Arsenic	7440382	mg kg-1	М	16	25	26	20	26	13
	Barium	7440393	mg kg-1	М	110	200	370	210	310	160
	Beryllium	7440417	mg kg-1	U	<1.00	1.6	1.3	<1.00	<1.00	<1.00
	Cadmium	7440439	mg kg-1	М	0.53	0.42	0.58	0.26	<0.10	0.15
	Chromium	7440473	mg kg-1	М	23	48	24	21	45	16
	Copper	7440508	mg kg-1	М	31	88	270	170	100	17
	Mercury	7439976	mg kg-1	М	0.49	2.3	2.3	2.2	0.58	0.10
	Nickel	7440020	mg kg-1	М	20	37	32	22	43	19
	Lead	7439921	mg kg-1	М	170	340	890	480	640	110
	Antimony	7440364	mg kg-1	N	2.4	6.2	10	6.5	14	<2.0
	Selenium	7782492	mg kg-1	М	<0.20	0.37	0.51	0.22	0.37	<0.20
	Vanadium	7440622	mg kg-1	М	36	51	44	31	50	28
	Zinc	7440666	mg kg-1	М	350	280	480	270	430	70
2670	TPH >C6-C10		mg kg-1	N	< 1	< 1	< 1	< 1	< 1	< 1
	TPH >C10-C25		mg kg-1	N	71	68	260	400	150	28
	TPH >C25-C40		mg kg-1	N	48	32	180	250	110	17
	Total Petroleum Hydrocarbons		mg kg-1	М	120	100	440	650	260	46
2675	TPH aliphatic >C5-C6		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	TPH aliphatic >C6-C8		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT

**Report Date** 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

				89511										
					AF09639	AF09640	AF09641	AF09642	AF09643	AF09644	AF09645	AF09646		
					ВНА	BHA	BHA	ВНВ	ВНВ	BHB	ВНВ	BHC		
					14/06/2010	14/06/2010	14/06/2010	10/06/2010	10/06/2010	10/06/2010	10/06/2010	14/06/2010		
					0.5m	1.5m	3.5m	1m	2m	3m	4.5m	0.5m		
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
2675	TPH aliphatic >C8-C10		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
2075	TPH aliphatic > C10-C12		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aliphatic >C12-C16		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aliphatic >C16-C21		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aliphatic >C21-C35		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aliphatic >C35-C44		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aromatic >C5-C7		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aromatic > C7-C8		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aromatic > C8-C10		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aromatic >C10-C12		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.5		
	TPH aromatic >C12-C16		mg kg-1	N	2.7	1.8	< 0.1	< 0.1	9.3	3.2	8.6	16		
	TPH aromatic >C16-C21		mg kg-1	N	21	9.8	< 0.1	1.7	99	31	85	76		
	TPH aromatic >C21-C35		mg kg-1	N	60	31	< 0.1	5.4	140	45	190	120		
	TPH aromatic > C35-C44		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	Total Petroleum Hydrocarbons		mg kg-1	N	83	43	< 2	7	250	80	290	210		
2700	Naphthalene	91203	mg kg-1	M	0.2	<0.1	<0.1	<0.1	0.6	0.2	1.6	0.6		
2700	Acenaphthylene	208968	mg kg-1	M	0.2	0.1	<0.1	<0.1	2.6	<0.1	1.4	0.9		
	Acenaphthene	83329	mg kg-1	M	0.7	0.2	<0.1	<0.1	1.8	0.2	1	0.3		
	Fluorene	86737	mg kg-1	M	0.7	0.2	<0.1	<0.1	3	0.2	1	0.6		
	Phenanthrene	85018	mg kg-1	M	4.4	2.3	0.1	0.7	46	5.7	13	8.7		
	Anthracene	120127	mg kg-1	M	1.3	0.4	<0.1	0.1	11	1.3	3.4	2.5		
	Fluoranthene	206440	mg kg-1	M	5.2	3.6	0.2	0.7	46	8.1	22	15		
	Pyrene	129000	mg kg-1	M	4.5	3.3	0.3	0.7	37	7	18	13		
	Benzo[a]anthracene	56553	mg kg-1	М	2.4	1.6	<0.1	0.3	15	3.1	9.3	6.5		
	Chrysene	218019	mg kg-1	М	2.7	2.1	0.1	0.3	16	3.2	11	7.1		
	Benzo[b]fluoranthene	205992	mg kg-1	M	2.7	2	0.1	0.3	16	3.2	10	7.8		
	Benzo[k]fluoranthene	207089	mg kg- ¹	М	1.9	1.5	0.1	0.2	8.9	2.5	7.5	3.9		
	Benzo[a]pyrene	50328	mg kg-1	M	3.1	2.2	0.2	0.2	16	3.6	13	9.3		
	Dibenzo[a,h]anthracene	53703	mg kg-1	М	1.9	1.4	0.2	0.3	10	2.3	7.6	5.6		
	Indeno[1,2,3-cd]pyrene	193395	mg kg-1	М	0.4	0.2	<0.1	<0.1	2.4	0.3	1.5	1.2		

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 1 Report page 2 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



**Report Date** 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

				89511										
					AF09647	AF09648	AF09649	AF09650	AF09651	AF09652	AF09653	AF09654		
					BHC	BHC	BHD	BHD	BHD	BHE	BHE	BHE		
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010		
					1m	2m	0.5m	1.5m	2m	1m	2m	3m		
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
2675	TPH aliphatic >C8-C10		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
2075	TPH aliphatic >C10-C12		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aliphatic >C10-C12		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aliphatic >C16-C21		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aliphatic >C10-C21		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aliphatic >C35-C44		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aromatic >C5-C7		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aromatic >C7-C8		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aromatic >C8-C10		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aromatic >C10-C12		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	TPH aromatic >C12-C16		mg kg-1	N	1.5	< 0.1	0.9	< 0.1	< 0.1	3.0	0.5	< 0.1		
	TPH aromatic >C16-C21		mg kg-1	N	4.0	< 0.1	6.0	< 0.1	< 0.1	12	1.7	< 0.1		
	TPH aromatic >C21-C35		mg kg-1	N	17	< 0.1	13	< 0.1	< 0.1	26	2.8	< 0.1		
	TPH aromatic >C35-C44		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	Total Petroleum Hydrocarbons		mg kg-1	N	23	< 2	20	< 2	< 2	41	5	< 2		
2700	Naphthalene	91203	mg kg-1	M	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	<0.1		
2.00	Acenaphthylene	208968	mg kg-1	M	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1		
	Acenaphthene	83329	mg kg-1	M	0.1	<0.1	0.1	<0.1	<0.1	0.2	<0.1	<0.1		
	Fluorene	86737	mg kg-1	M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	Phenanthrene	85018	mg kg-1	М	1.1	<0.1	0.8	0.2	<0.1	1.9	0.2	<0.1		
	Anthracene	120127	mg kg-1	М	0.3	<0.1	0.3	<0.1	<0.1	0.4	<0.1	<0.1		
	Fluoranthene	206440	mg kg-1	М	1.9	0.2	2.5	0.2	<0.1	3.4	0.6	0.4		
	Pyrene	129000	mg kg-1	М	1.6	0.2	2.3	0.3	0.1	2.8	0.5	0.3		
	Benzo[a]anthracene	56553	mg kg-1	М	0.9	0.1	1.2	0.2	<0.1	1.5	0.3	0.2		
	Chrysene	218019	mg kg-1	М	1.2	<0.1	1.5	0.2	<0.1	1.7	0.4	0.2		
	Benzo[b]fluoranthene	205992	mg kg-1	М	1.3	0.2	1.9	0.2	<0.1	1.8	0.5	0.3		
	Benzo[k]fluoranthene	207089	mg kg-1	М	0.8	0.2	1	0.2	<0.1	1.4	0.3	0.3		
	Benzo[a]pyrene	50328	mg kg-1	М	1.4	0.3	1.7	<0.1	<0.1	0.7	0.3	<0.1		
	Dibenzo[a,h]anthracene	53703	mg kg-1	М	0.9	0.2	1.1	0.3	<0.1	1.4	0.4	0.4		
	Indeno[1,2,3-cd]pyrene	193395	mg kg-1	М	0.5	0.2	0.2	0.3	<0.1	0.3	<0.1	<0.1		

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 2 Report page 2 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



**Report Date** 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

				89511											
					AF09655	AF09656	AF09657	AF09658	AF09659	AF09660	AF09661	AF09662			
					BHF	BHF	BHF	BHG	BHG	BHG	BHG	BHG			
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010			
					0.5m	1.5m	3m	0.5m	1m	1.5m	2.5m	4m			
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL			
2675	TPH aliphatic >C8-C10		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
2070	TPH aliphatic >C10-C12		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	TPH aliphatic >C12-C16		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	TPH aliphatic > C16-C21		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	TPH aliphatic >C21-C35		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	TPH aliphatic >C35-C44		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	TPH aromatic >C5-C7		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	TPH aromatic >C7-C8		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	TPH aromatic >C8-C10		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	TPH aromatic >C10-C12		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	< 0.1	< 0.1			
	TPH aromatic >C12-C16		mg kg-1	N	1.1	0.4	0.3	2.4	7.9	4.4	1.0	< 0.1			
	TPH aromatic >C16-C21		mg kg-1	N	8.9	1.1	2.3	25	140	52	3.2	< 0.1			
	TPH aromatic >C21-C35		mg kg-1	N	30	4.3	5.5	74	450	140	9.5	< 0.1			
	TPH aromatic >C35-C44		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	Total Petroleum Hydrocarbons		mg kg-1	N	40	6	8	100	600	200	14	< 2			
2700	Naphthalene	91203	mg kg-1	М	0.2	<0.1	<0.1	<0.1	3.1	1.6	<0.1	<0.1			
	Acenaphthylene	208968	mg kg-1	М	0.2	<0.1	<0.1	0.3	0.7	0.3	<0.1	<0.1			
	Acenaphthene	83329	mg kg-1	М	0.2	<0.1	<0.1	0.4	0.9	0.6	<0.1	<0.1			
	Fluorene	86737	mg kg-1	М	0.3	<0.1	<0.1	0.5	1.1	0.6	<0.1	<0.1			
	Phenanthrene	85018	mg kg-1	М	3	0.7	0.8	5.1	19	9.2	0.4	<0.1			
	Anthracene	120127	mg kg-1	М	0.7	0.2	0.2	2.1	4.9	2.1	<0.1	<0.1			
	Fluoranthene	206440	mg kg-1	М	4.7	1.4	1.2	14	40	18	0.9	<0.1			
	Pyrene	129000	mg kg-1	М	4.1	1.3	1.1	13	35	15	8.0	<0.1			
	Benzo[a]anthracene	56553	mg kg-1	M	2.2	0.6	0.8	7.1	20	9	0.7	<0.1			
	Chrysene	218019	mg kg-1	М	2.4	0.7	0.6	7.8	23	11	0.5	<0.1			
	Benzo[b]fluoranthene	205992	mg kg-1	М	2	0.9	0.5	8.1	27	11	0.7	<0.1			
	Benzo[k]fluoranthene	207089	mg kg-1	М	1.2	0.4	0.3	4.1	14	6.2	0.3	<0.1			
	Benzo[a]pyrene	50328	mg kg-1	М	2.3	2.1	0.6	8.1	26	11	0.8	<0.1			
	Dibenzo[a,h]anthracene	53703	mg kg-1	М	0.7	0.4	0.2	4.2	17	6.5	0.5	<0.1			
	Indeno[1,2,3-cd]pyrene	193395	mg kg-1	M	0.1	<0.1	<0.1	1.3	4.7	1.7	<0.1	<0.1			

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 3 Report page 2 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

			89511								
				AF09663	AF09664	AF09665	AF09666	AF09667	AF09668		
				WS1	WS1	WS2	WS2	WS3	WS3		
				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010		
				0.25m	1m	0.5m	1m	0.25m	0.75m		
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
2675 TPH aliphatic >C8-C10		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
TPH aliphatic >C10-C12		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
TPH aliphatic >C12-C16		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
TPH aliphatic >C12-C16		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
TPH aliphatic >C21-C35			N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
•		mg kg-1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
TPH aliphatic >C35-C44 TPH aromatic >C5-C7		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1		
		mg kg-1	N		_	_	_				
TPH aromatic >C7-C8		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
TPH aromatic >C8-C10		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
TPH aromatic >C10-C12		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
TPH aromatic >C12-C16		mg kg-1	N	3.5	3.0	7.6	17	9.9	1.2		
TPH aromatic >C16-C21		mg kg-1	N	30	27	100	180	64	12		
TPH aromatic >C21-C35		mg kg-1	N	77	62	270	410	210	31		
TPH aromatic >C35-C44		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
Total Petroleum Hydrocarbons		mg kg-1	N	110	93	380	610	290	44		
2700 Naphthalene	91203	mg kg-1	М	0.2	0.8	1	4.2	0.3	<0.1		
Acenaphthylene	208968	mg kg-1	М	0.5	0.3	2.3	5.6	1.1	<0.1		
Acenaphthene	83329	mg kg-1	M	0.4	0.4	0.6	1.3	1.4	<0.1		
Fluorene	86737	mg kg-1	M	0.4	0.2	1.3	4.2	1	<0.1		
Phenanthrene	85018	mg kg-1	M	4.6	4.1	15	46	9.7	0.4		
Anthracene	120127	mg kg-1	M	1.7	0.9	3.8	11	2.5	<0.1		
Fluoranthene	206440	mg kg-1	М	10	8.4	29	67	17	0.9		
Pyrene	129000	mg kg-1	М	9.7	7.4	24	51	14	0.7		
Benzo[a]anthracene	56553	mg kg-1	М	6.6	4.6	14	30	7.1	0.6		
Chrysene	218019	mg kg-1	М	7.3	5.3	16	32	0.9	0.6		
Benzo[b]fluoranthene	205992	mg kg-1	М	6.6	5.8	17	22	9.1	0.6		
Benzo[k]fluoranthene	207089	mg kg-1	М	3.8	3	10	18	3	0.5		
Benzo[a]pyrene	50328	mg kg-1	М	8.7	6.1	19	36	9.6	0.3		
Dibenzo[a,h]anthracene	53703	mg kg-1	М	3.8	3.8	12	20	7.1	0.5		
Indeno[1,2,3-cd]pyrene	193395	mg kg-1	М	1.1	0.3	3.3	5.3	2.1	0.2		

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT

**Report Date** 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

								899	511			
					AF09639	AF09640	AF09641	AF09642	AF09643	AF09644	AF09645	AF09646
					BHA	ВНА	ВНА	BHB	BHB	ВНВ	внв	BHC
					14/06/2010	14/06/2010	14/06/2010	10/06/2010	10/06/2010	10/06/2010	10/06/2010	14/06/2010
					0.5m	1.5m	3.5m	1m	2m	3m	4.5m	0.5m
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
2700	Benzo[g,h,i]perylene	191242	mg kg-1	М	2	1.5	0.1	0.2	9.8	2.1	6.9	5.9
2700	Coronene	191071	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Total (of 17) PAHs	101071	mg kg-1	N	34	23	<2	3.9	240	43	130	89
	Benzo[j]fluoranthene by FID	205823	mg kg-1	N	1.53	1.17	0.08	0.18	8.3	1.9	8.8	5.9
2760	Benzene	71432	μg kg- ¹	M	< 1	< 1	< 1	< 1	1.1	1.5	1.3	< 1
2700	Toluene	108883	μg kg- ¹	M	< 1	< 1	< 1	< 1	< 1	1.3	1.4	< 1
	Ethyl benzene	100003	μg kg-1	M	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	m- & p-Xylene	1330207	μg kg-1	M	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	o-Xylene	95476	μg kg-1	M	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	Methyl tert-butyl ether	1634044	μg kg-1	N	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	Dichlorodifluoromethane	75718	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1
	Chloromethane	74873	μg kg-1	М	<1	<1	<1	<1	<1	<1	<1	<1
	Vinyl chloride	75014	μg kg-1	M	<1	<1	<1	<1	<1	<1	<1	<1
	Bromomethane	74839	μg kg-1	U	<20	<20	<20	<20	<20	<20	<20	<20
	Chloroethane	75003	μg kg- ¹	U	<2	<2	<2	<2	<2	<2	<2	<2
	Trichlorofluoromethane	75694	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1
	1.1-Dichloroethene	75354	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1
	Dichloromethane	75092	μg kg-1	U	ne	ne	ne	ne	ne	ne	ne	ne
	trans-1,2-Dichloroethene	156605	μg kg-1	M	<1	<1	<1	<1	<1	<1	<1	<1
	1,1-Dichloroethane	75343	μg kg- ¹	M	<1	<1	<1	<1	<1	<1	<1	<1
	cis-1.2-Dichloroethene	156592	μg kg- ¹	M	<1	<1	<1	<1	<1	<1	<1	<1
	Bromochloromethane	74975	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1
	Trichloromethane	67663	μg kg-1	M	<1	<1	<1	<1	<1	<1	<1	<1
	1.1.1-Trichloroethane	71556		M	<1	<1	<1	<1	<1	<1	<1	<1
	Tetrachloromethane	56235	μg kg-1	M	<1	<1	<1	<1	<1	<1	<1	<1
	1,1-Dichloropropene	563586	μg kg-¹ μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	1,2-Dichloroethane	107062		M	<2	<2	<2	<2	<2	<2	<2	<2
	Trichloroethene	79016	μg kg-1		<1	<1	< <u>&lt;</u> 2	<2 <1	<2 <1	< <u>&lt;</u> 2	<1	<1
			μg kg-1	M U	<1		<1	<1	<1	<1	-	<1
	1,2-Dichloropropane	78875	μg kg-1		-	<1		·	-	-	<1	
	Dibromomethane	74953	μg kg-¹	U	<10	<10	<10	<10	<10	<10	<10	<10

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 1 Report page 3 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT

Chemtest
The right chemistry to deliver results

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

				89511										
					AF09647	AF09648	AF09649	AF09650	AF09651	AF09652	AF09653	AF09654		
					BHC	BHC	BHD	BHD	BHD	BHE	BHE	BHE		
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010		
					1m	2m	0.5m	1.5m	2m	1m	2m	3m		
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
2700	Benzo[g,h,i]perylene	191242	mg kg-1	М	0.6	<0.1	0.7	0.1	<0.1	1.2	0.1	0.2		
	Coronene	191071	mg kg-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	Total (of 17) PAHs	10.07.	mg kg-1	N	13	<2	15	2.2	<2	19	3.5	2.2		
	Benzo[j]fluoranthene by FID	205823	mg kg-1	N	1.05	0.19	1.45	0.22	<0.1	1.62	0.37	0.29		
2760	Benzene	71432	μg kg-¹	М	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Toluene	108883	μg kg-¹	М	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Ethyl benzene	100414	μg kg-¹	М	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	m- & p-Xylene	1330207	μg kg-¹	М	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	o-Xylene	95476	μg kg-¹	М	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Methyl tert-butyl ether	1634044	μg kg-¹	N	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Dichlorodifluoromethane	75718	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Chloromethane	74873	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	Vinyl chloride	75014	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	Bromomethane	74839	µg kg-¹	U	<20	<20	<20	<20	<20	<20	<20	<20		
	Chloroethane	75003	µg kg-¹	U	<2	<2	<2	<2	<2	<2	<2	<2		
	Trichlorofluoromethane	75694	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1-Dichloroethene	75354	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Dichloromethane	75092	µg kg-¹	U	ne	ne	ne	ne	ne	ne	ne	ne		
	trans-1,2-Dichloroethene	156605	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1-Dichloroethane	75343	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	cis-1,2-Dichloroethene	156592	µg kg-¹	M	<1	<1	<1	<1	<1	<1	<1	<1		
	Bromochloromethane	74975	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Trichloromethane	67663	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1,1-Trichloroethane	71556	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	Tetrachloromethane	56235	μg kg-¹	M	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1-Dichloropropene	563586	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	1,2-Dichloroethane	107062	µg kg-¹	М	<2	<2	<2	<2	<2	<2	<2	<2		
	Trichloroethene	79016	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	1,2-Dichloropropane	78875	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Dibromomethane	74953	µg kg-¹	U	<10	<10	<10	<10	<10	<10	<10	<10		

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 2
Report page 3 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

				89511										
					AF09655	AF09656	AF09657	AF09658	AF09659	AF09660	AF09661	AF09662		
					BHF	BHF	BHF	BHG	BHG	BHG	BHG	BHG		
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010		
					0.5m	1.5m	3m	0.5m	1m	1.5m	2.5m	4m		
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
2700	Benzo[g,h,i]perylene	191242	mg kg-1	М	0.8	0.4	0.2	3.1	17	7.3	0.6	<0.1		
	Coronene	191071	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	Total (of 17) PAHs	101071	mg kg-1	N	25	9	6.3	79	250	110	6.4	<2		
	Benzo[j]fluoranthene by FID	205823	mg kg-1	N	1.07	0.42	0.27	4.07	13.6	5.73	0.35	<0.1		
2760	Benzene	71432	μg kg-¹	М	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Toluene	108883	μg kg-¹	M	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Ethyl benzene	100414	μg kg-¹	М	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	m- & p-Xylene	1330207	μg kg-¹	М	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	o-Xylene	95476	μg kg-¹	М	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Methyl tert-butyl ether	1634044	μg kg-¹	N	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Dichlorodifluoromethane	75718	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Chloromethane	74873	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	Vinyl chloride	75014	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	Bromomethane	74839	μg kg-¹	U	<20	<20	<20	<20	<20	<20	<20	<20		
	Chloroethane	75003	μg kg-¹	U	<2	<2	<2	<2	<2	<2	<2	<2		
	Trichlorofluoromethane	75694	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1-Dichloroethene	75354	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Dichloromethane	75092	µg kg-¹	U	ne	ne	ne	ne	ne	ne	ne	ne		
	trans-1,2-Dichloroethene	156605	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1-Dichloroethane	75343	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	cis-1,2-Dichloroethene	156592	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	Bromochloromethane	74975	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Trichloromethane	67663	µg kg-¹	M	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1,1-Trichloroethane	71556	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	Tetrachloromethane	56235	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1-Dichloropropene	563586	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	1,2-Dichloroethane	107062	μg kg-¹	М	<2	<2	<2	<2	<2	<2	<2	<2		
	Trichloroethene	79016	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	1,2-Dichloropropane	78875	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Dibromomethane	74953	µg kg-¹	U	<10	<10	<10	<10	<10	<10	<10	<10		

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 3 Report page 3 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

			89511										
				AF09663	AF09664	AF09665	AF09666	AF09667	AF09668				
				WS1	WS1	WS2	WS2	WS3	WS3				
				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010				
				0.25m	1m	0.5m	1m	0.25m	0.75m				
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL				
2700 Benzo[g,h,i]perylene	191242	mg kg-1	М	3.8	3.3	11	20	6.5	0.5				
Coronene	191071	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
Total (of 17) PAHs	191071	mg kg-1	N	69	55	180	370	92	5.8				
Benzo[j]fluoranthene by FID	205823	mg kg-1	N	3.46	2.93	9.19	13.31	4.04	0.38				
2760 Benzene	71432	μg kg-1	M	< 1	2.93 < 1	9.19 < 1	1.3	4.04 < 1	< 1				
Toluene	108883		M	< 1	< 1	< 1	< 1	< 1	< 1				
Ethyl benzene	100003	μg kg-¹ μg kg-¹	M	< 1	< 1	< 1	< 1	< 1	< 1				
	1330207		M	< 1	< 1	< 1	< 1	< 1	<1				
m- & p-Xylene	95476	μg kg-1	M	< 1	< 1	< 1	< 1	< 1	< 1				
o-Xylene		μg kg-1		< 1	< 1	< 1	< 1	-	< 1				
Methyl tert-butyl ether	1634044	μg kg-¹	N					< 1					
Dichlorodifluoromethane	75718	μg kg-¹	U	<1	<1	<1	<1	<1	<1				
Chloromethane	74873	μg kg-¹	M	<1	<1	<1	<1	<1	<1				
Vinyl chloride	75014	μg kg-¹	M	<1	<1	<1	<1	<1	<1				
Bromomethane	74839	μg kg-¹	U	<20	<20	<20	<20	<20	<20				
Chloroethane	75003	μg kg-¹	U	<2	<2	<2	<2	<2	<2				
Trichlorofluoromethane	75694	µg kg-¹	U	<1	<1	<1	<1	<1	<1				
1,1-Dichloroethene	75354	µg kg-¹	U	<1	<1	<1	<1	<1	<1				
Dichloromethane	75092	μg kg-¹	U	ne	ne	ne	ne	ne	ne				
trans-1,2-Dichloroethene	156605	µg kg-¹	М	<1	<1	<1	<1	<1	<1				
1,1-Dichloroethane	75343	µg kg-¹	M	<1	<1	<1	<1	<1	<1				
cis-1,2-Dichloroethene	156592	µg kg-¹	M	<1	<1	<1	<1	<1	<1				
Bromochloromethane	74975	µg kg-¹	U	<1	<1	<1	<1	<1	<1				
Trichloromethane	67663	µg kg-¹	М	<1	<1	<1	<1	7.6	<1				
1,1,1-Trichloroethane	71556	µg kg-¹	М	<1	<1	<1	<1	<1	<1				
Tetrachloromethane	56235	μg kg-¹	М	<1	<1	<1	<1	<1	<1				
1,1-Dichloropropene	563586	μg kg-¹	U	<1	<1	<1	<1	<1	<1				
1,2-Dichloroethane	107062	μg kg-¹	М	<2	<2	<2	<2	<2	<2				
Trichloroethene	79016	μg kg-¹	М	<1	<1	<1	<1	<1	<1				
1,2-Dichloropropane	78875	μg kg-¹	U	<1	<1	<1	<1	<1	<1				
Dibromomethane	74953	μg kg-¹	U	<10	<10	<10	<10	<10	<10				

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



**Report Date** 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

								89				
					AF09639	AF09640	AF09641	AF09642	AF09643	AF09644	AF09645	AF09646
					BHA	ВНА	BHA	BHB	ВНВ	ВНВ	ВНВ	BHC
					14/06/2010	14/06/2010	14/06/2010	10/06/2010	10/06/2010	10/06/2010	10/06/2010	14/06/2010
					0.5m	1.5m	3.5m	1m	2m	3m	4.5m	0.5m
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
30	Bromodichloromethane	75274	μg kg-¹	U	<5	<5	<5	<5	<5	<5	<5	<5
	cis-1,3-Dichloropropene	10061015	μg kg-1	U	<10	<10	<10	<10	<10	<10	<10	<10
	trans-1,3-Dichloropropene	10061013	μg kg-1	U	<10	<10	<10	<10	<10	<10	<10	<10
	1.1.2-Trichloroethane	79005	μg kg-1	М	<10	<10	<10	<10	<10	<10	<10	<10
	Tetrachloroethene	127184	μg kg-1	M	<1	<1	<1	<1	<1	<1	<1	<1
	1,3-Dichloropropane	142289	μg kg- ¹	U	<2	<2	<2	<2	<2	<2	<2	<2
	Dibromochloromethane	124481	μg kg-1	U	<10	<10	<10	<10	<10	<10	<10	<10
	1.2-Dibromoethane	106934	μg kg-1	U	<5	<5	<5	<5	<5	<5	<5	<5
	Chlorobenzene	108907	μg kg-1	M	<1	<1	<1	<1	<1	<1	<1	<1
	1,1,1,2-Tetrachloroethane	630206	μg kg-1	M	<2	<2	<2	<2	<2	<2	<2	<2
	Styrene	100425	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1
	Tribromomethane	75252	μg kg- ¹	U	<10	<10	<10	<10	<10	<10	<10	<10
	Isopropylbenzene	98828	μg kg-1	U	<10	<1	<1	<1	<1	<1	<1	<1
	Bromobenzene	108861		U	<1	<1	<1	<1	<1	<1	<1	<1
	1.1.2.2-Tetrachloroethane	79345	μg kg-1	M	<10	<10	<10	<10	<10	<10	<10	<10
	1,2,3-Trichloropropane	96184	μg kg-1	U	<50	<50	<50	<50	<50	<50	<50	<50
	n-Propylbenzene	103651	μg kg-1	U	<1	<1	<1	<1	<50 <1	<1	<1 <1	<1
	2-Chlorotoluene	95498	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	1,3,5-Trimethylbenzene	108678	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1
	4-Chlorotoluene	106434	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1
	tert-Butylbenzene	98066	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1
	1,2,4-Trimethylbenzene	95636	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1
	sec-Butylbenzene	135988	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1
	1.3-Dichlorobenzene	541731	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1
	.,		μg kg-1		-	-	-	-	·	-	-	-
	4-Isopropyltoluene 1.4-Dichlorobenzene	99876	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1
	,	106467	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1
	n-Butylbenzene	104518	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1
	1,2-Dichlorobenzene	95501	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	1,2-Dibromo-3-chloropropane	96128	μg kg-1	U	<50	<50	<50	<50	<50	<50	<50	<50
	1,2,4-Trichlorobenzene	120821	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 1 Report page 4 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

							89	511			
				AF09647	AF09648	AF09649	AF09650	AF09651	AF09652	AF09653	AF09654
				BHC	ВНС	BHD	BHD	BHD	BHE	BHE	BHE
				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010
				1m	2m	0.5m	1.5m	2m	1m	2m	3m
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
0 Bromodichloromethane	75274	μg kg-¹	U	<5	<5	<5	<5	<5	<5	<5	<5
cis-1,3-Dichloropropene	10061015	μg kg- ¹	U	<10	<10	<10	<10	<10	<10	<10	<10
trans-1,3-Dichloropropene	10061026	μg kg- ¹	U	<10	<10	<10	<10	<10	<10	<10	<10
1.1.2-Trichloroethane	79005	μg kg- ¹	M	<10	<10	<10	<10	<10	<10	<10	<10
Tetrachloroethene	127184	μg kg- ¹	M	<1	<1	<1	<1	<1	<1	<1	<1
1,3-Dichloropropane	142289	μg kg- ¹	U	<2	<2	<2	<2	<2	<2	<2	<2
Dibromochloromethane	124481	μg kg- ¹	U	<10	<10	<10	<10	<10	<10	<10	<10
1.2-Dibromoethane	106934	μg kg- ¹	U	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	108907	μg kg- ¹	M	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1,2-Tetrachloroethane	630206	μg kg- ¹	M	<2	<2	<2	<2	<2	<2	<2	<2
Styrene	100425	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
Tribromomethane	75252	μg kg-¹	U	<10	<10	<10	<10	<10	<10	<10	<10
Isopropylbenzene	98828	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1
Bromobenzene	108861	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
1.1.2.2-Tetrachloroethane	79345	μg kg-¹	M	<10	<10	<10	<10	<10	<10	<10	<10
1,2,3-Trichloropropane	96184	μg kg- ¹	U	<50	<50	<50	<50	<50	<50	<50	<50
n-Propylbenzene	103651	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
2-Chlorotoluene	95498	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
1,3,5-Trimethylbenzene	108678	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
4-Chlorotoluene	106434	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
tert-Butylbenzene	98066	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	95636	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
sec-Butylbenzene	135988	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	541731	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
4-Isopropyltoluene	99876	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	106467	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
n-Butylbenzene	104518	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichlorobenzene	95501	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dibromo-3-chloropropane	96128	μg kg-¹	U	<50	<50	<50	<50	<50	<50	<50	<50
1,2,4-Trichlorobenzene	120821	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 2
Report page 4 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT

Chemtest
The right chemistry to deliver results

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

			89511									
				AF09655	AF09656	AF09657	AF09658	AF09659	AF09660	AF09661	AF09662	
				BHF	BHF	BHF	BHG	BHG	BHG	BHG	BHG	
				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	
				0.5m	1.5m	3m	0.5m	1m	1.5m	2.5m	4m	
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
60 Bromodichloromethane	75274	μg kg-¹	U	<5	<5	<5	<5	<5	<5	<5	<5	
cis-1,3-Dichloropropene	10061015	μg kg-1	U	<10	<10	<10	<10	<10	<10	<10	<10	
trans-1,3-Dichloropropene	10061015	μg kg-1	U	<10	<10	<10	<10	<10	<10	<10	<10	
1.1.2-Trichloroethane	79005	μg kg-1	M	<10	<10	<10	<10	<10	<10	<10	<10	
Tetrachloroethene	127184	μg kg-1	M	<1	<1	<1	<1	<1	<1	<1	<1	
1,3-Dichloropropane	142289	μg kg-1 μg kg-1	U	<2	<2	<2	<2	<2	<2	<2	<2	
Dibromochloromethane	124481	μg kg-1	U	<10	<10	<10	<10	<10	<10	<10	<10	
1.2-Dibromoethane	106934	μg kg-1	U	<5	<5	<5	<5	<5	<5	<5	<5	
Chlorobenzene	108907	μg kg-1	M	<1	<1	<1	<1	<1	<1	<1	<1	
1.1.1.2-Tetrachloroethane	630206	μg kg-1	M	<2	<2	<2	<2	<2	<2	<2	<2	
Styrene	100425	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
Tribromomethane	75252	μg kg- ¹	U	<10	<10	<10	<10	<10	<10	<10	<10	
Isopropylbenzene	98828	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1	
Bromobenzene	108861	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
1.1.2.2-Tetrachloroethane	79345	μg kg-1	M	<10	<10	<10	<10	<10	<10	<10	<10	
1,2,3-Trichloropropane	96184	μg kg- ¹	U	<50	<50	<50	<50	<50	<50	<50	<50	
n-Propylbenzene	103651	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
2-Chlorotoluene	95498	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
1,3,5-Trimethylbenzene	108678	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
4-Chlorotoluene	106434	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
tert-Butylbenzene	98066	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
1,2,4-Trimethylbenzene	95636	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
sec-Butylbenzene	135988	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
1.3-Dichlorobenzene	541731	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
4-Isopropyltoluene	99876	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
1.4-Dichlorobenzene	106467	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1	
n-Butylbenzene	104518	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
1.2-Dichlorobenzene	95501	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
1,2-Dibromo-3-chloropropane	96128	μg kg- ¹	U	<50	<50	<50	<50	<50	<50	<50	<50	
1.2.4-Trichlorobenzene	120821	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1		

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 3
Report page 4 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

			89511								
				AF09663	AF09664	AF09665	AF09666	AF09667	AF09668		
				WS1	WS1	WS2	WS2	WS3	WS3		
				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010		
				0.25m	14/00/2010 1m	0.5m	14/00/2010 1m	0.25m	0.75m		
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
60 Bromodichloromethane	75274	μg kg-¹	U	<5	<5	<5	<5	<5	<5		
cis-1,3-Dichloropropene	10061015	μg kg-¹	U	<10	<10	<10	<10	<10	<10		
trans-1,3-Dichloropropene	10061026	μg kg-¹	U	<10	<10	<10	<10	<10	<10		
1,1,2-Trichloroethane	79005	μg kg-¹	M	<10	<10	<10	<10	<10	<10		
Tetrachloroethene	127184	μg kg-¹	М	<1	<1	<1	<1	<1	<1		
1,3-Dichloropropane	142289	μg kg-¹	U	<2	<2	<2	<2	<2	<2		
Dibromochloromethane	124481	μg kg-¹	U	<10	<10	<10	<10	<10	<10		
1,2-Dibromoethane	106934	μg kg-¹	U	<5	<5	<5	<5	<5	<5		
Chlorobenzene	108907	μg kg-¹	М	<1	<1	<1	<1	<1	<1		
1,1,1,2-Tetrachloroethane	630206	μg kg-¹	М	<2	<2	<2	<2	<2	<2		
Styrene	100425	μg kg-¹	U	<1	<1	<1	<1	<1	<1		
Tribromomethane	75252	μg kg-¹	U	<10	<10	<10	<10	<10	<10		
Isopropylbenzene	98828	μg kg-¹	U	<1	<1	<1	<1	<1	<1		
Bromobenzene	108861	µg kg-¹	U	<1	<1	<1	<1	<1	<1		
1,1,2,2-Tetrachloroethane	79345	μg kg-¹	М	<10	<10	<10	<10	<10	<10		
1,2,3-Trichloropropane	96184	μg kg-¹	U	<50	<50	<50	<50	<50	<50		
n-Propylbenzene	103651	μg kg-¹	U	<1	<1	<1	<1	<1	<1		
2-Chlorotoluene	95498	μg kg-¹	U	<1	<1	<1	<1	<1	<1		
1,3,5-Trimethylbenzene	108678	μg kg-¹	U	<1	<1	<1	<1	<1	<1		
4-Chlorotoluene	106434	µg kg-¹	U	<1	<1	<1	<1	<1	<1		
tert-Butylbenzene	98066	μg kg-¹	U	<1	<1	<1	<1	<1	<1		
1,2,4-Trimethylbenzene	95636	μg kg-¹	U	<1	<1	<1	<1	<1	<1		
sec-Butylbenzene	135988	μg kg-¹	U	<1	<1	<1	<1	<1	<1		
1,3-Dichlorobenzene	541731	μg kg-¹	U	<1	<1	<1	<1	<1	<1		
4-Isopropyltoluene	99876	μg kg-¹	U	<1	<1	<1	<1	<1	<1		
1,4-Dichlorobenzene	106467	μg kg-¹	U	<1	<1	<1	<1	<1	<1		
n-Butylbenzene	104518	μg kg-¹	U	<1	<1	<1	<1	<1	<1		
1,2-Dichlorobenzene	95501	μg kg-¹	U	<1	<1	<1	<1	<1	<1		
1,2-Dibromo-3-chloropropane	96128	μg kg-¹	U	<50	<50	<50	<50	<50	<50		
1,2,4-Trichlorobenzene	120821	μg kg-¹	U	<1	<1	<1	<1	<1	<1		

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



**Report Date** 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

				89511 AE00630 AE00640 AE00641 AE00642 AE00644 AE00646 AE00646									
					AF09639	AF09640	AF09641	AF09642	AF09643	AF09644	AF09645	AF09646	
					BHA	BHA	BHA	BHB	BHB	BHB	BHB	BHC	
					14/06/2010	14/06/2010	14/06/2010	10/06/2010	10/06/2010	10/06/2010	10/06/2010	14/06/2010	
					0.5m	1.5m	3.5m	1m	2m	3m	4.5m	0.5m	
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
2760	Hexachlorobutadiene	87683	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
	1,2,3-Trichlorobenzene	87616	μg kg-¹	U	<2	<2	<2	<2	<2	<2	<2	<2	
2762	Tentatively Identified Compounds		μg kg-¹		None Detected				None Detected	None Detected	None Detected		
	N-Nitrosodimethylamine	62759	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Phenol	108952	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	bis(2-Chloroethyl)ether	111444	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Chlorophenol	95578	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1.3-Dichlorobenzene	541731	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1,4-Dichlorobenzene	106467	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1,2-Dichlorobenzene	95501	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Methylphenol	95487	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	bis(2-Chloroisopropyl)ether	108601	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	4-Methylphenol	106445	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	N-Nitrosodi-n-propylamine	621647	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Hexachloroethane	67721	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Nitrobenzene	98953	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Isophorone	78591	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Nitrophenol	88755	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4-Dimethylphenol	105679	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	bis(2-Chloroethoxy)methane	111911	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4-Dichlorophenol	120832	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1,2,4-Trichlorobenzene	120821	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Naphthalene	91203	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	4-Chloroaniline	106478	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Hexachlorobutadiene	87683	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	4-Chloro-3-methylphenol	59507	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Methylnaphthalene	91576	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Hexachlorocyclopentadiene	77474	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4,6-Trichlorophenol	88062	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4,5-Trichlorophenol	95954	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 1 Report page 5 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

				<b>89511</b> AF09647 AF09648 AF09649 AF09650 AF09651 AF09652 AF09653 AF09654									
					AF09647	AF09648	AF09649	AF09650	AF09651	AF09652	AF09653	AF09654	
					BHC	BHC	BHD	BHD	BHD	BHE	BHE	BHE	
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	
					1m	2m	0.5m	1.5m	2m	1m	2m	3m	
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
2760	Hexachlorobutadiene	87683	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
	1,2,3-Trichlorobenzene	87616	µg kg-¹	U	<2	<2	<2	<2	<2	<2	<2	<2	
	Tentatively Identified Compounds		µg kg-¹		None Detected	None Detected	None Detected	None Detected	None Detected	None Detected	None Detected	None Detected	
2790	N-Nitrosodimethylamine	62759	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Phenol	108952	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	bis(2-Chloroethyl)ether	111444	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Chlorophenol	95578	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1,3-Dichlorobenzene	541731	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1,4-Dichlorobenzene	106467	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1,2-Dichlorobenzene	95501	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Methylphenol	95487	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	bis(2-Chloroisopropyl)ether	108601	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	4-Methylphenol	106445	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	N-Nitrosodi-n-propylamine	621647	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Hexachloroethane	67721	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Nitrobenzene	98953	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Isophorone	78591	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Nitrophenol	88755	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4-Dimethylphenol	105679	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	bis(2-Chloroethoxy)methane	111911	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4-Dichlorophenol	120832	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1,2,4-Trichlorobenzene	120821	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Naphthalene	91203	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	4-Chloroaniline	106478	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Hexachlorobutadiene	87683	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	4-Chloro-3-methylphenol	59507	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Methylnaphthalene	91576	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Hexachlorocyclopentadiene	77474	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4,6-Trichlorophenol	88062	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4,5-Trichlorophenol	95954	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 2
Report page 5 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

				<b>89511</b> AF09655 AF09656 AF09657 AF09658 AF09659 AF09660 AF09661 AF09662								
					AF09655	AF09656	AF09657			AF09660	AF09661	AF09662
					BHF	BHF	BHF	BHG	BHG	BHG	BHG	BHG
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010
					0.5m	1.5m	3m	0.5m	1m	1.5m	2.5m	4m
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
2760	Hexachlorobutadiene	87683	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	1,2,3-Trichlorobenzene	87616	μg kg-¹	U	<2	<2	<2	<2	<2	<2	<2	<2
2762	Tentatively Identified Compounds		μg kg-¹		None Detected	None Detected		None Detected	None Detected	None Detected	None Detected	None Detected
	N-Nitrosodimethylamine	62759	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Phenol	108952	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	bis(2-Chloroethyl)ether	111444	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2-Chlorophenol	95578	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	1,3-Dichlorobenzene	541731	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	1,4-Dichlorobenzene	106467	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	1,2-Dichlorobenzene	95501	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2-Methylphenol	95487	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	bis(2-Chloroisopropyl)ether	108601	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	4-Methylphenol	106445	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	N-Nitrosodi-n-propylamine	621647	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Hexachloroethane	67721	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Nitrobenzene	98953	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Isophorone	78591	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2-Nitrophenol	88755	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2,4-Dimethylphenol	105679	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	bis(2-Chloroethoxy)methane	111911	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2,4-Dichlorophenol	120832	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	1,2,4-Trichlorobenzene	120821	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Naphthalene	91203	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	4-Chloroaniline	106478	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Hexachlorobutadiene	87683	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	4-Chloro-3-methylphenol	59507	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2-Methylnaphthalene	91576	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Hexachlorocyclopentadiene	77474	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2,4,6-Trichlorophenol	88062	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2,4,5-Trichlorophenol	95954	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 3
Report page 5 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

AF09683   AF09684   AF09686   AF09686   AF09686   AF09687   AF09688   WS1   WS2   WS2   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3   WS3					89511 AF09663 AF09664 AF09665 AF09666 AF09667 AF09668									
14/06/2010						AF09663	AF09664	AF09665	AF09666	AF09667	AF09668			
Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Per						WS1	WS1	WS2	WS2	WS3	WS3			
Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Personant   Per														
2760   Hexachlorobutadiene						14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010			
2760   Hexachlorobutadiene   87683   μg kg-¹   U < 1														
1,2,3-Trichlorobenzene						SOIL	SOIL	SOIL	SOIL	SOIL	SOIL			
1,2,3-Trichlorobenzene														
2762   Tentatively Identified Compounds	2760						-							
2790 N-Nitrosodimethylamine   62759   mg kg-1   N   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5			87616		U									
Phenol   108952   mg kg-1   N   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.		•												
bis(2-Chloroethyl)ether	2790	<u>,</u>												
2-Chlorophenol         95578         mg kg-¹         N         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5														
1,3-Dichlorobenzene         541731         mg kg-¹         N         <0.5		, ,												
1,4-Dichlorobenzene   106467 mg kg-1		2-Chlorophenol			N									
1,2-Dichlorobenzene         95501         mg kg-¹         N         <0.5		1,3-Dichlorobenzene	541731	mg kg-1	N		<0.5		<0.5	<0.5	<0.5			
2-Methylphenol         95487         mg kg-¹         N         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5		1,4-Dichlorobenzene		mg kg-1	N					<0.5	<0.5			
bis(2-Chloroisopropyl)ether         108601         mg kg-¹         N         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5		1,2-Dichlorobenzene	95501	mg kg-1	N					<0.5				
4-Methylphenol         106445         mg kg-¹         N         <0.5		2-Methylphenol	95487	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
N-Nitrosodi-n-propylamine 621647 mg kg-¹ N <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		bis(2-Chloroisopropyl)ether	108601	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Hexachloroethane		4-Methylphenol	106445	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Nitrobenzene 98953 mg kg-1 N <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		N-Nitrosodi-n-propylamine	621647	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Isophorone		Hexachloroethane	67721	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
2-Nitrophenol 88755 mg kg-¹ N <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		Nitrobenzene	98953	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
2,4-Dimethylphenol       105679       mg kg-¹       N       <0.5		Isophorone	78591	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
bis(2-Chloroethoxy)methane         111911         mg kg-1         N         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <		2-Nitrophenol	88755	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
bis(2-Chloroethoxy)methane         111911         mg kg-1         N         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <		2,4-Dimethylphenol	105679	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
2,4-Dichlorophenol       120832       mg kg-¹       N       <0.5		bis(2-Chloroethoxy)methane	111911		N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
1,2,4-Trichlorobenzene       120821       mg kg-¹       N       <0.5		2,4-Dichlorophenol	120832	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Naphthalene         91203         mg kg-¹         N         <0.5         <0.5         0.54         1.6         <0.5         <0.5           4-Chloroaniline         106478         mg kg-¹         N         <0.5		1,2,4-Trichlorobenzene	120821		N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
4-Chloroaniline         106478         mg kg-¹         N         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5 <td></td> <td>Naphthalene</td> <td>91203</td> <td></td> <td>N</td> <td>&lt;0.5</td> <td>&lt;0.5</td> <td>0.54</td> <td>1.6</td> <td>&lt;0.5</td> <td>&lt;0.5</td>		Naphthalene	91203		N	<0.5	<0.5	0.54	1.6	<0.5	<0.5			
Hexachlorobutadiene         87683         mg kg-¹         N         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5<		4-Chloroaniline	106478		N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
4-Chloro-3-methylphenol       59507       mg kg-¹       N       <0.5		Hexachlorobutadiene	87683		N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
2-Methylnaphthalene     91576     mg kg-¹     N     <0.5     <0.5     <0.5     <0.5     <0.5       Hexachlorocyclopentadiene     77474     mg kg-¹     N     <0.5		4-Chloro-3-methylphenol												
Hexachlorocyclopentadiene         77474         mg kg-¹         N         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5 <th< td=""><td></td><td></td><td></td><td></td><td>N</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>					N									
2,4,6-Trichlorophenol 88062 mg kg-1 N <0.5 <0.5 <0.5 <0.5 <0.5		· · ·			N									
2,4,5-Trichlorophenol 95954 mg kg-1 N <0.5 <0.5 <0.5 <0.5 <0.5 <0.5						<0.5								

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

			89511									
				AF09639	AF09640	AF09641	AF09642	AF09643	AF09644	AF09645	AF09646	
				BHA	BHA	BHA	BHB	BHB	BHB	BHB	BHC	
				14/06/2010	14/06/2010	14/06/2010	10/06/2010	10/06/2010	10/06/2010	10/06/2010	14/06/2010	
				0.5m	1.5m	3.5m	1m	2m	3m	4.5m	0.5m	
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
90 2-Chloronaphthalene	91587	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2-Nitroaniline	88744	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Dimethylphthalate	131113	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2.6-Dinitrotoluene	606202	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Acenaphthylene	208968	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	1.1	0.78	
3-Nitroaniline	99092	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Acenaphthene	83329	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	0.83	<0.5	<0.5	<0.5	
Dibenzofuran	132649	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	1.5	<0.5	<0.5	<0.5	
2.4-Dinitrotoluene	121142	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Diethylphthalate	84662	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Fluorene	86737	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	<0.5	
4-Chlorophenylphenylether	7005723	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
4-Nitroaniline	100016	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2-Methyl-4,6-dinitrophenol	534521	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Azobenzene	103333	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
4-Bromophenylphenylether	101553	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Hexachlorobenzene	118741	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Pentachlorophenol	87865	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Phenanthrene	85018	mg kg-1	N	0.68	0.68	<0.5	<0.5	25	1.2	11	4.2	
Anthracene	120127	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	4.5	<0.5	2.7	1.0	
Carbazole	86748	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	0.55	<0.5	
Di-n-butylphthalate	84742	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Fluoranthene	206440	mg kg-1	N	2.4	1.5	<0.5	<0.5	27	2.5	16	9.2	
Pyrene	129000	mg kg-1	N	2.1	1.2	<0.5	<0.5	22	2.1	14	8.1	
Butylbenzylphthalate	85687	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Benzo[a]anthracene	56553	mg kg-1	N	1.4	0.72	<0.5	<0.5	9.4	1.2	7.2	4.2	
Chrysene	218019	mg kg-1	N	1.2	0.74	<0.5	<0.5	7.4	1.1	6.0	4.2	
bis(2-Ethylhexyl)phthalate	117817	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Di-n-octylphthalate	117840	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Benzo[b]fluoranthene	205992	mg kg-1	N	2.4	1.2	<0.5	<0.5	11	1.6	9.3	6.3	

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 1
Report page 6 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

			89511									
				AF09647	AF09648	AF09649	AF09650	AF09651	AF09652	AF09653	AF09654	
				BHC	BHC	BHD	BHD	BHD	BHE	BHE	BHE	
				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	
				1m	2m	0.5m	1.5m	2m	1m	2m	3m	
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
2790 2-Chloronaphthalene	91587	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2-Nitroaniline	88744	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Dimethylphthalate	131113	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2,6-Dinitrotoluene	606202	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Acenaphthylene	208968	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
3-Nitroaniline	99092	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Acenaphthene	83329	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Dibenzofuran	132649	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2.4-Dinitrotoluene	121142	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Diethylphthalate	84662	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Fluorene	86737	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
4-Chlorophenylphenyleth	er 7005723	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
4-Nitroaniline	100016	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2-Methyl-4,6-dinitropheno	534521	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Azobenzene	103333	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
4-Bromophenylphenyleth	er 101553	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Hexachlorobenzene	118741	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Pentachlorophenol	87865	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Phenanthrene	85018	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	0.60	<0.5	<0.5	
Anthracene	120127	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Carbazole	86748	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Di-n-butylphthalate	84742	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Fluoranthene	206440	mg kg-1	N	1.6	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	
Pyrene	129000	mg kg-1	N	1.3	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	
Butylbenzylphthalate	85687	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Benzo[a]anthracene	56553	mg kg-1	N	0.78	<0.5	<0.5	<0.5	<0.5	0.64	<0.5	<0.5	
Chrysene	218019	mg kg-1	N	0.65	<0.5	<0.5	<0.5	<0.5	0.63	<0.5	<0.5	
bis(2-Ethylhexyl)phthalate	117817	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Di-n-octylphthalate	117840	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Benzo[b]fluoranthene	205992	mg kg-1	N	1.1	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 2
Report page 6 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

			89511								
				AF09655	AF09656	AF09657	AF09658	AF09659	AF09660	AF09661	AF09662
				BHF	BHF	BHF	BHG	BHG	BHG	BHG	BHG
				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010
				0.5m	1.5m	3m	0.5m	1m	1.5m	2.5m	4m
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
2-Chloronaphthalene	91587	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Nitroaniline	88744	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethylphthalate	131113	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,6-Dinitrotoluene	606202	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208968	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5
3-Nitroaniline	99092	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83329	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenzofuran	132649	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-Dinitrotoluene	121142	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethylphthalate	84662	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86737	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Chlorophenylphenylether	7005723	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Nitroaniline	100016	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Methyl-4,6-dinitrophenol	534521	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Azobenzene	103333	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Bromophenylphenylether	101553	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobenzene	118741	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Pentachlorophenol	87865	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85018	mg kg-1	N	0.74	<0.5	<0.5	0.60	4.8	1.7	<0.5	<0.5
Anthracene	120127	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<0.5	<0.5
Carbazole	86748	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-butylphthalate	84742	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206440	mg kg-1	N	1.7	<0.5	<0.5	3.4	15	5.0	<0.5	<0.5
Pyrene	129000	mg kg-1	N	1.5	<0.5	<0.5	3.6	13	4.1	<0.5	<0.5
Butylbenzylphthalate	85687	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo[a]anthracene	56553	mg kg-1	N	0.87	<0.5	<0.5	2.6	8.5	2.8	<0.5	<0.5
Chrysene	218019	mg kg-1	N	0.84	<0.5	<0.5	2.4	8.6	2.6	<0.5	<0.5
bis(2-Ethylhexyl)phthalate	117817	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-octylphthalate	117840	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo[b]fluoranthene	205992	mg kg-1	N	1.4	<0.5	<0.5	4.5	15	4.6	<0.5	<0.5

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 3
Report page 6 of 7

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



**Report Date** 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

			89511							
				AF09663	AF09664	AF09665	AF09666	AF09667	AF09668	
				WS1	WS1	WS2	WS2	WS3	WS3	
				4.4/00/0040	4.4/00/0040	4.4/00/0040	4.4/00/0040	4.4/00/0040	4.4/00/0046	
				14/06/2010 0.25m	14/06/2010 1m	14/06/2010 0.5m	14/06/2010 1m	14/06/2010 0.25m	14/06/2010 0.75m	
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
2-Chloronaphthalene	91587	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2-Nitroaniline	88744	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Dimethylphthalate	131113	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2,6-Dinitrotoluene	606202	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Acenaphthylene	208968	mg kg-1	N	<0.5	<0.5	1.7	7.2	0.70	<0.5	
3-Nitroaniline	99092	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Acenaphthene	83329	mg kg-1	N	<0.5	<0.5	<0.5	0.76	<0.5	<0.5	
Dibenzofuran	132649	mg kg-1	N	<0.5	<0.5	<0.5	3.0	<0.5	<0.5	
2,4-Dinitrotoluene	121142	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Diethylphthalate	84662	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Fluorene	86737	mg kg-1	N	<0.5	<0.5	<0.5	4.6	<0.5	<0.5	
4-Chlorophenylphenylether	7005723	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
4-Nitroaniline	100016	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2-Methyl-4,6-dinitrophenol	534521	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Azobenzene	103333	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
4-Bromophenylphenylether	101553	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Hexachlorobenzene	118741	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Pentachlorophenol	87865	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Phenanthrene	85018	mg kg-1	N	0.96	1.3	11	78	3.4	<0.5	
Anthracene	120127	mg kg-1	N	<0.5	<0.5	2.7	15	0.96	<0.5	
Carbazole	86748	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Di-n-butylphthalate	84742	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Fluoranthene	206440	mg kg-1	N	3.1	3.9	23	120	7.3	0.94	
Pyrene	129000	mg kg-1	N	3.0	3.3	20	92	6.5	0.82	
Butylbenzylphthalate	85687	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Benzo[a]anthracene	56553	mg kg-1	N	1.7	2.1	12	53	3.8	0.52	
Chrysene	218019	mg kg-1	N	1.8	2.0	11	41	3.4	0.53	
bis(2-Ethylhexyl)phthalate	117817	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Di-n-octylphthalate	117840	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Benzo[b]fluoranthene	205992	mg kg-1	N	2.9	3.6	18	68	6.4	1.1	

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

^{*} Accreditation status

FAO Andrea Grossey

# LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

								899	511			
					AF09639	AF09640	AF09641	AF09642	AF09643	AF09644	AF09645	AF09646
					BHA	BHA	BHA	BHB	BHB	BHB	BHB	BHC
					14/06/2010	14/06/2010	14/06/2010	10/06/2010	10/06/2010	10/06/2010	10/06/2010	14/06/2010
					0.5m	1.5m	3.5m	1m	2m	3m	4.5m	0.5m
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
2790	Benzo[k]fluoranthene	207089	mg kg-1	N	0.63	<0.5	<0.5	<0.5	4.1	0.55	2.6	1.8
	Benzo[a]pyrene	50328	mg kg-1	N	1.8	0.84	<0.5	<0.5	8.6	1.2	6.9	4.1
	Indeno[1,2,3-cd]pyrene	193395	mg kg-1	N	0.82	<0.5	<0.5	<0.5	4.5	0.51	3.8	2.1
	Dibenzo[a,h]anthracene	53703	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	0.98	<0.5
	Benzo[g,h,i]perylene	191242	mg kg-1	N	1.1	<0.5	<0.5	<0.5	4.9	0.69	4.0	2.8
2792	Tentatively Identified Compounds		mg kg-1		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected	Not detected	Not detected
2810	2,4,4'-Trichlorobiphenyl	7012375	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',5,5'-Tetrachlorobiphenyl	35693993	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',4,5,5'-Pentachlorobiphenyl	37680732	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,3,4,4',5-Pentachlorobiphenyl	31508006	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',3,4,4',5-Hexachlorobiphenyl	35065282	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',4,4',5,5'-Hexachlorobiphenyl	35065271	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',3,4,4',5,5'-Heptachlorobiphenyl	35065293	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2920	Catechols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Phenol	108952	mg kg-1	М	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Cresols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Xylenols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Naphthols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Trimethyl phenols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Phenols (total)		mg kg-1	N	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2010	рН		-	М	9.9	7.9	7.5	8.4	10.1	8.4	8.5	8.6
2186	Asbestos Containing Material		-	U	not found	not found	not found	not found	not found	not found	not found	not found

FAO Andrea Grossey

# LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

				89511           AF09647         AF09648         AF09649         AF09650         AF09651         AF09652         AF09653         AF09654								
					AF09647	AF09648	AF09649	AF09650	AF09651	AF09652	AF09653	AF09654
					BHC	BHC	BHD	BHD	BHD	BHE	BHE	BHE
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010
					1m	2m	0.5m	1.5m	2m	1m	2m	3m
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
2790	Benzo[k]fluoranthene	207089	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2730	Benzo[a]pyrene	50328	mg kg-1	N	0.67	<0.5	<0.5	<0.5	<0.5	0.63	<0.5	<0.5
	2 21 3	193395		N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Indeno[1,2,3-cd]pyrene		mg kg-1									
	Dibenzo[a,h]anthracene	53703	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Benzo[g,h,i]perylene	191242	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Tentatively Identified Compounds		mg kg-1		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected	Not detected	Not detected
2810	2,4,4'-Trichlorobiphenyl	7012375	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',5,5'-Tetrachlorobiphenyl	35693993	mg kg-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',4,5,5'-Pentachlorobiphenyl	37680732	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,3,4,4',5-Pentachlorobiphenyl	31508006	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',3,4,4',5-Hexachlorobiphenyl	35065282	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',4,4',5,5'-Hexachlorobiphenyl	35065271	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',3,4,4',5,5'-Heptachlorobiphenyl	35065293	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2920	Catechols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Phenol	108952	mg kg-1	М	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Cresols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Xylenols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Naphthols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Trimethyl phenols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Phenols (total)		mg kg-1	N	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2010	рН		-	М	7.7	8.3	7.8	7.7	8.2	8.1	7.9	7.2
2186	Asbestos Containing Material		-	U	not found	not found	not found	not found	not found	not found	not found	not found

FAO Andrea Grossey

### LABORATORY TEST REPORT



Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

					89511							
					AF09655	AF09656	AF09657	AF09658	AF09659	AF09660	AF09661	AF09662
					BHF	BHF	BHF	BHG	BHG	BHG	BHG	BHG
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010
					0.5m	1.5m	3m	0.5m	1m	1.5m	2.5m	4m
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
2790	Benzo[k]fluoranthene	207089	mg kg-1	N	<0.5	<0.5	<0.5	1.5	3.8	1.3	<0.5	<0.5
2792	Benzo[a]pyrene	50328	mg kg-1	N	0.93	<0.5	<0.5	3.2	9.1	2.8	<0.5	<0.5
	Indeno[1,2,3-cd]pyrene	193395	mg kg-1	N	<0.5	<0.5	<0.5	1.7	6.1	1.7	<0.5	<0.5
	Dibenzo[a,h]anthracene	53703	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<0.5	<0.5
	Benzo[g,h,i]perylene	191242	mg kg-1	N	<0.5	<0.5	<0.5	1.9	7.6	2.1	<0.5	<0.5
2792	Tentatively Identified Compounds		mg kg-1		Not detected	Not detected	Not detected	Not detected	None Detected	Not detected	Not detected	Not detected
2810	2,4,4'-Trichlorobiphenyl	7012375	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',5,5'-Tetrachlorobiphenyl	35693993	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',4,5,5'-Pentachlorobiphenyl	37680732	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,3,4,4',5-Pentachlorobiphenyl	31508006	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',3,4,4',5-Hexachlorobiphenyl	35065282	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',4,4',5,5'-Hexachlorobiphenyl	35065271	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',3,4,4',5,5'-Heptachlorobiphenyl	35065293	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2920	Catechols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Phenol	108952	mg kg-1	М	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Cresols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Xylenols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Naphthols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Trimethyl phenols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Phenols (total)		mg kg-1	N	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2010	рН		-	М	7.9	7.7	7.5	8.7	7.9	8.1	8.2	8.7
2186	Asbestos Containing Material		-	U	not found	not found	not found	not found	not found	not found	not found	not found

# LABORATORY TEST REPORT



09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

FAO Andrea Grossey

				89511						
				AF09663 AF09664 AF09665 AF09665			AF09666	AF09667	AF09668	
				WS1	WS1	WS2	WS2	WS3	WS3	
				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	
				0.25m	1m	0.5m	1m	0.25m	0.75m	
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
Renzolklifuoranthene	207080	ma ka-1	NI	0.80	1.0	12	21	1 3	<0.5	
					-			-	0.60	
217									<0.5	
						-	-			
									<0.5	
10 11 1	191242		N						<0.5	
, ,									Not detected	
			N	-		-	-	-	<0.1	
2,2',5,5'-Tetrachlorobiphenyl	35693993	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2,2',4,5,5'-Pentachlorobiphenyl	37680732	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2,3,4,4',5-Pentachlorobiphenyl	31508006	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2,2',3,4,4',5-Hexachlorobiphenyl	35065282	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2,2',4,4',5,5'-Hexachlorobiphenyl	35065271	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2,2',3,4,4',5,5'-Heptachlorobiphenyl	35065293	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Catechols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenol	108952	mg kg-1	М	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Cresols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Xylenols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Naphthols			N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Trimethyl phenols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols (total)			N	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
, ,		-	М	7.7	7.7	7.8	7.9	6.2	6.2	
<u> </u>		-	U	not found	not found	not found	not found	not found	not found	
	2,4,4'-Trichlorobiphenyl 2,2',5,5'-Tetrachlorobiphenyl 2,2',4,5,5'-Pentachlorobiphenyl 2,3,4,4',5-Pentachlorobiphenyl 2,2',3,4,4',5-Hexachlorobiphenyl 2,2',4,4',5,5'-Hexachlorobiphenyl 2,2',3,4,4',5,5'-Heptachlorobiphenyl Catechols Phenol Cresols Xylenols Naphthols Trimethyl phenols	Benzo[a]pyrene         50328           Indeno[1,2,3-cd]pyrene         193395           Dibenzo[a,h]anthracene         53703           Benzo[g,h,i]perylene         191242           Tentatively Identified Compounds         7012375           2,4,4'-Trichlorobiphenyl         35693993           2,2',5,5'-Tetrachlorobiphenyl         37680732           2,3,4,4',5-Pentachlorobiphenyl         31508006           2,2',3,4,4',5-Hexachlorobiphenyl         35065282           2,2',4,4',5,5'-Hexachlorobiphenyl         35065271           2,2',3,4,4',5,5'-Heptachlorobiphenyl         35065293           Catechols         Phenol           Phenol         108952           Cresols         Xylenols           Naphthols         Trimethyl phenols           Phenols (total)         phenols (total)	Benzo[a]pyrene         50328         mg kg-¹           Indeno[1,2,3-cd]pyrene         193395         mg kg-¹           Dibenzo[a,h]anthracene         53703         mg kg-¹           Benzo[g,h,i]perylene         191242         mg kg-¹           Tentatively Identified Compounds         mg kg-¹           2,4,4'-Trichlorobiphenyl         7012375         mg kg-¹           2,2',5,5'-Tetrachlorobiphenyl         35693993         mg kg-¹           2,2',4,5,5'-Pentachlorobiphenyl         37680732         mg kg-¹           2,3,4,4',5-Pentachlorobiphenyl         35065282         mg kg-¹           2,2',3,4,4',5,5'-Hexachlorobiphenyl         35065282         mg kg-¹           2,2',3,4,4',5,5'-Hexachlorobiphenyl         35065293         mg kg-¹           2,2',3,4,4',5,5'-Heptachlorobiphenyl         35065293         mg kg-¹           Catechols         mg kg-¹         mg kg-¹           Phenol         108952         mg kg-¹           Cresols         mg kg-¹         mg kg-¹           Naphthols         mg kg-¹         mg kg-¹           Trimethyl phenols         mg kg-¹         mg kg-¹           Phenols (total)         mg kg-¹         mg kg-¹	Benzo[a]pyrene         50328         mg kg-¹         N           Indeno[1,2,3-cd]pyrene         193395         mg kg-¹         N           Dibenzo[a,h]anthracene         53703         mg kg-¹         N           Benzo[g,h,i]perylene         191242         mg kg-¹         N           Tentatively Identified Compounds         mg kg-¹         N           2,4,4'-Trichlorobiphenyl         7012375         mg kg-¹         N           2,2',5,5'-Tetrachlorobiphenyl         35693993         mg kg-¹         N           2,2',4,5,5'-Pentachlorobiphenyl         37680732         mg kg-¹         N           2,3,4,4',5-Pentachlorobiphenyl         35065282         mg kg-¹         N           2,2',3,4,4',5-Hexachlorobiphenyl         35065282         mg kg-¹         N           2,2',3,4,4',5,5'-Hexachlorobiphenyl         35065271         mg kg-¹         N           2,2',3,4,4',5,5'-Heptachlorobiphenyl         35065293         mg kg-¹         N           Catechols         mg kg-¹         N           Phenol         108952         mg kg-¹         N           Cresols         mg kg-¹         N           Naphthols         mg kg-¹         N           Trimethyl phenols         mg kg-¹         N	WS1	WS1   WS1   WS1	AF09663   AF09664   AF09665   WS1   WS2	Benzo[k]fluoranthene   207089   mg kg-¹   N   0.80   1.0   4.2   21	AF09663   AF09664   AF09665   AF09666   AF09666   AF09666   WS1   WS1   WS2   WS2   WS3   WS1   WS1   WS2   WS2   WS3   WS3   WS1   WS2   WS2   WS3   WS3   WS1   WS2   WS3   WS3   WS1   WS2   WS3   WS3   WS1   WS2   WS3   WS3   WS3   WS1   WS2   WS3   WS3   WS1   WS2   WS3   WS3   WS3   WS2   WS3   WS3   WS3   WS2   WS3   WS3   WS3   WS2   WS3   WS3   WS2   WS3   WS3   WS2   WS3   WS3   WS2   WS3   WS2   WS3   WS3   WS2   WS3   WS2   WS3   WS2   WS3   WS2   WS3   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5   WS5	



**Waste Acceptance Criteria Waste Parameters** 

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT FAO Andrea Grossey

## Results of analysis of 5 samples received 21 July 2010

Twickenham Railway Station - 241458

Report Date 28 July 2010

Login Batch No Chemtest LIMS ID Sample ID					Inert waste	Limit values Stable	Hazardous	<b>113013</b> AF14408 BHA
Sample No					landfill	non-reactive	waste landfill	
Depth						hazardous waste in		0.5m - 2m
Matrix						non-hazardous		SOIL
Determinand↓	SOP↓	*	CAS No↓	Units↓		landfill		
Total Organic Carbon	2625	М		%	3	5	6	1.1
Loss on ignition	2610	N		%			10	2.74
Benzene	2760	М	71432	μg kg-¹				< 1
Toluene	2760	М	108883	μg kg-¹				< 1
Ethyl benzene	2760	М	100414	μg kg-¹				< 1
m- & p-Xylene	2760	М	1330207	μg kg-¹				< 1
o-Xylene	2760	М	95476	μg kg-¹				< 1
Total BTEX	2761	М		mg kg-1	6			<0.005
PCB 28	2810	N	7012375	mg kg-1				<0.1
PCB 52	2810	N	35693993	mg kg-1				<0.1
PCB 101	2810	N	37680732	mg kg-1				<0.1
PCB 118	2810	N	31508006	mg kg-1				<0.1
PCB 138	2810	N	35065282	mg kg-1				<0.1
PCB 153	2810	N	35065271	mg kg-1				<0.1
PCB 180	2810	N	35065293	mg kg-1				<0.1
Total PCBs (7 congeners)	2811	N		mg kg-1	1			<1
Naphthalene	2700	М	91203	mg kg-1				<0.1
Acenaphthylene	2700	М	208968	mg kg-1				<0.1
Acenaphthene	2700	М	83329	mg kg-1				<0.1
Fluorene	2700	М	86737	mg kg-1				<0.1
Phenanthrene	2700	М	85018	mg kg-1				1.4
Anthracene	2700	М	120127	mg kg-1				0.4
Fluoranthene	2700	М	206440	mg kg-1				3.3
Pyrene	2700	М	129000	mg kg-1				2.9
Benzo[a]anthracene	2700	М	56553	mg kg-1				1.6
Chrysene	2700	М	218019	mg kg-1				1.8
Benzo[b]fluoranthene	2700	М	205992	mg kg-1				2.4
Benzo[k]fluoranthene	2700	М	207089	mg kg-1				1.3
Benzo[a]pyrene	2700	М	50328	mg kg-1				2.4
Dibenzo[a,h]anthracene	2700	М	53703	mg kg-1				1.6
Indeno[1,2,3-cd]pyrene	2700	М	193395	mg kg-1				0.4
Benzo[g,h,i]perylene	2700	М	191242	mg kg-1				1.3
Coronene	2700	N	191071	mg kg-1				<0.1
Total (of 17) PAHs	2700	N		mg kg-1	100			21
pH	2010	М		-		>6		9.4
Acid Neutralisation Capacity	2015	N	ANC	mol kg-1		To evaluate	To evaluate	0.017
TPH Total WAC	2670	N		mg kg-1	500			23

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

* Accreditation status Report page 1 of 2

Report sample ID range AF14408 to AF15181

Column page

**Waste Acceptance Criteria Waste Parameters** 

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

FAO Andrea Grossey

## Results of analysis of 5 samples received 21 July 2010

Report Date 28 July 2010

Twickenham Railway Station - 241458

Login Batch No								113013
Chemtest LIMS ID								AF14409
Sample ID								BHB
Sample No								
Depth								0.5m - 3m
Matrix								SOIL
Determinand↓	SOF	<b>)</b>	CAS N	o↓ Units↓				
Total Organic Carbon	2625	М		%	3	5	6	0.91
Loss on ignition	2610	N		%			10	2.37
Benzene	2760	М	71432	μg kg-¹				< 1
Toluene	2760	М	108883	μg kg-¹				< 1
Ethyl benzene	2760	М	100414	μg kg-¹				< 1
m- & p-Xylene	2760	М	1330207	μg kg-¹				< 1
o-Xylene	2760	М	95476	μg kg-¹				< 1
Total BTEX	2761	М		mg kg-1	6			<0.005
PCB 28	2810	N	7012375	mg kg-1				<0.1
PCB 52	2810	N	35693993	mg kg-1				<0.1
PCB 101	2810	N	37680732	mg kg-1				<0.1
PCB 118	2810	N	31508006	mg kg-1				<0.1
PCB 138	2810	N	35065282	mg kg-1				<0.1
PCB 153	2810	N	35065271	mg kg-1				<0.1
PCB 180	2810	N	35065293	mg kg-1				<0.1
Total PCBs (7 congeners)	2811	N		mg kg-1	1			<1
Naphthalene	2700	М	91203	mg kg-1				<0.1
Acenaphthylene	2700	М	208968	mg kg-1				0.4
Acenaphthene	2700	М	83329	mg kg-1				0.7
Fluorene	2700	М	86737	mg kg-1				0.3
Phenanthrene	2700	М	85018	mg kg-1				6.9
Anthracene	2700	М	120127	mg kg-1				1.3
Fluoranthene	2700	М	206440	mg kg-1				9.8
Pyrene	2700	М	129000	mg kg-1				8.8
Benzo[a]anthracene	2700	М	56553	mg kg-1				3.7
Chrysene	2700	М	218019	mg kg-1				3.4
Benzo[b]fluoranthene	2700	М	205992	mg kg-1				3.9
Benzo[k]fluoranthene	2700	М	207089	mg kg-1				2.3
Benzo[a]pyrene	2700	М	50328	mg kg-1				4
Dibenzo[a,h]anthracene	2700	М	53703	mg kg-1				2.5
Indeno[1,2,3-cd]pyrene	2700	М	193395	mg kg-1				0.7
Benzo[g,h,i]perylene	2700	М	191242	mg kg-1				2.2
Coronene	2700	N	191071	mg kg-1				<0.1
Total (of 17) PAHs	2700	N		mg kg-1	100			51
pH	2010	М		-		>6		9.0
Acid Neutralisation Capacity	2015	N	ANC	mol kg-1		To evaluate	To evaluate	0.029
TPH Total WAC	2670	N		mg kg-1	500			150

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

Column page

Report page 1 of 2

Report sample ID range AF14408 to AF15181

**Waste Acceptance Criteria Waste Parameters** 

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

FAO Andrea Grossey

# Results of analysis of 5 samples received 21 July 2010

Report Date 28 July 2010

Twickenham Railway Station - 241458

Login Batch No Chemtest LIMS ID Sample ID Sample No								<b>113013</b> AF14410 BHC
Depth								2m - 3.5m
Matrix								SOIL
Determinand↓	SOF	o'T	CAS N	o↓ Units↓				
Total Organic Carbon	2625		0/10/11	%	3	5	6	1.8
Loss on ignition	2610	M		%	<u> </u>	5	10	3.41
Benzene	2760	N M	71432	µg kg-¹			10	< 1
Toluene	2760	M	108883	μg kg-1				< 1
Ethyl benzene	2760	M	100003	μg kg-1				< 1
m- & p-Xylene	2760	M	1330207	μg kg-1				< 1
o-Xylene	2760	M	95476	μg kg-1				< 1
Total BTEX	2761	M	33470	mg kg-1	6			<0.005
PCB 28	2810	N	7012375	mg kg- ¹				<0.1
PCB 52	2810	N	35693993	mg kg-1				<0.1
PCB 101	2810	N	37680732	mg kg-1				<0.1
PCB 118	2810	N	31508006	mg kg-1				<0.1
PCB 138	2810	N	35065282	mg kg- ¹				<0.1
PCB 153	2810	N	35065271	mg kg- ¹				<0.1
PCB 180	2810	N	35065293	mg kg- ¹				<0.1
Total PCBs (7 congeners)	2811	N	00000200	mg kg- ¹	1			<1
Naphthalene	2700	M	91203	mg kg-1	<u>-</u>			0.2
Acenaphthylene	2700	M	208968	mg kg-1				<0.1
Acenaphthene	2700	M	83329	mg kg-1				<0.1
Fluorene	2700	М	86737	mg kg-1				<0.1
Phenanthrene	2700	М	85018	mg kg-1				1.5
Anthracene	2700	М	120127	mg kg-1				<0.1
Fluoranthene	2700	М	206440	mg kg-1				2.5
Pyrene	2700	М	129000	mg kg-1				2.3
Benzo[a]anthracene	2700	М	56553	mg kg-1				1
Chrysene	2700	М	218019	mg kg-1				1
Benzo[b]fluoranthene	2700	М	205992	mg kg-1				1.6
Benzo[k]fluoranthene	2700	М	207089	mg kg-1				0.7
Benzo[a]pyrene	2700	М	50328	mg kg-1				3.2
Dibenzo[a,h]anthracene	2700	М	53703	mg kg-1				0.7
Indeno[1,2,3-cd]pyrene	2700	М	193395	mg kg-1				0.2
Benzo[g,h,i]perylene	2700	М	191242	mg kg-1				0.8
Coronene	2700	N	191071	mg kg-1				<0.1
Total (of 17) PAHs	2700	N		mg kg-1	100			16
рН	2010	М		-		>6		7.7
Acid Neutralisation Capacity	2015	N	ANC	mol kg-1		To evaluate	To evaluate	0.005
TPH Total WAC	2670	N		mg kg-1	500			22

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

Column page

Report page 1 of 2

Report sample ID range AF14408 to AF15181

**Waste Acceptance Criteria Waste Parameters** 

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Login Batch No

## Results of analysis of 5 samples received 21 July 2010

Report Date 28 July 2010

113013

FAO Andrea Grossey Twickenham Railway Station - 241458

Login Batch No								113013
Chemtest LIMS ID								AF15178
Sample ID								BHE
Sample No								
Depth								0.5m - 1.5m
Matrix								SOIL
Determinand↓	SOF	•↑	CAS N	o↓ Units	ı			
Total Organic Carbon	2625	М		%	3	5	6	3.4
Loss on ignition	2610	N		%			10	4.91
Benzene	2760	M	71432	μg kg-¹				< 1
Toluene	2760	M	108883	µg kg-¹				< 1
Ethyl benzene	2760	М	100414	µg kg-¹				< 1
m- & p-Xylene	2760	М	1330207	µg kg-¹				< 1
o-Xylene	2760	М	95476	μg kg-¹				< 1
Total BTEX	2761	М		mg kg-1	6			<0.005
PCB 28	2810	N	7012375	mg kg-1				<0.1
PCB 52	2810	N	35693993	mg kg-1				<0.1
PCB 101	2810	N	37680732	mg kg-1				<0.1
PCB 118	2810	N	31508006	mg kg-1				<0.1
PCB 138	2810	N	35065282	mg kg-1				<0.1
PCB 153	2810	N	35065271	mg kg-1				<0.1
PCB 180	2810	N	35065293	mg kg-1				<0.1
Total PCBs (7 congeners)	2811	N		mg kg-1	1			<1
Naphthalene	2700	М	91203	mg kg-1				<0.1
Acenaphthylene	2700	М	208968	mg kg-1				<0.1
Acenaphthene	2700	М	83329	mg kg-1				<0.1
Fluorene	2700	М	86737	mg kg-1				<0.1
Phenanthrene	2700	М	85018	mg kg-1				1
Anthracene	2700	М	120127	mg kg-1				0.2
Fluoranthene	2700	М	206440	mg kg-1				2
Pyrene	2700	М	129000	mg kg-1				1.9
Benzo[a]anthracene	2700	М	56553	mg kg-1				1
Chrysene	2700	М	218019	mg kg-1				1.2
Benzo[b]fluoranthene	2700	М	205992	mg kg-1				1.5
Benzo[k]fluoranthene	2700	М	207089	mg kg-1				1.1
Benzo[a]pyrene	2700	М	50328	mg kg-1				1.3
Dibenzo[a,h]anthracene	2700	М	53703	mg kg-1				0.9
Indeno[1,2,3-cd]pyrene	2700	М	193395	mg kg-1				0.4
Benzo[g,h,i]perylene	2700	М	191242	mg kg-1				0.7
Coronene	2700	N	191071	mg kg-1				<0.1
Total (of 17) PAHs	2700	N		mg kg-1	100			13
pH	2010	М		-		>6		9.6
Acid Neutralisation Capacity	2015	N	ANC	mol kg-1		To evaluate	To evaluate	0.034
TPH Total WAC	2670	N		mg kg-1	500			25
						1		

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

Column page

Report page 1 of 2

Report sample ID range AF14408 to AF15181

**Waste Acceptance Criteria Waste Parameters** 

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

#### Results of analysis of 5 samples received 21 July 2010

Report Date 28 July 2010

FAO Andrea Grossey Twickenham Railway Station - 241458

Login Batch No Chemtest LIMS ID Sample ID Sample No								<b>113013</b> AF15179 BHF
Depth								0.5m - 1m
Matrix								SOIL
Determinand↓	SOF	o'T	CAS N	o↓ Units√	L			
Total Organic Carbon	2625	М	0,1011	%	3	5	6	3.2
Loss on ignition	2610	N		%	3	3	10	2.88
Benzene	2760	M	71432	μg kg- ¹			10	< 1
Toluene	2760	M	108883	μg kg- ¹				< 1
Ethyl benzene	2760	M	100003	μg kg- ¹				< 1
m- & p-Xylene	2760	M	1330207	μg kg- ¹				< 1
o-Xylene	2760	M	95476	μg kg- ¹				< 1
Total BTEX	2761	M	33470	mg kg-1	6			<0.005
PCB 28	2810	N	7012375	mg kg-1	0			<0.1
PCB 52	2810	N	35693993	mg kg-1				<0.1
PCB 101	2810	N	37680732	mg kg-1				<0.1
PCB 118	2810	N	31508006	mg kg-1				<0.1
PCB 138	2810	N	35065282	mg kg-1				<0.1
PCB 153	2810	N	35065271	mg kg-1				<0.1
PCB 180	2810	N	35065293	mg kg-1				<0.1
Total PCBs (7 congeners)	2811	N	00000200	mg kg-1	1			<1
Naphthalene	2700	M	91203	mg kg-1				<0.1
Acenaphthylene	2700	M	208968	mg kg-1				0.3
Acenaphthene	2700	M	83329	mg kg-1				<0.1
Fluorene	2700	M	86737	mg kg-1				0.2
Phenanthrene	2700	M	85018	mg kg-1				4.6
Anthracene	2700	M	120127	mg kg-1				1
Fluoranthene	2700	M	206440	mg kg- ¹				8.8
Pyrene	2700	M	129000	mg kg-1				7.3
Benzo[a]anthracene	2700	M	56553	mg kg-1				4
Chrysene	2700	M	218019	mg kg-1				4.4
Benzo[b]fluoranthene	2700	M	205992	mg kg-1				3.8
Benzo[k]fluoranthene	2700	M	207089	mg kg-1				4.3
Benzo[a]pyrene	2700	M	50328	mg kg-1				4.8
Dibenzo[a,h]anthracene	2700	M	53703	mg kg-1				3
Indeno[1,2,3-cd]pyrene	2700	M	193395	mg kg-1				0.8
Benzo[g,h,i]perylene	2700	M	191242	mg kg-1				3.1
Coronene	2700	N	191071	mg kg-1				<0.1
Total (of 17) PAHs	2700	N		mg kg-1	100			50
рН	2010	M		-		>6		9.6
Acid Neutralisation Capacity	2015	N	ANC	mol kg-1		To evaluate	To evaluate	0.022
TPH Total WAC	2670	N		mg kg-1	500			160

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

Column page

Report page 1 of 2

Report sample ID range

AF14408 to AF15181



Waste Acceptance Criteria BS EN 12457 Part 3 2 Stage

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

FAO Andrea Grossey

## Results of analysis of 5 samples received 21 July 2010

Twickenham Railway Station - 241458

Report Date 28 July 2010

Login Batch No								113013
Chemtest LIMS ID						Limit values		AF14413
Sample ID					Inert waste	Stable	Hazardous	BHA
Sample No					landfill	non-reactive	waste landfill	
Depth						hazardous waste in		0.5m - 2m
Matrix						non-hazardous		LEACHATE
Determinand↓	SOP↓	*	CAS No↓	Units↓		landfill		
As (arsenic) L/S=2	1450	N	7440382	mg kg-1				<0.05
Ba (barium) L/S=2	1450	N	7440393	mg kg-1				<0.5
Cd (cadmium) L/S=2	1450	N	7440439	mg kg-1				<0.01
Cr (chromium) L/S=2	1450	Ν	7440473	mg kg-1				<0.05
Cu (copper) L/S=2	1450	Ν	7440508	mg kg-1				0.07
Hg (mercury) L/S=2	1450	N	7439976	mg kg-1				<0.005
Mo (molybdenum) L/S=2	1450	N	7439987	mg kg-1				0.15
Ni (nickel) L/S=2	1450	N	7440020	mg kg-1				<0.05
Pb (lead) L/S=2	1450	Ν	7439921	mg kg-1				<0.05
Sb (antimony) L/S=2	1450	N	7440360	mg kg-1				0.01
Se (selenium) L/S=2	1450	N	7782492	mg kg-1				0.01
Zn (zinc) L/S=2	1450	N	7440666	mg kg-1				<0.5
CI (chloride) L/S=2	1220	N	16887006	mg kg-1				50
F (fluoride) L/S=2	1220	Ν	16984488	mg kg-1				2.4
SO4 (sulfate) L/S=2	1220	N	14808798	mg kg-1				148
Total Dissolved Solids L/S=2	1610	N	TDS	mg kg-1				540
Phenol index L/S=2	1920	N	108952	mg kg-1				<0.5
Dissolved Organic Carbon L/S=2	1610	N	DOC	mg kg-1				74.1
As (arsenic) L/S=10	1450	Ν	7440382	mg kg-1	0.5	2	25	<0.05
Ba (barium) L/S=10	1450	N	7440393	mg kg-1	20	100	300	<0.5
Cd (cadmium) L/S=10	1450	N	7440439	mg kg-1	0.04	1	5	<0.01
Cr (chromium) L/S=10	1450	Ν	7440473	mg kg-1	0.5	10	70	<0.05
Cu (copper) L/S=10	1450	N	7440508	mg kg-1	2	50	100	0.12
Hg (mercury) L/S=10	1450	Ν	7439976	mg kg-1	0.01	0.2	2	<0.005
Mo (molybdenum) L/S=10	1450	N	7439987	mg kg-1	0.5	10	30	0.17
Ni (nickel) L/S=10	1450	N	7440020	mg kg-1	0.4	10	40	<0.05
Pb (lead) L/S=10	1450	N	7439921	mg kg-1	0.5	10	50	<0.05
Sb (antimony) L/S=10	1450	N	7440360	mg kg-1	0.06	0.7	5	<0.01
Se (selenium) L/S=10	1450	Ν	7782492	mg kg-1	0.1	0.5	7	0.01
Zn (zinc) L/S=10	1450	N	7440666	mg kg-1	4	50	200	<0.5
CI (chloride) L/S=10	1220	N	16887006	mg kg-1	800	15000	25000	81
F (fluoride) L/S=10	1220	N	16984488	mg kg-1	10	150	500	6.31
SO4 (sulfate) L/S=10	1220	N	14808798	mg kg-1	1000	20000	50000	262
Total Dissolved Solids L/S=10	1610	N	TDS	mg kg-1	4000	60000	100000	1320
Phenol index L/S=10	1920	N	108952	mg kg-1	1			<0.5
Dissolved Organic Carbon L/S=10	1610	N	DOC	mg kg-1	500	800	1000	278

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

* Accreditation status Report page 2 of 2

Report sample ID range AF14408 to AF15181

Column page

Waste Acceptance Criteria BS EN 12457 Part 3 2 Stage

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT FAO Andrea Grossey

#### Results of analysis of 5 samples received 21 July 2010 Twickenham Railway Station - 241458

Report Date 28 July 2010

Login Batch No 113013 Chemtest LIMS ID AF14414 внв Sample ID Sample No 0.5m - 3m Depth LEACHATE Matrix Determinand↓ SOP↓ CAS No↓ Units↓ As (arsenic) L/S=2 1450 Ν 7440382 mg kg-1 < 0.05 Ba (barium) L/S=2 1450 Ν 7440393 mg kg-1 <0.5 Cd (cadmium) L/S=2 1450 7440439 <0.01 mg kg-1 Ν Cr (chromium) L/S=2 1450 Ν 7440473 mg kg-1 0.08 Cu (copper) L/S=2 1450 Ν 7440508 mg kg-1 < 0.05 Hg (mercury) L/S=2 1450 7439976 <0.005 Ν mg kg-1 Mo (molybdenum) L/S=2 1450 Ν 7439987 mg kg-1 0.1 Ni (nickel) L/S=2 1450 7440020 mg kg-1 < 0.05 Ν Pb (lead) L/S=2 <0.05 1450 Ν 7439921 mg kg-1 Sb (antimony) L/S=2 1450 7440360 0.01 Ν mg kg-1 1450 7782492 0.01 Se (selenium) L/S=2 Ν mg kg-1 1450 7440666 <0.5 Zn (zinc) L/S=2 Ν mg kg-1 66 CI (chloride) L/S=2 1220 Ν 16887006 mg kg-1 F (fluoride) L/S=2 1220 Ν 16984488 mg kg-1 <1 SO4 (sulfate) L/S=2 1220 Ν 14808798 mg kg-1 941 Total Dissolved Solids L/S=2 1610 TDS 1560 Ν mg kg-1 Phenol index L/S=2 1920 108952 <0.5 Ν mg kg-1 1610 Dissolved Organic Carbon L/S=2 DOC mg kg-1 <50 Ν As (arsenic) L/S=10 1450 7440382 0.5 2 25 <0.05 Ν mg kg-1 100 Ba (barium) L/S=10 1450 N 7440393 mg kg-1 20 300 <0.5 Cd (cadmium) L/S=10 1450 7440439 0.04 5 <0.01 Ν mg kg-1 1 Cr (chromium) L/S=10 1450 7440473 0.5 10 70 0.11 Ν mg kg-1 Cu (copper) L/S=10 1450 7440508 mg kg-1 2 50 100 < 0.05 Ν 7439976 0.01 <0.005 Hg (mercury) L/S=10 1450 Ν mg kg-1 0.2 2 Mo (molybdenum) L/S=10 1450 Ν 7439987 mg kg-1 0.5 10 30 0.11 Ni (nickel) L/S=10 1450 7440020 0.4 10 40 Ν mg kg-1 < 0.05 Pb (lead) L/S=10 1450 Ν 7439921 mg kg-1 0.5 10 50 < 0.05 Sb (antimony) L/S=10 1450 7440360 0.06 0.7 5 0.01 Ν mg kg-1 7 Se (selenium) L/S=10 1450 Ν 7782492 0.1 0.5 0.01 mg kg-1 < 0.5 Zn (zinc) L/S=10 1450 7440666 4 50 200 Ν mg kg-1 800 15000 25000 82.4 CI (chloride) L/S=10 1220 Ν 16887006 mg kg-1 F (fluoride) L/S=10 1220 Ν 16984488 mg kg-1 10 150 500 2.52 SO4 (sulfate) L/S=10 1220 Ν 14808798 mg kg-1 1000 20000 50000 1090 Total Dissolved Solids L/S=10 1610 Ν TDS mg kg-1 4000 60000 100000 2510 Phenol index L/S=10 1920 108952 1 <0.5 Ν mg kg-1

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

1610

DOC

Dissolved Organic Carbon L/S=10

Column page

159

Report page 2 of 2

Report sample ID range AF14408 to AF15181

1000

800

mg kg-1

500

Waste Acceptance Criteria BS EN 12457 Part 3 2 Stage

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT FAO Andrea Grossey

#### Results of analysis of 5 samples received 21 July 2010 Twickenham Railway Station - 241458

Report Date 28 July 2010

Login Batch No 113013 Chemtest LIMS ID AF14415 Sample ID BHC Sample No 2m - 3.5m Depth LEACHATE Matrix Determinand↓ SOP↓ CAS No↓ Units↓ As (arsenic) L/S=2 1450 Ν 7440382 mg kg-1 < 0.05 Ba (barium) L/S=2 1450 Ν 7440393 mg kg-1 <0.5 Cd (cadmium) L/S=2 1450 7440439 <0.01 mg kg-1 Ν Cr (chromium) L/S=2 1450 Ν 7440473 mg kg-1 < 0.05 Cu (copper) L/S=2 1450 Ν 7440508 mg kg-1 < 0.05 Hg (mercury) L/S=2 1450 7439976 <0.005 Ν mg kg-1 Mo (molybdenum) L/S=2 1450 Ν 7439987 mg kg-1 <0.05 Ni (nickel) L/S=2 1450 7440020 mg kg-1 < 0.05 Ν Pb (lead) L/S=2 1450 Ν 7439921 mg kg-1 < 0.05 Sb (antimony) L/S=2 1450 7440360 <0.01 Ν mg kg-1 1450 0.01 Se (selenium) L/S=2 Ν 7782492 mg kg-1 1450 7440666 <0.5 Zn (zinc) L/S=2 Ν mg kg-1 36 CI (chloride) L/S=2 1220 Ν 16887006 mg kg-1 F (fluoride) L/S=2 1220 Ν 16984488 mg kg-1 1.28 SO4 (sulfate) L/S=2 1220 Ν 14808798 mg kg-1 122 Total Dissolved Solids L/S=2 1610 TDS 561 Ν mg kg-1 Phenol index L/S=2 1920 108952 < 0.5 Ν mg kg-1 1610 Dissolved Organic Carbon L/S=2 DOC mg kg-1 82.1 Ν As (arsenic) L/S=10 1450 7440382 0.5 2 25 <0.05 Ν mg kg-1 100 Ba (barium) L/S=10 1450 N 7440393 mg kg-1 20 300 <0.5 Cd (cadmium) L/S=10 1450 7440439 0.04 5 <0.01 Ν mg kg-1 1 Cr (chromium) L/S=10 1450 7440473 0.5 10 70 < 0.05 Ν mg kg-1 Cu (copper) L/S=10 1450 7440508 mg kg-1 2 50 100 < 0.05 Ν 7439976 0.01 Hg (mercury) L/S=10 1450 Ν mg kg-1 0.2 2 < 0.005 Mo (molybdenum) L/S=10 1450 Ν 7439987 mg kg-1 0.5 10 30 < 0.05 Ni (nickel) L/S=10 1450 7440020 0.4 10 40 Ν mg kg-1 < 0.05 Pb (lead) L/S=10 1450 Ν 7439921 mg kg-1 0.5 10 50 < 0.05 Sb (antimony) L/S=10 1450 7440360 0.06 0.7 5 <0.01 Ν mg kg-1 7 Se (selenium) L/S=10 1450 Ν 7782492 0.1 0.5 <0.01 mg kg-1 < 0.5 Zn (zinc) L/S=10 1450 7440666 4 50 200 Ν mg kg-1 800 15000 25000 104 CI (chloride) L/S=10 1220 Ν 16887006 mg kg-1 F (fluoride) L/S=10 1220 Ν 16984488 mg kg-1 10 150 500 5.83

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

1220

1610

1920

1610

Ν

Ν

Ν

14808798

TDS

108952

DOC

SO4 (sulfate) L/S=10

Phenol index L/S=10

Total Dissolved Solids L/S=10

Dissolved Organic Carbon L/S=10

Column page

3

191

1280

<0.5

239

Report page 2 of 2

Report sample ID range AF

50000

100000

1000

AF14408 to AF15181

mg kg-1

mg kg-1

mg kg-1

mg kg-1

1000

4000

1

500

20000

60000

800

Waste Acceptance Criteria BS EN 12457 Part 3 2 Stage

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

## Results of analysis of 5 samples received 21 July 2010

Report Date 28 July 2010

FAO Andrea Grossey Twickenham Railway Station - 241458

Login Batch No								113013
Chemtest LIMS ID								AF15180
Sample ID								BHE
Sample No								
Depth								0.5m - 1.5m
Matrix								LEACHATE
Determinand↓	SOP	<b>)</b> \	CAS N	o↓ Units↓				
As (arsenic) L/S=2	1450	N	7440382	mg kg-1				<0.05
Ba (barium) L/S=2	1450	N	7440393	mg kg-1				<0.5
Cd (cadmium) L/S=2	1450	N	7440439	mg kg-1				<0.01
Cr (chromium) L/S=2	1450	N	7440473	mg kg-1				<0.05
Cu (copper) L/S=2	1450	N	7440508	mg kg-1				<0.05
Hg (mercury) L/S=2	1450	N	7439976	mg kg-1				<0.005
Mo (molybdenum) L/S=2	1450	N	7439987	mg kg-1				0.06
Ni (nickel) L/S=2	1450	N	7440020	mg kg-1				<0.05
Pb (lead) L/S=2	1450	N	7439921	mg kg-1				<0.05
Sb (antimony) L/S=2	1450	N	7440360	mg kg-1				0.01
Se (selenium) L/S=2	1450	N	7782492	mg kg-1				0.02
Zn (zinc) L/S=2	1450	N	7440666	mg kg-1				<0.5
CI (chloride) L/S=2	1220	N	16887006	mg kg-1				84.1
F (fluoride) L/S=2	1220	Ν	16984488	mg kg-1				1.34
SO4 (sulfate) L/S=2	1220	N	14808798	mg kg-1				240
Total Dissolved Solids L/S=2	1610	N	TDS	mg kg-1				741
Phenol index L/S=2	1920	N	108952	mg kg-1				<0.5
Dissolved Organic Carbon L/S=2	1610	N	DOC	mg kg-1				<50
As (arsenic) L/S=10	1450	N	7440382	mg kg-1	0.5	2	25	0.14
Ba (barium) L/S=10	1450	N	7440393	mg kg-1	20	100	300	<0.5
Cd (cadmium) L/S=10	1450	N	7440439	mg kg-1	0.04	1	5	<0.01
Cr (chromium) L/S=10	1450	N	7440473	mg kg-1	0.5	10	70	0.12
Cu (copper) L/S=10	1450	N	7440508	mg kg-1	2	50	100	0.06
Hg (mercury) L/S=10	1450	N	7439976	mg kg-1	0.01	0.2	2	<0.005
Mo (molybdenum) L/S=10	1450	N	7439987	mg kg-1	0.5	10	30	0.12
Ni (nickel) L/S=10	1450	N	7440020	mg kg-1	0.4	10	40	<0.05
Pb (lead) L/S=10	1450	N	7439921	mg kg-1	0.5	10	50	0.14
Sb (antimony) L/S=10	1450	N	7440360	mg kg-1	0.06	0.7	5	0.05
Se (selenium) L/S=10	1450	N	7782492	mg kg-1	0.1	0.5	7	0.04
Zn (zinc) L/S=10	1450	N	7440666	mg kg-1	4	50	200	<0.5
CI (chloride) L/S=10	1220	N	16887006	mg kg-1	800	15000	25000	149
F (fluoride) L/S=10	1220	N	16984488	mg kg-1	10	150	500	4.78
SO4 (sulfate) L/S=10	1220	N	14808798	mg kg-1	1000	20000	50000	475
Total Dissolved Solids L/S=10	1610	N	TDS	mg kg-1	4000	60000	100000	1430
Phenol index L/S=10	1920	N	108952	mg kg-1	1			<0.5
Dissolved Organic Carbon L/S=10	1610	N	DOC	mg kg-1	500	800	1000	290

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

Column page 4

Report page 2 of 2

range AF14408 to AF15181

Report sample ID range

Waste Acceptance Criteria BS EN 12457 Part 3 2 Stage

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

# Results of analysis of 5 samples received 21 July 2010

Report Date 28 July 2010

FAO Andrea Grossey Twickenham Railway Station - 241458

Login Batch No Chemtest LIMS ID								<b>113013</b> AF15181
Sample ID								BHF
Sample No								
Depth								0.5m - 1m
Matrix								LEACHATE
Determinand↓	SOF	οı	CAS N	o↓ Units√	I			
						T		10.05
As (arsenic) L/S=2	1450	N	7440382	mg kg-1				<0.05
Ba (barium) L/S=2	1450	N	7440393	mg kg-1				<0.5
Cd (cadmium) L/S=2	1450	N	7440439	mg kg-1				<0.01
Cr (chromium) L/S=2	1450	N	7440473	mg kg-1				<0.05
Cu (copper) L/S=2	1450	N	7440508	mg kg-1				<0.05
Hg (mercury) L/S=2	1450	N	7439976	mg kg-1				<0.005
Mo (molybdenum) L/S=2	1450	N	7439987	mg kg-1				0.11
Ni (nickel) L/S=2	1450	N	7440020	mg kg-1				<0.05
Pb (lead) L/S=2	1450	N	7439921	mg kg-1				<0.05
Sb (antimony) L/S=2	1450	N	7440360	mg kg-1				0.02
Se (selenium) L/S=2	1450	N	7782492	mg kg-1				0.01
Zn (zinc) L/S=2	1450	N	7440666	mg kg-1				<0.5
CI (chloride) L/S=2	1220	N	16887006	mg kg-1				126
F (fluoride) L/S=2	1220	N	16984488	mg kg-1				1.38
SO4 (sulfate) L/S=2	1220	N	14808798	mg kg-1				320
Total Dissolved Solids L/S=2	1610	N	TDS	mg kg-1				859
Phenol index L/S=2	1920	N	108952	mg kg-1				<0.5
Dissolved Organic Carbon L/S=2	1610	N	DOC	mg kg-1				67.9
As (arsenic) L/S=10	1450	N	7440382	mg kg-1	0.5	2	25	0.13
Ba (barium) L/S=10	1450	N	7440393	mg kg-1	20	100	300	<0.5
Cd (cadmium) L/S=10	1450	N	7440439	mg kg-1	0.04	1	5	<0.01
Cr (chromium) L/S=10	1450	N	7440473	mg kg-1	0.5	10	70	<0.05
Cu (copper) L/S=10	1450	N	7440508	mg kg-1	2	50	100	0.1
Hg (mercury) L/S=10	1450	N	7439976	mg kg-1	0.01	0.2	2	<0.005
Mo (molybdenum) L/S=10	1450	N	7439987	mg kg-1	0.5	10	30	0.22
Ni (nickel) L/S=10	1450	N	7440020	mg kg-1	0.4	10	40	<0.05
Pb (lead) L/S=10	1450	N	7439921	mg kg-1	0.5	10	50	0.21
Sb (antimony) L/S=10	1450	N	7440360	mg kg-1	0.06	0.7	5	0.07
Se (selenium) L/S=10	1450	N	7782492	mg kg-1	0.1	0.5	7	0.03
Zn (zinc) L/S=10	1450	N	7440666	mg kg-1	4	50	200	<0.5
CI (chloride) L/S=10	1220	N	16887006	mg kg-1	800	15000	25000	144
F (fluoride) L/S=10	1220	N	16984488	mg kg-1	10	150	500	6.63
SO4 (sulfate) L/S=10	1220	N	14808798	mg kg-1	1000	20000	50000	638
Total Dissolved Solids L/S=10	1610	N	TDS	mg kg-1	4000	60000	100000	1650
Phenol index L/S=10	1920	N	108952	mg kg-1	1			<0.5
Dissolved Organic Carbon L/S=10	1610	N	DOC	mg kg-1	500	800	1000	349

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

Column page

Report page 2 of 2

Report sample ID range

AF14408 to AF15181

FAO Andrea Grossey

## LABORATORY TEST REPORT



**Report Date** 20 August 2010

Results of analysis of 23 samples received 12 August 2010

Login E	Batch No							113	312			
Chemte	est LIMS ID				AF20654	AF20655	AF20656	AF20657	AF20658	AF20659	AF20660	AF20661
Sample	: ID				BHA	BHA	BHA	BHB	BHB	BHB	BHC	BHC
Sample	• No											
Sampli	ng Date				11/08/2010	11/08/2010	11/08/2010	11/08/2010	11/08/2010	11/08/2010	11/08/2010	11/08/2010
Depth					5.6m	10.95m - 11.05m	15m - 15.45m	5m	8.9m	14.9m	0.6m - 0.8m	5.9m
Matrix					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SOP↓	Determinand↓	CAS No↓	Units↓	*								
2175	Sulfur (total TRL report 447)		%	N							0.050	
2220	Chloride (extractable)	16887006	g l-¹	М							<0.010	
	Nitrate (extractable)	14797558	g l-¹	N							<0.010	
2120	Sulfate (2:1 water soluble) as SO4	14808798	g l-¹	М	0.31	0.44	0.79	0.03	0.58	0.05	0.07	0.01
2420	Magnesium (soluble)	7439954	g l-¹	N							<0.01	
2430	Sulfate (total) by BS1377 (HCl extract)	14808798	%	N							0.04	
2010	pH		-	М	7.8	8.1	7.6	7.8	7.7	8.1	8.3	8.0

FAO Andrea Grossey

## LABORATORY TEST REPORT



**Report Date** 20 August 2010

Results of analysis of 23 samples received 12 August 2010

Login	Batch No			113312									
Chemt	est LIMS ID				AF20662	AF20663	AF20664	AF20665	AF20666	AF20667	AF20668	AF20669	
Sample	e ID				BHC	BHC	BHD	BHD	BHE	BHE	BHE	BHE	
Sample	e No												
	ng Date				11/08/2010	11/08/2010	11/08/2010	11/08/2010	11/08/2010	11/08/2010	11/08/2010	11/08/2010	
Depth					9m - 9.45m	13.95m - 14.05m	10.95m - 11.05m	22.4m	5.9m	8.9m	12m - 12.45m	16.95m - 17.05m	
Matrix					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
SOP↓	Determinand↓	CAS No↓	Units↓	*									
2175	Sulfur (total TRL report 447)		%	N								0.44	
2220	Chloride (extractable)	16887006	g l-¹	М								<0.010	
	Nitrate (extractable)	14797558	g l-¹	N								<0.010	
2120	Sulfate (2:1 water soluble) as SO4	14808798	g l-¹	М	0.19	0.29	0.25	0.18	0.09	0.87	0.89	0.28	
2420	Magnesium (soluble)	7439954	g l-¹	N								0.03	
2430	Sulfate (total) by BS1377 (HCl extract)	14808798	%	N								0.06	
2010	рН		-	М	8.2	8.0	8.3	7.7	7.6	7.6	7.9	8.0	

FAO Andrea Grossey

## LABORATORY TEST REPORT



**Report Date** 20 August 2010

Results of analysis of 23 samples received 12 August 2010

Login Batch No								113312			
Chemtest LIMS ID					AF20670	AF20671	AF20672	AF20673	AF20674	AF20675	AF20676
Sample ID					BHE	BHF	BHF	BHG	BHG	BHG	BHG
Sample No											
Sampling Date					11/08/2010	11/08/2010	11/08/2010	11/08/2010	11/08/2010	11/08/2010	11/08/2010
Depth					21m - 21.45m	5.9m	7.4m	5.1m	11.9m	16.5m - 16.75m	25.5m - 25.9m
Matrix					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SOP↓ Determinand↓		CAS No↓	Units↓	*							
2175 Sulfur (total TRL re	oort 447)		%	N		0.070		0.37			
2220 Chloride (extractab	e)	16887006	g l-¹	М		<0.010		<0.010			
Nitrate (extractable	)	14797558	g l-¹	N		<0.010		<0.010			
2120 Sulfate (2:1 water s	oluble) as SO4	14808798	g l-¹	М	0.30	0.68	0.40	0.14	0.77	0.18	0.80
2420 Magnesium (soluble	e)	7439954	g l-¹	N		0.02		<0.01			
2430 Sulfate (total) by BS	S1377 (HCl extract)	14808798	%	N		0.13		0.03			
2010 pH			-	М	8.2	6.6	7.7	7.7	7.7	7.9	7.6

FAO Andrea Grossey

## LABORATORY TEST REPORT

The right chemistry to deliver results

Report Date

Results of analysis of 1 sample received 12 August 2010

241458 - Twickenham Railway Station

Report Date 16 August 2010

Chemtest LIMS ID   Sample ID   Sample ID   Sample ID   Sample ID   Sample ID   Sample No   Sampling Date   Depth   Matrix   SOP4   Determinand4   CAS No4   Units4	Login E	Batch No				113313
Sample No   Sampling Date   Depth   Matrix   SO/L	Chemte	est LIMS ID				
Sample No   Sampling Date   Depth   Depth   Depth   Depth   Depth   Depth   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destruined   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destrained   Destr	Sample	e ID				WS4
Deptin Matrix         0.75m           SOP1         Determinand↓         CAS No↓         Units↓         .           2180         Sulfur (elemental)         7704349         mg kg-¹         M         7           2300         Cyanide (free)         57125         mg kg-¹         M         < 0.5					•	
Matrix         SOPJ         Determinand↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         Units↓         CAS NoJ         M         CO.5         COS         COS         COS         CAS NoJ         M         CO.5         COS         COS         COS         COS         COS         COS         COS         COS         COS         COS         COS         COS         COS         COS         COS         COS         COS         COS         C	Sampli	ng Date			-	12/08/2010
SOP↓ Determinand↓	Depth					0.75m
2180 Sulfur (elemental)	Matrix					SOIL
2300   Cyanide (free)   57125   mg kg-1   M   < 0.5	SOP↓	Determinand↓	CAS No↓	Units↓	*	
Cyanide (total)         57125         mg kg-¹         M         < 0.5           Thiocyanate         302045         mg kg-¹         M         < 5.0	2180	Sulfur (elemental)	7704349	mg kg-1	M	
Thiocyanate 302045 mg kg-¹ M < 5.0  2325 Sulfide 18496258 mg kg-¹ M 2.9  2625 Total Organic Carbon	2300	-3 ()	57125		М	< 0.5
2325   Sulfide		, ,	57125	mg kg-1	M	< 0.5
2625         Total Organic Carbon         %         M         2.4           2220         Nitrate (extractable)         14797558         g l-¹         N         <0.010		Thiocyanate	302045	mg kg-1	M	< 5.0
2220 Nitrate (extractable)	2325	Sulfide	18496258	mg kg-1	M	2.9
Boron (hot water soluble)	2625	Total Organic Carbon		, -	M	2.4
Sulfate (2:1 water soluble) as SO4         14808798         g I-1         M         0.02           2425         Ammonium (extractable)         7664417         mg kg-1         M         < 0.5	2220	Nitrate (extractable)	14797558	g l-¹	N	<0.010
2425         Ammonium (extractable)         7664417         mg kg-¹         M         < 0.5	2120	Boron (hot water soluble)	7440428	mg kg-1	М	0.7
2450         Arsenic         7440382         mg kg-¹         M         31           Barium         7440393         mg kg-¹         M         78           Beryllium         7440417         mg kg-¹         U         <1.00		Sulfate (2:1 water soluble) as SO4	14808798	g I-1	М	0.02
Barium         7440393         mg kg-¹         M         78           Beryllium         7440417         mg kg-¹         U         <1.00	2425	Ammonium (extractable)	7664417	mg kg-1	М	< 0.5
Beryllium         7440417         mg kg-¹         U         <1.00           Cadmium         7440439         mg kg-¹         M         0.49           Chromium         7440473         mg kg-¹         M         33           Copper         7440508         mg kg-¹         M         71           Mercury         7439976         mg kg-¹         M         0.15           Nickel         7440020         mg kg-¹         M         45           Lead         7439921         mg kg-¹         M         180           Antimony         7440364         mg kg-¹         N         5.8           Selenium         7782492         mg kg-¹         M         0.21           Vanadium         7440622         mg kg-¹         M         55           Zinc         7440666         mg kg-¹         M         55           Zinc         7440666         mg kg-¹         N         < 1	2450	Arsenic	7440382	mg kg-1	М	31
Cadmium         7440439         mg kg-¹         M         0.49           Chromium         7440473         mg kg-¹         M         33           Copper         7440508         mg kg-¹         M         71           Mercury         7439976         mg kg-¹         M         0.15           Nickel         7440020         mg kg-¹         M         45           Lead         7439921         mg kg-¹         M         180           Antimony         7440364         mg kg-¹         N         5.8           Selenium         7782492         mg kg-¹         M         0.21           Vanadium         7440622         mg kg-¹         M         55           Zinc         7440666         mg kg-¹         M         150           2670         TPH >C6-C10         mg kg-¹         N         < 1		Barium	7440393	mg kg-1	М	78
Chromium         7440473         mg kg-¹         M         33           Copper         7440508         mg kg-¹         M         71           Mercury         7439976         mg kg-¹         M         0.15           Nickel         7440020         mg kg-¹         M         45           Lead         7439921         mg kg-¹         M         180           Antimony         7440364         mg kg-¹         N         5.8           Selenium         7782492         mg kg-¹         M         0.21           Vanadium         7440622         mg kg-¹         M         55           Zinc         7440666         mg kg-¹         M         150           2670         TPH >C6-C10         mg kg-¹         N         < 1		Beryllium	7440417	mg kg-1	U	<1.00
Copper         7440508         mg kg-¹         M         71           Mercury         7439976         mg kg-¹         M         0.15           Nickel         7440020         mg kg-¹         M         45           Lead         7439921         mg kg-¹         M         180           Antimony         7440364         mg kg-¹         N         5.8           Selenium         7782492         mg kg-¹         M         0.21           Vanadium         7440622         mg kg-¹         M         55           Zinc         7440666         mg kg-¹         M         150           2670         TPH >C6-C10         mg kg-¹         N         < 1		Cadmium	7440439	mg kg-1	М	0.49
Mercury   7439976   mg kg-1   M   0.15     Nickel   7440020   mg kg-1   M   45     Lead   7439921   mg kg-1   M   180     Antimony   7440364   mg kg-1   N   5.8     Selenium   7782492   mg kg-1   M   0.21     Vanadium   7440622   mg kg-1   M   55     Zinc   7440666   mg kg-1   M   150     Ze70   TPH > C6-C10   mg kg-1   N   < 1     TPH > C10-C25   mg kg-1   N   34     TPH > C25-C40   mg kg-1   N   33     Total Petroleum Hydrocarbons   mg kg-1   M   66     Ze75   TPH aliphatic > C5-C6   mg kg-1   N   < 0.1		Chromium	7440473	mg kg-1	М	33
Nickel         7440020         mg kg-¹         M         45           Lead         7439921         mg kg-¹         M         180           Antimony         7440364         mg kg-¹         N         5.8           Selenium         7782492         mg kg-¹         M         0.21           Vanadium         7440622         mg kg-¹         M         55           Zinc         7440666         mg kg-¹         M         150           2670         TPH >C6-C10         mg kg-¹         N         < 1		Copper	7440508	mg kg-1	М	71
Lead       7439921       mg kg-¹       M       180         Antimony       7440364       mg kg-¹       N       5.8         Selenium       7782492       mg kg-¹       M       0.21         Vanadium       7440622       mg kg-¹       M       55         Zinc       7440666       mg kg-¹       M       150         2670       TPH >C6-C10       mg kg-¹       N       < 1		Mercury	7439976	mg kg-1	М	0.15
Antimony 7440364 mg kg-1 N 5.8  Selenium 7782492 mg kg-1 M 0.21  Vanadium 7440622 mg kg-1 M 55  Zinc 7440666 mg kg-1 M 150  2670 TPH >C6-C10 mg kg-1 N < 1  TPH >C10-C25 mg kg-1 N 34  TPH >C25-C40 mg kg-1 N 33  Total Petroleum Hydrocarbons mg kg-1 M 66  2675 TPH aliphatic >C5-C6 mg kg-1 N < 0.1		Nickel	7440020	mg kg-1	М	45
Selenium         7782492         mg kg-¹         M         0.21           Vanadium         7440622         mg kg-¹         M         55           Zinc         7440666         mg kg-¹         M         150           2670         TPH >C6-C10         mg kg-¹         N         < 1		Lead	7439921	mg kg-1	М	180
Vanadium         7440622         mg kg-1         M         55           Zinc         7440666         mg kg-1         M         150           2670         TPH >C6-C10         mg kg-1         N         < 1		Antimony	7440364	mg kg-1	N	5.8
Zinc         7440666         mg kg-¹         M         150           2670         TPH > C6-C10         mg kg-¹         N         < 1		Selenium	7782492	mg kg-1	М	0.21
Z670         TPH > C6-C10         mg kg-¹         N         < 1           TPH > C10-C25         mg kg-¹         N         34           TPH > C25-C40         mg kg-¹         N         33           Total Petroleum Hydrocarbons         mg kg-¹         M         66           2675         TPH aliphatic > C5-C6         mg kg-¹         N         < 0.1		Vanadium	7440622	mg kg-1	М	55
TPH >C10-C25         mg kg-¹         N         34           TPH >C25-C40         mg kg-¹         N         33           Total Petroleum Hydrocarbons         mg kg-¹         M         66           2675         TPH aliphatic >C5-C6         mg kg-¹         N         < 0.1		Zinc	7440666	mg kg-1	М	150
TPH >C25-C40         mg kg-¹         N         33           Total Petroleum Hydrocarbons         mg kg-¹         M         66           2675         TPH aliphatic >C5-C6         mg kg-¹         N         < 0.1	2670	TPH >C6-C10		mg kg-1	N	< 1
Total Petroleum Hydrocarbons mg kg-1 M 66  2675 TPH aliphatic >C5-C6 mg kg-1 N < 0.1		TPH >C10-C25		mg kg-1	N	34
2675 TPH aliphatic >C5-C6 mg kg-1 N < 0.1		TPH >C25-C40		mg kg-1	N	33
· · · · · · · · · · · · · · · · · · ·		Total Petroleum Hydrocarbons		mg kg-1	М	66
TPH aliphatic >C6-C8 mg kg-1 N < 0.1	2675	TPH aliphatic >C5-C6		mg kg-1	N	< 0.1
		TPH aliphatic >C6-C8		mg kg-1	N	< 0.1

^{*} Accreditation status

FAO Andrea Grossey

## LABORATORY TEST REPORT



Report Date 16 August 2010

Results of analysis of 1 sample received 12 August 2010

241458 - Twickenham Railway Station

AF20680 WS4 12/08/2010
12/08/2010
0.75
SOIL
2675         TPH aliphatic >C8-C10         mg kg-¹         N         < 0.1
TPH aliphatic >C10-C12 mg kg-1 N < 0.1
TPH aliphatic >C12-C16 mg kg-1 N < 0.1
TPH aliphatic >C16-C21 mg kg- ¹ N < 0.1
TPH aliphatic >C21-C35 mg kg-1 N < 0.1
TPH aliphatic >C35-C44 mg kg-1 N < 0.1
TPH aromatic >C5-C7 mg kg-1 N < 0.1
TPH aromatic >C7-C8 mg kg-1 N < 0.1
TPH aromatic >C8-C10 mg kg-1 N < 0.1
TPH aromatic >C10-C12 mg kg-1 N < 0.1
TPH aromatic >C12-C16 mg kg-1 N 1.7
TPH aromatic >C16-C21 mg kg-1 N 5.6
TPH aromatic >C21-C35 mg kg-1 N 18
TPH aromatic >C35-C44 mg kg-1 N < 0.1
Total Petroleum Hydrocarbons mg kg-1 N 26
2700 Naphthalene 91203 mg kg-1 M 0.3
Acenaphthylene 208968 mg kg-1 M 0.3
Acenaphthene 83329 mg kg-1 M 0.1
Fluorene 86737 mg kg-1 M <0.1
Phenanthrene 85018 mg kg-1 M 1
Anthracene 120127 mg kg-1 M 0.4
Fluoranthene 206440 mg kg-1 M 2.9
Pyrene 129000 mg kg-1 M 2.8
Benzo[a]anthracene 56553 mg kg-1 M 1.4
Chrysene 218019 mg kg-1 M 2
Benzo[b]fluoranthene 205992 mg kg-1 M 2.6
Benzo[k]fluoranthene 207089 mg kg-1 M 1.2
Benzo[a]pyrene 50328 mg kg-1 M 2.2
Dibenzo[a,h]anthracene 53703 mg kg-1 M 1.6
Indeno[1,2,3-cd]pyrene 193395 mg kg-1 M 0.2

^{*} Accreditation status

FAO Andrea Grossey

## LABORATORY TEST REPORT



**Report Date** 16 August 2010

Results of analysis of 1 sample received 12 August 2010

241458 - Twickenham Railway Station

					113313
					AF20680
					WS4
					12/08/2010
					0.75m
					SOIL
2700	157 7 11 - 7	191242	mg kg-1	М	1.7
	Coronene	191071	mg kg-1	N	<0.1
	Total (of 17) PAHs		mg kg-1	N	21
	Benzo[j]fluoranthene by FID	205823	mg kg-1	N	1.27
2760	Methyl tert-butyl ether	1634044	μg kg-¹	N	<1.0
	Dichlorodifluoromethane	75718	μg kg-¹	U	<1.0
	Chloromethane	74873	μg kg-¹	М	<1.0
	Vinyl chloride	75014	μg kg-¹	М	<1.0
	Bromomethane	74839	μg kg-¹	U	<20
	Chloroethane	75003	μg kg-¹	U	<2.0
	Trichlorofluoromethane	75694	μg kg-¹	U	<1.0
	1,1-Dichloroethene	75354	µg kg-¹	U	<1.0
	Dichloromethane	75092	µg kg-¹	U	ne
	trans-1,2-Dichloroethene	156605	µg kg-¹	М	<1.0
	1,1-Dichloroethane	75343	μg kg-¹	М	<1.0
	cis-1,2-Dichloroethene	156592	µg kg-¹	М	<1.0
	Bromochloromethane	74975	μg kg-¹	U	<1.0
	Trichloromethane	67663	µg kg-¹	М	<1.0
	1,1,1-Trichloroethane	71556	μg kg-¹	М	<1.0
	Tetrachloromethane	56235	μg kg-¹	М	<1.0
	1,1-Dichloropropene	563586	μg kg-¹	U	<1.0
	Benzene	71432	μg kg-¹	М	<1.0
	1,2-Dichloroethane	107062	μg kg-¹	М	<2.0
	Trichloroethene	79016	μg kg-¹	N	<1.0
	1,2-Dichloropropane	78875	μg kg-¹	U	<1.0
	Dibromomethane	74953	μg kg-¹	U	<10
	Bromodichloromethane	75274	μg kg-¹	U	<5.0
	cis-1,3-Dichloropropene	10061015	μg kg-¹	U	<10
	Toluene	108883	μg kg-¹	М	<1.0
	trans-1,3-Dichloropropene	10061026	μg kg-¹	U	<10
	· ·				

^{*} Accreditation status

FAO Andrea Grossey

## LABORATORY TEST REPORT



Report Date 16 August 2010

Results of analysis of 1 sample received 12 August 2010

241458 - Twickenham Railway Station

					113313
					AF20680
					WS4
					12/08/2010
					0.75m
					SOIL
2760	1,1,2-Trichloroethane	79005	μg kg-¹	М	<10
	Tetrachloroethene	127184	μg kg-¹	М	<1.0
	1,3-Dichloropropane	142289	μg kg-¹	U	<2.0
	Dibromochloromethane	124481	μg kg-¹	U	<10
	1,2-Dibromoethane	106934	μg kg-¹	U	<5.0
	Chlorobenzene	108907	μg kg-¹	М	<1.0
	1,1,1,2-Tetrachloroethane	630206	μg kg-¹	М	<2.0
	Ethylbenzene	100414	μg kg-¹	М	<1.0
	m- & p-Xylene	1330207	μg kg-¹	М	<1.0
	o-Xylene	95476	μg kg-¹	М	<1.0
	Styrene	100425	μg kg-¹	U	<1.0
	Tribromomethane	75252	μg kg-¹	U	<10
	Isopropylbenzene	98828	μg kg-¹	U	<1.0
	Bromobenzene	108861	μg kg-¹	U	<1.0
	1,1,2,2-Tetrachloroethane	79345	μg kg-¹	М	ne
	1,2,3-Trichloropropane	96184	μg kg-¹	U	<50
	n-Propylbenzene	103651	μg kg-¹	U	<1.0
	2-Chlorotoluene	95498	μg kg-¹	U	<1.0
	1,2,4-Trimethylbenzene	95636	μg kg-¹	U	<1.0
	4-Chlorotoluene	106434	μg kg-¹	U	<1.0
	tert-Butylbenzene	98066	μg kg-¹	U	<1.0
	1,3,5-Trimethylbenzene	108678	μg kg-¹	U	<1.0
	sec-Butylbenzene	135988	μg kg-¹	U	<1.0
	1,3-Dichlorobenzene	541731	μg kg-¹	U	<1.0
	4-Isopropyltoluene	99876	μg kg-¹	U	<1.0
	1,4-Dichlorobenzene	106467	μg kg-¹	U	<1.0
	n-Butylbenzene	104518	μg kg-¹	U	<1.0
	1,2-Dichlorobenzene	95501	μg kg-¹	U	<1.0
	1,2-Dibromo-3-chloropropane	96128	μg kg-¹	U	<50
	1,2,4-Trichlorobenzene	120821	µg kg-¹	U	<1.0

^{*} Accreditation status

FAO Andrea Grossey

## LABORATORY TEST REPORT



Results of analysis of 1 sample received 12 August 2010

241458 - Twickenham Railway Station

Report Date 16 August 2010

					113313
					AF20680
					WS4
					12/08/2010
					0.75m SOIL
					SOIL
2760	Hexachlorobutadiene	87683	μg kg-¹	U	<1.0
	1,2,3-Trichlorobenzene	87616	μg kg-¹		<2.0
2762	Tentatively Identified Compounds		μg kg-¹		None Detected
2790	Acenaphthene	83329	mg kg-1	N	<0.50
	Acenaphthylene	208968	mg kg-1	N	<0.50
	Anthracene	120127	mg kg-1	N	<0.50
	Azobenzene	103333	mg kg-1	N	<0.50
	Benzo[a]anthracene	56553	mg kg-1	N	0.86
	Benzo[a]pyrene	50328	mg kg-1	N	1.4
	Benzo[b]fluoranthene	205992	mg kg-1	N	2.1
	Benzo[g,h,i]perylene	191242	mg kg-1	N	0.96
	Benzo[k]fluoranthene	207089	mg kg-1	N	0.61
	bis(2-Chloroethoxy)methane	111911	mg kg-1	N	<0.50
	bis(2-Chloroethyl)ether	111444	mg kg-1	N	<0.50
	bis(2-Chloroisopropyl)ether	108601	mg kg-1	N	<0.50
	bis(2-Ethylhexyl)phthalate	117817	mg kg-1	N	<0.50
	Butylbenzylphthalate	85687	mg kg-1	N	<0.50
	Carbazole	86748	mg kg-1	N	<0.50
	Chrysene	218019	mg kg-1	N	1.1
	Di-n-butylphthalate	84742	mg kg-1	N	<0.50
	Di-n-octylphthalate	117840	mg kg-1	N	<0.50
	Dibenzo[a,h]anthracene	53703	mg kg-1	N	<0.50
	Dibenzofuran	132649	mg kg-1	N	<0.50
	Diethylphthalate	84662	mg kg-1	N	<0.50
	Dimethylphthalate	131113	mg kg-1	N	<0.50
	Fluoranthene	206440	mg kg-1	N	2.1
	Fluorene	86737	mg kg-1	N	<0.50
	Hexachlorobenzene	118741	mg kg-1	N	<0.50
	Hexachlorobutadiene	87683	mg kg-1	N	<0.50
	Hexachlorocyclopentadiene	77474	mg kg-1	N	<0.50
A II 4 4 -					

^{*} Accreditation status

FAO Andrea Grossey

## LABORATORY TEST REPORT



**Report Date** 16 August 2010

Results of analysis of 1 sample received 12 August 2010

241458 - Twickenham Railway Station

		113313
		AF20680
		WS4
		12/08/2010
		0.75m
		SOIL
2790 Hexachloroethane 67721 mg kg-		<0.50
Indeno[1,2,3-cd]pyrene 193395 mg kg-		0.63
Isophorone 78591 mg kg-		<0.50
N-Nitrosodi-n-propylamine 621647 mg kg-		<0.50
N-Nitrosodimethylamine 62759 mg kg-		<0.50
Naphthalene 91203 mg kg-		<0.50
Nitrobenzene 98953 mg kg-		<0.50
Pentachlorophenol 87865 mg kg-		<0.50
Phenanthrene 85018 mg kg-	.1 N	0.58
Phenol 108952 mg kg-	.1 N	<0.50
Pyrene 129000 mg kg-	.1 N	1.9
1,2-Dichlorobenzene 95501 mg kg-	.1 N	<0.50
1,2,4-Trichlorobenzene 120821 mg kg-	.1 N	<0.50
1,3-Dichlorobenzene 541731 mg kg-	.1 N	<0.50
1,4-Dichlorobenzene 106467 mg kg-	.1 N	<0.50
2-Chloronaphthalene 91587 mg kg-	.1 N	<0.50
2-Chlorophenol 95578 mg kg-	.1 N	<0.50
2-Methyl-4,6-dinitrophenol 534521 mg kg-	.1 N	<0.50
2-Methylnaphthalene 91576 mg kg-	.1 N	<0.50
2-Methylphenol 95487 mg kg-	.1 N	<0.50
2-Nitroaniline 88744 mg kg-	.1 N	<0.50
2-Nitrophenol 88755 mg kg-	.1 N	<0.50
2,4-Dichlorophenol 120832 mg kg-	.1 N	<0.50
2,4-Dimethylphenol 105679 mg kg-	.1 N	<0.50
2,4-Dinitrotoluene 121142 mg kg-		<0.50
2,4,5-Trichlorophenol 95954 mg kg-		<0.50
2,4,6-Trichlorophenol 88062 mg kg-		<0.50
2,6-Dinitrotoluene 606202 mg kg-		<0.50
3-Nitroaniline 99092 mg kg-		<0.50
4-Bromophenylphenylether 101553 mg kg-		

^{*} Accreditation status

FAO Andrea Grossey

## LABORATORY TEST REPORT

The right chemistry to deliver results

Report Date

Report Date 16 August 2010

Results of analysis of 1 sample received 12 August 2010

					113313
					AF20680
					WS4
					12/08/2010
					0.75m
					SOIL
2790	4-Chloro-3-methylphenol	59507	mg kg-1	N	<0.50
	4-Chloroaniline	106478	mg kg-1	N	<0.50
	4-Chlorophenylphenylether	7005724	mg kg-1	N	<0.50
	4-Methylphenol	106445	mg kg-1	N	<0.50
	4-Nitroaniline	100016	mg kg-1	N	<0.50
2792	Tentatively Identified Compounds		mg kg-1		Not detected
2810	2,4,4'-Trichlorobiphenyl	7012375	mg kg-1	N	<0.1
	2,2',5,5'-Tetrachlorobiphenyl	35693993	mg kg-1	N	<0.1
	2,2',4,5,5'-Pentachlorobiphenyl	37680732	mg kg-1	N	<0.1
	2,3,4,4',5-Pentachlorobiphenyl	31508006	mg kg-1	N	<0.1
	2,2',3,4,4',5-Hexachlorobiphenyl	35065282	mg kg-1	N	<0.1
	2,2',4,4',5,5'-Hexachlorobiphenyl	35065271	mg kg-1	N	<0.1
	2,2',3,4,4',5,5'-Heptachlorobiphenyl	35065293	mg kg-1	N	<0.1
2920	Catechols		mg kg-1	N	<0.05
	Phenol	108952	mg kg-1	М	<0.05
	Cresols		mg kg-1	N	<0.05
	Xylenols		mg kg-1	N	<0.05
	Naphthols		mg kg-1	N	<0.05
	Trimethyl phenols		mg kg-1	N	<0.05
	Phenols (total)		mg kg-1	N	<0.3
2010	рН		-	М	7.9
2186	Asbestos Containing Material		-	U	not found

FAO Andrea Grossey

## LABORATORY TEST REPORT



21 July 2010

Results of analysis of 6 samples received 12 July 2010

241458 - Twickenham Railway Station

Login E	Batch No						120	214		
Chemte	est LIMS ID				AF11798	AF11799	AF11800	AF11801	AF11802	AF11803
Sample	ID				River 1	River 2	River 3	BH A	BH D	BH F
Sample	• No									
	ng Date				01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010
Depth										
Matrix					WATER	WATER	WATER	WATER	WATER	WATER
	Determinand↓	CAS No↓	Units↓	*						
1010	•	PH	-	U	8.8	8.8	8.5	6.8	6.5	6.3
1220	Chloride	16887006	mg l-1	U	75	76	75	110	41	53
	Ammonium	14798039	mg I-1	U	0.41	0.31	0.21	0.19	< 0.01	0.72
	Ammoniacal Nitrogen	AMM_NIT	mg l-1	U	0.32	0.24	0.16	0.15	< 0.01	0.56
	Nitrate	14797558	mg l-1	U	16	21	15	1.8	19	4.7
1300	Cyanide (total)	57125	mg l-1	U	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Cyanide (free)	57125	mg l-1	U	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1325	Sulfide	18496258	mg l-1	U	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1470	Iron (dissolved)	7439896	μg l-¹	N	<20	<20	<20	260	290	1400
1270	Hardness	HARD_TO	mg CaCO3 I-1	U	280	270	260	560	150	350
1220	Sulfate	14808798	mg l-1	U	57	55	54	180	19	100
1450	Arsenic	7440382	μg l-¹	U	<1.0	1.1	<1.0	<1.0	3.0	1.1
	Boron	7440428	μg l-¹	U	110	89	71	240	53	250
	Barium	7440393	μg l-¹	U	21	21	19	49	22	80
	Beryllium	7440417	μg l-¹	U	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	Cadmium	7440439	μg l-¹	U	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080
	Chromium (total)	7440473	μg l-¹	U	22	19	5.3	36	38	37
	Copper	7440508	μg l-¹	U	5.2	8.6	6.4	1.4	1.4	<1.0
	Mercury Low Level	7439976	μg l-¹	N	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	Nickel	7440020	μg l-¹	U	2.2	2.6	2.8	13	3.3	5.1
	Lead	7439921	μg l-¹	U	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	Selenium	7782492	μg l-¹	U	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	Vanadium	7440622	μg I-1	U	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	Zinc	7440666	μg l-¹	U	1.2	6.7	7.7	7.6	<1.0	7.5
1675	TPH aliphatic >C5-C6		μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	TPH aliphatic >C6-C8		μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	TPH aliphatic >C8-C10		μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	TPH aliphatic >C10-C12		μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	TPH aliphatic >C12-C16		μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	TPH aliphatic >C16-C21		μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

All tests undertaken between 13-Jul-2010 and 21-Jul-2010

* Accreditation status

Column page 1

FAO Andrea Grossey

## LABORATORY TEST REPORT



**Report Date** 21 July 2010

Results of analysis of 6 samples received 12 July 2010

241458 - Twickenham Railway Station

					120214							
					AF11798	AF11799	AF11800	AF11801	AF11802	AF11803		
					River 1	River 2	River 3	BH A	BH D	BH F		
					01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010		
					WATER	WATER	WATER	WATER	WATER	WATER		
					WATER	WATER	WATER	WATER	WATER	WAIEK		
1675	TPH aliphatic >C21-C35		μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aliphatic >C35-C44		μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aromatic >C5-C7		μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aromatic >C7-C8		μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aromatic >C8-C10		μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aromatic >C10-C12		μg I-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aromatic >C12-C16		μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aromatic >C16-C21		μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aromatic >C21-C35		μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aromatic >C35-C44		μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	Total Petroleum Hydrocarbons		μg I-1	N	<10	<10	<10	<10	<10	<10		
1700	Naphthalene	91203	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Acenaphthylene	208968	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Acenaphthene	83329	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Fluorene	86737	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Phenanthrene	85018	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Anthracene	120127	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Fluoranthene	206440	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Pyrene	129000	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Benzo[a]anthracene	56553	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Chrysene	218019	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Benzo[b]fluoranthene	205992	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Benzo[k]fluoranthene	207089	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Benzo[a]pyrene	50328	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Dibenzo[a,h]anthracene	53703	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Indeno[1,2,3-cd]pyrene	193395	μg I-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Benzo[g,h,i]perylene	191242	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Total (of 16) PAHs		μg l-¹	N	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		
1760	Dichlorodifluoromethane	75718	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	Chloromethane	74873	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		

^{*} Accreditation status

FAO Andrea Grossey

## LABORATORY TEST REPORT



Results of analysis of 6 samples received 12 July 2010

241458 - Twickenham Railway Station

21 July 2010

				A E44700	A F44700		214	A F.4.4.000	A F.1.1000
				AF11798	AF11799	AF11800	AF11801	AF11802	AF11803
				River 1	River 2	River 3	BH A	BH D	BH F
				01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010
				0.70172010	0.112010	0.112010	0.101.12010	0.00.720.0	0.,,0.,,20.,
				WATER	WATER	WATER	WATER	WATER	WATER
Vinyl chloride	75014	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bromomethane	74839	μg l- ¹	N	<2	<2	<2	<2	<2	<2
Chloroethane	75003	μg l-1	N	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Trichlorofluoromethane	75694	μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1-Dichloroethene	75354	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichloromethane	75092	μg l-1	N	ne	ne	ne	ne	ne	ne
trans-1,2-Dichloroethene	156605	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1-Dichloroethane	75343	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
cis-1,2-Dichloroethene	156592	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bromochloromethane	74975	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloromethane	67663	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,1-Trichloroethane	71556	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tetrachloromethane	56235	μg I-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1-Dichloropropene	563586	μg I-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzene	71432	μg I-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2-Dichloroethane	107062	μg I-¹	N	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Trichloroethene	79016	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2-Dichloropropane	78875	μg I-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibromomethane	74953	μg l-¹	N	<1	<1	<1	<1	<1	<1
Bromodichloromethane	75274	μg I-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropene	10061015	μg I-¹	N	<1	<1	<1	<1	<1	<1
Toluene	108883	μg I-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-1,3-Dichloropropene	10061026	μg I-¹	N	<1	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	79005	μg I-¹	N	<1	<1	<1	<1	<1	<1
Tetrachloroethene	127184	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,3-Dichloropropane	142289	μg l-¹	N	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dibromochloromethane	124481	μg l-¹	N	<1	<1	<1	<1	<1	<1
1,2-Dibromoethane	106934	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chlorobenzene	108907	μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,1,2-Tetrachloroethane	630206	μg l- ¹	N	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

^{*} Accreditation status

FAO Andrea Grossey

## LABORATORY TEST REPORT



**Report Date** 21 July 2010

Results of analysis of 6 samples received 12 July 2010

241458 - Twickenham Railway Station

							120	214		
					AF11798	AF11799	AF11800	AF11801	AF11802	AF11803
					River 1	River 2	River 3	BH A	BH D	BH F
					04/07/2040	04/07/2040	04/07/2040	04/07/2040	04/07/2040	04/07/2040
					01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010
					WATER	WATER	WATER	WATER	WATER	WATER
760	Ethylbenzene	100414	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	m- & p-Xylene	1330207	μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	o-Xylene	95476	μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Styrene	100425	μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Tribromomethane	75252	μg l-1	N	<1	<1	<1	<1	<1	<1
	Isopropylbenzene	98828	μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Bromobenzene	108861	μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1,1,2,2-Tetrachloroethane	79345	μg l-1	N	<1	<1	<1	<1	<1	<1
	1,2,3-Trichloropropane	96184	μg l-1	N	<5	<5	<5	<5	<5	<5
	n-Propylbenzene	103651	μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2-Chlorotoluene	95498	μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1,3,5-Trimethylbenzene	108678	μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	4-Chlorotoluene	106434	μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	tert-Butylbenzene	98066	μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1,2,4-Trimethylbenzene	95636	μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	sec-Butylbenzene	135988	μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1,3-Dichlorobenzene	541731	μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	4-Isopropyltoluene	99876	μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1,4-Dichlorobenzene	106467	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	n-Butylbenzene	104518	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1,2-Dichlorobenzene	95501	μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1,2-Dibromo-3-chloropropane	96128	μg l-¹	N	<5	<5	<5	<5	<5	<5
	1,2,4-Trichlorobenzene	120821	μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Hexachlorobutadiene	87683	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1,2,3-Trichlorobenzene	87616	μg l-¹	N	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Methyl tert-butylether	1634044	μg l-¹	N	<1	<1	<1	<1	<1	<1
	Tentatively Identified Compounds		μg l-1		None Detected	None Detected	None Detected	None Detected	None Detected	None Detected
	N-Nitrosodimethylamine	62759	μg I-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Phenol	108952	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	bis(2-Chloroethyl)ether	111444	μg I-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

^{*} Accreditation status

FAO Andrea Grossey

## LABORATORY TEST REPORT



21 July 2010

Results of analysis of 6 samples received 12 July 2010

241458 - Twickenham Railway Station

						120	214		
				AF11798	AF11799	AF11800	AF11801	AF11802	AF11803
				River 1	River 2	River 3	BH A	BH D	BH F
				01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010
				WATER	WATER	WATER	WATER	WATER	WATER
790 2-Chlorophenol	95578	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1.3-Dichlorobenzene	541731	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	106467	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichlorobenzene	95501	μg l- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Methylphenol	95487	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
bis(2-Chloroisopropyl)ether	108601	μg l- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Methylphenol	106445	μg l- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
N-Nitrosodi-n-propylamine	621647	μg l- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachloroethane	67721	μg I- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nitrobenzene	98953	μg I-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Isophorone	78591	μg I-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Nitrophenol	88755	μg I- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-Dimethylphenol	105679	μg I-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
bis(2-Chloroethoxy)methane	111911	μg I-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-Dichlorophenol	120832	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-Trichlorobenzene	120821	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91203	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Chloroaniline	106478	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	87683	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Chloro-3-methylphenol	59507	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Methylnaphthalene	91576	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorocyclopentadiene	77474	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,6-Trichlorophenol	88062	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,5-Trichlorophenol	95954	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Chloronaphthalene	91587	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Nitroaniline	88744	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethylphthalate	131113	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,6-Dinitrotoluene	606202	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208968	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
3-Nitroaniline	99092	μg I-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

^{*} Accreditation status

FAO Andrea Grossey

## LABORATORY TEST REPORT



**Report Date** 21 July 2010

Results of analysis of 6 samples received 12 July 2010

241458 - Twickenham Railway Station

							120	214		
					AF11798	AF11799	AF11800	AF11801	AF11802	AF11803
					River 1	River 2	River 3	BH A	BH D	BH F
					01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010
					WATER	WATER	WATER	WATER	WATER	WATER
					WATER	WATER	WATER	WATER	WATER	WATER
1790	Acenaphthene	83329	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Dibenzofuran	132649	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2,4-Dinitrotoluene	121142	μg I-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Diethylphthalate	84662	μg I-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Fluorene	86737	μg I-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	4-Chlorophenylphenylether	7005723	μg I-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	4-Nitroaniline	100016	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2-Methyl-4,6-dinitrophenol	534521	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Azobenzene	103333	μg I-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	4-Bromophenylphenylether	101553	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Hexachlorobenzene	118741	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Pentachlorophenol	87865	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Phenanthrene	85018	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Anthracene	120127	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Carbazole	86748	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Di-n-butylphthalate	84742	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Fluoranthene	206440	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Pyrene	129000	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Butylbenzylphthalate	85687	µg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Benzo[a]anthracene	56553	µg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Chrysene	218019	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	bis(2-Ethylhexyl)phthalate	117817	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Di-n-octylphthalate	117840	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Benzo[b]fluoranthene	205992	µg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Benzo[k]fluoranthene	207089	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Benzo[a]pyrene	50328	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Indeno[1,2,3-cd]pyrene	193395	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Dibenzo[a,h]anthracene	53703	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Benzo[g,h,i]perylene	191242	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1792	Tentatively Identified Compounds		ug l-1		None Detected	None Detected	None Detected	None Detected	None Detected	None Detected

^{*} Accreditation status

FAO Andrea Grossey

## LABORATORY TEST REPORT



Report Date 21 July 2010

## Results of analysis of 6 samples received 12 July 2010

					120214					
					AF11798	AF11799	AF11800	AF11801	AF11802	AF11803
					River 1	River 2	River 3	BH A	BH D	BH F
					01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010
					WATER	WATER	WATER	WATER	WATER	WATER
1810	2,4,4'-Trichlorobiphenyl	7012375	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',5,5'-Tetrachlorobiphenyl	35693993	μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',4,5,5'-Pentachlorobiphenyl	37680732	μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,3,4,4',5-Pentachlorobiphenyl	31508006	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',3,4,4',5-Hexachlorobiphenyl	35065282	μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',4,4',5,5'-Hexachlorobiphenyl	35065271	μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',3,4,4',5,5'-Heptachlorobiphenyl	35065293	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1830	Atrazine	1912249	μg l-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Simazine	122349	μg l-¹	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Diuron	330541	μg l-¹	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1845	2,4-D	94757	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Dichlorprop	120365	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	MCPA	94746	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	MCPB	94815	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Mecoprop	7085190	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2,4,5-T	93765	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1920	Catechols		mg l-1	N	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	Phenol	108952	mg l-1	N	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	Cresols		mg l-1	N	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	Xylenols		mg l-1	N	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	Naphthols		mg I-1	N	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	Trimethyl phenols		mg l-1	N	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	Phenols (total)		mg I-1	N	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03