

Appendix F-3: Waterman Energy, Environment & Design Ltd, Generic Quantitative

Environmental Risk Assessment, Interpretative Environmental Report on Ground Investigation at Twickenham Railway Station, February 2011

(REF: EED11251-100/R/1.1.3/GB)

ref:

Generic Quantitative Environmental Risk Assessment

Interpretative Environmental Report on Ground Investigation at Twickenham Railway Station

February 2011

Waterman Energy, Environment & Design Limited

Versailles Court, 3 Paris Garden, London SE1 8ND , United Kingdom www.watermangroup.com

Generic Quantitative Environmental Risk Assessment

Interpretative Environmental Report on Ground Investigation at Twickenham Railway Station

Client Name: Solum Regeneration

Document Reference: EED11251-100.R.1.1.3.GB

Project Number: EED11251

Quality Assurance – Approval Status

This document has been prepared and checked in accordance with Waterman Group's IMS (BS EN ISO 9001: 2008 and BS EN ISO 14001: 2004)

Issue Date Prepared by Checked and Approved by

First February 2011 Gemma Berridge Carl Slater

Our Markets

Property & Buildings

Transport & Infrastructure

Energy & Utilities

Environment

Disclaimer

This report has been prepared by Waterman Energy, Environment & Design Ltd, with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporation of our General Terms and Condition of Business and taking account of the resources devoted to us by agreement with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the

This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at its own risk.

Contents

Executive Summary

1.	Introd	uction	1
	1.1	Objectives	1
	1.2	Regulatory Context	1
	1.3	Constraints	2
2.	Proce	dures	3
3.	Outlin	e Conceptual Model	4
	3.1	Ground Conditions	4
	3.2	Potentially Significant Pollution Linkages	4
4.	Ration	nale and Specific Objectives	6
5.	Metho	dology	7
	5.1	Design of Investigation	7
	5.2	Quality Control	8
	5.3	Health and Safety	8
6.	Site A	ctivities	9
	6.1	Ground Investigation	9
	6.2	Monitoring Wells	10
	6.3	Groundwater Monitoring and Sampling	10
	6.4	Ground Gas Monitoring	10
7.	Resul	ts	11
	7.1	Geological Strata	11
	7.2	Underground Structures and Obstructions	12
	7.3	Chemical Analysis	12
	7.4	Controlled Waters	12
	7.5	Ground Gas	12
8.	Gener	ic Assessment Criteria	13
	8.1	Site Specific Information used to Support the Generic Risk Assessment	13
9.	Quant	itative Environmental Risk Assessment	15
	9.1	Risk to Human Health	15
	9.2	Risk to Controlled Waters	16
	9.3	Risks to Ecological Systems/Vegetation	16
	9.4	Risk to Structures (Ground Gas and Vapour Intrusion)	16
	9.5	Risk to Water Supply Pipes	
	9.6	Risk to Construction Workers	18
10.	Waste	Disposal	19
11.	Concl	usions	21
12.	Recor	nmendations	24
	12.1	Other Issues	24

Tables		
Table 1:	Potentially significant pollutant linkages	4
Table 2:	Ground Investigation strategy	8
Table 3:	Summary of fieldwork activities	9
Table 4:	Geological strata encountered	11
Table 5:	Ground gas monitoring summary	12
Table 6:	Generic Assessment Criteria	13
Table 7:	Summary of Generic Quantitative Risk Assessment for Human Health	15
Table 8:	Summary of Generic Quantitative Risk Assessment for Controlled Waters	16
Table 9:	Summary of Generic Quantitative Risk Assessment for Landscaped Areas	16
Table 10:	Summary of Generic Quantitative Risk Assessment for Water Supply Pipes	18
Table 11:	Waste classification	19
Table 12·	Estimation of environmental risks associated with the subject site	22

Appendices

- Appendix A. Site Plans
- Appendix B. Site Photographs
- Appendix C. Exploratory Hole Records
- Appendix D. Groundwater Monitoring Results
- Appendix E. Ground Gas Monitoring Results
- Appendix F. Results of Laboratory Analysis (Chemtest)
- Appendix G. Risk Rating Matrix
- Appendix H. Environmental Receptors
- Appendix I. Generic Assessment Criteria

Executive Summary

Objectives

Generic Quantitative Environmental Risk Assessment for the proposed redevelopment of Twickenham Railway Station for a mixed retail, residential and commercial use as well as continued use as a railway station.

	Site Setting
Current Use	Twickenham Railway Station and associated car park.
History	Railway land from the 1870s.
Ground Conditions	The Waterman Generic Assessment Criteria (GAC) was used to assess the soil chemical laboratory data for the site. Elevated contamination (Arsenic, Lead, Mercury, Vanadium, Naphthalene, Benzo(a)anthracene, Chrysene, Benzo(b)flouranthene, Benzo(k)flouranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene and Di-benzo(a,h)anthracene) was identified in soils beneath the site.
Controlled Waters	The Water Supply (Water Quality) Regulations and Environmental Quality Standards (EQS) for freshwater were used to assess the groundwater and surface water chemical laboratory data for the site. Limited marginally elevated contamination (Iron and Chromium) was identified within the shallow groundwater at the site. No elevated contaminants were identified within the surface water samples taken from the River Crane.
Ground Gas Regime	CIRIA C665 was used to assess the site's ground gassing regime. The site was found to conform to a Characteristic Situation 2, whereby precautionary ground gas measures will be required for the new development. Elevated concentrations of PAHs were identified when compared to the Waterman GAC.

Conceptual Model

No significant potential pollutant linkages have been identified for the Site assuming appropriate mitigation measures are incorporated into the proposed development as described in the report.

Conclusions

Given the proposed end use the overall risk rating for the Site is currently low to medium. However, with implementation of appropriate mitigation measures as part of the proposed development, this risk can be reduced to low.

Recommendations

- Appropriate gas protection measures should be incorporated into the proposed building design;
- Further risk assessment/remedial works to manage the source of the elevated hydrocarbons will be required and/or vapour protection measures incorporated into the building design;
- Excavated materials should be assessed for their potential for reuse or classified for waste disposal purposes;
- Areas of landscaping and gardens will require the importation of clean soils to ensure a suitability for use to both occupants and plants;
- Consideration should be given to the use of contaminant resistant pipe work and clean service corridors for the proposed redevelopment;
- Where appropriate all works should be agreed, prior to being undertaken, with the statutory authorities;
- Ground workers should wear appropriate personal protective equipment (PPE) and adopt appropriate hygiene practices;
- The River Crane (engineered structure) and any drainage runs/sewers beneath the site should be safeguarded during the redevelopment works;
- A Foundation Works Risk Assessment should be completed prior to redevelopment;
- The potential for Asbestos Containing Materials (ACMs) should be investigated and any surveys or reports reviewed by a specialist consultant; and
- A copy of this report should be forwarded to the relevant statutory authorities.
- Consideration should be given to the implementation of an Environmental Management Plan (EMP);
- Reference should be made to the Explosive Ordnance Threat Assessment produced for the site by BACTEC (Ref: 9732TA), dated 12 December 2008 prior to redevelopment works commencing at the site; and
- Japanese Knotweed identified at the site during the investigation should be appropriately managed and a programme of treatment and disposal undertaken by a specialist contractor.

1. Introduction

1.1 Objectives

Waterman Energy, Environment & Design Limited ("Waterman") was instructed by Solum Regeneration to undertake a Generic Quantitative Environmental Risk Assessment for the proposed redevelopment of Twickenham Railway Station (hereafter termed "the Site").

This assessment follows on from the Phase 1 Ground Contamination Desk Study Report prepared by Capita Symonds in October 2007 (report ref. Version 1.0, October 2007).

RSK Group plc were appointed by Solum Regeneration to undertake a ground investigation on the Site the results of which are reported in their Geotechnical Report (ref. 241458-01(00), dated August 2010). The purpose of the environmental aspects of the ground investigation was to provide information on the environmental ground, groundwater and surface water conditions and the ground gas regime for the proposed Development. The investigation was also designed to provide information on the initial waste classification assessment of the soils to be excavated as part of the proposed redevelopment. Waterman has undertaken a review of the environmental information provided in this report with respect to the proposed redevelopment.

1.2 Regulatory Context

The Site currently comprises Twickenham Railway Station (including the surface car park). This use is to continue with construction of residential apartments above the station on a raised deck as well as to the rear of "Block A' in the east of the site (at podium level), retail units to the front of Block A, residential homes with private gardens to the northwest of the site and provision of a new ticket office and station entrance. Block A will form an undercroft on the western boundary of the site. The surface car park is to be reconfigured and will be provided with car parking, a turning area for vehicles, taxi rank and limited soft landscaping. The site boundary with the River Crane is to be enhanced by provision of new soft landscaping. This assessment is based upon planning submission Scheme 7, dated December 2010.

In order to assess the contamination status of the Site, with respect to the proposed end use, it is necessary to assess whether the Site could potentially be classified as "Contaminated Land", as defined in Part IIA of the Environmental Protection Act 1990 and the Contaminated Land Regulations 2006. This is assessed by the identification and assessment of potential pollutant linkages. The linkage between the potential sources and potential receptors identified needs to be established and evaluated.

To fall within this definition, it is necessary that, as a result of the condition of the land, substances may be present on or under the land such that:

- a) significant harm is being caused or there is a significant possibility of such harm being caused; or
- b) pollution of controlled waters is being, or is likely to be, caused.

It should be noted that DEFRA has advised (Ref. Part 4, Chapter A, Annex 3, DEFRA Circular 01/2006) Local Authorities that land should not be designated as contaminated where:

- a) a substance is already present in controlled waters;
- c) entry into controlled waters of that substance from land has ceased; and
- d) it is not likely that that further entry will take place.

The local authority should regard something as being "likely" when they judge it "more likely than not to occur".

These exclusions do not necessarily preclude regulatory action under the Water Resources Act 1991, which makes it a criminal offence to cause, or knowingly permit, any poisonous, noxious or polluting matter to enter controlled waters. In England and Wales, under the Anti-Pollution Works Regulations 1999, an anti-pollution notice may be served by the regulator requiring appropriate investigation and clean-up.

1.3 Constraints

The assessment was undertaken in accordance with the scope agreed between Waterman and Solum Regeneration, as documented in Waterman's fee letter (EED F/001CWS, dated 4 February 2010), and with Waterman's standard Terms of Appointment.

The benefit of this report is made to Solum Regeneration.

The information contained in this report is based on the findings of the Phase 1 Ground Contamination Desk Study Report prepared by Capita Symonds in October 2007 (report ref. Version 1.0, October 2007), observations made on site, and the exploratory hole records, laboratory test results, groundwater monitoring and ground gas monitoring results contained in the RSK Group plc Geotechnical Report (Ref. 241458-01(00), dated August 2010).

Waterman was not present full time during the ground investigation works. However, part time monitoring was undertaken which identified that the works were being carried out in a satisfactory manner, in line with the Environmental Ground Investigation Specification produced by Waterman in March 2010 (Ref: 11251-100/S/1.1.1/CWS).

Due to access restrictions and uneven surface ground conditions within the "trackside' area, the proposed borehole in this area of the site was replaced with 4no drive-in window sampler positions to between 1.2m and 6.9m depth.

The ground conditions reported relate only to the point of excavation and do not necessarily guarantee a continuation of the ground conditions throughout the non-inspected area of the site. Whilst such exploratory holes would usually provide a reasonable indication as to the general ground conditions, these cannot be determined with complete certainty.

Waterman has endeavoured to assess all information provided to them during this investigation, but makes no guarantees or warranties as to the accuracy or completeness of this information.

The scope of this investigation does not include an assessment for the presence of asbestos containing materials within or beneath buildings at the site. Should there be a requirement under Regulation 4 of the Control of Asbestos Regulations 2006 for any part of the site to be deemed "non-domestic premises" (including, inter alia, outbuildings, external pipework, under-floor service ducts, bridges, fixed and mobile plant), the dutyholder(s) should prepare an asbestos risk management plan and this may require technical survey works as described in the relevant HSE Guidance Note HSG 264 (text to be updated depending on whether we are undertaking testing of soil samples for asbestos containing materials).

The conclusions resulting from this study are not necessarily indicative of future conditions or operating practices at or adjacent to the site.

2. Procedures

This Generic Quantitative Environmental Risk Assessment has been undertaken in general accordance with the Model Procedures for Management of Land Contamination (Contaminated Land Report 11 – Environment Agency, September 2004).

The report includes the following:

- outline Conceptual Model for the Site;
- · results of Intrusive Ground Investigation;
- confirmation of Generic Assessment Criteria used to assess risks;
- assessment of results against Generic Assessment Criteria;
- formulation of a new Conceptual Model for the Site;
- · identification of potentially unacceptable risks; and
- · recommendations for further action.

This report forms a decision record for the pollutant linkages identified, the generic assessment criteria used to assess risks, the unacceptable risks identified and the proposed next steps in relation to the site. The report also provides an explanation of the refinement of the outline conceptual model following the ground investigation, the selection of criteria and assumptions, the evaluation of potential risks and the basis for the decision on what happens next.

3. Outline Conceptual Model

The outline conceptual model of the site developed in the Phase 1 Ground Contamination Desk Study Report (prepared by Capita Symonds) is summarised in the following sections:

3.1 Ground Conditions

The anticipated ground conditions comprise Kempton Park Gravels over the London Clay Formation. A cover of Made Ground is expected given the history of the Site.

Groundwater is anticipated in the Kempton Park Gravels, which is classified by the Environment Agency (EA) as a Principal Aguifer.

The River Crane flows (from west to east) alongside the northern boundary of the Site and is classified as "River Quality C" which indicates that it is of fairly good quality (under the EA General Quality Assessment (GQA) classification scheme).

The Site has been in use as railway land since the 1870s, principally Twickenham Railway Station, railway tracks, associated car parking and railway buildings. There is potential for foundations from previous buildings on the Site to be present.

3.2 Potentially Significant Pollution Linkages

Potentially significant linkages identified between contamination hazard sources and relevant receptors are summarised in Table 1.

Table 1: Potentially significant pollutant linkages

Receptor	Potential sources	Pathways	Risk	Justification
Human Health				
Current and future commercial site users	Contaminated soil	Direct contact, ingestion, particulate inhalation	Low	The majority of the site is proposed hardstanding, thereby limiting dermal and ingestion pathways between potential contaminants and the end user.
	Contaminated soil and groundwater	Vapour inhalation	Low	The level of risk is dependent on the presence of volatile vapours in the shallow ground beneath the site. However, this is expected to be low given the usage of the site.
Future residential users (without gardens)	Contaminated soil	Direct contact, ingestion, particulate inhalation	Low	The majority of the site is proposed hardstanding, thereby limiting dermal and ingestion pathways between potential contaminants and the end user.
	Contaminated soil and groundwater	Vapour inhalation	Low to Medium	In areas of built structures there may be a potential inhalation pathway. The level of risk is dependent on the presence of volatile vapours in the shallow ground beneath the site.
Future residential users (with gardens)	Contaminated soil	Direct contact, ingestion, particulate inhalation	Low to Medium	The site has historically been used as railway land / a station. There is the potential for users to come into contact with contamination (where present) in any areas of soft landscaping.
	Contaminated soil and	Vapour inhalation	Low to Medium	The site has historically been used as railway land / a station. There is the

	Dotontial			
Receptor	Potential sources	Pathways	Risk	Justification
	groundwater			potential for generation of soil vapours in the shallow ground beneath the site.
Construction workers	Contaminated soil and groundwater	Direct contact, ingestion, particulate inhalation, vapour inhalation	Low	Construction workers are likely to come into direct contact with shallow soils. The use of appropriate PPE, RPE and the provision of hygiene facilities should be adopted.
Off-Site residents	Contaminated soil and groundwater	Dust, vapour inhalation	Low	Good working practices include the damping down on construction sites, thus reducing the potential for dust generation. There is also a low risk to offsite residents from the inhalation of vapours in shallow groundwater migrating offsite.
Property				
Built structures	Contaminated soil and ground gas	Direct contact, migration and vapour intrusion	Low to Medium	If necessary mitigation measures such as the use of sulphate resistant cement and metallic water pipes should be used. As a result of the historical development of the site as a railway station, there is made ground present at the site. Therefore, the risk of ground gas accumulation/intrusion cannot be ruled out.
Ecological				
Vegetation and landscaping	Contaminated soil	Root uptake	Low	An appropriate thickness of inert material should be placed in all areas of new soft landscaping (where necessary) to provide a healthy growth medium. Imported landscaping materials should be adequately tested prior to placing to ensure they are suitable for use.
Controlled Waters				
Kempton Park Gravel Aquifer (Principal Aquifer)	Contaminated soil and groundwater	Leaching from soil	Low to Medium	The site is classified as a Principal Aquifer. However, the site does not lie within a SPZ. There are no groundwater abstractions within 1km of the site, with the closest being located approximately 1050m to the northeast. The majority of the proposed development comprises hardstanding, thereby reducing the potential mobilisation of contaminants.
River Crane (adjacent to the site) and River Thames (approximately 500m to the southeast)	Contaminated soil and groundwater	Leaching from soil and migration via drainage pipes	Low	The River Crane is understood to be an engineered structure with concrete walls in the section adjacent to the site, which will minimise the migration pathway of any potential contamination. The River Thames is considered to be present at a great enough distance down-gradient from the site not to be affected by the off-site migration of potential contaminants.

4. Rationale and Specific Objectives

The Site currently comprises Twickenham Railway Station (including the surface car park). This use is to continue with construction of residential apartments above the station on a raised deck as well as to the rear of "Block A' in the east of the site (at podium level), retail units to the front of Block A, residential homes with private gardens to the northwest of the site and provision of a new ticket office and station entrance. Block A will form an undercroft on the western boundary of the site. The surface car park is to be reconfigured and will be provided with car parking, a turning area for vehicles, taxi rank and limited soft landscaping. The site boundary with the River Crane is to be enhanced by provision of new soft landscaping. This assessment is based upon planning submission Scheme 6, dated 13 August 2010.

The objective of this investigation is to and characterise the ground conditions, the hazard sources, pathways and receptors and to reduce uncertainties.

Specific objectives include:

- Assessing the chemical quality of soils beneath the Site in particular with respect to contaminants associated with the current and former use of the Site as railway land
- Monitoring of groundwater levels and quality in the Kempton Park Gravels
- Monitoring of surface water quality in the River Crane
- Monitoring of the ground gas regime beneath the Site

5. Methodology

The methodology adopted was to investigate the potential for contamination in the ground with respect to the proposed end use of the Site and to consider the likely waste classification of soils to be excavated during the redevelopment. Groundwater in the Kempton Park Gravel aquifer was sampled and tested to assess groundwater quality with respect to current guidelines. Ground gas monitoring was undertaken to determine the ground gas regime beneath the Site utilising monitoring wells and ground gas monitoring equipment.

The intrusive investigation work was undertaken in general accordance with the Code of Practice for Site Investigation BS 5930 (1999) and the Code of Practice for the Investigation of Potentially Contaminated Sites and its Investigation BS 10175 (2001).

5.1 Design of Investigation

The design of the investigation was as follows:

- Drilling of 7no light cable percussion boreholes through the full thickness of the Made Ground and the Kempton Park Gravel and to at least 1m into the London Clay;
- Drilling of 4no drive-in sampler probeholes through the full thickness of the Made Ground and into the Kempton Park Gravel;
- Appropriate in situ testing and sampling including headspace analysis using a PID;
- Installation of 3no dual purpose ground gas/groundwater monitoring standpipes in the Kempton Park Gravel;
- Monitoring of groundwater levels and quality;
- Groundwater sampling;
- Surface water sampling;
- Ground gas monitoring;
- Chemical laboratory testing of soils, groundwater and surface waters;
- Surveying in to National Grid and levelling to mOD of each borehole;

Strategy for Selection of Exploratory Hole Locations

Sampling locations were carefully selected in order to target, as far as possible, potentially contaminated areas identified in preliminary investigation. A summary of the investigation locations and features investigated is presented in Table 2.

Table 2: Ground Investigation strategy

Layer / Anomalous feature	Exploratory Holes	Groundwater Wells	Gas Wells	Comments
Made Ground	All exploratory holes			Ground gas monitoring undertaken on six occasions over a 3-month period.
Kempton Park Gravel	All exploratory holes	BHA, BHD, BHF	BHA, BHD, BHF	Ground gas monitoring undertaken on six occasions over a 3-month period. Groundwater samples taken on two occasions
London Clay Formation	All exploratory holes, with the exception of WS3	-	-	Groundwater and ground gas wells were not installed within the London Clay Formation
River Crane	Surface water samples			Surface water samples taken upstream, midstream and downstream of the Site on two occasions

5.2 Quality Control

The samples were then despatched in batches on a daily basis under a chain of custody procedure to Chemtest who are a UKAS accredited laboratory, for subsequent chemical analysis. Where appropriate, samples were stored within cool boxes containing ice packs.

All contractors, including laboratories, used during this project have been approved by Waterman as a part of in-house Integrated Management System (BS ISO 9001, BS ISO 14001) procedure. This requires all third parties to demonstrate competence and a high standard of work during a regular audit scheme.

5.3 Health and Safety

No incidents occurred during the ground investigation.

Mitigation measures with respect to the potential for unexploded ordnance (UXO's) were undertaken as part of the ground investigation and no UXO's were encountered.

6. Site Activities

The work was carried out in four stages, comprising service survey and UXO surveying, ground investigation, monitoring well installation and surface water, groundwater and ground gas sampling and monitoring. The works were procured by Solum Regeneration to RSK Group plc, which, along with the main activities and monitoring, are shown in chronological order of the works undertaken in Table 3.

Table 3: Summary of fieldwork activities

Phase of Work	Activity	Contractor	Date	Monitoring
Service survey	Scanning for services	RSK Group plc	1 to 18 June 2010 and 6 to 8 July 2010	-
UXO surveying	Down hole magnetometry for UXO	RSK Group plc	1 to 18 June 2010 and 6 to 8 July 2010	Waterman 7 and 14 June 2010
Ground investigation	7No. cable percussion boreholes to 35.0m bgl max. depth	RSK Group plc	1 to 18 June 2010	Waterman 7 and 14 June
	4No. drive-in sampler probeholes to 6.9m bgl max. depth	RSK Group plc	6 to 8 July 2010	2010
Monitoring well installation	3No. monitoring wells to a maximum depth of 7m bgl	RSK Group plc	1 to 18 June 2010	-
Groundwater sampling	Sampling from three wells on two occasions (one round is still to be carried out)	RSK Group plc	1 July 2010 19 August 2010	Waterman 19 August 2010
Surface water sampling	Sampling from three locations along the River Crane, above, at and below the site	RSK Group plc	1 July 2010 19 August 2010	Waterman 19 August 2010
Ground gas and groundwater level monitoring	Monitoring of three wells on six occasions (three rounds are still to be carried out)	RSK Group plc	1 and 15 July 2010 5 and 19 August 2010 2 and 16 September 2010 (proposed)	Waterman 19 August 2010

Note: m bgl = metres below ground level

6.1 Ground Investigation

The seven deep boreholes were drilled to between 13.5m and 35m bgl using light cable percussive methods. In addition, four shallow boreholes were completed using a windowless sampler with follow on dynamic probing to depths of between 1.2m and 6.9m bgl. Upon completion, the boreholes were either installed with a monitoring well and lockable flush cover or backfilled as far as possible with arisings. The surface of the excavation was reinstated to the original conditions.

Representative soil samples were obtained from the exposed strata and sealed in one litre plastic tubs with airtight lids, phials and glass jars containing preservatives, as appropriate. The soil samples taken were subject to screening by a photo ionisation detector (PID).

All the exploratory holes were logged and sampled for contamination purposes by RSK Group plc.

During the ground investigation, access to window sample borehole WS4 could not be achieved safely and the hole was terminated at a depth of 1.2m bgl (i.e. the base of the hand dug pit).

The locations of the exploratory holes are shown in Appendix A.

6.2 Monitoring Wells

The drilling of the seven cable percussive boreholes and four drive-in window sampler boreholes was carried out in such manner as to minimise the potential for cross-contamination between individual strata. On completion of drilling, a 50mm diameter slotted HDPE standpipe with gas tap and bung was installed in three of the cable percussion boreholes to enable future ground gas and groundwater monitoring and sampling. The response zone of the wells was within the Kempton Park Gravel strata. The intake section comprised a slotted pipe with a geotextile sock. The boreholes are kept sealed by a lockable secure cap at ground level.

6.3 Groundwater Monitoring and Sampling

Groundwater monitoring and sampling was carried out by RSK Group plc on 1 July 2010. A second round of monitoring and sampling is due to take place on 19 August 2010, the results of which will be reported under separate cover.

The standing level of the groundwater in each monitoring well was monitored using a dip meter. The presence of hydrocarbon free product on the groundwater was also investigated using a free phase dip-meter, which did not show evidence of a hydrocarbon sheen on the surface.

Groundwater samples were obtained from the monitoring wells following purging of three well volumes using bailing. On-site testing of groundwater for temperature, dissolved soilds, pH, conductivity and dissolved oxygen was undertaken. The collected water samples were then sealed into bottles with premeasured fixatives where necessary, as supplied by the specialist laboratory, and transported in cool boxes or refrigerated for 24hrs prior to despatch to the testing laboratory.

A full set of groundwater monitoring results, including the equipment used for the fieldwork is presented in Appendix D.

6.4 Ground Gas Monitoring

Ground gas monitoring was carried out during three monitoring visits over a period of one month between 1 July and 5 August 2010. A further three monitoring visits are due to be carried out over the next month, the results of which will be reported under separate cover.

On each of the monitoring visits, the steady concentration readings of methane, carbon dioxide and oxygen were recorded at each installed monitoring standpipe, together with borehole gas flow readings and atmospheric pressure. This was undertaken using an infrared gas analyser and gas flow data monitor. Groundwater levels were also measured on each visit.

A full set of ground gas monitoring results is presented in Appendix E.

7. Results

Detailed logs of the strata encountered, together with records of the samples taken during borehole installation and PID readings, are provided in Appendix C. A summary of the geological strata and manmade underground structures encountered is presented below.

7.1 Geological Strata

The exploratory holes revealed that the site is underlain by Made Ground over Kempton Park Gravel over the London Clay Formation. This confirms the anticipated geology, as shown on the British Geological Survey map for the area. A summary of the geological strata encountered is shown in Table 4.

Table 4: Geological strata encountered

	<u> </u>		
Soil Type	Depth of Top of Stratum (m OD)	Thickness (m)	Typical Description
Made Ground	6.69 to 12.10	0.8 to 4.8	Dark brown, silty sandy gravel of flint with fragments of brick, stone and concrete with occasional ash and clinker
Kempton Park Gravel	4.40 to 7.30	2.1 to 7.1	Orange brown, silty and clayey, sandy gravel
London Clay Formation	0.00 to 3.95	up to 31.9 (proven to -31.9mOD)	Dark grey, silty sandy clay

Made Ground

The Made Ground typically comprised dark brown, silty sandy gravel of flint with fragments of brick, stone and concrete with occasional ash and clinker.

The only evidence of visual or olfactory contamination was local ash and clinker and a slight hydrocarbon odour in borehole BHB between 3.0m and 4.8m depth.

PID screening results for the Made Ground ranged from <0.1 to 7.5ppm.

Kempton Park Gravel

The Kempton Park Gravel typically comprised orange brown, silty and clayey, sandy gravel. Locally, pockets and partings of clayey sand were encountered. Thin layers (0.4m to 0.9m thickness) of orange brown silty and gravelly clay were encountered at the top of the Kempton Park Gravel in boreholes BHE and BHF, located close to the River Crane.

There was no evidence of visual or olfactory contamination.

PID screening results for the Made Ground ranged from <0.1 to 6.5ppm.

London Clay Formation

The London Clay Formation typically comprised dark grey, silty sandy clay with occasional partings of grey silt, pyrite veins and gleying. Claystone and siltstone layers were encountered at depth.

There was no evidence of visual or olfactory contamination.

7.2 Underground Structures and Obstructions

There was no evidence of underground structures or obstructions encountered apart from the laystone and siltstone layers described above (within the London Clay Formation). However, the potential for foundations or other infrastructure cannot be ruled out.

7.3 Chemical Analysis

The laboratory test results are presented in Appendix F.

7.4 Controlled Waters

Groundwater levels in the Kempton Park Gravel aquifer were monitored on three occasions, the results of which are included in Appendix D. Groundwater monitoring indicates water levels between 3.11m AOD and 4.50m AOD. A further three monitoring rounds are proposed in August 2010.

The Kempton Park Gravel aquifer was sampled from the three monitoring wells (BHA, BHD and BHF) on 1 July 2010. A further sampling event is proposed on 19 August 2010. No evidence of visual or olfactory contamination was observed in the samples taken.

The River Crane, which flows from west to east, was sampled up, mid and downstream of the Site on 1 July 2010. A further sampling event is proposed on 19 August 2010. No evidence of visual or olfactory contamination was observed in the samples taken.

7.5 Ground Gas

As part of the ground investigation, the three monitoring wells were monitored on three occasions over a period of one month between 1 July and 5 August 2010. A further three monitoring visits are due to be carried out over the next month, the results of which will be reported under separate cover.

The design of the monitoring wells resulted in gas concentrations being recorded from the Kempton Park Gravel

A complete set of ground gas results is included within Appendix E. Table 5 summarises the peak carbon dioxide and methane gas results that were recorded on all visits over the monitoring undertaken to date.

Table 5: Ground gas monitoring summary

Manitarina Paint	Steady Gas Concentration (%)		
Monitoring Point	CH ₄	CO ₂	O_2
ВНА	<0.1	3.5 to 6.8	10.2 to 15.8
BHD	<0.1	6.0 to 10.5	6.7 to 12.0
BHF	<0.1	6.8 to 14.3	4.0 to 11.2

Gas flows in the same monitoring wells ranged between <0.1 to 0.2 litres per hour.

8. Generic Assessment Criteria

The information requirements for generic quantitative risk assessment will depend on:

- · The substance being assessed
- The receptors being considered
- The pathways being considered
- The complexity of the site

The outline conceptual model developed for the site has identified several potential pollutant linkages. These potential pollutant linkages have been investigated and the results assessed against generic assessment criteria. The generic assessment criteria selected for each potential pollutant linkage are summarised in Table 6:

Table 6: Generic Assessment Criteria

Source	Pathway	Receptor	Generic Assessment Criteria
Contaminated Soils	Direct contact, inhalation	Future users of the proposed Development	Waterman Generic Assessment Criteria
Leaching from Contaminated Soils	Direct contact with groundwater	Principal Aquifer (Kempton Park Gravel)	Water Supply (Water Quality) Regulations
Leaching from Contaminated Soils	Direct contact with surface water	River Crane	EQS standards (freshwater)
Contaminated Soils	Root uptake	Vegetation and landscaped areas	British Standard BS3882:2007 Specification for topsoil and requirements for use
Ground Gas	Migration through soil matrix	Future users of the proposed Development	Gas Screening Value determination and assessment in accordance with CIRIA C665
Contaminated Soils	Direct Contact	New water supply pipes	Water Regulations Advisory Scheme Information and Guidance Note

The generic assessment criteria used in this report are included in Appendix I.

8.1 Site Specific Information used to Support the Generic Risk Assessment

The site specific information used to support the generic risk assessment undertaken as part of this investigation are described in the sections below:

Human Health Risk

An assessment of the data obtained during the ground investigation has been compared to the Waterman Generic Assessment Criteria (GAC) for a residential end use and Soil Organic Matter (SOM) of 1%. This generic scenario assumes a typical residential property consisting of a two-storey house built on a ground—bearing slab with a private garden consisting of lawn, flowerbeds and a small fruit and vegetable patch. The occupants are assumed to be parents with young children, who make regular use of the garden area. The exposure duration is six years and the exposure pathways include direct soil and indoor dust ingestion, consumption of home-grown produce, consumption of soil adhering to home-grown produce, skin contact with soils and indoor dust and inhalation of indoor and outdoor dust and vapours.

Therefore, given that the majority of the site is proposed hardstanding with a limited number of residential gardens and landscaping and the majority of residential apartments are elevated above ground level, this is considered to be a conservative assessment.

Controlled Waters

The Kempton Park Gravel Principal Aquifer is considered to be the main receptor at the site, with the potential for contamination (if present) to migrate both vertically and laterally off-site. Therefore, the chemical results have been compared to the Water Supply Regulations (WSR). However, this is considered to be a conservative assessment due to the site not being located within a Source Protection Zone and the aquifer not being abstracted from for potable water supplies locally (the nearest abstraction is over 1km from the site).

An assessment of the data has also been compared to the Environmental Quality Standards (EQS) for freshwater, given the close proximity of the River Crane adjacent to the site. However, it is understood that the river is an engineered structure with concrete walls in the section adjacent to the site, therefore, lateral migration of contamination (if present) into the river is likely to be minimal. In addition, it is understood that there are no weep holes or current discharge points from the site into the River Crane.

Ground Gas

Derivation of a gas screening value for the site has been undertaken in accordance with CIRIA C665 following monitoring of ground gas concentrations over a one month period. Further monitoring is due to be carried out, which will be reported under separate cover.

9. Quantitative Environmental Risk Assessment

The potential pollutant linkages identified in Section 3.2 have been evaluated using the Generic Assessment Criteria described in Section 8 and Appendix I. The results of this evaluation are reported below:

9.1 Risk to Human Health

An assessment of the data obtained from the investigation has been compared to the Waterman GAC assuming a residential end use and Soil Organic Matter of 1% for the site.

Elevated concentrations of Arsenic, Lead, Mercury, Vanadium and PAHs (Naphthalene, Benzo(a)anthracene, Chrysene, Benzo(b)flouranthene, Benzo(k)flouranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Di-benzo(a,h)anthracene) were found to be above the respective generic assessment criteria for soils across the site. A summary of the elevated contaminants and their locations is provided in Table 7.

Table 7: Summary of Generic Quantitative Risk Assessment for Human Health

Contaminant	Location	Concentration (mg/kg)	Number of Exceedances	Generic Assessment Criteria (mg/kg)
Arsenic	BHG (1m)	75	1	32
Lead	BHB (2m), BHB (4.5m), BHE (1m), BHG (1m), WS2 (0.5m, 1m), WS3 (0.25m)	480 – 1,500	7	450
Mercury	BHA (0.5m, 1m), BHB (3m, 4.5m), BHF (0.5m, 1.5m), BHG (1m, 1.5m), WS1 (1m), WS2 (0.5m, 1m)	1.0 – 3.3	11	1
Vanadium	BHG (1m)	94	1	75
Naphthalene	BHB (4.5m), BHG (1m, 1.5m), WS2 (1m)	1.6 – 4.2	4	1.5
Benzo (a) anthracene	BHB (2m, 4.5m), BHC (0.5m), BHG (0.5m, 1m, 1.5m), WS1 (0.25m, 1m), WS2 (0.5m, 1m), WS3 (0.25m)	4.6 - 30	11	3.1
Chrysene	BHB (2m, 4.5m), BHC (0.5m), BHG (0.5m, 1m, 1.5m), WS1 (0.25m), WS2 (0.5m, 1m)	7.1 - 32	9	6
Benzo (b) flouranthene	BHB (2m, 4.5m), BHC (0.5m), BHG (0.5m, 1m, 1.5m), WS1 (0.25m, 1m), WS2 (0.5m, 1m), WS3 (0.25m)	5.8 - 27	11	5.6
Benzo (k) flouranthene	BHB (2m), BHG (1m), WS2 (0.5m, 1m)	8.9 - 18	4	8.5
Benzo (a) pyrene	BHA (0.5m, 1.5m), BHB (2m, 3m, 4.5m), BHC (0.5m, 1m), BHD (0.5m), BHF (0.5m, 1.5m), BHG (0.5m, 1m, 1.5m), WS1 (0.25m, 1m), WS2 (0.5m, 1m), WS3 (0.25m), WS4 (0.75m)	1.4 - 36	18	0.83
Indeno (1,2,3- cd) pyrene	BHB (2m, 4.5m), BHC (0.5m), BHG (0.5m, 1m, 1.5m), WS1 (0.25m, 1m), WS2 (0.5m, 1m), WS3 (0.25m)	3.8 - 20	11	3.2
Di-benzo (a,h) anthracene	BHB (2m, 4.5m), BHC (0.5m), BHG (0.5m, 1m, 1.5m), WS1 (0.25m), WS2 (0.5m, 1m), WS3 (0.25m)	1.1 – 5.3	10	0.76

9.2 Risk to Controlled Waters

An assessment of the data obtained from the investigation and subsequent monitoring and sampling has been compared to the WSR and EQS for freshwater.

Elevated concentrations of iron and chromium were found to be above the respective generic assessment criteria within groundwater at the site. It should be noted that no elevated contaminant concentrations were encountered within the surface water samples taken from the adjacent River Crane. A summary of the elevated contaminants against the WSR and EQS (freshwater) and their locations is provided in Table 8.

Table 8: Summary of Generic Quantitative Risk Assessment for Controlled Waters

Contaminant	Location	Concentration (μg/l)	Number of Exceedances	Generic Assessment Criteria (μg/l)
Iron	BHA, BHD, BHF	260 – 1,400	3	WSR – 200
Chromium	BHD	38	1	EQS – 20 (based on hardness)

Whilst elevated concentrations of Iron and Chromium have been identified within groundwater samples taken at the site, it should be noted that elevated concentrations of these contaminants has not been identified within the chemically tested soil samples. Furthermore, the results of the leachate analysis undertaken as part of the WAC testing have indicated that the metals tested are generally not leachable within these samples.

9.3 Risks to Ecological Systems/Vegetation

An assessment of the soil data obtained from the investigation has been compared to the British Standard BS3882:2007.

Elevated concentrations of zinc and copper were found to be above the respective generic assessment criteria for soils at the site. A summary of the elevated contaminants against BS3882:2007 and their locations is provided in Table 9.

Table 9: Summary of Generic Quantitative Risk Assessment for Landscaped Areas

Contaminant	Location	Concentration (mg/kg)	Number of Exceedances	Generic Assessment Criteria (mg/kg)
Copper	BHG (1m), WS2 (0.5m)	250 - 270	2	200 (>pH7)
Zinc	BHG (1m), WS1 (0.25m), WS2 (0.5m), WS3 (0.25m)	430 – 1,600	4	200 (pH6-7) 300 (pH>7)

9.4 Risk to Structures (Ground Gas and Vapour Intrusion)

The results from the ground gas monitoring undertaken at the site to date indicate the presence of carbon dioxide and marginally elevated flow readings. A full set of gas results obtained from the site are provided in Appendix E.

To assess the likely risk ground gases may have on a building a Gas Screening Value (GSV) is calculated using the peak recorded gas flow (I/hr) multiplied by the maximum gas concentration (%). GSVs are calculated for both Carbon Dioxide and Methane and then compared against the Wilson and Card model for all buildings except low-rise housing in accordance with CIRIA C665.

As described above, GSVs of 0.0002l/hr and 0.0286l/hr have been calculated for methane and carbon dioxide respectively. In view of the elevated concentrations of carbon dioxide recorded to date, it is appropriate to classify the site as a Characteristic Situation 2 (low risk) in accordance with CIRIA C665.

In view of this classification, precautionary measures are normally considered necessary. Any buildings constructed at ground level will typically require the following protection measures, as stated in CIRIA C665:

- a) Reinforced concrete cast in situ floor slab (suspended, non-suspended or raft) with at least 1200g DPM and under floor venting;
- b) Beam and block or pre-cast concrete 2000g DPM/ reinforced gas membrane and underfloor venting; and
- c) All joints and penetrations sealed.

There is the potential for vapour ingress into the buildings through the presence of elevated concentrations of a limited number of PAHs (Naphthalene, Benzo(a)anthracene, Chrysene, Benzo(b)flouranthene, Benzo(k)flouranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene and Di-benzo(a,h)anthracene). However the contribution to total exposure via indoor vapour inhalation for the majority of these contaminants (with the exception of Naphthalene) within the CLEA model is considered to be less than 0.1%. The collective contribution to total exposure for the remaining pathways (ingestion, inhalation of dust, consumption and dermal contact) is greater than 99%, which, given the proposed importation of clean landscaping material and the presence of significant hardstanding, exposure via these pathways is not considered plausible.

The main exposure pathway for Naphthalene within the CLEA model is via the inhalation of indoor vapour (27%). Therefore, appropriate protection measures will need to be considered further and incorporated into the building design.

9.5 Risk to Water Supply Pipes

An assessment of the soil data obtained from the investigation has been compared to the generic assessment criteria from the Water Regulations Advisory Scheme (WRAS) Information and Guidance Note.

Elevated concentrations of pH, Antimony, Arsenic, Lead, Mercury, Total PAHs and Petroleum Hydrocarbons (total) were found to be above the respective generic assessment criteria for soils at the site. A summary of the elevated contaminants against the WRAS guidance and their locations is provided in Table 10.

Table 10: Summary of Generic Quantitative Risk Assessment for Water Supply Pipes

Contaminant	Location	Concentration (mg/kg)	Number of Exceedances	Generic Assessment Criteria (mg/kg)
рН	BHA (0.5m), BHB (1m, 2m, 3m, 4.5), BHC (0.5m, 2m), BHD (2m), BHE (1m), BHG (0.5m, 1.5m, 2.5m, 4m)	8.1 - 10.1	13	Less than pH5 greater than pH8
Antimony	BHG (1m), WS2 (0.5m), WS3 (0.25m)	10 - 16	3	10
Arsenic	BHA (0.5m, 1.5m), BHB (2m, 3m, 4.5m), BHC (0.5m, 1m), BHD (0.5m, 1.5m), BHE (1m), BHF (1.5m), BHG (0.5m, 1m, 1.5m, 2.5m), WS1 (0.25m, 1m), WS2 (0.5m, 1m), WS3 (0.25m, 0.75m), WS4 (0.75m)	11 - 75	21	10
Lead	BHB (2m), BHE (1m), BHG (1m), WS2 (0.5m), WS3 (0.25m)	540 -1,500	5	500
Mercury	BHA (0.5m, 1m), BHB (3m, 4.5m), BHF (0.5m, 1.5m), BHG (1m, 1.5m), WS1 (1m), WS2 (0.5m, 1m)	1 – 3.3	11	1
Total PAHs	BHB (2m, 4.5m), BHC (0.5m), BHG (0.5m, 1m, 1.5m), WS1 (0.25m, 1m), WS2 (0.5m, 1m), WS3 (0.25m)	55 - 374	11	50
Petroleum Hydrocarbons (total)	BHA (0.5m), BHB (2m, 3m, 4.5m), BHC (0.5m), BHG (0.5m, 1m, 1.5m), WS1 (0.25m, 1m), WS2 (0.5m, 1m), WS3 (0.25m)			50

9.6 Risk to Construction Workers

A qualitative assessment of the risk to construction workers has been undertaken as part of this assessment, given that there are no specific threshold criteria currently available for contamination risks to this receptor.

Several elevated contaminants have been identified within soils when compared to a residential end use. In addition, marginally elevated groundwater contaminants have been identified beneath the site to date.

In view of the above results, it is considered that site construction and maintenance workers should wear appropriate Personal Protective Equipment (PPE) and clothing during any below ground works in order to reduce direct contact, dermal absorption, ingestion and inhalation of any potential contaminants.

Given the depth to groundwater across the majority of the site (~3m to 5m bgl), routine ground works may also come into contact with groundwater.

Elevated concentrations of ground gas (carbon dioxide) have been identified, with the site conforming to a GSV 2, as well as elevated concentrations of vapours (PAHs). All ground works should be carried out in line with the Confined Space Regulations.

10. Waste Disposal

The available dry soil data has been entered into the Waterman Hazardous Waste Tool (HWT). All samples with the exception of borehole BHG and window samples WS2 and WS3 have been confirmed to not contain hazardous properties and, as such, pending further WAC analysis can be disposed to either a Non-Hazardous or Inert landfill.

Soil samples BHG at 1m depth, WS2 at 0.5m and WS3 at 0.25m were confirmed to be hazardous in view of their elevated lead and zinc content.

5No. Waste Acceptance Criteria (WAC) tests were completed by the laboratory for BHA at 0.5m to 2m, BHB at 0.5m to 3m, BHC at 2m to 3.5m, BHE at 0.5m to 1.5m and BHF at 0.5m to 1m. The results of this testing indicates that the samples taken from BHB and BHF would be accepted at a Non-Hazardous landfill. The three results from BHA, BHC and BHE indicate that these samples would be able to be disposed of at an Inert landfill. Further waste assessment will be required at a later stage to delineate the site in terms of waste classification and seek to reduce the amount of material being taken off-site.

A summary of the results entered into the Waterman HWT and the respective WAC tests is shown in Table 11.

Table 11: Waste classification

Table II. V	Table 11. Waste dassilication							
Location	Depth of sample (m)	EWC 2002 Catalogue Entry Code	Description	Hazardous*	Waste Acceptance Criteria Classification			
ВНА	0.5	17 05 04	Soil and stones	No	Inert waste			
ВНА	1.5	17 05 04	Soil and stones	No	Inert waste			
ВНА	3.5	17 05 04	Soil and stones	No	Not tested			
ВНВ	1.0	17 05 04	Soil and stones	No	Non-Hazardous waste			
ВНВ	2.0	17 05 04	Soil and stones	No	Non-Hazardous waste			
ВНВ	3.0	17 05 04	Soil and stones	No	Non-Hazardous waste			
ВНВ	4.5	17 05 04	Soil and stones	No	Not tested			
ВНС	0.5	17 05 04	Soil and stones	No	Not tested			
ВНС	1.0	17 05 04	Soil and stones	No	Not tested			
внс	2.0	17 05 04	Soil and stones	No	Inert waste			
BHD	0.5	17 05 04	Soil and stones	No	Not tested			
BHD	1.5	17 05 04	Soil and stones	No	Not tested			
BHD	2.0	17 05 04	Soil and stones	No	Not tested			
BHE	1.0	17 05 04	Soil and stones	No	Inert waste			
BHE	2.0	17 05 04	Soil and stones	No	Not tested			
BHE	3.0	17 05 04	Soil and stones	No	Not tested			
BHF	0.5	17 05 04	Soil and stones	No	Non-Hazardous waste			
BHF	1.5	17 05 04	Soil and stones	No	Not tested			
BHF	3.0	17 05 04	Soil and stones	No	Not tested			

Location	Depth of sample (m)	EWC 2002 Catalogue Entry Code	Description	Hazardous*	Waste Acceptance Criteria Classification
BHG	0.5	17 05 04	Soil and stones	No	Not tested
BHG	1.0	17 05 03	Soils and stones containing dangerous substances	Yes	Not tested
BHG	1.5	17 05 04	Soil and stones	No	Not tested
BHG	2.5	17 05 04	Soil and stones	No	Not tested
BHG	4.0	17 05 04	Soil and stones	No	Not tested
WS1	0.25	17 05 04	Soil and stones	No	Not tested
WS1	1.0	17 05 04	Soil and stones	No	Not tested
WS2	0.5	17 05 03	Soils and stones containing dangerous substances	Yes	Not tested
WS2	1.0	17 05 04	Soil and stones	No	Not tested
WS3	0.25	17 05 03	Soils and stones containing dangerous substances	Yes	Not tested
WS3	0.75	17 05 04	Soil and stones	No	Not tested
WS4	0.75	17 05 04	Soil and stones	No	Not tested

^{*}Determined using the Waterman Hazardous Waste Tool.

On the basis of the above, the Made Ground will be classified as Inert, Non-Hazardous or Hazardous. Further investigation and testing will be required in order to determine the appropriate waste classification of any material excavated during the development. Furthermore, the requirement for pre-treatment of Hazardous material will also need to be assessed.

It is likely that the Kempton Park Gravel and London Clay Formation would be able to be reused on site as part of the development. However, should disposal of these strata be required, it is likely that they will be able to be disposed of to an Inert landfill.

11. Conclusions

Following the implementation of the ground investigation, the pollutant linkages identified during the Preliminary Environmental Risk Assessment have been re-evaluated and reclassified in relation to the additional information obtained. The results of the reassessment are summarised in Table 12.

Table 12: Estimation of environmental risks associated with the subject site

Receptor	Potential sources	Pathways	Risk	Mitigation	Residual Risk
Human Health					
Future site users, maintenance staff	Contaminated Direct contact, Low to soils and ingestion, medium groundwater dermal Low to believe the GAC for a residential end use. However, the majority of the proposed development will be hardstanding with limited residential gardens and areas of landscaping.	Low			
		absorption		Residential gardens and landscaped areas should be capped with a suitable thickness of material suitable for the proposed use.	
	Ground gas and vapour	Inhalation	Low to medium	The site conforms to a CSV2, whereby precautionary ground gas measures are likely to be required in the new development.	Low
				In addition, elevated concentrations of PAHs (vapour) have been identified. Whilst the majority of PAHs are not considered to pose a risk (given the importation of clean landscaping material and the presence of significant hardstanding), marginally elevated concentrations of naphthalene are likely to require protection measures in the proposed building design.	
Construction and maintenance workers	Contaminated soils and groundwater, ground gas and vapour	Direct contact, ingestion, dermal absorption, inhalation	Low	Elevated contaminants have been identified above the GAC for a residential end use. Construction workers are likely to come into direct contact with shallow soils. The use of appropriate PPE, RPE and the provision of hygiene facilities should be adopted.	Low
Property					
Site structures	Contaminated soils and groundwater	Direct contact	Low to medium	Elevated contaminants have been identified above the GAC for a residential end use and in line with the WRAS water supply pipe guidance. If necessary mitigation measures, such as the use of sulphate resistant cement and metallic water pipes should be used.	Low
Plants /Landscaping	Contaminated soils and groundwater	Root uptake	Low to medium	Elevated concentrations of contaminants have been identified above the BS3882:2007 guidance. However, limited residential gardens and landscaping is proposed.	Low
				An appropriate thickness of inert material should be placed in all areas of new soft landscaping and residential gardens (where necessary) to provide a healthy growth medium. Imported landscaping materials should be adequately tested prior to placing to ensure they are suitable for use.	

Receptor	Potential sources	Pathways	Risk	Mitigation	Residual Risk
Adjacent Property					
Adjacent residential properties	Contaminated soil and groundwater	Dust and vapour	Low	Elevated contaminants have been encountered above the GAC for a residential end use. Dusts should be minimised during construction given the proximity of sensitive receptors.	Low
Controlled Waters					
Kempton Park Gravel	Contaminated soils		Low to medium	Limited marginally elevated contaminant concentrations have been identified within groundwater at the site. A Foundation Works Risk Assessment should be completed prior to development, which will incorporate any remediation of contamination sources as necessary.	Low
				The site is classified as a Principal Aquifer. However, the site does not lie within a SPZ.	
				There are no groundwater abstractions within 1km of the site, with the closest being located approximately 1050m to the northeast.	
				The majority of the proposed development comprises hardstanding, thereby reducing the potential mobilisation of contaminants.	
				It is understood that the proposed drainage for the development includes reuse of foul and surface water connections to sewer, provision of an additional foul water connection to the Thames Water network and direct connection to the public sewer. A direct surface water connection to discharge to the River Crane is also being considered.	
River Crane	Contaminated soils		Low	Elevated contaminant concentrations have not been identified within the surface water samples taken from upstream, adjacent to the site and downstream of the River Crane.	Low
				The River Crane is understood to be an engineered structure with concrete walls in the section adjacent to the site, which will minimise the migration pathway of any potential contamination.	
				The River Thames is considered to be present at a great enough distance down-gradient from the site not to be affected by the off-site migration of potential contaminants.	

The potential pollutant linkages described above can be managed by design of appropriate mitigation measures during the redevelopment of the site.

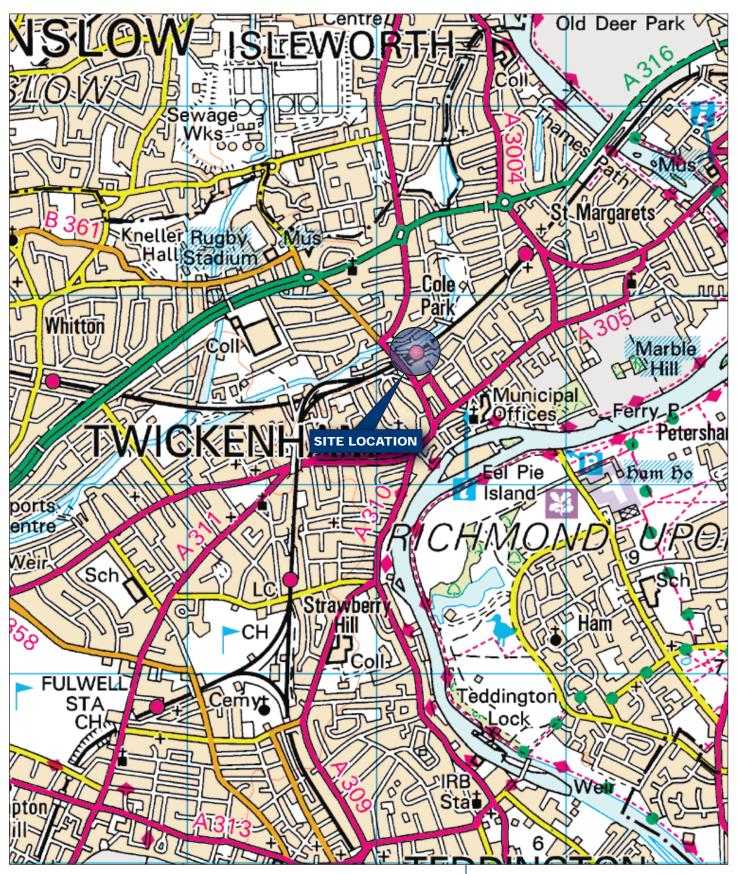
12. Recommendations

The following actions are recommended to address the potentially unacceptable risks that remain:

- Elevated concentrations of ground gas (carbon dioxide) have resulted in the site being classified as a GCS2. Appropriate gas protection measures should be incorporated into the proposed building design;
- The conceptual model has indicated the presence of a potential hydrocarbon vapour pathway to the
 proposed residential/commercial properties. Further risk assessment/remedial works to manage the
 source of the elevated hydrocarbons will be required and/ or vapour protection measures incorporated
 into the building design;
- Excavated materials should be assessed for their potential for reuse or classified for waste disposal purposes;
- Areas of landscaping and gardens will require the importation of clean soils to ensure a suitability for use to both occupants and plants;
- Consideration should be given to the use of contaminant resistant pipe work and clean service corridors for the proposed redevelopment;
- Where appropriate all works should be agreed, prior to being undertaken, with the statutory authorities;
- Ground workers should wear appropriate personal protective equipment (PPE) and adopt appropriate hygiene practices;
- The River Crane (engineered structure) and any drainage runs/sewers beneath the site should be safeguarded during the redevelopment works;
- A Foundation Works Risk Assessment should be completed prior to redevelopment;
- The potential for Asbestos Containing Materials (ACMs) should be investigated and any surveys or reports reviewed by a specialist consultant; and
- A copy of this report should be forwarded to the relevant statutory authorities.

12.1 Other Issues

- Consideration should be given to the implementation of an Environmental Management Plan (EMP)
 covering the demolition and construction of the site, given the proximity of the residential receptors in
 the locality;
- Reference should be made to the Explosive Ordnance Threat Assessment produced for the site by BACTEC (Ref: 9732TA), dated 12 December 2008 prior to redevelopment works commencing at the site; and
- Japanese Knotweed identified at the site during the investigation should be appropriately managed and a programme of treatment and disposal undertaken by a specialist contractor.



APPENDICES

Appendix A. Site Plans

- Site Location Plan (Fig. A1)
- Site Plan (Fig. A2)
- Ground Investigation Plans (Drawing No. 241458/001)
- Conceptual Site Model (Fig. A3)

Project Details

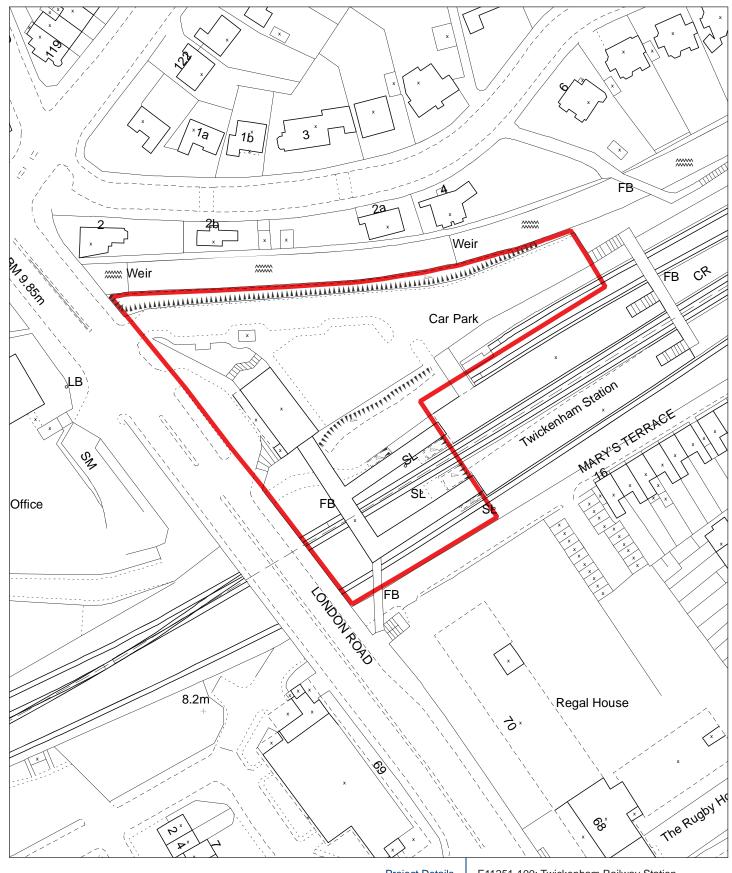
E11251-100: Twickenham Railway Station

Figure Title

E11251-100_GR_DS_A1A

Figure A1: Site Location Plan

Figure Ref Date


August 2010

File Location

Energy, Environment & Design

www.watermangroup.com

Site Boundary

Project Details

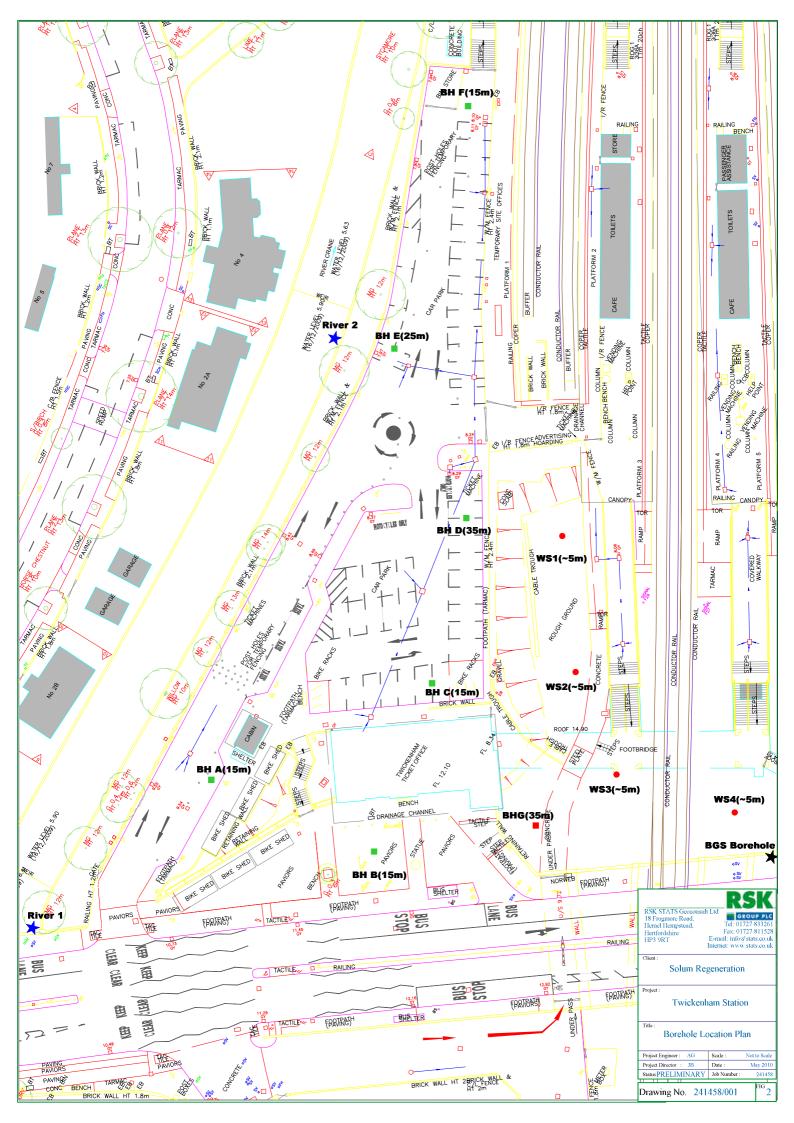
Figure Title

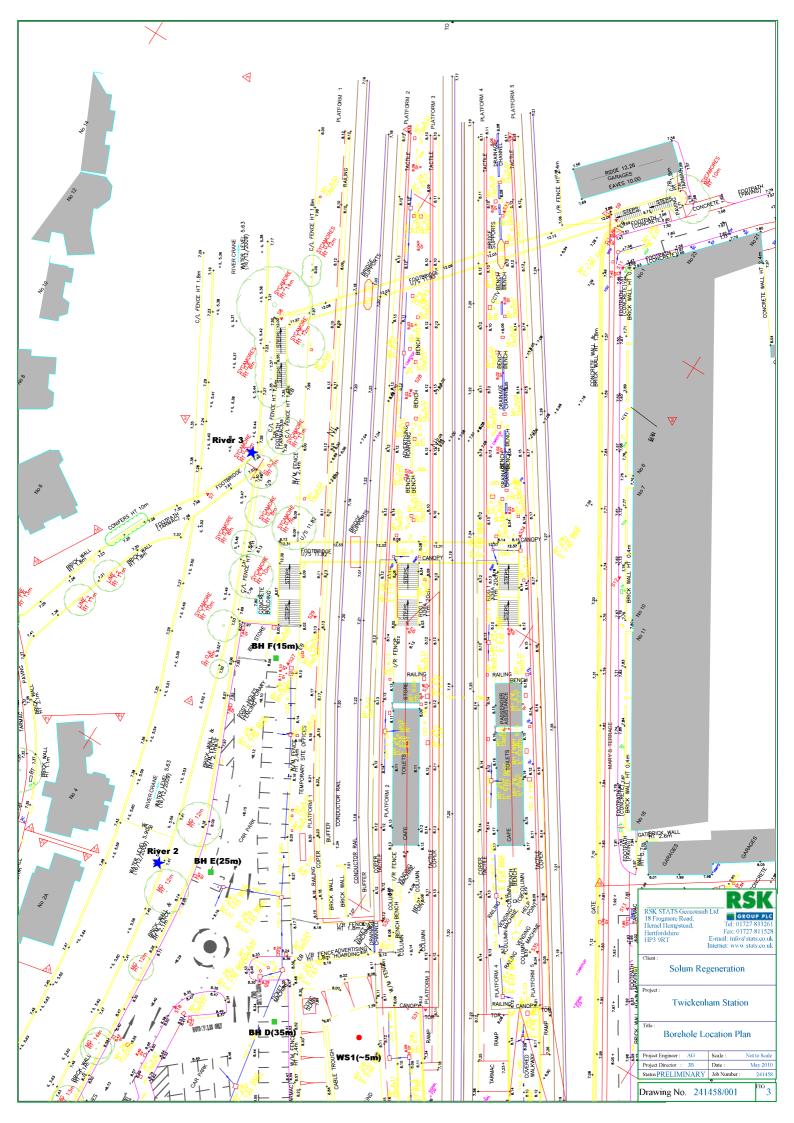
Figure Ref Date

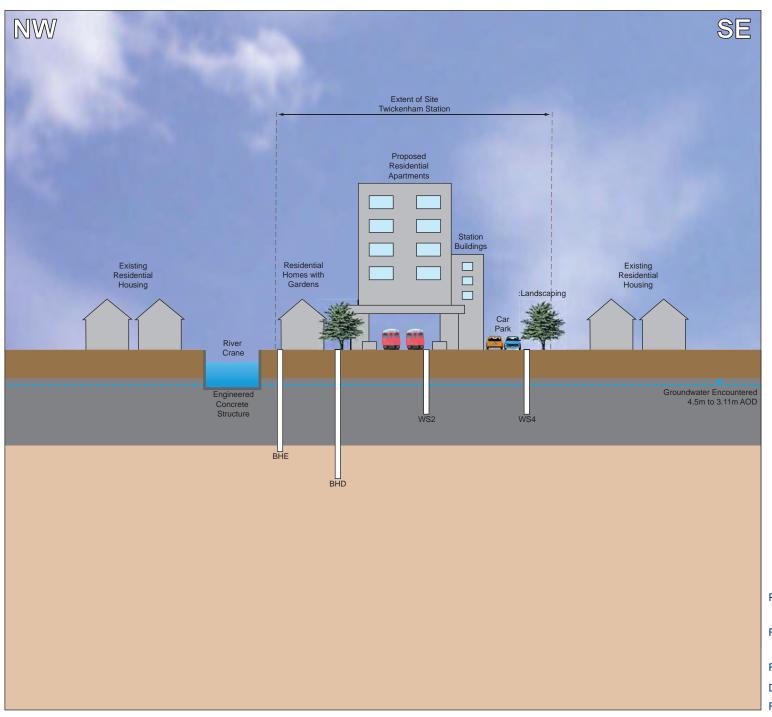
File Location

E11251-100: Twickenham Railway Station

Figure A2: Site Plan

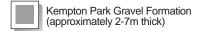

E11251-100_GR_DS_A2A

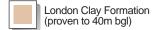

August 2010



Energy, Environment & Design

www.watermangroup.com





aterman
Energy, Environment & Design

Project Details

Figure Title

Figure Ref Date

File Location

E11251-100: Twickenham Railway Station

Figure A3: Conceptual Site Model

E11251-100_GR_DS_A3A

August 2010

\nt-lnpg2\weedl\projects\e11251\100\graphics\ds\issued figures

www.watermangroup.com

Appendix B. Site Photographs

• Plates 1-6 (3 pages)

Plate 1: Cable percussion drilling of Borehole BHD.

Plate 2: View of River Crane adjacent to the site. Note concrete lined structure.

Project Details

E11251-100: Twickenham Railway Station

Figure Title

Figure B1: Site Photographs

Figure Ref Date

File Location

E11251-100_GR_DS_B1A

August 2010

Energy, Environment & Design

Plate 3: Cover of finished cable percussion borehole BHF.

Plate 4: View of Japanese Knotweed growth on western boundary of the site adjacent to the River Crane.

Project Details

E11251-100: Twickenham Railway Station

Figure Title

Figure B2: Site Photographs

Figure Ref Date File Location E11251-100_GR_DS_B2A

August 2010

© WATERMAN ENERGY, ENVIRONMENT & DESIGN

Plate 5: Area of Japanese Knotweed at Twickenham Station 'trackside'.

Plate 6: Location of open cable percussion borehole BHD with drilling spoil.

Project Details

E11251-100: Twickenham Railway Station

Figure Title

E11251-100_GR_DS_B3A

Figure B3: Site Photographs

Figure Ref Date

August 2010

File Location

Energy, Environment & Design

Appendix C. Exploratory Hole Records

- Boreholes BHA to BHG (19 pages)
- Window Sample Boreholes WS1 to WS4 (7 pages)

	SI ROUP P	C _			ST	AT:	5	(Perc	EHOLE ussive)	RECORD	Borel Numb	er:
Site: Twicl	kenhar	n Rail\	way Statior	າ				Location: Twickenh Station	am Railway		ВНА	
Clien	t:							Ground Le	evel:	Date:	Job No:	
Solur	n Rege	enerat	ion					9.55mAO	D	11 Jun 10	241458	
GROL	JND W	ATER		SAMPLES	/TEST	S			STRATA RE	CORD	Sheet 1	of 2
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
			()	0. 0 2.0	0.08 - 0.20 -	9.47	0.08 0.12		MADE GROU	ND: Black bituminous par	ving.	
			0.50 J 1		0.20	9.35			MADE GROU	ND: Concrete		/
			0.60 TB 1 D 1		- -					ND: Dark brown slightly s EL. Sand is fine to coarse		
		- -1	1.00 D 2		_		1.80	XXXX	Gravel is sub-	rounded to angular fine to		
			J 2 TB 2		_		1.80			uent red brick, crushed st and occasional ash and	one	
			1.40 D 3 1.50-1.95 B 1 1.50 J 3		-				clinker.	m 1.60m depth, becoming	r clavev	
			1.50-1.95 TB 3 D 4	N=3 [1,0](1,1,1,0)	=				and lo		golaycy	
		-2	2.00 J 4 TB 4		2.00	7.55				ND: Soft, dark brown slig		
			2.40 D 5 2.50-2.95 B 2	s-	-		1.00		coarse. Grave	avelly CLAY. Sand is fine a sub-rounded to angul		
			2.50 J 5 2.50-2.95 TB 5 D 6		-				and frequent	with rare cobbles of flint concrete, crushed stone a	ınd	
		-3	3.00 J 6	[1,2](2,2,3,2)	3.00	6.55		\longleftrightarrow		occasional ash. ND: Soft to firm, brown/or	range	
					-		0.50		mottled slightl	y gravelly sandy CLAY. S se. Gravel is sub-rounded	and	
		2) 5	3.50-3.95 B 3 3.50 J 7		3.50	6.05			angular fine to	coarse flint with		
,		5	3.50-3.95 TB 7 D 8	N=18 [3,4](5,5,4,4)	=				occasional fin ash.	e red brick fragments and		/
		-4 -			-		1.10			e brown clayey sandy GR o coarse. Gravel is	AVEL.	
			4.40 D 9 4.50-4.95 D 10	S-	=				sub-rounded t	to angular fine to coarse v		
			4.50 B 4	N=26	4.60	4.95		· · · · · · · · ·	GRAVEL).	of flint. (KEMPTON PARK		
		_ _5	I D C	[4,4](5,7,7,7)	-		1.00	×: ^.* ×		tween 4.0m to 4.60m dep Ily sand.	tn,	
					-		1.00	×: *: *: *:		e orange/brown sandy GF o coarse. Gravel is	RAVEL.	
			5.50 J 9 5.60 TB 9		5.60	3.95		×. ×. ×. ×.	sub-rounded t	to angular fine to coarse f	lint	
9			D 11 5.90 D 12		-			<u>×x</u> -		al partings and lenses of KEMPTON PARK GRAV	EL).	/
*		-6 -	6.00-6.45 D 13 B 5	ST				$\overline{\times}$		ninated dark grey/orange y silty fine sandy CLAY.		
				N=21 [4,5](5,6,5,5)	-			$\overline{\times}$ _ $\overline{\times}$	Contains occa	asional sub-angular to and		
					-			$\times - \times \times \times$		el within the upper surface . (LONDON CLAY FORM		
		7			=			\times \times \times				
			7.40 D 14				3.40	$=$ $\stackrel{\sim}{\times}$ $\stackrel{\sim}{\sim}$				
		Ē	7.50-7.95 UT 1	U3	1 -			$\overline{}$ \times $\overline{}$				
		0	7.95-8.05 D 15					<u> </u>				
		-8	111.00 1					\times				
								<u> </u>				
K		=			=		11	$\times \underline{} \times $	5			
R		9	8.90 D 16 9.00-9.45 D 17 B 6	s_	9.00	0.55		<u> </u>	Stiff ficeured t	hinly laminated dark grey		
Š		<u> </u>	B 6	N=34 [7,8](8,8,10,8)					fine slightly sa	andy CLAY. Contains		
k K				[1,0](0,0,10,0)			1			n partings of grey silt and DON CLAY FORMATION		
K		=							Continued ne	ext sheet		
			er Observat		ment of	drilling C	PD 4	determinations	were carried		Scale:	1:50
out in t	he hand	pit at de	epths of 0.25n	n, 0.50m, 0.75	m and 1	.0mbgl. C	asing	g from ground			Logged by:	AG
			6.0mbgl.	₩445 1113(4	VVIIII	a ground	. yas	ana ground We	2.5. Monitoring		Figure:	В

e:	ROUP P		way Station		5 T/	AT:		(Perc	EHOLE ussive) am Railway	RECORD	Borel Numb BHA	er:
en	t:							Ground Le	evel:	Date:	Job No:	
lur	m Rege	enerati	ion					9.55mAO		11 Jun 10	241458	
	JND W			SAMPLES	/TFST	s			STRATA RE		Sheet 2	of
ke	Well	Depth	Depth/Type	SPT 'N'	Depth	Level		Key	Description		0110012	
		(m) -11 -12 -13 -14 -15 -16 -17	(m) 10.40 D 18 10.50-10.95 UT 2 10.95-11.05 D 19 11.90 D 20 12.00-12.45 D 21 B 7	U53 S N=42 [8.8](10,10,11,11) U53 S N=46 [11,10](12,12,11,	13.00	-3.45	2.00		Very stiff fissu grey CLAY. C partings of gre FORMATION fro becor	irred thinly laminated dark ontains occasional thin by silt. (LONDON CLAY). m 14.0m depth, silt partining frequent.		
ma	arks an	d Wate	er Observati	ons]			<u> </u>			Scale:	
nd p	oit excuv	ated to 1	1.20mbgl prior	to commence	ment of m and 1	drilling. C	BR o	determinations g from ground l	were carried evel to			1:
0m	bgl. Upoi	n comple	etion the boreh 6.0mbgl.	ole was insta	lled with	a ground	gas	and ground wa	ater monitoring		Logged by:	A
ιuμ	ייףט נט מ	achiii 01	o.ombyi.								Figure:	В

G e:	SK ROUP P	ıc			ST	AT:	5		EHOLE ussive)	RECORD	Borel Numb	er:
	kenhan	n Rail\	way Statior	1					am Railway		БПБ	
ent	t:							Ground Le	evel:	Date:	Job No:	
lur	n Rege	enerat	ion					12.10mA0	DD	10 Jun 10	241458	
οι	JND W	ATER		SAMPLES	/TEST	S			STRATA RE	CORD	Sheet 1	of
кe	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
3			,		0.08 -	12.02			MADE GROU	ND: Brick paving		
		- -1	0.50 J 1 0.60 TB 1 D 1 1.00 D 2 J 2 TB 2 1.40 D 3 1.50-1.95 B 1 1.50 J 3 1.50-1.95 TB 3	S	1.00	11.10 10.70	0.92		GRAVEL. Sal sub-rounded of , crushed stor with occasion broken tile an of clayey fine MADE GROU sandy GRAVU Gravel is sub-	IND: Brown slightly silty sind is fine to coarse. Grave to angular fine to coarse fine, red brick and concrete all ash and clinker and rard crockery. Localised poot to medium sand. IND: Orange/brown slight EL. Sand is fine to coarse angular to sub-rounded find.	el is lint e kkets y silty ne	
			2.00 J 4 TB 4 2.40 D 5 2.50 J 5 2.50-2.95 TB 5 D 6 3.00 J 6 TB 6		3.00	9.10	1.60		to medium oc rare red brick MADE GROU loose, dark br fine to coarse sub-rounded flint, brick and ash and conc	casionally coarse flint with fragments. IND: Medium dense beco own slightly slity slightly coandy GRAVEL. Gravel to sub-angular fine to coal crushed stone with rare rete. Localised small pool	ming klayey s rse	
		4	3.40 D 7 3.50 J 7 3.50-3.95 TB 7 D 8 4.00 J 8 TB 8 4.40 D 9 4.50-4.95 D 10	S			1.80		sub-a grave MADE GROU slightly silty sl GRAVEL. Sar sub-rounded	m 2.0m depth, occasiona ngular fine to medium cha	alk ack elis	
		5	5.00 D 11 5.50 J 10 TB 10	N=21 [3,3](4,6,6,5)	4.80 -	7.30			chalk gravel. Dense orange is fine to coan angular fine to	ncrete, ash and clinker. F Slight hydrocarbon odour e/brown very sandy GRA\ se. Gravel is sub-rounded to coarse with occasional KEMPTON PARK GRAV	EL. Sand	
		-6 -	5.90 D 12 6.00-6.45 D 13 B 2 6.50 J 11 TB 11	C			2.70	× × × × × × × × × × × × × × × × × × ×				
		-7	7.40 D 14 7.50 J 12 7.50-7.95 TB 12 D 15 B 3	C	7.50 -	4.60	1.00	X X X X X X X X X X X X X X X X X X X	Sand is fine to sub-rounded occasionally of pockets and	e/brown silty very sandy Go coarse. Gravel is to angular fine to medium coarse flint. Localised partings of clayey fine to . (KEMPTON PARK GRA		
			8.50 D 16 8.90 D 17 9.00-9.45 UT 1	U32	8.50	3.60	1.90	x	Stiff, dark gre slightly silty C laminations of	y fine slightly sandy LAY. Contains thin f silt and rare partings of n sand. (LONDON CLAY	v с с ј.	
ma	orks an	d Wate	er Observat	ions	_			\times $\stackrel{\times}{\longrightarrow}$	Continued ne	ext sheet	Scalor	
nd p	it excuv	ated to	1.20mbgl prior	to commence				from ground le Ombgl, and be			Scale:	1:5
	llevel.							J , 1112 30			Logged by:	AG
											Figure:	В

te:	ROUP P		way Station			AT:		(Perci	EHOLE ussive) am Railway	RECORD	Borel Numb BHB	er:
								Station				
ien								Ground Le		Date:	Job No:	
	n Rege		ion			_		12.10mAC		10 Jun 10	241458	
	JND W			SAMPLES				.,	STRATA RI	CORD	Sheet 2	<u>2 ot</u>
ke	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
**********************************		-11 -12 -13	10.40 D 18 10.50-10.95 D 19 B 4 11.90 D 20 12.00-12.45 UT 2 12.45-12.55 D 21 13.40 D 22 13.50-13.95 D 23 B 5	S N=34 (5.5)(7,9,9,9) U37 N=37 (7.8)(8,10,10,9)	11.00	1.70	4.50	X	slightly silty s Contains rare (LONDON CI Stiff thinly lan slightly silty C of grey silt. (L	ninated fissured dark grey lightly sandy CLAY. Partings of grey silt. LAY FORMATION). ninated fissured dark grey LAY. Contains rare partin ONDON CLAY FORMATION CLAY FORMA	gs ON).	
	ļ	-										
	aulaa -	- - -1 181-1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		_					Т		
nd p	oit excuva	ated to 1	er Observati 1.20mbgl prior	to commence	ment of	drilling.C	asing	from ground le	evel to		Scale:	1:
0ml	bgl. Upor dlevel.	n comple	etion the boreh	ole was back	filled wit	h arisings	to 2.	0mbgl, and be	ntonite to		Logged by:	AC
										-		В

G e:	ROUP P	ıc					AT			ussive)	RECORD	Numb	oer
	kenhar	n Rail	way St	ation	ı					am Railway		ВНС	,
en	t:								Ground Le	evel:	Date:	Job No:	
lur	n Rege	enerat	ion						8.70mAO	D	14 Jun 10	241458	
Οl	JND W	ATER			SAMPLES	/TEST	S			STRATA RE	CORD	Sheet 1	1 of
кe	Well	Depth	Depth/		SPT 'N'	Depth	Level		Key	Description			
7///		(m) -	(m)		or U Blows	(m) 0.08 -	(mAOD) 8.62	0.08	****	MADE GROU	ND: Bituminous paving a	nt the	
XIIIX		I LL				0.40	8.30	0.32		surface.			
111000			0.50 0.60	J 1 TB 1 D 1		-				GRAVEL. Sar	ND: Brown slightly silty s nd is fine to coarse. Grav	el is	
1118611		_1	1.00	D 2				1.00		flint with frequ	o sub-angular fine to coa ent red brick, concrete a	nd	
XIII		· ·		J 2 TB 2		-					e and occasional ash and ockets of clayey sand.		
X			1.40 1.50-1.95 1.50	D 3 B 1 J 3	s _T	1.40 -	7.30	0.40		MADE GROU	ND: Dark brown/grey silt		
TIKET.			1.50	TB 3	N=31 [3,4](4,7,10,10)	1.80	6.90	J.+U		to angular me	D. Contains frequent sub dium to coarse flint grave	el	
X		_2	2.00	J 4 TB 4	[U,+](4,7,1U,1U)				×. ×. ×. *.	and occasions concrete.	al fragments of red brick	and	
K			2.40	D 4 B 2					*. *		ND: Dense brown slightl		
Š		To For	2.50-2.95 2.50	B 2 J 5 TB 5	S—	-			۰ ° ° × ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	Gravel is sub	EL. Sand is fine to coarse ounded to angular fine to)	
8		_3			⊥N=30 [4,5](7,7,9,7)					occasional re	uent cobbles of flint with d brick fragments and		
Š		_				-			X X X		ncrete. Rare ash present		
8			3.40 3.50-3.95	D 5 B 3	s _T	-			× * * *	medium to co	e/brown sandy GRAVEL. arse. Gravel is sub-angu	lar to	
K		EL4	3.50	J 6 TB 6		_			× × × ×		o predominantly coarse fl al sub-angular cobbles o		
8		4			[9,10](10,11,10,10)) <u> </u>			x X x x	flint. Rare poo	kets of clayey sand. ARK GRAVEL).		
K		4 44 6	4.40	D 6		_		5.20	x X x	fror	n 2.50m depth, mostly cond frequent cobbles.	oarse	
Š			4.50-4.95	B 4	ST	=					n 4.0m depth, medium d	ense.	
R		-5			N=17 [4,4](4,5,4,4)	-							
K		5				-			×				
Š						-		14	× ^ × ×				
R						_			× × × ×				
K		6	5.90 6.00-6.45	D 7 B 5	sT	_			× × × ×	fror	n 6.00m depth, very sand	dy.	
8					N=28 [4,5](5,6,8,9)	_			×××××		• • •	,	
K		<u> </u>							*. X				
Š		7	7.00	D 8		7.00	1.70						
8		'		2 0		7.00	1.70	H	<u>×-:×</u>		slightly silty fine sandy ns occasional thin parting	gs of	
K		Ē	7.40 7.50-7.95	D 9 UT 1	U37				\times _ \times _ \times		n sand. (LONDON CLAY		
R									<u> </u>	. Order thor	, .		
K		8	7.95-8.05	D 10		=			$=$ \times \times				
K									\overline{x} \overline{x}				
R									<u> </u>				
3			8.90	D 11				3.50	××				
Š		_9 -	9.00-9.45	B 6				4	<u> </u>				
Š					s⊤			h	<u>×</u> _ <u>×</u>				
R		<u> </u>			N=39 [7,7](10,10,10,9)				$\overline{\mathbf{x}}$ $\overline{\mathbf{x}}$ $\overline{\mathbf{x}}$		_		
ms	‱arks an	d Wate	er Ohe	ervati		-			× 5	Continued ne	ext sheet	Social	
nd p	oit excuv	ated to	1.20mbg	l prior	to commence				eterminations of from ground I			Scale:	1:
)ml	ogl. Upoi								.0mbgl, and be			Logged by:	Α
unc	llevel.												В

Twickenham Railway Station Client: Solum Regeneration SampleStrests STRATA RECORD Sheet 2 of 2 STRATA RECORD Sheet 2 of 2 STRATA RECORD Sheet 2 of 2 Strike Well Depth Completing to Tu Blows (m) (m) (mAD) The strate of Bosehole at 15.00 m Remarks and Water Observations Rema	RSI GROUP R	715			ST	AT:	5		EHOLE ussive)	RECORD	Borel Numb	er:
Solum Regeneration	Twickenhar	m Rail	way Station						am Railway			
Strike Well Depth Upper (m) Popth (m) Depth (m	Client:							Ground Le	evel:	Date:	Job No:	
Serike Well Depth Opport Oppor	Solum Reg	enerat	ion					8.70mAO	D	14 Jun 10		
Compared to 1.200 Comp										CORD	Sheet 2	2 of 2
Remarks and Water Observations 1	Strike Well							Key				
Sell issured thrivi amande dark gives a light sign CLAY. Commans occasional (LONDON CLAY FORMATION). 12 1500 150 150 150 150 150 150 150 150 15		T T -	10.40 D 12 10.50-10.95 UT 2	U51	10.50 -	-1.80		× × ×	only s	slightly sandy.		
13		- -11			- - - - -			× - × × × × × × × × × × × × × × × × × ×	slightly silty C thin lamination	LAY. Contains occasiona ns of light grey silt.	ı	
13 13 13 13 13 13 13 13 15 13 15 15 15 15 15 15 15 15 15 15 15 15 15		- 12	11.90 D 14 12.00-12.45 B 7	s _T	- - - - - - - -			× × × × × × × × × × × × × × × × × × ×	fror rare r	n 12.00m depth, occasior oot marking visible.	nal to	
Remarks and Water Observations Hand pit at depths of 0.25m, 0.50m, 0.75m and 1.0mbgl. Casing from ground level to 7.20mbgl. Uppor completion the borehole was backfilled with arisings to 2.0mbgl, and bettonite to Logged by: AG Logged by: AG		-13	13.40 D 15 13.50-13.95 UT 3	[6,8](8,8,10,10)	- - - - - - - - -		4.50	× × × × × × × × × × × × × × × × × × ×				
Remarks and Water Observations Hand pit excuvated to 1.20mbgl prior to commencement of drilling.CBR determinations were carried out in the hand pit at depths of 0.25m, 0.50m, 0.75m and 1.0mbgl. Casing from ground level to 7.20mbgl. Upon completion the borehole was backfilled with arisings to 2.0mbgl, and bentonite to Scale: 1.50		14	13.95-14.05 D 16		- - - - - - - - - - - - - - - - - - -			× × × × × × × × × × × × × × × × × × ×				
Remarks and Water Observations Hand pit excuvated to 1.20mbgl prior to commencement of drilling CBR determinations were carried out in the hand pit at depths of 0.25m, 0.50m, 0.75m and 1.0mbgl. Casing from ground level to 7.20mbgl, Upon completion the borehole was backfilled with arisings to 2.0mbgl, and bentonite to 4.00mbgl. AG		15	14.90 D 17	sŢ	15.00	-6.30		<u>×_×_×</u>	End of Boreh	nole at 15.00 m		
Remarks and Water Observations Hand pit excuvated to 1.20mbgl prior to commencement of drilling.CBR determinations were carried out in the hand pit at depths of 0.25m, 0.50m, 0.75m and 1.0mbgl. Casing from ground level to 7.20mbgl. Upon completion the borehole was backfilled with arisings to 2.0mbgl, and bentonite to Logged by: AG		-16 -		⊥ _{N=44} [8,10](10,10,12,1:								
Remarks and Water Observations Hand pit excuvated to 1.20mbgl prior to commencement of drilling.CBR determinations were carried out in the hand pit at depths of 0.25m, 0.50m, 0.75m and 1.0mbgl. Casing from ground level to 7.20mbgl. Upon completion the borehole was backfilled with arisings to 2.0mbgl, and bentonite to Scale: 1:50 Logged by: AG		-17 			- - - - - -							
Remarks and Water Observations Hand pit excuvated to 1.20mbgl prior to commencement of drilling.CBR determinations were carried out in the hand pit at depths of 0.25m, 0.50m, 0.75m and 1.0mbgl. Casing from ground level to 7.20mbgl. Upon completion the borehole was backfilled with arisings to 2.0mbgl, and bentonite to Scale: 1:50 Logged by: AG		-18 			- - - - - - - -							
Hand pit excuvated to 1.20mbgl prior to commencement of drilling.CBR determinations were carried out in the hand pit at depths of 0.25m, 0.50m, 0.75m and 1.0mbgl. Casing from ground level to 7.20mbgl. Upon completion the borehole was backfilled with arisings to 2.0mbgl, and bentonite to		19			- - - - - - - -							
Hand pit excuvated to 1.20mbgl prior to commencement of drilling.CBR determinations were carried out in the hand pit at depths of 0.25m, 0.50m, 0.75m and 1.0mbgl. Casing from ground level to 7.20mbgl. Upon completion the borehole was backfilled with arisings to 2.0mbgl, and bentonite to		- - -			- - -							
out in the hand pit at depths of 0.25m, 0.50m, 0.75m and 1.0mbgl. Casing from ground level to 7.20mbgl. Upon completion the borehole was backfilled with arisings to 2.0mbgl, and bentonite to Logged by: AG						1.00	L				Scale:	1:50
7.20mbgi. Opon completion the borehole was backfilled with anomags to 2.0mbgi, and bentome to	out in the hand	l pit at de	epths of 0.25m	, 0.50m, 0.75i	m and 1	.0mbgl. C	asing	g from ground I	evel to		Logged by:	
groundlevel. Figure: B	groundlevel.	ii comple	edon the boren	iole was dack	ınıea Wit	n ansings	ιυ 2.	onibyi, and be	intoffite to			

e:	ROUP P		way St	ation			ATS		(Perc	ussive)	RECORD	Borel Numb BHD	er
									Station				
ent									Ground Le		Date:	Job No:	
lur	n Rege	enerati	ion						8.40mAO	D	7 Jun 10	241458	
ΟL	JND W	ATER			SAMPLES	/TEST	S			STRATA RE	CORD	Sheet 1	l of
ke	Well	Depth (m)	Depth/ (m)	Туре	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
XIIIX		- ()	()		0. 0 2.00	0.15 _	8.25	0.15 0.15		MADE GROU	ND: Black bituminous pa	ving.	
		1	0.50 0.60 1.00	J 1 TB 1 D 1 D 2 J 2 TB 2		0.30 -	8.10	1.10		GRAVEL. Sar rounded to su predominately fragments of r	ND: Dark brown/red sand is medium to coarse. (ab-rounded angular fine to coarse flint with frequented brick, concrete, crush casional ash, bitumen and	Gravel is o t ed	
11000			1.40 1.50-1.95 1.50	D 3 B 1 J 3	s⊤	1.40 -	7.00	0.30	XXXX X		ND: Dark brown slightly		
TO NICE				TB 3	N=42 [3,5](10,12,10,10)	1.70 -	6.70			Gravel is sub-	silty CLAY. Sand is med rounded to angular fine t		
2		-2	2.00	J 4 TB 4	[0,0](10,12,10,10)			0.80	X: X: X: X: X:	Occasional re	asional cobbles of flint. d brick fragments and ra	re	
c			2.40	D 4			5.00		× × × ×	clinker. Locali fine sand.	sed pockets of orange cl	ayey	
0			2.50-2.95 2.50	B 2 J 5 TB 5		2.50 -	5.90		· *		ND: Dense brown sandy		
, c		-3			N=48 [8,8](10,11,15,12)	-			X	to sub-angula	o medium. Gravel is sub- r fine to medium occasion		
0		_				111			× î ×	and rare ash	th fragments of red brick and clinker. Localised len	ses	
C		-	3.40 3.50-3.95 3.50	D 5 B 3 J 6	с _Т	-		2.00	× × × ×	of clayey sand			
		-	3.50	TB 6	N=28 [5,5](6,5,9,8)	-			x	Gravel is sub-	e slightly silty sandy GRA rounded to angular fine t	0	
		-4			[5,5](6,5,9,6)	_			x x x		sionally coarse flint. Rare ey sand. (KEMPTON PA		
c c			4.40	D 6				1	× × ×	GRAVEL).			
000		5	4.50-4.95 4.50	B 4 J 7 TB 7	C	4.50	3.90	1.30		GRAVEL. Grafine to coarse silty coarse sa	lium dense orange silty s avel is rounded to sub-rou flint. Occasional lenses o and. (KEMPTON PARK G m 3.50m depth, medium ning sandy gravel.	inded of BRAVEL).	
0		6	5.90 6.00-6.45	D 7 B 5	c_	5.80	2.60		********* *******	fine to mediur angular fine to GRAVEL).	e orange gravelly SAND. n. Gravel is sub-rounded o medium flint. (KEMPTO	to N PARK	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-7	7.00	D 8		6.80	1.60	1.00		GRAVEL with clayey fine sa medium. Grav predominantly	e orange / brown silty sar occasional pockets/lens nd. Sand is generally fine /el is sub-rounded to ang / fine to medium flint. PARK GRAVEL).	es of e to	
			7.40 7.50-7.95	D 9 UT 1	U37	7.40 -	1.00	0.60	××	Contains thin	d brown/grey silty CLAY. laminations of fine to me DN CLAY FORMATION).	dium	
ALL SALLSALL		8	7.95-8.05	D 10		7.80	0.60	0.70	× ×	silty CLAY wit	orown/grey slightly sandy h thin laminations of fine (LONDON CLAY FORM		
CHANGE STATE						8.50	-0.10		×_^_×	silt lamination	ey CLAY with rare sand a s. (LONDON CLAY FOR grey slightly silty CLAY		
		9	8.90 9.00-9.45	D 11 B 6	s_				<u> </u>		LONDON CLAY FORMA	TION).	
3					N=31 [8,8](7,8,8,8)	-			<u>×</u> _ <u>×</u>				
3						- -			×	On order of	and all and		
ma	‱≾ ırks an	d Wate	er Obse	ervati	ons	=			××	Continued ne	ext sneet	Scale:	
nd p	it excuv	ated to 1	1.20mbg	l prior	to commence				eterminations of the following				1:
0mb		n comple							and ground wa			Logged by:	Α
ıuμ	ιρ ο 10 /.	ombyl.										Figure:	В

	S ROUP P	<u> </u>			ST	ATS	(Fe	rcu	HOLE issive)	RECORD	Borel Numb	er:
e: /icl	kenhan	n Railv	way Station	ı			Locati Twick Station	enha	m Railway		BHD	
en	t:						Groun	d Lev	/el:	Date:	Job No:	
lur	n Rege	enerati	on				8.40m	AOD		7 Jun 10	241458	
OL	JND W	ATER		SAMPLES	/TEST	s			STRATA RE	CORD	Sheet 2	2 of 4
ke	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)	Key		Description			
		-11 -12 -13 -14	10.40 D 12 10.50-10.95 UT 2 10.95-11.05 D 13 11.90 D 14 12.00-12.45 B 7 13.50-13.95 UT 3 13.95-14.05 D 16 14.90 D 17 15.00-15.45 B 8	N=31 [6.6](8.8.7.8)			X			m 15.50m depth, sub rou o medium claystone nodu		
		18	17.90 D 20 18.00-18.45 B 9	S	- - - - - - - - - - - - - - - - - - -				fror	n 18.00m depth, very stif	:	
**********			19.40 D 21 19.50-19.95 UT 5 19.95-20.05 D 22	U56	- - - - - - - -		X	X X X X X	Continued ne	ext sheet		
nd p	oit excuva	ated to 1	er Observati I.20mbgl prior	to commence	ment of	drilling.CE	R determinati	ions we	ere carried		Scale:	1:50
in t	he hand bgl. Upor	pit at de	epths of 0.25m etion the boreh	, 0.50m, 0.75	m and 1	.0mbql. Ca	asing from gro	und lev	vel to		Logged by:	AG
	·)mbgl.				-	_		J			В

Station Twickenham Railway Station Twickenham Railway Station Total Level: Station Station Total Level: Job No: J	RSK ST	<u>IATS</u>		EHOLE ussive)	RECORD	Boreh Numb	
SAMPLESTESTS STRATA RECORD Sheet 3 of	te: vickenham Railway Station		Twickenha	am Railway		BHD	
ROUND WATER SAMPLES/TESTS STRATA RECORD Sheet 3 of Metal Depth Oppth Oppth Oppth Oppth Oppth (m) Oppth (m) Oppth Oppt	ient:		Ground Le	evel:	Date:	Job No:	
No.	olum Regeneration		8.40mAO	D	7 Jun 10	241458	
(m) or UBlows (m) mAOD	ROUND WATER SAMPLES/TE	STS		STRATA RE	CORD	Sheet 3	of of
22 22 25 20 5D 25 25 25 25 20 5D 25 25 25 25 20 5D 25 25 25 20 5D 25 25 25 20 5D 25 25 25 25 25 25 25 25 25 25 25 25 25		th Level (mAOD)	Key	Description			
Emarks and Water Observations and pit excuvated to 1.20mbgl prior to commencement of drilling.CBR determinations were carried to 1.20mbgl prior to commencement of drilling.CBR determinations were carried to 1.20mbgl. Upon completion the borehole was installed with a ground gas and ground water monitoring and 1.20mbgl. Logged by: Additional completion of the borehole was installed with a ground gas and ground water monitoring and the completion of the borehole was installed with a ground gas and ground water monitoring and the completion of the c	-22 -23 -24 -24 -250-22.95 UT 6 -24 -24 -24 -250-22.95 UT 6 -25 -25 -25 -25 -25 -25 -26 -27 -26.90 -27 -27 -28 -28 -28			gleying. (LON	DON CLAY FORMATION).	
nd pit excuvated to 1.20mbgl prior to commencement of drilling.CBR determinations were carried t in the hand pit at depths of 0.25m, 0.50m, 0.75m and 1.0mbgl. Casing from ground level to 1.0mbgl. Upon completion the borehole was installed with a ground gas and ground water monitoring 1. Logged by: A(1. Logged			xx xx xx xx	Continued ne	ext sheet		
t in the hand pit at depths of 0.25m, 0.50m, 0.75m and 1.0mbgl. Casing from ground level to 10mbgl. Upon completion the borehole was installed with a ground gas and ground water monitoring and property of 7.0mbgl.	emarks and Water Observations	of drilling CRR d	eterminations	were carried		Scale:	1:5
ndpipe to 7.0mbgl.	t in the hand pit at depths of 0.25m, 0.50m, 0.75m an	1.0mbgl. Casing	g from ground l	evel to		Logged by:	AG
	0mbgl. Upon completion the borehole was installed vindpipe to 7.0mbgl.	ıııı a ground gas	and ground wa	ater monitoring		Figure:	В

	SKOUP P	C _			ST	ATS	E (EHOLE ussive)	RECORD	Boreh Numb	
Site: Twic		n Rail\	way Station	1			T	ocation: wickenhatation	am Railway		BHD	
Clien	nt:						G	round Le	evel:	Date:	Job No:	
Solu	m Rege	enerat	ion				8.	.40mAOl	D	7 Jun 10	241458	
GRO	UND W	ATER		SAMPLES	/TEST	S		-	STRATA RE	CORD	Sheet 4	of 4
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)	, -	Key	Description			
Pom		-31 -32 -33 -35 -36 -37	31.40 D 33 31.50-31.95 UT 9 31.95-32.05 D 34	S	34.00	-25.6	X	X	End of Boreh	ole at 34.00 m		
Hand	pit excuv	ated to 1	er Observati 1.20mbgl prior	to commence	ement of	drilling.CB	R deter	minations v	were carried		Scale:	1:50
out in 7.30m	the hand bgl. Upor	pit at de comple	epths of 0.25m	i, 0.50m, 0.75	m and 1.	.0mbgl. Cas	sing fro	m ground l	evel to ater monitoring		Logged by:	AG
	oipe to 7.0								-		Figure:	В
											-	

	ROUP P	ıc					AT:	2	(Perc	ussive)	RECORD	Numb	oer
e: vicl	kenhar	n Rail	way S	tation	1				Location: Twickenham Station	am Railway		ВНЕ	
en	t:								Ground Le	evel:	Date:	Job No:	
lur	n Reg	enerat	ion						8.00mAO	D	2 Jun 10	241458	
OL	JND W	ATER			SAMPLES	/TEST	S			STRATA RE	CORD	Sheet 1	1 o
ke	Well	Depth	Depth/		SPT 'N'	Depth	Level (mAOD)		Key	Description			
7///		(m) -	(m)		or U Blows	(m)	, ,	0.20		MADE GROU	ND: Black bituminous pa	ving.	
			0.50 0.60	J 1 TB 1 D 1		0.20 -	7.80	1.00		Gravel compr	ND: Brown / grey gravelly ses broken brick, mortar , clinker, bituminous grav	and	
		1	1.00	D 2 J 2			0.00						
			1.40 1.50-1.95 1.50	TB 2 D 3 B 1 J 3 TB 3	s_	1.20 -	6.80	0.70		sandy gravelly	ND: Firm orange / brown / CLAY. Gravel comprise and occasio	s	
11000		-2	2.00	D 4	-LN=14 [3,4](3,3,4,4)	1.90	6.10		XXXXX	Firm, orange	brown slightly sandy		
×××××			2.40 2.50-2.95	J 4 TB 4 D 5 B 2	c _T	2.30 -	5.70	0.40	30	slightly gravel rounded to su flint. (KEMPT	ly CLAY. Gravel comprise b-angular fine to medium DN PARK GRAVEL).	1	
XXXXX		3	3.00	J 5 TB 5	N=8 [2,2](1,2,2,3)	- - -		1.60		orange / brow gravelly SANI	becoming medium dense n very sandy GRAVEL, lo D. Gravel is rounded to ne to medium occasional	ocally	
2			3.40 3.50-3.95	D 6 B 3	c_	- - - -		H			EMPTON PARK GRAVE		
2000		4	4.00	J 6 TB 6	—N=20 [2,2](3,4,7,6)	3.90	4.10			locally gravell	/ grey slightly sandy GRA y SAND. Gravel is roundene to medium occasional	ed to	
×××××			4.40 4.50-4.95	D 7 B 4	N=39	- - - -					EMPTON PARK GRAVE		
****		5			[7,10](10,10,9,10)	- - - - - -		2.60					
××××××		6	5.90 6.00-6.45	D 8 B 5	C	- - - - - - 6.50 -	1.50			Chiff olimbal, fi			
×××××		7				- - - -			× × ×	CLAY. Contai	ssured grey / brown silty ns discrete pyrite veins. AY FORMATION).		
× × × × ×			7.30 7.40 7.50-7.95	D 9 D 10 B 6		-			××				
****		8				- - - - - - -			<u>×</u>				
****		9	8.90 9.00-9.45	D 11 B 7	S	- - - - - -		ĺ					
K						-			<u>×</u> _ <u>×</u>				
Ŕ		-				_			××	Continued ne	ext sheet	ı	
nd p		ated to	1.20mbg	gl prior	to commence				from ground l			Scale:	1
s us	sed from	groundl	evel to 7	7.50. Ŭ	lpon completion				nd therefore 20 ackfilled with ar			Logged by:	Α
	gl, and b									-		L	

R	S ROUP P	C =			ST	ATS			EHOLE ussive)	RECORD	Boreh Numb	
Site: Twic	kenhar	n Rail\	way Station	1				Location: Twickenha Station	am Railway		BHE	
Clien	nt:							Ground Le	evel:	Date:	Job No:	
Solu	m Reg	enerat	ion					8.00mAO	D	2 Jun 10	241458	
GRO	UND W			SAMPLES	/TEST	S			STRATA RE	CORD	Sheet 2	of 3
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
		11	10.40 D 12 10.50-10.95 U 1 10.95 D 13	U39	-			× × × × × × × × × × × × × × × × × × ×				
		-	11.90 D 14 12.00-12.45 B 8	S	-			× × × × × × × × × × × × × × × × × × ×				
		-13 - - -14	13.40 D 15 13.50-13.95 U 2 13.95-14.05 D 16	U51	1			× × × × × × × × ×				
			14.90 D 17 15.00-15.45 B 9	S	7			× × × × × × × × × × × × × × × × × × ×				
		16 -17	16.40 D 18 16.50-16.95 U 3 16.95 D 19 17.05 D 20	U 57			18.50	x				
		18	17.90 D 21 18.00-18.45 B 10	S	\$)			X				
Rem	arks an	19	19.40 D 22 19.50-19.95 U 4	U74	- - - -			x x x x x x x x x x x x x x x x x x x	Continued ne	ext sheet	Scale:	1.50
Hand 10.50	pit excuv	ated to faile	1.20mbgl prior ed to seal off q	to commence roundwater er	ntering th	ne boreho	le an	d therefore 20	0m casing			1:50
was u	sed from	groundle	evel to 7.50. U to groundleve	pon completion	on the bo	orehole wa	as ba	ckfilled with ar	isings to		Logged by:	AK
	-		-								Figure:	В

Site:	SK OUP P		way Station		ST	ATS	Location:	EHOLE ussive)	RECORD	Borel Numb BHE	er:
1 WIOK		- Tall	way otation				Station	an ranway	T		
Client							Ground Lo		Date:	Job No:	
Solum			ion				8.00mAO		2 Jun 10	241458	
GROU Strike	ND WA	ATER Depth	Depth/Type	SAMPLES SPT 'N'	Depth		Key	STRATA RI Description	ECORD	Sheet 3	3 of 3
Remai	rks an	-22 -23 -24 -25 -27 -28	20.90 D 23 21.00-21.45 B 11 22.40 D 24 22.50-22.95 U 5 22.95-23.05 D 25 23.90 D 26 24.00-24.42 B 12	N=50 [12,12](12,12,12,12,12,12,12,12,12,12,12,12,12,1	25.00		X	End of Borel	24.00m depth, possible claes.	aystone Scale:	1:50
Hand pi	t excuv	ated to	1.20mbgl prior	to commence	ement of	drilling.Cas	sing from ground I e and therefore 20	evel to			1:50
was use	ed from	groundl	ed to seal off g level to 7.50. U to groundleve	pon completion	on the b	orehole was	s backfilled with a	risings to		Logged by:	AK
2.011lbg	i, and Di	STRUTTILE	, to groundleve							Figure:	В

-	ROUP P	ıc				9 1/	AT:		(Perc	ussive)	RECORD	Numb	oei
e: ric	kenhar	n Rail	way St	ation					Location: Twickenham Station	am Railway		BHF	
en	t:								Ground Le	evel:	Date:	Job No:	
luı	m Rege	enerat	ion						8.05mAO	D	1 Jun 10	241458	
Ol	JND W	ATER			SAMPLES	/TEST	S			STRATA RE	CORD	Sheet 1	l o
кe	Well	Depth	Depth/	Туре	SPT 'N'	Depth	Level		Key	Description			
1111		(m)	(m)		or U Blows	(m)	(mAOD)	0.20		MADE GROU	ND: Black bituminous pa	ving.	
			0.50 0.60	J 1 TB 1 D 1		0.20 -	7.85 7.35	0.50		MADE GROU gravelly SANE sub-angular fi frequent inclu-	ND: Brown locally slightly D. Gravel is rounded to ne to coarse flint with sions of broken brick and clinker and crushed stor	y orange	
		1	1.40 1.50-1.95 1.50	D 2 J 2 TB 2 D 3 B 1 J 3 TB 3	s- 	1.40 -	6.65	0.70	×	MADE GROU SAND. Grave	ND: Brown slightly grave comprises rounded to ne to medium flint and ra	lly clayey	
11111		2	2.00 2.40 2.50-2.95	D 4 J 4 TB 4 D 5 B 2	—N=7 [1,2](2,1,2,2)	2.30 -	5.75 5.55	0.90	X X X X	Contains rare sub-angular fi	rown mottled silty CLAY. gravels rounded to ne to medium flint and ly clay lenses. (KEMPTO		
		3	3.00	J 5 TB 5	N=29 [7,6](6,7,8,8)	3.10 -	4.95	0.60		SAND. Grave sub-angular fi	w gravelly fine to mediun I comprises rounded to ne to medium flint and ey sand lenses. (KEMPTo		
		4	3.40 3.50-3.95	D 6 B 3	S	- - - - - -		1.20		Medium dense	e orange / yellow sandy (ses rounded to sub-angu n flint. (KEMPTON PARK	ılar	
		-5	4.40 4.50-4.95	D 7 B 4	S	4.30	3.75	0.80		GRAVEL, local rounded to su	e orange / brown slightly ally gravelly SAND. Grave b-angular fine to medium oarse flint. (KEMPTON F	el is I	
		3				5.10 -	2.95			sandy GRAVE sub-rounded f PARK GRAVE	,	nded to IPTON	
THE STATE OF THE S		6	5.90 6.00-6.45	D 8 B 5	C	- - - - - - - -		1.80		GRAVEL, local rounded to su	e orange brown slightly s ally gravelly SAND. Grave b-angular fine to medium oarse flint. (KEMPTON F	el is I	
The state of the s		7	7.00	D 9		6.90	1.15	100	× × ×	CLAY. Contai	sured grey / brown silty ns discrete pyrite veins. AY FORMATION).		
The state of the			7.40 7.50-7.95	D 11 UT 1	U37				<u> </u>		,		
W X X X X X X		8	7.95	D 12		- - - - - - - - - - - - - - - - - - -			<u>×</u> <u>×</u> <u>×</u> ×				
****		9	8.90 9.00-9.45	D 13 B 6	S	- - - - - - - - - - - - - - - - - - -			xx xx xx				
4		<u> </u>						.	××	Continued ne	eyt sheet		
	arks an								▽ — —×		AL SHEEL	Scale:	1:
d į	pit excuv	ated to	1.20mbg	l prior	to commence				eterminations v				
					ole was install							Logged by:	Α

Site:	SK ROUP P				ST	AT:	5	(Perc	ussive)	RECORD	Boreh Numb	
Twick	kenhan	n Rail\	way Station	l				Twickenham Station	am Railway			
Clien	t:							Ground Le	evel:	Date:	Job No:	
Solur	n Rege	enerat	ion					8.05mAO	D	1 Jun 10	241458	
	JND W		I	SAMPLES					STRATA RE	CORD	Sheet 2	of 2
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD))	Key	Description			
		-11	10.40 D 14 10.50-10.95 UT 2	U4S			6.60	x x x x x x x x x x x x x x x x x x x				
2444444444444		12	11.90 D 15 12.00-12.45 B 7	S	3) -			× × × × × × × × × × × × × × × × × × ×	froi	m 12.0m depth, very stiff.		
Š			13.40 D 16		13.50	-5.45		××	End of Borel	nole at 13.50 m		
		14										
		16										
		- - - - - - - - - - - - - - - - - - -			- - - - - - - -							
		18			- - - - - - - -							
		19			- - - - - - - - - - - - - - - - - - -							
Hand p	oit excuv	ated to 1	er Observati 1.20mbgl prior	to commence	ment of	drilling.C	BR d	eterminations	were carried		Scale:	1:50
out in t	the hand bgl.Upon	pit at de comple	epths of 0.25m tion the boreh	, 0.50m, 0.75i	m and 1	.0mbgl. C	asing	g from ground land ground wa	evel to		Logged by:	AK
standp	ipe to 6.2	20mbgl.							-		Figure:	В

GR ite:	OUP P	ıc			51	AT:	5		EHOLE ussive)	RECORD	Borel Numb	er:
	enhar	n Rail\	way Statior	1					am Railway		BHG	l
lient	:							Ground Le	evel:	Date:	Job No:	
olum	n Rege	enerat	ion					7.40mAO	D	14 Jun 10	241458	
ROU	ND W	ATER		SAMPLES	/TEST	s			STRATA RE	CORD	Sheet 1	1 of -
ike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
		1	0.30 D 1		0.80	6.60	0.80		including Japa brown fine to is subangular	ND: Vegetation at surface anese Knotweed, overlyin medium sandy GRAVEL. to angular fine to coarse and red brick. Occasiona er present.	g Gravel	
		2	1.40 D 3 1.50 D 4	S	- - - - - - - -		1.80		brown silty sa coarse. Grave fine to coarse	IND: Medium dense black ndy GRAVEL. Sand is fin el is subrounded to angula PFA, crushed stone, red iker and ash. Occasional	e to	
		3	2.50-2.95 B 1	S	2.60 -	4.80 4.40	0.40		clayey sandy coarse. Grave fine to coarse	ND: Medium dense brown GRAVEL. Sand is fine to el is sub-rounded to angul flint with occasional red present. Rare cobbles of		
		4	3.50-3.95 B 2 4.40 D 6 4.50-4.95 B 3	S_N=34 [5.5](8,8,8,10)	4.00	3.40	0.50	× × × × × × × × × × × × × × × × × × ×	Dense orange coarse very s subangular to occasional co	e brown slightly silty fine to andy GRAVEL. Gravel is angular fine to coarse to bbles of flint with rare gs of clayey sand.(KEMP EL).		
XXXXXX		5	5.10 D 7	N=31 [7,7](7,9,7,8)	5.10	2.30	0.60	× × × × × × × × × × × × × × × × × × ×	to coarse SAN angular fine to (KEMPTON F	n slightly silty gravelly fine ND. Gravel is subrounded o coarse to cobbles of flint ARK GRAVEL).	to .	
XXXXX		6	5.90 D 8 6.00-6.45 UT 1	U2:	= = = = = = = = = = = = = = = = = = =			× × × × × ×	coarse sandy to angular fine frequent cobb GRAVEL).	e brown slightly silty fine to GRAVEL. Gravel is suba to predominately coarse les of flint.(KEMPTON PA	ngular to	
XXXXX		- 7	6.45 D 9		-		3.90	XX	sandy CLAY v	r brown slightly silty fine with occasional thin partin DNDON CLAY FORMATI		
***************************************		8	7.40 D 10 7.50-7.95 B 4	S	-			X X X X X X X X X X X X X X X X X X X				
		9	8.90 D 11 9.00-9.45 UT 2	U5:	7 9.00	-1.60		X X X X X X X X X X X X X X X X X X X	slightly silty sl with with gley	hinly laminated dark grey ightly fine sandy CLAY ng and thin laminations o NDON CLAY FORMATION	f	
			er Observat		mont of	drillina C	acina	r from ground			Scale:	1:5
0mb	it excuv gl. Upoi evel.	n comple	etion the borel	nole was back	filled wit	th arisings	asing to 2	g from ground l .0mbgl, and be	entonite to		Logged by:	AS
JuiiUl	CVCI.											, 10

e:	ROUP F		way Station			AT:		(Perc Location: Twickenh	EHOLE ussive) am Railway	RECORD	Borel Numb BHG	er:
								Station		.		
en [.]								Ground Lo		Date:	Job No:	
	n Reg		ion					7.40mAO		14 Jun 10	241458	
	JND W			SAMPLES			ı	.,	STRATA RE	CORD	Sheet 2	<u>2 ot</u>
кe	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
***************************************		-11 -12 -13 -14	11.90 D 13 12.00-12.45 UT 3 12.00-12.45 UT 3 12.45 D 14 13.40 D 15 13.50-13.95 B 6 13.90 D 25 14.90 D 16 15.00-15.45 UT 4 15.45 D 17	N=27 [4,6](6,7,7,7)			9.00		fror	n 16.50m depth, Very stiff		
××××××××××××××××××××××××××××××××××××××		18	17.90 D 19 18.00-18.45 UT 5	U72	18.00	-10.6		× - × - × - × - × - × - × - × - × - × -	grey slightly s thin lamination subrounded to	ired thinly laminated dark ilty CLAY with gleying and ns of grey silt. Occasiona o subangular fine to medicules present. (LONDON)	ım	
XXXXXX		19	19.40 D 21 19.50-19.95 B 8	s _T	-			× × ×				
VVV				N=41 [6,9](9,11,10,11)	- 			<u>××</u>	Continued ne	ext sheet		
ma nd r	arks an	d Wate	er Observati	ons to commence	ment of	drillina.Ca	asino	from around	evel to		Scale:	1:5
)ml	ogl. Upo llevel.	n comple	etion the boreh	ole was back	filled wit	h arisings	to 2	.0mbgl, and be	entonite to		Logged by:	AS
										 		В

R	SK ROUP P	14			ST	ATS			EHOLE ussive)	RECORD	Boreh Numb	
Site: Twic	kenhar	n Rail\	way Station					Location: Twickenham	am Railway		BHG	
Clien	t:							Ground Le	evel:	Date:	Job No:	
Solur	n Rege	enerat	ion					7.40mAO	D	14 Jun 10	241458	
GRO	JND W	ATER		SAMPLES	/TEST	S			STRATA RE	CORD	Sheet 3	of 4
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)	h	Key	Description			
		21 22 23 24 25 26	(m) 20.90 D 22 21.00-21.45 UT 6 21.45 D 23 22.40 D 24 22.50-22.95 B 9 24.00-24.45 UT 7 24.46 D 26 25.40 D 27 25.50-25.89 B 10 26.90 D 28 27.00-27.45 UT 8 27.45 D 29	V1000 S			17.00		bands to coa cobbl	n 20.50m depth, regular the sof subrounded to angular arse gravel and occasional es of moderately strong grone gravel.	fine	
			29.90 D 31		- - - - - - - -			×× ××	Continued ne	ext sheet		
Rema	arks an	d Wate	r Observati	ons	ment of	drilling O	noin c	from groups!			Scale:	1:50
5.60m ground	bgl. Upoi	n comple	1.20mbgl prior etion the boreh	ole was back	filled wit	h arisings	to 2.	0mbgl, and be	ntonite to	-	Logged by:	AS
ground	nevel.									-	Figure:	В
											. igui 6.	

GROUP te:				STA	<u>ATS</u>	Location:	ussive)	RECORD	Boreh Numb	er
vickenha	m Rail	way Station				Twickenhamstation	am Railway			
ient:						Ground Le	evel:	Date:	Job No:	
olum Reg	generat	ion				7.40mAO	D	14 Jun 10	241458	
ROUND W	/ATER		SAMPLES	/TEST	s		STRATA RE	ECORD	Sheet 4	l of
ike Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)	Key	Description			
	34	30.45 D 32 31.50-31.92 B 12 32.90 D 33 33.00-33.45 J T 10	N=50 [11,14](14,13,14,5		-27.6		End of Borel	nole at 35.00 m		
	Ė			4						
∍marks aı	nd Wate	er Observati	ons	-					Scale:	1.4
ind pit excu	vated to	1.20mbgl prior	to commence	ment of	drilling.Casi h arisings to	ng from ground le 2.0mbgl, and be	evel to ntonite to	-	Scale: Logged by:	1:

Twickenham Railway Station Station Ground Level: Date: Job No: 241458 SROUND WATER SAMPLES/TESTS STRATA RECORD Sheet 1 Trike Well Depth Depth (m)	R	SI ROUP F	10			ST	AT:	5	BORI (Perci	EHOLE ussive)	RECORD	Numb	
Solum Regeneration SAMPLES/TESTS STRATA RECORD Sheet 1 Initia Well Depth Depth Type SFT N (m) Depth Cype Depth Cype	Site: Twic	kenhar	n Railv	way Station					Twickenha	am Railway		BH1	
REQUIND WATER SAMPLES/TEST STRATA RECORD Sheet 1 Key Description MADE GROUND	Clien	t:							Ground Le	evel:	Date:	Job No:	
Name	Solui	m Reg	enerat	ion					8.50mAOI)	21 Apr 10	241458	
made Ground 1 1.00 6.60 1.00 6.60 Remarks and Water Observations (m) (m) (m) or U Blows (m) (mAOD) (mAOD) MADE GROUND MADE GROUND	RO	JND W	ATER		SAMPLES	/TEST	S			STRATA RE	CORD	Sheet 1	of 5
1.50 6.60 1.50 6.60 1.50 KEMPTON PARK GRAVEL 3	trike	Well	Depth (m)	Depth/Type	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
Remarks and Water Observations Orilled by GIP Logged by:			-2 -3 -4 -5 -6	9.00-9.45 U 1						KEMPTON P	ARK GRAVEL		
Remarks and Water Observations Orilled by GIP Logged by:			_						<u>x_x = x</u>				
Drilled by GIP Logged by:			<u> </u>						$\overline{\underline{\times}}\underline{\overline{\times}}$	Continued ne	ext sheet		
Logged by:	Rema	arks an	d Wate	er Observati	ons							Scale:	1:50
	וווויכ	by GIP										Logged by:	GIP
I Figure .												Figure:	В

R	S ROUP	(STA	TS	BOR (Perc	EHOLE ussive)	RECORD	Boreh Numb	
Site: Twic		m Rail	way Station				Location: Twickenh Station	am Railway		BH1	
Clier	nt:						Ground Le	evel:	Date:	Job No:	
Solu	m Reg	enerat	ion				8.50mAO	D	21 Apr 10	241458	
<u>GRO</u>	UND W	ATER		SAMPLES	/TESTS			STRATA R	ECORD	Sheet 2	2 of 5
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m) (n	Level nAOD)	Key	Description			
		-11 -12 -13 -14 -15 -16	12.00-12.45 U 2			11.55		Continued r	next sheet		
Rem	arks an	d Wate	er Observati	ons		1	 ×			Scale:	1:50
Drilled	by GIP										
										Logged by:	GIP
										Figure:	В

	ROUP F	LC _			STATS	I (i eic	cussive	E RECORD)	Boreł Numb	
ite: wic	kenhar	n Railv	way Station			Location Twickenl Station	: ham Railway		BH1	
lien	ıt:					Ground L	_evel:	Date:	Job No:	
olu	m Reg	enerati	on			8.50mAC	DD	21 Apr 10	241458	
RO	UND W			SAMPLES			STRATA	RECORD	Sheet 3	3 of
rike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth Level (mAOD)	Key	Description			
		-21 -22 -23 -24 -25 -26 -27 -28			20.0511.6					
		= = -					Continued	next sheet		
	arks an I by GIP	d Wate	r Observati	ons		•	•		Scale:	1:5
ema								-		
ema	i by GiF								Logged by:	GI

1	R	SK ROUP P	LC _			ST	ATS	BOR (Perc	EHOLE ussive)	RECORD	Borel Numb	
Solum Regeneration SAMPLE SAMPLE STRATA RECORD Sheet 4 of 5		kenhar	n Railv	way Station				Twickenl			BH1	
SITILE Well Depth Pythologoph of U Blows (m)	Clien	t:						Ground L	-evel:	Date:	Job No:	
New Open O	Solur	n Reg	enerati	on				8.50mAC	DD	21 Apr 10	241458	
1	GROL	JND W	ATER		SAMPLES	/TEST	<u> </u>		STRATA RI	CORD	Sheet 4	1 of 5
32 33 -34 -35 -36 -37 -38 -39	Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)	Key	Description			
Drilled by GIP Logged by: GIP	Pama		32 33 34 35 36 37	Oh a a mark					Continued n	ext sheet		
Logged by: GIP	Rema Drilled	arks an by GIP	a Wate	er Observati	ons						Scale:	1:50
	00	.,									Logged by:	GIP
											Figure:	В

-	SROUP F	LC _			ST	<u>ATS</u>	BOR (Perc	EHOLE ussive)	RECORD	Boreh Numb	
wic		n Railv	vay Station				Location: Twickent Station	: nam Railway		BH1	
Clier	nt:						Ground L	evel:	Date:	Job No:	
Solu	ım Reg	enerati	on				8.50mAC)D	21 Apr 10	241458	
RO	UND W	ATER		SAMPLES	/TEST	S		STRATA RI	CORD	Sheet 5	of 5
trike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)	Key	Description			
		41 42 43 44 45 46 47						End of Borel	nole at 40.40 m		
?em	arks an	49 d Wate	er Observati	ons	-				T	Scale:	
rille	d by GIP	. maic	. Obsorvati	-110							1:5
										Logged by:	GIF
										Figure:	В

RSK STATS							BORI (Perc	BOREHOLE RECORD (Percussive)				
Site: Twickenham Railway Station								Location: Twickenham Railway Station			BH2	
Clier	nt:						Ground Le	Ground Level: Date:		Job No:		
Solu	ım Reg	enerati	on				8.50mAO	nAOD 21 Apr 11		241458		
RO	UND W	ND WATER SAMPLES/TESTS						STRATA RECORD She				
rike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)	Key	Description				
		1 2 3			8.20	7.50	7.20 X X X X X X X X X		AY FORMATION			
≀em	arks an	d Wate	r Observati	ons			X^	Jonanaea II		Scale:	1:5	
rilled	d by GIP									Logged by:		
											GIF	
										Figure:	В	

Site: Twickenham Railway Station Client: Solum Regeneration							BOREHOLE RECORD (Percussive)			Borehole Number: BH2	
							Location: Twickenh Station				
							Ground Le	evel:	Date:	Job No:	
							8.50mAOD 21 Apr 11		21 Apr 11	241458	
GRO	UND WATER SAMPLES/TESTS						STRATA RECORD			Sheet 2	2 of 3
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth Let (m) (mA	Level (mAOD)	Key	Description			
Pom	arke on	-11 -12 -13 -14 -15 -16	14.00-14.45 U 1	ons				Continued n	ext sheet		
Rem	arks an	d Wate	er Observati	ons			7,			Scale:	1:50
Drille	by GIP									Logged by:	GIP
										Figure:	В

	SI ROUP F	LC _			ST	<u>ATS</u>	(Perc	BOREHOLE RECORD (Percussive)			
Site: Twickenham Railway Station							Location: Twickenh Station	Twickenham Railway			
Clien	nt:						Ground Le	Ground Level: Date:		Job No:	
Solu	m Reg	enerati	on				8.50mAO	D	21 Apr 11	241458	
RO	UND WATER SAMPLES/TESTS							STRATA RECORD			3 of 3
trike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)	Key	Description			
Zom	arke and	-21 -22 -23 -24 -25 -26 -27	r Observet	ons		32.	X	End of Roral	nole at 20.05 m		
Kem a Orilled	arks an I by GIP	d Wate	r Observati	ons				∟nd of Borel	noie at 20.05 m	Scale:	1:50
	.,									Logged by:	GIF

Twickenham Railway Station Trickenham Railway Station Ground Level: Dates: Job No.: 6.95mAOD 16.3 un 10 241458 SROUND WATER SAMPLES/TESTS Britis Well Depth Type/Depth In-situ Tests Depth Level (m)	GRO	OUP PLC	_				AT:	5			RECORD Sampler)	Numb	
Solum Regeneration SAMPLES/TESTS STRATA RECORD Sheet 1 of 2 Sheet 1	Site: Twicke	nham F	Railwa	ay Station	ı						Station	WS1	
AROUND WATER SAMPLES/TESTS STRATA RECORD Sheet 1 of 2 Beet plant proper proper plant in a situ Tests Septh (m) MADE GROUND: Vegetation at surface over dark brown sity gravely SAND. Sand is fine to medium. Gravel is subcounsed to subangular with frequent concrete, red brick and crushed stone. 1	Client	:							Ground	Level:	Dates:	Job No.	.:
Intition New Depth TyperDepth In-situ Tests Depth Level Med Make Description MADE GROUND: Vegetation at surface over dark forms silly gravelly SAND. Sand is fine to medium. Gravel is subtrounded to subangular fine to medium to conscious processed in the substrated to subangular fine state of the substrated substrated to subangular fine state of the substrated substrated to subangular fine state of the substrated substrat	Solum	Regene	eratio	n					6.95mAO	D	16 Jun 10	241458	
MADE GROUND: Vegetation at surface over dark brown silty gravelly SAND. Sand is fine to continued max sheer Separate	ROUN	ND WA	TER		SAMPLES	/TES	ΤS			STRATA R	ECORD	Sheet 1	of 2
MADE GROUND: Vegetation at surface over dark brown silly gravelly. SAND. Sand is fine to consistency from 2.50m depth, rare brick and consistency of the gravels. 1 Tet 1.00 1.00 ESS 1.20 0 1.10 5.85 1.80 Dense orange brown slightly silly sandy GRAVEL. Sand is fine to coarse. Gravel is subangular fine to coarse. Gravel is subangular from 0.75m depth, rare brick and concrete pressult of the gravels. 2 Tet 2.00 2.20 B	Strike	Well			In-situ Tests				Key	Description			
Remarks and Water Observations Hand pit excuvated to 1.20mbgl prior to commencement of drilling. Window sampling commenced in the base of the hand bit and terminated at 2.5mbgl due to density of the gravels. Dynamic Probing continued from the base of the window Scale: 1:25 Key for Insitu tests HV-Hand Vane (kN/m2) PP-Pocket Penotometer (kN/m2)			1	ES1 0.25 ES2 0.50 ES3 0.75 TB11.00-1.20 ES4 1.00 ES5 1.20	N=32 (4,10)(9,8,8,7)	- - - - -		1.10		brown silty g medium. Gra fine to mediu with frequent stone. from concre Dense orang GRAVEL. Sa subangular to occasional or GRAVEL). betw	ravelly SAND. Sand is fir avel is subrounded to sub im to occasionally coarse to concrete, red brick and 0.75m depth, rare brick the present. The brown slightly silty san and is fine to coarse. Gra o angular fine to coarse to obbles of flint. (KEMPTO deen 1.80m to 2.00m depth)	dy vel is to NARK	
Hand pit excuvated to 1.20mbgl prior to commencement of drilling. Window sampling commenced in the base of the hand bit and terminated at 2.5mbgl due to density of the gravels. Dynamic Probing continued from the base of the window Commencement of Sept Comme	D a	ulac -	al 147	-4-r Cl						Continued nex	xt sheet	Caalar	
drilling. Window sampling commenced in the base of the hand bit and terminated at 2.5mbgl due to density of the gravels. Dynamic Probing continued from the base of the window Logged by: AS HV-Hand Vane (kN/m2) PP-Pocket Problem (kN/m2) PP-Pocket Problem (kN/m2) PROBLEM (NISS)							ent of						1:25
Organic Probing continued from the base of the window PP-Pocket Penotometer (kN/m2) MR Markintesh Broke (N150) Figure: B	drilling.V	Vindow s	amplii	ng commer	ced in the ba	ase of the	he hand					Logged by:	AS
	Dynamic	Probin	g cont	inued from	the base of t	he wind					ket Penotometer (kN/m2)	Figure:	В

R	SK ROUP P					AT:	5			RECORD Sampler)	Numb	
Site:			ay Station	1				Location			WS1	
				-								
Clier								Ground		Dates:	Job No.	.:
		eneratio		0.4.401.50	/TEO:			6.95mAO		16 Jun 10	241458	
GROU Strike	Well	ATER Depth		SAMPLES In-situ Tests	Depth	Level		Key	STRATA RE	CORD	Sheet 2	of 2
Otrike	VVGII	(m)	(m)	III-Situ Tests	(m)	(mAOD)		Ney	Description			
		_ _ _			- - 5.20 -	1.75	4.10	× · × · × · ×	LONDON CL	AY: inferred from dynam	ic probing.	
		- - - - - -6			- - - - - 5.90 -	1.05	0.70		End of Boreho			
		- - - - - - - - -			- - - - -							
		-7 7 										
		- - - - -			-							
		-9 - - - - -			- - - - - -							
			-1 61							1	Carlo	
				ervations		ent of				You for Incite: toota	Scale:	1:25
drilling	.Windov	v sampli	ng commer	nced in the batto density of	ase of the	he hand				Key for Insitu tests HV-Hand Vane (kN/m2)	Logged by:	AS
Dynan	nic Prok	oing cont	inued from	the base of t	he wind	wok				et Penotometer (kN/m2) ackintosh Probe (N150)	Figure:	В

G	SOUP PL	G =				AT:				RECORD Sampler)	Numb	
Site: Twick	enham	Railw	ay Station	1				Location			WS2	2
Clien	nt:							Ground	Level:	Dates:	Job No.	.:
Solun	n Rege	neratio	n					7.25mAO	D	16 Jun 10	241458	
GROU	JND W	ATER		SAMPLES	/TES	TS			STRATA RE	ECORD	Sheet 1	of 2
Strike	Well	Depth		In-situ Tests		Level		Key	Description			
		(m)	ES1 0.25 J1 0.25 J2 0.50 J2 ES3 0.75 J3 ES4 1.00 J4	s T	(m) - - - - - - -	(mAOD)	Total Carried State of the Control o		covering dark SAND. Sand subangular to and occasion concrete. Oc	JND: Vegetation at the say before the say before to medium. Grave to subrounded fine to coate all cobbles of flint, brick ecasional cobbles of contragments of glass. Other.	silty el is arse gravel and crete and	
< < < < < < < < < < < < < < < < < < < <			TB11.50-1.70 ES5 1.50 J5	N=40 [1,4](8,9,12,11)	- 1.40 - - - -	5.85	1.40		GRAVEL. Sa subangular to occasional co GRAVEL).	e brown slightly silty san ind is fine to coarse. Gra o angular fine to coarse obbles of flint. (KEMPTC een 1.80m and 2.00m d	ivel is to DN PARK	
* * * * * * * * * * * * * * * * * * *		-2	TB22.20-2.50	s —	-2.00 - - 2.20 -	5.25 5.05	0.60	**** ***** ****	fine to mediu angular fine t GRAVEL).	n slightly silty slightly gra m SAND. Gravel is suba o medium flint. (KEMPT	angular to ON PARK	
*****		- - - -3		N=22 [2.5](5.6,6,5)				* * * * * * * * * * * * * * * * * * *	to medium S	se orange brown slightly AND.(KEMPTON PARK 00m depth, water strike.	GRAVEL).	
****			TB33.50-4.00	S	- - - 3.50	3.75	1.30	× × × × × × × × × × × × × × × × × × ×		een 3.40m and 3.50m desity fine sand.	epth, band of	/
				S	-				coarse sandy angular fine t flint with rare	e brown slightly silty fine (GRAVEL. Gravel is sulto (GRAVEL. Gravel is sulto (GRAVEL) (Incalised clayey sand (Incalised Clayey sand (Incalised Clayey) (Incalised CRAVEL)	oangular to oarse	
3							- 4	× °× °×	Continued nex	rt sheet		
				ervations							Scale:	1:25
drilling hand p	. Windov oit and te	w sampl rminate	ing commer d at 5.0mbg	rior to commenced in the b gl due to dens ued from the	ase of t	the he			PP-Pock	Key for Insitu tests HV-Hand Vane (kN/m2) tet Penotometer (kN/m2)	Logged by:	AS B
windov	v sample	er boreb	ole to termi	nated depth,	once ir	nterface			MP-N	Mackintosh Probe (N150)	_	

G	ROUP P	<u></u>				ATS				RECORD Sampler)	Numb	
Site: Twick		n Railwa	ay Station	1				Location Twickenh	า: am Railway S	station	WS2	2
Clier	nt:							Ground	Level:	Dates:	Job No.	.:
Solun	n Rege	eneratio	n					7.25mAO	D	16 Jun 10	241458	
GROL	JND W	ATER		SAMPLES	/TES	ΓS			STRATA R	ECORD	Sheet 2	of 2
Strike	Well	Depth		In-situ Tests	Depth	Level		Key	Description			
		(m) 	(m)		(m)	0.85 0.35	0.50		probing	.AY: inferred from dynam		
				ervations							Scale:	1:25
drilling	. Windo	w sampl	ing comme	rior to commonced in the b	ase of t	he				Key for Insitu tests HV-Hand Vane (kN/m2)	Logged by:	
gravel	s. Dynaı	mic Prob	oing continu	gl due to densued from the pated depth	base of	the				ket Penotometer (kN/m2) Mackintosh Probe (N150)	Figure:	В

Site			ay Statior		STA	AT:	5	(Wind	dowless	RECORD Sampler)	Boreh Numb WS3	er:	
Clie	nt:							Ground	Level:	Dates:	Job No.	:	
Solu	m Rege	eneratio	on					6.70mAO	D	16 Jun 10	241458		
RO	UND W	ATER		SAMPLES	/TES	TS			STRATA RE	CORD	Sheet 1	of 1	
Strike	Well	Depth (m)	Type/Depth	In-situ Tests	Depth (m)	Level (mAOD)		Key	Description				
		-1	ES1 0.25 ES2 0.50 ES3 0.75 ES4 1.00		- 0.80	5.90	0.80		MADE GROU the surface o fine to mediu angular fine t cobbles of flir frequent glas ash, clinker a fragments pre Orange and t Sand is fine t to angular fin localised poc GRAVEL). End of Boreho	silty ounded to asional e with Occasional os			
		- - - - - - - - -			-								
		-			-								
		- -3 - - - -			- - - -								
		- -3 - - - - - - -4 -			-								
Rem	narks a	- - - - - - - - - - - - - - - -	ater Obs	servations							Scale:	1.25	
land	pit excuv		1.20mbgl p	rior to commo	enceme	ent of				Key for Insitu tests		1:25 AS	
land rilling	pit excuv g. Windov hand pit,		1.20mbgl p		enceme	ent of depth			PP-Pock	Key for Insitu tests HV-Hand Vane (kN/m2) et Penotometer (kN/m2)	Scale: Logged by: Figure:		

R G	SI(<u> </u>				AT:	5			E RECORD s Sampler)	Boreh Numb	
Site: Twick		Railw	ay Statio	า				Location Twickenh	1: am Railway \$	Station	WS ²	1
Clien	nt:							Ground	Level:	Dates:	Job No	.:
Solun	n Rege	neratio	n					6.69mAO	D	7 Jun 10	241458	
GROU	JND W	ATER		SAMPLES	/TES	TS			STRATA R	ECORD	Sheet 1	of 2
Strike	Well	Depth		In-situ Tests	Depth			Key	Description			
		(m) -1 -2	(m) J1 0.25 TB1 J2 0.50 TB2 J3 0.75 TB3 D1 1.00 J4 TB4 D3 1.50-2.00 D2 2.00 J5 TB5 D4 2.20 TB6	C	(m)	(mAOD) 5.89	0.80		orange brove SAND. Gravel fint, with och flint and poce PARK GRAM at 1 presur to the	1.20m depth, water seepa mably from unknown pipe southeast.	edium angular bles of EMPTON age into pit, estruck 1m	
		-							Continued ne	ext sheet		
				servations		t					Scale:	1:25
drilling	. Origina	I hand	oit located	orior to comm an unknown s	service	(waste				Key for Insitu tests	Logged by:	AS
water p moved	pipe) at (I northwe	0.80mb(est by 1	gl. Location .0m. Windo	of the WS how sampling of	ole was	nced in				HV-Hand Vane (kN/m2) ket Penotometer (kN/m2) Mackintosh Probe (N150)	Figure:	В
				inated at 2 20 Probing contin					1411	(11100)		

G	ROUP P	LC				AIS				Sampler)	Numb	
Site: Twick		n Railw	ay Station	1				Location			WS4	1
Clier	nt:							Ground	Level:	Dates:	Job No.	.:
Solur	n Rege	eneratio	n					6.69mAO	D	7 Jun 10	241458	
GROL	JND W	ATER		SAMPLES	/TES	ΓS			STRATA RI	ECORD	Sheet 2	of 2
Strike	Well	Depth (m)	Type/Depth (m)	In-situ Tests	Depth (m)	Level (mAOD)		Key	Description			
		- (111)	(111)		_ (111)	(IIIAOD)						
		_			- 5.20	1.49	4.40		LONDON CL	AY inferred by dynamic	probing.	
		-			-			===			, <u>J</u>	
		_			-							
		_			-							
		_			-							
		-6			_		0					
		-			-							
		_			-							
		-			-			-===				
		_			-							
		-			-							
		- -7			- 6.90 	-0.21	1.70		End of Boreho	ole at 6.90 m		
		-			-							
		_			-							
		_			-							
		_			-							
		-			-							
		-			_							
		-8 -			-							
		_			-							
					-							
		_			-							
		_			-							
		-			-							
		-9			_							
		_			-							
		_			-							
		_			-							
		- -			-							
		_			-							
D			-4an Oli							I	Casta	
				ervations		ent of				Key for Insitu tests	Scale:	1:25
drilling	. Origina	al hand p	oit located a	of the WS h	ervice	(waste				HV-Hand Vane (kN/m2)	Logged by:	AS
moved	northw	est by 1.	0m. Windo	w sampling o	ommei	nced in				ket Penotometer (kN/m2) Mackintosh Probe (N150)	Figure:	В

Appendix D. Groundwater Monitoring Results

Twickenham Railway Station, London Road

Water Monitoring Record

Location	Date (am/pm)	Conductivity uS/cm (at 25 degrees)	Total Dissolved Soilds (ppm)	Dissolved Oxygen (ppm)	рН	Temperature (deg C)	Sampling Method	Water Level (m.bgl)	Base of Borehole (m.bgl)	Comments
ВНА	1st JULY10 (pm)	950	665	17.19	6.29	15.23	Bailer	5.100	5.60	light brown, cloudy-medium solid content, no odour, no sheen, no floating product
21	19th AUGUST 10									
BHD	1st JULY10 (pm)	354	248	45.74	5.22	15.96	Bailer	4.180	7.00	light brown, cloudy-medium solid content, no odour, no sheen, no floating product
Biib	19th AUGUST 10									
BHF	1st JULY10 (pm)	610	428	24.34	6.27	14.96	Bailer	3.880	6.12	light brown/orange, cloudy-medium solid content, no odour, no sheen, no floating product
5111	19th AUGUST 10									
River 1	1st JULY10 (pm)	616	431	14.84	7.74	22.1	Bucket	n/a	n/a	Clear, no odour, no sheen
THVCT	19th AUGUST 10							n/a	n/a	
River 2	1st JULY10 (pm)	659	463	8.15	7.95	24.1	Bucket	n/a	n/a	Clear, no odour, no sheen
THIVE! 2	19th AUGUST 10							n/a	n/a	
River 3	1st JULY10 (pm)	631	442	8.59	8.11	23.2	Bucket	n/a	n/a	Clear, no odour, no sheen
111701 0	19th AUGUST 10							n/a	n/a	

Appendix E. Ground Gas Monitoring Results

Gas Summary Sheet

Location	Date	Baro Pressure (m.bar)	Rel Pressure (m.bar)	Flow Rate (I/hr)	CH (% v peak		(%	O2 vol) steady	(%	O2 vol) steady	Water Level (m.bgl)	Base of Borehole (m.bgl)	Comments
	1st JULY10	1009	0.84	0.2		<0.1		6.8		10.2	5.100	5.60	
	15th JULY 10	1006	0.08	0.1		<0.1		3.5		15.8	5.060	5.57	
ВНА	5th AUG 10	1010	-0.12	0		<0.1		6.2		12.9	5.100	5.57	
БПА	19th AUG 10												
	2nd SEPT 10												
	16th SEPT 10												
	1st JULY10	1009	0.57	0.2		<0.1		6		12	4.180	7.00	
	15th JULY 10	1006	0.08	0.1		<0.1		10.5		6.7	3.900	6.11	
BHD	5th AUG 10	1010	-0.12	0		<0.1		7.3		9.9	4.230	6.94	
סוום	19th AUG 10												
	2nd SEPT 10												
	16th SEPT 10												
	1st JULY10	1009	0.57	0.2		<0.1		10.7		5	3.880	6.12	
	15th JULY 10	1006	0.08	0.1		<0.1		6.8		11.2	4.190	6.93	
BHF	5th AUG 10	1010	-0.12	0.1		<0.1		14.3		4	4.940	6.09	
БПГ	19th AUG 10												
	2nd SEPT 10												
	16th SEPT 10												

Appendix F. Results of Laboratory Analysis (Chemtest)

- Waste Acceptance Criteria (WAC) testing (10 pages)
- Soil (28 pages)
- Water (7 pages)

Waste Acceptance Criteria Waste Parameters

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT FAO Andrea Grossey

Results of analysis of 5 samples received 21 July 2010

Twickenham Railway Station - 241458

Report Date 28 July 2010

Login Batch No								113013
Chemtest LIMS ID						Limit values		AF14408
Sample ID					Inert waste	Stable	Hazardous	BHA
Sample No					landfill	non-reactive	waste landfill	
Depth						hazardous waste in		0.5m - 2m
Matrix						non-hazardous		SOIL
Determinand↓	SOP↓	*	CAS No↓	Units↓		landfill		
Total Organic Carbon	2625	М		%	3	5	6	1.1
Loss on ignition	2610	N		%			10	2.74
Benzene	2760	М	71432	μg kg-¹				< 1
Toluene	2760	М	108883	μg kg-¹				< 1
Ethyl benzene	2760	М	100414	μg kg-¹				< 1
m- & p-Xylene	2760	М	1330207	μg kg-¹				< 1
o-Xylene	2760	М	95476	μg kg-¹				< 1
Total BTEX	2761	М		mg kg-1	6			<0.005
PCB 28	2810	N	7012375	mg kg-1				<0.1
PCB 52	2810	N	35693993	mg kg-1				<0.1
PCB 101	2810	N	37680732	mg kg-1				<0.1
PCB 118	2810	N	31508006	mg kg-1				<0.1
PCB 138	2810	N	35065282	mg kg-1				<0.1
PCB 153	2810	N	35065271	mg kg-1				<0.1
PCB 180	2810	N	35065293	mg kg-1				<0.1
Total PCBs (7 congeners)	2811	N		mg kg-1	1			<1
Naphthalene	2700	М	91203	mg kg-1				<0.1
Acenaphthylene	2700	М	208968	mg kg-1				<0.1
Acenaphthene	2700	М	83329	mg kg-1				<0.1
Fluorene	2700	М	86737	mg kg-1				<0.1
Phenanthrene	2700	М	85018	mg kg-1				1.4
Anthracene	2700	М	120127	mg kg-1				0.4
Fluoranthene	2700	М	206440	mg kg-1				3.3
Pyrene	2700	М	129000	mg kg-1				2.9
Benzo[a]anthracene	2700	М	56553	mg kg-1				1.6
Chrysene	2700	М	218019	mg kg-1				1.8
Benzo[b]fluoranthene	2700	М	205992	mg kg-1				2.4
Benzo[k]fluoranthene	2700	М	207089	mg kg-1				1.3
Benzo[a]pyrene	2700	М	50328	mg kg-1				2.4
Dibenzo[a,h]anthracene	2700	М	53703	mg kg-1				1.6
Indeno[1,2,3-cd]pyrene	2700	М	193395	mg kg-1				0.4
Benzo[g,h,i]perylene	2700	М	191242	mg kg-1				1.3
Coronene	2700	N	191071	mg kg-1				<0.1
Total (of 17) PAHs	2700	N		mg kg-1	100			21
рН	2010	М		-		>6		9.4
Acid Neutralisation Capacity	2015	N	ANC	mol kg-1		To evaluate	To evaluate	0.017
TPH Total WAC	2670	N		mg kg-1	500			23

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

* Accreditation status Report page 1 of 2

Report sample ID range AF14408 to AF15181

Column page

Waste Acceptance Criteria Waste Parameters

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

FAO Andrea Grossey

Results of analysis of 5 samples received 21 July 2010 Twickenham Railway Station - 241458

Report Date 28 July 2010

Login Batch No 113013 Chemtest LIMS ID AF14409 Sample ID внв Sample No 0.5m - 3m Depth SOIL Matrix Determinand↓ SOP↓ CAS No↓ Units↓ Total Organic Carbon % 2625 M 3 5 6 0.91 Loss on ignition 2610 Ν % 10 2.37 Benzene 2760 71432 μg kg-1 < 1 M 108883 Toluene 2760 M μg kg-1 < 1 Ethyl benzene 2760 М 100414 μg kg-1 < 1 m- & p-Xylene 2760 1330207 < 1 M μg kg-1 o-Xylene 2760 М 95476 μg kg-1 < 1 Total BTEX mg kg-1 6 <0.005 2761 M PCB 28 2810 Ν 7012375 mg kg-1 < 0.1 PCB 52 2810 35693993 <0.1 Ν mg kg-1 2810 <0.1 PCB 101 Ν 37680732 mg kg-1 PCB 118 2810 31508006 <0.1 Ν mg kg-1 2810 PCB 138 Ν 35065282 mg kg-1 < 0.1 PCB 153 2810 Ν 35065271 mg kg-1 < 0.1 PCB 180 2810 Ν 35065293 mg kg-1 <0.1 Total PCBs (7 congeners) 2811 N 1 <1 mg kg-1 Naphthalene 2700 91203 < 0.1 M mg kg-1 2700 208968 0.4 Acenaphthylene M mg kg-1 Acenaphthene 2700 83329 0.7 Μ mg kg-1 2700 86737 Fluorene М mg kg-1 0.3 Phenanthrene 2700 85018 6.9 M mg kg-1 2700 120127 Anthracene M mg kg-1 1.3 Fluoranthene 2700 206440 mg kg-1 9.8 M 2700 129000 Pyrene Μ mg kg-1 8.8 Benzo[a]anthracene 2700 56553 mg kg-1 3.7 M 2700 218019 Chrysene M mg kg-1 34 Benzo[b]fluoranthene 2700 Μ 205992 mg kg-1 3.9 Benzo[k]fluoranthene 2700 207089 2.3 М mg kg-1 2700 Benzo[a]pyrene М 50328 mg kg-1 4 2700 2.5 53703 Dibenzo[a,h]anthracene Μ mg kg-1 2700 0.7 Indeno[1,2,3-cd]pyrene Μ 193395 mg kg-1 Benzo[g,h,i]perylene 2700 M 191242 mg kg-1 2.2 Coronene 2700 Ν 191071 mg kg-1 <0.1 Total (of 17) PAHs 2700 100 51 mg kg-1 Ν 2010 рΗ Μ >6 9.0 Acid Neutralisation Capacity ANC 2015 mol kg-1 To evaluate To evaluate 0.029 Ν TPH Total WAC 2670 500 Ν mg kg-1 150

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

Column page

Report page 1 of 2

2

Report sample ID range

Waste Acceptance Criteria Waste Parameters

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Results of analysis of 5 samples received 21 July 2010

Report Date 28 July 2010

FAO Andrea Grossey **Twickenham Railway Station - 241458**

Login Batch No Chemtest LIMS ID Sample ID								113013 AF14410 BHC
Sample No								5.10
Depth								2m - 3.5m
Matrix								SOIL
Determinand↓	SOF) I	CAS N	o↓ Units↓				00.2
			CAS IN					4.0
Total Organic Carbon	2625	M		%	3	5	6	1.8
Loss on ignition	2610	N	74400	%			10	3.41
Benzene	2760	M	71432	μg kg-¹				< 1
Toluene	2760	M	108883	μg kg-¹				< 1
Ethyl benzene	2760	M	100414	μg kg-1				< 1
m- & p-Xylene	2760	М	1330207	μg kg-¹				< 1
o-Xylene	2760	M	95476	μg kg-¹				< 1
Total BTEX	2761	М		mg kg-1	6			<0.005
PCB 28	2810	N	7012375	mg kg-1				<0.1
PCB 52	2810	N	35693993	mg kg-1				<0.1
PCB 101	2810	N	37680732	mg kg-1				<0.1
PCB 118	2810	N	31508006	mg kg-1				<0.1
PCB 138	2810	Ν	35065282	mg kg-1				<0.1
PCB 153	2810	Ν	35065271	mg kg-1				<0.1
PCB 180	2810	N	35065293	mg kg-1				<0.1
Total PCBs (7 congeners)	2811	N		mg kg-1	1			<1
Naphthalene	2700	М	91203	mg kg-1				0.2
Acenaphthylene	2700	М	208968	mg kg-1				<0.1
Acenaphthene	2700	М	83329	mg kg-1				<0.1
Fluorene	2700	М	86737	mg kg-1				<0.1
Phenanthrene	2700	М	85018	mg kg-1				1.5
Anthracene	2700	М	120127	mg kg-1				<0.1
Fluoranthene	2700	М	206440	mg kg-1				2.5
Pyrene	2700	М	129000	mg kg-1				2.3
Benzo[a]anthracene	2700	М	56553	mg kg-1				1
Chrysene	2700	М	218019	mg kg-1				1
Benzo[b]fluoranthene	2700	M	205992	mg kg-1				1.6
Benzo[k]fluoranthene	2700	М	207089	mg kg-1				0.7
Benzo[a]pyrene	2700	М	50328	mg kg-1				3.2
Dibenzo[a,h]anthracene	2700	М	53703	mg kg-1				0.7
Indeno[1,2,3-cd]pyrene	2700	M	193395	mg kg-1				0.2
Benzo[g,h,i]perylene	2700	M	191242	mg kg-1				0.8
Coronene	2700	N	191071	mg kg-1				<0.1
Total (of 17) PAHs	2700	N		mg kg-1	100			16
pH	2010	M		-		>6		7.7
Acid Neutralisation Capacity	2015	N	ANC	mol kg-1		To evaluate	To evaluate	0.005
TPH Total WAC	2670	N	710	mg kg-1	500	. 5 57414410		22

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

Column page

·

Report page 1 of 2

Report sample ID range

Waste Acceptance Criteria Waste Parameters

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Results of analysis of 5 samples received 21 July 2010

Report Date 28 July 2010

FAO Andrea Grossey **Twickenham Railway Station - 241458**

Login Batch No Chemtest LIMS ID Sample ID								113013 AF15178 BHE
Sample No								
Depth								0.5m - 1.5m
Matrix								SOIL
Determinand↓	SOF	۰↓	CAS N	o↓ Units↓				
Total Organic Carbon	2625	М		%	3	5	6	3.4
Loss on ignition	2610	N		%			10	4.91
Benzene	2760	M	71432	μg kg-¹				< 1
Toluene	2760	M	108883	μg kg-¹				< 1
Ethyl benzene	2760	M	100414	μg kg-¹				< 1
m- & p-Xylene	2760	M	1330207	μg kg-¹				< 1
o-Xylene	2760	М	95476	μg kg-¹				< 1
Total BTEX	2761	М		mg kg-1	6			<0.005
PCB 28	2810	N	7012375	mg kg-1				<0.1
PCB 52	2810	N	35693993	mg kg-1				<0.1
PCB 101	2810	N	37680732	mg kg-1				<0.1
PCB 118	2810	N	31508006	mg kg-1				<0.1
PCB 138	2810	N	35065282	mg kg-1				<0.1
PCB 153	2810	N	35065271	mg kg-1				<0.1
PCB 180	2810	N	35065293	mg kg-1				<0.1
Total PCBs (7 congeners)	2811	N		mg kg-1	1			<1
Naphthalene	2700	М	91203	mg kg-1				<0.1
Acenaphthylene	2700	М	208968	mg kg-1				<0.1
Acenaphthene	2700	М	83329	mg kg-1				<0.1
Fluorene	2700	М	86737	mg kg-1				<0.1
Phenanthrene	2700	М	85018	mg kg-1				1
Anthracene	2700	М	120127	mg kg-1				0.2
Fluoranthene	2700	М	206440	mg kg-1				2
Pyrene	2700	М	129000	mg kg-1				1.9
Benzo[a]anthracene	2700	М	56553	mg kg-1				1
Chrysene	2700	М	218019	mg kg-1				1.2
Benzo[b]fluoranthene	2700	М	205992	mg kg-1				1.5
Benzo[k]fluoranthene	2700	М	207089	mg kg-1				1.1
Benzo[a]pyrene	2700	М	50328	mg kg-1				1.3
Dibenzo[a,h]anthracene	2700	М	53703	mg kg-1				0.9
Indeno[1,2,3-cd]pyrene	2700	М	193395	mg kg-1				0.4
Benzo[g,h,i]perylene	2700	М	191242	mg kg-1				0.7
Coronene	2700	N	191071	mg kg-1				<0.1
Total (of 17) PAHs	2700	N		mg kg-1	100			13
рН	2010	М		-		>6		9.6
Acid Neutralisation Capacity	2015	N	ANC	mol kg-1		To evaluate	To evaluate	0.034
TPH Total WAC	2670	N		mg kg-1	500			25

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

Column page 4

Report page 1 of 2

Report sample ID range

Waste Acceptance Criteria Waste Parameters

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Results of analysis of 5 samples received 21 July 2010

Report Date 28 July 2010

FAO Andrea Grossey **Twickenham Railway Station - 241458**

Login Batch No Chemtest LIMS ID								113013 AF15179 BHF
Sample ID Sample No								БПГ
Depth								0.5m - 1m
Matrix								SOIL
Determinand↓	SOF	٠	CAS N	o↓ Units↓	,			
Total Organic Carbon	2625	М		%	3	5	6	3.2
Loss on ignition	2610	N		%			10	2.88
Benzene	2760	M	71432	μg kg-¹				< 1
Toluene	2760	M	108883	μg kg-¹				< 1
Ethyl benzene	2760	M	100414	μg kg-¹				< 1
m- & p-Xylene	2760	M	1330207	μg kg-¹				< 1
o-Xylene	2760	М	95476	μg kg-¹				< 1
Total BTEX	2761	М		mg kg-1	6			<0.005
PCB 28	2810	N	7012375	mg kg-1				<0.1
PCB 52	2810	N	35693993	mg kg-1				<0.1
PCB 101	2810	N	37680732	mg kg-1				<0.1
PCB 118	2810	N	31508006	mg kg-1				<0.1
PCB 138	2810	N	35065282	mg kg-1				<0.1
PCB 153	2810	N	35065271	mg kg-1				<0.1
PCB 180	2810	N	35065293	mg kg-1				<0.1
Total PCBs (7 congeners)	2811	N		mg kg-1	1			<1
Naphthalene	2700	М	91203	mg kg-1				<0.1
Acenaphthylene	2700	М	208968	mg kg-1				0.3
Acenaphthene	2700	М	83329	mg kg-1				<0.1
Fluorene	2700	М	86737	mg kg-1				0.2
Phenanthrene	2700	М	85018	mg kg-1				4.6
Anthracene	2700	М	120127	mg kg-1				1
Fluoranthene	2700	М	206440	mg kg-1				8.8
Pyrene	2700	М	129000	mg kg-1				7.3
Benzo[a]anthracene	2700	М	56553	mg kg-1				4
Chrysene	2700	М	218019	mg kg-1				4.4
Benzo[b]fluoranthene	2700	М	205992	mg kg-1				3.8
Benzo[k]fluoranthene	2700	М	207089	mg kg-1				4.3
Benzo[a]pyrene	2700	М	50328	mg kg-1				4.8
Dibenzo[a,h]anthracene	2700	М	53703	mg kg-1				3
Indeno[1,2,3-cd]pyrene	2700	М	193395	mg kg-1				0.8
Benzo[g,h,i]perylene	2700	М	191242	mg kg-1				3.1
Coronene	2700	N	191071	mg kg-1				<0.1
Total (of 17) PAHs	2700	N		mg kg-1	100			50
рН	2010	М		-		>6		9.6
Acid Neutralisation Capacity	2015	N	ANC	mol kg-1		To evaluate	To evaluate	0.022
TPH Total WAC	2670	N		mg kg-1	500			160

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

Column page

Report page 1 of 2

Report sample ID range

Waste Acceptance Criteria BS EN 12457 Part 3 2 Stage

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT FAO Andrea Grossey

Results of analysis of 5 samples received 21 July 2010

Twickenham Railway Station - 241458

Report Date 28 July 2010

Login Batch No								113013
Chemtest LIMS ID						Limit values		AF14413
Sample ID					Inert waste	Stable	Hazardous	ВНА
Sample No					landfill	non-reactive	waste landfill	
Depth						hazardous waste in		0.5m - 2m
Matrix						non-hazardous		LEACHATE
Determinand↓	SOP↓	*	CAS No↓	Units↓		landfill		
As (arsenic) L/S=2	1450	N	7440382	mg kg-1				<0.05
Ba (barium) L/S=2	1450	N	7440393	mg kg-1				<0.5
Cd (cadmium) L/S=2	1450	N	7440439	mg kg-1				<0.01
Cr (chromium) L/S=2	1450	N	7440473	mg kg-1				<0.05
Cu (copper) L/S=2	1450	N	7440508	mg kg-1				0.07
Hg (mercury) L/S=2	1450	N	7439976	mg kg-1				<0.005
Mo (molybdenum) L/S=2	1450	N	7439987	mg kg-1				0.15
Ni (nickel) L/S=2	1450	N	7440020	mg kg-1				<0.05
Pb (lead) L/S=2	1450	N	7439921	mg kg-1				<0.05
Sb (antimony) L/S=2	1450	N	7440360	mg kg-1				0.01
Se (selenium) L/S=2	1450	N	7782492	mg kg-1				0.01
Zn (zinc) L/S=2	1450	N	7440666	mg kg-1				<0.5
CI (chloride) L/S=2	1220	N	16887006	mg kg-1				50
F (fluoride) L/S=2	1220	N	16984488	mg kg-1				2.4
SO4 (sulfate) L/S=2	1220	N	14808798	mg kg-1				148
Total Dissolved Solids L/S=2	1610	N	TDS	mg kg-1				540
Phenol index L/S=2	1920	N	108952	mg kg-1				<0.5
Dissolved Organic Carbon L/S=2	1610	N	DOC	mg kg-1				74.1
As (arsenic) L/S=10	1450	N	7440382	mg kg-1	0.5	2	25	<0.05
Ba (barium) L/S=10	1450	N	7440393	mg kg-1	20	100	300	<0.5
Cd (cadmium) L/S=10	1450	N	7440439	mg kg-1	0.04	1	5	<0.01
Cr (chromium) L/S=10	1450	N	7440473	mg kg-1	0.5	10	70	<0.05
Cu (copper) L/S=10	1450	N	7440508	mg kg-1	2	50	100	0.12
Hg (mercury) L/S=10	1450	N	7439976	mg kg-1	0.01	0.2	2	<0.005
Mo (molybdenum) L/S=10	1450	N	7439987	mg kg-1	0.5	10	30	0.17
Ni (nickel) L/S=10	1450	N	7440020	mg kg-1	0.4	10	40	<0.05
Pb (lead) L/S=10	1450	N	7439921	mg kg-1	0.5	10	50	<0.05
Sb (antimony) L/S=10	1450	N	7440360	mg kg-1	0.06	0.7	5	<0.01
Se (selenium) L/S=10	1450	N	7782492	mg kg-1	0.1	0.5	7	0.01
Zn (zinc) L/S=10	1450	N	7440666	mg kg-1	4	50	200	<0.5
Cl (chloride) L/S=10	1220	N	16887006	mg kg-1	800	15000	25000	81
F (fluoride) L/S=10	1220	N	16984488	mg kg-1	10	150	500	6.31
SO4 (sulfate) L/S=10	1220	N	14808798	mg kg-1	1000	20000	50000	262
Total Dissolved Solids L/S=10	1610	N	TDS	mg kg-1	4000	60000	100000	1320
Phenol index L/S=10	1920	N	108952	mg kg-1	1			<0.5
Dissolved Organic Carbon L/S=10	1610	N	DOC	mg kg-1	500	800	1000	278

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

* Accreditation status Report page 2 of 2

Report sample ID range AF14408 to AF15181

Column page

Waste Acceptance Criteria BS EN 12457 Part 3 2 Stage

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Results of analysis of 5 samples received 21 July 2010

Report Date 28 July 2010

FAO Andrea Grossey Twickenham Railway Station - 241458

Login Batch No Chemtest LIMS ID								113013 AF14414
Sample ID								BHB
Sample No								
Depth								0.5m - 3m
Matrix								LEACHATE
Determinand↓	SOF	P↓	CAS N	o↓ Units√	l			
As (arsenic) L/S=2	1450	N	7440382	mg kg-1				<0.05
Ba (barium) L/S=2	1450	N	7440393	mg kg-1				<0.5
Cd (cadmium) L/S=2	1450	N	7440439	mg kg-1				<0.01
Cr (chromium) L/S=2	1450	N	7440473	mg kg-1				0.08
Cu (copper) L/S=2	1450	N	7440508	mg kg-1				<0.05
Hg (mercury) L/S=2	1450	N	7439976	mg kg-1				<0.005
Mo (molybdenum) L/S=2	1450	N	7439987	mg kg-1				0.1
Ni (nickel) L/S=2	1450	N	7440020	mg kg-1				<0.05
Pb (lead) L/S=2	1450	N	7439921	mg kg-1				<0.05
Sb (antimony) L/S=2	1450	N	7440360	mg kg-1				0.01
Se (selenium) L/S=2	1450	N	7782492	mg kg-1				0.01
Zn (zinc) L/S=2	1450	N	7440666	mg kg-1				<0.5
CI (chloride) L/S=2	1220	N	16887006	mg kg-1				66
F (fluoride) L/S=2	1220	N	16984488	mg kg-1				<1
SO4 (sulfate) L/S=2	1220	N	14808798	mg kg-1				941
Total Dissolved Solids L/S=2	1610	N	TDS	mg kg-1				1560
Phenol index L/S=2	1920	N	108952	mg kg-1				<0.5
Dissolved Organic Carbon L/S=2	1610	N	DOC	mg kg-1				<50
As (arsenic) L/S=10	1450	N	7440382	mg kg-1	0.5	2	25	<0.05
Ba (barium) L/S=10	1450	N	7440393	mg kg-1	20	100	300	<0.5
Cd (cadmium) L/S=10	1450	N	7440439	mg kg-1	0.04	1	5	<0.01
Cr (chromium) L/S=10	1450	N	7440473	mg kg-1	0.5	10	70	0.11
Cu (copper) L/S=10	1450	N	7440508	mg kg-1	2	50	100	<0.05
Hg (mercury) L/S=10	1450	N	7439976	mg kg-1	0.01	0.2	2	<0.005
Mo (molybdenum) L/S=10	1450	N	7439987	mg kg-1	0.5	10	30	0.11
Ni (nickel) L/S=10	1450	N	7440020	mg kg-1	0.4	10	40	<0.05
Pb (lead) L/S=10	1450	N	7439921	mg kg-1	0.5	10	50	<0.05
Sb (antimony) L/S=10	1450	N	7440360	mg kg-1	0.06	0.7	5	0.01
Se (selenium) L/S=10	1450	N	7782492	mg kg-1	0.1	0.5	7	0.01
Zn (zinc) L/S=10	1450	N	7440666	mg kg-1	4	50	200	<0.5
CI (chloride) L/S=10	1220	N	16887006	mg kg-1	800	15000	25000	82.4
F (fluoride) L/S=10	1220	N	16984488	mg kg-1	10	150	500	2.52
SO4 (sulfate) L/S=10	1220	N	14808798	mg kg-1	1000	20000	50000	1090
Total Dissolved Solids L/S=10	1610	N	TDS	mg kg-1	4000	60000	100000	2510
Phenol index L/S=10	1920	N	108952	mg kg-1	1			<0.5
Dissolved Organic Carbon L/S=10	1610	N	DOC	mg kg-1	500	800	1000	159

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

Column page 2

Report page 2 of 2

Report sample ID range AF

Waste Acceptance Criteria BS EN 12457 Part 3 2 Stage

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Results of analysis of 5 samples received 21 July 2010 Twickenham Railway Station - 241458

Report Date 28 July 2010

FAO Andrea Grossey

Login Batch No Chemtest LIMS ID Sample ID Sample No								113013 AF14415 BHC
Depth								2m - 3.5m
Matrix								LEACHATE
Determinand↓	SOF	D.I.	CAS N	o↓ Units↓				
					•			<0.05
As (arsenic) L/S=2	1450	N	7440382	mg kg-1				
Ba (barium) L/S=2	1450	N	7440393	mg kg-1				<0.5
Cd (cadmium) L/S=2	1450	N	7440439	mg kg-1				<0.01
Cr (chromium) L/S=2	1450	N	7440473	mg kg-1				<0.05
Cu (copper) L/S=2	1450	N	7440508	mg kg-1				<0.05
Hg (mercury) L/S=2	1450	N	7439976	mg kg-1				<0.005
Mo (molybdenum) L/S=2	1450	N	7439987	mg kg-1				<0.05
Ni (nickel) L/S=2	1450	N	7440020	mg kg-1				<0.05
Pb (lead) L/S=2	1450	N	7439921	mg kg-1				<0.05
Sb (antimony) L/S=2	1450	N	7440360	mg kg-1				<0.01
Se (selenium) L/S=2	1450	N	7782492	mg kg-1				0.01
Zn (zinc) L/S=2	1450	N	7440666	mg kg-1				<0.5
CI (chloride) L/S=2	1220	N	16887006	mg kg-1				36
F (fluoride) L/S=2	1220	N	16984488	mg kg-1				1.28
SO4 (sulfate) L/S=2	1220	Ν	14808798	mg kg-1				122
Total Dissolved Solids L/S=2	1610	Ν	TDS	mg kg-1				561
Phenol index L/S=2	1920	Ν	108952	mg kg-1				<0.5
Dissolved Organic Carbon L/S=2	1610	N	DOC	mg kg-1				82.1
As (arsenic) L/S=10	1450	N	7440382	mg kg-1	0.5	2	25	<0.05
Ba (barium) L/S=10	1450	N	7440393	mg kg-1	20	100	300	<0.5
Cd (cadmium) L/S=10	1450	N	7440439	mg kg-1	0.04	1	5	<0.01
Cr (chromium) L/S=10	1450	N	7440473	mg kg-1	0.5	10	70	<0.05
Cu (copper) L/S=10	1450	N	7440508	mg kg-1	2	50	100	<0.05
Hg (mercury) L/S=10	1450	N	7439976	mg kg-1	0.01	0.2	2	<0.005
Mo (molybdenum) L/S=10	1450	N	7439987	mg kg-1	0.5	10	30	<0.05
Ni (nickel) L/S=10	1450	N	7440020	mg kg-1	0.4	10	40	<0.05
Pb (lead) L/S=10	1450	N	7439921	mg kg-1	0.5	10	50	<0.05
Sb (antimony) L/S=10	1450	N	7440360	mg kg-1	0.06	0.7	5	<0.01
Se (selenium) L/S=10	1450	N	7782492	mg kg-1	0.1	0.5	7	<0.01
Zn (zinc) L/S=10	1450	N	7440666	mg kg-1	4	50	200	<0.5
CI (chloride) L/S=10	1220	N	16887006	mg kg-1	800	15000	25000	104
F (fluoride) L/S=10	1220	N	16984488	mg kg-1	10	150	500	5.83
SO4 (sulfate) L/S=10	1220	N	14808798	mg kg-1	1000	20000	50000	191
Total Dissolved Solids L/S=10	1610	N	TDS	mg kg-1	4000	60000	100000	1280
Phenol index L/S=10	1920	N	108952	mg kg-1	1			<0.5
Dissolved Organic Carbon L/S=10	1610	N	DOC	mg kg-1	500	800	1000	239

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

Column page

Report page 2 of 2

Report sample ID range

Waste Acceptance Criteria BS EN 12457 Part 3 2 Stage

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Results of analysis of 5 samples received 21 July 2010 Twickenham Railway Station - 241458

Report Date 28 July 2010

FAO Andrea Grossey

Login Batch No Chemtest LIMS ID								113013 AF15180
Sample ID								BHE
Sample No								
Depth								0.5m - 1.5m
Matrix								LEACHATE
Determinand↓	SOF)	CAS N	o↓ Units√	l,			
As (arsenic) L/S=2	1450	N	7440382	mg kg-1				<0.05
Ba (barium) L/S=2	1450	N	7440393	mg kg-1				<0.5
Cd (cadmium) L/S=2	1450	N	7440439	mg kg-1				<0.01
Cr (chromium) L/S=2	1450	Ν	7440473	mg kg-1				<0.05
Cu (copper) L/S=2	1450	N	7440508	mg kg-1				<0.05
Hg (mercury) L/S=2	1450	Ν	7439976	mg kg-1				<0.005
Mo (molybdenum) L/S=2	1450	Ν	7439987	mg kg-1				0.06
Ni (nickel) L/S=2	1450	Ν	7440020	mg kg-1				<0.05
Pb (lead) L/S=2	1450	Ν	7439921	mg kg-1				<0.05
Sb (antimony) L/S=2	1450	N	7440360	mg kg-1				0.01
Se (selenium) L/S=2	1450	N	7782492	mg kg-1				0.02
Zn (zinc) L/S=2	1450	N	7440666	mg kg-1				<0.5
CI (chloride) L/S=2	1220	N	16887006	mg kg-1				84.1
F (fluoride) L/S=2	1220	N	16984488	mg kg-1				1.34
SO4 (sulfate) L/S=2	1220	N	14808798	mg kg-1				240
Total Dissolved Solids L/S=2	1610	N	TDS	mg kg-1				741
Phenol index L/S=2	1920	N	108952	mg kg-1				<0.5
Dissolved Organic Carbon L/S=2	1610	N	DOC	mg kg-1				<50
As (arsenic) L/S=10	1450	N	7440382	mg kg-1	0.5	2	25	0.14
Ba (barium) L/S=10	1450	N	7440393	mg kg-1	20	100	300	<0.5
Cd (cadmium) L/S=10	1450	N	7440439	mg kg-1	0.04	1	5	<0.01
Cr (chromium) L/S=10	1450	N	7440473	mg kg-1	0.5	10	70	0.12
Cu (copper) L/S=10	1450	N	7440508	mg kg-1	2	50	100	0.06
Hg (mercury) L/S=10	1450	N	7439976	mg kg-1	0.01	0.2	2	<0.005
Mo (molybdenum) L/S=10	1450	N	7439987	mg kg-1	0.5	10	30	0.12
Ni (nickel) L/S=10	1450	N	7440020	mg kg-1	0.4	10	40	<0.05
Pb (lead) L/S=10	1450	Ν	7439921	mg kg-1	0.5	10	50	0.14
Sb (antimony) L/S=10	1450	N	7440360	mg kg-1	0.06	0.7	5	0.05
Se (selenium) L/S=10	1450	N	7782492	mg kg-1	0.1	0.5	7	0.04
Zn (zinc) L/S=10	1450	N	7440666	mg kg-1	4	50	200	<0.5
CI (chloride) L/S=10	1220	N	16887006	mg kg-1	800	15000	25000	149
F (fluoride) L/S=10	1220	N	16984488	mg kg-1	10	150	500	4.78
SO4 (sulfate) L/S=10	1220	N	14808798	mg kg-1	1000	20000	50000	475
Total Dissolved Solids L/S=10	1610	N	TDS	mg kg-1	4000	60000	100000	1430
Phenol index L/S=10	1920	N	108952	mg kg-1	1			<0.5
Dissolved Organic Carbon L/S=10	1610	N	DOC	mg kg-1	500	800	1000	290

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

Column page 4

Report page 2 of 2

Report sample ID range

Waste Acceptance Criteria BS EN 12457 Part 3 2 Stage

RSK STATS Geoconsult Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Results of analysis of 5 samples received 21 July 2010

Report Date 28 July 2010

FAO Andrea Grossey **Twickenham Railway Station - 241458**

Login Batch No Chemtest LIMS ID Sample ID								113013 AF15181 BHF
Sample No								
Depth								0.5m - 1m
Matrix								LEACHATE
Determinand↓	SOF	•↓	CAS N	o↓ Units↓	,			
As (arsenic) L/S=2	1450	N	7440382	mg kg-1				<0.05
Ba (barium) L/S=2	1450	N	7440393	mg kg-1				<0.5
Cd (cadmium) L/S=2	1450	N	7440439	mg kg-1				<0.01
Cr (chromium) L/S=2	1450	N	7440473	mg kg-1				<0.05
Cu (copper) L/S=2	1450	N	7440508	mg kg-1				<0.05
Hg (mercury) L/S=2	1450	N	7439976	mg kg-1				<0.005
Mo (molybdenum) L/S=2	1450	N	7439987	mg kg-1				0.11
Ni (nickel) L/S=2	1450	N	7440020	mg kg-1				<0.05
Pb (lead) L/S=2	1450	N	7439921	mg kg-1				<0.05
Sb (antimony) L/S=2	1450	N	7440360	mg kg-1				0.02
Se (selenium) L/S=2	1450	N	7782492	mg kg-1				0.01
Zn (zinc) L/S=2	1450	N	7440666	mg kg-1				<0.5
CI (chloride) L/S=2	1220	N	16887006	mg kg-1				126
F (fluoride) L/S=2	1220	N	16984488	mg kg-1				1.38
SO4 (sulfate) L/S=2	1220	N	14808798	mg kg-1				320
Total Dissolved Solids L/S=2	1610	N	TDS	mg kg-1				859
Phenol index L/S=2	1920	N	108952	mg kg-1				<0.5
Dissolved Organic Carbon L/S=2	1610	N	DOC	mg kg-1				67.9
As (arsenic) L/S=10	1450	N	7440382	mg kg-1	0.5	2	25	0.13
Ba (barium) L/S=10	1450	N	7440393	mg kg-1	20	100	300	<0.5
Cd (cadmium) L/S=10	1450	N	7440439	mg kg-1	0.04	1	5	<0.01
Cr (chromium) L/S=10	1450	N	7440473	mg kg-1	0.5	10	70	<0.05
Cu (copper) L/S=10	1450	N	7440508	mg kg-1	2	50	100	0.1
Hg (mercury) L/S=10	1450	N	7439976	mg kg-1	0.01	0.2	2	<0.005
Mo (molybdenum) L/S=10	1450	N	7439987	mg kg-1	0.5	10	30	0.22
Ni (nickel) L/S=10	1450	N	7440020	mg kg-1	0.4	10	40	<0.05
Pb (lead) L/S=10	1450	N	7439921	mg kg-1	0.5	10	50	0.21
Sb (antimony) L/S=10	1450	N	7440360	mg kg-1	0.06	0.7	5	0.07
Se (selenium) L/S=10	1450	N	7782492	mg kg-1	0.1	0.5	7	0.03
Zn (zinc) L/S=10	1450	N	7440666	mg kg-1	4	50	200	<0.5
CI (chloride) L/S=10	1220	N	16887006	mg kg-1	800	15000	25000	144
F (fluoride) L/S=10	1220	N	16984488	mg kg-1	10	150	500	6.63
SO4 (sulfate) L/S=10	1220	N	14808798	mg kg-1	1000	20000	50000	638
Total Dissolved Solids L/S=10	1610	N	TDS	mg kg-1	4000	60000	100000	1650
Phenol index L/S=10	1920	N	108952	mg kg-1	1			<0.5
Dissolved Organic Carbon L/S=10	1610	N	DOC	mg kg-1	500	800	1000	349

All tests undertaken between 21-Jul-2010 and 28-Jul-2010

Column page

Report page 2 of 2

Report sample ID range

FAO Andrea Grossey

LABORATORY TEST REPORT

Chemtest
The right chemistry to deliver results

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

	Batch No							899	511			
Chemte	est LIMS ID				AF09639	AF09640	AF09641	AF09642	AF09643	AF09644	AF09645	AF09646
Sample	ID				BHA	BHA	BHA	BHB	BHB	BHB	BHB	BHC
Sample	· No											
	ng Date				14/06/2010	14/06/2010	14/06/2010	10/06/2010	10/06/2010	10/06/2010	10/06/2010	14/06/2010
Depth					0.5m	1.5m	3.5m	1m	2m	3m	4.5m	0.5m
Matrix					SOIL							
SOP↓	Determinand↓	CAS No↓	Units↓	*								
2180	Sulfur (elemental)	7704349	mg kg-1	M	24	9.4	10	<1.0	42	16	36	25
2300	Cyanide (free)	57125	mg kg-1	M	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	Cyanide (total)	57125	mg kg-1	M	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	Thiocyanate	302045	mg kg-1	M	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2325	Sulfide	18496258	mg kg-1	M	2.7	0.99	1.1	1.6	1.3	3.1	1.6	1.3
2625	Total Organic Carbon		%	M	4.6	3.7	0.55	0.32	1.2	6.8	4.7	1.0
	Nitrate (extractable)	14797558	g l-¹	N	0.019	0.047	0.034	<0.010	0.097	0.14	0.18	0.011
2120	Boron (hot water soluble)	7440428	mg kg-1	M	0.8	1.4	0.8	0.9	1.0	2.2	2.7	1.0
	Sulfate (2:1 water soluble) as SO4	14808798	g l-¹	М	0.19	0.08	0.12	0.55	0.99	1.2	0.71	0.05
2425	Ammonium (extractable)	7664417	mg kg-1	М	< 0.5	2.4	2.8	< 0.5	2.3	< 0.5	< 0.5	< 0.5
2450	Arsenic	7440382	mg kg-1	М	30	19	6.8	7.9	13	18	18	12
	Barium	7440393	mg kg-1	M	270	160	47	35	140	210	200	84
	Beryllium	7440417	mg kg-1	U	1.3	1.2	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
	Cadmium	7440439	mg kg-1	М	0.44	0.16	<0.10	<0.10	0.15	0.32	0.26	0.13
	Chromium	7440473	mg kg-1	М	38	21	15	8.0	12	34	23	13
	Copper	7440508	mg kg-1	М	93	93	12	6.3	26	67	73	18
	Mercury	7439976	mg kg-1	М	1.8	1.1	0.18	0.12	0.57	2.4	1.9	0.34
	Nickel	7440020	mg kg-1	М	35	25	12	9.7	14	22	24	16
	Lead	7439921	mg kg-1	М	380	410	33	29	570	360	490	160
	Antimony	7440364	mg kg-1	N	3.7	3.9	<2.0	<2.0	<2.0	3.1	4.9	<2.0
	Selenium	7782492	mg kg-1	М	<0.20	0.23	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	Vanadium	7440622	mg kg-1	М	51	42	22	18	28	31	33	28
	Zinc	7440666	mg kg-1	М	180	120	35	25	110	180	190	69
2670	TPH >C6-C10		mg kg-1	N	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	TPH >C10-C25		mg kg-1	N	43	22	< 1	4	190	52	190	200
	TPH >C25-C40		mg kg-1	N	33	21	< 1	1	59	22	120	92
	Total Petroleum Hydrocarbons		mg kg-1	М	76	43	< 10	< 10	250	74	310	300
2675	TPH aliphatic >C5-C6		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	TPH aliphatic >C6-C8		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

Login	Batch No							899	511			
Chemt	est LIMS ID				AF09647	AF09648	AF09649	AF09650	AF09651	AF09652	AF09653	AF09654
Sample	e ID				BHC	BHC	BHD	BHD	BHD	BHE	BHE	BHE
Sample												
	ng Date				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010
Depth					1m	2m	0.5m	1.5m	2m	1m	2m	3m
Matrix					SOIL							
SOP↓		CAS No↓	Units↓	*								
	Sulfur (elemental)	7704349	mg kg-1	M	4.2	<1.0	9.0	<1.0	<1.0	9.5	2.0	2.1
2300	Cyanide (free)	57125	mg kg-1	M	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	Cyanide (total)	57125	mg kg-1	M	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	Thiocyanate	302045	mg kg-1	M	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	Sulfide	18496258	mg kg-1	M	1.1	1.5	1.3	1.4	1.2	2.5	1.0	1.6
	Total Organic Carbon		%	M	2.0	< 0.20	1.4	0.78	< 0.20	1.9	0.47	0.32
	Nitrate (extractable)	14797558	g l-¹	N	0.013	<0.010	0.012	0.018	<0.010	0.018	<0.010	<0.010
	Boron (hot water soluble)	7440428	mg kg-1	M	2.3	<0.4	0.7	0.5	<0.4	0.9	0.5	<0.4
	Sulfate (2:1 water soluble) as SO4	14808798	g l-¹	M	0.03	0.07	0.08	0.23	0.14	0.12	0.08	0.29
2425	Ammonium (extractable)	7664417	mg kg-1	M	2.7	< 0.5	2.3	4.7	< 0.5	< 0.5	3.5	< 0.5
2450	Arsenic	7440382	mg kg-1	M	13	7.2	12	17	5.3	19	4.2	7.3
	Barium	7440393	mg kg-1	M	100	14	65	61	<10	170	66	13
	Beryllium	7440417	mg kg-1	U	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
	Cadmium	7440439	mg kg-1	M	0.18	<0.10	0.32	0.20	<0.10	0.24	<0.10	0.16
	Chromium	7440473	mg kg-1	M	13	16	17	51	24	15	12	24
	Copper	7440508	mg kg-1	М	46	6.7	31	35	<5.0	30	8.7	38
	Mercury	7439976	mg kg-1	M	0.76	<0.10	0.36	0.22	<0.10	0.74	0.12	<0.10
	Nickel	7440020	mg kg-1	М	18	17	22	51	20	21	8.2	27
	Lead	7439921	mg kg-1	М	310	18	98	65	<5.0	540	26	13
	Antimony	7440364	mg kg-1	N	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
	Selenium	7782492	mg kg-1	М	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	Vanadium	7440622	mg kg-1	М	31	16	28	44	15	36	21	16
	Zinc	7440666	mg kg-1	М	94	18	200	68	<10	230	35	29
2670	TPH >C6-C10		mg kg-1	N	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	TPH >C10-C25		mg kg-1	N	11	< 1	11	< 1	< 1	30	< 1	< 1
	TPH >C25-C40		mg kg-1	N	11	< 1	7	< 1	< 1	18	< 1	< 1
	Total Petroleum Hydrocarbons		mg kg-1	М	22	< 10	19	< 10	< 10	48	< 10	< 10
2675	TPH aliphatic >C5-C6		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	TPH aliphatic >C6-C8		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 2 Report page 1 of 7

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

Login	Batch No							89	511			
Chem ⁻	test LIMS ID				AF09655	AF09656	AF09657	AF09658	AF09659	AF09660	AF09661	AF09662
Sampl	e ID				BHF	BHF	BHF	BHG	BHG	BHG	BHG	BHG
Sampl												
	ing Date				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010
Depth					0.5m	1.5m	3m	0.5m	1m	1.5m	2.5m	4m
Matrix					SOIL							
	Determinand↓	CAS No↓	Units↓	*								
	Sulfur (elemental)	7704349	mg kg-1	M	37	7.8	4.1	56	66	55	1.4	<1.0
2300	Cyanide (free)	57125	mg kg-1	M	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	Cyanide (total)	57125	mg kg-1	M	<0.50	<0.50	<0.50	<0.50	0.70	<0.50	<0.50	<0.50
	Thiocyanate	302045	mg kg-1	M	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	Sulfide	18496258	mg kg-1	M	1.8	3.1	1.5	36	3.4	15	2.3	1.4
2625	Total Organic Carbon		%	M	2.2	1.0	0.55	0.75	14	4.5	0.68	< 0.20
2220	Nitrate (extractable)	14797558	g I-¹	N	<0.010	0.037	0.041	<0.010	0.024	0.014	<0.010	<0.010
2120	Boron (hot water soluble)	7440428	mg kg-1	М	1.5	1.8	0.9	0.9	3.3	1.9	1.3	<0.4
	Sulfate (2:1 water soluble) as SO4	14808798	g I-¹	М	0.29	0.19	0.22	0.19	0.17	0.17	0.17	0.07
2425	Ammonium (extractable)	7664417	mg kg-1	М	2.7	2.7	2.6	4.4	3.7	< 0.5	< 0.5	< 0.5
2450	Arsenic	7440382	mg kg-1	М	9.3	15	4.4	16	75	24	11	9.7
	Barium	7440393	mg kg-1	М	100	99	43	160	680	140	31	<10
	Beryllium	7440417	mg kg-1	U	<1.00	1.1	<1.00	1.1	5.2	1.6	<1.00	<1.00
	Cadmium	7440439	mg kg-1	М	0.19	0.24	<0.10	0.11	<0.10	0.20	<0.10	<0.10
	Chromium	7440473	mg kg-1	М	12	26	13	14	26	20	17	19
	Copper	7440508	mg kg-1	М	35	37	9.2	18	250	70	17	<5.0
	Mercury	7439976	mg kg-1	М	3.3	1.1	0.25	0.20	1.6	1.00	0.20	<0.10
	Nickel	7440020	mg kg-1	М	14	27	9.0	11	72	31	19	19
	Lead	7439921	mg kg-1	М	260	130	47	200	1500	370	31	<5.0
	Antimony	7440364	mg kg-1	N	2.1	<2.0	<2.0	4.5	16	3.0	<2.0	<2.0
	Selenium	7782492	mg kg-1	М	<0.20	0.46	<0.20	<0.20	1.00	<0.20	<0.20	<0.20
	Vanadium	7440622	mg kg-1	М	24	45	17	31	94	41	22	20
	Zinc	7440666	mg kg-1	М	88	69	26	120	1600	210	35	15
2670	TPH >C6-C10		mg kg-1	N	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	TPH >C10-C25		mg kg-1	N	22	3	7	68	320	110	9	< 1
	TPH >C25-C40		mg kg-1	N	18	3	4	40	230	77	10	< 1
	Total Petroleum Hydrocarbons		mg kg-1	М	40	< 10	11	110	560	190	19	< 10
2675	TPH aliphatic >C5-C6		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	TPH aliphatic >C6-C8		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

* Accreditation status

Column page 3
Report page 1 of 7

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

Login	Batch No						899	511		
Chemt	est LIMS ID				AF09663	AF09664	AF09665	AF09666	AF09667	AF09668
Sample	e ID				WS1	WS1	WS2	WS2	WS3	WS3
Sample	e No									
	ng Date				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010
Depth					0.25m	1m	0.5m	1m	0.25m	0.75m
Matrix					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Determinand↓	CAS No↓	Units↓	*						
	Sulfur (elemental)	7704349	mg kg-1	М	32	24	44	85	42	2.6
2300	Cyanide (free)	57125	mg kg-1	М	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	Cyanide (total)	57125	mg kg-1	M	<0.50	<0.50	1.6	0.70	3.0	<0.50
	Thiocyanate	302045	mg kg-1	М	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2325	Sulfide	18496258	mg kg-1	M	10	2.4	13	3.2	14	3.4
2625	Total Organic Carbon		%	М	3.8	7.4	8.5	7.9	6.9	0.51
2220	Nitrate (extractable)	14797558	g l-¹	N	<0.010	<0.010	0.063	0.042	0.41	0.062
2120	Boron (hot water soluble)	7440428	mg kg-1	M	2.3	1.8	1.7	1.3	1.9	<0.4
	Sulfate (2:1 water soluble) as SO4	14808798	g l-¹	М	0.06	0.05	0.03	0.03	0.17	0.04
2425	Ammonium (extractable)	7664417	mg kg-1	М	18	2.7	4.7	4.2	120	3.8
2450	Arsenic	7440382	mg kg-1	М	16	25	26	20	26	13
	Barium	7440393	mg kg-1	М	110	200	370	210	310	160
	Beryllium	7440417	mg kg-1	U	<1.00	1.6	1.3	<1.00	<1.00	<1.00
	Cadmium	7440439	mg kg-1	М	0.53	0.42	0.58	0.26	<0.10	0.15
	Chromium	7440473	mg kg-1	М	23	48	24	21	45	16
	Copper	7440508	mg kg-1	М	31	88	270	170	100	17
	Mercury	7439976	mg kg-1	М	0.49	2.3	2.3	2.2	0.58	0.10
	Nickel	7440020	mg kg-1	М	20	37	32	22	43	19
	Lead	7439921	mg kg-1	М	170	340	890	480	640	110
	Antimony	7440364	mg kg-1	N	2.4	6.2	10	6.5	14	<2.0
	Selenium	7782492	mg kg-1	М	<0.20	0.37	0.51	0.22	0.37	<0.20
	Vanadium	7440622	mg kg-1	М	36	51	44	31	50	28
	Zinc	7440666	mg kg-1	М	350	280	480	270	430	70
2670	TPH >C6-C10		mg kg-1	N	< 1	< 1	< 1	< 1	< 1	< 1
	TPH >C10-C25		mg kg-1	N	71	68	260	400	150	28
	TPH >C25-C40		mg kg-1	N	48	32	180	250	110	17
	Total Petroleum Hydrocarbons		mg kg-1	М	120	100	440	650	260	46
2675	TPH aliphatic >C5-C6		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	TPH aliphatic >C6-C8		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
		1	0 0	1	1	1	1	1	1	

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Chemtest
The right chemistry to deliver results

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

AF09630 AF09640 AF09643 AF09643 AF09644 AF09643 AF09644 AF09644 AF09645 AF09646 AF09									895	511			
14/06/2010 14/06/2010 14/06/2010 10/						AF09639	AF09640	AF09641	AF09642	AF09643	AF09644	AF09645	AF09646
2675 TPH aliphatic >C3-C10 mg kg- N < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1						BHA	BHA	BHA	BHB	BHB	BHB	BHB	BHC
2675 TPH aliphatic >C3-C10 mg kg-1 N < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1													
SOIL						14/06/2010	14/06/2010		10/06/2010	10/06/2010	10/06/2010	10/06/2010	
2875 TPH aliphatic >C8-C10 mg kg-1 N													
TPH aliphatic > C10-C12						SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
TPH aliphatic > C10-C12	2675	TPH aliphatic >C8-C10		ma ka-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH aliphatic > C12-C16	2073	<u> </u>											
TPH aliphatic > C216-C21		·								***			
TPH aliphatic >C21-C35		·				-							
TPH aliphatic >C35-C44		·							_				-
TPH aromatic > C5-C7		·						_					
TPH aromatic >C7-C8		·				-							
TPH aromatic > C8-C10													· ·
TPH aromatic >C10-C12						_							
TPH aromatic >C12-C16													
TPH aromatic > C16-C21						_					_		
TPH aromatic >C21-C35													
TPH aromatic > C35-C44													
Total Petroleum Hydrocarbons													
Naphthalene													
Acenaphthylene 208968 mg kg-¹ M 0.2 0.1 <0.1 <0.1 2.6 <0.1 1.4 0.9 Acenaphthene 83329 mg kg-¹ M 0.7 0.2 <0.1	2700		01203						-				· ·
Acenaphthene 83329 mg kg-¹ M 0.7 0.2 <0.1 <0.1 1.8 0.2 1 0.3 Fluorene 86737 mg kg-¹ M 0.7 0.2 <0.1	2700	·											
Fluorene 86737 mg kg-¹ M 0.7 0.2 <0.1 <0.1 3 0.2 1 0.6 Phenanthrene 85018 mg kg-¹ M 4.4 2.3 0.1 0.7 46 5.7 13 8.7 Anthracene 120127 mg kg-¹ M 1.3 0.4 <0.1 0.1 11 1.3 3.4 2.5 Fluoranthene 206440 mg kg-¹ M 5.2 3.6 0.2 0.7 46 8.1 22 15 Pyrene 129000 mg kg-¹ M 4.5 3.3 0.3 0.7 37 7 18 13 Benzo[a]anthracene 56553 mg kg-¹ M 2.4 1.6 <0.1 0.3 15 3.1 9.3 6.5 Chrysene 218019 mg kg-¹ M 2.7 2.1 0.1 0.3 16 3.2 11 7.1 Benzo[b]fluoranthene 205992 mg kg-¹ M 2.7 2 0.1 0.3 16 3.2 10 7.8 Benzo[k]fluoranthene 207089 mg kg-¹ M 1.9 1.5 0.1 0.2 8.9 2.5 7.5 3.9 Benzo[a]pyrene 50328 mg kg-¹ M 3.1 2.2 0.2 0.2 0.3 10 2.3 7.6 5.6													
Phenanthrene 85018 mg kg-¹ M 4.4 2.3 0.1 0.7 46 5.7 13 8.7 Anthracene 120127 mg kg-¹ M 1.3 0.4 <0.1		•							_			•	
Anthracene 120127 mg kg-¹ M 1.3 0.4 <0.1 0.1 11 1.3 3.4 2.5 Fluoranthene 206440 mg kg-¹ M 5.2 3.6 0.2 0.7 46 8.1 22 15 Pyrene 129000 mg kg-¹ M 4.5 3.3 0.3 0.7 37 7 18 13 Benzo[a]anthracene 56553 mg kg-¹ M 2.4 1.6 <0.1												<u> </u>	
Fluoranthene 206440 mg kg-¹ M 5.2 3.6 0.2 0.7 46 8.1 22 15 Pyrene 129000 mg kg-¹ M 4.5 3.3 0.3 0.7 37 7 18 13 Benzo[a]anthracene 56553 mg kg-¹ M 2.4 1.6 <0.1 0.3 15 3.1 9.3 6.5 Chrysene 218019 mg kg-¹ M 2.7 2.1 0.1 0.3 16 3.2 11 7.1 Benzo[b]fluoranthene 205992 mg kg-¹ M 2.7 2 0.1 0.3 16 3.2 10 7.8 Benzo[k]fluoranthene 207089 mg kg-¹ M 1.9 1.5 0.1 0.2 8.9 2.5 7.5 3.9 Benzo[a]pyrene 50328 mg kg-¹ M 3.1 2.2 0.2 0.2 16 3.6 13 9.3 Dibenzo[a,h]anthracene 53703 mg kg-¹ M 1.9 1.4 0.2 0.3 10 2.3 7.6 5.6													
Pyrene 129000 mg kg-¹ M 4.5 3.3 0.3 0.7 37 7 18 13 Benzo[a]anthracene 56553 mg kg-¹ M 2.4 1.6 <0.1											_		
Benzo[a]anthracene 56553 mg kg-¹ M 2.4 1.6 <0.1 0.3 15 3.1 9.3 6.5 Chrysene 218019 mg kg-¹ M 2.7 2.1 0.1 0.3 16 3.2 11 7.1 Benzo[b]fluoranthene 205992 mg kg-¹ M 2.7 2 0.1 0.3 16 3.2 10 7.8 Benzo[k]fluoranthene 207089 mg kg-¹ M 1.9 1.5 0.1 0.2 8.9 2.5 7.5 3.9 Benzo[a]pyrene 50328 mg kg-¹ M 3.1 2.2 0.2 0.2 16 3.6 13 9.3 Dibenzo[a,h]anthracene 53703 mg kg-¹ M 1.9 1.4 0.2 0.3 10 2.3 7.6 5.6		11111111111											
Chrysene 218019 mg kg-¹ M 2.7 2.1 0.1 0.3 16 3.2 11 7.1 Benzo[b]fluoranthene 205992 mg kg-¹ M 2.7 2 0.1 0.3 16 3.2 10 7.8 Benzo[k]fluoranthene 207089 mg kg-¹ M 1.9 1.5 0.1 0.2 8.9 2.5 7.5 3.9 Benzo[a]pyrene 50328 mg kg-¹ M 3.1 2.2 0.2 0.2 16 3.6 13 9.3 Dibenzo[a,h]anthracene 53703 mg kg-¹ M 1.9 1.4 0.2 0.3 10 2.3 7.6 5.6									_		· .		-
Benzo[b]fluoranthene 205992 mg kg-¹ M 2.7 2 0.1 0.3 16 3.2 10 7.8 Benzo[k]fluoranthene 207089 mg kg-¹ M 1.9 1.5 0.1 0.2 8.9 2.5 7.5 3.9 Benzo[a]pyrene 50328 mg kg-¹ M 3.1 2.2 0.2 0.2 16 3.6 13 9.3 Dibenzo[a,h]anthracene 53703 mg kg-¹ M 1.9 1.4 0.2 0.3 10 2.3 7.6 5.6													
Benzo[k]fluoranthene 207089 mg kg-¹ M 1.9 1.5 0.1 0.2 8.9 2.5 7.5 3.9 Benzo[a]pyrene 50328 mg kg-¹ M 3.1 2.2 0.2 0.2 16 3.6 13 9.3 Dibenzo[a,h]anthracene 53703 mg kg-¹ M 1.9 1.4 0.2 0.3 10 2.3 7.6 5.6								_					
Benzo[a]pyrene 50328 mg kg-¹ M 3.1 2.2 0.2 0.2 16 3.6 13 9.3 Dibenzo[a,h]anthracene 53703 mg kg-¹ M 1.9 1.4 0.2 0.3 10 2.3 7.6 5.6								_			_		-
Dibenzo[a,h]anthracene 53703 mg kg-1 M 1.9 1.4 0.2 0.3 10 2.3 7.6 5.6									_				
		Indeno[1,2,3-cd]pyrene	193395	mg kg-1	M	0.4	0.2	<0.1	<0.1	2.4	0.3	1.5	1.2

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 1
Report page 2 of 7

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

								895	511			
					AF09647	AF09648	AF09649	AF09650	AF09651	AF09652	AF09653	AF09654
					BHC	BHC	BHD	BHD	BHD	BHE	BHE	BHE
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010
					1m	2m	0.5m	1.5m	2m	1m	2m	3m
					SOIL							
2675	TPH aliphatic >C8-C10		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2070	TPH aliphatic >C10-C12		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	TPH aliphatic >C12-C16		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	TPH aliphatic >C16-C21		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	TPH aliphatic >C21-C35		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	TPH aliphatic >C35-C44		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	TPH aromatic >C5-C7		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	TPH aromatic >C7-C8		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	TPH aromatic >C8-C10		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	TPH aromatic >C10-C12		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	TPH aromatic >C12-C16		mg kg-1	N	1.5	< 0.1	0.9	< 0.1	< 0.1	3.0	0.5	< 0.1
	TPH aromatic >C16-C21		mg kg-1	N	4.0	< 0.1	6.0	< 0.1	< 0.1	12	1.7	< 0.1
	TPH aromatic >C21-C35		mg kg-1	N	17	< 0.1	13	< 0.1	< 0.1	26	2.8	< 0.1
	TPH aromatic >C35-C44		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Total Petroleum Hydrocarbons		mg kg-1	N	23	< 2	20	< 2	< 2	41	5	< 2
2700	Naphthalene	91203	mg kg-1	М	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	<0.1
	Acenaphthylene	208968	mg kg-1	М	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1
	Acenaphthene	83329	mg kg-1	М	0.1	<0.1	0.1	<0.1	<0.1	0.2	<0.1	<0.1
	Fluorene	86737	mg kg-1	М	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Phenanthrene	85018	mg kg-1	М	1.1	<0.1	8.0	0.2	<0.1	1.9	0.2	<0.1
	Anthracene	120127	mg kg-1	М	0.3	<0.1	0.3	<0.1	<0.1	0.4	<0.1	<0.1
	Fluoranthene	206440	mg kg-1	М	1.9	0.2	2.5	0.2	<0.1	3.4	0.6	0.4
	Pyrene	129000	mg kg-1	М	1.6	0.2	2.3	0.3	0.1	2.8	0.5	0.3
	Benzo[a]anthracene	56553	mg kg-1	М	0.9	0.1	1.2	0.2	<0.1	1.5	0.3	0.2
	Chrysene	218019	mg kg-1	М	1.2	<0.1	1.5	0.2	<0.1	1.7	0.4	0.2
	Benzo[b]fluoranthene	205992	mg kg-1	М	1.3	0.2	1.9	0.2	<0.1	1.8	0.5	0.3
	Benzo[k]fluoranthene	207089	mg kg-1	М	0.8	0.2	1	0.2	<0.1	1.4	0.3	0.3
	Benzo[a]pyrene	50328	mg kg-1	М	1.4	0.3	1.7	<0.1	<0.1	0.7	0.3	<0.1
	Dibenzo[a,h]anthracene	53703	mg kg-1	М	0.9	0.2	1.1	0.3	<0.1	1.4	0.4	0.4
	Indeno[1,2,3-cd]pyrene	193395	mg kg-1	М	0.5	0.2	0.2	0.3	<0.1	0.3	<0.1	<0.1

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 2 Report page 2 of 7

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

					89511										
					AF09655	AF09656	AF09657	AF09658	AF09659	AF09660	AF09661	AF09662			
					BHF	BHF	BHF	BHG	BHG	BHG	BHG	BHG			
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010			
					0.5m	1.5m	3m	0.5m	1m	1.5m	2.5m	4m			
					SOIL										
2675	TPH aliphatic >C8-C10		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
2075	TPH aliphatic > C10-C12		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	TPH aliphatic >C12-C16		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	TPH aliphatic >C12-C10		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	TPH aliphatic >C10-C21		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	TPH aliphatic >C35-C44		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	TPH aromatic >C5-C7		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	TPH aromatic >C7-C8		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	TPH aromatic >C8-C10		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
	TPH aromatic >C10-C12		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	< 0.1	< 0.1			
	TPH aromatic >C10-C12			N	1.1	0.4	0.3	2.4	7.9	4.4	1.0	< 0.1			
	TPH aromatic >C12-C16		mg kg-1	N	8.9	1.1	2.3	25	140	52	3.2	< 0.1			
	TPH aromatic >C21-C35		mg kg-1	N	30	4.3	5.5	74	450	140	9.5	< 0.1			
	TPH aromatic >C21-C35		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1			
			mg kg-1								< 0.1				
2700	Total Petroleum Hydrocarbons	04202	mg kg-1	N	40 0.2	6	8 <0.1	100	600 3.1	200	14 <0.1	< 2			
2700	Naphthalene	91203	mg kg-1	M		<0.1		<0.1		1.6		<0.1			
	Acenaphthylene	208968	mg kg-1	M	0.2	<0.1	<0.1	0.3	0.7	0.3	<0.1	<0.1			
	Acenaphthene	83329	mg kg-1	M	0.2	<0.1	<0.1	0.4	0.9	0.6	<0.1	<0.1			
	Fluorene	86737	mg kg-1	M	0.3	<0.1	<0.1	0.5	1.1	0.6	<0.1	<0.1			
	Phenanthrene	85018	mg kg-1	M	3 0.7	0.7	0.8	5.1	19	9.2	0.4	<0.1 <0.1			
	Anthracene	120127	mg kg-1	M		0.2	0.2	2.1	4.9	2.1	<0.1				
	Fluoranthene	206440	mg kg-1	M	4.7	1.4	1.2	14	40	18	0.9	<0.1			
	Pyrene	129000	mg kg-1	M	4.1	1.3	1.1	13	35	15	0.8	<0.1			
	Benzo[a]anthracene	56553	mg kg-1	M	2.2	0.6	0.8	7.1	20	9	0.7	<0.1			
	Chrysene	218019	mg kg-1	M	2.4	0.7	0.6	7.8	23	11	0.5	<0.1			
	Benzo[b]fluoranthene	205992	mg kg-1	M	2	0.9	0.5	8.1	27	11	0.7	<0.1			
	Benzo[k]fluoranthene	207089	mg kg-1	M	1.2	0.4	0.3	4.1	14	6.2	0.3	<0.1			
	Benzo[a]pyrene	50328	mg kg-1	M	2.3	2.1	0.6	8.1	26	11	0.8	<0.1			
	Dibenzo[a,h]anthracene	53703	mg kg-1	M	0.7	0.4	0.2	4.2	17	6.5	0.5	<0.1			
	Indeno[1,2,3-cd]pyrene	193395	mg kg-1	M	0.1	<0.1	<0.1	1.3	4.7	1.7	<0.1	<0.1			

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 3 Report page 2 of 7

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

				89511									
				AF09663	AF09664	AF09665	AF09666	AF09667	AF09668				
				WS1	WS1	WS2	WS2	WS3	WS3				
				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010				
				0.25m	1m	0.5m	1m	0.25m	0.75m				
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL				
2675 TPH aliphatic >C8-C10		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
TPH aliphatic >C10-C12		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
TPH aliphatic > C12-C16		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
TPH aliphatic >C16-C21		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
TPH aliphatic > C21-C35		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
TPH aliphatic >C35-C44		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
TPH aromatic >C5-C7		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
TPH aromatic >C7-C8		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
TPH aromatic >C8-C10		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
TPH aromatic >C10-C12		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
TPH aromatic >C12-C16		mg kg-1	N	3.5	3.0	7.6	17	9.9	1.2				
TPH aromatic >C16-C21		mg kg-1	N	30	27	100	180	64	12				
TPH aromatic >C21-C35		mg kg-1	N	77	62	270	410	210	31				
TPH aromatic >C35-C44		mg kg-1	N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Total Petroleum Hydrocarbons		mg kg-1	N	110	93	380	610	290	44				
2700 Naphthalene	91203	mg kg-1	M	0.2	0.8	1	4.2	0.3	<0.1				
Acenaphthylene	208968	mg kg-1	M	0.5	0.3	2.3	5.6	1.1	<0.1				
Acenaphthene	83329	mg kg-1	M	0.4	0.4	0.6	1.3	1.4	<0.1				
Fluorene	86737	mg kg-1	M	0.4	0.2	1.3	4.2	1	<0.1				
Phenanthrene	85018	mg kg-1	M	4.6	4.1	15	46	9.7	0.4				
Anthracene	120127	mg kg-1	M	1.7	0.9	3.8	11	2.5	<0.1				
Fluoranthene	206440	mg kg-1	М	10	8.4	29	67	17	0.9				
Pyrene	129000	mg kg-1	M	9.7	7.4	24	51	14	0.7				
Benzo[a]anthracene	56553	mg kg-1	М	6.6	4.6	14	30	7.1	0.6				
Chrysene	218019	mg kg-1	M	7.3	5.3	16	32	0.9	0.6				
Benzo[b]fluoranthene	205992	mg kg-1	M	6.6	5.8	17	22	9.1	0.6				
Benzo[k]fluoranthene	207089	mg kg-1	M	3.8	3	10	18	3	0.5				
Benzo[a]pyrene	50328	mg kg-1	M	8.7	6.1	19	36	9.6	0.3				
Dibenzo[a,h]anthracene	53703	mg kg-1	M	3.8	3.8	12	20	7.1	0.5				
Indeno[1,2,3-cd]pyrene	193395	mg kg-1	M	1.1	0.3	3.3	5.3	2.1	0.2				

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

					89511									
					AF09639	AF09640	AF09641	AF09642	AF09643	AF09644	AF09645	AF09646		
					BHA	BHA	BHA	BHB	BHB	BHB	BHB	BHC		
					14/06/2010	14/06/2010	14/06/2010	10/06/2010	10/06/2010	10/06/2010	10/06/2010	14/06/2010		
					0.5m	1.5m	3.5m	1m	2m	3m	4.5m	0.5m		
					SOIL									
2700	Benzo[g,h,i]perylene	191242	mg kg-1	М	2	1.5	0.1	0.2	9.8	2.1	6.9	5.9		
2700	Coronene	191071	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	Total (of 17) PAHs	191071	mg kg-1	N	34	23	<2	3.9	240	43	130	89		
	Benzo[j]fluoranthene by FID	205823	mg kg-1	N	1.53	1.17	0.08	0.18	8.3	1.9	8.8	5.9		
2760	Benzene	71432	μg kg-1	M	< 1	< 1	< 1	< 1	1.1	1.5	1.3	< 1		
2700	Toluene	108883	μg kg-1	M	< 1	< 1	< 1	< 1	< 1	1.3	1.4	< 1		
	Ethyl benzene	100414	μg kg- μg kg- ¹	M	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	m- & p-Xylene	1330207	μg kg-1	M	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	o-Xylene	95476	μg kg-1	M	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Methyl tert-butyl ether	1634044	μg kg-1	N	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Dichlorodifluoromethane	75718	μg kg-1	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Chloromethane	74873	μg kg-1	M	<1	<1	<1	<1	<1	<1	<1	<1		
	Vinyl chloride	75014	μg kg-1	M	<1	<1	<1	<1	<1	<1	<1	<1		
	Bromomethane	74839	μg kg- ¹	U	<20	<20	<20	<20	<20	<20	<20	<20		
	Chloroethane	75003	μg kg- ¹	U	<2	<2	<2	<2	<2	<2	<2	<2		
	Trichlorofluoromethane	75694	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1-Dichloroethene	75354	μg kg- ¹	U	<1	- <1	<1	<1	<1	<1	 <1	<1		
	Dichloromethane	75092	μg kg- ¹	U	ne									
	trans-1,2-Dichloroethene	156605	μg kg- ¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	1.1-Dichloroethane	75343	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	cis-1,2-Dichloroethene	156592	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	Bromochloromethane	74975	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Trichloromethane	67663	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1,1-Trichloroethane	71556	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	Tetrachloromethane	56235	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1-Dichloropropene	563586	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	1,2-Dichloroethane	107062	μg kg-¹	М	<2	<2	<2	<2	<2	<2	<2	<2		
	Trichloroethene	79016	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	1,2-Dichloropropane	78875	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Dibromomethane	74953	μg kg-¹	U	<10	<10	<10	<10	<10	<10	<10	<10		

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 1
Report page 3 of 7

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

					89511									
					AF09647	AF09648	AF09649	AF09650	AF09651	AF09652	AF09653	AF09654		
					BHC	BHC	BHD	BHD	BHD	BHE	BHE	BHE		
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010		
					1m	2m	0.5m	1.5m	2m	1m	2m	3m		
					SOIL									
2700	Benzo[g,h,i]perylene	191242	mg kg-1	М	0.6	<0.1	0.7	0.1	<0.1	1.2	0.1	0.2		
2,00	Coronene	191071	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	Total (of 17) PAHs	101071	mg kg-1	N	13	<2	15	2.2	<2	19	3.5	2.2		
	Benzo[j]fluoranthene by FID	205823	mg kg-1	N	1.05	0.19	1.45	0.22	<0.1	1.62	0.37	0.29		
2760	Benzene	71432	μg kg-¹	M	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
2,00	Toluene	108883	μg kg- ¹	M	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Ethyl benzene	100414	μg kg- ¹	M	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	m- & p-Xylene	1330207	μg kg- ¹	M	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	o-Xylene	95476	μg kg- ¹	M	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Methyl tert-butyl ether	1634044	μg kg- ¹	N	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Dichlorodifluoromethane	75718	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Chloromethane	74873	μg kg-¹	M	<1	<1	<1	<1	<1	<1	<1	<1		
	Vinyl chloride	75014	μg kg- ¹	M	<1	<1	<1	<1	<1	<1	<1	<1		
	Bromomethane	74839	μg kg-¹	U	<20	<20	<20	<20	<20	<20	<20	<20		
	Chloroethane	75003	μg kg-¹	U	<2	<2	<2	<2	<2	<2	<2	<2		
	Trichlorofluoromethane	75694	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1-Dichloroethene	75354	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Dichloromethane	75092	μg kg- ¹	U	ne									
	trans-1,2-Dichloroethene	156605	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1-Dichloroethane	75343	μg kg-¹	M	<1	<1	<1	<1	<1	<1	<1	<1		
	cis-1,2-Dichloroethene	156592	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	Bromochloromethane	74975	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Trichloromethane	67663	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1,1-Trichloroethane	71556	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	Tetrachloromethane	56235	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1-Dichloropropene	563586	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	1,2-Dichloroethane	107062	μg kg-¹	М	<2	<2	<2	<2	<2	<2	<2	<2		
	Trichloroethene	79016	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	1,2-Dichloropropane	78875	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Dibromomethane	74953	μg kg-¹	U	<10	<10	<10	<10	<10	<10	<10	<10		

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 2 Report page 3 of 7

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

					89511									
					AF09655	AF09656	AF09657	AF09658	AF09659	AF09660	AF09661	AF09662		
					BHF	BHF	BHF	BHG	BHG	BHG	BHG	BHG		
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010		
					0.5m	1.5m	3m	0.5m	1m	1.5m	2.5m	4m		
					SOIL									
2700	Benzo[g,h,i]perylene	191242	mg kg-1	М	0.8	0.4	0.2	3.1	17	7.3	0.6	<0.1		
2.00	Coronene	191071	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	Total (of 17) PAHs	101011	mg kg-1	N	25	9	6.3	79	250	110	6.4	<2		
	Benzo[j]fluoranthene by FID	205823	mg kg-1	N	1.07	0.42	0.27	4.07	13.6	5.73	0.35	<0.1		
2760	Benzene	71432	μg kg-¹	М	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Toluene	108883	μg kg-¹	M	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Ethyl benzene	100414	μg kg-¹	М	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	m- & p-Xylene	1330207	μg kg-¹	М	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	o-Xylene	95476	μg kg-¹	М	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Methyl tert-butyl ether	1634044	μg kg-¹	N	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
	Dichlorodifluoromethane	75718	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Chloromethane	74873	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	Vinyl chloride	75014	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	Bromomethane	74839	µg kg-¹	U	<20	<20	<20	<20	<20	<20	<20	<20		
	Chloroethane	75003	µg kg-¹	U	<2	<2	<2	<2	<2	<2	<2	<2		
	Trichlorofluoromethane	75694	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1-Dichloroethene	75354	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Dichloromethane	75092	µg kg-¹	U	ne									
	trans-1,2-Dichloroethene	156605	µg kg-¹	M	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1-Dichloroethane	75343	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	cis-1,2-Dichloroethene	156592	µg kg-¹	M	<1	<1	<1	<1	<1	<1	<1	<1		
	Bromochloromethane	74975	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Trichloromethane	67663	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1,1-Trichloroethane	71556	μg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	Tetrachloromethane	56235	µg kg-¹	M	<1	<1	<1	<1	<1	<1	<1	<1		
	1,1-Dichloropropene	563586	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	1,2-Dichloroethane	107062	µg kg-¹	М	<2	<2	<2	<2	<2	<2	<2	<2		
	Trichloroethene	79016	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1		
	1,2-Dichloropropane	78875	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1		
	Dibromomethane	74953	µg kg-¹	U	<10	<10	<10	<10	<10	<10	<10	<10		

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 3 Report page 3 of 7

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

				89511										
				AF09663	AF09664	AF09665	AF09666	AF09667	AF09668					
				WS1	WS1	WS2	WS2	WS3	WS3					
				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010					
				0.25m	1m	0.5m	1m	0.25m	0.75m					
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL					
2700 Benzo[g,h,i]perylene	191242	mg kg-1	М	3.8	3.3	11	20	6.5	0.5					
Coronene	191071	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Total (of 17) PAHs	191071	mg kg-1	N	69	55	180	370	92	5.8					
Benzo[j]fluoranthene by FID	205823	mg kg-1	N	3.46	2.93	9.19	13.31	4.04	0.38					
2760 Benzene	71432	μg kg-1	M	< 1	2.93 < 1	9.19 < 1	1.3	4.04 < 1	< 1					
Toluene	108883		M	< 1	< 1	< 1	< 1	< 1	< 1					
Ethyl benzene	100003	μg kg-¹ μg kg-¹	M	< 1	< 1	< 1	< 1	< 1	< 1					
	1330207		M	< 1	< 1	< 1	< 1	< 1	<1					
m- & p-Xylene	95476	μg kg-1	M	< 1	< 1	< 1	< 1	< 1	< 1					
o-Xylene		μg kg-1		< 1	< 1	< 1	< 1	-	< 1					
Methyl tert-butyl ether	1634044	μg kg-¹	N					< 1						
Dichlorodifluoromethane	75718	μg kg-¹	U	<1	<1	<1	<1	<1	<1					
Chloromethane	74873	μg kg-¹	M	<1	<1	<1	<1	<1	<1					
Vinyl chloride	75014	μg kg-¹	M	<1	<1	<1	<1	<1	<1					
Bromomethane	74839	μg kg-¹	U	<20	<20	<20	<20	<20	<20					
Chloroethane	75003	μg kg-¹	U	<2	<2	<2	<2	<2	<2					
Trichlorofluoromethane	75694	μg kg-¹	U	<1	<1	<1	<1	<1	<1					
1,1-Dichloroethene	75354	μg kg-¹	U	<1	<1	<1	<1	<1	<1					
Dichloromethane	75092	μg kg-¹	U	ne	ne	ne	ne	ne	ne					
trans-1,2-Dichloroethene	156605	µg kg-¹	M	<1	<1	<1	<1	<1	<1					
1,1-Dichloroethane	75343	µg kg-¹	М	<1	<1	<1	<1	<1	<1					
cis-1,2-Dichloroethene	156592	µg kg-¹	M	<1	<1	<1	<1	<1	<1					
Bromochloromethane	74975	µg kg-¹	U	<1	<1	<1	<1	<1	<1					
Trichloromethane	67663	µg kg-¹	M	<1	<1	<1	<1	7.6	<1					
1,1,1-Trichloroethane	71556	µg kg-¹	M	<1	<1	<1	<1	<1	<1					
Tetrachloromethane	56235	μg kg-¹	М	<1	<1	<1	<1	<1	<1					
1,1-Dichloropropene	563586	μg kg-¹	U	<1	<1	<1	<1	<1	<1					
1,2-Dichloroethane	107062	μg kg-¹	М	<2	<2	<2	<2	<2	<2					
Trichloroethene	79016	μg kg-¹	М	<1	<1	<1	<1	<1	<1					
1,2-Dichloropropane	78875	μg kg-¹	U	<1	<1	<1	<1	<1	<1					
Dibromomethane	74953	μg kg-¹	U	<10	<10	<10	<10	<10	<10					

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Chemtest
The right chemistry to deliver results

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

								899	511			
					AF09639	AF09640	AF09641	AF09642	AF09643	AF09644	AF09645	AF09646
					BHA	BHA	BHA	BHB	BHB	BHB	BHB	BHC
					14/06/2010	14/06/2010	14/06/2010	10/06/2010	10/06/2010	10/06/2010	10/06/2010	14/06/2010
					0.5m	1.5m	3.5m	1m	2m	3m	4.5m	0.5m
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
2760	Bromodichloromethane	75274	μg kg-¹	U	<5	<5	<5	<5	<5	<5	<5	<5
2700	cis-1,3-Dichloropropene	10061015	μg kg-1	U	<10	<10	<10	<10	<10	<10	<10	<10
	trans-1,3-Dichloropropene	10061015	μg kg- ¹	U	<10	<10	<10	<10	<10	<10	<10	<10
	1.1.2-Trichloroethane	79005	μg kg-1	M	<10	<10	<10	<10	<10	<10	<10	<10
	Tetrachloroethene	127184	μg kg- ¹	M	<1	<1	<1	<1	<1	<1	<1	<1
	1,3-Dichloropropane	142289	μg kg- ¹	U	<2	<2	<2	<2	<2	<2	<2	<2
	Dibromochloromethane	124481	μg kg- ¹	U	<10	<10	<10	<10	<10	<10	<10	<10
	1.2-Dibromoethane	106934	μg kg- ¹	U	<5	<5	<5	<5	<5	<5	<5	<5
	Chlorobenzene	108907	μg kg- ¹	M	<1	<1	<1	<1	<1	<1	<1	<1
	1.1.1.2-Tetrachloroethane	630206	μg kg- ¹	M	<2	<2	<2	<2	<2	<2	<2	<2
	Styrene	100425	μg kg-¹	U	<1	<1	<1	<u>-</u> <1	<u>-</u> <1	<u>-</u> <1	<u>-</u> <1	<1
	Tribromomethane	75252	μg kg-¹	U	<10	<10	<10	<10	<10	<10	<10	<10
	Isopropylbenzene	98828	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	Bromobenzene	108861	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	1.1.2.2-Tetrachloroethane	79345	μg kg- ¹	M	<10	<10	<10	<10	<10	<10	<10	<10
	1,2,3-Trichloropropane	96184	μg kg- ¹	U	<50	<50	<50	<50	<50	<50	<50	<50
	n-Propylbenzene	103651	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	2-Chlorotoluene	95498	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	1,3,5-Trimethylbenzene	108678	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	4-Chlorotoluene	106434	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	tert-Butylbenzene	98066	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	1,2,4-Trimethylbenzene	95636	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	sec-Butylbenzene	135988	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	1,3-Dichlorobenzene	541731	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	4-Isopropyltoluene	99876	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	1,4-Dichlorobenzene	106467	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	n-Butylbenzene	104518	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	1,2-Dichlorobenzene	95501	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
	1,2-Dibromo-3-chloropropane	96128	μg kg-¹	U	<50	<50	<50	<50	<50	<50	<50	<50
	1,2,4-Trichlorobenzene	120821	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 1
Report page 4 of 7

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

					89511										
					AF09647	AF09648	AF09649	AF09650	AF09651	AF09652	AF09653	AF09654			
					BHC	BHC	BHD	BHD	BHD	BHE	BHE	BHE			
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010			
					1m	2m	0.5m	1.5m	2m	1m	2m	3m			
					SOIL										
2760	Bromodichloromethane	75274	μg kg-¹	U	<5	<5	<5	<5	<5	<5	<5	<5			
2700	cis-1,3-Dichloropropene	10061015	μg kg- ¹	U	<10	<10	<10	<10	<10	<10	<10	<10			
	trans-1,3-Dichloropropene	10061013	μg kg-1	U	<10	<10	<10	<10	<10	<10	<10	<10			
	1.1.2-Trichloroethane	79005	μg kg-1	M	<10	<10	<10	<10	<10	<10	<10	<10			
	Tetrachloroethene	127184	μg kg-1	M	<1	<1	<1	<1	<1	<1	<1	<1			
	1,3-Dichloropropane	142289	μg kg-1	U	<2	<2	<2	<2	<2	<2	<2	<2			
	Dibromochloromethane	124481	μg kg-1	U	<10	<10	<10	<10	<10	<10	<10	<10			
	1.2-Dibromoethane	106934	μg kg- ¹	U	<5	<5	<5	<5	<5	<5	<5	<5			
	Chlorobenzene	108907	μg kg- ¹	M	<1	<1	<1	<1	<1	<1	<1	<1			
	1.1.1.2-Tetrachloroethane	630206	μg kg- ¹	M	<2	<2	<2	<2	<2	<2	<2	<2			
	Styrene	100425	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1			
	Tribromomethane	75252	μg kg-¹	U	<10	<10	<10	<10	<10	<10	<10	<10			
	Isopropylbenzene	98828	μg kg- ¹	U	<1	<1	<1	<1	<1	<1	<1	<1			
	Bromobenzene	108861	μg kg-¹	U	<1	- <1	<1	<1	<1	<1	<1	<1			
	1.1.2.2-Tetrachloroethane	79345	μg kg-¹	M	<10	<10	<10	<10	<10	<10	<10	<10			
	1,2,3-Trichloropropane	96184	μg kg- ¹	U	<50	<50	<50	<50	<50	<50	<50	<50			
	n-Propylbenzene	103651	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1			
	2-Chlorotoluene	95498	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1			
	1,3,5-Trimethylbenzene	108678	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1			
	4-Chlorotoluene	106434	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1			
	tert-Butylbenzene	98066	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1			
	1,2,4-Trimethylbenzene	95636	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1			
	sec-Butylbenzene	135988	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1			
	1,3-Dichlorobenzene	541731	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1			
	4-Isopropyltoluene	99876	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1			
	1,4-Dichlorobenzene	106467	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1			
	n-Butylbenzene	104518	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1			
	1,2-Dichlorobenzene	95501	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1			
	1,2-Dibromo-3-chloropropane	96128	μg kg-¹	U	<50	<50	<50	<50	<50	<50	<50	<50			
	1,2,4-Trichlorobenzene	120821	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1			

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 2
Report page 4 of 7

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

							89				
				AF09655	AF09656	AF09657	AF09658	AF09659	AF09660	AF09661	AF09662
				BHF	BHF	BHF	BHG	BHG	BHG	BHG	BHG
				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010
				0.5m	14/06/2010 1.5m	14/06/2010 3m	0.5m	14/06/2010 1m	14/06/2010 1.5m	2.5m	14/06/2010 4m
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
0 Bromodichloromethane	75274	µg kg-¹	U	<5	<5	<5	<5	<5	<5	<5	<5
cis-1,3-Dichloropropene	10061015	µg kg-¹	U	<10	<10	<10	<10	<10	<10	<10	<10
trans-1,3-Dichloropropene	10061026	µg kg-¹	U	<10	<10	<10	<10	<10	<10	<10	<10
1,1,2-Trichloroethane	79005	µg kg-¹	М	<10	<10	<10	<10	<10	<10	<10	<10
Tetrachloroethene	127184	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1
1,3-Dichloropropane	142289	µg kg-¹	U	<2	<2	<2	<2	<2	<2	<2	<2
Dibromochloromethane	124481	µg kg-¹	U	<10	<10	<10	<10	<10	<10	<10	<10
1,2-Dibromoethane	106934	µg kg-¹	U	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	108907	µg kg-¹	М	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1,2-Tetrachloroethane	630206	µg kg-¹	М	<2	<2	<2	<2	<2	<2	<2	<2
Styrene	100425	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
Tribromomethane	75252	μg kg-¹	U	<10	<10	<10	<10	<10	<10	<10	<10
Isopropylbenzene	98828	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
Bromobenzene	108861	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	79345	μg kg-¹	М	<10	<10	<10	<10	<10	<10	<10	<10
1,2,3-Trichloropropane	96184	μg kg-¹	U	<50	<50	<50	<50	<50	<50	<50	<50
n-Propylbenzene	103651	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
2-Chlorotoluene	95498	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
1,3,5-Trimethylbenzene	108678	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
4-Chlorotoluene	106434	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
tert-Butylbenzene	98066	µg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	95636	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
sec-Butylbenzene	135988	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	541731	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
4-Isopropyltoluene	99876	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	106467	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
n-Butylbenzene	104518	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichlorobenzene	95501	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dibromo-3-chloropropane	96128	μg kg-¹	U	<50	<50	<50	<50	<50	<50	<50	<50
1,2,4-Trichlorobenzene	120821	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 3
Report page 4 of 7

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

				89511							
					AF09663	AF09664	AF09665	AF09666	AF09667	AF09668	
					WS1	WS1	WS2	WS2	WS3	WS3	
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	
					0.25m	1m	0.5m	1m	0.25m	0.75m	
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
2760	Bromodichloromethane	75274	μg kg-¹	U	<5	<5	<5	<5	<5	<5	
	cis-1,3-Dichloropropene	10061015	μg kg-¹	U	<10	<10	<10	<10	<10	<10	
	trans-1,3-Dichloropropene	10061026	μg kg- ¹	U	<10	<10	<10	<10	<10	<10	
	1,1,2-Trichloroethane	79005	μg kg- ¹	M	<10	<10	<10	<10	<10	<10	
	Tetrachloroethene	127184	μg kg- ¹	M	<1	<1	<1	<1	<1	<1	
	1,3-Dichloropropane	142289	μg kg-1	U	<2	<2	<2	<2	<2	<2	
	Dibromochloromethane	124481	μg kg- ¹	U	<10	<10	<10	<10	<10	<10	
	1,2-Dibromoethane	106934	μg kg- ¹	U	<5	<5	<5	<5	<5	<5	
	Chlorobenzene	108907	μg kg-1	M	<1	<1	<1	<1	<1	<1	
	1,1,1,2-Tetrachloroethane	630206		M	<2	<2	<2	<2	<2	<2	
			μg kg-1	U	<1	<1	<1	<1	<1	<1	
	Styrene Tribromomethane	100425	μg kg-¹		-	<10	<10	<u> </u>	<10	<10	
		75252	μg kg-1	U	<10 <1	<10	<10 <1	<10 <1		<10 <1	
	Isopropylbenzene	98828	μg kg-1	U	-	<u> </u>	•	<u> </u>	<1	<u> </u>	
	Bromobenzene	108861	μg kg-¹	U	<1	<1	<1	<1	<1	<1	
	1,1,2,2-Tetrachloroethane	79345	μg kg-1	M	<10	<10	<10	<10	<10	<10	
	1,2,3-Trichloropropane	96184	µg kg-¹	U	<50	<50	<50	<50	<50	<50	
	n-Propylbenzene	103651	µg kg-¹	U	<1	<1	<1	<1	<1	<1	
	2-Chlorotoluene	95498	µg kg-¹	U	<1	<1	<1	<1	<1	<1	
	1,3,5-Trimethylbenzene	108678	μg kg-¹	U	<1	<1	<1	<1	<1	<1	
	4-Chlorotoluene	106434	µg kg-¹	U	<1	<1	<1	<1	<1	<1	
	tert-Butylbenzene	98066	µg kg-¹	U	<1	<1	<1	<1	<1	<1	
	1,2,4-Trimethylbenzene	95636	µg kg-¹	U	<1	<1	<1	<1	<1	<1	
	sec-Butylbenzene	135988	µg kg-¹	U	<1	<1	<1	<1	<1	<1	
	1,3-Dichlorobenzene	541731	µg kg-¹	U	<1	<1	<1	<1	<1	<1	
	4-Isopropyltoluene	99876	µg kg-¹	U	<1	<1	<1	<1	<1	<1	
	1,4-Dichlorobenzene	106467	µg kg-¹	U	<1	<1	<1	<1	<1	<1	
	n-Butylbenzene	104518	μg kg-¹	U	<1	<1	<1	<1	<1	<1	
	1,2-Dichlorobenzene	95501	μg kg-¹	U	<1	<1	<1	<1	<1	<1	
	1,2-Dibromo-3-chloropropane	96128	µg kg-¹	U	<50	<50	<50	<50	<50	<50	
	1,2,4-Trichlorobenzene	120821	μg kg-¹	U	<1	<1	<1	<1	<1	<1	

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

				89511									
					AF09639	AF09640	AF09641	AF09642	AF09643	AF09644	AF09645	AF09646	
					BHA	BHA	BHA	BHB	BHB	BHB	BHB	BHC	
					14/06/2010	14/06/2010	14/06/2010	10/06/2010	10/06/2010	10/06/2010	10/06/2010	14/06/2010	
					0.5m	1.5m	3.5m	1m	2m	3m	4.5m	0.5m	
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
2760	Hexachlorobutadiene	87683	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
	1.2.3-Trichlorobenzene	87616	μg kg-¹	U	<2	<2	<2	<2	<2	<2	<2	<2	
2762	Tentatively Identified Compounds	07010	μg kg- ¹			None Detected			_				
	N-Nitrosodimethylamine	62759	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2.00	Phenol	108952	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	bis(2-Chloroethyl)ether	111444	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Chlorophenol	95578	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1.3-Dichlorobenzene	541731	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1.4-Dichlorobenzene	106467	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1.2-Dichlorobenzene	95501	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Methylphenol	95487	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	bis(2-Chloroisopropyl)ether	108601	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	4-Methylphenol	106445	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	N-Nitrosodi-n-propylamine	621647	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Hexachloroethane	67721	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Nitrobenzene	98953	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Isophorone	78591	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Nitrophenol	88755	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4-Dimethylphenol	105679	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	bis(2-Chloroethoxy)methane	111911	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4-Dichlorophenol	120832	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1,2,4-Trichlorobenzene	120821	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Naphthalene	91203	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	4-Chloroaniline	106478	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Hexachlorobutadiene	87683	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	4-Chloro-3-methylphenol	59507	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Methylnaphthalene	91576	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Hexachlorocyclopentadiene	77474	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4,6-Trichlorophenol	88062	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4,5-Trichlorophenol	95954	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 1
Report page 5 of 7

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

				89511									
					AF09647	AF09648	AF09649	AF09650	AF09651	AF09652	AF09653	AF09654	
					BHC	BHC	BHD	BHD	BHD	BHE	BHE	BHE	
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	
					1m	2m	0.5m	1.5m	2m	1m	2m	3m	
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
2760	Hexachlorobutadiene	87683	μg kg-¹	U	<1	<1	<1	<1	<1	<1	<1	<1	
2700	1.2.3-Trichlorobenzene	87616	μg kg-1	U	<2	<2	<2	<2	<2	<2	<2	<2	
2762	Tentatively Identified Compounds	87010	μg kg-1	U	_	_	None Detected	_	_	_		_	
	N-Nitrosodimethylamine	62759	μg kg- mg kg- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2190	Phenol	108952	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	bis(2-Chloroethyl)ether	111444	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Chlorophenol	95578	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1.3-Dichlorobenzene	541731	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1.4-Dichlorobenzene	106467	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1.2-Dichlorobenzene	95501		N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	,	95487	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Methylphenol		mg kg-1	N	<0.5	<0.5		<0.5	<0.5		<0.5	<0.5	
	bis(2-Chloroisopropyl)ether	108601 106445	mg kg-1	N	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		
	4-Methylphenol		mg kg-1				<0.5					<0.5	
	N-Nitrosodi-n-propylamine	621647	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Hexachloroethane	67721	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Nitrobenzene	98953	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Isophorone	78591	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Nitrophenol	88755	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4-Dimethylphenol	105679	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	bis(2-Chloroethoxy)methane	111911	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4-Dichlorophenol	120832	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1,2,4-Trichlorobenzene	120821	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Naphthalene	91203	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	4-Chloroaniline	106478	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Hexachlorobutadiene	87683	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	4-Chloro-3-methylphenol	59507	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Methylnaphthalene	91576	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Hexachlorocyclopentadiene	77474	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4,6-Trichlorophenol	88062	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4,5-Trichlorophenol	95954	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 2
Report page 5 of 7

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

				89511									
					AF09655	AF09656	AF09657	AF09658	AF09659	AF09660	AF09661	AF09662	
					BHF	BHF	BHF	BHG	BHG	BHG	BHG	BHG	
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	
					0.5m	1.5m	3m	0.5m	1m	1.5m	2.5m	4m	
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
2760	Hexachlorobutadiene	87683	ua ka 1	U	<1	<1	<1	<1	<1	<1	<1	<1	
2700	1.2.3-Trichlorobenzene	87616	μg kg-1	U	<2	<2	<2	<2	<2	<2	<2	<2	
0700	, ,-	8/010	μg kg-¹	U			_	<u> </u>	_		_	_	
	Tentatively Identified Compounds	00750	μg kg-¹							None Detected			
2790	N-Nitrosodimethylamine	62759	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Phenol	108952	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	bis(2-Chloroethyl)ether	111444	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Chlorophenol	95578	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1,3-Dichlorobenzene	541731	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1,4-Dichlorobenzene	106467	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1,2-Dichlorobenzene	95501	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Methylphenol	95487	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	bis(2-Chloroisopropyl)ether	108601	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	4-Methylphenol	106445	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	N-Nitrosodi-n-propylamine	621647	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Hexachloroethane	67721	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Nitrobenzene	98953	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Isophorone	78591	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Nitrophenol	88755	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4-Dimethylphenol	105679	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	bis(2-Chloroethoxy)methane	111911	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4-Dichlorophenol	120832	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	1,2,4-Trichlorobenzene	120821	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Naphthalene	91203	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	4-Chloroaniline	106478	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Hexachlorobutadiene	87683	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	4-Chloro-3-methylphenol	59507	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2-Methylnaphthalene	91576	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Hexachlorocyclopentadiene	77474	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4,6-Trichlorophenol	88062	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	2,4,5-Trichlorophenol	95954	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 3
Report page 5 of 7

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

				89511									
					AF09663	AF09664	AF09665	AF09666	AF09667	AF09668			
					WS1	WS1	WS2	WS2	WS3	WS3			
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010			
					0.25m	1m	0.5m	1m	0.25m	0.75m			
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL			
2760	Hexachlorobutadiene	87683	μg kg-¹	U	<1	<1	<1	<1	<1	<1			
2700	1,2,3-Trichlorobenzene	87616	μg kg-1	U	<2	<2	<2	<2	<2	<2			
2762		67010		U			None Detected						
	N-Nitrosodimethylamine	62759	μg kg-¹ mg kg-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
2/90	Phenol	108952	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	bis(2-Chloroethyl)ether	111444	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	2-Chlorophenol	95578	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	1.3-Dichlorobenzene	541731	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	1.4-Dichlorobenzene	106467	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	1,2-Dichlorobenzene	95501	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	2-Methylphenol	95487	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	bis(2-Chloroisopropyl)ether	108601	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	4-Methylphenol	106445	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	N-Nitrosodi-n-propylamine	621647	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	Hexachloroethane	67721	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	Nitrobenzene	98953	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	Isophorone	78591	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	2-Nitrophenol	88755	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	2,4-Dimethylphenol	105679	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	bis(2-Chloroethoxy)methane	111911	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	2,4-Dichlorophenol	120832	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	1,2,4-Trichlorobenzene	120821	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	Naphthalene	91203	mg kg-1	N	<0.5	<0.5	0.54	1.6	<0.5	<0.5			
	4-Chloroaniline	106478	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	Hexachlorobutadiene	87683	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	4-Chloro-3-methylphenol	59507	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	2-Methylnaphthalene	91576	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	Hexachlorocyclopentadiene	77474	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	2,4,6-Trichlorophenol	88062	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	2,4,5-Trichlorophenol	95954	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	z,4,5-monorophenor	90904	ilig kg-	IN	\0. 5	\0. 5	~ 0.5	\0. 5	\0. 5	\0. 5			

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

							899	511			
				AF09639	AF09640	AF09641	AF09642	AF09643	AF09644	AF09645	AF09646
				BHA	BHA	BHA	BHB	BHB	BHB	BHB	BHC
				14/06/2010	14/06/2010	14/06/2010	10/06/2010	10/06/2010	10/06/2010	10/06/2010	14/06/2010
				0.5m	1.5m	3.5m	1m	2m	3m	4.5m	0.5m
				SOIL							
90 2-Chloronaphthalene	91587	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Nitroaniline	88744	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethylphthalate	131113	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2.6-Dinitrotoluene	606202	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208968	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	1.1	0.78
3-Nitroaniline	99092	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83329	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	0.83	<0.5	<0.5	<0.5
Dibenzofuran	132649	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	1.5	<0.5	<0.5	<0.5
2.4-Dinitrotoluene	121142	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethylphthalate	84662	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86737	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	<0.5
4-Chlorophenylphenylether	7005723	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Nitroaniline	100016	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Methyl-4,6-dinitrophenol	534521	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Azobenzene	103333	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Bromophenylphenylether	101553	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobenzene	118741	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Pentachlorophenol	87865	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85018	mg kg-1	N	0.68	0.68	<0.5	<0.5	25	1.2	11	4.2
Anthracene	120127	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	4.5	<0.5	2.7	1.0
Carbazole	86748	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	0.55	<0.5
Di-n-butylphthalate	84742	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206440	mg kg-1	N	2.4	1.5	<0.5	<0.5	27	2.5	16	9.2
Pyrene	129000	mg kg-1	N	2.1	1.2	<0.5	<0.5	22	2.1	14	8.1
Butylbenzylphthalate	85687	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo[a]anthracene	56553	mg kg-1	N	1.4	0.72	<0.5	<0.5	9.4	1.2	7.2	4.2
Chrysene	218019	mg kg-1	N	1.2	0.74	<0.5	<0.5	7.4	1.1	6.0	4.2
bis(2-Ethylhexyl)phthalate	117817	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-octylphthalate	117840	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo[b]fluoranthene	205992	mg kg-1	N	2.4	1.2	<0.5	<0.5	11	1.6	9.3	6.3

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 1
Report page 6 of 7

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Chemtest
The right chemistry to deliver results

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

							899	511			
				AF09647	AF09648	AF09649	AF09650	AF09651	AF09652	AF09653	AF09654
				BHC	BHC	BHD	BHD	BHD	BHE	BHE	BHE
				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010
				1m	2m	0.5m	1.5m	2m	1m	2m	3m
				SOIL							
90 2-Chloronaphthalene	91587	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Nitroaniline	88744	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethylphthalate	131113	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,6-Dinitrotoluene	606202	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208968	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
3-Nitroaniline	99092	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83329	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenzofuran	132649	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-Dinitrotoluene	121142	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethylphthalate	84662	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86737	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Chlorophenylphenylether	7005723	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Nitroaniline	100016	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Methyl-4,6-dinitrophenol	534521	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Azobenzene	103333	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Bromophenylphenylether	101553	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobenzene	118741	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Pentachlorophenol	87865	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85018	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	0.60	<0.5	<0.5
Anthracene	120127	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carbazole	86748	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-butylphthalate	84742	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206440	mg kg-1	N	1.6	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5
Pyrene	129000	mg kg-1	N	1.3	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5
Butylbenzylphthalate	85687	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo[a]anthracene	56553	mg kg-1	N	0.78	<0.5	<0.5	<0.5	<0.5	0.64	<0.5	<0.5
Chrysene	218019	mg kg-1	N	0.65	<0.5	<0.5	<0.5	<0.5	0.63	<0.5	<0.5
bis(2-Ethylhexyl)phthalate	117817	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-octylphthalate	117840	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo[b]fluoranthene	205992	mg kg-1	N	1.1	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<0.5

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 2 Report page 6 of 7

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

							89	511			
				AF09655	AF09656	AF09657	AF09658	AF09659	AF09660	AF09661	AF09662
				BHF	BHF	BHF	BHG	BHG	BHG	BHG	BHG
				14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010
				0.5m	1.5m	3m	0.5m	1m	1.5m	2.5m	4m
				SOIL							
90 2-Chloronaphthalene	91587	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Nitroaniline	88744	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethylphthalate	131113	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,6-Dinitrotoluene	606202	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208968	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5
3-Nitroaniline	99092	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83329	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenzofuran	132649	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-Dinitrotoluene	121142	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethylphthalate	84662	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86737	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Chlorophenylphenylether	7005723	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Nitroaniline	100016	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Methyl-4,6-dinitrophenol	534521	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Azobenzene	103333	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Bromophenylphenylether	101553	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobenzene	118741	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Pentachlorophenol	87865	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85018	mg kg-1	N	0.74	<0.5	<0.5	0.60	4.8	1.7	<0.5	<0.5
Anthracene	120127	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<0.5	<0.5
Carbazole	86748	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-butylphthalate	84742	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206440	mg kg-1	N	1.7	<0.5	<0.5	3.4	15	5.0	<0.5	<0.5
Pyrene	129000	mg kg-1	N	1.5	<0.5	<0.5	3.6	13	4.1	<0.5	<0.5
Butylbenzylphthalate	85687	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo[a]anthracene	56553	mg kg-1	N	0.87	<0.5	<0.5	2.6	8.5	2.8	<0.5	<0.5
Chrysene	218019	mg kg-1	N	0.84	<0.5	<0.5	2.4	8.6	2.6	<0.5	<0.5
bis(2-Ethylhexyl)phthalate	117817	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-octylphthalate	117840	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo[b]fluoranthene	205992	mg kg-1	N	1.4	<0.5	<0.5	4.5	15	4.6	<0.5	<0.5

All tests undertaken between 01-Jul-2010 and 9-Jul-2010

Column page 3
Report page 6 of 7

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

			89511							
				AF09663	AF09664	AF09665	AF09666	AF09667	AF09668	
				WS1	WS1	WS2	WS2	WS3	WS3	
				44/00/2040	4.4/00/2040	4.4/00/2040	4.4/00/2040	4.4/00/2040	14/00/0040	
				14/06/2010 0.25m	14/06/2010 1m	14/06/2010 0.5m	14/06/2010 1m	14/06/2010 0.25m	14/06/2010 0.75m	
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
2-Chloronaphthalene	91587	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2-Nitroaniline	88744	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Dimethylphthalate	131113	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2,6-Dinitrotoluene	606202	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Acenaphthylene	208968	mg kg-1	N	<0.5	<0.5	1.7	7.2	0.70	<0.5	
3-Nitroaniline	99092	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Acenaphthene	83329	mg kg-1	N	<0.5	<0.5	<0.5	0.76	<0.5	<0.5	
Dibenzofuran	132649	mg kg-1	N	<0.5	<0.5	<0.5	3.0	<0.5	<0.5	
2,4-Dinitrotoluene	121142	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Diethylphthalate	84662	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Fluorene	86737	mg kg-1	N	<0.5	<0.5	<0.5	4.6	<0.5	<0.5	
4-Chlorophenylphenylether	7005723	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
4-Nitroaniline	100016	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2-Methyl-4,6-dinitrophenol	534521	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Azobenzene	103333	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
4-Bromophenylphenylether	101553	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Hexachlorobenzene	118741	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Pentachlorophenol	87865	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Phenanthrene	85018	mg kg-1	N	0.96	1.3	11	78	3.4	<0.5	
Anthracene	120127	mg kg-1	N	<0.5	<0.5	2.7	15	0.96	<0.5	
Carbazole	86748	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Di-n-butylphthalate	84742	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Fluoranthene	206440	mg kg-1	N	3.1	3.9	23	120	7.3	0.94	
Pyrene	129000	mg kg-1	N	3.0	3.3	20	92	6.5	0.82	
Butylbenzylphthalate	85687	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Benzo[a]anthracene	56553	mg kg-1	N	1.7	2.1	12	53	3.8	0.52	
Chrysene	218019	mg kg- ¹	N	1.8	2.0	11	41	3.4	0.53	
bis(2-Ethylhexyl)phthalate	117817	mg kg- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Di-n-octylphthalate	117840	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Benzo[b]fluoranthene	205992	mg kg-1	N	2.9	3.6	18	68	6.4	1.1	

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

				89511 AF09639 AF09640 AF09641 AF09642 AF09643 AF09644 AF09645 AF09646								
					AF09639	AF09640	AF09641	AF09642	AF09643	AF09644	AF09645	AF09646
					BHA	BHA	BHA	BHB	BHB	BHB	BHB	BHC
					14/06/2010	14/06/2010	14/06/2010	10/06/2010	10/06/2010	10/06/2010	10/06/2010	14/06/2010
					0.5m	1.5m	3.5m	1m	2m	3m	4.5m	0.5m
					SOIL							
2790	Benzo[k]fluoranthene	207089	mg kg-1	N	0.63	<0.5	<0.5	<0.5	4.1	0.55	2.6	1.8
	Benzo[a]pyrene	50328	mg kg-1	N	1.8	0.84	<0.5	<0.5	8.6	1.2	6.9	4.1
	Indeno[1,2,3-cd]pyrene	193395	mg kg-1	N	0.82	<0.5	<0.5	<0.5	4.5	0.51	3.8	2.1
	Dibenzo[a,h]anthracene	53703	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	0.98	<0.5
	Benzo[g,h,i]perylene	191242	mg kg-1	N	1.1	<0.5	<0.5	<0.5	4.9	0.69	4.0	2.8
2792	10 11 1		mg kg-1		Not detected							
2810	2,4,4'-Trichlorobiphenyl	7012375	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',5,5'-Tetrachlorobiphenyl	35693993	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',4,5,5'-Pentachlorobiphenyl	37680732	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,3,4,4',5-Pentachlorobiphenyl	31508006	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',3,4,4',5-Hexachlorobiphenyl	35065282	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',4,4',5,5'-Hexachlorobiphenyl	35065271	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',3,4,4',5,5'-Heptachlorobiphenyl	35065293	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2920	Catechols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Phenol	108952	mg kg-1	М	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Cresols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Xylenols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Naphthols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Trimethyl phenols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Phenols (total)		mg kg-1	N	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2010	рН		-	М	9.9	7.9	7.5	8.4	10.1	8.4	8.5	8.6
2186	Asbestos Containing Material		-	U	not found							

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

								898	511			
					AF09647	AF09648	AF09649	AF09650	AF09651	AF09652	AF09653	AF09654
					BHC	BHC	BHD	BHD	BHD	BHE	BHE	BHE
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010
					1m	2m	0.5m	1.5m	2m	1m	2m	3m
					SOIL							
2790	Benzo[k]fluoranthene	207089	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Benzo[a]pyrene	50328	mg kg-1	N	0.67	<0.5	<0.5	<0.5	<0.5	0.63	<0.5	<0.5
	Indeno[1,2,3-cd]pyrene	193395	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Dibenzo[a,h]anthracene	53703	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Benzo[g,h,i]perylene	191242	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2792	Tentatively Identified Compounds		mg kg-1		Not detected							
2810	2,4,4'-Trichlorobiphenyl	7012375	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',5,5'-Tetrachlorobiphenyl	35693993	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',4,5,5'-Pentachlorobiphenyl	37680732	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,3,4,4',5-Pentachlorobiphenyl	31508006	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',3,4,4',5-Hexachlorobiphenyl	35065282	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',4,4',5,5'-Hexachlorobiphenyl	35065271	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',3,4,4',5,5'-Heptachlorobiphenyl	35065293	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2920	Catechols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Phenol	108952	mg kg-1	М	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Cresols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Xylenols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Naphthols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Trimethyl phenols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Phenols (total)		mg kg-1	N	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2010	рН		-	М	7.7	8.3	7.8	7.7	8.2	8.1	7.9	7.2
2186	Asbestos Containing Material		-	U	not found							

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 09 July 2010

Results of analysis of 30 samples received 02 July 2010

					89511								
					AF09655	AF09656	AF09657	AF09658	AF09659	AF09660	AF09661	AF09662	
					BHF	BHF	BHF	BHG	BHG	BHG	BHG	BHG	
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	
					0.5m	1.5m	3m	0.5m	1m	1.5m	2.5m	4m	
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
2790	Benzo[k]fluoranthene	207089	mg kg-1	N	<0.5	<0.5	<0.5	1.5	3.8	1.3	<0.5	<0.5	
	Benzo[a]pyrene	50328	mg kg-1	N	0.93	<0.5	<0.5	3.2	9.1	2.8	<0.5	<0.5	
	Indeno[1,2,3-cd]pyrene	193395	mg kg-1	N	<0.5	<0.5	<0.5	1.7	6.1	1.7	<0.5	<0.5	
	Dibenzo[a,h]anthracene	53703	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<0.5	<0.5	
	Benzo[g,h,i]perylene	191242	mg kg-1	N	<0.5	<0.5	<0.5	1.9	7.6	2.1	<0.5	<0.5	
2792	Tentatively Identified Compounds		mg kg-1		Not detected	Not detected	Not detected	Not detected	None Detected	Not detected	Not detected	Not detected	
2810	2,4,4'-Trichlorobiphenyl	7012375	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
	2,2',5,5'-Tetrachlorobiphenyl	35693993	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
	2,2',4,5,5'-Pentachlorobiphenyl	37680732	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
	2,3,4,4',5-Pentachlorobiphenyl	31508006	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
	2,2',3,4,4',5-Hexachlorobiphenyl	35065282	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
	2,2',4,4',5,5'-Hexachlorobiphenyl	35065271	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
	2,2',3,4,4',5,5'-Heptachlorobiphenyl	35065293	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2920	Catechols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
	Phenol	108952	mg kg-1	М	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
	Cresols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
	Xylenols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
	Naphthols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
	Trimethyl phenols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
	Phenols (total)		mg kg-1	N	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
2010	рН		-	М	7.9	7.7	7.5	8.7	7.9	8.1	8.2	8.7	
2186	Asbestos Containing Material		-	U	not found	not found	not found	not found					

FAO Andrea Grossey

LABORATORY TEST REPORT

Results of analysis of 30 samples received 02 July 2010

241458 - Twickenham Railway Station

Report Date 09 July 2010

					89511							
					AF09663	AF09664	AF09665	AF09666	AF09667	AF09668		
					WS1	WS1	WS2	WS2	WS3	WS3		
					14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010	14/06/2010		
					0.25m	1m	0.5m	1m	0.25m	0.75m		
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
2790	Benzo[k]fluoranthene	207089	mg kg-1	N	0.80	1.0	4.2	21	1.3	<0.5		
	Benzo[a]pyrene	50328	mg kg-1	N	1.9	2.4	11	41	3.7	0.60		
	Indeno[1,2,3-cd]pyrene	193395	mg kg-1	N	1.0	1.2	6.7	25	2.4	<0.5		
	Dibenzo[a,h]anthracene	53703	mg kg-1	N	<0.5	<0.5	1.9	7.3	<0.5	<0.5		
	Benzo[g,h,i]perylene	191242	mg kg-1	N	1.3	1.4	7.9	29	2.8	<0.5		
2792	Tentatively Identified Compounds		mg kg-1		Not detected	Not detected	Not detected	None Detected	Not detected	Not detected		
2810	2,4,4'-Trichlorobiphenyl	7012375	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	2,2',5,5'-Tetrachlorobiphenyl	35693993	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	2,2',4,5,5'-Pentachlorobiphenyl	37680732	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	2,3,4,4',5-Pentachlorobiphenyl	31508006	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	2,2',3,4,4',5-Hexachlorobiphenyl	35065282	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	2,2',4,4',5,5'-Hexachlorobiphenyl	35065271	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	2,2',3,4,4',5,5'-Heptachlorobiphenyl	35065293	mg kg-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
2920	Catechols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
	Phenol	108952	mg kg-1	M	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
	Cresols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
	Xylenols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
	Naphthols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
	Trimethyl phenols		mg kg-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
	Phenols (total)		mg kg-1	N	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3		
2010	рН		-	М	7.7	7.7	7.8	7.9	6.2	6.2		
2186	Asbestos Containing Material		-	U	not found	not found	not found	not found	not found	not found		

FAO Andrea Grossey

LABORATORY TEST REPORT

Results of analysis of 6 samples received 12 July 2010

241458 - Twickenham Railway Station

21 July 2010

Login E	Batch No						120	214		
Chemte	est LIMS ID				AF11798	AF11799	AF11800	AF11801	AF11802	AF11803
Sample	ID				River 1	River 2	River 3	BH A	BH D	BH F
Sample										
	ng Date				01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010
Depth					14/4.750	14/4.750	14/4 755	14/4.755	14/4 755	14/4755
Matrix					WATER	WATER	WATER	WATER	WATER	WATER
	Determinand↓	CAS No↓	Units↓	*	0.0	0.0	2.5	2.2	2.5	
1010	ļ.	PH	-	U	8.8	8.8	8.5	6.8	6.5	6.3
1220	Chloride	16887006	mg I-1	U	75	76	75	110	41	53
	Ammonium	14798039	mg I-1	U	0.41	0.31	0.21	0.19	< 0.01	0.72
	Ammoniacal Nitrogen	AMM_NIT	mg I-1	U	0.32	0.24	0.16	0.15	< 0.01	0.56
1000	Nitrate	14797558	mg I-1	U	16	21	15	1.8	19	4.7
1300	Cyanide (total)	57125	mg I-1	U	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Cyanide (free)	57125	mg I-1	U	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Sulfide	18496258	mg I-1	U	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
	Iron (dissolved)	7439896	μg I-¹	N	<20	<20	<20	260	290	1400
	Hardness	HARD_TO	mg CaCO3 I-1	U	280	270	260	560	150	350
	Sulfate	14808798	mg I-1	U	57	55	54	180	19	100
1450	Arsenic	7440382	μg l-¹	U	<1.0	1.1	<1.0	<1.0	3.0	1.1
	Boron	7440428	μg l-¹	U	110	89	71	240	53	250
	Barium	7440393	μg l-¹	U	21	21	19	49	22	80
	Beryllium	7440417	μg l-¹	U	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	Cadmium	7440439	μg l-¹	U	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080
	Chromium (total)	7440473	μg l-¹	U	22	19	5.3	36	38	37
	Copper	7440508	μg l-¹	U	5.2	8.6	6.4	1.4	1.4	<1.0
	Mercury Low Level	7439976	μg l-¹	N	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	Nickel	7440020	μg l-¹	U	2.2	2.6	2.8	13	3.3	5.1
	Lead	7439921	μg l-¹	U	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	Selenium	7782492	μg l-¹	U	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	Vanadium	7440622	μg l-¹	U	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	Zinc	7440666	μg l-¹	U	1.2	6.7	7.7	7.6	<1.0	7.5
1675	TPH aliphatic >C5-C6		µg l−¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	TPH aliphatic >C6-C8		µg l−¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	TPH aliphatic >C8-C10		µg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	TPH aliphatic >C10-C12		µg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	TPH aliphatic >C12-C16		µg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	TPH aliphatic >C16-C21		μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 21 July 2010

Results of analysis of 6 samples received 12 July 2010

241458 - Twickenham Railway Station

					120214							
					AF11798	AF11799	AF11800	AF11801	AF11802	AF11803		
					River 1	River 2	River 3	BH A	BH D	BH F		
					01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010		
					MATER	14/4.750	MATER	14/4750	14/4750	14/4.750		
					WATER	WATER	WATER	WATER	WATER	WATER		
1675	TPH aliphatic >C21-C35		μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aliphatic >C35-C44		μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aromatic >C5-C7		μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aromatic >C7-C8		μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aromatic >C8-C10		μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aromatic >C10-C12		μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aromatic >C12-C16		μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aromatic >C16-C21		μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aromatic >C21-C35		μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	TPH aromatic >C35-C44		μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	Total Petroleum Hydrocarbons		μg l-¹	N	<10	<10	<10	<10	<10	<10		
1700	Naphthalene	91203	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Acenaphthylene	208968	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Acenaphthene	83329	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Fluorene	86737	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Phenanthrene	85018	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Anthracene	120127	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Fluoranthene	206440	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Pyrene	129000	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Benzo[a]anthracene	56553	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Chrysene	218019	µg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Benzo[b]fluoranthene	205992	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Benzo[k]fluoranthene	207089	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Benzo[a]pyrene	50328	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Dibenzo[a,h]anthracene	53703	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Indeno[1,2,3-cd]pyrene	193395	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Benzo[g,h,i]perylene	191242	μg l-¹	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Total (of 16) PAHs		μg l-¹	N	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		
1760	Dichlorodifluoromethane	75718	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	Chloromethane	74873	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

21 July 2010

Results of analysis of 6 samples received 12 July 2010

241458 - Twickenham Railway Station

					120214							
					AF11798	AF11799	AF11800	AF11801	AF11802	AF11803		
					River 1	River 2	River 3	BH A	BH D	BH F		
					01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010		
					14/4.755	14/4755	14/4750	14/4.755	14/4.755	14/4.755		
					WATER	WATER	WATER	WATER	WATER	WATER		
1760 Vinvl o	chloride	75014	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	omethane	74839	μg l- ¹	N	<2	<2	<2	<2	<2	<2		
	roethane	75003	μg l- ¹	N	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		
	lorofluoromethane	75694	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	vichloroethene	75354	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
,	oromethane	75092	μg l- ¹	N	ne	ne	ne	ne	ne	ne		
	-1,2-Dichloroethene	156605	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	vichloroethane	75343	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
,	2-Dichloroethene	156592	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
,	ochloromethane	74975	μg l- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	loromethane	67663	μg I- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	-Trichloroethane	71556	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	chloromethane	56235	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	ichloropropene	563586	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Benze	<u> </u>	71432	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
1.2-Di	vichloroethane	107062	μg l- ¹	N	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		
Trichle	loroethene	79016	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	ichloropropane	78875	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Dibror	momethane	74953	μg I- ¹	N	<1	<1	<1	<1	<1	<1		
Bromo	odichloromethane	75274	μg l- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
cis-1,?	3-Dichloropropene	10061015	μg l- ¹	N	<1	<1	<1	<1	<1	<1		
Toluer	ene	108883	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
trans-	-1,3-Dichloropropene	10061026	μg l- ¹	N	<1	<1	<1	<1	<1	<1		
	-Trichloroethane	79005	μg I- ¹	N	<1	<1	<1	<1	<1	<1		
Tetrac	chloroethene	127184	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
1,3-Di	ichloropropane	142289	μg I- ¹	N	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		
	mochloromethane	124481	μg l- ¹	N	<1	<1	<1	<1	<1	<1		
1,2-Di	ibromoethane	106934	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Chlore	robenzene	108907	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
1,1,1,	,2-Tetrachloroethane	630206	μg l-¹	N	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 21 July 2010

Results of analysis of 6 samples received 12 July 2010

241458 - Twickenham Railway Station

								214		
					AF11798	AF11799	AF11800	AF11801	AF11802	AF11803
					River 1	River 2	River 3	BH A	BH D	BH F
					04/07/0040	04/07/0040	04/07/0040	04/07/0040	04/07/0040	04/07/0040
					01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010
					WATER	WATER	WATER	WATER	WATER	WATER
1760	Ethylbenzene	100414	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	m- & p-Xylene	1330207	μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	o-Xylene	95476	μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Styrene	100425	μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Tribromomethane	75252	μg l-1	N	<1	<1	<1	<1	<1	<1
	Isopropylbenzene	98828	μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Bromobenzene	108861	μg l- ¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1,1,2,2-Tetrachloroethane	79345	μg l-1	N	<1	<1	<1	<1	<1	<1
	1,2,3-Trichloropropane	96184	μg I-1	N	<5	<5	<5	<5	<5	<5
	n-Propylbenzene	103651	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2-Chlorotoluene	95498	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1,3,5-Trimethylbenzene	108678	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	4-Chlorotoluene	106434	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	tert-Butylbenzene	98066	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1,2,4-Trimethylbenzene	95636	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	sec-Butylbenzene	135988	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1,3-Dichlorobenzene	541731	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	4-Isopropyltoluene	99876	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1,4-Dichlorobenzene	106467	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	n-Butylbenzene	104518	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1,2-Dichlorobenzene	95501	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1,2-Dibromo-3-chloropropane	96128	μg l-¹	N	<5	<5	<5	<5	<5	<5
	1,2,4-Trichlorobenzene	120821	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Hexachlorobutadiene	87683	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1,2,3-Trichlorobenzene	87616	μg l-¹	N	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Methyl tert-butylether	1634044	μg l-¹	N	<1	<1	<1	<1	<1	<1
1762	Tentatively Identified Compounds		μg I-1		None Detected					
1790	N-Nitrosodimethylamine	62759	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Phenol	108952	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	bis(2-Chloroethyl)ether	111444	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date

21 July 2010

Results of analysis of 6 samples received 12 July 2010

241458 - Twickenham Railway Station

					120214							
					AF11798	AF11799	AF11800	AF11801	AF11802	AF11803		
					River 1	River 2	River 3	BH A	BH D	BH F		
					01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010		
					WATER	WATER	WATER	WATER	WATER	WATER		
790	2-Chlorophenol	95578	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	1,3-Dichlorobenzene	541731	μg I-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	1,4-Dichlorobenzene	106467	μg l- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	1,2-Dichlorobenzene	95501	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	2-Methylphenol	95487	μg l- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	bis(2-Chloroisopropyl)ether	108601	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	4-Methylphenol	106445	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	N-Nitrosodi-n-propylamine	621647	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	Hexachloroethane	67721	μg l- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	Nitrobenzene	98953	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	Isophorone	78591	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	2-Nitrophenol	88755	μg I- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	2,4-Dimethylphenol	105679	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	bis(2-Chloroethoxy)methane	111911	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	2,4-Dichlorophenol	120832	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	1,2,4-Trichlorobenzene	120821	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	Naphthalene	91203	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	4-Chloroaniline	106478	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	Hexachlorobutadiene	87683	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	4-Chloro-3-methylphenol	59507	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	2-Methylnaphthalene	91576	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	Hexachlorocyclopentadiene	77474	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	2,4,6-Trichlorophenol	88062	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	2,4,5-Trichlorophenol	95954	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	2-Chloronaphthalene	91587	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	2-Nitroaniline	88744	μg l- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	Dimethylphthalate	131113	μg l- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	2,6-Dinitrotoluene	606202	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	Acenaphthylene	208968	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
	3-Nitroaniline	99092	μg l- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 21 July 2010

Results of analysis of 6 samples received 12 July 2010

241458 - Twickenham Railway Station

					.=		214	.=	
				AF11798	AF11799	AF11800	AF11801	AF11802	AF11803
				River 1	River 2	River 3	BH A	BH D	BH F
				01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010
				WATER	WATER	WATER	WATER	WATER	WATER
00 Acenaphthene	83329	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenzofuran	132649	μg l- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-Dinitrotoluene	121142	μg l- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethylphthalate	84662	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86737	μg l- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Chlorophenylphenylether	7005723	μg I- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Nitroaniline	100016	μg l- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Methyl-4,6-dinitrophenol	534521	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Azobenzene	103333	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Bromophenylphenylether	101553	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobenzene	118741	μg I-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Pentachlorophenol	87865	μg I- ¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85018	μg l-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120127	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carbazole	86748	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-butylphthalate	84742	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206440	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129000	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Butylbenzylphthalate	85687	μg l−¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo[a]anthracene	56553	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218019	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
bis(2-Ethylhexyl)phthalate	117817	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-octylphthalate	117840	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo[b]fluoranthene	205992	µg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo[k]fluoranthene	207089	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo[a]pyrene	50328	µg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno[1,2,3-cd]pyrene	193395	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenzo[a,h]anthracene	53703	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo[g,h,i]perylene	191242	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
72 Tentatively Identified Compounds		ug l-1		None Detected	None Detec				

^{*} Accreditation status

FAO Andrea Grossey

LABORATORY TEST REPORT

Report Date 21 July 2010

Results of analysis of 6 samples received 12 July 2010

							120	214		
					AF11798	AF11799	AF11800	AF11801	AF11802	AF11803
					River 1	River 2	River 3	BH A	BH D	BH F
					01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010	01/07/2010
					WATER	WATER	WATER	WATER	WATER	WATER
					VV/(/2/(W/(/Z/(W/(/Z/(W/(/Z/(W/(/L/(, , , , , , , , , , , , , , , , , , ,
1810	2,4,4'-Trichlorobiphenyl	7012375	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',5,5'-Tetrachlorobiphenyl	35693993	μg l-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',4,5,5'-Pentachlorobiphenyl	37680732	μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,3,4,4',5-Pentachlorobiphenyl	31508006	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',3,4,4',5-Hexachlorobiphenyl	35065282	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',4,4',5,5'-Hexachlorobiphenyl	35065271	μg I-1	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2,2',3,4,4',5,5'-Heptachlorobiphenyl	35065293	μg l-¹	N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1830	Atrazine	1912249	μg l-1	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Simazine	122349	μg l-¹	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Diuron	330541	μg l-¹	N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1845	2,4-D	94757	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Dichlorprop	120365	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	MCPA	94746	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	МСРВ	94815	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Mecoprop	7085190	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2,4,5-T	93765	μg l-¹	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1920	Catechols		mg l-1	N	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	Phenol	108952	mg l-1	N	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	Cresols		mg l-1	N	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	Xylenols		mg l-1	N	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	Naphthols		mg I-1	N	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	Trimethyl phenols		mg l-1	N	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	Phenols (total)		mg l-1	N	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03

Appendix G. Risk Rating Matrix

Table G.1: Risk rating for contaminated land qualitative risk assessment

		Likelihood	
Level of Severity	Most Likely	Reasonably Foreseeable	Unlikely
Acute harm or severe chronic harm. Direct pollution of sensitive water receptors or serious pollution of other water bodies.	High	High	Low
Harm from long-term exposure. Slight pollution of sensitive receptors or pollution of other water bodies.	Medium	Medium	Low
No significant harm in either short or long term. No pollution of water that is likely to affect sensitive receptors. No more than slight pollution of other water bodies.	Low	Low	Low

Appendix H. Environmental Receptors

Table H.1: Pollution to controlled waters

'Section 78A(9) of the EPA 1990 defines the pollution of controlled waters as: "the entry into controlled waters of any poisonous, noxious or polluting matter or any solid waste matter".' (A35)

'Before determining that pollution of controlled water is being, or is likely to be, caused, the local authority should be satisfied that a substance is continuing to enter controlled waters or is likely to enter controlled waters. The local authority should regard something as being "likely" to be caused when the local authority judge it more likely than not to occur.' (A36)

'Land should **not** be designated as contaminated land where:

- (a) a substance is already present in controlled waters;
- (b) entry into controlled waters of that substance from land has ceased; and
- (c) it is not likely that further entry will take place.' (A37)

'Substances should be regarded as having entered controlled waters where:

- (a) they are dissolved or suspended in those waters; or
- (b) if they are immiscible with water, they have direct contact with those waters on or beneath the surface of the water.' (A38)

The term 'continuing to enter' should be taken to mean any entry additional to any which has already occurred. (A39)

Reproduced from DEFRA (2006) Contaminated Land: Implementation of Part IIA of the Environmental Protection Act 1990 Circular 01/2006 and Scottish Executive Rural Affairs Department (2006) Edition 2 (Paper SE/2006/44). Environmental Protection Act 1990: Part IIA – Contaminated Land.

Table H.2: Significant harm to various receptors.

Type of receptor	Description of harm to that type of receptor that is to be regarded as significant harm					
Human beings	Death, disease, serious injury, genetic mutation, birth defects or the impairment of reproductive functions.					
	For these purposes, disease is to be taken to mean an unhealthy condition of the body or a part of it and can include, for example, cancer, liver dysfunction or extensive skin ailments. Mental dysfunction is included only insofar as it is attributable to the effects of a pollutant on the body of the person concerned.					
	In the Guidance, this description of significant harm is referred to as a 'human health effect'.					
Any ecological system, or living organism forming	For any protected location:					
part of such a system, within a location which is:	Harm which results in an irreversible adverse change, or in					
an area notified as an Area of Special Scientific Interest under Section 28 of the Wildlife and Countryside Act 1981.	some other substantial adverse change, in the functioning of the ecological system within any substantial part of that location;					
any land declared a National Nature Reserve under Section 35 of that Act	or					
any area designated as a Marine Nature Reserve under Section 36 of that Act	Harm which affects any species of special interest within that location and which endangers the long-term maintenance of the population of that species at that location.					
an area of Special Protection of Birds, established under Section 3 of that Act	In addition, in the case of a protected location that is a					
any European Site within the meaning of Regulation 1 0 of the Conservation (Natural)	European Site (or a candidate Special Area of Conservation or a potential Special Protection Area), harm which is					

Description of harm to that type of receptor that is to be Type of receptor regarded as significant harm Habitats etc) Regulations 1994 (ie Special incompatible with the favourable conservation status of Areas of Conservation and Special protection natural habitats at that location or species typically found Areas) any candidate Special Areas of Conservation In determining what constitutes such harm, the local authority or potential Special Protection Areas given should have regard to the advice of English nature and to the equivalent protection requirements of the Conservation (Natural Habitats etc) any habitat or site afforded policy protection Regulations 1994. under paragraph 6 of Planning Policy In the Guidance this description of significant harm is Statement (PPS9) on nature conservation (i.e. candidate Special Areas of Conservation, referred to as an 'ecological system effect'. potential Special protection Areas and listed Ramsar sites); or any nature reserve established under Section 21 of the National Parks and Access to the Countryside Act 1949. Property in the form of: For crops, a substantial diminution in yield or other substantial loss in their value, resulting from death, disease crops, including timber or other physical damage. For domestic pets, death, serious produce grown domestically, or on allotments, disease or serious physical damage. For other property in for consumption this category, a substantial loss in its value resulting from death, disease or other serious physical damage. other owned or domesticated animals; The local authority should regard a substantial loss in value wild animals which are the subject of shooting as occurring only when a substantial proportion of the or fishing rights. animals or crops are dead or otherwise no longer fit for their intended purpose. Food should be regarded as being no longer fit for purpose when it fails to comply with the provisions of the Food Safety Act 1990. Where a diminution in yield or loss in value is caused by a pollutant linkage, a 20% diminution or loss should be regarded as a benchmark for what constitutes a substantial diminution or loss. In the Guidance this description of significant ham is referred to as an 'animal or crop effect'. Property in the form of buildings. For this purpose Structural failure, substantial damage or substantial interference with any right of occupation. 'building' means any structure or erection and any part of a building, including any part below ground For this purpose, the local authority should regard substantial level, but does not include plant or machinery damage or substantial interference as occurring when any comprised in a building. part of the building ceases to be capable of being used for the purpose for which it is or was intended. Additionally, in the case of a scheduled Ancient Monument, substantial damage should be regarded as occurring when the damage significantly impairs the historic, architectural, traditional, artistic or archaeological interest by reason of which the monument was scheduled in the Guidance this description of significant harm is referred to as a 'building effect'.

Reproduced from DEFRA (2006) Contaminated Land: Implementation of Part IIA of the Environmental Protection Act 1990. Circular 01/2006 and Scottish Executive Rural Affairs Department (2006) Edition 2 (Paper SE/2006/44). Environmental Protection Act 1990: Part IIA – Contaminated Land.

Appendix I. Generic Assessment Criteria

Human Health Generic Assessment Criteria

Background

In order to be able to make inference on whether the results obtained during the site investigation (e.g. chemical concentrations in soils, waters and gas) point to the presence of a potential hazard to human health, it is necessary to distinguish between the results, reflecting background and/or insignificantly elevated levels of contamination (i.e. with negligible potential to cause harm or pollution) and the results with significantly elevated concentrations (i.e. with significant potential to cause harm or pollution).

The approach to risk assessment with respect to risks to human health from contaminated land in the UK is set out in the publication Model Procedures for the Management of Land Contamination (CLR11) Environment Agency (2004).

This sets out a tiered approach:

- Preliminary Risk Assessment (e.g. establishing potential pollutant linkages);
- Generic Quantitative Risk Assessment (GQRA) (e.g. comparison of site contaminant concentrations
 against generic standards and compliance criteria e.g. Soil Guideline Values (SGV) or other Generic
 Assessment Criteria including an assessment of risk using the source pathway target model); and
- Detailed Quantitative Risk Assessment (DQRA) (e.g. the comparison of contaminant concentrations against site specific assessment criteria).

Preliminary Risk Assessment

This typically encompasses a desk based generation of a conceptual model to establish the potential pollutant linkages associated with the site and any proposed development. Works would typically involve:

- Evaluation of the potential sources of contamination on the site and in the locality and from both a current and historical perspective
- Statutory Consultation;
- Evaluation of a sites geology, hydrology and hydrogeology;
- Site inspection;
- Additional pertinent information as necessary on a site by site basis.

Where works indicate the presence of a potential pollutant linkage further evaluation and potentially site investigation works are necessary to determine the significance of the linkage.

Generic Quantitative Risk Assessment (GQRA)

In August 2008 the Environment Agency (EA) and Department of Environment Food and Rural Affairs (DEFRA) announced the withdrawal of the Contaminated Land Reports CLR7 – 10, CLEA UK (beta) and existing SGV reports as they no-longer fully reflected the revised approach to human health risk assessment.

New partial guidance (in particular Science Reports SR2, SR3 and SR7) and new risk assessment tools (CLEA model version v1.04, v1.05 and currently v1.06) were published and these allow environmental practitioners to derive generic and site specific Soil Assessment Criteria (GAC and SAC). The EA and DEFRA are currently in the process of updating the existing TOX reports and Soil Guideline Values (SGVs) to reflect the new guidance. Thus far SGVs for arsenic, nickel, mercury, selenium and BTEX compounds (benzene, toluene, ethylbenzene and xylenes) have been made available.

In addition Land Quality Management (LQM), Chartered Institute of Environmental Health (CIEH) and Contaminated Land Applications in Real Environments (CL:AIRE) have undertaken the production of GAC values using CLEA 1.04 for parameters not covered by SGV's.

Alterations have been made to the CLEA model since the GAC's calculated by LQM / CIEH and CL:AIRE, which used software version v1.04. The Environment Agency have however confirmed that v1.05 has only a "minor effect on assessment criteria calculated using the CLEA software 1.04" and consequently the GAC's derived are considered to remain valid. Environment Agency SGV's generated using v1.04 have also not been updated. Software version v1.06 is identical to v1.05 with some password protection enhancements that in no way effect the GAC values generated.

Waterman Energy Environment and Design have used the following hierarchy for the generic assessment of soils to evaluate Human Health.

- Published Soil Guideline Values (SGV's), or in their absence;
- GAC prepared in accordance with the CLEA v1.04 / v1.06 model by authoritative bodies (e.g. Chartered Institute of Environmental Health (CIEH), Land Quality Management (LQM) and Contaminated Land Applications in Real Environments (CL:AIRE), or in their absence,
- Waterman in-house GAC prepared in accordance with the CLEA V1.04 model or associated documents.

Tabulated values of the GACs used and there reference sources are presented overleaf.

Detailed Quantitative Risk Assessment (DQRA)

Detailed Quantitative Risk Assessments are undertaken on a site specific basis and full details of the alterations to the CLEA model and generic land use scenarios will be described within the specific reports.

Generic Quantitative Risk Assessment Criteria

Proposed End Use	units		Residential		Source
Soil Organic Matter Content	%	1	2.5	6	
Arsenic	mg/kg	32	32	32	CLEA SGV 2009
Antimony	mg/kg	550	550	550	CL:AIRE 2009
Barium	mg/kg	1300	1300	1300	CL:AIRE 2009
Beryllium	mg/kg	51	51	51	LQM / CIEH
Boron (Water Soluble)	mg/kg	291	291	291	LQM / CIEH
Cadmium	mg/kg	10	10	10	CLEA SGV 2009
Chromium (Total)	mg/kg	3000	3000	3000	LQM / CIEH
Chromium (VI)	mg/kg	4.3	4.3	4.3	LQM / CIEH
Cobalt	mg/kg	240	240	240	Dutch Intervention
Copper	mg/kg	2330	2330	2330	LQM / CIEH
Lead	mg/kg	450	450	450	CLEA SGV 2002 (Withdrawn in 2008)
Mercury	mg/kg	1	1	1	CLEA SGV 2009
Molybdenum	mg/kg	670	670	670	CL:AIRE 2009
Nickel	mg/kg	130	130	130	CLEA SGV 2009
Selenium	mg/kg	350	350	350	CLEA SGV 2009
Vanadium*	mg/kg	75	75	75	LQM / CIEH
Zinc	mg/kg	3750	3750	3750	LQM / CIEH
Cyanide (Free)	mg/kg	26	26	26	Waterman GAC - CLEA
Complex Cyanide	mg/kg	63000	63000	63000	v1.06
Total Cyanide	mg/kg				
Thiocyanate	mg/kg	230	230	230	Waterman GAC - CLEA v1.06
Aliphatic EC5 - EC6	mg/kg	30	55	110	LQM / CIEH
Aliphatic EC6 - EC8	mg/kg	73	160	370	LQM / CIEH
Aliphatic EC8-EC10	mg/kg	19	46	110	LQM / CIEH
Aliphatic EC10-EC12	mg/kg	93	230	540	LQM / CIEH
Aliphatic EC12-EC16	mg/kg	740	1700	3000	LQM / CIEH
Aliphatic EC16-EC35	mg/kg	45000	64000	76000	LQM / CIEH
Aliphatic EC35-EC44	mg/kg	45000	64000	76000	LQM / CIEH
Aromatic C6-C7 (Benzene)	mg/kg	0.08	0.16	0.33	CLEA SGV 2009 /
Aromatic C7-C8 (Toluene)	mg/kg	120	270	610	Waterman GACs - CLEA v1.04
Aromatic C8-C10	mg/kg	27	65	151	LQM / CIEH
Aromatic C10-C12	mg/kg	69	160	346	LQM / CIEH
Aromatic C12-C16	mg/kg	140	310	593	LQM / CIEH
Aromatic C16-C21	mg/kg	250	480	770	LQM / CIEH

Proposed End Use	units		Residential		Source
Soil Organic Matter Content	%	1	2.5	6	
Aromatic C21-C35	mg/kg	890	1100	1230	LQM / CIEH
Benzene	mg/kg	0.08	0.16	0.33	CLEA SGV 2009 /
Toluene	mg/kg	120	270	610	Waterman GACs - CLEA v1.04
Ethyl Benzene	mg/kg	65	150	350	_
Xylene - o	mg/kg	45	110	250	_
Xylene - m	mg/kg	44	100	240	
Xylene - p	mg/kg	42	98	230	_
MTBE (Methyl tert-butyl ether)	mg/kg	49	84	160	CL:AIRE 2009
Naphthalene	mg/kg	1.5	3.7	8.7	LQM / CIEH
Acenaphthylene	mg/kg	170	400	850	LQM / CIEH
Acenaphthene	mg/kg	210	480	1000	LQM / CIEH
Fluorene	mg/kg	160	380	780	LQM / CIEH
Phenanthrene	mg/kg	92	200	380	LQM / CIEH
Anthracene	mg/kg	2300	4900	9200	LQM / CIEH
Fluoranthene	mg/kg	260	460	670	LQM / CIEH
Pyrene	mg/kg	560	1000	1600	LQM / CIEH
Benzo(a)anthracene	mg/kg	3.1	4.7	5.9	LQM / CIEH
Chrysene	mg/kg	6	8	9.3	LQM / CIEH
Benzo(b)fluoranthene	mg/kg	5.6	6.5	7	LQM / CIEH
Benzo(k)fluoranthene	mg/kg	8.5	9.6	10	LQM / CIEH
Benzo(a)pyrene	mg/kg	0.83	0.94	1	LQM / CIEH
Indeno(1,2,3-cd)pyrene	mg/kg	3.2	3.9	4.2	LQM / CIEH
Di-benzo(a.h.)anthracene	mg/kg	0.76	0.86	0.9	LQM / CIEH
Benzo(g.h.i.) Perylene	mg/kg	44	46	47	LQM / CIEH
Phenols	mg/kg	210	390	420	CLEA 2006 / CLEA SGV
Phenol	mg/kg	210	390	420	1.04
Pentachlorophenol (PCP)	mg/kg	0.55	1.3	2.96	LQM / CIEH
2,4-Dimethylphenol	mg/kg	19	43	97	CL:AIRE 2009
Total Cresols (2-, 3- and 4-methylphenol)	mg/kg	80	180	400	CL:AIRE 2009
1,1,2,2 Tetrachloroethane	mg/kg	0.9	2.1	4.8	LQM / CIEH
1,1,2,2 Tetrachloroethene	mg/kg	0.9	2.1	4.8	LQM / CIEH
1,1,1 Trichloroethane	mg/kg	6.2	13	28	LQM / CIEH
Trichloroethane	mg/kg	0.018	0.039	0.089	LQM / CIEH
Tetrachloromethane (Carbon Tetrachloride)	mg/kg	0.0054	0.008	0.014	LQM / CIEH

Proposed End Use	units		Residential		Source
Soil Organic Matter Content	%	1	2.5	6	
1,2- Dichloroethane	mg/kg	0.00047	0.00064	0.00099	LQM / CIEH
Chloroethene (Vinyl chloride)	mg/kg	0.11	0.22	0.49	LQM / CIEH
Trichloroethene	mg/kg	0.94	2.1	4.8	LQM / CIEH
Sum of PCDDs, PCDFs and dioxins like PCBs	mg/kg			8	CLEA SGVs 2009
Isopropylbenzene	mg/kg	11	27	64	CL:AIRE 2009
Propylbenzene	mg/kg	34	82	190	CL:AIRE 2009
Styrene	mg/kg	8.1	19	43	CL:AIRE 2009
Bromobenzene	mg/kg	0.87	2	4.7	CL:AIRE 2009
1,1,2 Trichloroethane	mg/kg	0.6	1.2	2.7	CL:AIRE 2009
1,1-Dichloroethane	mg/kg	2.4	3.9	7.4	CL:AIRE 2009
1,1-Dichloroethene	mg/kg	0.23	0.4	0.82	CL:AIRE 2009
1,2,4-Trimethylbenzene	mg/kg	0.35	0.85	2	CL:AIRE 2009
1,2-Dichloropropane	mg/kg	0.024	0.042	0.084	CL:AIRE 2009
2-Chloronaphthalene	mg/kg	3.7	9.2	22	CL:AIRE 2009
Bromodichloromethane	mg/kg	0.016	0.03	0.061	CL:AIRE 2009
Bromoform	mg/kg	2.8	5.9	13	CL:AIRE 2009
Chloroethane	mg/kg	8.3	11	18	CL:AIRE 2009
Chloromethane	mg/kg	0.0083	0.0098	0.013	CL:AIRE 2009
Cis 1,2 Dichloroethene	mg/kg	0.11	0.19	0.37	CL:AIRE 2009
Dichloromethane	mg/kg	0.58	0.98	1.7	CL:AIRE 2009
Hexachloroethane	mg/kg	0.2	0.48	1.1	CL:AIRE 2009
Trans 1,2 Dichloroethene	mg/kg	0.19	0.34	0.7	CL:AIRE 2009
Bis (2-ethylhexyl) phthalate	mg/kg	280	610	1100	CL:AIRE 2009
Butyl benzyl phthalate	mg/kg	1400	3300	7200	CL:AIRE 2009
Diethyl Phthalate	mg/kg	120	260	570	CL:AIRE 2009
Di-n-butyl phthalate	mg/kg	13	31	67	CL:AIRE 2009
Di-n-octyl phthalate	mg/kg	2300	2800	3100	CL:AIRE 2009
Biphenyl	mg/kg	66	160	360	CL:AIRE 2009
2,4-Dinitrotoluene	mg/kg	1.5	3.2	7.2	CL:AIRE 2009
2,6-Dinitrotoluene	mg/kg	0.78	1.7	3.9	CL:AIRE 2009
Tributyl tin oxide	mg/kg	0.25	0.59	1.3	CL:AIRE 2009

Soil Contamination - Risk of Harm to Property

Structures and Underground Services

Buried Concrete

BRE Special Digest 1 (2005), 3rd Edition, entitled *Concrete in aggressive ground*, provides guidance on the specification for concrete for installation in natural ground and in brownfield locations. The procedures given for the ground assessment and concrete specification cover the fairly common occurrences of sulfates, sulfides and acids, and the more rarely occurring aggressive carbon dioxide found in some ground and surface waters, which affects concrete foundations and sub-structures. It gives procedures for specification of concrete and applies to both buildings and civil engineering construction.

Water Supply Pipes

Guidance is provided in the Water Regulations Advisory Scheme Information and Guidance Note entitled *"The selection of materials for water supply pipes to be laid in contaminated land"* No. 9-04-03, October 2002.

Where soil concentrations exceed these threshold values, it is likely that special consideration of material selection will be required.

Notwithstanding the above, it is reasonable to assume that if contaminants are present above background concentrations, problems will arise and therefore materials should be selected accordingly. In cases where there is uncertainty; eg potentially aggressive contaminants are present for which there are no critical thresholds, some organic contaminants may have a greater effect on polyethylene (PE) pipes when present in mixtures than singly; this approach is recommended by the Water Suppliers,.

The material selection thresholds contained in this document are reproduced in the table below:

Contaminant concentrations in Soils

Contaminant	Material selection threshold mg/kg
Corrosion	
Sulphate	2000
Sulphur	5000
Sulphide	250
Ph	Less than pH5 greater than pH8
Toxic Substances	
Antimony	10
Arsenic	10*
Cadmium	3
Chromium (total)	600
Chromium (hexavalent)	25
Cyanide (free)	25*
Cyanide (complex)	250*
Lead	500
Mercury	1
Selenium	3

Contaminant	Material selection threshold mg/kg
Thiocyanate	50
Organic Contaminants	
Coal tar	50
Cyclohexane extractable	50
Phenol	5
PAHs	50
Toluene extractable	50
Petroleum hydrocarbons	50

Footnotes:

Soil Contamination - Risk of Combustion

The combustibility of soils is a complex function of soil type, energy content, and availability of oxygen. The Building Research Establishment (BRE) has published guidance based on Calorific Value (i.e. energy content, alone), namely *IP 2/87*, *Fire and explosion hazards associated with the redevelopment of contaminated land*. This document provides a level below which combustibility is unlikely (2MJ/kg) and a level above which combustibility is likely (10MJ/kg). In the range between these two values combustibility is uncertain. Therefore, where the lower value is exceeded, the other key factors mentioned above need to be considered.

Soil Contamination - Risk of Harm to Vegetation

Where there is topsoil present on Site and it is being considered for reuse in landscaped areas then it needs to be assessed for its suitability for use by an appropriately qualified specialist. Topsoil can be both naturally-occurring and manufactured. The requirements for topsoil that is to be reused on site are specified in BS3882:2007 and cover a range of properties including texture, organic matter content, grading, pH, nutrients and phytotoxic contaminants. The specification for phytotoxic contaminants is reproduced in the table below:

Phytotoxic Contaminants (by soil pH) for Topsoil

Contaminant*	рН			
Contaminant	<6	6.0 to 7.0	>7	
Zinc (Nitric acid extractable**)	<200mg/kg	<200mg/kg	<300mg/kg	
Copper (Nitric acid extractable**)	<100mg/kg	<135mg/kg	<200mg/kg	
Nickel (Nitric acid extractable**)	<60mg/kg	<75mg/kg	<110mg.kg	

Footnotes:

The risk to human health and the environment needs to be considered as well as phytotoxicity and this will be carried out using the Generic Assessment Criteria selected for these risks as described elsewhere in this appendix and this report.

In order to assess the suitability of topsoil to be reused the full range of testing specified needs to be carried out and assessed by an appropriately qualified specialist.

^{*}It is not recommended that water pipes should be laid in sites where these substances are identified or expected

^{*}The lower of the Generic Assessment Criteria for chemical contaminants (human health and the environment) and phytotoxicity shall be used for topsoil

^{**}The method of testing is given in Annex D to BS3882:2007 Specification for topsoil and requirements for use.

Controlled Waters Generic Assessment Criteria

The Screening Values adopted by Waterman for ground and surface water quality have been selected on the basis of the water quality standards that apply at the controlled water receptor considered to be at potential risk of harm. Where the receptor is to be assessed for potential harm to aquatic life then the Environmental Quality Standards (EQS) for List 1 and List 2 dangerous substances (EC Dangerous Substances Directive (76/464/EEC)) will be used. Where the receptor is to be assessed for potential harm with respect to use as a drinking water resource then the Water Supply (Water Quality) Regulations 1989 and 2000 as amended will be used. Where the receptor is to be used by aquatic life and for drinking water purposes both sets of criteria will be used. The standards for the substances tested for in this investigation are provided in Table D3 and D4 below.

Environmental Quality Standards

nvironmental Quality Standards (EQS) annual average		Freshwater
pH (Acid)		6.0
pH (Alkaline)		9.0
Arsenic	μg/l	50
Barium	μg/l	NV
Cadmium	μg/l	5
Chromium	μg/l	$5 - 250^{(1)}$
Lead	μg/l	4 -250 ⁽¹⁾
Mercury	μg/l	1
Selenium	μg/l	NV
Boron	μg/l	2000
Copper	μg/l	1 - 28 ⁽¹⁾
Nickel	μg/l	50 - 200 ⁽¹⁾
Zinc	μg/l	75 - 500 ⁽¹⁾
Sulfate	mg/l	400
Cyanide	μg/l	NV
Ammonium (NH ₃ as N)	μg/l	15
Ammonium (NH ₄ +)	μg/l	NV
Nitrate (as N0 ₃)	mg/l	NV
Total Petroleum Hydrocarbons (TPH)	μg/l	NV
Polyaromatic Hydrocarbons (PAH)	μg/l	NV
Benzo(a)pyrene	μg/l	NV
Phenols	μg/l	NV
Phenol	μg/l	30
Tetrachloromethane (PCM)	μg/l	12
Trichloroethene (TCE)	μg/l	10
Tetrachloroethene (PCE)	μg/l	10
Benzene	μg/l	30
Ethyl Benzene	μg/l	NV
Toluene	μg/l	50
Xylene	μg/l	30

Footnotes:

NV - No value

(1) - Dependant on Hardness (See DoE circular 7/89).

11/4 10		as amended
pH (Acid)		5.5
pH (Alkaline)		9.5
Acrylamide	μg/l	0.1
Antimony	μg/l	5
Arsenic	μg/l	10
Barium	μg/l	1000
Bromate	μg/l	10
Calcium	mg/l	250
Cadmium	μg/l	5
Chloride	mg/l	250
Chromium	μg/l	50
Iron	μg/l	200
Lead	μg/l	25 (Reducing to 10 in 201
Magnesium	mg/l	50
Manganese	μg/l	50
Mercury	μg/l	1
Selenium	μg/l	10
Sodium	mg/l	200
Boron	μg/l	1000
Copper	μg/l	2000
Nickel	μg/l	20
Zinc	μg/l	5000
Sulphate	mg/l	250
Total/Complex Cyanide	μg/l	50
Ammonium (NH4+)	μg/l	500
Nitrate (as N0 ₃)	mg/l	50
Nitrite (as N0 ₂)	mg/l	0.5
Hydrocarbons (dissolved/emulsions)	μg/l	10
Polyaromatic Hydrocarbons (PAH)	μg/l	0.1
Benzo(a)pyrene	μg/l	0.01
Phenol	μg/l	0.5
Tetrachloromethane	μg/l	3
Trichloroethene (TCE)	-	40 (
Tetrachloroethene (PCE)	— μg/l	10 (combined total)
Trihalomethanes	μg/l	100
Vinyl chloride	μg/l	0.5
Benzene	μg/l	1
Ethyl Benzene	µg/l	NV
Toluene	μg/l	NV
Xylene	μg/l	NV
EU Surface Water Directive (75/440/EEC) - Class A1 - only si		t required

Ground Gas and Volatile Organic Compounds Generic Assessment Criteria

Ground Gas

The Building Regulations 2000 Approved Document C (2004 Edition) require that methane and other gases from the ground are considered on a risk assessment basis. Methane and other gases from the ground are defined in this document as "hazardous soil gases which originate from waste deposited in landfill sites or are generated naturally". Ground gas can also be generated by fill materials present on sites that are not classed as landfills. Therefore a preliminary ground gas risk assessment should consider the potential for methane or other gases to be present. This includes identification of the potential sources on or near to the site that could produce methane or other ground gas.

The most common gases assessed with respect to development are methane and carbon dioxide. Methane forms a potentially explosive mixture when mixed with air within certain concentration limits, known as the "explosive range". The Lower Explosive Limit (LEL) for methane is 5%. Carbon dioxide (CO₂) is a dense gas, capable of accumulating in confined spaces such as basements, causing a potential asphyxiation hazard. The Occupational Exposure Limit (OEL) for a short-term exposure to carbon dioxide is 1.5% over a 15 minute period. Both methane and carbon dioxide when present at high concentrations can act as simple asphyxiants by reducing the oxygen content by dilution.

Reference in the Building Regulations is made to guidance documents produced by a variety of organisations, primarily those produced by the Construction Industry Research and Information Association (CIRIA). These include the following documents:

- CIRIA Report 149 Protecting development from methane, 1995
- CIRIA Report 131 The measurement of methane and other gases from the ground, 1993.
- CIRIA Report 150 Methane investigation strategies, 1995
- CIRIA Report 151 Interpreting measurements of gas in the ground, 1995
- CIRIA Report 152 Risk assessment for methane and other gases from the ground, 1995

In addition guidance is provided in the BRE document "Construction of new buildings on gascontaminated land (BRE Report BR212)'.

CIRIA, Report 131, 1993, suggests that there are no fixed rules for safe gas concentrations on a site since this risk is dependent on a number of factors that include gas emission rate from the ground and the potential for gas to enter into structures.

The Building Regulations relate to domestic dwellings. However, for non-domestic dwellings the same principle of risk assessment applies.

The latest guidance document is provided by CIRIA Report C665, "Assessing risks posed by hazardous ground gases to buildings", 2007 and BS8485:2007: "Code of practice for the characterisation and remediation from ground gas in affected developments".

CIRIA C665 aims to consolidate good practice in investigation, facilitate the collection of relevant data, instigate appropriate monitoring programmes, all in a risk based approach to gas contaminated land. As with BS8485, this document largely focuses on Methane and Carbon Dioxide. However, much of the text is also relevant to consideration of other contamination present in vapour phase.

BS8485, 2007 describes methods for the investigation and assessment of the ground gases methane and carbon dioxide provides recommendations for protection of new development on affected sites. This standard is not intended for the assessment of completed developments and considers only methane and carbon dioxide.

Both of these publications have been prepared to be generally consistent with CLR11, *Model Procedures* for the management of land contamination, (DEFRA and the Environment Agency, 2004a) and follow a step by step approach summarised below:-

- 1. Desk Study and Site Walkover
- 2. Development of a Preliminary Conceptual Model and Risk Assessment
- 3. Site Investigation (If deemed necessary from stage 2)
- 4. Risk Assessment and Site Characterisation
- 5. Recommendation and Mitigation

Where, the preliminary conceptual model has deemed further investigation necessary to characterise the ground gas regime, an appropriate site investigation and monitoring regime should be designed and undertaken. In-depth guidance to assist in the design of the investigation is provided within C665, which describes intrusive investigation techniques and provides guidance on selecting the number and location of monitoring wells based on the site specific conceptual model.

Waterman has generally followed the approach recommended in CRIRIA C665 with respect to characterising a site and determining the levels of gas protection methods required. This approach is generally consistent with the guidance provided in BS8485.

In accordance with C665, to assess the ground gas regime at a site, the ground gas monitoring data should be assessed by determining the Gas Screening Value (GSV) (I/hr) (BS8485 refers to the GSV as the Hazardous Gas Flow Rate). The GSV is calculated as follows:

GSV = (Measured Maximum CO_2 or CH_4 Gas Concentration (%) / 100) x Maximum Measured Gas Flow Rate from boreholes (I/hr)

Where the gas flow rate has been measured as less than the detection limit of the instrument used (ie <0.1 l/hr), C665 recommends that the detection limit for the Gas Analyser is used as the gas flow rate (ie 0.1l/hr).

The Gas Screening Value is used to classify the site, subject to the proposed end use of the site, falling into either Situation A or Situation B, as described below.

Situation A – For All Development Types except Low Rise Housing with a ventilated underfloor void (150mm)

For situation A, the Modified Wilson and Card classification system is used. This system attributes a Characteristic Situation (CS) value to the site/zone depending upon the calculated GSV. When attributing a CS, additional factors including the maximum recorded gas concentration and the maximum recorded gas flow rate should also be taken into account and may result in an increase in the CS value. Table I.2 below, outlines the CS values associated GSV's and additional factors which must be taken into account.

Modified Wilson and Card Classification

Characteristic Situation (CIRIA 149)	Risk Classification	Gas screening value (CH ₄ CO ₂) I/hr	Additional Factors	Typical source of generation
1	Very low risk	<0.07	Typically methane ≤1% and / or carbon dioxide ≤5%. Otherwise consider increase to CS 2.	Natural soils with low organic content "Typical' made ground
2	Low risk	<0.7	Borehole air flow rate not to exceed 70 l/hr. Otherwise consider increase to CS 3.	Natural soil, high peat/organic content. "Typical' made ground
3	Moderate risk	<3.5		Old landfill, inert waste, mineworking flooded
4	Moderate to high risk	<15	Quantitative risk assessment required to evaluate scope of protective measures.	Mineworking – susceptible to flooding, completed landfill (WMP 26B criteria)
5	High risk	<70		Mineworking unflooded inactive with shallow workings near surface
6	Very High risk	>70		Recent landfill site

Notes:

- Gas screening value: litres of gas / hour is calculated by multiplying the gas concentration (%) by the measured borehole 1) flow rate (I/hr)
- Source of gas and generation potential/performance must be identified.
- 2) 3) If there is no detectable flow use the limit of detection of the instrument.

Once the characteristic situation has been determined, the requirements and scope of gas protection measures can be determined based on Table I.3 below (based on guidance provided within C665):

Modified Wilson and Card Protection Measures

	.cc micon and		I building (not those subject		
001			C Classification Method	Office/cor	mmercial/industrial development
CS*	Risk Classification	No. of levels of protection	Typical scope of protective measures	No. of levels of protection	Typical scope of protective measures
1	Very low risk	None	No special precautions	None	
2	Low risk	2	 a) Reinforced concrete cast in situ floor slab (suspended, nonsuspended or raft) with at least 1200g DPM^{2,7} and underfloor venting. b) Beam and block or precast concrete and 2000g DPM⁷/ reinforced gas membrane and underfloor venting. All joints and penetrations sealed 	1 to 2	 a) Reinforced concrete cast in situ floor slab (Suspended, non-suspended or raft) with at least 1200g DPM^{2,7}. b) Beam and block or pre-cast concrete slab and minimum 2000g DPM / reinforced gas membrane. c) Possibly underfloor venting or pressurisation in combination with a) and b) depending on use. All joints and penetrations sealed
3	Moderate risk	2	All types of floor slab as above. All joints and penetrations sealed. Proprietary gas resistant membrane and passively ventilated or positively pressurised underfloor sub-space.	1 to 2	All types of floor slab as above. All joints and penetrations sealed. Minimum 2000g/reinforced gas proof membrane and passively ventilated underfloor sub-space or positively pressurised underfloor sub-space.
4	Moderate to high risk	3	All types of floor slab as above. All joins and penetrations sealed. Proprietary gas resistant membrane and passively ventilated underfloor sub-space or positively pressurised underfloor sub-space, oversite capping or binding and in ground venting layer.	2 to 3	All types of floor slab as above. All joins and penetrations sealed. Proprietary gas resistant membrane and passively ventilated or positively pressurised underfloor sub-space.
5	High risk	4	Reinforced concrete cast in situ floor slab (suspended, non-suspended or raft). All joints and penetrations sealed. Proprietary gas resistant membrane and ventilated or positively pressurised underfloor subspace, oversite capping and in ground venting layer and in ground venting wells or barriers	3 to 4	Reinforced concrete cast in situ floor slab (suspended, nonsuspended or raft). All joins and penetrations sealed. Proprietary gas resistant membrane and passively ventilated or positively pressurised underfloor sub-space with monitoring facility. In ground venting wells or barriers.

			l building (not those subject C Classification Method	Office/cor	nmercial/industrial development
CS*	Risk Classification	No. of levels of protection	Typical scope of protective measures	No. of levels of protection	Typical scope of protective measures
6	Very high risk	5	Not suitable unless gas regime is reduced first and quantitative risk assessment carried out to assess design of protection measures in conjunction with foundation design.	4 to 5	Reinforced concrete cast in-situ floor slab (suspended, non-suspended or raft). All joints and penetration sealed. Proprietary gas resistant membrane and actively ventilated or positively pressurised underfloor sub-space with monitoring facility, with monitoring. In ground venting wells and reduction of gas regime.

Notes:

- Typical scope of protective measures may be rationalised for specific developments on the basis of quantitative risk assessments.
- 2) Note, the type of protection is given for illustrative purposes only. Information on the detailing and construction of passive protection measures is given in BR414 [Ref: 16]. Individual site specific designs should provide the same number of separate protective methods for any given characteristic situation.
- 3) In all cases there should be minimum penetration of ground slabs by services and minimum number of confined spaces such as cupboards above the ground slab. Any confined spaces should be ventilated.
- 4) Foundation design must minimise differential settlement particularly between structural elements and ground baring slabs.
- Floor slabs should provide an acceptable formation on which to lay the gas membrane. If a block beam floor is used it should be well detailed so it has no voids in it that membranes have to span and all holes for service penetrations should be filled. The minimum density of the blocks should be 600kg/m³ and the top surface should have a 4:1 sand cement grout brushed into all joints before placing any membranes (this is also good practice to stabilise the floor and should be carried out regardless of the need for gas membranes).
- 6) The gas resistant membrane can also act as the damp proof membrane.
- 7) DPM = Damp Proof Membrane

Situation B – For Low Rise Housing with a ventilated underfloor void (min 150mm)

Situation B should be used for low-rise residential housing with gardens and sub-floor void. Where a sub-space void is not proposed, the development should be assessed using the situation A classification system above.

For situation B, the National House Building Council's (NHBC) Traffic Light classification system is used. This system attributes a colour to a site/zone depending upon the calculated GSV. As with the Wilson and Card system, in addition to the GSV, additional factors including the maximum recorded gas concentration and the maximum recorded gas flow rate must be taken into account when determining the Traffic Light classification. Table I.4, outlines the Traffic Light classification system, based on the calculated GSV's and additional factors which must be taken into account.

NHBC traffic light system for 150mm void

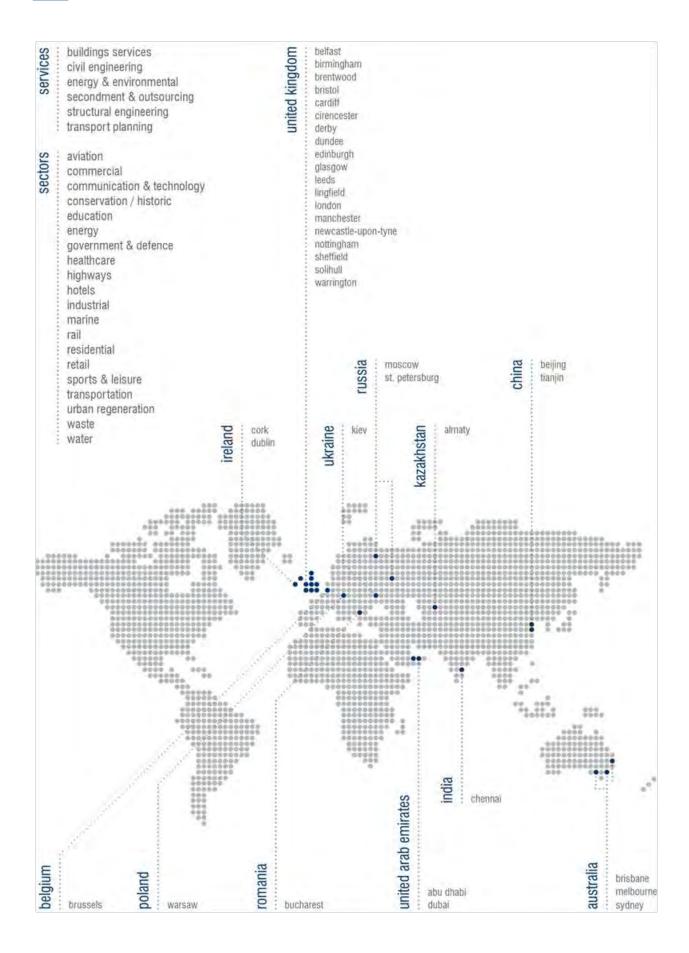
	Me	thane	Carbo	n Dioxide
Traffic Light	Typical Maximum Concentration (% v/v)	Gas Screening Value (GSV) I/hr	Typical Maximum Concentration (% v/v)	Gas Screening Value (GSV) I/hr
Green				
Amber 1	1	0.16	5	0.78
Amber 2	5	0.63	10	1.56
	20	1.56	30	3.13
Red				

Notes:-

- The worst gas regime identified at the site, either methane or carbon dioxide, recorded from monitoring in the worst temporal conditions, will be the decider as to what Traffic Light and GSV is allocated.
- Generic GSVs are based on guidance contained within latest revision of Department of the Environment and the Welsh
 Office (2004 edition) "The Building Regulations: Approved Document C" [Ref:17] and used a sub-floor void of 150mm
 thickness.
- This assessment is based on a small room e.g. downstairs toilet with dimensions of 1.5 x 2.5m, with a soil pipe passing into the sub-floor void.
- The GSV, in litres per hour, is as defined as the bore hole flow rate multiplied by the concentration of the particular gas being considered.
- The typical maximum concentrations can be exceeded in certain circumstances should the conceptual site model indicate it is safe to do so. This is where professional judgement will be required based on a thorough understanding of the gas regime identified at the site where monitoring in the worst case temporal conditions has occurred.
- The GSV threshold should not generally be exceeded without completion of a detailed gas risk assessment taking into account site specific conditions.

Once the Traffic Light classification has been determined, the requirements and scope of gas protection / mitigation measures can also be determined based on Table I.5 below (based on guidance provided within CIRIA C665):

Gas Protection Measures for Low-Rise Housing Development Based Upon Allocation NHBC Traffic Light (Boyle and Witherington, 2006)


Traffic Light Classification	Protection Measures Required
Green	Negligible gas regime identified and gas protection measures are not considered necessary.
Amber 1.	Low to intermediate gas regime identified, which requires low-level gas protection measures, comprising a membrane and ventilated sub-floor void to create a permeability contrast to limit the ingress into buildings. Gas protection measures should be as prescribed in BRE Report 414 (Johnson 2001). Ventilation of sub-floor void should facilitate a minimum of one complete volume change per 24 hours.
Amber 2.	Intermediate to high gas regime identified, which requires high level gas protection measures, comprising a membrane and ventilated sub-floor void to create a permeability contrast to prevent the ingress of gas into buildings. Gas protection measures should be as prescribed in BRE Report 414. Membranes should always be fitted by a specialist contractor. As with Amber 1, ventilation of the sub-floor void should facilitate a minimum of one complete volume change per 24 hours. Certification that these passive protection measures have been installed correctly should be provided.
Red	High gas regime identified. It is considered that standard residential housing would not normally be acceptable without a further Gas Risk Assessment and / or possible remedial mitigation measures to reduce and / or remove the source of gas.

Volatile Organic Compounds

The Building Regulations 2000 Approved Document C (2004 Edition) also refers to volatile organic carbons (VOCs). These are primarily assessed by examination of the VOC content of site soils. Further guidance on VOCs is provided in "The VOCs Handbook; Investigating, assessing and managing risks from inhalation of VOCs at land affected by contamination", CIRIA Report C682, 2009.

For former landfill sites the risk from a wider range of trace gases are considered on a site specific basis when appropriate.

waterman

Appendix F-4: Type 2 Asbestos Survey, Osborne on behalf of Network Rail, 2009

Asbestos Type 2 Report

Site: TWICKENHAM Rail Station

Status: Authorised

Risk Colour: LightBlue

Site Reference 25683 Mentor/REID ID 257009000

Site/Property

TWICKENHAM Rail Station

Name

Description TWICKENHAM Rail Station

ELR RDG1
Mileage 11.0484
Territory Southern
Route Southern

Block Address London Road, Twickenham, Greater London

London Road Twickenham Greater London TW1 3SX

Category Station
Survey Date 18-Jun-2009

Version 4

LEGEND for Risk Colours				
Colour Risk				
Red	High			
Yellow	Medium			
Green	Low			
Blue	Very Low			
Grey	No ACMs present or Property is Post 1999			
White/ No Colour	No Survey Performed			

IMPORTANT - THE FOLLOWING MUST BE READ PRIOR TO UNDERTAKING ANY INSPECTION OR OTHER WORKS Scope of the Asbestos Survey

Unless stated to the contrary all inspections have been carried out to the standard of an MDHS 100 type 2 asbestos survey, as defined by the HSE.

These are visual, non-intrusive surveys only and consequently only areas that are reasonably accessible have been inspected. No attempt has been made for example to access any sealed void; covered area; plant; machinery or equipment or to inspect any ducts, cable trays or areas above suspended ceilings higher than 3 metres (the safe limit of inspection using a 2 metre ladder). No equipment has been moved or floor coverings lifted and no panelling or partitioning has been removed or areas opened up, in the course of the inspection.

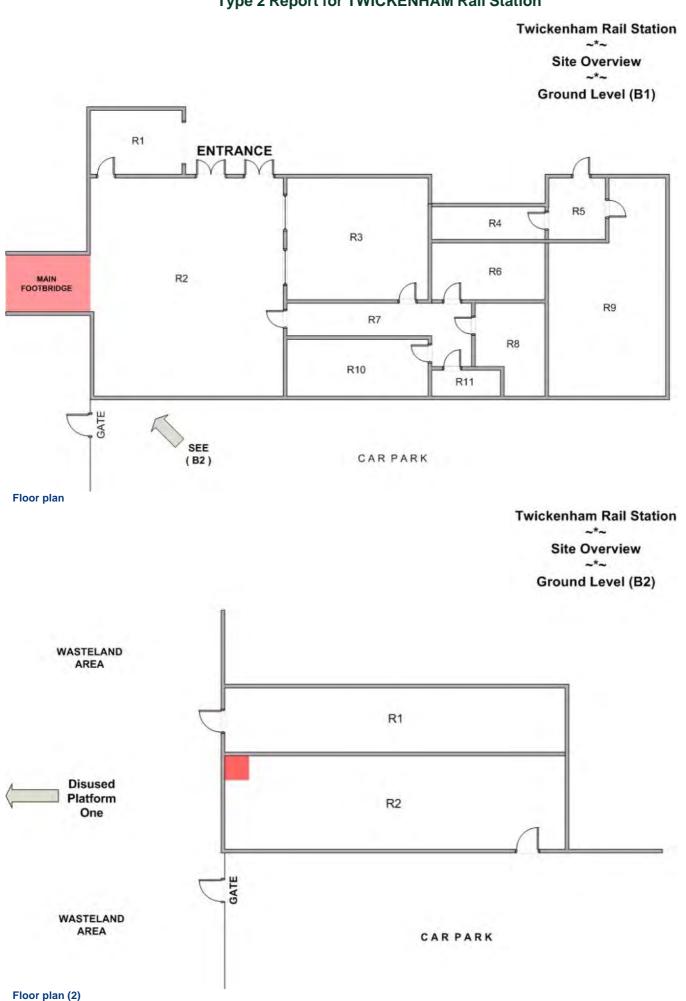
Any specific rooms or other parts that could not be inspected are listed in the text.

Where materials were suspected of containing asbestos, samples were taken, analysed and the results have been incorporated.

Prime Contractor	Osborne	Sub-contractor	Crabtree	
Address	Raven House First Fl 29 Linkfield Lane Redhill Surrey RH1 1JP	Address	2A Wanlip Road Plaistow London E13 8QP	I III S IS dil Ulicon
E-Mail	chris.rowe@osborne.co.uk	E-Mail	headoffice@crabtrees.co.uk	101
Telephone	017373788200	Telephone	020 7055 5355	0
Surveyor Name	Richard Ward			July
Comments	MONITORING INSPECTION CARRIE RECORDED. NO LAB TEST REQUIRED	D OUT BY McGINLEY ON 1	2/03/09 - NO CHANGE TO LAST SURVE	/. Elisuis

Disclaimer This data is incomplete

ise of the most


Locations Not Inspected

None

Site Images

Site photo

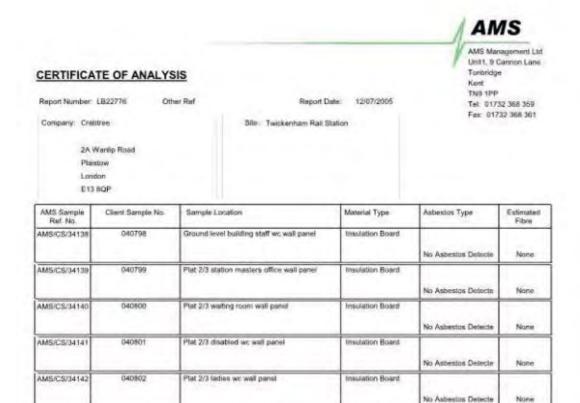
Analysis Reports

Any opinion or representation of asbestos libre content levels are a visually assessed approximation only and are outside the scope of UKAS accreditation. The analysis has been performed using the AAIS "in House" method of transmitted/polarised light microscopy and centre stop dispersion staining, besed on the HSE's MIDHS 77. AMS do not accept responsibility for any discrepancy or inaccuracy arising from samples labelled or collected by chents or third parties.

CLIENT

Number of Samples: 15 Date Samples Received: 12/07/2005

Name of Analyst C Squires Date of Analysis: 12/07/2005


For and on behalf of AMS Management Ltd.

mobile

AlidS Management Limited. Registered in Engand 3541783 Page 1 of 3

Twickenham station

Key to estimated fibre content: Trace = <2% Low = 2%-15% Medium = 15%-50% High = >50%

Any opinion or representation of asbestos fibre content levels are a visually assessed approximation only and are outside the scope of UKAS accreditation. The analysis has been performed using the AMS "in House" method of transmitted/polarised light microscopy and centre stop dispersion staining, based on the HSE's MDHS 77. AMS do not accept responsibility for any discrepancy or inaccuracy arising from samples labelled or collected by clients or third parties.

Sampled By: CLIENT

Number of Samples: 15

Date Samples Received: 12/07/2005

Name of Analyst C Squires

AMS/CS/34143

Plat 2/3 Gents we wall panel

Switch room wall penel

Date of Analysis: 12/07/2005

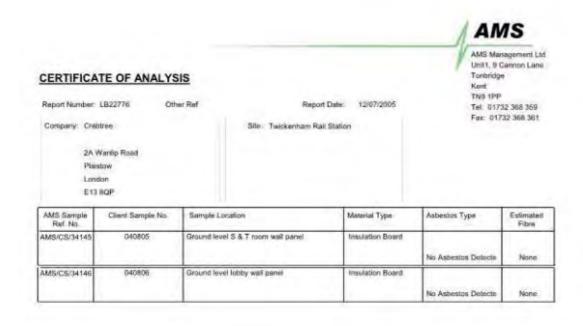
motor

For and on behalf of AMS Management Ltd.

040804

AMS Management Bulk Sample Analysis voc 4 Mar 2504 AlidS Management Limited. Registered in England 3541783

Page 2 of 3


No Asbestos Detecte

No Ashestos Detecte

None

None

Twickenham station 2

Key to estimated flore content: Trace = <2% Low = 2%-15% Medium = 15%-50% High = >50%

Any opinion or representation of asbestos fibre content levels are a visually assessed approximation only and are outside the scope of UKAS accreditation. The analysis has been performed using the AMS Th House' method of transmitted/polarised light microscopy and centre stop dispersion staining, based on the HSE's MDHS 77. AMS do not accept responsibility for any discrepancy or inaccuracy arising from samples labelled or collected by clients or third parties.

Sampled By: CLIENT Number of Samples: 15 Date Samples Received: 12/07/2005

Name of Analyst: C Squires Date of Analysis: 12/07/2005

For and on behalf of AMS Management Ltd.

AMS Management Bill Sample Analysis we a flore 2504

AMS Management Limited Registrated is England 3541783

Page 3 of 3

Twickenham station 3

Twickenham Station Building 3 - Platform 2/3

Survey Reference	193620			
ACM Location	Presumed ACM corrugated cement roofing sheets to roof canopy		Automatic Assessment	Surveyor's Assessme
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	3	3
Surface Treatment	Plain asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
Exposure	External	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb AC
ikelihood of Damage	Unlikely	Protection From Public Recommendations	No action specified	No action specified LightBlue
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	>50m2 or >50m pipe run	Public Accessibility	Inaccessible	
_evel of Identification	Presumed	Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				
Survey Reference	193621			
ACM Location	Upstand fascia panel to end of canopy roof to staircase		Automatic Assessment	Surveyor's Assessme
СМ Туре	Type 1 - Chrysotile (white)	Material Assessment	Low	Low
ondition/Deterioration	Medium Damage	Rating	5	5
Surface Treatment	Plain asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
xposure	External	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb AC
ikelihood of Damage	Unlikely	Protection From Public Recommendations	Monitor every 6 months	Monitor every 6 months
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	Small amounts or items	Public Accessibility	Heavily trafficked areas	
evel of Identification	Confirmed from sample taken	Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				
Survey Reference	193622			
ACM Location	Corrugated cement sheets to walkway canopy		Automatic Assessment	Surveyor's Assessme Very Low 3
CM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	3	3
Surface Treatment	Plain asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
roduct Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
xposure	External	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb AC
ikelihood of Damage	Unlikely	Protection From Public Recommendations	No action specified	No action specified
Occupancy	Low	Risk Colour	LightBlue	LightBlue
extent	>50m2 or >50m pipe run	Public Accessibility	Inaccessible	
evel of Identification	Presumed	Affects Vital Services	Not Known	
Risk Assessment	Unknown			

	.) po = 1.top		ran otation	
Survey Reference	193623			00
ACM Location	Platform ceiling		Automatic Assessment	Surveyor's Assessmen
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	3	3
Surface Treatment	Encapsulated asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cloth	Access Restrictions	Unrestricted	Unrestricted
Exposure	External	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb ACM
Likelihood of Damage	Unlikely	Protection From Public Recommendations	No action specified	No action specified
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	>50m2 or >50m pipe run	Public Accessibility	Heavily trafficked areas	
Level of Identification	Presumed	Affects Vital Services	Not Known	version
Risk Assessment	Unknown			in of
Comments				<u> </u>

Twickenham Station Building 3 - Platform 4/5

Survey Reference	193616			
ACM Location	ACM corrugated cement roof sheeting to canopy		Automatic Assessment	Surveyor's Assessme
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	3	3
Surface Treatment	Plain asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
Exposure	External	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb AC
Likelihood of Damage	Unlikely	Protection From Public Recommendations	No action specified	No action specified
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	>50m2 or >50m pipe run	Public Accessibility	Inaccessible	
Level of Identification	Presumed	Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				
Survey Reference	193617			,
ACM Location	Upstand fascia panel to end of canopy roof to staircase		Automatic Assessment	Surveyor's Assessme
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Low	Low
Condition/Deterioration	Medium Damage	Rating	5	5
Surface Treatment	Plain asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
Exposure	External	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb AC
ikelihood of Damage	Unlikely	Protection From Public Recommendations	Monitor every 6 months	Monitor every 6 months
Occupancy	Low	Risk Colour	LightBlue	Monitor every 6 months LightBlue
Extent	Small amounts or items	Public Accessibility	Heavily trafficked areas	
Level of Identification	Confirmed from sample taken	Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				
Survey Reference	193618			
ACM Location	Corrugated cement roof sheets to walkway canopy		Automatic Assessment	Surveyor's Assessme
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	3	Very Low 3
Surface Treatment	Plain asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
Exposure	External	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb AC
ikelihood of Damage	Unlikely	Protection From Public Recommendations	No action specified	No action specified
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	>50m2 or >50m pipe run	Public Accessibility	Inaccessible	
Level of Identification	Presumed	Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				

	Type 2 Nep	OILIOI I WICKENITA	W Kali Station	
Survey Reference	193619			n
ACM Location	Platform ceiling		Automatic Assessment	Surveyor's Assessmen
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	3	3
Surface Treatment	Encapsulated asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cloth	Access Restrictions	Unrestricted	Unrestricted
Exposure	External	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb ACM
Likelihood of Damage	Unlikely	Protection From Public Recommendations	No action specified	No action specified
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	>50m2 or >50m pipe run	Public Accessibility	Heavily trafficked areas	2
Level of Identification	Presumed	Affects Vital Services	Not Known	ren
Risk Assessment	Unknown			7 5
Comments				S

Twickenham Station Ground level - B1 - R1 Newsagents

Survey Reference	193650			nt by
ACM Location	No ACMs		Automatic Assessment	Surveyor's Assessment
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded 5
Condition/Deterioration		Rating	0	Not Recorded Ching
Surface Treatment		Priority Assessment Recommendations	None Required	None Required ARMS
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified
Occupancy		Risk Colour	LightGrey	LightGrey
Extent		Public Accessibility		
Level of Identification		Affects Vital Services	Not Known	This
Risk Assessment	Unknown			S.
Comments				an ur

Twickenham Station Ground level - B1 - R10 Staff mess room

Survey Reference	193654				nsn
ACM Location	Wall panel		Automatic Assessment	Surveyor's Assess	me
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded	use
Condition/Deterioration		Rating	0	0	으
Surface Treatment		Priority Assessment Recommendations	None Required	None Required	the m
Product Type		Access Restrictions	Unrestricted	Unrestricted	most
Exposure		Precaution/Protection	None Required	None Required	CLIN
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified	current v
Occupancy		Risk Colour	LightGrey	LightGrey	version
Extent		Public Accessibility			
Level of Identification	Not present, sample negative	Affects Vital Services	Not Known		of t
Risk Assessment	Unknown				this
Comments					doc

Twickenham Station Ground level - B1 - R11 Staff W/C

Survey Reference	193661			
ACM Location	No ACMs		Automatic Assessment	Surveyor's Assessme
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded
Condition/Deterioration		Rating	0	0
Surface Treatment		Priority Assessment Recommendations	None Required	None Required
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified
Occupancy		Risk Colour	LightGrey	LightGrey
Extent		Public Accessibility		ŭ ,
Level of Identification		Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				

Twickenham Station Ground level - B1 - R2 Booking hall

Survey Reference	193651			
ACM Location	No ACMs		Automatic Assessment	Surveyor's Assessme
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded
Condition/Deterioration		Rating	0	0
Surface Treatment		Priority Assessment Recommendations	None Required	None Required
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified
Occupancy		Risk Colour	LightGrey	LightGrey
Extent		Public Accessibility		
Level of Identification		Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				

Twickenham Station Ground level - B1 - R3 Ticket office

Survey Reference	193655				
ACM Location	No ACMs		Automatic Assessment	Surveyor's Assessn	nent
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded	
Condition/Deterioration		Rating	0	0	귤
Surface Treatment		Priority Assessment Recommendations	None Required	None Required	8
Product Type		Access Restrictions	Unrestricted	Unrestricted	an u
Exposure		Precaution/Protection	None Required	None Required	nco
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified	uncontrolled
Occupancy		Risk Colour	LightGrey	LightGrey	
Extent		Public Accessibility			copy
Level of Identification		Affects Vital Services	Not Known		Ш
Risk Assessment	Unknown				nsure
Comments					ine us

Twickenham Station Ground level - B1 - R4 Store room

Survey Reference	193656			
ACM Location	No ACMs		Automatic Assessment	Surveyor's Assessme
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded
Condition/Deterioration		Rating	0	0
Surface Treatment		Priority Assessment Recommendations	None Required	None Required
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified
Occupancy		Risk Colour	LightGrey	LightGrey
Extent		Public Accessibility		
Level of Identification		Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				

Twickenham Station Ground level - B1 - R5 Lobby 1

Survey Reference	193657				5
ACM Location	No ACMs		Automatic Assessment	Surveyor's Assess	sme <u>r</u>
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded	2
Condition/Deterioration		Rating	0	0	5
Surface Treatment		Priority Assessment Recommendations	None Required	None Required	Ollionio
Product Type		Access Restrictions	Unrestricted	Unrestricted	
Exposure		Precaution/Protection	None Required	None Required	copy.
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified	
Occupancy		Risk Colour	LightGrey	LightGrey	
Extent		Public Accessibility			noc
Level of Identification		Affects Vital Services	Not Known		2
Risk Assessment	Unknown				
Comments					

urrent version

Twickenham Station Ground level - B1 - R6 Office

193658 **Survey Reference ACM Location** No ACMs Automatic Assessment Surveyor's Assessment No ACMs Present No Risk Not Recorded **ACM Type** cument by searching ARMS **Material Assessment** Condition/Deterioration 0 Rating **Surface Treatment Priority Assessment** None Required None Required Recommendations Unrestricted Unrestricted **Product Type Access Restrictions Precaution/Protection** None Required None Required **Exposure** No action specified No action specified **Likelihood of Damage Protection From Public** Recommendations Occupancy **Risk Colour** LightGrey LightGrey **Extent Public Accessibility** Not Known **Affects Vital Services** Level of Identification **Risk Assessment** Unknown Comments

Twickenham Station Ground level - B1 - R7 Lobby

Survey Reference	193649			
ACM Location	Wall panel		Automatic Assessment	Surveyor's Assessm
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded
Condition/Deterioration		Rating	0	0
Surface Treatment		Priority Assessment Recommendations	None Required	None Required
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified
Occupancy		Risk Colour	LightGrey	LightGrey
Extent		Public Accessibility		
Level of Identification	Not present, sample negative	Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				

Twickenham Station Ground level - B1 - R8 Safe room

Survey Reference	193659			nt by
ACM Location	No ACMs		Automatic Assessment	Surveyor's Assessment
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded
Condition/Deterioration		Rating	0	Not Recorded 0
Surface Treatment		Priority Assessment Recommendations	None Required	None Required ARM Unrestricted
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified
Occupancy		Risk Colour	LightGrey	LightGrey
Extent		Public Accessibility		
Level of Identification		Affects Vital Services	Not Known	글.
Risk Assessment	Unknown			<u>s</u> .
Comments				an

Twickenham Station Ground level - B1 - R9 RPI Office/Locker room

Survey Reference	193660				
ACM Location	No ACMs		Automatic Assessment	Surveyor's Assessn	ner
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded	noc.
Condition/Deterioration		Rating	0	0	<u>∂</u>
Surface Treatment		Priority Assessment Recommendations	None Required	None Required	<u></u>
Product Type		Access Restrictions	Unrestricted	Unrestricted	1001
Exposure		Precaution/Protection	None Required	None Required	
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified	cullatific
Occupancy		Risk Colour	LightGrey	LightGrey	VELSIOI
Extent		Public Accessibility			0
Level of Identification		Affects Vital Services	Not Known		9
Risk Assessment	Unknown				CIII
Comments					000

nent by search

Twickenham Station Ground level - B2 - R1 Switch room

Survey Reference	193648			ing /
ACM Location	Wall panel		Automatic Assessment	Surveyor's Assessment
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded
Condition/Deterioration		Rating	0	0
Surface Treatment		Priority Assessment Recommendations	None Required	None Required
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified
Occupancy		Risk Colour	LightGrey	LightGrey
Extent		Public Accessibility		
Level of Identification	Not present, sample negative	Affects Vital Services	Not Known	cor
Risk Assessment	Unknown			ontrolled
Comments				lled c

Twickenham Station Ground level - B2 - R2 S and T room

Survey Reference	193662			
ACM Location	No ACMs		Automatic Assessment	Surveyor's Assessm
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded
Condition/Deterioration		Rating	0	0
Surface Treatment		Priority Assessment Recommendations	None Required	None Required
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified
Occupancy		Risk Colour	LightGrey	LightGrey
Extent		Public Accessibility		
Level of Identification		Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				

Twickenham Station Ground level - B2 - R2 S and T room

Survey Reference	193629			
ACM Location	Cable sleeve		Automatic Assessment	Surveyor's Assessme
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	4	4
Surface Treatment	Plain asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Pre-formed moulded/extruded products i.e. toilet cisterns	Access Restrictions	Unrestricted	Unrestricted
Exposure	Internal	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb AC
Likelihood of Damage	Unlikely	Protection From Public Recommendations	Monitor every 12 months; inform occupants	Monitor every 12 months; inform occupants
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	Small amounts or items	Public Accessibility	Accessible to limited numbers	
Level of Identification	Presumed	Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				LightBlue
Survey Reference	193630			
ACM Location	Wall panel		Automatic Assessment	Surveyor's Assessme
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded
Condition/Deterioration		Rating	0	0
Surface Treatment		Priority Assessment Recommendations	None Required	None Required
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
Likelihood of Damage		Protection From Public Recommendations	No action specified	Not Recorded 0 None Required Unrestricted None Required No action specified LightGrey
Occupancy		Risk Colour	LightGrey	LightGrey
Extent		Public Accessibility		
Level of Identification	Not present, sample negative	Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				6

Twickenham Station Main footbridge

Survey Reference	193624			
ACM Location	Corrugated roof to canopy		Automatic Assessment	Surveyor's Assessment
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	3	3
Surface Treatment	Plain asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
Exposure	External	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb ACM
ikelihood of Damage	Unlikely	Protection From Public Recommendations	Monitor every 6 months	Monitor every 6 months
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	Small amounts or items	Public Accessibility	Heavily trafficked areas	——————————————————————————————————————
_evel of Identification	Presumed	Affects Vital Services	Not Known	nsure
Risk Assessment	Unknown			10
Comments				use o

Twickenham Station Platform level - B1 - R11 Staff WC

Survey Reference	193647			
ACM Location	Wall panel		Automatic Assessment	Surveyor's Assessm
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded
Condition/Deterioration		Rating	0	0
Surface Treatment		Priority Assessment Recommendations	None Required	None Required
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified
Occupancy		Risk Colour	LightGrey	LightGrey
Extent		Public Accessibility		
Level of Identification	Not present, sample negative	Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				

Twickenham Station Platform level - B3 - R1 Puccino Cafe

Survey Reference	193641			
ACM Location	Ceiling panel		Automatic Assessment	Surveyor's Assessme
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	4	Very Low 4 Record; Manage; Monitor
Surface Treatment	Encapsulated asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
Exposure	Internal	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb AC
Likelihood of Damage	Unlikely	Protection From Public Recommendations	No action specified	No action specified
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	<= 10m2 or <=10m pipe run	Public Accessibility	Accessible to limited numbers	
evel of Identification	Presumed	Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				
Survey Reference	193642			
ACM Location	Wall panel		Automatic Assessment	Surveyor's Assessme
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Decorded
Condition/Deterioration		Rating	0	0
Surface Treatment		Priority Assessment Recommendations	None Required	0 None Required Unrestricted None Required No action specified LightGrey
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified
Occupancy		Risk Colour	LightGrey	LightGrey
Extent		Public Accessibility		
Level of Identification	Not present, sample negative	Affects Vital Services	Not Known	
Risk Assessment	Unknown			

Twickenham Station Platform level - B3 - R10 Disabled WC

Survey Reference	193633			
ACM Location	Ceiling panels		Automatic Assessment	Surveyor's Assessme
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	4	4
Surface Treatment	Encapsulated asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
Exposure	Internal	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb A0
Likelihood of Damage	Unlikely	Protection From Public Recommendations	No action specified	No action specified
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	<= 10m2 or <=10m pipe run	Public Accessibility	Accessible to limited numbers	
Level of Identification	Presumed	Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				
Survey Reference	193634			
ACM Location	Wall panel		Automatic Assessment	Surveyor's Assessme
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded
Condition/Deterioration		Rating	0	0
Surface Treatment		Priority Assessment Recommendations	None Required	None Required
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified
Occupancy		Risk Colour	LightGrey	LightGrey
Extent		Public Accessibility		
Level of Identification	Not present, sample negative	Affects Vital Services	Not Known	
Risk Assessment	Unknown			

Twickenham Station Platform level - B3 - R11 Waiting room

Survey Reference	193631			
ACM Location	Ceiling panels		Automatic Assessment	Surveyor's Assessme
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	4	4
Surface Treatment	Encapsulated asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cloth	Access Restrictions	Unrestricted	Unrestricted
Exposure	Internal	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb A
Likelihood of Damage	Unlikely	Protection From Public Recommendations	No action specified	No action specified
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	<= 10m2 or <=10m pipe run	Public Accessibility	Accessible to limited numbers	
Level of Identification	Presumed	Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				
Survey Reference	193632			
ACM Location	Wall panel		Automatic Assessment	Surveyor's Assessme
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded
Condition/Deterioration		Rating	0	0
Surface Treatment		Priority Assessment Recommendations	None Required	None Required
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified
Occupancy		Risk Colour	LightGrey	LightGrey
Extent		Public Accessibility		
Level of Identification	Not present, sample negative	Affects Vital Services	Not Known	
	Linkanum			
Risk Assessment	Unknown			

Twickenham Station Platform level - B3 - R2 Tank room 1

Survey Reference	193625			
ACM Location	Panel above doorway		Automatic Assessment	Surveyor's Assessme
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	4	4
Surface Treatment	Plain asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
Exposure	Internal	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb A0
Likelihood of Damage	Unlikely	Protection From Public Recommendations	Monitor every 12 months; inform occupants	Monitor every 12 months; inform occupants
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	Small amounts or items	Public Accessibility	Accessible to limited numbers	
Level of Identification	Presumed	Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				
Survey Reference	193626			
ACM Location	Ceiling panels		Automatic Assessment	Surveyor's Assessme
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	4	4
Surface Treatment	Plain asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
Exposure	Internal	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb A
Likelihood of Damage	Unlikely	Protection From Public Recommendations	Monitor every 12 months; inform occupants	Monitor every 12 months; inform occupants
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	Small amounts or items	Public Accessibility	Accessible to limited numbers	
	Presumed	Affects Vital Services	Not Known	
Level of Identification	Presumed	Affects vital Services	Not Known	
Level of Identification Risk Assessment	Unknown	Affects vital Services	Not Known	

Twickenham Station Platform level - B3 - R3 Gents W/C

Survey Reference	193652			
ACM Location	Cement ceiling panels		Automatic Assessment	Surveyor's Assessme
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	4	4
Surface Treatment	Encapsulated asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
Exposure	Internal	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb A
Likelihood of Damage	Unlikely	Protection From Public Recommendations	No action specified	No action specified
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	<= 10m2 or <=10m pipe run	Public Accessibility	Accessible to limited numbers	
evel of Identification	Presumed	Affects Vital Services	No	
Risk Assessment	Unknown			
Comments				
Survey Reference	193653			
ACM Location	Wall panel		Automatic Assessment	Surveyor's Assessme
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded
Condition/Deterioration		Rating	0	0
Surface Treatment		Priority Assessment Recommendations	None Required	None Required
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
ikelihood of Damage		Protection From Public Recommendations	No action specified	No action specified
Occupancy		Risk Colour	LightGrey	LightGrey
Extent		Public Accessibility		
Level of Identification	Not present, sample negative	Affects Vital Services	Not Known	
Risk Assessment	Unknown			

Twickenham Station Platform level - B3 - R4 Staff mess room

Survey Reference	193643			
ACM Location	Ceiling panels		Automatic Assessment	Surveyor's Assessm
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	4	4
Surface Treatment	Encapsulated asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
Exposure	Internal	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb A
Likelihood of Damage	Unlikely	Protection From Public Recommendations	No action specified	No action specified
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	<= 10m2 or <=10m pipe run	Public Accessibility	Accessible to limited numbers	
Level of Identification	Presumed	Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				
Survey Reference	193644			
ACM Location	Wall panel		Automatic Assessment	Surveyor's Assessm
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded
Condition/Deterioration		Rating	0	0
Surface Treatment		Priority Assessment Recommendations	None Required	None Required
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified
Occupancy		Risk Colour	LightGrey	LightGrey
Extent		Public Accessibility		
Level of Identification	Not present, sample negative	Affects Vital Services	Not Known	
Level of Identification Risk Assessment	Not present, sample negative Unknown	Affects Vital Services	Not Known	

Twickenham Station Platform level - B3 - R5 Guards office

Survey Reference	193645			3
ACM Location	ceiling panels		Automatic Assessment	Surveyor's Assessmer
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	4	Very Low
Surface Treatment	Encapsulated asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
Exposure	Internal	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb AC
Likelihood of Damage	Unlikely	Protection From Public Recommendations	No action specified	No action specified LightBlue
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	<= 10m2 or <=10m pipe run	Public Accessibility	Accessible to limited numbers	
_evel of Identification	Presumed	Affects Vital Services	Not Known	=
Risk Assessment	Unknown			Š
Comments				
Survey Reference	193646			v q
ACM Location	Wall panel		Automatic Assessment	Surveyor's Assessmer
ACM Type	No ACMs Present	Material Assessment	No Risk	-
Condition/Deterioration		Rating	0	0
Surface Treatment		Priority Assessment Recommendations	None Required	None Required
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
		Protection From Public	No action specified	No action specified
Likelihood of Damage		Recommendations		Ω
_		Recommendations Risk Colour	LightGrey	LightGrey
Likelihood of Damage Occupancy Extent			LightGrey	LightGrey
Occupancy	Not present, sample negative	Risk Colour	LightGrey Not Known	Not Recorded 0 None Required Unrestricted None Required No action specified LightGrey

Twickenham StationPlatform level - B3 - R6 Station masters room

Survey Reference	193639				2
ACM Location	Ceiling panels		Automatic Assessment	Surveyor's Assessm	
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low	9
Condition/Deterioration	Good - intact and no visible damage	Rating	4	4	0
Surface Treatment	Encapsulated asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor	copy.
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted	[
Exposure	Internal	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb A	С
Likelihood of Damage	Unlikely	Protection From Public Recommendations	No action specified	No action specified	
Occupancy	Low	Risk Colour	LightBlue	LightBlue	9
Extent	<= 10m2 or <=10m pipe run	Public Accessibility	Accessible to limited numbers		
Level of Identification	Presumed	Affects Vital Services	Not Known		
Risk Assessment	Unknown				
Comments					
Survey Reference	193640				200000000000000000000000000000000000000
ACM Location	Wall panel		Automatic Assessment	Surveyor's Assessm	
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded	
Condition/Deterioration		Rating	0	0	:
Surface Treatment		Priority Assessment Recommendations	None Required	None Required	, p
Product Type		Access Restrictions	Unrestricted	Unrestricted	
Exposure		Precaution/Protection	None Required	None Required	
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified	,
Occupancy		Risk Colour	LightGrey	LightGrey	
Extent		Public Accessibility			ď
Level of Identification	Not present, sample negative	Affects Vital Services	Not Known		
Risk Assessment	Unknown				(

Twickenham Station Platform level - B3 - R7 Gents WC

Survey Reference	193637				10 01
ACM Location	Ceiling panels		Automatic Assessment	Surveyor's Assessm	_
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low	5
Condition/Deterioration	Good - intact and no visible damage	Rating	4	4	O C
Surface Treatment	Encapsulated asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor	oopy.
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted	[
Exposure	Internal	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb A	С
Likelihood of Damage	Unlikely	Protection From Public Recommendations	No action specified	No action specified	
Occupancy	Low	Risk Colour	LightBlue	LightBlue	9
Extent	<= 10m2 or <=10m pipe run	Public Accessibility	Accessible to limited numbers		
Level of Identification	Presumed	Affects Vital Services	Not Known		
Risk Assessment	Unknown				
Comments					
Survey Reference	193638				
ACM Location	Wall panel		Automatic Assessment	Surveyor's Assessm	
ACM Type	No ACMs Present	Material Assessment	No Risk	Not Recorded	
Condition/Deterioration		Rating	0	0	:
Surface Treatment		Priority Assessment Recommendations	None Required	None Required	
Product Type		Access Restrictions	Unrestricted	Unrestricted	
Exposure		Precaution/Protection	None Required	None Required	
Likelihood of Damage		Protection From Public Recommendations	No action specified	No action specified	
Occupancy		Risk Colour	LightGrey	LightGrey	-
		Public Accessibility			ď
Extent					
Extent Level of Identification	Not present, sample negative	Affects Vital Services	Not Known		

Twickenham Station Platform level - B3 - R8 Tank room 2

Survey Reference	193627			
ACM Location	Panel above doorway		Automatic Assessment	Surveyor's Assessme
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	4	4
Surface Treatment	Plain asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
Exposure	Internal	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb AC
Likelihood of Damage	Unlikely	Protection From Public Recommendations	Monitor every 12 months; inform occupants	Monitor every 12 months; inform occupants
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	Small amounts or items	Public Accessibility	Accessible to limited numbers	
Level of Identification	Presumed	Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				
Survey Reference	193628			
ACM Location	Ceiling panels		Automatic Assessment	Surveyor's Assessme
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	4	4
Surface Treatment	Plain asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
Exposure	Internal	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb AC
Likelihood of Damage	Unlikely	Protection From Public Recommendations	Monitor every 12 months; inform occupants	Monitor every 12 months; inform occupants
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	Small amounts or items	Public Accessibility	Accessible to limited numbers	
Level of Identification	Presumed	Affects Vital Services	Not Known	
Risk Assessment	Unknown			

Twickenham Station Platform level - B3 - R9 Ladies WC

Survey Reference	193635			
ACM Location	Ceiling panels		Automatic Assessment	Surveyor's Assessme
ACM Type	Type 1 - Chrysotile (white)	Material Assessment	Very Low	Very Low
Condition/Deterioration	Good - intact and no visible damage	Rating	4	Very Low 4
Surface Treatment	Encapsulated asbestos cement	Priority Assessment Recommendations	Record; manage; monitor	Record; Manage; Monitor
Product Type	Cement sheets	Access Restrictions	Unrestricted	Unrestricted
Exposure	Internal	Precaution/Protection	Take care not to disturb ACM	Take care not to disturb AC
Likelihood of Damage	Unlikely	Protection From Public Recommendations	No action specified	No action specified LightBlue
Occupancy	Low	Risk Colour	LightBlue	LightBlue
Extent	<= 10m2 or <=10m pipe run	Public Accessibility	Accessible to limited numbers	
Level of Identification	Presumed	Affects Vital Services	Not Known	
Risk Assessment	Unknown			
Comments				
Survey Reference	193636			
ACM Location	Wall panel		Automatic Assessment	Surveyor's Assessme
ACM Type	No ACMs Present	Material Assessment	No Risk	
Condition/Deterioration		Rating	0	0
Surface Treatment		Priority Assessment Recommendations	None Required	None Required
Product Type		Access Restrictions	Unrestricted	Unrestricted
Exposure		Precaution/Protection	None Required	None Required
Likelihood of Damage		Protection From Public Recommendations	No action specified	Not Recorded 0 None Required Unrestricted None Required No action specified LightGrey
Occupancy		Risk Colour	LightGrey	LightGrey
Extent		Public Accessibility		
Level of Identification	Not present, sample negative	Affects Vital Services	Not Known	
Risk Assessment	Unknown			