SAP 2009 Worksheet Design - Draft

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor name	Mr Philip French	Assessor number	687
Client		Last modified	29/03/2013
Address	Flat 5, 210 Kingston Road, Teddington, TW11 9JF		

1. Overall dwell	ling dimensio	ons											
					Aı	rea (m²)			verage storey height (m)	,	V	olume (m³)	
Lowest occupied						82.00] (1a) x		2.70	(2a) =		221.40	(3a)
Total floor area		(1a)	+ (1b) + (1	c) + (1d)(2	1n) =	82.00] (4)						
Dwelling volume								(3	3a) + (3b) + (3	sc) + (3d)(3	3n) =	221.40	(5)
2. Ventilation ra	ate												
											n	³ per hour	
Number of chimr	neys								0	x 40 =		0	(6a)
Number of open	flues								0	x 20 =		0	(6b)
Number of interr	nittent fans								3	x 10 =	:	30	(7a)
Number of passiv	ve vents								0	x 10 =		0	(7b)
Number of fluele	ss gas fires								0	x 40 =		0	(7c)
											Air	changes pe	r
										-		hour	_
Infiltration due to							a) + (7b) + (7	·	30	÷ (5) =	-	0.14	(8)
If a pressurisation	n test has bee	en carried	out or is int	ended, pro	ceed to (17), otherwis	e continue f	rom (9)	to (16)				_
Air permeability	value, q50, e	xpressed i	n cubic met	res per hou	ır per squai	re metre of	envelope a	rea				3.00	(17)
If based on air pe	ermeability va	alue, then	(18) = [(17)	÷ 20] + (8),	otherwise	(18) = (16)						0.29	(18)
Air permeability	value applies	if a pressu	irisation tes	st has been	done, or a	design or s	pecified air	permea	bility is being	used			_
Number of sides	on which dw	elling is sh	eltered									1	(19)
Shelter factor									1	- [0.075 x (1		0.92	(20)
Adjusted infiltrat										(18) x (2	20) =	0.26	(21)
Infiltration rate n	nodified for r	monthly w	ind speed:										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly average				4.50		2.00	2 70		4.20	1.50		5.40	7
(22)m	5.40	5.10	5.10	4.50	4.10	3.90	3.70	3.70	4.20	4.50	4.80	5.10	
)									∑(22)1	12 =	54.10	(22)
Wind Factor (22a (22a)m	a)m = (22)m ÷	+ 4	1.27	1.12	1.02	0.98	0.92	0.92	1.05	1.12	1.20	1.27	7
(220)111	1.55	1.27	1.27	1.12	1.02	0.90	0.92	0.92	1.05	1.12	1.20	1.2/	

URN: Tom Kingston rd f5 version 2 NHER Plan Assessor version 5.5.2 SAP version 9.90

13.52

N/A

N/A

0.34 3.57 (22a)

(22b)

(23a)

(23b)

∑(22a)1...12 =

∑(22b)1...12 =

0.32

0.30

0.26

0.24

0.24

0.28

Adjusted infiltration rate (allowing for shelter and wind speed) = $(21) \times (22a)m$

0.34

0.30

If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a)

0.27

0.34

0.36

Calculate effective air change rate for the applicable case: If mechanical ventilation: air change rate through system

(22b)m

If balanced wi	th heat reco	overy: effici	ency in % a	Illowing for	in-use fact	or (from Ta	ble 4	h) =					N/A	(23c)
d) If natural ve														
	2 1, then (24			1	1		1			_	1	1	1	-
(24d)m	0.56	0.56	0.56	0.54	0.54	0.53	0	.53	0.53	0.54	0.54	0.55	0.56	(24d)
Effective air chan	ge rate - en	ter (24a) or	(24b) or (2	24c) or (24d	l) in box (25	5)	1				1	1	-	_
(25)m	0.56	0.56	0.56	0.54	0.54	0.53	0	.53	0.53	0.54	0.54	0.55	0.56	(25)
3. Heat losses a	nd heat loss	paramete	r											
The к-value is the				Table 1e.										
E	lement		Gross Area, m²	•	nings, n²	Net area A, m²		U-va W/r		А x U, W/K		alue, m².K	Ахк, kJ/K	
Window*						5.60] x	1.1	15 =	6.41		I/A	N/A	(27)
Roof window*						2.40] x	1.1	15 =	2.75		I/A	N/A	(27a)
External wall						35.20] x	0.2	16 =	5.63		I/A	N/A	(29a)
External wall						10.96	x	0.2	21 =	2.30		I/A	N/A	(29a)
Party Wall						5.84	_] x	0.0	= 00	0.00		I/A	N/A	(32)
Roof						110.40	x	0.:	12 =	13.25		I/A	N/A	(30)
Total area of exte	ernal elemer	nts ∑A, m²				164.56] (31)							
* for windows an	d roof wind	ows, effecti	ve window	U-value is	calculated		-		/alue)+0.0)4] paragrap	oh 3.2			
Fabric heat loss,	W/K = ∑(A ×	U)								(2	6)(30) + (32) =	30.34	(33)
Heat capacity Cm									(28)	.(30) + (32)			N/A	(34)
Thermal mass pa		/IP) in kJ/m²	κ								ted separat		100.00	(35)
Thermal bridges:				ix K							·		8.84	(36)
if details of th					5 x (31)							L		
Total fabric heat	-	5		. ,	. ,						(33) + (36) =	39.18	(37)
Ventilation heat l		ed monthly	0.33 x (2	5)m x (5)							()			
(38)m	41.17	40.67	40.67	39.76	39.21	38.95	38	3.71	38.71	39.34	39.76	40.20	40.67	(38)
Heat transfer coe	efficient, W/	K (37)m+	(38)m								•	•	•	-
(39)m	80.36	79.86	79.86	78.94	78.39	78.14	77	7.90	77.90	78.52	78.94	79.38	79.86	
										Average =	∑(39)112	/12 =	79.00	(39)
Heat loss parame	eter (HLP), W	//m²K (39)	m ÷ (4)											
(40)m	0.98	0.97	0.97	0.96	0.96	0.95	0	.95	0.95	0.96	0.96	0.97	0.97	
										Average =	∑(40)112	/12 =	0.96	(40)
4. Water heatin	g energy ree	quirement												
	0 0/ -											k	Wh/year	
Assumed occupa	ncv. N										2.50		-	
If TFA > 13.9,		x [1 - exp(-	0 000349 x	(TFA - 13 G	$(3)^{2})] + 0.001$	13 x (TFA - 1	39)					(,	
If TFA ≤ 13.9,		n [1 onp(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,							
Annual average h		age in litres	ner dav V	d average =	: (25 x N) +	36					93.5	7 (43)	
Annual average h		-		-			to ac	hieve i	a water us	se taraet of				
per person per da		-		sy site ij til	e unening i	is acongrica	10 40	incre (je turget oj		123 11		
, - , ,	Jan	Feb	Mar	Apr	May	Jun	J	ul	Aug	Sep	Oct	Nov	Dec	
Hot water usage					•							-		
(44)m	102.93	99.18	95.44	91.70	87.95	84.21	84	.21	87.95	91.70	95.44	99.18	102.93	7
											∑(44)1	.12 =	1122.82	(44)
Energy content o	f hot water	used - calcu	lated mon	thly = 4.190) x Vd,m x r	nm x Tm/36	500	kWh/r	nonth (se	e Tables 1b,				_
(45)m	153.00	133.81	138.08	120.39	115.51	99.68	-	2.37	105.99	107.26	125.00	136.45	148.17	
											∑(45)1	.12 =	1475.71	(45)
lf instantaneous	water heatir	ng at point o	of use (no l	hot water s	torage), en	ter 0 in box	es (46	6) to (6	51)					

For community heating include distribution loss whether or not hot water tank is present

, Distribution loss	0.15 x (45)m	ı											
(46)m	22.95	20.07	20.71	18.06	17.33	14.95	13.86	15.90	16.09	18.75	20.47	22.23	(46)
Water storage lo	ss:		•						•				
b) If manufacture	er's declared	cylinder lo	ss factor is	not known:									
Cylinder volu	me (litres) in	cluding any	solar stora	age within s	ame cylind	er			50.00	(50)			
If community	heating and	no tank in	dwelling, e	nter 110 liti	res in box (50)							
Otherwise if r	o stored hot	water (this	s includes ir	nstantaneo	us combi bo	oilers) ente	r '0' in box ((50)					
Hot water sto	rage loss fac	tor from Ta	able 2 (kWł	n/litre/day)					0.04	(51)			
If community	heating see	SAP 2009 s	ection 4.3										
Volume facto	r from Table	2a							1.34	(52)			
Temperature	factor from	Table 2b							0.70	(53)			
Energy lost fr	om water sto	orage, kW	h/day (50)) x (51) x (52	2) x (53)				1.76	(54)			
Enter (49) or (54)	in (55)								1.76	(55)			
Water storage lo	ss calculated	for each n	nonth = (55	5) x (41)m									
(56)m	54.57	49.29	54.57	52.81	54.57	52.81	54.57	54.57	52.81	54.57	52.81	54.57	(56)
lf cylinder contai	ns dedicated	solar stora	age, = (56)n	n x [(50) - (H	111)] ÷ (50)	, else = (56	i)m where (H11) is froi	m Appendi>	кн			
(57)m	54.57	49.29	54.57	52.81	54.57	52.81	54.57	54.57	52.81	54.57	52.81	54.57	(57)
Primary circuit lo	ss (annual) f	rom Table	3						0.00	(58)			
Primary circuit lo	ss for each r	nonth (58)	÷ 365 × (41	.)m									
(modified by fact	or from Tab	e H5 if the	re is solar v	vater heatir	ng and a cyl	inder theri	mostat)						_
(59)m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(59)
Combi loss for ea													-
(61)m	6.37	5.71	6.08	5.65	5.60	5.19	5.36	5.60	5.65	6.08	6.11	6.37	(61)
Total heat requir		-		1									
(62)m	213.94	188.81	198.74	178.85	175.69	157.68	152.30	166.17	165.72	185.65	195.37	209.11	(62)
Solar DHW input	-						1		1		0.00	0.00	7
(63)m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
					(62)					∑(63)1	12 =	0.00	(63)
Output from wat (64)m	213.94	188.81	tn, kwn/m 198.74	onth (62)m 178.85	175.69	157.68	152.30	166.17	165.72	185.65	195.37	209.11	Г
(04)11	213.94	100.01	130.74	178.85	175.05	157.08	152.50	100.17	105.72	∑(64)1		188.03	 (64)
if (64)m < 0 then	set to A									Ζ(04)1	12 - 2	100.05	_ (04)
Heat gains from		a kWh/mc	onth 0.25 v		m + (61)m	1+08×[/	(57)	m + (50)m]					
(65)m	96.12	85.35	91.09	83.69	83.47	76.69	75.71	80.30	79.33	86.74	89.15	94.52	(65)
	7)m in calcul										00120	0.101	_ (00)
	,		, - , , -	,		y	····		, <u>j</u>				
5. Internal gains	s (see Table	5 and 5a)											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabolic gains							i						-
(66)m	149.98	149.98	149.98	149.98	149.98	149.98	149.98	149.98	149.98	149.98	149.98	149.98	(66)
Lighting gains (ca			-	· · · · ·			1						٦
(67)m	55.56	49.35	40.13	30.38	22.71	19.17	20.72	26.93	36.15	45.90	53.57	57.11	(67)
Appliances gains				1				<u> </u>		0-0.00			
(68)m	333.69	337.15	328.42	309.85	286.40	264.36	249.64	246.17	254.90	273.48	296.92	318.96	(68)
Cooking gains (ca							5250	53.50	5250	5250	F3 F0	F2 F0	
(69)m	52.50	52.50	52.50	52.50	52.50	52.50	52.50	52.50	52.50	52.50	52.50	52.50	(69)
Pumps and fans ((70)m	10.00	5a) 10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	(70)
				10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	_ (70)
Losses e.g. evapo	nation (nega	uve values	(Table 5)										

		-	-						-				_
(71)m	-99.99	-99.99	-99.99	-99.99	-99.99	-99.99	-99.99	-99.99	-99.99	-99.99	-99.99	-99.99	(71)
Water heating gain	ns (Table 5)	1											
(72)m	129.20	127.01	122.43	116.24	112.19	106.51	101.76	107.93	110.17	116.59	123.81	127.04	(72)
Total internal gains (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m												_	
(73)m	630.94	626.00	603.48	568.96	533.79	502.54	484.61	493.53	513.71	548.45	586.80	615.60	(73)
													-

6. Solar gains

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Rows (74) to (82) are used 12 times, one for each month, repeating as needed if there is more than one window type.

Details for month of January and annual totals are shown below:

	Д	Access facto Table 6d	or	Area m²	So	lar flux W/	m²	g Specific data or Table 6b	a	FF Specific da or Table 6c		Gains (W))
Northwest		1.00] x	5.60	х	11.51	x 0.9 x	0.63	x	0.70	=	25.58	(8
Rooflights		1.00] x	2.40	x	26.00	x 0.9 x	0.63	x	0.70	=	24.77	(8
olar gains in wa	itts, calculate	d for each	- month ∑(74	4)m(82)m									
(83)m	50.35	103.79	180.95	293.57	380.50	408.18	391.46	323.85	224.40	130.56	63.72	40.81	(8
Total gains - inte	ernal and sola	nr (73)m + (83)m										
(84)m	681.28	729.79	784.43	862.53	914.29	910.72	876.06	817.37	738.11	679.01	650.52	656.41	(8
7. Mean intern	al temperatu	ire (heating	g season)										
emperature du	ring heating	periods in t	he living ar	ea from Tal	ble 9, Th1(ʻ	°C)						21.00	(8
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation factor	r for gains for	r living area	, η1,m (see	Table 9a)								_	_
(86)m	0.92	0.90	0.86	0.79	0.66	0.50	0.35	0.38	0.61	0.80	0.90	0.92	(8
Mean internal te	emp of living	area T1 (ste	eps 3 to 7 ii	n Table 9c)									
(87)m	19.39	19.57	19.94	20.32	20.70	20.90	20.98	20.97	20.82	20.40	19.78	19.43	(8
emperature du	ring heating	periods in t	he living ar	ea from Tal	ble 9, Th2('	°C)							
(88)m	20.10	20.11	20.11	20.12	20.12	20.12	20.13	20.13	20.12	20.12	20.11	20.11	(
Jtilisation factor	r for gains for	rest of dw	elling η2,m	(see Table	9a)								
(89)m	0.91	0.89	0.84	0.76	0.62	0.44	0.28	0.30	0.55	0.77	0.89	0.92	(
Mean internal te	emperature i	n the rest o	f dwelling ⁻	F2 (follow s	teps 3 to 7	in Table 9c)						
(90)m	18.64	18.82	19.18	19.55	19.89	20.06	20.12	20.11	20.00	19.63	19.03	18.68	(!
iving area fracti	ion							fLA 3	2.00	÷ (4) =	-	0.39) (9
Mean internal te	emperature f	or the whol	le dwelling	fLA x T1 +(1	L - fLA) x T2								_
(92)m	18.93	19.11	19.47	19.85	20.21	20.39	20.45	20.45	20.32	19.93	19.32	18.97) (9
Apply adjustmen	nt to the mea	n internal t	emperatur	e from Tab	le 4e. wher	e appropria	ate					4	_ ·
(93)m	18.93	19.11	19.47	19.85	20.21	20.39	20.45	20.45	20.32	19.93	19.32	18.97] (!
			1									4	<u> </u>
8. Space heatin	ig requireme	nt											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
et Ti to the mea	an internal te	mperature	obtained a	nt step 11 of	f Table 9b,	so that tim	= (93)m a	and recalculate	e the uti	lisation facto	r for gains	using Tabl	e 9a
Jtilisation factor	r for gains, ηr	n											_
(94)m	0.90	0.88	0.83	0.75	0.62	0.46	0.31	0.33	0.57	0.77	0.87	0.90	(9
Jseful gains, ηm	Gm, W = (94)m x (84)m											
(95)m	612.12	640.50	650.70	649.12	566.50	421.36	270.26	268.83	417.24	520.67	567.25	591.03	(9
/Ionthly average	e external ter	nperature f	from Table	8									
(96)m	4.50	5.00	6.80	8.70	11.70	14.60	16.90	16.90	14.30	10.80	7.00	4.90	(9
leat loss rate fo	r mean inter	nal tempera	ature, Lm, V	W									
(97)m	1159.69	1126.92	1012.04	880.05	666.97	452.35	276.64	276.40	472.94	720.54	978.29	1123.81	. (9
pace heating re	quirement fo	or each mo	nth, kWh/n	nonth = 0.0	24 x [(97)m	n - (95)m] x	(41)m						-
(98)m	407.39	326.87	268.84	166.27	74.75	0.00	0.00	0.00	0.00	148.70	295.95	396.40]

(99)

9a. Energy Requ	irements -	Individual ł	neating syst	tems inclue	ding micro-	СНР							
Space heating:													
Fraction of space	heating fro	m secondar	ry/supplem	entary syst	em (Table 1	11)			0.00	(201)			
Fraction of space	heating fro	m main sys	tem(s) 1 -	(201)					1.00	(202)			
Fraction of main	heating fror	n main syst	em 2						0.00	(203)			
Fraction of total	-			02) x [1 - (2	203)]				1.00	(204)			
Fraction of total	space heat f	rom main s	ystem 2 (2	02) x (203)					0.00	(205)			
Efficiency of mair				, , ,					90.80	(206)			
(from database o	•	• ·		propriate b	v the amou	nt shown ii	n the 'space			_ · ·	f Table 4c)		
0	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating red	quirement, l	kWh/month	n (as calcula	ated above)			-					
(98)m	407.39	326.87	268.84	166.27	74.75	0.00	0.00	0.00	0.00	148.70	295.95	396.40]
Space heating fue	el (main hea	ting system	n 1), kWh/m	nonth = (98)m x (204) :	x 100 ÷ (20	6)						_
(211)m	448.67	359.99	296.08	183.11	82.32	0.00	0.00	0.00	0.00	163.77	325.94	436.56]
							Total per ye	ar (kWh/ye	ear) = ∑(21:	1)15, 10	.12 =	2296.44	(211)
Water heating:													-
Output from wat	er heater, k	Wh/month	(calculated	d above)									
(64)m	213.94	188.81	198.74	178.85	175.69	157.68	152.30	166.17	165.72	185.65	195.37	209.11]
		•			•	•				<u>Σ(64)1</u>	.12 =	2188.03	(64)
Efficiency of wate	er heater pe	r month											J
(217)m	87.45	87.24	86.70	85.84	84.22	81.70	81.70	81.70	81.70	85.51	86.95	87.44]
Fuel for water he	ating, kWh/	' month = (6	4)m x 100 ÷	÷ (217)m						1		-1	-
(219)m	244.65	216.42	229.23	208.34	208.61	193.00	186.42	203.39	202.84	217.11	224.70	239.16]
		•					Tota	per year (kWh/year)	= Σ(219)1	.12 =	2573.87	(219)
													J
Annual Totals Su	mmary:									kWh/ye	ear k	Wh/year	
Space heating fu	-	in system 1										2296.44	(211)
Water heating fu												2573.87	(219)
Electricity for pu		nd electric l	keen-hot (T	Table 4f):], -,
mechanical ve					input from	outside				0.00			(230a
warm air heat				or positive	input noin	outside				0.00			(230t
central heatin										130.0			(2300
oil boiler pum										0.00			(230c
boiler flue fan										45.00)		(230)
maintaining e	lectric keep	-hot facility	for gas con	nbi boiler						0.00			(230f
pump for sola	r water hea	ting								0.00			(230g
Total electricity f	or the above	e							:	∑(230a)(2	30g)	175.00	(231)
Electricity for light	nting (calcul	ated in An	oondix I):									392.49	(232)
Energy saving/ge				es M. N.an	q O).							552.73] (232)
Electricity genera		-			~~~~.						-	3382.96	(233)
													, <i>.</i> ,
10a. Fuel costs -	Individual	heating sys	tems inclue	ding micro-									
					Filal	kWh/voor		E.	uel price		Fuel	cost f/voa	
					Fuel	kWh/year			uel price able 12)		Fuel	cost £/yea	ſ
Space heating - n	nain system	1				kWh/year 296.44] x		-] x 0.01		cost £/yea 71.19] (240)

Water heating cost (other fuel) Pumps, fans and electric keep-hot Energy for lighting

URN: Tom Kingston rd f5 version 2

11.46

11.46

х

х

x 0.01 =

x 0.01 =

20.06

44.98

(249)

(250)

175.00

392.49

Additional standing charges (Table 12)				106.00	(251)
Energy saving/generation technologies (Appendices M, N and Q):	:				-
PV savings (negative quantity)	-3382.96	x	11.46 x 0.01 =	-387.69	(252)
Total energy cost			(240)(242) + (245)(254)	-65.67	(255)
11a. SAP rating - Individual heating systems including micro-CHF)				
Energy cost deflator (Table 12)				0.47	(256)
Energy cost factor (ECF)			[(255) x (256)] ÷ [(4) + 45.0] =	-0.24	(257)
SAP value				103.39	
SAP rating				103	(258)
SAP band				Α]
12a. Carbon dioxide emissions - Individual heating systems inclu	Iding micro-CHP				
	Energy kWh/year		Emissions Factor	Emissions (kgCO2/year)	
Space heating - main system 1	2296.44	×	0.198 =	454.69	(261)
Water heating	2573.87	x	0.198 =	509.63	(264)
Space and water heating			(261) + (262) + (263) + (264) =	964.32	(265)
Pumps, fans and electric keep-hot	175.00	x	0.517 =	90.48	(267)
Lighting	392.49	x	0.517 =	202.92	(268)
Energy saving/generation technologies:					
PV emission savings (negative quantity)	-3382.96	x	0.529 =	-1789.59	(269)
Total carbon dioxide emissions			∑(261)(271) =	-531.87	(272)
Dwelling carbon dioxide emissions rate			(272) ÷ (4) =	-6.49	(273)
El value				105.61	
El rating (see section 14)				106	(274)
El band				A]
13a. Primary energy - Individual heating systems including micro	o-CHP				
	Energy kWh/year		Primary Energy Factor	Primary Energy	,
Space heating - main system 1	2296.44	×	1.02 =	2342.37	(261*)
Water heating	2573.87	x	1.02 =	2625.35	(264*)
Space and water heating			(261*) + (262*) + (263*) + (264*) =	4967.71	(265*)
Pumps, fans and electric keep-hot	175.00	x	2.92 =	511.00	(267*)
Lighting	392.49	x	2.92 =	1146.08	(268*)
Energy saving/generation technologies:					
PV primary energy savings (negative quantity)	-3382.96	х	2.92 =	-9878.24	(269*)
Total primary energy kWh/year			∑(261*)(271*) =	-3253.45	(272*)
Primary energy kWh/m2/year			(272*) ÷ (4) =	-39.68	(273*)