APPENDIX A - LOW & ZERO CARBON (LZC) TECHNOLOGY FEASIBILITY STUDY

The final level of the energy hierarchy is to Be Green, therefore the following table discusses the options for on-site low and zero carbon technologies and their feasibility on this development to contribute to meeting the relevant London Plan and Borough's sustainability targets.

LZC Technologies	Description	Advantages	Disadvantages	Feasibility
Solar Thermal Collectors	Solar thermal collectors can be used to provide hot water using the irradiation from the sun. They can generally provide approx. 50% of the hot water demand	No noise issues associated with Solar thermal collectors No additional land use from the installation of solar thermal collectors Low maintenance and easy to manage Favourable payback periods	The hot water cylinder will need to be larger than a traditional cylinder Needs unobstructed space on roof Low efficiencies Often not compatible with other LZC technologies Saves less carbon when offsetting gas systems	As there is limited roof area available, solar thermal will not be appropriate as the space would be better utilised for PV panels, which have the potential to save more carbon
Solar Photovoltaic Panels (PV)	Solar PV panels provide noiseless, low-maintenance, carbon free electricity	Can have significant impact on carbon emissions by offsetting grid electricity (which has a high carbon footprint) Low maintenance No noise issues No additional land use from the installation of PV panels Bolt on technology that does not need significant amounts of auxiliary equipment Favourable payback periods	Needs unobstructed space on roof Low efficiencies per unit area of PV Often used to supplement landlord's electricity so savings not always transferred to individual properties	There is a flat roof available in this development with sufficient area to install PV panels The PV system would contribute to the electricity demand of the building.
CHP (Combined Heat & Power)	CHP systems use an engine driven alternator to generate electricity while using the waste heat from the engine, jacket and exhaust to provide heating and hot water Economic viability relies on at least 4,000 hours running time per annum	Mature technology High CO2 savings	Cost of the system is relatively high for small schemes Only appropriate for large development with high heat loads. To make CHP a viable option on this site it would need to run for longer periods that would be required on this development.	Communal CHP is not viable for this scale of residential development due to the low heat demand. Heat dumping would be required during the summer seasons

LZC Technologies	Description	Advantages	Disadvantages	Feasibility	
Biomass Heating	Solid, liquid or gaseous fuels derived from plant material can provide boiler heat for space and water heating	Potential to reduce large component of the total CO ₂ A biomass boiler would supplement a standard gas heating system so some of the cost may be offset through money saved on using smaller traditional boilers	Regular maintenance is required Reliability of fuel access/supply can be a problem The noise generated by a biomass boiler is similar to that of a gas boiler. It is advisable not to locate next to particularly sensitive areas such as bedrooms A plant room and fuel store will be required which may take additional land from the proposed development or surroundings Biomass is often not a favoured technology in new development due to the potential local impacts of NO _x emissions and delivery vehicles for the fuel	Biomass is not considered feasible for this development due to issues with fuel storage, access for delivery vehicles and local NOx emissions. Additionally, there is insufficient space for a biomass boiler system on the small site.	
Wind Turbines	Vertical and horizontal axis wind turbines enable electricity to be generated using the power within the wind	Bolt on technology that does not need significant amounts of auxiliary equipment	Not suitable for urban environments due to low wind conditions and obstructions High visual impact Noise impact (45-65dB at 3m) High capital cost and only achieve good paybacks in locations with strong wind profiles Requires foundations or vibration supports for building installations (generally not recommended)	This development is in an urban environment and so a wind turbine will not generate much energy	

LZC Technologies	Description	Advantages	Disadvantages	Feasibility	
Ground Source	Utilising horizontal loops or	Low maintenance and easy to	The heat pump has a noise level	GSHP are not a feasible	
Heat Pumps	vertical boreholes, GSHP	manage	around 35-60dB so some	technology for the site as there	
(GSHP)	make use of the grounds	High COP (ratio of energy	attenuation may be required and	is limited external space for	
	almost constant temperature	output per energy input)	it should be sensibly located	installation of boreholes	
	to provide heating and/or	Optimum efficiency with	Relatively high capital cost		
	cooling using a heat	underfloor heating systems	Requires electricity to run the		
	exchanger connected to a	As heat pumps would replace	pump, therefore limited carbon		
	space/water heating delivery	standard heating systems, some	savings in some cases		
	system	of the cost may offset through	For communal systems a plant		
		savings on a traditional boiler	room is required which may take		
			additional land from the		
			proposed		
			development/surroundings		
Air Source Heat	Air Source Heat Pumps extract	ASHP systems are generally	The ASHP unit has a noise level	The use of ASHP is technically	
Pumps (ASHP)	latent energy from the	cheaper than GSHP as there is	around 50-60dB so some	feasible for the development	
	external air in a manner	no requirement for long lengths	attenuation may be required and	but is discounted due to noise	
	similar to ground source heat	of buried piping or boreholes	it should be sensibly located	issues and locating the	
	pumps	Low maintenance and easy to	The potential noise from the	unsightly units. In addition	
		manage	external unit may mean there is	carbon savings are not likely to	
		Optimum efficiency with	local opposition to their	be very high.	
		underfloor heating systems	installation		
		As heat pumps would replace	Requires electricity to run the		
		standard heating systems, some	pump, therefore limited carbon		
		of the cost may offset through	savings in some cases		
		savings on a traditional boiler	For communal systems a plant		
			room is required which may take		
			additional land from the		
			proposed		
			development/surroundings		

Having reviewed potential LZC technologies for the development it has been identified that the most appropriate system would be solar PV panels, which would most suitably be installed on the flat roof spaces to minimise the visual impact of the installation. The chosen system should be accurately sized during the detailed design stages and MCS (Microgeneration Certification Scheme) approved equipment and installers used.