DEMOLITION OF EXISTING SCHOOL BUILDINGS AND CONSTRUCTION OF THREE NEW DWELLINGS, FIVE CONVERSION DWELLINGS AND ONE CONVERSION OFFICE TOGETHER WITH CAR PARKING AT THE OLD SCHOOL, PARK LANE, RICHMOND, TW9 2RA





August 2014

THE HALEBOURNE GROUP LIMITED

Architect: The Halebourne Group Limited

#### **Property:**

Demolition of Existing School and Construction of Five Conversion Dwellings, One Conversion Office and Three New Dwellings together with Car Parking

The Old School, Park Lane, Richmond, TW9 2RA

2

Issue:

Date: August 2014

Prepared by: Victor Battista

MONITOR energy consultancy

18 Mount Tabor Stables

Leighton Road

Wingrave

Aylesbury HP22 4EW

Tel (01296) 681682

Checked by: Nicola Battista

V. Battista

Signed:

22 August 2014

#### CONTENTS

# 1.0 BRIEF

1.1 Approach

# 2.0 EXECUTIVE SUMMARY

- 2.1 Site Description
- 2.2 Proposed Development
- 2.3 Relevant Policies, Strategies, and Guidance

# 3.0 PLANNING REQUIREMENTS

- 3.1 Introduction
- 3.2 Design Philosophy
- 3.3 Code for Sustainable Homes Requirements
- 4.0 WATER EFFICIENCY
- 5.0 ENERGY EFFICIENCY STATEMENT
  - 5.1 Introduction
  - 5.2 Approach
  - 5.3 Energy Demand Assessment
  - 5.4 Adopted Technology

#### 6.0 ESTABLISHING CO2 EMISSIONS

- 6.1 Energy Efficiency Measures
- 6.2 Energy Efficient Supply
- 6.3 Renewable Energy Target

# 7.0 RENEWABLE ENERGY TECHNOLOGIES ASSESSMENT

- 7.1 Photovoltaic cells
- 7.2 Solar Water Heating
- 7.3 Ground Source Heat Pump
- 7.4 Combined Heat and Power
- 7.5 Wind Power
- 7.6 Biomass

# 8.0 CONCLUSIONS

#### APPENDICES

- A UK Government Strategy Documents
- **B** SAP DER Worksheets
- C CSH Ene7 Worksheet
- D CSH Pre-Assessment

# 1.0 BRIEF

Monitor Energy Consultancy were instructed by Maze Planning on behalf of The Halebourne Group Limited, the Clients, to undertake a Sustainability and Renewable Energy assessment, to appraise how the proposed development at The Old School, Park Lane, Richmond, TW9 2RA will respond to the London Borough of Richmond Upon Thames Sustainable Development Checklist. The purpose of the report is as follows:

To demonstrate how the development will reduce the carbon emissions through the provision of onsite renewable energy and how the development will meet conservation measures, sustainable drainage and water conservation requirements and the re-use of the existing materials of the demolished areas of the development to comply with the requirements of the London Borough of Richmond Upon Thames Supplementary Planning Document "Sustainable Construction Checklist Guidance Document" adopted August 2011 and the Mayor's London Plan 2011. These requirements are that a reduction of 20% carbon emissions is achievable from both regulated and unregulated emissions. This will also relate to the requirement to achieve Code for Sustainable Homes Level 4 for the Energy Ene1 category and Code for Sustainable Homes Level 3 for the remaining categories.

# 1.1 Approach

The clients approach, via the architects, to sustainable development is to first improve the energy efficiency of the building to the requirements of 25% better than the current Building Regulations. This follows the most recognised method of achieving sustainability through the energy hierarchy:

Use less energy (be lean).

Use renewable energy (be green).

Supply energy efficiently (be clean).

This appraisal demonstrates that by adopting the above approach, a 19% reduction in carbon emissions to the current Building Regulations will be achieved, including both regulated and unregulated emissions. This is also to the standards set by the Code for Sustainable Homes Level 4.

A detailed appraisal of all practical renewable technologies has been undertaken and the use of photovoltaic thermal panels has been adopted for the development. The primary advantages of these systems are as follows:

- Proven and well recognised technologies with limited requirements for future maintenance.
- A visible indication of the sustainability credentials of the development.
- Can be easily upgraded in the future to provide more hot water or electricity; particularly relevant with the implementation of Feed-in Tariffs and Renewable Heat Incentives.

This appraisal demonstrates that by the adoption of the strategy of incorporating energy efficient measures, the overall reduction in carbon emissions through the use of onsite renewable technology in the form of photovoltaic thermal panels is **7612.24 kgCO2/yr** 

The extent of photovoltaic thermal panels will be drawn on to the elevations and when in use will provide a visible indication of the development's sustainable credentials.

Water efficient fittings to sanitary and kitchen fittings and water butts within the rear garden are proposed to achieve at least the minimum standards of compliance as required by the Code for Sustainable Homes Level 3/4 rating which clearly demonstrates a commitment to water conservation.

#### 2.0 EXECUTIVE SUMMARY

# 2.1 Site Description

The demolition, careful removal of existing features for replacement and the erection of eight dwellings, one office, car parking facilities, landscaping and access drive on the site of The Old School, Park Lane, Richmond, TW9 2RA. The site is classified as a brownfield site as it is new dwellings built on the site of an existing school in a residential area which makes optimum use of the land available, in terms of site coverage and height and does not prevent other land coming forward for development in the future and helps to achieve a comprehensively planned development framework. The site is not in an open land area; is in an air quality management area (AQMA); is not in a District Heating Opportunity Area (DHOA); has no hazardous substances present; is not contaminated and is not in an area designated as on an archaeological site or monument.

This report basically demonstrates that the calculated minimum 20% carbon dioxide emissions (including both regulated and unregulated emissions,) to be off-set by on-site renewables for this development is **7612.24 kg CO2 /yr**.

#### 2.2 Proposed Development

The proposed development comprises three new build houses, built as a terrace, and five dwellings and one office formed as a conversion of the existing school building, constructed with traditional brick cavity walls and slate tile roof areas. The proposed new driveway and paved areas will be constructed with permeable materials to reduce the surface water run-off potential. The waste materials from the demolition of the existing school will be re-used where possible and the remainder sent for recycling and not to landfill.

The energy performance of the proposed three new dwellings has been assessed for the base line requirement of compliance with Part L1A of the 2013 Building Regulations and the five conversion dwellings and one conversion office assessed with the minimum compliance standards set out in Part L1B of the 2010 Building Regulations. With the appropriate measures incorporated this report demonstrates that it will achieve minimum Building Regulations and therefore Code for Sustainable Homes Level 3 for energy.

To assess the 20% site wide carbon emissions to be off-set by on site renewable energy, the unregulated loads for each dwelling were calculated using the Code for Sustainable Homes Ene7 calculator and tabulated to the regulated HVAC loads calculated using SAP 2012.

The potential benefits of additional energy efficiency measures have been proportionally assessed across each group of dwellings together with the further improvements that can be achieved using low and zero carbon technologies in order to achieve the 20% carbon off-set required by the London Borough of Richmond Upon Thames and the 19% improvement over minimum Building Regulations 2013 standards to achieve a Code for Sustainable Homes Level 4 for the Energy Category.

The energy strategy comprises passive and low energy design measures including:

- Enhanced thermal performance to the floor, external walls and roof types.
- High performance double glazed windows and doors.
- High efficiency gas fired boiler with sophisticated controls.
- Low air permeability rate.
- Use of 100% low energy lighting.

In addition, the new dwellings (Units 7-9) will be provided with individual extract ventilation fans whilst the conversion dwellings (Units 2–6) and the conversion office (Unit 1) will be provided with individual extract fans. Photovoltaic thermal panels will be provided to the South facing roof slopes and concealed flat roof area.

Sufficient roof space is available on the development to accommodate photovoltaic panels and it is therefore proposed that sloping and horizontal PV arrays comprising of 109 photovoltaic panels be installed to generate **18.31** kWp of renewable energy. This would off-set **7612.24 kg CO2 per year** (7.61 tonnes CO2 per year) across the development, refer to Section 5.

The summary of carbon emission and energy results is provided in section 6 which includes the overall area weighted average CO2 savings expected as a result of incorporating all energy reduction measures.

All other matters are covered by comparison with the appropriate category as defined by the current version of the Code for Sustainable Homes which provides the latest Government advice to help deliver sustainable development with low carbon emissions in the housing sector. (Source – London Borough of Richmond upon Thames Council SPD Sustainable Construction Checklist Guidance Document adopted August 2011).

# 2.3 Relevant Policies, Strategies and Guidance

# 2.3.1 UK Government Strategy Documents

A series of Planning Policy Statements (PPS) and Planning Policy Guidance notes (PPG) are relevant to the sustainability and energy appraisal. These include the following:

- National Planning Policy Framework
- The Housing Green Paper
- PPS1 Delivering Sustainable Development
- Planning and Climate Change supplement to PPS1
- PPS7 Sustainable Development in Rural Areas
- PPS10 Planning for Sustainable Waste Management
- PPS22 Renewable Energy

# Key aspects of these documents are shown in $\ensuremath{\textbf{Appendix}}\xspace \textbf{A}$

# 2.3.2 London Borough of Richmond upon Thames Planning Policies

The following documents set out the planning policies relevant for the Sustainable Construction Checklist SPD:

- Richmond Core Strategy (April 2009)
- Richmond Development Management Plan (DMP) (emerging, 2011)
- London Plan, Consolidated with Alterations since 2004 (February 2008)
- London Plan (emerging replacement plan, October 2009)

# **Minimum Policy Compliance**

Environmental rating:

- Richmond Core Strategy CP1 Sustainable Development
- Richmond DMP Policy DM SD 1 Sustainable Construction
- Richmond DMP Policy DM SD 2 Renewable Energy and Decentralised Energy networks
- London Plan (LP) Policy 4A.3 Sustainable Design and Construction

#### Energy Assessment:

• London Plan Policy 4A.4 Energy assessment

Carbon Dioxide emissions reduction:

- Richmond Core Strategy CP2 Reducing Carbon Emissions
- Richmond DMP Policy DM SD 1 Sustainable Construction
- Richmond DMP Policy DM SD 2 Renewable Energy and Decentralised Energy Networks
- LP Policy 4A.3 Sustainable design and construction
- LP Policy 4A.5 Provision of heating and cooling networks
- LP Policy 4A.6 Decentralised Energy: Heating, Cooling and Power
- LP Policy 4A.7 Renewable Energy
- LP Policy 4A.8 Hydrogen Economy

Energy Use and Pollution/ Need for Cooling:

- Richmond Core Strategy CP1 Sustainable Development
- Richmond Core Strategy CP2 Reducing Carbon Emissions
- Richmond DMP Policy DM SD 4 Adapting to Higher Temperatures and Need for Cooling
- Richmond DMP Policy DM SD 5 Living Roofs
- LP Policy 4A.3 Sustainable design and construction

#### **3.0 PLANNING REQUIREMENTS**

#### **3.1 Introduction**

This section of the report identifies the design measures that will be implemented by the clients in order to meet the requirements of the London Borough of Richmond upon Thames' Sustainable Construction Checklist SPD adopted on 13 August 2011. This can best be demonstrated by referring to the relevant sections of the Code for Sustainable Homes (CSH) which provides the latest Government advice to delivering sustainable development with low carbon emissions in the housing

sector. It sets standards for achieving energy and water efficient buildings focusing on a high quality, highly insulated building shell with low air permeability taking advantage of passive solutions before the addition of active or renewable features:

- high levels of insulation
- low levels of air-permeability
- passive solar design strategies
- low energy lighting
- the use of environmentally benign materials
- low water use sanitary ware
- rainwater harvesting

# **3.2 Design Philosophy**

The design intention for the new dwellings (units 7-9) is to maximise the potential of the South facing facade to harness useful solar gains in order to reduce the heating requirement. The thermal performance of the building fabric is to be enhanced by increasing insulation beyond the requirements of current Building Regulations, accredited details are to be adopted to reduce cold bridging and to achieve low design air permeability rates. For all units, energy efficient heating, ventilation and lighting systems are to be incorporated.

General design philosophy for Code Level 3 homes is to keep the same basic specification throughout the dwellings for simplicity. In this case, the new dwellings will all have the same basic specification throughout for each dwelling. Similarly, the conversion dwellings (Units 2-6) and the conversion office (Unit 1) will share the same specification. The intention is that every floor, wall, roof and window detail will be consistent for each part of the development. This specification employs U values as per the schedule described in Section 6.1 of the report which enables Building Regulations to be achieved under Part L1A or Part L1B as appropriate.

Water efficient fittings to sanitary and kitchen fittings and water butts within garden areas are proposed to achieve at least the minimum standards of compliance as required by the Code for Sustainable Homes Level 3 and 4 (105 litres/per person/day) rating which clearly demonstrates a commitment to water conservation.

# 3.3 Code Requirements

The main commentary on these design measures applicable to the requirements for planning are included below and are discussed in relation to each relevant section of the CSH.

# 3.3.1 Energy

The clients have adopted the most recognised sustainable strategy for achieving Code ratings which adopts the following principles as based on the current version of the Code:

- Improve building fabric and insulation levels.
- Carefully detail all building junctions to reduce heat loss and air leakage.

• Introduce energy efficient technologies.

#### **ENE1** Dwelling Emission Rate

This element is mandatory and now mirrors Part L1A which changed in October 2013. The requirement of 19% improvement of the DER over the TER for Code Level 4 will be attained without a single credit in the new scoring system. This is because the latest version of Part L1A seeks to reduce CO2 emissions from new homes compared with pre October 2013 standards. Methods of reaching these standards are detailed within the energy efficiency section.

# ENE2 Fabric Energy Efficiency

This element is mandatory, in the latest version of the Code the heat loss parameter has been dropped in favour of the term "FEES" measured in kWh/m2/yr. The methods of reaching this standard have been covered within the energy efficiency section.

#### **ENE3 Energy Display Devices**

This is not a mandatory element but is considered to be an important aspect of improving householders understanding of energy use.

# **ENE4** Drying Space

A secure drying space will be provided either within the rear garden areas or by the use of proprietary and appropriately sized indoor drying lines.

#### ENE5 Provision of A+ white goods

All white goods provided will be A+ rated wherever possible as part of the sustainability strategy.

#### **ENE6** External Lighting

This is not a mandatory element but all external lighting will be energy efficient.

Where security light fittings are designed for energy efficiency, these will be adequately controlled, all burglar security lights will have a maximum wattage of 150W, movement detecting control devices (PIR) and daylight cut-off sensors. All other security lighting will have dedicated energy efficient fittings and will be fitted with daylight cut-off sensors or timers.

#### **ENE7** Renewable Technologies

This is achieved where the site wide renewable strategy, in combination with the requirements to reduce energy demand for the dwelling, ensures that there is a 20% reduction in CO2 through renewable technology.

This technology must be covered by the Microgeneration Certification Scheme (MCS) and that it is installed by MCS accredited installers. Only systems approved by this scheme have been incorporated within the development.

#### ENE8 Cycle Storage

The clients are committed to providing an appropriate level of cycle storage. The architect is to ensure that all the cycle storage is provided and is Code compliant and is all accessible without having to take bikes through the property. Minimum storage space required for the Code is provided and is at least as per below:

1 cycle: 2m long x 0.75m wide. 2 cycles: 2m long x 1.5m wide. 4 cycles: 2m long x 2.5m wide.

# **ENE9** Home Office

This is not a mandatory element but the architect has incorporated a designated study as an appropriate space for a home office within the floor plans where the following criteria are met:

A minimum 1.8m wall length to allow a desk, chair and filing cabinet or bookshelf to be installed, with space to move around the front and side of the desk, use the chair appropriately and operate the filing cabinet safely.

Two double power sockets.

Two telephone points (or double telephone point) or one telephone point where the dwelling is connected to cable or broadband is available at the address.

Adequate daylighting from nearby windows. The detailed calculations will be undertaken at a later stage but typically the location of the home office space has been located close to available windows.

#### 3.3.2 Water

# WAT1 Internal Water Use

This element is mandatory and Part G of the Building Regulations, which came into force in April 2010, will generally allow compliance with Code Level 3 of the CSH. This limits the potable internal water use to less than 105 litres per person per day.

As the scheme progresses towards construction, the detailed specifications of sanitary fittings will be developed with the clients to ensure compliance with this element and will be calculated using the Water Efficiency Calculator for new dwellings. This is the Government's National calculation method for the assessment of water efficiency in new dwellings in support of Building Regulations Part G 2009 and the Code for Sustainable Homes April 2009 and subsequent versions. The calculator assesses the contribution that each internal water fitting (micro component) has on whole house water consumption, measured in litres per person per day based on research into typical water use.

#### WAT2 External Water Use

This is not a mandatory element but the clients are committed to providing water butts in the private garden areas. Minimum storage volume requirements for homes with individual gardens, patios and terraces are as below:

- Terraces and patios 100 litres minimum
- 1 2 bedroom home with private garden 150 litres minimum
- 3+ bedroom home with private garden 200 litres minimum

The specification of the rainwater collector provided by the clients will ensure compliance with the following criteria:

- No open access at the top of the collector (a childproof lid is allowed).
- Provision of a tap or other arrangement for drawing off water.
- Connection to the rainwater downpipes with an automatic overflow into the conventional rainwater drainage system.
- A means of detaching the rainwater downpipe and access provision to enable cleaning of the interior.
- Where the collection system is to be sited outside and not buried, it must be stable and adequately supported; the material used for the container shall be durable and opaque to sunlight.

# 3.3.3 Materials

MAT1 Environmental Impact of Materials

This is a mandatory element and the clients are committed to reducing the environmental impact of their building materials. The clients will achieve this through the sourcing of materials to achieve a Green Guide rating of between A+ and D, for the following five elements of the building envelope:

Roof External Walls Internal Walls Upper and Ground Floors Windows

As the scheme progresses to construction, a detailed specification list will be provided by the Client's technical team in conjunction with their buying team and drawings clearly marking the location and area of the elements and the details of the materials used within the elements will be prepared. This will allow the Code Mat 1 Calculator Tool to be utilised to demonstrate compliance.

MAT2 Responsible Sourcing of Basic Building Materials

This is not a mandatory element although the clients are committed to responsibly resourcing all building materials.

MAT3 Responsible Sourcing of Finishing Materials

This is not a mandatory element although the clients are committed to responsibly resourcing all building materials.

# 3.3.4 Surface Water Run-Off

# SUR1 Surface Water Run-off

The client is committed to design the surface water drainage for this project which avoid, reduce and delay the discharge of rainfall run-off to watercourses and public sewers using SuDS techniques. This

will protect receiving waters from pollution and minimise the risk of flooding and other environmental damage in watercourses. The criteria for this category will be followed.

The driveway, paths and paved areas will utilise permeable materials which will also minimise the site surface water run-off.

# SUR2 Flood Risk

This element is achievable as the site is not in an area of flood risk.

# 3.3.5 Waste

A waste strategy for construction and in use will be prepared for this development and will demonstrate compliance with the following criteria:

# WAS1 Storage of Household Waste

This element is mandatory and as the scheme progresses, the layouts will demonstrate how there is adequate space allocated for waste storage complying with the criteria. Internally, recyclable household waste is sorted before collection and at least three separate bins are provided with 30 litres total capacity. Every bin provided should have at least 7 litres capacity and be located in an adequate internal space which is not a free standing bin in the kitchen.

# WAS2 Site Waste Management Plans

This element is not now mandatory and the client will prepare a detailed SWMP as the scheme progresses towards construction. This SWMP will take account of the materials arising from the demolition works etc. and also for disposal of site waste as it occurs and generally diverting from landfill.

#### WAS3 Composting

This element is not mandatory but will be achieved through the three bin collection system, which means that green/kitchen waste is collected by the Council. This means that this credit can be awarded by default as we are providing suitable internal storage.

#### 3.3.6 Pollution

#### POL1 Global Warming Potential

This element is not mandatory but the clients will ensure that the insulation materials do not have a negative environmental impact during manufacture. All insulation products that arrive on site can be confirmed as having a GWP less than 5.

#### **POL2 NOx Emissions**

The clients will install gas boilers with low NOX emissions and Class 5.

# 3.3.7 Health and Wellbeing

# **HEA1** Daylighting

The daylighting calculations will be undertaken and it is likely that the dwellings will attain the requirements by ensuring adequate daylight factor in the kitchen, living room, dining room and study/home office.

# **HEA2 Sound Insulation**

The dwellings will be designed and tested to achieve the sound insulation standards required by the current Building Regulations.

# **HEA3** Private Space

All of the dwellings incorporate a private space with the following criteria:

- A minimum size that allows all occupants to sit outside.
- Allows easy access to all occupants, including wheelchair users.
- Accessible only to occupants of the dwelling.

HEA4 Lifetime Homes –Lifetime Homes credits will not be sought.

# 3.3.8 Management

#### MAN1 Home User Guide

This element is not mandatory but the clients are committed to providing a Home User Guide, compiled using *Checklist Man 1 Part.* The Home User Guide will be provided in an appropriate format for users. This might include translation into foreign languages, braille, large print or audio CD. In summary the Home User Guide will contain information pertaining to:

Part 1

- a) Environmental strategy/ design and features.
- b) Energy Efficiency Information.
- c) Water Use.
- d) Waste and Recycling.
- e) Sustainable DIY
- f) Emergency Information.
- g) References/ Further information.
- h) Alternative formats.

#### Part 2

- a) Recycling.
- b) SUDs.
- c) Public Transport.
- d) Local Amenities.
- e) Responsible Purchasing.
- f) Emergency Information.

# g) References/ Further Information.

#### MAN2 Considerate Constructors Scheme

The clients or their contractor will sign up to the Considerate Constructors Scheme and the site will be appropriately audited to achieve the Checklist Man 2 items and score.

# MAN3 Construction Site Impacts

The clients or their contractor will maintain a record of on on-site water usage and diesel consumption for this section. Additionally monitoring CO2 emissions of all delivery staff and sub-contractors vehicles will be considered as the scheme progresses towards construction.

#### **MAN4** Security

This credit is attained through the requirement of the LPA and the Design Guide to ensure that the requirements of Secured by Design are considered in the development of the scheme.

# 3.3.9 Ecology

ECO1 Ecological Value of Site – A report must be provided by a qualified ecologist

ECO2 Ecological Enhancement – A report must be provided by a qualified ecologist and recommendations followed.

ECO 3 Protection of Ecological Features

All existing features of ecological value on the development site potentially affected by the works will be maintained and adequately protected during site clearance, preparation and construction works.

ECO4 Change in Ecological Value of Site – A report must be provided by a qualified ecologist and recommendations followed.

ECO5 Building Footprint – Not applicable

#### **Code Pre-Assessment**

To demonstrate compliance with the CSH we have undertaken the pre-assessment sheets for the dwellings and these are included within **Appendix D**. As the scheme progresses to detailed design, the formal assessments will be undertaken using the appropriate version of CSH and SAP. To summarise the approach we have included the CSH assessments for these 8 number two and three bed terraced houses in **Appendix D** which all achieve a credit score of **>57%** which represent a PASS for Level 3. It will be noted that the Energy Category of the CSH must achieve Level 4.

#### 4.0 WATER EFFICIENCY

To help reduce the burden on the local water resources, a series of water efficiency measures are being proposed on the development. A water use of 105 litres/person/day is targeted which is the equivalent required for Code for Sustainable Homes Level 3/4 housing.

The water efficiency measures being considered are as follows and as the scheme progresses to detailed design the clients will review the strategy in detail:

Low use aerated taps; Baths with a limited volume of 150 litres; Showers limited to 6 l/min; Dual flush low volume toilets with a 6/4 litre capacity; Water butts within rear gardens.

Through the use of the Water Efficiency Calculator for new dwellings, the above strategy will achieve at least Code for Sustainable Homes Level 3/4 with regards to water. With the implementation of the above strategy, the development will be seen to be actively promoting water efficiency.

# **5.0 ENERGY EFFICIENCY STATEMENT**

# 5.1 Introduction

#### 5.1.1 Purpose

The purpose of this section of the document is to explain the energy strategy proposed for the proposed development at The Old School, Park Lane, Richmond, TW9 2RA. The report provides details of the energy assessment for the eight residential dwellings and one office explaining the energy efficiency measures together with assessment of potential low and zero carbon technologies.

#### 5.1.2 Proposed Development

The Client proposes to construct eight 2 storey residential dwellings of 2 and 3 bedroom types and one office together with car parking facilities.

#### 5.1.3 Background Policy Documents

Refer to Sections 2.3.1 and 2.3.2.

#### 5.1.4 Disclaimer

This report has been prepared solely for the use of the Client, and Monitor energy consultancy accept no responsibility for its use by any third parties.

#### 5.2 Approach

The basic approach for the energy strategy is as follows:

- 1. Establish the baseline energy demand in line with statutory requirements in terms of Building Regulations compliance.
- 2. Adopt passive and low energy design techniques in order to reduce the energy demand for the development beyond the baseline energy demand requirements.
- 3. Assess the potential viability of low and zero carbon technologies to suit the development and establish potential energy and carbon dioxide reduction for viable solutions.

This approach is in line with the principles detailed within the London Borough of Richmond upon Thames Sustainable Construction Checklist.

#### **5.3 Energy Demand Assessment**

The energy strategy for the development is based on the energy performance of the residential units and office and their associated carbon emission rates. The dwellings have been modelled using SAP 2012 to ensure that the Standard Case dwelling carbon emission rates meet Building Regulations 2013 compliance, with the calculated DER/BER (Dwelling/Building Emission Rate) equalling or bettering the calculated TER (Target Emission Rate) individually and as a weighted aggregate.

To assess the 20% site wide carbon emissions to be off-set by on site renewable energy the unregulated loads for each dwelling were calculated using the Code for Sustainable Homes Ene7 calculator and tabulated to the regulated HVAC loads calculated using SAP 2012. To achieve Code for Sustainable Homes Level 4 the DER must better the TER by a minimum of 19% for the new dwellings (Units 7-9) and Building Regulation L1B pass criteria required for the conversion dwellings (Units 2-6) and the office (Unit 1).

The short fall in the attained DER values has been established and the additional renewable energy off-set requirements have been calculated and tabled in this report.

In accordance with Mayor of London's Energy Hierarchy (*summarised as 'be Lean, be Clean, be Green'*) this report outlines the predicted energy usage and carbon dioxide (CO2) emissions for the proposed development and considers the impact of energy efficiency measures in achieving significant reductions.

Following the 'Lean' principle, passive design and efficiency measures were considered first to optimise the reduction of energy use within the development. These are described in Section 6.1.

Localised and decentralised energy networks were considered to meet the 'Clean' requirement and this is described in Section 6.2.

Finally, six potential renewable energy technologies were considered for integration within the proposed development as part of the '*Be Green*' stage and the feasibility assessments are described in Section 7.

The energy demand assessment has been undertaken using the Standard Assessment Procedure (SAP) 2009 Version 9.9 and the results in the tables represent all nine dwellings in the development.

#### 5.4 Adopted Technology

#### Photovoltaic (PV) Technology

Photovoltaic cells and photovoltaic sheet have been considered as a viable option for this scheme with appropriate roof space being available as:-

Photovoltaic cells generate electricity for use in the development. Excess electricity generated could be exported to the National Grid. PV panels are included within the current Feed in Tariff scheme and therefore can provide income to the site which should reduce pay back periods for the equipment along with reducing the energy used from the National grid.

The proposed development has a reasonable roof area and this has been evaluated to assess what percentage reduction from onsite renewable energy may be realistically achieved.

The assessment is based upon the annual solar radiation kWh/m2 as identified within SAP 2012 Table H2 this is shown in the extracts below.

| Tilt of<br>Collector |       | Orientation of Collector |     |       |       |  |  |  |  |  |
|----------------------|-------|--------------------------|-----|-------|-------|--|--|--|--|--|
| Concetor             | South | SE/SW                    | E/W | NE/NW | North |  |  |  |  |  |
| Horizontal           |       |                          | 961 |       |       |  |  |  |  |  |
| 30°                  | 1073  | 1027                     | 913 | 785   | 730   |  |  |  |  |  |
| 45°                  | 1054  | 997                      | 854 | 686   | 640   |  |  |  |  |  |
| 60°                  | 989   | 927                      | 776 | 597   | 500   |  |  |  |  |  |
| Vertical             | 746   | 705                      | 582 | 440   | 371   |  |  |  |  |  |

| Table H2: Annual | solar | radiation. | kWh/m² |
|------------------|-------|------------|--------|
|                  | 30101 | ruuluului, |        |

# Table H3: Overshading Factor

| Overshading         | % of Sky blocked by obstacles | Overshading Factor |
|---------------------|-------------------------------|--------------------|
| Неаvy               | >80%                          | 0.50               |
| Significant         | >60% - 80%                    | 0.67               |
| Modest              | 20% - 60%                     | 0.83               |
| None or very little | <20%                          | 1.00               |

Note: Overshading must be assessed separately for solar panels, taking account of the tilt of the collector. Usually there is less overshading of a solar collector compared to overshading of windows for solar gain (Table 6d)

Notes

1. The overshading category of "very little" is not appropriate for new dwellings.

| Tilt of<br>Collector | Average<br>kWh/m2 | Over<br>shading<br>factor | kWp | Over<br>shading<br>factor<br>(Table 6d) | Yield<br>kWh/yr | Area<br>of PV<br>panels | Number<br>of PV<br>panels or<br>sheet/<br>1kWp | CO2<br>offset/<br>panel<br>kg/yr |
|----------------------|-------------------|---------------------------|-----|-----------------------------------------|-----------------|-------------------------|------------------------------------------------|----------------------------------|
| Horizontal           | 961.00            | 1.00                      | 1   | 0.83                                    | 797.63          | 7.98                    | 7.35                                           | 65.81                            |
| 45°                  | 1054.00           | 1.00                      | 1   | 0.83                                    | 874.82          | 8.75                    | 6                                              | 72.85                            |

Table 5.4.1 - Horizontal and Sloping Panel Solar Yield

| CO2 Offset by               | one PV | CO2 kg per | annum      | Number | Number         | kWp   |
|-----------------------------|--------|------------|------------|--------|----------------|-------|
| Panel kg/yr                 |        | Houses     | 20% Target | PV     | of PV          |       |
|                             |        |            |            | Panels | Panels/<br>kWp |       |
| Horizontal –<br>Houses 7-9  | 65.81  | 12078.90   | 2415.78    | 37     | 7.35           | 6.31  |
| Pitched 45° -<br>Houses 2-6 | 72.85  | 17364.35   | 3472.87    | 48     | 6.00           | 8.00  |
| Pitched 45° -<br>Office 1   | 72.85  | 8617.97    | 1723.59    | 24     | 6.00           | 4.00  |
| Totals                      |        | 38061.22   | 7612.24    |        |                | 18.31 |

To comply with Planning policy the 20% minimum carbon emissions (including regulated HVAC loads and unregulated appliances and cooking loads) that is required to be off-set by on-site renewable energy is **7612.24** kg CO2 per annum.

To comply with Planning policy the dwelling DER must better the TER by 19% to achieve Code for Sustainable Homes Level 4. To achieve this target reduction in carbon dioxide emissions a polycrystalline array of photovoltaic (PV) solar modules is proposed to be installed to match the slope of the roof angle on each roof. The PV panels will have a Peak panel power output of 240 Wp. Sufficient roof space has been identified upon each block to off-set the relevant associated carbon emission off-set as identified in the table below:-

|                         |                                      | PV Panels  |                        |                      |                  |                           |                                            |       |
|-------------------------|--------------------------------------|------------|------------------------|----------------------|------------------|---------------------------|--------------------------------------------|-------|
|                         | Carbon<br>Off-set<br>Total Kg<br>CO2 | Area<br>m2 | Cpv<br>kgCO2<br>/m2/yr | Epv<br>KWh/<br>m2/yr | PV<br>Area<br>m2 | Number<br>of PV<br>Panels | Electrical<br>Yield<br>generated<br>kWh/yr | КШр   |
| Houses 7 - 9            | 2415.78                              | 399.59     | 6.05                   |                      | 60               | 37                        | 5033.05                                    | 6.31  |
| Houses 2 - 6            | 3472.87                              | 388.99     | 8.93                   |                      | 77               | 48                        | 6998.56                                    | 8.00  |
| Office Unit 1           | 1723.59                              | 145.50     | 11.85                  |                      | 39               | 24                        | 3499.89                                    | 4.00  |
| 20% Renewable<br>Target | 7612.24                              | 934.08     | 8.15                   | 90.18                | 176              | 109                       | 15531.5                                    | 18.31 |

 Table 5.4.1 : Details the Photo Voltaic array requirement to meet Planning policy.

An indicative PV array layout has been included for each block to illustrate how this would look from an aerial viewpoint, refer to the Appendices.

The 109No. Photo Voltaic panels are each 1650 mm long x 992 mm wide and have a total area of 176m2. Each panel provides 615Kwh per kWp approximately 90.18kWh/m2 of panel.

It is anticipated that the PV array will provide an **18.31** kWp and save **7612.24** kg CO2 per year (7.61 tonnes CO2 per year) across the development.

# 6.0 ESTABLISHING CO2 EMISSIONS

This section of the energy statement seeks to identify the carbon footprint of the development. The Base Case DER and Actual DER Carbon Emissions as calculated by SAP 2012 in accordance with Building Regulations ADL1A 2013 and ADL1B 2010 without renewables are detailed below for all dwellings.

| Dwelling Ref | Area GIA | 2010 CO2 k        | (g/m2/yr              | % improvement<br>over Standard<br>Case | Code<br>Level |
|--------------|----------|-------------------|-----------------------|----------------------------------------|---------------|
|              |          | Standard Case/TER | Actual Case           |                                        |               |
|              |          |                   | DER/ <mark>BER</mark> |                                        |               |
| Office 1     | 145.50   | *18.90            | 18.90                 | 0                                      | L3            |
| House 2      | 79.20    | *24.59            | 24.59                 | 0                                      | L3            |
| House 3      | 60.01    | *32.68            | 32.68                 | 0                                      | L3            |
| House 4      | 83.76    | *27.13            | 27.13                 | 0                                      | L3            |
| House 5      | 89.29    | *24.77            | 24.77                 | 0                                      | L3            |
| House 6      | 76.73    | *27.80            | 27.80                 | 0                                      | L3            |
| House 7      | 131.29   | 16.03             | 15.88                 | 0.94                                   | L3            |
| House 8      | 137.01   | 14.44             | 14.63                 | -1.17                                  | L2            |
| House 9      | 131.29   | 16.03             | 15.88                 | 0.94                                   | L3            |

\* Assessed using criteria from Building Regulations Part L1B 2010/2014. Assumed DER/BER=TER

#### Table 6.0.1: Base case SAP results 2012 for all dwellings

Table 6.0.1 illustrates compliance with Building regulations ADL1A for all the new dwellings. Under Section 4.0 of the approved Building Regulations document ADL1A, the Dwelling Emission Rate (DER) must be lower or equal to the Target Emission Rate (TER). For the conversion units, the passive measures introduced must be in accordance with the standards set for ADL1B.

Table 6.0.2 illustrates the carbon dioxide loads for the regulated HVAC and unregulated loads associated with each dwelling type across the development. The unregulated loads are associated with electrical appliances and cooking, and calculated from the Code for Sustainable Homes Energy Ene7 calculator. These figures have been used to assess the total energy usage and CO2 emissions across the site and to set the 20% carbon off-set required to satisfy the LBRUT planning requirement.

| Dwelling<br>Ref | Area<br>GIA | HVAC<br>Regulated     | CO2 Unregulated<br>kg/m2/yr |         | Total CO2<br>kg/m2/γr | Total CO2<br>kg/yr | 20%<br>Renewable<br>Target<br>kg CO2/yr | CO2 off-set<br>kg/m2/yr |
|-----------------|-------------|-----------------------|-----------------------------|---------|-----------------------|--------------------|-----------------------------------------|-------------------------|
| Conversion      |             | DER/ <mark>BER</mark> | Electrical                  | Cooking |                       |                    |                                         |                         |
| Dwellings       |             | CO2                   | Appliances                  |         |                       |                    |                                         |                         |
|                 |             | kg/m2/yr              |                             |         |                       |                    |                                         |                         |
| Office 1        | 145.50      | 18.90                 | 38.20                       | 2.13    | 59.23                 | 8617.97            | 1723.59                                 | 11.85                   |
| House 2         | 79.20       | 24.59                 | 16.23                       | 2.24    | 42.53                 | 3368.38            | 673.68                                  | 8.51                    |
| House 3         | 60.01       | 32.68                 | 17.01                       | 2.78    | 50.61                 | 3037.11            | 607.42                                  | 10.12                   |
| House 4         | 83.76       | 27.13                 | 16.01                       | 2.15    | 44.38                 | 3717.27            | 743.45                                  | 8.88                    |
| House 5         | 89.29       | 24.77                 | 15.72                       | 2.04    | 41.16                 | 3675.18            | 735.04                                  | 8.23                    |
| House 6         | 76.73       | 27.80                 | 16.37 2.31                  |         | 46.48                 | 3566.41            | 713.28                                  | 9.29                    |
| Total           | 534.49      |                       | CO2 Emissions (Reg + Unreg  |         | nreg)                 | 25982.32           | 5196.46                                 | 9.72                    |
| Area            |             |                       |                             |         |                       |                    |                                         |                         |

| New Dwelli | ngs    | DER CO2<br>kg/m2/yr | Electrical<br>Appliances    | Cooking |       |          |         |      |
|------------|--------|---------------------|-----------------------------|---------|-------|----------|---------|------|
| House 7    | 131.29 | 15.88               | 13.46                       | 1.44    | 30.77 | 4039.79  | 807.96  | 6.15 |
| House 8    | 137.01 | 14.63               | 13.18                       | 1.38    | 29.19 | 3999.32  | 799.86  | 5.84 |
| House 9    | 131.29 | 15.88               | 13.46                       | 1.44    | 30.77 | 4039.79  | 807.96  | 6.15 |
| Total      | 399.59 |                     | CO2 Emissions (Reg + Unreg) |         |       | 12078.90 | 2415.78 | 6.05 |
| Area       |        |                     |                             |         |       |          |         |      |

| Summary - H | Summary - Houses 2-9 and Office 1         |                             |          |  |  |  |  |  |  |
|-------------|-------------------------------------------|-----------------------------|----------|--|--|--|--|--|--|
| Total Area  | 934.08                                    | CO2 Emissions (Reg + Unreg) | 38061.22 |  |  |  |  |  |  |
|             | Minimum 20% Renewable Target 7612.24 8.15 |                             |          |  |  |  |  |  |  |

# Table 6.0.2: Site Wide Regulated and Unregulated Co2 Emissions Used To Derive The 20% Carbon Off-Set.

The total site wide carbon dioxide emissions for the development are **38061.22** kg CO2 per year. The calculated minimum 20% carbon dioxide emissions to be off-set by on-site renewables for this development are therefore **7612.24** kg CO2 per year.

To satisfy the planning requirement the DER for each dwelling would basically need to be 19% lower than the associated TER value.

The impact of the 20% carbon dioxide emission off-set upon each dwelling DER was therefore assessed on an area basis to establish what level of improvement has been achieved by the revised DER over their respective TER's. The shortfall in the DER/BER was then assessed to establish the additional carbon dioxide emissions to be off-set by renewable technologies to meet the Code for Sustainable Homes Level 4 (19% improvement to Building Regulations Part L1A 2013 or L1B requirements) and to satisfy the LBRUT planning policy.

The results are tabled below in Table 6.0.3. In this case there was no shortfall.

| Dwelling     | <b>.</b> , |       | Kg/m2/yr              | DER                            | Improvement  | CSH Level         | Additional           |
|--------------|------------|-------|-----------------------|--------------------------------|--------------|-------------------|----------------------|
| Ref          | Area       | TER   | DER/ <mark>BER</mark> | including<br>20%<br>renewables | over TER (%) | 4 DER><br>TER min | CO2 Off-set<br>Kg/yr |
| Conversion D | Dwellings  | I     |                       |                                | L            |                   |                      |
| Office 1     | 145.50     | 18.90 | 18.90                 | 6.30                           | 66.67        | 66.67             | 0                    |
| House 2      | 79.20      | 24.59 | 24.59                 | 9.42                           | 61.69        | 61.69             | 0                    |
| House 3      | 60.01      | 32.68 | 32.68                 | 18.47                          | 43.48        | 43.48             | 0                    |
| House 4      | 83.76      | 27.13 | 27.13                 | 11.02                          | 59.38        | 59.38             | 0                    |
| House 5      | 89.29      | 24.77 | 24.77                 | 8.72                           | 64.80        | 64.80             | 0                    |
| House 6      | 76.73      | 27.80 | 27.80                 | 10.52                          | 62.16        | 62.16             | 0                    |

\* Assessed using criteria from Building Regulations Part L1B 2010/2014. Assumed DER/BER=TER

| New Dwellings |        |       |       |      |       |       |   |  |
|---------------|--------|-------|-------|------|-------|-------|---|--|
| House 7       | 131.29 | 16.03 | 15.88 | 7.71 | 40.74 | 40.74 | 0 |  |
| House 8       | 137.01 | 14.44 | 14.63 | 6.46 | 39.75 | 39.75 | 0 |  |
| House 9       | 131.29 | 16.03 | 15.88 | 7.71 | 40.74 | 40.74 | 0 |  |

# Table 6.0.3: Net Improvement To The Dwellings DER/BER Values From The 20% Renewable Off-<br/>Set, And Any Additional CO2 Off-Set Required To Satisfy CSH Level 4.

It can be seen that the adjusted DER values all meet CSH Level 4.

These figures have been added to the 20% carbon emission off-set and taken into account within the PV calculations refer to section 5.

The anticipated energy use for the site is illustrated in the following tables for natural gas and grid electricity.

| Dwelling<br>Reference | GIA<br>Area | 2012 CO2<br>Kg/m2/yr |          | Natural Gas<br>kWh/yr |         | Electricity<br>kWh/yr |        | Natural<br>Gas  | Electricity     |
|-----------------------|-------------|----------------------|----------|-----------------------|---------|-----------------------|--------|-----------------|-----------------|
|                       |             | TER                  | DER/BER  | Heating Hot           |         | Pumps<br>controls     | Lights | Total<br>kWh/yr | Total<br>kWh/yr |
| Conversion Dv         | vellings    |                      | <u> </u> |                       | Water   | controls              |        |                 | KVVII/ yi       |
| Office 1              | 145.50      | 18.90                | 18.90    | 9154.84               | 2592.19 | 175.00                | 538.11 | 11747.03        | 713.11          |
| House 2               | 79.20       | 24.59                | 24.59    | 5146.17               | 2440.06 | 75.00                 | 520.01 | 7586.23         | 595.01          |
| House 3               | 60.01       | 32.68                | 32.68    | 5685.58               | 2226.39 | 75.00                 | 410.61 | 7911.97         | 485.61          |
| House 4               | 83.76       | 27.13                | 27.13    | 6749.73               | 2469.29 | 75.00                 | 467.31 | 9219.02         | 542.31          |
| House 5               | 89.29       | 24.77                | 24.77    | 6345.79               | 2510.32 | 75.00                 | 501.40 | 8856.11         | 576.40          |
| House 6               | 76.73       | 27.80                | 27.80    | 6273.83               | 2414.95 | 75.00                 | 418.15 | 8688.78         | 493.15          |
| Total Area            | 534.49      |                      |          |                       |         |                       |        | 54009.14        | 3405.59         |

| New Dwelling | gs     |       |       |         |         |       |        |          |         |
|--------------|--------|-------|-------|---------|---------|-------|--------|----------|---------|
| House 7      | 131.29 | 16.03 | 15.88 | 5649.37 | 2631.82 | 75.00 | 495.67 | 8281.19  | 570.67  |
| House 8      | 137.01 | 14.44 | 14.63 | 5226.35 | 2642.70 | 75.00 | 511.34 | 7869.05  | 586.34  |
| House 9      | 131.29 | 16.03 | 15.88 | 5649.37 | 2631.82 | 75.00 | 495.67 | 8281.19  | 570.67  |
|              |        |       |       |         |         |       |        |          |         |
| Total Area   | 399.59 |       |       |         |         |       |        | 24431.43 | 1727.68 |
| Site Total   | 934.08 |       |       |         |         |       |        | 78440.57 | 5133.27 |

#### Table 6.0.4: Energy Use For All Dwellings

# 6.1 Energy Efficiency Measures

The passive and low energy design measures that will be incorporated into the development are as follows:

- Enhanced thermal performance to the building fabric by increasing insulation where possible.
- An assumed thermal bridging y value of 0.07W/m2K for the conversion dwellings (Units 2-6) and office (Unit 1) and a calculated value of between 0.068 and 0.069W/m2K for each of the new build dwellings (Units 7-9).
- High performing doors, windows and roof lights.
- Lower air permeability rate of 3m3/hr/m3 at 50 Pa pressure for the new dwellings (Units 7-9), N/A to the conversion dwellings (Units 2-6) and conversion office (Unit 1).
- High efficiency gas combination boilers with programmer, room thermostat and TRV controls (Units 7-9) and FGHRS (Flue gas heat recovery system) (Units 2-6).
- High efficiency WWHRS (Waste water heat recovery system (Units 2-6)
- Energy efficient individual mechanical fans for the new build dwellings (Units 7-9). Individual extract fans and passive vents for the conversion dwellings (Units 2-6) and the conversion office (Unit 1).

|                                | Baseline scheme<br>U Values, W/m2K | Energy efficient scheme<br>U values, W/m2K |
|--------------------------------|------------------------------------|--------------------------------------------|
| Ground floor                   | 0.10                               | 0.10                                       |
| External cavity walls          | 0.20                               | 0.20                                       |
| Timber walls                   | 0.20                               | 0.20                                       |
| Party walls                    | 0.00                               | 0.00                                       |
| Pitched roof, flat ceilings    | 0.10                               | 0.10                                       |
| Pitched roof, sloping ceilings | 0.12                               | 0.12                                       |
| Flat roof                      | 0.15                               | 0.15                                       |
| Doors                          | 1.20                               | 1.20                                       |
| Windows and Rooflights         | 1.40                               | 1.40                                       |

#### **U-Values**

#### **Heating and Ventilation**

| Air permeability rate  | 3 for new build dwellings (Units 7-9) and N/A for conversion |
|------------------------|--------------------------------------------------------------|
|                        | dwellings (Units 2-6) and conversion office (Unit 1)         |
| Ventilation            | Individual extract fans and passive vents for the conversion |
|                        | dwellings (Units 2-6) and conversion office (Unit 1) and     |
|                        | individual fans for the new build dwellings (units 7-9)      |
| Gas combination boiler | 89.5% 2009 SEDBUK seasonal efficiency with time and          |
|                        | temperature zone control                                     |
| Low energy lighting    | 100%                                                         |

#### 6.2 Energy Efficient Supply

There are no combined heat and power (CHP) or community/district heating schemes known to be within economically viable distance of this proposed scheme of nine dwellings.

# 6.3 Renewable Energy Target

The London Borough of Richmond upon Thames has set a target of complying with the Code for Sustainable Homes Level 4 in CO2 emission reduction from a development through the use of onsite energy systems. The estimated annual CO2 emissions for this development based on the SAP calculation after implementation of the passive and low energy measures are **7612.24** kg CO2/yr.

Within Section 7 the various potential renewable energy technologies have been reviewed and for this development the conclusion is that photovoltaic panels would be the most viable option.

# 7 RENEWABLE ENERGY TECHNOLOGIES ASSESSMENT

# 7.1 Photovoltaic cells

There is an opportunity to install photovoltaic cells due to the available area of South facing inclined roof and concealed flat roof. The total PV panels required to satisfy the constraints of the Code for Sustainable Homes Level 4 and the 20% carbon off-set required to comply with the Planning policy of the London Borough of Richmond Upon Thames is 18.31kWp. The installation of the roof panels would be inclined at the angle of the roof for optimum efficiency. The SAP calculation has been repeated again to include 18.31kWp of photovoltaic panels, which would in total off-set **7612.24** kgCO2/yr, therefore exceeding the target to achieve Code for Sustainable Homes Level 4.

# 7.2 Solar Water Heating

The development has the potential to use solar water heating with panels located on the sloping and flat roof areas. For maximum, efficiency these should ideally be South facing and would therefore be competing for the same space as the PV panels.

Solar water heating panels would not be able to achieve the required 20% carbon reduction as there is a finite requirement for hot water, therefore increasing the area of panels will not reduce the CO2 emissions proportionately.

The preferred heating and hot water strategy is for the use of high efficiency combination boilers which maximise living space and avoids the need for stored hot water within the dwelling, which can result in inefficient standing heat losses. Solar water heating would require storage for the heated water, so for these three reasons this option has discarded.

# 7.3 Ground Source Heat pump

Approximately 10m of trench for slinky pipes would be required to obtain 1kW output of heating. For a small to average heat pump of 6kW this would require 60m for each unit, therefore there would not be adequate space on the site for this option. The alternative method involving drilling a borehole would be extremely expensive and is not generally considered a feasible option for small scale domestic applications.

# 7.4 Combined Heat and Power (CHP)

CHP is on-site generation of electricity using waste heat from to provide useful heat for the development or adjacent schemes. No existing CHP system has been identified within viable vicinity of the site. For maximum efficiency, a CHP system needs to operate for at least 5000 hours/year and requires a heat sink, a consistent base heating load requirement throughout the year where the waste heat from the electrical generation may be used constantly and efficiently while simultaneously providing electricity for the site. It is therefore more appropriate for hospitals, hotels etc where demand is consistent. Domestic dwellings have variable occupation patterns with heating and electrical demand focussing on early mornings and evenings during the week, changing to a more even pattern at weekends. For a development of this size and scale, it would not be appropriate to provide a new CHP plant.

# 7.5 Wind

The London Renewable Toolkit recommends that wind turbines are only appropriate where the average wind velocity is in excess of 6m/s. The DECC wind speed database estimates the average wind speed is less than 3.27m/s at an average height of 20m above ground level in this location which would not create a viable supply of energy. In addition, a wind turbine would be both visually and audibly intrusive and not suitable for this small urban site where there is insufficient space to accommodate it. For these reasons, wind power has been discounted for this development

#### 7.6 Biomass

Biomass boilers are less efficient than the high efficiency combination boilers proposed, they would require increased management, maintenance and space for both a central energy plant room and biomass store. In addition, there would be a requirement for biomass deliveries via heavy vehicles therefore it is considered that this site and its location are not suitable for fuel delivery, storage or local supply.

#### 8.0 CONCLUSION

This report identifies how a minimum of 20% of the carbon emissions for which the development is responsible, including both regulated and unregulated emissions, are off-set by on-site renewable energy production methods.

The calculated minimum 20% carbon dioxide emissions to be off-set by on-site renewables for this development is **7612.24 kg CO2** per year. The introduction of the 20% renewable contribution when apportioned across the respective dwelling blocks generally satisfies the Planning policy. To satisfy these criteria it would appear that sufficient roof space exists to accommodate a horizontal PV array comprising of 109 No Photo Voltaic panels in total to provide **18.31 kWp** and save **7612.24 kg CO2 per year** (**7.61 tonnes** CO2 per year) across the development.

The scheme therefore demonstrates compliance with London Borough of Richmond upon Thames Planning Policies.

The energy strategy for the proposed development has adopted a hierarchical approach of using passive and low energy design to reduce the baseline energy demand and hence CO2 emissions followed by the application of low and zero carbon technologies as appropriate.

The analysis has shown that by incorporating passive and low energy design measures there is a reduction in the development CO2 emissions based on the SAP calculation method.

The potential on-site low and zero carbon technologies have been assessed taking into account the scale of this particular development and constraints such as location, visual impact, preventing additional vehicle movements and local pollution concerns.

The strategy is to utilise photovoltaic panels on the roofs of the dwellings. It is estimated that this will achieve a **7612.24 kg CO2** reduction in annual CO2 emissions when the passive and low energy measures are combined with the low and zero carbon technologies. This development achieves a better than 19% reduction in CO2 emissions compared to a Building Regulations Part L1A 2013 and L1B 2010 compliant scheme.

The SAP 2009 DER Worksheets are included in APPENDIX B

# APPENDIX A

**UK Government Strategy Documents** 

Planning for a Sustainable Future: White Paper:

This document sets out the Government's detailed proposals for reform of the Planning System. Many of the matters have been taken forward by the Planning Act 2008 or other amending legislation. However, the White Paper provides an overall context for the planning law and policy that has been produced since 2007.

The White Paper considered the long-term challenges for planning including:

Tackling climate change; Supporting sustainable economic development; Increasing housing supply; Protecting and enhancing the environment and natural resources; Improving local and national infrastructure; Maintaining security of energy supply.

Homes for the future: Housing Green Paper

The Housing Green Paper was published in July 2007 and sets out the Government's proposals to improve housing provision in terms of quality and quantity. Targets were set for carbon emissions, requiring all new homes to be zero carbon from 2016 as well as standards for water use, seeking to cut usage by 20% in new homes. Many of the matters discussed in the Green Paper are reflected in PPS3.

# PPS1 – Delivering Sustainable Development

Published in 2005, PPS1 establishes the overall framework of planning policies on the delivery of sustainable development through the planning system. The statement reiterates the following four aims for sustainable development:

- 1. Social progress which recognises the needs of everyone
- 2. Effective protection of the environment
- 3. The prudent use of natural resources
- 4. The maintenance of high and stable levels of economic growth and employment.

PPS1 sets out six key principles which should be applied to ensure that development plans and decisions taken on planning applications contribute to the delivery of sustainable development:

- 1. Sustainable development should be pursued in an integrated manner
- 2. Global sustainability should be contributed toward by addressing the causes and potential impacts of climate change
- 3. A spatial planning approach should be at the heart of planning for sustainable development
- 4. High quality inclusive design should be promoted in the layout of new development and individual buildings, in terms of function and impact, over the life of the scheme
- 5. Polices should be set out to provide comprehensive and inclusive access, both in terms of location and external physical access

6. Community involvement is an essential element in delivering sustainable development and creating sustainable and safe communities.

The Planning and Climate Change supplement to PPS1, published in December 2007, sets out how planning should contribute to reducing emissions and stabilising climate change.

With regard to determining planning applications, paragraph 40 comments that an applicant should expect expeditious and sympathetic handling where a proposal would deliver the above key objectives. Planning Authorities should expect new development to:

- Comply with adopted DPD policies on local requirements for decentralised energy supply and for sustainable buildings, unless it can be demonstrated by the applicant, having regard to the type of development involved and its design, that this is not feasible or viable.
- Take account of landform, layout, building orientation, massing and landscaping to minimise energy consumption, including maximising cooling and avoiding solar gain in the summer and overall be planned so as to minimise carbon dioxide emissions through giving careful consideration to how all aspects of development form, together with the proposed density and mix of development, support opportunities for decentralised and renewable or lowcarbon energy supply
- Deliver a high quality local environment
- Provide public and private open space as appropriate so that it offers accessible choice of shade and shelter, recognising the opportunities for flood storage, wildlife and people provided by multifunctional green spaces
- Give priority to the use of sustainable drainage systems, paying attention to the potential contribution to be gained to water harvesting from impermeable surfaces and encourage layouts that accommodate waste water recycling
- Provide for sustainable waste management.

# PPS22 – Renewable Energy

PPS22 promotes the use of renewable energy to meet the Government's sustainable development objectives and also to accord with the various international agreements to which it is party. Paragraph 18 states: "Local planning authorities and developers should consider the opportunity for incorporating renewable energy projects in all new developments. Small scale renewable energy schemes utilising technologies such as solar panels, biomass heating, small scale wind turbines, photovoltaic cells and combined heat and power schemes can be incorporated both into new developments and some existing buildings. Local Planning Authorities should specifically encourage such schemes through positive expressed polices in local development documents."

# 2.3.2 Local Government

Policy NE/3 - This policy follows the same intent as above and is positive towards promoting and encouraging developments with renewable energy sources.

# 2.3.4 Code for Sustainable Homes

The Code for Sustainable Homes (CSH) replaced the Government's Ecohomes strategy to improve the sustainable credentials of residential developments. The CSH introduces minimum environmental standards in the following areas:

Energy; Water; Materials; Surface Water Run-off; Waste; Pollution; Health and Wellbeing; Management; Ecology.

The CSH requirement for the proposed development at The Old School, Park Lane, Richmond, TW9 2RA are:

All dwellings are to achieve Code Level 4 in the Energy Ene1 category which corresponds to achieving 19% less CO2 emissions than a Building Regulations Part L1A 2010 compliant scheme.

All dwellings to achieve Code Level 3 in all other categories

# 2.3.5 Feed in Tariffs (FiTs)

Feed in Tariffs are payments to ordinary energy users for renewable electricity that they generate. The Government introduced these payments in April 2010, to enable the UK to increase the level of renewable energy used towards the target of 15% of the total energy used by 2020. It is hoped that the implementation of Feed in Tariffs, will in the long term increase the market value of properties with renewable technologies. At this stage, the use of Feed in Tariffs has not been assumed but the strategy allows for the simple addition of renewables should the resident wish to sign up. Prospective purchasers will be made aware of the benefits and the required commitments to Feed in Tariffs to encourage maximum usage of renewables.

# 2.3.6 Renewable Heat Incentives

The implementation of RHI has been delayed due to a European Commission challenge to the incentives proposed to large scale biomass production. Renewable Heat Incentives are the equivalent scheme to the Feed in Tariffs, but in relation to the production of heat from renewable technologies. This includes systems such as solar thermal panels and biomass boilers. As the use of heat incentives becomes more widespread, it is likely that over time the market value of properties will reflect the use of renewable technologies. At this stage, Renewable Heat Incentives will not have an impact on the strategy, but prospective purchasers will be made aware of the benefits and the required commitments to Feed in Tariffs to encourage maximum usage of renewable

APPENDIX B

SAP 2012 DER Worksheets

# DER Worksheet Design - Draft



This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

| Assessor name                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mrs Nicola Battis                                                                                                                                                                                                                                                                                   | ta .                                                                                                                               |                                                                                                       |                                    | Assessor r                                                                  | umber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assessor name                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |                                                                                                       |                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The Halebourne                                                                                                                                                                                                                                                                                      | Group                                                                                                                              |                                                                                                       |                                    | Last modif                                                                  | fied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26/08/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 The Old School                                                                                                                                                                                                                                                                                    | l Park Lane, Richn                                                                                                                 | nond, London, TWS                                                                                     | 9                                  |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1. Overall dwelling dime                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ensions                                                                                                                                                                                                                                                                                             |                                                                                                                                    |                                                                                                       |                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1. Overall uwening unite                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :11510115                                                                                                                                                                                                                                                                                           |                                                                                                                                    | Area (m²)                                                                                             |                                    | Average sto                                                                 | rev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | me (m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                     |                                                                                                                                    | Area (iii )                                                                                           |                                    | height (m                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Volu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ne (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Lowest occupied                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                     |                                                                                                                                    | 39.00                                                                                                 | (1a) x                             | 2.31                                                                        | (2a) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.09 (3a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| +1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     |                                                                                                                                    | 40.20                                                                                                 | (1b) x                             | 3.05                                                                        | (2b) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.61 (3b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total floor area                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1a) + (1b) +                                                                                                                                                                                                                                                                                       | + (1c) + (1d)(1n)                                                                                                                  |                                                                                                       | (12) x                             | 5.05                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | () * () *                                                                                                                                                                                                                                                                                           | (10) * (10)(1.)                                                                                                                    |                                                                                                       |                                    | (3a) + (3b) +                                                               | + (3c) + (3d)(3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n) = 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .2.70 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |                                                                                                       |                                    | (==) (==)                                                                   | () () (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2. Ventilation rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |                                                                                                       |                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |                                                                                                       |                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m³ p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | er hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |                                                                                                       |                                    | 0                                                                           | x 40 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 (6a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Number of open flues                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |                                                                                                       |                                    | 0                                                                           | x 20 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 (6b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Number of intermittent fa                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ans                                                                                                                                                                                                                                                                                                 |                                                                                                                                    |                                                                                                       |                                    | 4                                                                           | x 10 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40 (7a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |                                                                                                       |                                    | 0                                                                           | x 10 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 (7b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| indificer of publice vents                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |                                                                                                       |                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Number of flueless gas fir                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es                                                                                                                                                                                                                                                                                                  |                                                                                                                                    |                                                                                                       |                                    | 0                                                                           | x 40 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 (7c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | es                                                                                                                                                                                                                                                                                                  |                                                                                                                                    |                                                                                                       |                                    | 0                                                                           | x 40 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 (7c)<br>inges per<br>our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                     |                                                                                                                                    | (6a) + (6b) + (7a                                                                                     | a) + (7b) + (7                     |                                                                             | x 40 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | inges per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Number of flueless gas fir                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ys, flues, fans, PSVs                                                                                                                                                                                                                                                                               | is intended, proce                                                                                                                 |                                                                                                       |                                    | c) = 40                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | inges per<br>our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Number of flueless gas fir<br>Infiltration due to chimne                                                                                                                                                                                                                                                                                                                                                                                                                                | ys, flues, fans, PSVs<br>s been carried out or                                                                                                                                                                                                                                                      | is intended, proce                                                                                                                 |                                                                                                       |                                    | c) = 40                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | inges per<br>our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Number of flueless gas fir<br>Infiltration due to chimne<br>If a pressurisation test ha                                                                                                                                                                                                                                                                                                                                                                                                 | ys, flues, fans, PSVs<br>s been carried out or                                                                                                                                                                                                                                                      | is intended, proce                                                                                                                 |                                                                                                       |                                    | c) = 40<br>from (9) to (16)                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | unges per<br>our<br>1.19 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Number of flueless gas fir<br>Infiltration due to chimne<br><i>If a pressurisation test ha</i><br>Number of storeys in the                                                                                                                                                                                                                                                                                                                                                              | ys, flues, fans, PSVs<br>s been carried out or<br>dwelling                                                                                                                                                                                                                                          |                                                                                                                                    | eed to (17), otherw                                                                                   | vise continue                      | c) = 40<br>from (9) to (16)                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (v)<br>inges per<br>our<br>1.19 (8)<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Number of flueless gas fir<br>Infiltration due to chimne<br><i>If a pressurisation test ha</i><br>Number of storeys in the<br>Additional infiltration                                                                                                                                                                                                                                                                                                                                   | ys, flues, fans, PSVs<br>s <i>been carried out or</i><br>dwelling<br>0.25 for steel or timb                                                                                                                                                                                                         | per frame or 0.35                                                                                                                  | eed to (17), otherw<br>for masonry const                                                              | vise continue                      | c) = 40<br>from (9) to (16)                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (10)<br>(10)<br>(10)<br>(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Number of flueless gas fir<br>Infiltration due to chimne<br><i>If a pressurisation test ha</i><br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration:                                                                                                                                                                                                                                                                                                       | ys, flues, fans, PSVs<br>s been carried out or<br>dwelling<br>0.25 for steel or timk<br>ground floor, enter 0                                                                                                                                                                                       | per frame or 0.35<br>0.2 (unsealed) or (                                                                                           | eed to (17), otherw<br>for masonry const                                                              | vise continue                      | c) = 40<br>from (9) to (16)                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (14)<br>(15)<br>(15)<br>(15)<br>(10)<br>(11)<br>(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Number of flueless gas fir<br>Infiltration due to chimne<br><i>If a pressurisation test has</i><br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration:<br>If suspended wooden                                                                                                                                                                                                                                                                               | ys, flues, fans, PSVs<br>s been carried out or<br>dwelling<br>0.25 for steel or timb<br>ground floor, enter 0<br>nter 0.05, else enter 0                                                                                                                                                            | ber frame or 0.35<br>0.2 (unsealed) or (<br>0                                                                                      | eed to (17), otherw<br>for masonry const                                                              | vise continue                      | c) = 40<br>from (9) to (16)                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (v)<br>(v)<br>(v)<br>(v)<br>(v)<br>(v)<br>(v)<br>(v)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Number of flueless gas fir<br>Infiltration due to chimne<br><i>If a pressurisation test ha</i><br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration:<br>If suspended wooden<br>If no draught lobby, er                                                                                                                                                                                                                                                     | ys, flues, fans, PSVs<br>s been carried out or<br>dwelling<br>0.25 for steel or timb<br>ground floor, enter 0<br>nter 0.05, else enter 0                                                                                                                                                            | ber frame or 0.35<br>0.2 (unsealed) or (<br>0                                                                                      | eed to (17), otherw<br>for masonry const                                                              | vise continue                      | c) = 40<br>from (9) to (16)<br>2<br>100.00                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (14)<br>(17)<br>(17)<br>(17)<br>(10)<br>(10)<br>(10)<br>(12)<br>(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Number of flueless gas fir<br>Infiltration due to chimne<br><i>If a pressurisation test ha</i><br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration:<br>If suspended wooden<br>If no draught lobby, er<br>Percentage of windows an                                                                                                                                                                                                                         | ys, flues, fans, PSVs<br>s been carried out or<br>dwelling<br>0.25 for steel or timb<br>ground floor, enter 0<br>nter 0.05, else enter 0                                                                                                                                                            | ber frame or 0.35<br>0.2 (unsealed) or (<br>0                                                                                      | eed to (17), otherw<br>for masonry const                                                              | vise continue<br>ruction<br>nter 0 | c) = 40<br>from (9) to (16)<br>2<br>100.00                                  | ÷ (5) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | h<br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (14)<br>(14)<br>(14)<br>(10)<br>(10)<br>(11)<br>(11)<br>(12)<br>(14)<br>(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Number of flueless gas fir<br>Infiltration due to chimne<br><i>If a pressurisation test has</i><br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration:<br>If suspended wooden<br>If no draught lobby, er<br>Percentage of windows an<br>Window infiltration                                                                                                                                                                                                 | ys, flues, fans, PSVs<br>s been carried out or<br>dwelling<br>0.25 for steel or timb<br>ground floor, enter 0<br>nter 0.05, else enter (<br>nd doors draught pro                                                                                                                                    | ber frame or 0.35<br>0.2 (unsealed) or (<br>0<br>bofed                                                                             | eed to (17), otherw<br>for masonry constr<br>0.1 (sealed), else er                                    | vise continue<br>ruction<br>hter 0 | c) = 40<br>from (9) to (16)<br>2<br>100.00<br>0.25 -                        | ÷ (5) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (14)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(11)<br>(10)<br>(11)<br>(11)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Number of flueless gas fir<br>Infiltration due to chimne<br><i>If a pressurisation test ha</i><br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration:<br>If suspended wooden<br>If no draught lobby, er<br>Percentage of windows an<br>Window infiltration<br>Infiltration rate                                                                                                                                                                             | ys, flues, fans, PSVs<br>s been carried out or<br>dwelling<br>0.25 for steel or timk<br>ground floor, enter 0<br>nter 0.05, else enter (<br>nd doors draught pro<br>ty value, then (18) =                                                                                                           | oer frame or 0.35<br>0.2 (unsealed) or 0<br>0<br>oofed<br>[(17) ÷ 20] + (8), 0                                                     | eed to (17), otherw<br>for masonry constr<br>0.1 (sealed), else er                                    | vise continue<br>ruction<br>hter 0 | c) = 40<br>from (9) to (16)<br>2<br>100.00<br>0.25 -                        | ÷ (5) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (14)<br>(14)<br>(14)<br>(10)<br>(10)<br>(11)<br>(11)<br>(12)<br>(13)<br>(14)<br>(14)<br>(16)<br>(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Number of flueless gas fir<br>Infiltration due to chimne<br><i>If a pressurisation test has</i><br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration:<br>If suspended wooden<br>If no draught lobby, er<br>Percentage of windows an<br>Window infiltration<br>Infiltration rate<br>If based on air permeabili                                                                                                                                              | ys, flues, fans, PSVs<br>s been carried out or<br>dwelling<br>0.25 for steel or timk<br>ground floor, enter 0<br>nter 0.05, else enter (<br>nd doors draught pro<br>ty value, then (18) =                                                                                                           | oer frame or 0.35<br>0.2 (unsealed) or 0<br>0<br>oofed<br>[(17) ÷ 20] + (8), 0                                                     | eed to (17), otherw<br>for masonry constr<br>0.1 (sealed), else er                                    | vise continue<br>ruction<br>hter 0 | c) = 40<br>from (9) to (16)<br>2<br>100.00<br>0.25 -                        | ÷ (5) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (14)<br>(9)<br>(10)<br>(9)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(11)<br>(10)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(13)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)<br>(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Number of flueless gas fir<br>Infiltration due to chimne<br><i>If a pressurisation test ha</i><br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration:<br>If suspended wooden<br>If no draught lobby, er<br>Percentage of windows an<br>Window infiltration<br>Infiltration rate<br>If based on air permeabili<br>Number of sides on which                                                                                                                   | ys, flues, fans, PSVs<br>s been carried out or<br>dwelling<br>0.25 for steel or timk<br>ground floor, enter 0<br>nter 0.05, else enter 0<br>nd doors draught pro<br>ty value, then (18) =<br>n the dwelling is shelf                                                                                | oer frame or 0.35<br>0.2 (unsealed) or 0<br>0<br>oofed<br>[(17) ÷ 20] + (8), 0                                                     | eed to (17), otherw<br>for masonry constr<br>0.1 (sealed), else er                                    | vise continue<br>ruction<br>hter 0 | c) = 40<br>from (9) to (16)<br>2<br>100.00<br>0.25 -                        | ÷ (5) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (14)<br>(9)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(11)<br>(10)<br>(12)<br>(13)<br>(14)<br>(14)<br>(14)<br>(15)<br>(16)<br>(16)<br>(16)<br>(19)<br>(19)<br>(10)<br>(10)<br>(11)<br>(10)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(12)<br>(12)<br>(12)<br>(13)<br>(14)<br>(14)<br>(16)<br>(16)<br>(16)<br>(16)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Number of flueless gas fir<br>Infiltration due to chimne<br><i>If a pressurisation test has</i><br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration:<br>If suspended wooden<br>If no draught lobby, er<br>Percentage of windows an<br>Window infiltration<br>Infiltration rate<br>If based on air permeabili<br>Number of sides on which<br>Shelter factor                                                                                                | ys, flues, fans, PSVs<br>s been carried out or<br>dwelling<br>0.25 for steel or timb<br>ground floor, enter 0<br>hter 0.05, else enter 0<br>hd doors draught pro<br>ty value, then (18) =<br>h the dwelling is shelf<br>ting shelter factor                                                         | ber frame or 0.35<br>0.2 (unsealed) or 0<br>0<br>bofed<br>[(17) ÷ 20] + (8), 0<br>tered                                            | eed to (17), otherw<br>for masonry constr<br>0.1 (sealed), else er                                    | vise continue<br>ruction<br>hter 0 | c) = 40<br>from (9) to (16)<br>2<br>100.00<br>0.25 -                        | ÷ (5) =<br>; (5) =<br>; (14) ÷ 10<br>; (12) + (13) + (1<br>; (12) + (13) + (1)<br>; (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15) + (15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (14)<br>(9)<br>(9)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(10)<br>(11)<br>(10)<br>(10)<br>(11)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(1 |
| Number of flueless gas fir<br>Infiltration due to chimne<br><i>If a pressurisation test ha</i><br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration:<br>If suspended wooden<br>If no draught lobby, er<br>Percentage of windows an<br>Window infiltration<br>Infiltration rate<br>If based on air permeabili<br>Number of sides on which<br>Shelter factor<br>Infiltration rate incorpora                                                                  | ys, flues, fans, PSVs<br>s been carried out or<br>dwelling<br>0.25 for steel or timb<br>ground floor, enter 0<br>hter 0.05, else enter 0<br>hd doors draught pro<br>ty value, then (18) =<br>h the dwelling is shelf<br>ting shelter factor                                                         | oer frame or 0.35<br>0.2 (unsealed) or 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | eed to (17), otherw<br>for masonry constr<br>0.1 (sealed), else er                                    | vise continue<br>ruction<br>hter 0 | c) = 40<br>from (9) to (16)<br>2<br>100.00<br>0.25 -                        | ÷ (5) =<br><br>[0.2 x (14) ÷ 10<br>(12) + (13) + (1<br>1 - [0.075 x (19)<br>(18) x (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (14)<br>(9)<br>(9)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(10)<br>(11)<br>(10)<br>(10)<br>(11)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(1 |
| Number of flueless gas fir<br>Infiltration due to chimne<br><i>If a pressurisation test has</i><br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration:<br>If suspended wooden<br>If no draught lobby, er<br>Percentage of windows ar<br>Window infiltration<br>Infiltration rate<br>If based on air permeabili<br>Number of sides on which<br>Shelter factor<br>Infiltration rate incorpora<br>Infiltration rate modified                                   | ys, flues, fans, PSVs<br>s been carried out or<br>dwelling<br>0.25 for steel or time<br>ground floor, enter 0<br>nter 0.05, else enter 0<br>nd doors draught pro<br>ty value, then (18) =<br>n the dwelling is shelt<br>ting shelter factor<br>for monthly wind spe<br>Feb Mar                      | ber frame or 0.35<br>0.2 (unsealed) or 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | eed to (17), otherw<br>for masonry constr<br>0.1 (sealed), else er<br>otherwise (18) = (10            | ruction<br>hter 0                  | c) = 40 from (9) to (16) 2 100.00 0.25 - (8) + (10) + (11) +                | ÷ (5) =<br><br>[0.2 x (14) ÷ 10<br>(12) + (13) + (1<br>1 - [0.075 x (19)<br>(18) x (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $  \mathbf{h}   \mathbf{h} $ | (14)<br>(9)<br>(9)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(11)<br>(10)<br>(10)<br>(11)<br>(10)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(10)<br>(11)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(1 |
| Number of flueless gas fir<br>Infiltration due to chimne<br><i>If a pressurisation test has</i><br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration:<br>If suspended wooden<br>If no draught lobby, er<br>Percentage of windows an<br>Window infiltration<br>Infiltration rate<br>If based on air permeabili<br>Number of sides on which<br>Shelter factor<br>Infiltration rate incorpora<br>Infiltration rate modified                                   | ys, flues, fans, PSVs<br>s been carried out or<br>dwelling<br>0.25 for steel or time<br>ground floor, enter 0<br>nter 0.05, else enter 0<br>nd doors draught pro<br>ty value, then (18) =<br>n the dwelling is shelt<br>ting shelter factor<br>for monthly wind spe<br>Feb Mar                      | ber frame or 0.35<br>0.2 (unsealed) or 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | eed to (17), otherw<br>for masonry constr<br>0.1 (sealed), else er<br>otherwise (18) = (10            | ruction<br>hter 0                  | c) = 40 from (9) to (16) 2 100.00 0.25 - (8) + (10) + (11) +                | ÷ (5) =<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $  \mathbf{h}   \mathbf{h} $ | (14)<br>(9)<br>(9)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(11)<br>(10)<br>(10)<br>(11)<br>(10)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(11)<br>(10)<br>(10)<br>(11)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(1 |
| Number of flueless gas fir<br>Infiltration due to chimne<br><i>If a pressurisation test ha</i><br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration:<br>If suspended wooden<br>If no draught lobby, er<br>Percentage of windows an<br>Window infiltration<br>Infiltration rate<br>If based on air permeabili<br>Number of sides on which<br>Shelter factor<br>Infiltration rate incorpora<br>Infiltration rate modified<br>Jan<br>Monthly average wind spo | ys, flues, fans, PSVs<br>s been carried out or<br>dwelling<br>0.25 for steel or timb<br>ground floor, enter 0<br>nter 0.05, else enter 0<br>nd doors draught pro<br>ty value, then (18) =<br>n the dwelling is shelt<br>ting shelter factor<br>for monthly wind spe<br>Feb Mar<br>eed from Table U2 | ber frame or 0.35<br>0.2 (unsealed) or 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | eed to (17), otherw<br>for masonry constr<br>0.1 (sealed), else er<br>otherwise (18) = (10<br>May Jun | ruction<br>nter 0<br>6)            | c) = 40<br>from (9) to (16)<br>2<br>100.00<br>0.25 -<br>(8) + (10) + (11) + | ÷ (5) =<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $  \qquad   \qquad   \qquad   \qquad   \qquad   \qquad   \qquad   \qquad   \qquad   \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (14)<br>(9)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(11)<br>(10)<br>(10)<br>(10)<br>(11)<br>(10)<br>(10)<br>(10)<br>(11)<br>(10)<br>(10)<br>(11)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>( |



|                   | 0.61                     | 0.60                   | 0.59                | 0.53                 | 0.52                      | 0.46                | 0.46                | 0.45                          | 0.48          | 0.52             | 0.54            | 0.57              | (22b)        |
|-------------------|--------------------------|------------------------|---------------------|----------------------|---------------------------|---------------------|---------------------|-------------------------------|---------------|------------------|-----------------|-------------------|--------------|
| Calculate effecti | ve air chan              | ge rate for t          | he applica          | ble case:            |                           |                     |                     |                               |               |                  |                 |                   |              |
| If mechanica      | l ventilatior            | n: air change          | e rate throu        | ugh system           |                           |                     |                     |                               |               |                  |                 | N/A               | (23a)        |
| If balanced w     | vith heat re             | covery: effic          | iency in %          | allowing fo          | or in-use fa              | ctor from Ta        | able 4h             |                               |               |                  |                 | N/A               | (23c)        |
| d) natural ve     | ntilation or             | whole hous             | e positive          | input venti          | lation from               | n loft              |                     |                               |               |                  |                 |                   |              |
|                   | 0.69                     | 0.68                   | 0.67                | 0.64                 | 0.63                      | 0.60                | 0.60                | 0.60                          | 0.62          | 0.63             | 0.65            | 0.66              | (24d)        |
| Effective air cha | nge rate - e             | enter (24a) o          | or (24b) or         | (24c) or (24         | ld) in (25)               |                     |                     |                               |               |                  |                 |                   |              |
|                   | 0.69                     | 0.68                   | 0.67                | 0.64                 | 0.63                      | 0.60                | 0.60                | 0.60                          | 0.62          | 0.63             | 0.65            | 0.66              | (25)         |
|                   |                          |                        |                     |                      |                           |                     |                     |                               |               | -                |                 |                   | -            |
| 3. Heat losses a  | and heat lo              | ss paramete            | er                  |                      |                           |                     |                     |                               |               |                  |                 |                   |              |
| Element           |                          |                        |                     | Gross<br>rea, m²     | Opening<br>m <sup>2</sup> |                     | area<br>m²          | U-value<br>W/m <sup>2</sup> K | AxUW          |                  | /alue,<br>/m².K | Ахк,<br>kJ/К      |              |
| Deer              |                          |                        | u                   | icu, m               |                           |                     |                     |                               | = 3.74        |                  | ,               | KJ/K              | (2c)         |
| Door<br>Window    |                          |                        |                     |                      |                           |                     | 08 X                | 1.80                          |               |                  |                 |                   | (26)         |
|                   |                          |                        |                     |                      |                           |                     | 16 x                | 1.50                          | = 9.26        | _                |                 |                   | (27)         |
| Ground floor      |                          |                        |                     |                      |                           |                     | .00 x               | 0.22                          | = 8.58        | -                |                 |                   | (28a)        |
| Exposed floor     |                          |                        |                     |                      |                           |                     | 20 x                | 0.22                          | = 0.26        | _                |                 |                   | (28b         |
| External wall     |                          |                        |                     |                      |                           | 23                  |                     | 0.30                          | = 7.09        |                  |                 |                   | (29a)        |
| External wall     |                          |                        |                     |                      |                           |                     | 84 X                | 0.28                          | = 0.80        |                  |                 |                   | (29a)        |
| Party wall        |                          |                        |                     |                      |                           |                     | .97 x               | 0.00                          | = 0.00        |                  |                 |                   | (32)         |
| Roof              |                          |                        |                     |                      |                           | 21                  |                     | 0.16                          | = 3.41        |                  |                 |                   | (30)         |
| Roof              |                          |                        |                     |                      |                           |                     | .70 x               | 0.18                          | = 6.43        |                  |                 |                   | (30)         |
| Total area of ext |                          | _                      |                     |                      |                           | 131                 | L.91                |                               |               |                  |                 |                   | (31)         |
| Fabric heat loss, | W/K = ∑(A                | ×U)                    |                     |                      |                           |                     |                     |                               |               | 5)(30) + (3      |                 | 39.57             | (33)         |
| Heat capacity Cr  |                          |                        |                     |                      |                           |                     |                     | (28)                          | (30) + (32) - | + (32a)(3        | 2e) =           | N/A               | (34)         |
| Thermal mass pa   | arameter (T              | 「MP) in kJ/m           | 1²K                 |                      |                           |                     |                     |                               |               |                  |                 | 450.00            | (35)         |
| Thermal bridges   | ::Σ(L x Ψ) ca            | alculated us           | ing Appen           | dix K                |                           |                     |                     |                               |               |                  |                 | 19.79             | (36)         |
| Total fabric heat | t loss                   |                        |                     |                      |                           |                     |                     |                               |               | (33) + (3        | 36) =           | 59.35             | (37)         |
|                   | Jan                      | Feb                    | Mar                 | Apr                  | May                       | Jun                 | Jul                 | Aug                           | Sep           | Oct              | Nov             | Dec               |              |
| Ventilation heat  | loss calcula             | ated month             | y 0.33 x (2         | 25)m x (5)           |                           |                     |                     |                               |               |                  |                 | _                 |              |
|                   | 48.33                    | 47.82                  | 47.31               | 44.95                | 44.50                     | 42.44               | 42.44               | 42.06                         | 43.24         | 44.50            | 45.40           | 46.34             | (38)         |
| Heat transfer co  | efficient, W             | //K (37)m +            | (38)m               |                      |                           |                     |                     |                               |               |                  |                 | - <b>.</b>        |              |
|                   | 107.69                   | 107.17                 | 106.67              | 104.30               | 103.86                    | 101.80              | 101.80              | 101.42                        | 102.59        | 103.86           | 104.75          | 105.69            |              |
|                   |                          |                        |                     |                      |                           |                     |                     |                               | Average = S   | <u>(</u> 39)112/ | /12 =           | 104.30            | (39)         |
| Heat loss param   | eter (HLP),              | W/m²K (39              | )m ÷ (4)            |                      |                           |                     |                     |                               |               |                  |                 |                   |              |
|                   | 1.36                     | 1.35                   | 1.35                | 1.32                 | 1.31                      | 1.29                | 1.29                | 1.28                          | 1.30          | 1.31             | 1.32            | 1.33              |              |
|                   |                          |                        |                     |                      |                           |                     |                     |                               | Average = S   | (40)112/         | /12 =           | 1.32              | (40)         |
| Number of days    | in month ( <sup>-</sup>  | Table 1a)              |                     |                      |                           |                     |                     |                               |               |                  |                 |                   |              |
|                   | 31.00                    | 28.00                  | 31.00               | 30.00                | 31.00                     | 30.00               | 31.00               | 31.00                         | 30.00         | 31.00            | 30.00           | 31.00             | (40)         |
| A Motor boot      |                          |                        |                     | -                    |                           |                     |                     |                               |               |                  |                 |                   |              |
| 4. Water heating  |                          | equirement             |                     |                      |                           |                     |                     |                               |               |                  |                 | 2.45              | (12)         |
| Assumed occupa    |                          |                        |                     |                      | (25)                      |                     |                     |                               |               |                  |                 | 2.45              | (42)         |
| Annual average    |                          |                        |                     |                      |                           |                     |                     | _                             |               | •                |                 | 92.33             | (43)         |
|                   | Jan                      | Feb                    | Mar                 | Apr                  | May                       | Jun                 | Jul                 | Aug                           | Sep           | Oct              | Nov             | Dec               |              |
| Hot water usage   |                          |                        |                     | 1.1                  |                           |                     |                     |                               |               |                  |                 |                   |              |
|                   | -                        |                        |                     | 1                    | 1                         | 1                   | -                   | 1 4 -                         |               | -                |                 |                   | 1            |
|                   | e in litres pe<br>101.56 | er day for ea<br>97.87 | ch month<br>94.17   | Vd,m = fact<br>90.48 | or from Ta<br>86.79       | 83.10               | 83.10               | 86.79                         | 90.48         | 94.17            | 97.87           | 101.56            |              |
| _                 | 101.56                   | 97.87                  | 94.17               | 90.48                | 86.79                     | 83.10               | 83.10               |                               | 90.48         | 94.17<br>∑(44)1  | ·               | 101.56<br>1107.94 | (44)         |
| Energy content    | 101.56                   | 97.87<br>er used = 4.1 | 94.17<br>8 x Vd,m x | 90.48<br>nm x Tm/3   | 86.79<br>8600 kWh/r       | 83.10<br>month (see | 83.10<br>Tables 1b, | 1c 1d)                        |               | ∑(44)1           | .12 =           | 1107.94           | (44)         |
| Energy content    | 101.56                   | 97.87                  | 94.17               | 90.48                | 86.79                     | 83.10               | 83.10               |                               | 90.48         | ∑(44)1<br>123.05 | .12 =           | 1107.94           |              |
| Energy content    | 101.56                   | 97.87<br>er used = 4.1 | 94.17<br>8 x Vd,m x | 90.48<br>nm x Tm/3   | 86.79<br>8600 kWh/r       | 83.10<br>month (see | 83.10<br>Tables 1b, | 1c 1d)                        |               | ∑(44)1           | .12 =           | 1107.94           | (44)<br>(45) |

| Distribution loss 0.15 x (45            | )m                     |                   |             |               |              |             |             |                      |                        |         |         |       |
|-----------------------------------------|------------------------|-------------------|-------------|---------------|--------------|-------------|-------------|----------------------|------------------------|---------|---------|-------|
| 22.59                                   | 19.76                  | 20.39             | 17.78       | 17.06         | 14.72        | 13.64       | 15.65       | 15.84                | 18.46                  | 20.15   | 21.88   | (46)  |
| Water storage loss calculat             | ed for each            | month (55         | 5) x (41)m  |               |              |             |             |                      |                        |         |         |       |
| 0.00                                    | 0.00                   | 0.00              | 0.00        | 0.00          | 0.00         | 0.00        | 0.00        | 0.00                 | 0.00                   | 0.00    | 0.00    | (56)  |
| If the vessel contains dedic            | ated solar s           | torage or d       | edicated V  | WHRS (56      | )m x [(47) - | Vs] ÷ (47), | else (56)   |                      |                        |         |         |       |
| 0.00                                    | 0.00                   | 0.00              | 0.00        | 0.00          | 0.00         | 0.00        | 0.00        | 0.00                 | 0.00                   | 0.00    | 0.00    | (57)  |
| Primary circuit loss for each           | n month fro            | m Table 3         |             |               |              |             |             |                      |                        |         |         |       |
| 0.00                                    | 0.00                   | 0.00              | 0.00        | 0.00          | 0.00         | 0.00        | 0.00        | 0.00                 | 0.00                   | 0.00    | 0.00    | (59)  |
| Combi loss for each month               | from Table             | 3a, 3b or 3       | с           |               |              |             |             |                      |                        |         | _       | _     |
| 50.96                                   | 46.03                  | 50.96             | 49.32       | 50.96         | 49.32        | 50.96       | 50.96       | 49.32                | 50.96                  | 49.32   | 50.96   | (61)  |
| Total heat required for wat             | er heating o           | calculated f      | or each mo  | onth 0.85 x   | (45)m + (4   | 6)m + (57)ı | m + (59)m - | + (61)m              |                        | 1       |         | _     |
| 201.57                                  | 177.75                 | 186.89            | 167.82      | 164.67        | 147.44       | 141.88      | 155.30      | 154.90               | 174.01                 | 183.63  | 196.82  | (62)  |
| Solar DHW input calculated              | using Appe             |                   |             | 1             | 1            |             |             |                      |                        |         | 1       | _     |
| 0.00                                    | 0.00                   | 0.00              | 0.00        | 0.00          | 0.00         | 0.00        | 0.00        | 0.00                 | 0.00                   | 0.00    | 0.00    | (63)  |
| Output from water heater                |                        |                   | month) (62  |               |              |             | T           | r                    |                        | 1       | r       | -     |
| 201.57                                  | 177.75                 | 186.89            | 167.82      | 164.67        | 147.44       | 141.88      | 155.30      | 154.90               | 174.01                 | 183.63  | 196.82  |       |
|                                         |                        |                   |             | () (          | •            |             |             |                      | ∑(64)1                 | .12 = 2 | 2052.68 | (64)  |
| Heat gains from water heat              |                        |                   | -           | 1             | 1            |             | · · ·       | 1                    |                        |         | 1       | ٦     |
| 62.82                                   | 55.31                  | 57.94             | 51.73       | 50.55         | 44.95        | 42.97       | 47.43       | 47.44                | 53.65                  | 56.99   | 61.24   | (65)  |
| 5. Internal gains                       |                        |                   |             |               |              |             |             |                      |                        |         |         |       |
| Jan                                     | Feb                    | Mar               | Apr         | May           | Jun          | Jul         | Aug         | Sep                  | Oct                    | Nov     | Dec     |       |
| Metabolic gains (Table 5)               |                        |                   |             |               |              |             |             |                      |                        |         |         |       |
| 122.38                                  | 122.38                 | 122.38            | 122.38      | 122.38        | 122.38       | 122.38      | 122.38      | 122.38               | 122.38                 | 122.38  | 122.38  | (66)  |
| Lighting gains (calculated ir           | i Appendix I           | L, equation       | L9 or L9a), | , also see Ta | able 5       |             |             |                      | -                      |         | -       |       |
| 29.45                                   | 26.15                  | 21.27             | 16.10       | 12.04         | 10.16        | 10.98       | 14.27       | 19.16                | 24.32                  | 28.39   | 30.26   | (67)  |
| Appliance gains (calculated             | in Appendi             | ix L, equatio     | on L13 or L | 13a), also s  | ee Table 5   |             |             |                      |                        |         |         |       |
| 217.76                                  | 220.02                 | 214.33            | 202.20      | 186.90        | 172.52       | 162.91      | 160.65      | 166.35               | 178.47                 | 193.77  | 208.15  | (68)  |
| Cooking gains (calculated ir            | ) Appendix             | L, equation       | L15 or L15  | ia), also see | e Table 5    |             |             |                      |                        |         |         |       |
| 35.24                                   | 35.24                  | 35.24             | 35.24       | 35.24         | 35.24        | 35.24       | 35.24       | 35.24                | 35.24                  | 35.24   | 35.24   | (69)  |
| Pump and fan gains (Table               | 5a)                    |                   |             |               |              |             |             |                      |                        |         |         |       |
| 3.00                                    | 3.00                   | 3.00              | 3.00        | 3.00          | 3.00         | 3.00        | 3.00        | 3.00                 | 3.00                   | 3.00    | 3.00    | (70)  |
| Losses e.g. evaporation (Ta             | ble 5)                 |                   |             |               |              |             |             |                      |                        |         |         |       |
| -97.90                                  | -97.90                 | -97.90            | -97.90      | -97.90        | -97.90       | -97.90      | -97.90      | -97.90               | -97.90                 | -97.90  | -97.90  | (71)  |
| Water heating gains (Table              | 5)                     |                   |             |               |              |             |             |                      |                        |         |         |       |
| 84.43                                   | 82.30                  | 77.87             | 71.85       | 67.94         | 62.44        | 57.76       | 63.75       | 65.88                | 72.11                  | 79.15   | 82.31   | (72)  |
| Total internal gains (66)m              | + (67)m + (6           | 58)m + (69)ı      | m + (70)m   | + (71)m + (   | 72)m         |             |             |                      |                        |         |         |       |
| 394.35                                  | 391.19                 | 376.18            | 352.87      | 329.59        | 307.83       | 294.36      | 301.39      | 314.10               | 337.62                 | 364.02  | 383.44  | (73)  |
| 6. Solar gains                          |                        |                   |             |               |              |             |             |                      |                        |         |         |       |
|                                         |                        | Access f          | actor       | Area          | Sol          | ar flux     |             | g                    | FF                     |         | Gains   |       |
|                                         |                        | Table             |             | m²            |              | V/m²        | •           | ific data<br>able 6b | specific o<br>or Table |         | W       |       |
| South                                   |                        | 0.7               | 7 X         | 6.16          | x 4          | 6.75 x      | 0.9 x       | 0.72 x               | 0.70                   | =       | 100.59  | (78)  |
| Solar gains in watts ∑(74)m             | ı(82)m                 |                   | L           |               |              |             |             |                      |                        |         |         |       |
| 100.59                                  | 164.74                 | 209.85            | 237.17      | 247.15        | 237.85       | 232.39      | 225.68      | 219.21               | 177.68                 | 119.23  | 86.92   | (83)  |
|                                         | *                      |                   |             |               | •            | •           | •           |                      |                        | •       |         | _ · · |
| Total gains - internal and so           | əlar (73)m +           | · (83)m           |             |               |              |             |             |                      |                        |         |         |       |
| Total gains - internal and so<br>494.94 | blar (73)m +<br>555.92 | · (83)m<br>586.02 | 590.04      | 576.74        | 545.68       | 526.75      | 527.07      | 533.31               | 515.30                 | 483.25  | 470.35  | (84)  |

| 7. Mean intern     | al tempera    | ture (heati  | ing season)    |               |                           |              |        |        |        |               |         |         |       |
|--------------------|---------------|--------------|----------------|---------------|---------------------------|--------------|--------|--------|--------|---------------|---------|---------|-------|
| Temperature du     | iring heatin  | g periods ir | n the living a | area from T   | able 9, Th                | L(°C)        |        |        |        |               |         | 21.00   | (85)  |
|                    | Jan           | Feb          | Mar            | Apr           | May                       | Jun          | Jul    | Aug    | Sep    | Oct           | Nov     | Dec     |       |
| Utilisation factor | r for gains f | or living ar | ea n1,m (se    | e Table 9a)   |                           |              |        |        |        |               |         |         |       |
|                    | 1.00          | 1.00         | 1.00           | 1.00          | 0.99                      | 0.94         | 0.80   | 0.82   | 0.97   | 1.00          | 1.00    | 1.00    | (86)  |
| Mean internal te   | emp of livin  | g area T1 (  | steps 3 to 7   | in Table 9c   | )                         |              |        |        |        |               |         |         |       |
|                    | 20.07         | 20.17        | 20.32          | 20.52         | 20.72                     | 20.90        | 20.98  | 20.98  | 20.86  | 20.60         | 20.31   | 20.07   | (87)  |
| Temperature du     | iring heatin  | g periods ir | n the rest of  | f dwelling fi | om Table 9                | 9, Th2(°C)   |        |        |        |               |         |         |       |
|                    | 19.79         | 19.80        | 19.80          | 19.83         | 19.83                     | 19.85        | 19.85  | 19.86  | 19.84  | 19.83         | 19.82   | 19.81   | (88)  |
| Utilisation factor | r for gains f | or rest of d | welling n2,    | m             |                           |              |        |        |        |               |         |         |       |
|                    | 1.00          | 1.00         | 1.00           | 1.00          | 0.98                      | 0.87         | 0.62   | 0.65   | 0.92   | 1.00          | 1.00    | 1.00    | (89)  |
| Mean internal te   | emperature    | in the rest  | of dwelling    | g T2 (follow  | steps 3 to                | 7 in Table 9 | e)     |        |        |               |         |         | _     |
|                    | 18.96         | 19.06        | 19.21          | 19.43         | 19.63                     | 19.81        | 19.85  | 19.85  | 19.77  | 19.51         | 19.22   | 18.97   | (90)  |
| Living area fract  | ion           | •            | •              | •             |                           |              |        |        | Liv    | ving area ÷   | (4) =   | 0.44    | (91)  |
| Mean internal te   | emperature    | for the wh   | nole dwellin   | g fLA x T1 +  | ·(1 - fLA) x <sup>-</sup> | Т2           |        |        |        |               |         |         | _     |
|                    | 19.46         | 19.55        | 19.70          | 19.92         | 20.12                     | 20.30        | 20.35  | 20.35  | 20.26  | 20.00         | 19.70   | 19.46   | (92)  |
| Apply adjustmer    | nt to the me  | ean interna  | l temperati    | ure from Ta   | ble 4e whe                | ere appropr  | iate   |        |        |               |         |         |       |
|                    | 19.46         | 19.55        | 19.70          | 19.92         | 20.12                     | 20.30        | 20.35  | 20.35  | 20.26  | 20.00         | 19.70   | 19.46   | (93)  |
|                    |               | I            |                |               |                           |              |        |        |        |               | I       | 1       |       |
| 8. Space heatir    | ng requiren   | nent         |                |               |                           |              |        |        |        |               |         |         |       |
|                    | Jan           | Feb          | Mar            | Apr           | Мау                       | Jun          | Jul    | Aug    | Sep    | Oct           | Nov     | Dec     |       |
| Utilisation facto  | r for gains,  | ηm           |                |               |                           |              |        |        |        |               |         |         |       |
|                    | 1.00          | 1.00         | 1.00           | 1.00          | 0.98                      | 0.91         | 0.71   | 0.73   | 0.94   | 1.00          | 1.00    | 1.00    | (94)  |
| Useful gains, ηm   | nGm, W (94    | 1)m x (84)n  | ı              |               |                           |              |        |        |        |               |         |         |       |
|                    | 494.87        | 555.71       | 585.40         | 587.86        | 567.22                    | 495.00       | 371.88 | 387.20 | 502.29 | 513.07        | 483.05  | 470.31  | (95)  |
| Monthly average    | e external t  | emperatur    | e from Tabl    | e U1          |                           |              |        |        |        |               |         |         |       |
|                    | 4.30          | 4.90         | 6.50           | 8.90          | 11.70                     | 14.60        | 16.60  | 16.40  | 14.10  | 10.60         | 7.10    | 4.20    | (96)  |
| Heat loss rate fo  | or mean inte  | ernal temp   | erature, Lm    | , W [(39)m    | x [(93)m -                | (96)m]       |        |        |        |               |         |         |       |
|                    | 1632.15       | 1570.42      | 1408.37        | 1149.09       | 874.04                    | 579.88       | 382.03 | 400.81 | 631.79 | 975.77        | 1320.11 | 1613.05 | (97)  |
| Space heating re   | equirement    | , kWh/mor    | nth 0.024 x    | [(97)m - (9   | 5)m] x (41)               | m            |        |        |        |               |         |         |       |
|                    | 846.13        | 681.88       | 612.29         | 404.09        | 228.27                    | 0.00         | 0.00   | 0.00   | 0.00   | 344.25        | 602.68  | 850.20  |       |
|                    |               |              |                |               |                           |              |        |        | ∑(98   | 3)15, 10      | .12 = 4 | 569.80  | (98)  |
| Space heating re   | equirement    | kWh/m²/y     | ear            |               |                           |              |        |        |        | (98)          | ÷ (4)   | 57.70   | (99)  |
|                    |               |              |                |               |                           |              |        |        |        |               |         |         |       |
| 9a. Energy requ    | uirements -   | individual   | heating sy     | stems inclu   | ding micro                | O-CHP        |        |        |        |               |         |         |       |
| Space heating      |               |              |                |               |                           |              |        |        |        |               |         |         | -     |
| Fraction of space  | e heat from   | secondary    | /suppleme      | ntary system  | m (table 11               | L)           |        |        |        |               |         | 0.00    | (201) |
| Fraction of space  | e heat from   | main syste   | em(s)          |               |                           |              |        |        |        | 1 - (20       | 01) =   | 1.00    | (202) |
| Fraction of space  | e heat from   | main syste   | em 2           |               |                           |              |        |        |        |               |         | 0.00    | (202) |
| Fraction of total  | space heat    | from main    | system 1       |               |                           |              |        |        | (20    | 02) x [1- (20 | 3)] =   | 1.00    | (204) |
| Fraction of total  | space heat    | from main    | system 2       |               |                           |              |        |        |        | (202) x (20   | 03) =   | 0.00    | (205) |
| Efficiency of mai  | in system 1   | (%)          |                |               |                           |              |        |        |        |               |         | 88.80   | (206) |
|                    | Jan           | Feb          | Mar            | Apr           | May                       | Jun          | Jul    | Aug    | Sep    | Oct           | Nov     | Dec     |       |
| Space heating fu   | uel (main sy  | stem 1), kV  | Vh/month       |               |                           |              |        |        |        |               |         |         |       |
|                    | 952.85        | 767.89       | 689.52         | 455.05        | 257.06                    | 0.00         | 0.00   | 0.00   | 0.00   | 387.67        | 678.70  | 957.43  | ]     |
|                    |               |              |                |               |                           |              |        |        | ∑(211  | L)15, 10      | .12 = 5 | 5146.17 | (211) |

#### Water heating

Efficiency of water heater

|                             | 0.05          | 06 70         | 06.44       | 05.05        | 04.65      | 70.50             | 70 50  | 70.50     | 70 50                  | 05.44           | 06.44   | 00.00                | (247)     |
|-----------------------------|---------------|---------------|-------------|--------------|------------|-------------------|--------|-----------|------------------------|-----------------|---------|----------------------|-----------|
| Water heating f             | 86.85         | 86.70         | 86.44       | 85.85        | 84.65      | 79.50             | 79.50  | 79.50     | 79.50                  | 85.44           | 86.44   | 86.89                | (217)     |
| water neating i             |               | 205.02        | 216.22      | 105 49       | 194.53     | 195.46            | 178.47 | 195.34    | 104.94                 | 203.65          | 212.44  | 226 52               | Г         |
|                             | 232.10        | 205.02        | 210.22      | 195.48       | 194.53     | 185.46            | 178.47 | 195.34    | 194.84                 | <u>Σ(219a)1</u> | ·       | 226.52<br>2440.06    | <br>(219) |
| Annual totals               |               |               |             |              |            |                   |        |           |                        | 2(2198)1        | 12 =    | 2440.00              | ] (219)   |
| Space heating f             | ual main o    | uctor 1       |             |              |            |                   |        |           |                        |                 | <b></b> | 5146.17              | 7         |
| Water heating f             |               | ystem 1       |             |              |            |                   |        |           |                        |                 |         | 2440.06              |           |
| Electricity for p           |               | and electric  | keen-hot (  | Tahle 4f)    |            |                   |        |           |                        |                 |         | 2440.00              |           |
| central heat                |               |               |             |              | ating unit |                   |        |           | 30.00                  | 1               |         |                      | (230c)    |
| boiler flue fa              |               | i water puir  |             |              | ating unit |                   |        |           | 45.00                  | ]<br>T          |         |                      | (230e)    |
| Total electricity           |               | we kWh/ve     | ar          |              |            |                   |        |           | 43.00                  |                 |         | 75.00                | (231)     |
| Electricity for lig         |               | -             | ai          |              |            |                   |        |           |                        |                 |         | 520.01               | (232)     |
| Total delivered             |               | -             |             |              |            |                   |        | (211)(221 | ) + (221) +            | (222) (22       | 7h) –   | 8181.24              | (232)     |
| Total delivered             | energy for a  | an uses       |             |              |            |                   |        | (211)(221 | .) ' (231) '           | (232)(23)       |         | 0101.24              | _ (230)   |
| 10a. Fuel costs             | s - individua | I heating sy  | stems incl  | uding micr   | o-CHP      |                   |        |           |                        |                 |         |                      |           |
|                             |               |               |             |              |            | Fuel              |        | Fu        | el price               |                 |         | Fuel                 |           |
|                             |               |               |             |              | k\         | Nh/year           |        |           |                        | ,               |         | ost £/year           | -         |
| Space heating -             | main syster   | m 1           |             |              | 5          | 5146.17           | ) x    |           | 3.48                   | x 0.01          |         | 179.09               | (240)     |
| Water heating               |               |               |             |              | 2          | 2440.06           | ) x    |           | 3.48                   | x 0.01          | =       | 84.91                | (247)     |
| Pumps and fans              | S             |               |             |              |            | 75.00             | ) x    |           | 13.19                  | x 0.01          | =       | 9.89                 | (249)     |
| Electricity for lig         | ghting        |               |             |              |            | 520.01            | ) x    |           | 13.19                  | x 0.01          | =       | 68.59                | (250)     |
| Additional stand            | ding charge   | S             |             |              |            |                   |        |           |                        |                 |         | 120.00               | (251)     |
| Total energy co             | st            |               |             |              |            |                   |        | (24       | 40)(242)               | + (245)(25      | 54) =   | 462.48               | (255)     |
| 11a. SAP ratin              | g - individu  | al heating s  | ystems inc  | luding micr  | ro-CHP     |                   |        |           |                        |                 |         |                      |           |
| Energy cost def             | lator (Table  | 12)           |             |              |            |                   |        |           |                        |                 |         | 0.42                 | (256)     |
| Energy cost fact            | tor (ECF)     |               |             |              |            |                   |        |           |                        |                 |         | 1.56                 | (257)     |
| SAP value                   |               |               |             |              |            |                   |        |           |                        |                 |         | 78.18                | 1         |
| SAP rating (sect            | tion 13)      |               |             |              |            |                   |        |           |                        |                 |         | 78                   | (258)     |
| SAP band                    |               |               |             |              |            |                   |        |           |                        |                 |         | С                    | ]         |
|                             |               |               | _           |              |            |                   |        |           |                        |                 |         |                      |           |
| 12a. CO <sub>2</sub> emiss  | sions - indiv | vidual heatii | ng systems  | including    |            |                   |        |           | -                      |                 |         |                      |           |
|                             |               |               |             |              |            | Energy<br>Nh/year |        |           | sion factor<br>CO₂/kWh |                 |         | missions<br>CO₂/year |           |
| Space heating -             | main syster   | m 1           |             |              | 5          | 5146.17           | ] x    |           | 0.22                   | ] =             |         | 1111.57              | (261)     |
| Water heating               |               |               |             |              | 2          | 440.06            | ] x    |           | 0.22                   | ] =             |         | 527.05               | (264)     |
| Space and wate              | er heating    |               |             |              |            |                   |        | (26       | 1) + (262) -           | + (263) + (26   | 64) =   | 1638.63              | (265)     |
| Pumps and fans              | 5             |               |             |              |            | 75.00             | ] x    |           | 0.52                   | ] =             |         | 38.93                | (267)     |
| Electricity for lig         | ghting        |               |             |              |            | 520.01            | ] x    |           | 0.52                   | ] =             |         | 269.88               | (268)     |
| Total CO₂, kg/ye            | ear           |               |             |              |            |                   |        |           |                        | (265)(27        | 71) =   | 1947.44              | (272)     |
| Dwelling CO <sub>2</sub> er | mission rate  |               |             |              |            |                   |        |           |                        | (272) ÷         | (4) =   | 24.59                | (273)     |
| El value                    |               |               |             |              |            |                   |        |           |                        |                 |         | 78.99                |           |
| El rating (sectio           | on 14)        |               |             |              |            |                   |        |           |                        |                 |         | 79                   | (274)     |
| EI band                     |               |               |             |              |            |                   |        |           |                        |                 |         | С                    |           |
| 13a. Primary e              | noray indi    | ividual bost  | ting cyctom | s including  | micro-CH   | D                 |        |           |                        |                 |         |                      |           |
| -13a. Primary e             | energy - Indi | Moual neat    | ing system  | is including |            |                   |        | D.J       | and facto              |                 | P1      |                      |           |
|                             |               |               |             |              |            | Energy            |        | Prim      | ary factor             |                 | Prin    | nary Energy          | /         |

|                               | Energy<br>kWh/year |     | Primary factor |   | Primary Energy<br>kWh/year |
|-------------------------------|--------------------|-----|----------------|---|----------------------------|
| Space heating - main system 1 | 5146.17            | ] x | 1.22           | = | 6278.33 (261)              |
| Water heating                 | 2440.06            | x   | 1.22           | = | 2976.88 (264)              |

SAP version 9.92

| Space and water heating                  |        |   | (261) + (262) + | - (263) + (264) = | 9255.21  | (265) |
|------------------------------------------|--------|---|-----------------|-------------------|----------|-------|
| Pumps and fans                           | 75.00  | х | 3.07            | =                 | 230.25   | (267) |
| Electricity for lighting                 | 520.01 | х | 3.07            | =                 | 1596.43  | (268) |
| Primary energy kWh/year                  |        |   |                 |                   | 11081.88 | (272) |
| Dwelling primary energy rate kWh/m2/year |        |   |                 |                   | 139.92   | (273) |

# DER Worksheet Design - Draft



This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

| Assessor name                                                                                                                          | Mrs Nico                                                 | la Battista                                                        |                                                                |                                |                                             |                | As           | sessor num             | ber          | 3998  |                       |                         |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|---------------------------------------------|----------------|--------------|------------------------|--------------|-------|-----------------------|-------------------------|
| Client                                                                                                                                 |                                                          | bourne Gro                                                         |                                                                |                                |                                             |                |              | st modified            |              |       | /2014                 |                         |
|                                                                                                                                        |                                                          |                                                                    |                                                                |                                |                                             |                | Ld           | sembulieu              |              | 20/00 | 72014                 |                         |
| Address                                                                                                                                | 3 The Old                                                | t School Pai                                                       | rk Lane, Ric                                                   | hmond                          | , London, TV                                | /9             |              |                        |              |       |                       |                         |
| 1. Overall dwelling dimen                                                                                                              | sions                                                    |                                                                    |                                                                |                                |                                             |                |              |                        |              |       |                       |                         |
|                                                                                                                                        |                                                          |                                                                    |                                                                |                                | Area (m²)                                   |                |              | age storey<br>ight (m) |              | Vo    | olume (m³)            |                         |
| Lowest occupied                                                                                                                        |                                                          |                                                                    |                                                                | Γ                              | 29.81                                       | (1a) x         |              | 3.45                   | (2a) =       |       | 102.84                | (3a)                    |
| +1                                                                                                                                     |                                                          |                                                                    |                                                                |                                | 30.20                                       | (1b) x         |              | 2.22                   | (2b) =       |       | 67.04                 | (3b)                    |
| Total floor area                                                                                                                       | (1a)                                                     | + (1b) + (1c                                                       | c) + (1d)(1                                                    | .n) = [                        | 60.01                                       | (4)            |              |                        | _            |       |                       |                         |
| Dwelling volume                                                                                                                        |                                                          |                                                                    |                                                                |                                |                                             |                | (3a)         | + (3b) + (3            | c) + (3d)(3i | n) =  | 169.89                | (5)                     |
| 2. Ventilation rate                                                                                                                    |                                                          |                                                                    |                                                                |                                |                                             |                |              | ·                      |              |       |                       |                         |
|                                                                                                                                        |                                                          |                                                                    |                                                                |                                |                                             |                |              |                        |              | m     | <sup>3</sup> per hour |                         |
| Number of chimneys                                                                                                                     |                                                          |                                                                    |                                                                |                                |                                             |                |              | 0                      | ] x 40 =     |       | 0                     | (6a)                    |
| Number of open flues                                                                                                                   |                                                          |                                                                    |                                                                |                                |                                             |                |              | 0                      | ] x 20 =     |       | 0                     | (6b)                    |
| Number of intermittent far                                                                                                             | 15                                                       |                                                                    |                                                                |                                |                                             |                |              | 4                      | ] x 10 =     |       | 40                    | (7a)                    |
| Number of passive vents                                                                                                                |                                                          |                                                                    |                                                                |                                |                                             |                |              | 0                      | ] x 10 =     |       | 0                     | (7b)                    |
| Number of flueless gas fire                                                                                                            | s                                                        |                                                                    |                                                                |                                |                                             |                |              | 0                      | ] x 40 =     |       | 0                     | (7c)                    |
|                                                                                                                                        |                                                          |                                                                    |                                                                |                                |                                             |                |              |                        |              | Air   | changes per<br>hour   |                         |
| Infiltration due to chimney                                                                                                            | s, flues, fans                                           | s, PSVs                                                            |                                                                | (                              | 6a) + (6b) + (                              | 7a) + (7b) + ( | 7c) =        | 40                     | ÷ (5) =      |       | 0.24                  | (8)                     |
| If a pressurisation test has                                                                                                           | been carriec                                             | d out or is ir                                                     | ntended, pr                                                    | oceed t                        | o (17), other                               | wise continu   | e from (9) t | o (16)                 | -            |       |                       |                         |
| Air permeability value, q50                                                                                                            | , expressed                                              | in cubic me                                                        | etres per ho                                                   | our per                        | square metro                                | e of envelope  | e area       |                        |              |       | 5.00                  | (17)                    |
| If based on air permeability                                                                                                           | value, then                                              | ו (18) = [(17                                                      | 7) ÷ 20] + (8                                                  | ), other                       | wise (18) = (                               | 16)            |              |                        |              |       | 0.49                  | (18)                    |
| Number of sides on which                                                                                                               | the dwelling                                             | g is sheltere                                                      | d                                                              |                                |                                             |                |              |                        |              |       | 4                     | (19)                    |
| Shelter factor                                                                                                                         |                                                          |                                                                    |                                                                |                                |                                             |                |              | 1 -                    | [0.075 x (19 | )] =  | 0.70                  | (20)                    |
| Infiltration rate incorporati                                                                                                          | ng shelter fa                                            | actor                                                              |                                                                |                                |                                             |                |              |                        | (18) x (2    | 0) =  | 0.34                  | (21)                    |
| Infiltration rate modified for                                                                                                         | or monthly v                                             | vind speed:                                                        | :                                                              |                                |                                             |                |              |                        |              |       |                       |                         |
| Jan                                                                                                                                    | Feb                                                      | Mar                                                                | Apr                                                            | May                            | y Jun                                       | Jul            | Aug          | Sep                    | Oct          | Nov   | Dec                   |                         |
| Monthly average wind spec                                                                                                              | ed from Tab                                              | le U2                                                              |                                                                |                                |                                             |                |              |                        |              |       |                       |                         |
| 5.10                                                                                                                                   | 5.00                                                     | 4.90                                                               | 4.40                                                           | 4.30                           | 3.80                                        | 3.80           | 3.70         | 4.00                   | 4.30         | 4.50  | 4.70                  |                         |
|                                                                                                                                        |                                                          |                                                                    |                                                                |                                |                                             |                |              |                        |              |       |                       | (22)                    |
| Wind factor (22)m ÷ 4                                                                                                                  |                                                          |                                                                    |                                                                |                                |                                             |                |              |                        |              |       |                       | (22)                    |
| Wind factor (22)m ÷ 4                                                                                                                  | 1.25                                                     | 1.23                                                               | 1.10                                                           | 1.08                           | 0.95                                        | 0.95           | 0.93         | 1.00                   | 1.08         | 1.13  | 1.18                  | (22)<br>(22a)           |
|                                                                                                                                        |                                                          |                                                                    |                                                                |                                |                                             | 0.95           | 0.93         | 1.00                   | 1.08         | 1.13  | 1.18                  |                         |
| 1.28                                                                                                                                   |                                                          |                                                                    |                                                                |                                | x (22a)m                                    | 0.95           | 0.93         | 0.34                   | 1.08<br>0.37 | 0.38  | 0.40                  |                         |
| 1.28<br>Adjusted infiltration rate (a                                                                                                  | Illowing for s                                           | shelter and 0.42                                                   | wind facto                                                     | or) (21) :                     | x (22a)m                                    |                |              |                        |              |       |                       | (22a)                   |
| 1.28Adjusted infiltration rate (a0.43                                                                                                  | Illowing for s<br>0.42<br>ge rate for t                  | shelter and<br>0.42<br>the applicat                                | wind facto<br>0.37<br>ble case:                                | or) (21) :                     | x (22a)m                                    |                |              |                        |              |       |                       | (22a)                   |
| 1.28Adjusted infiltration rate (a0.43Calculate effective air chan                                                                      | Illowing for s<br>0.42<br>ge rate for t<br>n: air change | shelter and<br>0.42<br>the applicat<br>e rate throu                | l wind facto<br>0.37<br>ble case:<br>ugh system                | or) (21) :<br>0.37             | x (22a)m                                    | 0.32           |              |                        |              |       | 0.40                  | (22a)<br>(22b)          |
| 1.28Adjusted infiltration rate (a0.43Calculate effective air chanIf mechanical ventilation                                             | 0.42<br>ge rate for t<br>n: air change<br>covery: effic  | shelter and<br>0.42<br>the applicat<br>e rate throu<br>ciency in % | l wind facto<br>0.37<br>ble case:<br>ugh system<br>allowing fo | or) (21) :<br>0.37<br>r in-use | x (22a)m<br>0.32                            | 0.32           |              |                        |              |       | 0.40<br>N/A           | (22a)<br>(22b)<br>(23a) |
| 1.28<br>Adjusted infiltration rate (a<br>0.43<br>Calculate effective air chan<br>If mechanical ventilation<br>If balanced with heat re | 0.42<br>ge rate for t<br>n: air change<br>covery: effic  | shelter and<br>0.42<br>the applicat<br>e rate throu<br>ciency in % | l wind facto<br>0.37<br>ble case:<br>ugh system<br>allowing fo | or) (21) :<br>0.37<br>r in-use | x (22a)m<br>0.32<br>factor from<br>rom loft | 0.32           |              |                        |              |       | 0.40<br>N/A           | (22a)<br>(22b)<br>(23a) |



|                  | 0.59            | 0.59           | 0.59         | 0.57        | 0.57         | 0.55         | 0.55       | 0.55        | 0.56           | 0.57       | 0.57   | 0.58    | (25)  |
|------------------|-----------------|----------------|--------------|-------------|--------------|--------------|------------|-------------|----------------|------------|--------|---------|-------|
| 3. Heat losses   | and heat lo     | ss paramet     | er           |             |              |              |            |             |                |            |        |         |       |
| Element          |                 | oo paramee     |              | Gross       | Openings     | Net          | area       | U-value     | A x U W        | /К к-ч     | value, | Ахκ,    |       |
|                  |                 |                | а            | rea, m²     | m²           |              | m²         | W/m²K       |                |            | /m².K  | kJ/K    |       |
| Door             |                 |                |              |             |              | 2.           | 71 x       | 1.80        | = 4.88         |            |        |         | (26)  |
| Window           |                 |                |              |             |              | 4.           | 82 x       | 1.50        | = 7.25         |            |        |         | (27)  |
| Ground floor     |                 |                |              |             |              | 29           | .81 x      | 0.22        | = 6.56         |            |        |         | (28a) |
| External wall    |                 |                |              |             |              | 55           | .32 x      | 0.30        | = 16.60        |            |        |         | (29a) |
| Party wall       |                 |                |              |             |              | 46           | .96 x      | 0.00        | = 0.00         |            |        |         | (32)  |
| External wall    |                 |                |              |             |              | 19           | .32 x      | 0.28        | = 5.41         |            |        |         | (29a) |
| Roof             |                 |                |              |             |              | 14           | .25 x      | 0.16        | = 2.28         |            |        |         | (30)  |
| Roof             |                 |                |              |             |              | 21           | .86 x      | 0.18        | = 3.93         |            |        |         | (30)  |
| Total area of e  | xternal elem    | ents ∑A, m²    | :            |             |              | 148          | 3.09       |             |                |            |        |         | (31)  |
| Fabric heat loss | s, W/K = ∑(A    | × U)           |              |             |              |              |            |             | (26            | 5)(30) + ( | 32) =  | 46.90   | (33)  |
| Heat capacity C  | Cm = ∑(А x к)   | )              |              |             |              |              |            | (28)        | .(30) + (32) + | - (32a)(3  | 2e) =  | N/A     | (34)  |
| Thermal mass p   | parameter (1    | FMP) in kJ/n   | n²K          |             |              |              |            |             |                |            |        | 450.00  | (35)  |
| Thermal bridge   | es: Σ(L x Ψ) c  | alculated us   | sing Appen   | dix K       |              |              |            |             |                |            |        | 22.21   | (36)  |
| Total fabric hea | at loss         |                |              |             |              |              |            |             |                | (33) + (   | 36) =  | 69.12   | (37)  |
|                  | Jan             | Feb            | Mar          | Apr         | May          | Jun          | Jul        | Aug         | Sep            | Oct        | Nov    | Dec     |       |
| Ventilation hea  | at loss calcula | ated month     | ly 0.33 x (2 | 25)m x (5)  |              |              |            |             |                |            |        |         |       |
|                  | 33.29           | 33.09          | 32.89        | 31.95       | 31.77        | 30.95        | 30.95      | 30.80       | 31.27          | 31.77      | 32.13  | 32.50   | (38)  |
| Heat transfer c  | oefficient, W   | V/K (37)m +    | + (38)m      |             |              |              |            |             |                |            |        |         |       |
|                  | 102.41          | 102.21         | 102.01       | 101.07      | 100.89       | 100.07       | 100.07     | 99.92       | 100.39         | 100.89     | 101.25 | 101.62  |       |
|                  |                 |                |              |             |              |              |            |             | Average = ∑    | (39)112    | /12 =  | 101.06  | (39)  |
| Heat loss parar  | meter (HLP),    | W/m²K (39      | 9)m ÷ (4)    |             |              |              |            |             |                |            |        |         | _     |
|                  | 1.71            | 1.70           | 1.70         | 1.68        | 1.68         | 1.67         | 1.67       | 1.67        | 1.67           | 1.68       | 1.69   | 1.69    |       |
|                  |                 |                |              |             |              |              |            |             | Average = ∑    | (40)112    | /12 =  | 1.68    | (40)  |
| Number of day    |                 | Table 1a)      |              |             |              |              |            | 1           |                |            |        |         | -     |
|                  | 31.00           | 28.00          | 31.00        | 30.00       | 31.00        | 30.00        | 31.00      | 31.00       | 30.00          | 31.00      | 30.00  | 31.00   | (40)  |
| 4. Water heat    | ting energy r   | equiremen      | t            |             |              |              |            |             |                |            |        |         |       |
| Assumed occup    |                 |                |              |             |              |              |            |             |                |            |        | 1.98    | (42)  |
| Annual average   | •               | usage in litro | es per day ' | Vd,average  | = (25 x N) + | 36           |            |             |                |            |        | 81.27   | (43)  |
| 0                | Jan             | Feb            | Mar          | Apr         | May          | Jun          | Jul        | Aug         | Sep            | Oct        | Nov    | Dec     |       |
| Hot water usag   | ge in litres pe | er day for ea  | ach month    | Vd,m = fact | tor from Tab | ole 1c x (43 | )          | -           |                |            |        |         |       |
|                  | 89.40           | 86.15          | 82.90        | 79.65       | 76.39        | 73.14        | 73.14      | 76.39       | 79.65          | 82.90      | 86.15  | 89.40   | 7     |
|                  |                 |                |              |             |              |              |            | ł           | _              | ∑(44)1     | .12 =  | 975.25  | (44)  |
| Energy content   | t of hot wate   | er used = 4.1  | L8 x Vd,m x  | nm x Tm/3   | 3600 kWh/m   | onth (see    | Tables 1b  | , 1c 1d)    |                |            |        |         | _     |
|                  | 132.57          | 115.95         | 119.65       | 104.31      | 100.09       | 86.37        | 80.04      | 91.84       | 92.94          | 108.31     | 118.23 | 128.39  | 7     |
|                  |                 |                |              |             | •            |              |            | •           | •              | ∑(45)1     | .12 =  | 1278.70 | (45)  |
| Distribution los | s 0.15 x (45    | )m             |              |             |              |              |            |             |                |            |        |         | -     |
|                  | 19.89           | 17.39          | 17.95        | 15.65       | 15.01        | 12.96        | 12.01      | 13.78       | 13.94          | 16.25      | 17.73  | 19.26   | (46)  |
| Water storage    | loss calculat   | ed for each    | month (55    | 5) x (41)m  |              |              |            | •           |                |            | •      |         | -     |
|                  | 0.00            | 0.00           | 0.00         | 0.00        | 0.00         | 0.00         | 0.00       | 0.00        | 0.00           | 0.00       | 0.00   | 0.00    | (56)  |
| If the vessel co | ntains dedic    | ated solar s   | torage or d  | ledicated W | /WHRS (56)   | m x [(47) -  | Vs] ÷ (47) | , else (56) |                |            |        |         |       |
|                  | 0.00            | 0.00           | 0.00         | 0.00        | 0.00         | 0.00         | 0.00       | 0.00        | 0.00           | 0.00       | 0.00   | 0.00    | (57)  |
| Primary circuit  | loss for each   | n month fro    | m Table 3    |             |              |              |            |             |                |            |        |         |       |
|                  | 0.00            | 0.00           | 0.00         | 0.00        | 0.00         | 0.00         | 0.00       | 0.00        | 0.00           | 0.00       | 0.00   | 0.00    | (59)  |
|                  |                 |                |              |             |              |              |            |             |                |            |        | -       |       |

| Combi loss for e  | ach month     | from Table   | 3a, 3b or 3       | с            |              |              |                 |             |                           |                              |         |            |      |
|-------------------|---------------|--------------|-------------------|--------------|--------------|--------------|-----------------|-------------|---------------------------|------------------------------|---------|------------|------|
|                   | 50.96         | 46.03        | 50.96             | 49.32        | 50.96        | 49.32        | 50.96           | 50.96       | 49.32                     | 50.96                        | 49.32   | 50.96      | (61) |
| Total heat requi  | red for wat   | er heating o | calculated f      | or each mo   | onth 0.85 x  | (45)m + (4   | 6)m + (57)r     | n + (59)m + | - (61)m                   |                              |         |            |      |
|                   | 183.53        | 161.98       | 170.61            | 153.63       | 151.05       | 135.69       | 130.99          | 142.80      | 142.25                    | 159.27                       | 167.55  | 179.35     | (62) |
| Solar DHW inpu    | t calculated  | using App    | endix G or A      | Appendix H   |              |              |                 |             |                           |                              |         |            |      |
|                   | 0.00          | 0.00         | 0.00              | 0.00         | 0.00         | 0.00         | 0.00            | 0.00        | 0.00                      | 0.00                         | 0.00    | 0.00       | (63) |
| Output from wa    | ter heater f  | or each mo   | onth (kWh/        | month) (62   | 2)m + (63)n  | า            |                 |             |                           |                              |         |            |      |
|                   | 183.53        | 161.98       | 170.61            | 153.63       | 151.05       | 135.69       | 130.99          | 142.80      | 142.25                    | 159.27                       | 167.55  | 179.35     | ]    |
|                   |               |              |                   |              |              |              |                 |             |                           | ∑(64)1                       | .12 = 1 | .878.70    | (64) |
| Heat gains from   | water heat    | ing (kWh/n   | nonth) 0.2        | 5 × [0.85 ×  | (45)m + (61  | L)m] + 0.8 × | [(46)m + (      | 57)m + (59) | m]                        |                              |         |            |      |
|                   | 56.82         | 50.06        | 52.52             | 47.01        | 46.02        | 41.05        | 39.35           | 43.28       | 43.23                     | 48.75                        | 51.64   | 55.43      | (65) |
|                   |               |              |                   |              |              |              |                 |             |                           |                              |         |            |      |
| 5. Internal gair  | IS            |              |                   |              |              |              |                 |             | _                         |                              |         |            |      |
|                   | Jan           | Feb          | Mar               | Apr          | May          | Jun          | Jul             | Aug         | Sep                       | Oct                          | Nov     | Dec        |      |
| Metabolic gains   | (Table 5)     |              | •                 |              |              |              |                 |             |                           |                              |         |            | -    |
|                   | 99.10         | 99.10        | 99.10             | 99.10        | 99.10        | 99.10        | 99.10           | 99.10       | 99.10                     | 99.10                        | 99.10   | 99.10      | (66) |
| Lighting gains (c | alculated in  | Appendix     | L, equation       | L9 or L9a),  | also see Ta  | able 5       |                 |             |                           |                              |         |            |      |
|                   | 23.25         | 20.65        | 16.79             | 12.71        | 9.50         | 8.02         | 8.67            | 11.27       | 15.13                     | 19.21                        | 22.42   | 23.90      | (67) |
| Appliance gains   | (calculated   | in Appendi   | ix L, equatio     | on L13 or L1 | L3a), also s | ee Table 5   |                 |             |                           |                              |         |            |      |
|                   | 172.97        | 174.77       | 170.24            | 160.61       | 148.46       | 137.04       | 129.40          | 127.61      | 132.13                    | 141.76                       | 153.92  | 165.34     | (68) |
| Cooking gains (c  | alculated in  | Appendix     | L, equation       | L15 or L15   | a), also see | e Table 5    |                 |             |                           |                              |         |            |      |
|                   | 32.91         | 32.91        | 32.91             | 32.91        | 32.91        | 32.91        | 32.91           | 32.91       | 32.91                     | 32.91                        | 32.91   | 32.91      | (69) |
| Pump and fan g    | ains (Table S | 5a)          |                   |              |              |              |                 |             |                           |                              |         |            |      |
|                   | 3.00          | 3.00         | 3.00              | 3.00         | 3.00         | 3.00         | 3.00            | 3.00        | 3.00                      | 3.00                         | 3.00    | 3.00       | (70) |
| Losses e.g. evap  | oration (Tal  | ole 5)       |                   |              |              |              |                 |             |                           |                              |         |            |      |
|                   | -79.28        | -79.28       | -79.28            | -79.28       | -79.28       | -79.28       | -79.28          | -79.28      | -79.28                    | -79.28                       | -79.28  | -79.28     | (71) |
| Water heating g   | ains (Table   | 5)           |                   |              |              |              |                 |             |                           |                              |         |            |      |
|                   | 76.37         | 74.49        | 70.60             | 65.30        | 61.86        | 57.01        | 52.89           | 58.17       | 60.04                     | 65.53                        | 71.72   | 74.50      | (72) |
| Total internal ga | ins (66)m +   | - (67)m + (6 | 68)m + (69)       | m + (70)m ·  | + (71)m + (  | 72)m         |                 |             |                           |                              |         |            |      |
|                   | 328.32        | 325.64       | 313.36            | 294.35       | 275.55       | 257.80       | 246.69          | 252.78      | 263.03                    | 282.22                       | 303.78  | 319.47     | (73) |
|                   |               |              |                   |              |              |              |                 |             |                           |                              |         |            | -    |
| 6. Solar gains    |               |              |                   |              |              |              |                 |             |                           |                              |         |            |      |
|                   |               |              | Access f<br>Table |              | Area<br>m²   |              | ar flux<br>//m² |             | g<br>ific data<br>able 6b | FF<br>specific o<br>or Table |         | Gains<br>W |      |
|                   |               |              |                   |              |              |              | I               |             |                           | 1                            |         |            | 1 4  |

| North              |             |              | 0.7        | 7 x    | 4.82   | x 1    | 0.63 x | 0.9 x 🚺 | ).72 x | 0.70   | =      | 17.90  | (74) |
|--------------------|-------------|--------------|------------|--------|--------|--------|--------|---------|--------|--------|--------|--------|------|
| Solar gains in wa  | tts ∑(74)m  | (82)m        |            |        |        |        |        |         |        |        |        |        |      |
|                    | 17.90       | 34.21        | 58.13      | 93.37  | 125.78 | 134.65 | 125.72 | 99.74   | 69.89  | 40.72  | 22.08  | 14.92  | (83) |
| Total gains - inte | rnal and so | lar (73)m +  | (83)m      |        |        |        |        |         |        |        |        |        |      |
|                    | 346.22      | 359.85       | 371.49     | 387.73 | 401.33 | 392.45 | 372.41 | 352.52  | 332.92 | 322.95 | 325.87 | 334.39 | (84) |
|                    |             |              |            |        |        |        |        |         |        |        |        |        |      |
| 7. Mean intern     | al temperat | ture (heatir | ng season) |        |        |        |        |         |        |        |        |        |      |

|                    |               |               |              |             |             |       |       |       |       |       |       |       | -    |
|--------------------|---------------|---------------|--------------|-------------|-------------|-------|-------|-------|-------|-------|-------|-------|------|
| Temperature du     | ring heating  | g periods in  | the living a | area from T | able 9, Thi | 1(°C) |       |       |       |       |       | 21.00 | (85) |
|                    | Jan           | Feb           | Mar          | Apr         | May         | Jun   | Jul   | Aug   | Sep   | Oct   | Nov   | Dec   |      |
| Utilisation factor | r for gains f | or living are | ea n1,m (se  | e Table 9a) |             |       |       |       | _     |       |       |       | _    |
|                    | 1.00          | 1.00          | 1.00         | 1.00        | 1.00        | 0.98  | 0.92  | 0.94  | 0.99  | 1.00  | 1.00  | 1.00  | (86) |
| Mean internal te   | emp of livin  | g area T1 (s  | steps 3 to 7 | in Table 9c | )           |       |       |       |       |       |       |       |      |
|                    | 19.77         | 19.84         | 20.00        | 20.24       | 20.51       | 20.77 | 20.91 | 20.88 | 20.67 | 20.34 | 20.02 | 19.76 | (87) |
|                    |               |               |              |             |             |       |       |       |       |       |       |       |      |

Temperature during heating periods in the rest of dwelling from Table 9, Th2(°C)

|                                                                                                                                                                                                                                                                                                                                                                                                             | 19.54                                                                                                                                                                                        | 10 54                                                                                                                             | 10 54                                                                                                              | 19.55                            | 10 55                                 | 19.56                     | 10 56      | 10.57      | 10 56                                | 10 55                                                                                           | 19.55                                                                       | 10 55                                                                                                              | (00)                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------|---------------------------|------------|------------|--------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 1 1411 + <b>f</b> + -                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                              | 19.54                                                                                                                             | 19.54                                                                                                              |                                  | 19.55                                 | 19.56                     | 19.56      | 19.57      | 19.56                                | 19.55                                                                                           | 19.55                                                                       | 19.55                                                                                                              | (88)                                                                                            |
| Utilisation facto                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                            |                                                                                                                                   | -                                                                                                                  |                                  |                                       |                           |            |            |                                      |                                                                                                 |                                                                             | 1                                                                                                                  | ] ()                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                                                                                                                         | 1.00                                                                                                                              | 1.00                                                                                                               | 1.00                             | 0.99                                  | 0.94                      | 0.74       | 0.81       | 0.98                                 | 1.00                                                                                            | 1.00                                                                        | 1.00                                                                                                               | (89)                                                                                            |
| Mean internal to                                                                                                                                                                                                                                                                                                                                                                                            | emperature                                                                                                                                                                                   | 1                                                                                                                                 | -                                                                                                                  |                                  | steps 3 to                            | 7 in Table 9              |            |            |                                      | I                                                                                               | 1                                                                           | 1                                                                                                                  | -                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                             | 18.44                                                                                                                                                                                        | 18.51                                                                                                                             | 18.67                                                                                                              | 18.93                            | 19.20                                 | 19.45                     | 19.55      | 19.54      | 19.36                                | 19.03                                                                                           | 18.70                                                                       | 18.44                                                                                                              | (90)                                                                                            |
| Living area fract                                                                                                                                                                                                                                                                                                                                                                                           | ion                                                                                                                                                                                          |                                                                                                                                   |                                                                                                                    |                                  |                                       |                           |            |            | Li                                   | ving area ÷                                                                                     | (4) =                                                                       | 0.43                                                                                                               | (91)                                                                                            |
| Mean internal to                                                                                                                                                                                                                                                                                                                                                                                            | emperature                                                                                                                                                                                   | for the wh                                                                                                                        | ole dwellin                                                                                                        | g fLA x T1 +                     | -(1 - fLA) x ⊺                        | Γ2                        |            |            |                                      |                                                                                                 |                                                                             | _                                                                                                                  | _                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                             | 19.02                                                                                                                                                                                        | 19.09                                                                                                                             | 19.25                                                                                                              | 19.50                            | 19.77                                 | 20.02                     | 20.14      | 20.12      | 19.93                                | 19.60                                                                                           | 19.28                                                                       | 19.01                                                                                                              | (92)                                                                                            |
| Apply adjustment                                                                                                                                                                                                                                                                                                                                                                                            | nt to the me                                                                                                                                                                                 | ean interna                                                                                                                       | l temperati                                                                                                        | ure from Ta                      | ble 4e whe                            | re appropr                | iate       |            |                                      |                                                                                                 |                                                                             |                                                                                                                    |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                             | 19.02                                                                                                                                                                                        | 19.09                                                                                                                             | 19.25                                                                                                              | 19.50                            | 19.77                                 | 20.02                     | 20.14      | 20.12      | 19.93                                | 19.60                                                                                           | 19.28                                                                       | 19.01                                                                                                              | (93)                                                                                            |
| 8. Space heating                                                                                                                                                                                                                                                                                                                                                                                            | a requirem                                                                                                                                                                                   | ont                                                                                                                               |                                                                                                                    |                                  |                                       |                           |            |            |                                      |                                                                                                 |                                                                             |                                                                                                                    |                                                                                                 |
| o. space neath                                                                                                                                                                                                                                                                                                                                                                                              | Jan                                                                                                                                                                                          | Feb                                                                                                                               | Mar                                                                                                                | Apr                              | May                                   | Jun                       | Jul        | Aug        | Sep                                  | Oct                                                                                             | Nov                                                                         | Dec                                                                                                                |                                                                                                 |
| Utilization facto                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                   | IVIdI                                                                                                              | Apr                              | Мау                                   | Jun                       | Jui        | Aug        | Seb                                  | 001                                                                                             | NOV                                                                         | Dec                                                                                                                |                                                                                                 |
| Utilisation facto                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                            | 1                                                                                                                                 |                                                                                                                    |                                  | 0.00                                  |                           |            |            |                                      | 1 1 00                                                                                          |                                                                             | 1.00                                                                                                               | ] (0.0)                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                                                                                                                         | 1.00                                                                                                                              | 1.00                                                                                                               | 1.00                             | 0.99                                  | 0.96                      | 0.83       | 0.88       | 0.98                                 | 1.00                                                                                            | 1.00                                                                        | 1.00                                                                                                               | (94)                                                                                            |
| Useful gains, ηπ                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                   |                                                                                                                    | 1                                | I                                     |                           |            | 1          |                                      |                                                                                                 |                                                                             | 1                                                                                                                  | <b>1</b>                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                             | 346.18                                                                                                                                                                                       | 359.78                                                                                                                            | 371.33                                                                                                             | 387.14                           | 398.29                                | 375.06                    | 310.79     | 309.88     | 327.90                               | 322.51                                                                                          | 325.78                                                                      | 334.36                                                                                                             | (95)                                                                                            |
| Monthly average                                                                                                                                                                                                                                                                                                                                                                                             | e external t                                                                                                                                                                                 | emperature                                                                                                                        | e from Tabl                                                                                                        | e U1                             |                                       |                           |            |            |                                      |                                                                                                 |                                                                             |                                                                                                                    | -                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                             | 4.30                                                                                                                                                                                         | 4.90                                                                                                                              | 6.50                                                                                                               | 8.90                             | 11.70                                 | 14.60                     | 16.60      | 16.40      | 14.10                                | 10.60                                                                                           | 7.10                                                                        | 4.20                                                                                                               | (96)                                                                                            |
| Heat loss rate fo                                                                                                                                                                                                                                                                                                                                                                                           | or mean inte                                                                                                                                                                                 | ernal tempe                                                                                                                       | erature, Lm                                                                                                        | , W [(39)m                       | x [(93)m -                            | (96)m]                    |            |            |                                      |                                                                                                 |                                                                             |                                                                                                                    | _                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                             | 1507.07                                                                                                                                                                                      | 1450.04                                                                                                                           | 1300.47                                                                                                            | 1071.16                          | 813.91                                | 542.33                    | 354.04     | 371.83     | 585.08                               | 907.81                                                                                          | 1232.71                                                                     | 1505.03                                                                                                            | (97)                                                                                            |
| Space heating re                                                                                                                                                                                                                                                                                                                                                                                            | equirement,                                                                                                                                                                                  | , kWh/mon                                                                                                                         | th 0.024 x                                                                                                         | [(97)m - (9                      | 5)m] x (41)ı                          | m                         |            |            |                                      |                                                                                                 |                                                                             |                                                                                                                    |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                             | 863.71                                                                                                                                                                                       | 732.66                                                                                                                            | 691.28                                                                                                             | 492.49                           | 309.22                                | 0.00                      | 0.00       | 0.00       | 0.00                                 | 435.46                                                                                          | 652.99                                                                      | 870.99                                                                                                             | ]                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                              |                                                                                                                                   |                                                                                                                    |                                  |                                       |                           |            |            | Σ(9                                  | 8)15, 10                                                                                        | .12 =                                                                       | 5048.80                                                                                                            | (98)                                                                                            |
| с I                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                   |                                                                                                                    |                                  |                                       |                           |            |            |                                      | (00)                                                                                            | (                                                                           |                                                                                                                    | 7                                                                                               |
| Space heating re                                                                                                                                                                                                                                                                                                                                                                                            | equirement                                                                                                                                                                                   | kWh/m²/y                                                                                                                          | ear                                                                                                                |                                  |                                       |                           |            |            |                                      | (98)                                                                                            | ÷ (4)                                                                       | 84.13                                                                                                              | (99)                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                              | -                                                                                                                                 |                                                                                                                    |                                  |                                       | CUD                       |            |            |                                      | (98)                                                                                            | ÷ (4)                                                                       | 84.13                                                                                                              | ] (99)                                                                                          |
| 9a. Energy req                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              | -                                                                                                                                 |                                                                                                                    | stems inclu                      | ding micro                            | -CHP                      |            |            |                                      | (98)                                                                                            | ÷ (4)                                                                       | 84.13                                                                                                              | <b>(99)</b>                                                                                     |
| 9a. Energy req<br>Space heating                                                                                                                                                                                                                                                                                                                                                                             | uirements -                                                                                                                                                                                  | individual                                                                                                                        | heating sys                                                                                                        |                                  |                                       |                           |            |            |                                      | (98)                                                                                            | ÷ (4)                                                                       |                                                                                                                    | 1                                                                                               |
| 9a. Energy req<br>Space heating<br>Fraction of spac                                                                                                                                                                                                                                                                                                                                                         | uirements -<br>e heat from                                                                                                                                                                   | individual<br>secondary                                                                                                           | heating sys<br>/suppleme                                                                                           |                                  |                                       |                           |            |            |                                      |                                                                                                 |                                                                             | 0.00                                                                                                               | ] (201)                                                                                         |
| 9a. Energy req<br>Space heating<br>Fraction of spac<br>Fraction of spac                                                                                                                                                                                                                                                                                                                                     | uirements -<br>e heat from<br>e heat from                                                                                                                                                    | individual<br>secondary<br>main syste                                                                                             | heating sys<br>/suppleme<br>em(s)                                                                                  |                                  |                                       |                           |            |            |                                      | (98)<br>1 - (20                                                                                 |                                                                             | 0.00                                                                                                               | ] (201)<br>] (202)                                                                              |
| 9a. Energy req<br>Space heating<br>Fraction of spac<br>Fraction of spac<br>Fraction of spac                                                                                                                                                                                                                                                                                                                 | uirements -<br>e heat from<br>e heat from<br>e heat from                                                                                                                                     | individual<br>secondary<br>main syste<br>main syste                                                                               | heating sys<br>/suppleme<br>em(s)<br>em 2                                                                          |                                  |                                       |                           |            |            |                                      | 1 - (20                                                                                         | 01) =                                                                       | 0.00                                                                                                               | ] (201)<br>] (202)<br>] (202)                                                                   |
| 9a. Energy req<br>Space heating<br>Fraction of spac<br>Fraction of spac<br>Fraction of spac<br>Fraction of total                                                                                                                                                                                                                                                                                            | uirements -<br>e heat from<br>e heat from<br>e heat from<br>space heat                                                                                                                       | individual<br>secondary<br>main syste<br>main syste<br>from main                                                                  | heating sys<br>/supplemen<br>em(s)<br>em 2<br>system 1                                                             |                                  |                                       |                           |            |            | (20                                  | 1 - (20<br>)2) x [1- (20                                                                        | D1) =<br>3)] =                                                              | 0.00                                                                                                               | ] (201)<br>] (202)<br>] (202)<br>] (202)<br>] (204)                                             |
| 9a. Energy req<br>Space heating<br>Fraction of spac<br>Fraction of spac<br>Fraction of spac                                                                                                                                                                                                                                                                                                                 | uirements -<br>e heat from<br>e heat from<br>e heat from<br>space heat                                                                                                                       | individual<br>secondary<br>main syste<br>main syste<br>from main                                                                  | heating sys<br>/supplemen<br>em(s)<br>em 2<br>system 1                                                             |                                  |                                       |                           |            |            | (20                                  | 1 - (20                                                                                         | D1) =<br>3)] =                                                              | 0.00<br>1.00<br>0.00                                                                                               | ] (201)<br>] (202)<br>] (202)                                                                   |
| 9a. Energy req<br>Space heating<br>Fraction of spac<br>Fraction of spac<br>Fraction of spac<br>Fraction of total                                                                                                                                                                                                                                                                                            | uirements -<br>e heat from<br>e heat from<br>e heat from<br>space heat<br>space heat                                                                                                         | individual<br>secondary<br>main syste<br>main syste<br>from main<br>from main                                                     | heating sys<br>/supplemen<br>em(s)<br>em 2<br>system 1                                                             |                                  |                                       |                           |            |            | (20                                  | 1 - (20<br>)2) x [1- (20                                                                        | D1) =<br>3)] =                                                              | 0.00<br>1.00<br>0.00<br>1.00                                                                                       | ] (201)<br>] (202)<br>] (202)<br>] (202)<br>] (204)                                             |
| 9a. Energy req<br>Space heating<br>Fraction of spac<br>Fraction of spac<br>Fraction of spac<br>Fraction of total<br>Fraction of total                                                                                                                                                                                                                                                                       | uirements -<br>e heat from<br>e heat from<br>e heat from<br>space heat<br>space heat                                                                                                         | individual<br>secondary<br>main syste<br>main syste<br>from main<br>from main                                                     | heating sys<br>/supplemen<br>em(s)<br>em 2<br>system 1                                                             |                                  |                                       |                           | Jul        | Aug        | (20<br>Sep                           | 1 - (20<br>)2) x [1- (20                                                                        | D1) =<br>3)] =                                                              | 0.00<br>1.00<br>0.00<br>1.00<br>0.00                                                                               | ] (201)<br>] (202)<br>] (202)<br>] (202)<br>] (204)<br>] (205)                                  |
| 9a. Energy req<br>Space heating<br>Fraction of spac<br>Fraction of spac<br>Fraction of spac<br>Fraction of total<br>Fraction of total                                                                                                                                                                                                                                                                       | e heat from<br>e heat from<br>e heat from<br>space heat<br>space heat<br>in system 1<br>Jan                                                                                                  | individual<br>secondary<br>main syste<br>main syste<br>from main<br>from main<br>(%)<br>Feb                                       | heating sys<br>/supplement<br>em(s)<br>em 2<br>system 1<br>system 2<br>Mar                                         | ntary system                     | m (table 11                           | )                         | Jul        | Aug        | ·                                    | 1 - (20<br>)2) x [1- (20<br>(202) x (20                                                         | 01) =<br>3)] =<br>03) =                                                     | 0.00<br>1.00<br>0.00<br>1.00<br>0.00<br>88.80                                                                      | ] (201)<br>] (202)<br>] (202)<br>] (202)<br>] (204)<br>] (205)                                  |
| 9a. Energy req<br>Space heating<br>Fraction of spac<br>Fraction of spac<br>Fraction of spac<br>Fraction of total<br>Fraction of total<br>Efficiency of ma                                                                                                                                                                                                                                                   | e heat from<br>e heat from<br>e heat from<br>space heat<br>space heat<br>in system 1<br>Jan                                                                                                  | individual<br>secondary<br>main syste<br>main syste<br>from main<br>from main<br>(%)<br>Feb                                       | heating sys<br>/supplement<br>em(s)<br>em 2<br>system 1<br>system 2<br>Mar                                         | ntary system                     | m (table 11                           | )                         | <b>Jul</b> | <b>Aug</b> | ·                                    | 1 - (20<br>)2) x [1- (20<br>(202) x (20                                                         | 01) =<br>3)] =<br>03) =                                                     | 0.00<br>1.00<br>0.00<br>1.00<br>0.00<br>88.80                                                                      | ] (201)<br>] (202)<br>] (202)<br>] (202)<br>] (204)<br>] (205)                                  |
| 9a. Energy req<br>Space heating<br>Fraction of spac<br>Fraction of spac<br>Fraction of spac<br>Fraction of total<br>Fraction of total<br>Efficiency of ma                                                                                                                                                                                                                                                   | e heat from<br>e heat from<br>e heat from<br>space heat<br>space heat<br>in system 1<br>Jan<br>uel (main sy                                                                                  | individual<br>secondary<br>main syste<br>from main<br>from main<br>(%)<br>Feb<br>stem 1), kV                                      | heating sys<br>/supplemen<br>em(s)<br>em 2<br>system 1<br>system 2<br>Mar<br>Vh/month                              | ntary system                     | m (table 11<br>May                    | )<br>Jun                  | 1          | -          | <b>Sep</b>                           | 1 - (20<br>)2) x [1- (20<br>(202) x (20<br><b>Oct</b>                                           | 01) =<br>3)] =<br>03) =<br>Nov<br>735.35                                    | 0.00<br>1.00<br>0.00<br>1.00<br>0.00<br>88.80<br>Dec                                                               | ] (201)<br>] (202)<br>] (202)<br>] (202)<br>] (204)<br>] (205)                                  |
| 9a. Energy req<br>Space heating<br>Fraction of spac<br>Fraction of spac<br>Fraction of spac<br>Fraction of total<br>Fraction of total<br>Efficiency of ma                                                                                                                                                                                                                                                   | e heat from<br>e heat from<br>e heat from<br>space heat<br>space heat<br>in system 1<br>Jan<br>uel (main sy                                                                                  | individual<br>secondary<br>main syste<br>from main<br>from main<br>(%)<br>Feb<br>stem 1), kV                                      | heating sys<br>/supplemen<br>em(s)<br>em 2<br>system 1<br>system 2<br>Mar<br>Vh/month                              | ntary system                     | m (table 11<br>May                    | )<br>Jun                  | 1          | -          | <b>Sep</b>                           | 1 - (20<br>)2) x [1- (20<br>(202) x (20<br><b>Oct</b><br>490.39                                 | 01) =<br>3)] =<br>03) =<br>Nov<br>735.35                                    | 0.00<br>1.00<br>0.00<br>1.00<br>0.00<br>88.80<br><b>Dec</b><br>980.84                                              | ] (201)<br>] (202)<br>] (202)<br>] (204)<br>] (205)<br>] (206)                                  |
| 9a. Energy req<br>Space heating<br>Fraction of spac<br>Fraction of spac<br>Fraction of spac<br>Fraction of total<br>Fraction of total<br>Efficiency of ma<br>Space heating fu                                                                                                                                                                                                                               | e heat from<br>e heat from<br>e heat from<br>e heat from<br>space heat<br>space heat<br>in system 1<br>Jan<br>Jan<br>Jel (main sy<br>972.64                                                  | individual<br>secondary<br>main syste<br>from main<br>from main<br>(%)<br>Feb<br>stem 1), kV                                      | heating sys<br>/supplemen<br>em(s)<br>em 2<br>system 1<br>system 2<br>Mar<br>Vh/month                              | ntary system                     | m (table 11<br>May                    | )<br>Jun                  | 1          | -          | <b>Sep</b>                           | 1 - (20<br>)2) x [1- (20<br>(202) x (20<br><b>Oct</b><br>490.39                                 | 01) =<br>3)] =<br>03) =<br>Nov<br>735.35                                    | 0.00<br>1.00<br>0.00<br>1.00<br>0.00<br>88.80<br><b>Dec</b><br>980.84                                              | ] (201)<br>] (202)<br>] (202)<br>] (204)<br>] (205)<br>] (206)                                  |
| 9a. Energy req<br>Space heating<br>Fraction of space<br>Fraction of space<br>Fraction of space<br>Fraction of total<br>Fraction of total<br>Efficiency of ma<br>Space heating for<br>Water heating                                                                                                                                                                                                          | e heat from<br>e heat from<br>e heat from<br>e heat from<br>space heat<br>space heat<br>in system 1<br>Jan<br>Jan<br>Jel (main sy<br>972.64                                                  | individual<br>secondary<br>main syste<br>from main<br>from main<br>(%)<br>Feb<br>stem 1), kV                                      | heating sys<br>/supplemen<br>em(s)<br>em 2<br>system 1<br>system 2<br>Mar<br>Vh/month                              | ntary system                     | m (table 11<br>May                    | )<br>Jun                  | 1          | -          | <b>Sep</b>                           | 1 - (20<br>)2) x [1- (20<br>(202) x (20<br><b>Oct</b><br>490.39                                 | 01) =<br>3)] =<br>03) =<br>Nov<br>735.35                                    | 0.00<br>1.00<br>0.00<br>1.00<br>0.00<br>88.80<br><b>Dec</b><br>980.84                                              | ] (201)<br>] (202)<br>] (202)<br>] (204)<br>] (205)<br>] (206)                                  |
| 9a. Energy req<br>Space heating<br>Fraction of space<br>Fraction of space<br>Fraction of space<br>Fraction of total<br>Fraction of total<br>Efficiency of ma<br>Space heating for<br>Water heating                                                                                                                                                                                                          | e heat from<br>e heat from<br>e heat from<br>e heat from<br>space heat<br>space heat<br>in system 1<br>Jan<br>uel (main sy<br>972.64<br>ter heater<br>87.02                                  | individual<br>secondary<br>main syste<br>from main<br>from main<br>(%)<br>Feb<br>stem 1), kV<br>825.07<br>86.96                   | heating sys<br>/supplemenerm(s)<br>em 2<br>system 1<br>system 2<br>Mar<br>Vh/month<br>778.47                       | Apr<br>554.61                    | m (table 11<br><b>May</b><br>348.22   | )<br>Jun<br>0.00          | 0.00       | 0.00       | <b>Sep</b><br>0.00<br>Σ(21)          | 1 - (20<br>)2) x [1- (20<br>(202) x (20<br><b>Oct</b><br><u>490.39</u><br>1)15, 10              | 01) =<br>3)] =<br>03) =<br>Nov<br>735.35<br>12 =                            | 0.00<br>1.00<br>0.00<br>1.00<br>0.00<br>88.80<br>Dec<br>980.84<br>5685.58                                          | ] (201)<br>] (202)<br>] (202)<br>] (204)<br>] (205)<br>] (206)<br>] (206)<br>] (211)            |
| 9a. Energy req<br>Space heating<br>Fraction of space<br>Fraction of space<br>Fraction of space<br>Fraction of total<br>Fraction of total<br>Efficiency of ma<br>Space heating fu<br>Water heating<br>Efficiency of wat                                                                                                                                                                                      | e heat from<br>e heat from<br>e heat from<br>e heat from<br>space heat<br>space heat<br>in system 1<br>Jan<br>uel (main sy<br>972.64<br>ter heater<br>87.02                                  | individual<br>secondary<br>main syste<br>from main<br>from main<br>(%)<br>Feb<br>stem 1), kV<br>825.07<br>86.96                   | heating sys<br>/supplemenerm(s)<br>em 2<br>system 1<br>system 2<br>Mar<br>Vh/month<br>778.47                       | Apr<br>554.61                    | m (table 11<br><b>May</b><br>348.22   | )<br>Jun<br>0.00          | 0.00       | 0.00       | <b>Sep</b><br>0.00<br>Σ(21)          | 1 - (20<br>)2) x [1- (20<br>(202) x (20<br><b>Oct</b><br><u>490.39</u><br>1)15, 10              | 01) =<br>3)] =<br>03) =<br>Nov<br>735.35<br>12 =                            | 0.00<br>1.00<br>0.00<br>1.00<br>0.00<br>88.80<br>Dec<br>980.84<br>5685.58                                          | ] (201)<br>] (202)<br>] (202)<br>] (204)<br>] (205)<br>] (206)<br>] (206)<br>] (211)            |
| 9a. Energy req<br>Space heating<br>Fraction of space<br>Fraction of space<br>Fraction of space<br>Fraction of total<br>Fraction of total<br>Efficiency of ma<br>Space heating fu<br>Water heating<br>Efficiency of wat                                                                                                                                                                                      | e heat from<br>e heat from<br>e heat from<br>space heat<br>space heat<br>in system 1<br>Jan<br>uel (main sy<br>972.64<br>ter heater<br>87.02<br>uel, kWh/m                                   | individual<br>secondary<br>main syste<br>from main<br>from main<br>(%)<br>Feb<br>stem 1), kW<br>825.07<br>86.96<br>onth           | heating sys<br>/supplemenerm(s)<br>em 2<br>system 1<br>system 2<br>Mar<br>Vh/month<br>778.47<br>86.79              | Apr<br>554.61<br>86.40           | m (table 11<br>May<br>348.22<br>85.52 | )<br>Jun<br>0.00<br>79.50 | 0.00       | 0.00       | <b>Sep</b><br>0.00<br>Σ(21)<br>79.50 | 1 - (20<br>)2) x [1- (20<br>(202) x (20<br><b>Oct</b><br>1)15, 10<br>86.10                      | 01) =<br>3)] =<br>03) =<br>Nov<br>735.35<br>12 =<br>86.73<br>193.18         | 0.00<br>1.00<br>0.00<br>1.00<br>88.80<br>Dec<br>980.84<br>5685.58<br>87.06                                         | ] (201)<br>] (202)<br>] (202)<br>] (204)<br>] (205)<br>] (206)<br>] (206)<br>] (211)            |
| 9a. Energy req<br>Space heating<br>Fraction of space<br>Fraction of space<br>Fraction of space<br>Fraction of total<br>Fraction of total<br>Efficiency of ma<br>Space heating fu<br>Water heating<br>Efficiency of wat                                                                                                                                                                                      | e heat from<br>e heat from<br>e heat from<br>space heat<br>space heat<br>in system 1<br>Jan<br>uel (main sy<br>972.64<br>ter heater<br>87.02<br>uel, kWh/m                                   | individual<br>secondary<br>main syste<br>from main<br>from main<br>(%)<br>Feb<br>stem 1), kW<br>825.07<br>86.96<br>onth           | heating sys<br>/supplemenerm(s)<br>em 2<br>system 1<br>system 2<br>Mar<br>Vh/month<br>778.47<br>86.79              | Apr<br>554.61<br>86.40           | m (table 11<br>May<br>348.22<br>85.52 | )<br>Jun<br>0.00<br>79.50 | 0.00       | 0.00       | <b>Sep</b><br>0.00<br>Σ(21)<br>79.50 | 1 - (20<br>)2) x [1- (20<br>(202) x (20<br><b>Oct</b><br>490.39<br>1)15, 10<br>866.10<br>184.98 | 01) =<br>3)] =<br>03) =<br>Nov<br>735.35<br>12 =<br>86.73<br>193.18         | 0.00<br>1.00<br>0.00<br>1.00<br>0.00<br>88.80<br>Dec<br>980.84<br>5685.58<br>87.06<br>206.00                       | ] (201)<br>] (202)<br>] (202)<br>] (204)<br>] (205)<br>] (206)<br>] (206)<br>] (211)<br>] (217) |
| 9a. Energy req<br>Space heating<br>Fraction of space<br>Fraction of space<br>Fraction of space<br>Fraction of total<br>Fraction of total<br>Efficiency of ma<br>Space heating for<br>Water heating<br>Efficiency of wat                                                                                                                                                                                     | e heat from<br>e heat from<br>e heat from<br>space heat<br>space heat<br>in system 1<br>Jan<br>uel (main sy<br>972.64<br>ter heater<br>87.02<br>uel, kWh/m<br>210.92                         | individual<br>secondary<br>main syste<br>from main<br>from main<br>(%)<br>Feb<br>stem 1), kV<br>825.07<br>86.96<br>onth<br>186.27 | heating sys<br>/supplemenerm(s)<br>em 2<br>system 1<br>system 2<br>Mar<br>Vh/month<br>778.47<br>86.79              | Apr<br>554.61<br>86.40           | m (table 11<br>May<br>348.22<br>85.52 | )<br>Jun<br>0.00<br>79.50 | 0.00       | 0.00       | <b>Sep</b><br>0.00<br>Σ(21)<br>79.50 | 1 - (20<br>)2) x [1- (20<br>(202) x (20<br><b>Oct</b><br>490.39<br>1)15, 10<br>866.10<br>184.98 | 01) =<br>3)] =<br>03) =<br>Nov<br>735.35<br>12 =<br>86.73<br>193.18<br>12 = | 0.00<br>1.00<br>0.00<br>1.00<br>0.00<br>88.80<br>Dec<br>980.84<br>5685.58<br>87.06<br>206.00                       | ] (201)<br>] (202)<br>] (202)<br>] (204)<br>] (205)<br>] (206)<br>] (206)<br>] (211)<br>] (217) |
| <ul> <li>9a. Energy req</li> <li>Space heating</li> <li>Fraction of space</li> <li>Fraction of space</li> <li>Fraction of space</li> <li>Fraction of total</li> <li>Fraction of total</li> <li>Efficiency of ma</li> <li>Space heating fu</li> <li>Water heating</li> <li>Efficiency of wat</li> <li>Water heating fu</li> <li>Water heating fu</li> <li>Annual totals</li> <li>Space heating fu</li> </ul> | e heat from<br>e heat from<br>e heat from<br>e heat from<br>space heat<br>space heat<br>in system 1<br>Jan<br>uel (main sy<br>972.64<br>ter heater<br>87.02<br>uel, kWh/m<br>210.92          | individual<br>secondary<br>main syste<br>from main<br>from main<br>(%)<br>Feb<br>stem 1), kV<br>825.07<br>86.96<br>onth<br>186.27 | heating sys<br>/supplemenerm(s)<br>em 2<br>system 1<br>system 2<br>Mar<br>Vh/month<br>778.47<br>86.79              | Apr<br>554.61<br>86.40           | m (table 11<br>May<br>348.22<br>85.52 | )<br>Jun<br>0.00<br>79.50 | 0.00       | 0.00       | <b>Sep</b><br>0.00<br>Σ(21)<br>79.50 | 1 - (20<br>)2) x [1- (20<br>(202) x (20<br><b>Oct</b><br>490.39<br>1)15, 10<br>866.10<br>184.98 | D1) =<br>3)] =<br>D3) =<br>Nov<br>735.35<br>12 =<br>86.73<br>193.18<br>12 = | 0.00<br>1.00<br>0.00<br>1.00<br>0.00<br>88.80<br>Dec<br>980.84<br>5685.58<br>87.06<br>206.00<br>2226.39<br>5685.58 | ] (201)<br>] (202)<br>] (202)<br>] (204)<br>] (205)<br>] (206)<br>] (206)<br>] (211)<br>] (217) |
| <ul> <li>9a. Energy req</li> <li>Space heating</li> <li>Fraction of space</li> <li>Fraction of space</li> <li>Fraction of space</li> <li>Fraction of total</li> <li>Fraction of total</li> <li>Efficiency of ma</li> <li>Space heating for</li> <li>Water heating for</li> <li>Water heating for</li> <li>Water heating for</li> <li>Annual totals</li> </ul>                                               | e heat from<br>e heat from<br>e heat from<br>space heat<br>space heat<br>in system 1<br>Jan<br>uel (main sy<br>972.64<br>ter heater<br>87.02<br>uel, kWh/m<br>210.92<br>uel - main sy<br>uel | individual<br>secondary<br>main syste<br>from main<br>from main<br>(%)<br>Feb<br>stem 1), kV<br>825.07<br>86.96<br>onth<br>186.27 | heating sys<br>/supplemen<br>em(s)<br>em 2<br>system 1<br>system 2<br>Mar<br>Vh/month<br>778.47<br>86.79<br>196.58 | Apr<br>554.61<br>86.40<br>177.82 | m (table 11<br>May<br>348.22<br>85.52 | )<br>Jun<br>0.00<br>79.50 | 0.00       | 0.00       | <b>Sep</b><br>0.00<br>Σ(21)<br>79.50 | 1 - (20<br>)2) x [1- (20<br>(202) x (20<br><b>Oct</b><br>490.39<br>1)15, 10<br>866.10<br>184.98 | D1) =<br>3)] =<br>D3) =<br>Nov<br>735.35<br>12 =<br>86.73<br>193.18<br>12 = | 0.00<br>1.00<br>0.00<br>1.00<br>0.00<br>88.80<br>Dec<br>980.84<br>5685.58<br>87.06<br>206.00<br>2226.39            | ] (201)<br>] (202)<br>] (202)<br>] (204)<br>] (205)<br>] (206)<br>] (206)<br>] (211)<br>] (217) |

| central heating pump or water pump within warm air                  | heating unit     | 30.00                                 | (230c)                    |
|---------------------------------------------------------------------|------------------|---------------------------------------|---------------------------|
| boiler flue fan                                                     |                  | 45.00                                 | (230e)                    |
| Total electricity for the above, kWh/year                           |                  | 7                                     | 5.00 (231)                |
| Electricity for lighting (Appendix L)                               |                  | 4                                     | 10.61 (232)               |
| Total delivered energy for all uses                                 |                  | (211)(221) + (231) + (232)(237b) = 83 | 97.58 <mark>(238)</mark>  |
| 10- Fuel and individual bacting sustains industrian                 |                  |                                       |                           |
| 10a. Fuel costs - individual heating systems including m            |                  | Fred radian                           |                           |
|                                                                     | Fuel<br>kWh/year |                                       | Fuel<br>£/year            |
| Space heating - main system 1                                       | 5685.58          | x 3.48 x 0.01 = 19                    | 97.86 (240)               |
| Water heating                                                       | 2226.39          |                                       | 7.48 (247)                |
| Pumps and fans                                                      | 75.00            |                                       | 9.89 (249)                |
| Electricity for lighting                                            | 410.61           | x 13.19 x 0.01 = 5                    | 4.16 (250)                |
| Additional standing charges                                         |                  |                                       | 20.00 (251)               |
| Total energy cost                                                   |                  | (240)(242) + (245)(254) = 45          | 59.39 (255)               |
|                                                                     |                  |                                       |                           |
| 11a. SAP rating - individual heating systems including n            | nicro-CHP        |                                       |                           |
| Energy cost deflator (Table 12)                                     |                  |                                       | 0.42 (256)                |
| Energy cost factor (ECF)                                            |                  |                                       | 1.84 (257)                |
| SAP value                                                           |                  | 7                                     | 4.37                      |
| SAP rating (section 13)                                             |                  |                                       | 74 (258)                  |
| SAP band                                                            |                  |                                       | С                         |
| 12a. CO <sub>2</sub> emissions - individual heating systems includi | ng micro-CHP     |                                       |                           |
|                                                                     | Energy           | Emission factor Em                    | issions                   |
|                                                                     | kWh/year         | kg CO₂/kWh kg C                       | O₂/year                   |
| Space heating - main system 1                                       | 5685.58          | x 0.22 = 12                           | 28.09 (261)               |
| Water heating                                                       | 2226.39          | x 0.22 = 48                           | 30.90 ( <mark>264)</mark> |
| Space and water heating                                             |                  | (261) + (262) + (263) + (264) = 17    | 08.99 (265)               |
| Pumps and fans                                                      | 75.00            | x 0.52 = 3                            | 8.93 (267)                |
| Electricity for lighting                                            | 410.61           | x 0.52 = 22                           | 13.11 (268)               |

Dwelling CO₂ emission rate El value

Total CO<sub>2</sub>, kg/year

El rating (section 14)

EI band

### 13a. Primary energy - individual heating systems including micro-CHP

|                                          | Energy<br>kWh/year |   | Primary factor  |                 | Primary Energy<br>kWh/year | ,     |
|------------------------------------------|--------------------|---|-----------------|-----------------|----------------------------|-------|
| Space heating - main system 1            | 5685.58            | x | 1.22            | =               | 6936.41                    | (261) |
| Water heating                            | 2226.39            | х | 1.22            | =               | 2716.20                    | (264) |
| Space and water heating                  |                    |   | (261) + (262) + | (263) + (264) = | 9652.61                    | (265) |
| Pumps and fans                           | 75.00              | x | 3.07            | =               | 230.25                     | (267) |
| Electricity for lighting                 | 410.61             | x | 3.07            | =               | 1260.57                    | (268) |
| Primary energy kWh/year                  |                    |   |                 |                 | 11143.43                   | (272) |
| Dwelling primary energy rate kWh/m2/year |                    |   |                 |                 | 185.69                     | (273) |
|                                          |                    |   |                 |                 |                            |       |

(265)...(271) =

(272) ÷ (4) =

1961.02

32.68

74.98

75

С

(272)

(273)

(274)



This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mrs Nicola Battista                                                                                                                                                                                                                                                                                 |                                                                                          |                                                                                          |                                                             | Ass           | sessor num                                                                   | ber                                                                         | 3998  |                                                                                                                                                                                                      |                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The Halebourne Gr                                                                                                                                                                                                                                                                                   | oup                                                                                      |                                                                                          |                                                             | Las           | t modified                                                                   |                                                                             | 26/08 | 8/2014                                                                                                                                                                                               |                                                                                                     |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 The Old School Pa                                                                                                                                                                                                                                                                                 | ark Lane, Richm                                                                          | iond, London, T                                                                          | W9                                                          |               |                                                                              |                                                                             |       |                                                                                                                                                                                                      |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                          |                                                             |               |                                                                              |                                                                             |       |                                                                                                                                                                                                      |                                                                                                     |
| 1. Overall dwelling dimen                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sions                                                                                                                                                                                                                                                                                               |                                                                                          |                                                                                          |                                                             |               |                                                                              |                                                                             |       |                                                                                                                                                                                                      |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     |                                                                                          | Area (m²                                                                                 | )                                                           |               | age storey<br>ight (m)                                                       |                                                                             | Vo    | olume (m³)                                                                                                                                                                                           |                                                                                                     |
| Lowest occupied                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     |                                                                                          | 41.45                                                                                    | (1a) x                                                      |               | 2.31                                                                         | (2a) =                                                                      |       | 95.75                                                                                                                                                                                                | (3a)                                                                                                |
| +1                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                          | 42.31                                                                                    | (1b) x                                                      |               | 3.05                                                                         | (2b) =                                                                      |       | 129.05                                                                                                                                                                                               | (3b)                                                                                                |
| Total floor area                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1a) + (1b) + (1                                                                                                                                                                                                                                                                                    | lc) + (1d)(1n)                                                                           | = 83.76                                                                                  | (4)                                                         |               |                                                                              |                                                                             |       |                                                                                                                                                                                                      |                                                                                                     |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                          |                                                             | (3a)          | + (3b) + (3c                                                                 | :) + (3d)(3                                                                 | n) =  | 224.80                                                                                                                                                                                               | (5)                                                                                                 |
| 2. Ventilation rate                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                          |                                                             |               |                                                                              |                                                                             |       |                                                                                                                                                                                                      |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                          |                                                             |               |                                                                              |                                                                             | m     | <sup>3</sup> per hour                                                                                                                                                                                |                                                                                                     |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                          |                                                             |               | 0                                                                            | x 40 =                                                                      |       | 0                                                                                                                                                                                                    | (6a)                                                                                                |
| Number of open flues                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                          |                                                             |               | 0                                                                            | x 20 =                                                                      |       | 0                                                                                                                                                                                                    | (6b)                                                                                                |
| Number of intermittent fan                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                                                                                                                                                                                                                                                                                   |                                                                                          |                                                                                          |                                                             |               | 4                                                                            | x 10 =                                                                      |       | 40                                                                                                                                                                                                   | (7a)                                                                                                |
| Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                          |                                                             |               | 0                                                                            | x 10 =                                                                      |       | 0                                                                                                                                                                                                    | (7b                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                          |                                                             |               | 0                                                                            | x 40 =                                                                      |       | 0                                                                                                                                                                                                    | (7c)                                                                                                |
| Number of flueless gas fires                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i                                                                                                                                                                                                                                                                                                   |                                                                                          |                                                                                          |                                                             |               | 0                                                                            | x 40 –                                                                      |       | -                                                                                                                                                                                                    |                                                                                                     |
| Number of flueless gas fires                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                          |                                                             |               | 0                                                                            | x 40 –                                                                      | L     | changes pe<br>hour                                                                                                                                                                                   |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     |                                                                                          | (6a) + (6b) +                                                                            | - (7a) + (7b) + (                                           | 7c) =         | 40                                                                           | ÷ (5) =                                                                     | Air   |                                                                                                                                                                                                      |                                                                                                     |
| nfiltration due to chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s, flues, fans, PSVs                                                                                                                                                                                                                                                                                | intended, proce                                                                          |                                                                                          |                                                             |               | 40                                                                           |                                                                             | Air   | hour                                                                                                                                                                                                 | · ·<br>?r                                                                                           |
| nfiltration due to chimneys<br>f a pressurisation test has b                                                                                                                                                                                                                                                                                                                                                                                                                    | s, flues, fans, PSVs<br>Deen carried out or is                                                                                                                                                                                                                                                      | intended, proce                                                                          |                                                                                          |                                                             |               | 40                                                                           |                                                                             | Air   | hour                                                                                                                                                                                                 | · ·<br>?r                                                                                           |
| nfiltration due to chimneys<br>f a pressurisation test has b                                                                                                                                                                                                                                                                                                                                                                                                                    | s, flues, fans, PSVs<br>Deen carried out or is                                                                                                                                                                                                                                                      | intended, proce                                                                          |                                                                                          |                                                             |               | 40<br>(16)                                                                   |                                                                             | Air   | hour                                                                                                                                                                                                 | er<br>(8)<br>(9)                                                                                    |
| nfiltration due to chimneys<br>f a pressurisation test has b<br>Number of storeys in the dy                                                                                                                                                                                                                                                                                                                                                                                     | s, flues, fans, PSVs<br>been carried out or is<br>welling                                                                                                                                                                                                                                           |                                                                                          | eed to (17), oth                                                                         | erwise continue                                             |               | 40<br>(16)                                                                   |                                                                             | Air   | <b>hour</b> 0.18                                                                                                                                                                                     | er (8)<br>(9)<br>(10)                                                                               |
| nfiltration due to chimneys<br>If a pressurisation test has b<br>Number of storeys in the dy<br>Additional infiltration                                                                                                                                                                                                                                                                                                                                                         | , flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber                                                                                                                                                                                                                  | frame or 0.35                                                                            | eed to (17), othe                                                                        | erwise continue                                             |               | 40<br>(16)                                                                   |                                                                             | Air   | hour<br>0.18<br>0.10                                                                                                                                                                                 | (9)<br>(10)<br>(11)                                                                                 |
| nfiltration due to chimneys<br>If a pressurisation test has b<br>Number of storeys in the dy<br>Additional infiltration<br>Structural infiltration: 0.                                                                                                                                                                                                                                                                                                                          | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2                                                                                                                                                                                        | frame or 0.35                                                                            | eed to (17), othe                                                                        | erwise continue                                             |               | 40<br>(16)                                                                   |                                                                             | Air   | hour 0.18 0.10 0.35                                                                                                                                                                                  | (8)<br>(9)<br>(10)<br>(11)<br>(11)                                                                  |
| nfiltration due to chimneys<br>If a pressurisation test has b<br>Number of storeys in the dy<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr                                                                                                                                                                                                                                                                                                | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0                                                                                                                                                               | frame or 0.35 f<br>(unsealed) or 0                                                       | eed to (17), othe                                                                        | erwise continue                                             | e from (9) to | 40<br>(16)                                                                   |                                                                             | Air   | hour           0.18           0.10           0.35           0.00                                                                                                                                     | (9)<br>(10)<br>(11)<br>(12)<br>(13)                                                                 |
| nfiltration due to chimneys<br>f a pressurisation test has b<br>Number of storeys in the du<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, ente                                                                                                                                                                                                                                                                    | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0                                                                                                                                                               | frame or 0.35 f<br>(unsealed) or 0                                                       | eed to (17), othe                                                                        | erwise continue                                             | e from (9) to | 40<br>(16)<br>2<br>00.00                                                     |                                                                             | Air   | hour           0.18           0.10           0.35           0.00                                                                                                                                     | (9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)                                                         |
| nfiltration due to chimneys<br>If a pressurisation test has b<br>Number of storeys in the dy<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, enter<br>Percentage of windows and                                                                                                                                                                                                                                     | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0                                                                                                                                                               | frame or 0.35 f<br>(unsealed) or 0                                                       | eed to (17), othe                                                                        | erwise continue                                             | e from (9) to | 40<br>(16)<br>2<br>00.00<br>0.25 - [0.2                                      | ÷ (5) =                                                                     | Air   | hour           0.18           0.10           0.35           0.00           0.00                                                                                                                      | (9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)                                                 |
| nfiltration due to chimneys<br>of a pressurisation test has be<br>Number of storeys in the du<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, enter<br>Percentage of windows and<br>Window infiltration<br>Infiltration rate                                                                                                                                                                                        | 5, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0<br>I doors draught proof                                                                                                                                      | frame or 0.35 f<br>(unsealed) or 0<br>ed                                                 | eed to (17), othe<br>for masonry co<br>0.1 (sealed), else                                | erwise continue                                             | e from (9) to | 40<br>(16)<br>2<br>00.00<br>0.25 - [0.2                                      | ÷ (5) =<br>* x (14) ÷ 10                                                    | Air   | hour           0.18           0.10           0.35           0.00           0.00           0.05                                                                                                       | (9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)                                         |
| nfiltration due to chimneys<br>of a pressurisation test has be<br>Number of storeys in the dw<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, enter<br>Percentage of windows and<br>Window infiltration<br>Infiltration rate<br>f based on air permeability                                                                                                                                                         | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0<br>I doors draught proof<br>value, then (18) = [(1                                                                                                            | frame or 0.35 f<br>(unsealed) or 0<br>ed<br>.7) ÷ 20] + (8), o                           | eed to (17), othe<br>for masonry co<br>0.1 (sealed), else                                | erwise continue                                             | e from (9) to | 40<br>(16)<br>2<br>00.00<br>0.25 - [0.2                                      | ÷ (5) =<br>* x (14) ÷ 10                                                    | Air   | hour           0.18           0.10           0.35           0.00           0.00           0.05           0.68                                                                                        | (9)<br>(10)<br>(11)<br>(12)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(18)                         |
| nfiltration due to chimneys<br>of a pressurisation test has be<br>Number of storeys in the dw<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, enter<br>Percentage of windows and<br>Window infiltration                                                                                                                                                                                                             | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0<br>I doors draught proof<br>value, then (18) = [(1                                                                                                            | frame or 0.35 f<br>(unsealed) or 0<br>ed<br>.7) ÷ 20] + (8), o                           | eed to (17), othe<br>for masonry co<br>0.1 (sealed), else                                | erwise continue                                             | e from (9) to | 40<br>2<br>00.00<br>0.25 - [0.2<br>+ (11) + (12)                             | ÷ (5) =<br>* x (14) ÷ 10                                                    | Air   | hour           0.18           0.10           0.35           0.00           0.00           0.05           0.68           0.68                                                                         | (9)<br>(10)<br>(11)<br>(12)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(16)<br>(18)<br>(19)         |
| nfiltration due to chimneys<br>If a pressurisation test has b<br>Number of storeys in the dy<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, enter<br>Percentage of windows and<br>Window infiltration<br>Infiltration rate<br>f based on air permeability<br>Number of sides on which t                                                                                                                            | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0<br>I doors draught proof<br>value, then (18) = [(1<br>he dwelling is shelter                                                                                  | frame or 0.35 f<br>(unsealed) or 0<br>ed<br>.7) ÷ 20] + (8), o                           | eed to (17), othe<br>for masonry co<br>0.1 (sealed), else                                | erwise continue                                             | e from (9) to | 40<br>2<br>00.00<br>0.25 - [0.2<br>+ (11) + (12)                             | ÷ (5) =<br>- x (14) ÷ 10<br>) + (13) + (1                                   | Air   | hour           0.18           0.10           0.35           0.00           0.00           0.00           0.00           0.05           0.68           0.68           4                               | er<br>(8)                                                                                           |
| nfiltration due to chimneys<br>If a pressurisation test has b<br>Number of storeys in the du<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, enter<br>Percentage of windows and<br>Window infiltration<br>Infiltration rate<br>If based on air permeability<br>Number of sides on which t                                                                                                                           | 5, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0<br>I doors draught proof<br>Value, then (18) = [(1<br>he dwelling is shelter                                                                                  | frame or 0.35 f<br>(unsealed) or 0<br>ed<br>.7) ÷ 20] + (8), o<br>ed                     | eed to (17), othe<br>for masonry co<br>0.1 (sealed), else                                | erwise continue                                             | e from (9) to | 40<br>2<br>00.00<br>0.25 - [0.2<br>+ (11) + (12)                             | ÷ (5) =                                                                     | Air   | hour           0.18           0.10           0.35           0.00           0.00           0.05           0.68           0.68           4           0.70                                              | (9)<br>(10)<br>(11)<br>(12)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(18)<br>(19)<br>(20)         |
| nfiltration due to chimneys<br>of a pressurisation test has be<br>Number of storeys in the dy<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, enter<br>Percentage of windows and<br>Window infiltration<br>Infiltration rate<br>f based on air permeability<br>Number of sides on which t<br>Shelter factor<br>Infiltration rate incorporation                                                                      | 5, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0<br>I doors draught proof<br>Value, then (18) = [(1<br>he dwelling is shelter                                                                                  | frame or 0.35 f<br>(unsealed) or 0<br>ed<br>.7) ÷ 20] + (8), o<br>ed                     | eed to (17), othe<br>for masonry co<br>0.1 (sealed), else                                | erwise continue<br>nstruction<br>e enter 0                  | e from (9) to | 40<br>2<br>00.00<br>0.25 - [0.2<br>+ (11) + (12)                             | ÷ (5) =                                                                     | Air   | hour           0.18           0.10           0.35           0.00           0.00           0.05           0.68           0.68           4           0.70                                              | (9)<br>(10)<br>(11)<br>(12)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(18)<br>(19)<br>(20)         |
| nfiltration due to chimneys<br>If a pressurisation test has be<br>Number of storeys in the du<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, enter<br>Percentage of windows and<br>Window infiltration<br>Infiltration rate<br>f based on air permeability<br>Number of sides on which t<br>Shelter factor<br>nfiltration rate incorporation                                                                       | 5, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0<br>I doors draught proof<br>Value, then (18) = [(1<br>he dwelling is shelter<br>ng shelter factor<br>r monthly wind speec<br><b>Feb Mar</b>                   | frame or 0.35 f<br>(unsealed) or 0<br>ed<br>.7) ÷ 20] + (8), o<br>ed                     | eed to (17), oth<br>for masonry co<br>0.1 (sealed), else<br>otherwise (18) =             | erwise continue<br>nstruction<br>e enter 0                  | (8) + (10) -  | 40<br>(16)<br>2<br>00.00<br>0.25 - [0.2<br>+ (11) + (12<br>1 -               | ÷ (5) =                                                                     | Air   | hour           0.18           0.10           0.35           0.00           0.00           0.00           0.00           0.05           0.68           0.68           4           0.70           0.47 | (9)<br>(10)<br>(11)<br>(12)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(18)<br>(19)<br>(20)         |
| nfiltration due to chimneys<br>f a pressurisation test has b<br>Number of storeys in the du<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, enter<br>Percentage of windows and<br>Window infiltration<br>Infiltration rate<br>f based on air permeability<br>Number of sides on which t<br>Shelter factor<br>Infiltration rate incorporation<br>Infiltration rate modified fo                                       | 5, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0<br>I doors draught proof<br>Value, then (18) = [(1<br>he dwelling is shelter<br>ng shelter factor<br>r monthly wind speec<br><b>Feb Mar</b>                   | frame or 0.35 f<br>(unsealed) or 0<br>ed<br>.7) ÷ 20] + (8), o<br>ed<br>d:<br><b>Apr</b> | eed to (17), oth<br>for masonry co<br>0.1 (sealed), else<br>otherwise (18) =             | erwise continue<br>nstruction<br>e enter 0<br>= (16)<br>Jul | (8) + (10) -  | 40<br>(16)<br>2<br>00.00<br>0.25 - [0.2<br>+ (11) + (12<br>1 -               | ÷ (5) =                                                                     | Air   | hour           0.18           0.10           0.35           0.00           0.00           0.00           0.00           0.05           0.68           0.68           4           0.70           0.47 | (9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(16)<br>(18)<br>(19)<br>(20)<br>(21) |
| nfiltration due to chimneys<br>of a pressurisation test has be<br>Number of storeys in the due<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, enter<br>Percentage of windows and<br>Window infiltration<br>Infiltration rate<br>f based on air permeability<br>Number of sides on which t<br>Shelter factor<br>nfiltration rate incorporation<br>nfiltration rate modified for<br>Jan<br>Monthly average wind spee | 5, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0<br>doors draught proof<br>value, then (18) = [(1<br>he dwelling is shelter<br>ng shelter factor<br>r monthly wind speed<br><b>Feb Mar</b><br>ed from Table U2 | frame or 0.35 f<br>(unsealed) or 0<br>ed<br>.7) ÷ 20] + (8), o<br>ed<br>d:<br><b>Apr</b> | eed to (17), othe<br>for masonry co<br>0.1 (sealed), else<br>otherwise (18) =<br>May Jun | erwise continue<br>nstruction<br>e enter 0<br>= (16)<br>Jul | e from (9) to | 40<br>2<br>0 (16)<br>2<br>00.00<br>0.25 - [0.2<br>+ (11) + (12<br>1 -<br>Sep | ÷ (5) =<br>× (14) ÷ 10<br>) + (13) + (1<br>[0.075 x (19<br>(18) x (2<br>Oct | Air   | hour 0.18 0.10 0.35 0.00 0.00 0.05 0.68 0.68 4 0.70 0.47 Dec                                                                                                                                         | (9)<br>(10)<br>(11)<br>(12)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(18)<br>(19)<br>(20)         |

| 0.61                                         | 0.59 0.           | .58 0.5              | 2 0.51                                 | 0.45         | 0.45      | 0.44             | 0.47           | 0.51        | 0.53             | 0.56    | (22b) |
|----------------------------------------------|-------------------|----------------------|----------------------------------------|--------------|-----------|------------------|----------------|-------------|------------------|---------|-------|
| Calculate effective air change               | e rate for the a  | pplicable cas        | e:                                     |              |           |                  |                |             |                  |         |       |
| If mechanical ventilation:                   | air change rate   | e through sys        | tem                                    |              |           |                  |                |             |                  | N/A     | (23a) |
| If balanced with heat reco                   | overy: efficienc  | y in % allowii       | ng for in-use fa                       | ctor from T  | able 4h   |                  |                |             |                  | N/A     | (23c) |
| d) natural ventilation or v                  | whole house po    | sitive input v       | entilation from                        | n loft       |           |                  |                |             |                  |         | _     |
| 0.68                                         | 0.68 0.           | .67 0.6              | 4 0.63                                 | 0.60         | 0.60      | 0.60             | 0.61           | 0.63        | 0.64             | 0.66    | (24d) |
| Effective air change rate - en               | iter (24a) or (24 | b) or (24c) o        | r (24d) in (25)                        |              | -         | •                | •              |             | •                |         |       |
| 0.68                                         | 0.68 0.           | .67 0.6              | 4 0.63                                 | 0.60         | 0.60      | 0.60             | 0.61           | 0.63        | 0.64             | 0.66    | (25)  |
|                                              |                   |                      | •                                      | •            | •         | •                |                |             | •                | •       |       |
| 3. Heat losses and heat loss                 | s parameter       |                      |                                        |              |           |                  |                |             |                  |         |       |
| Element                                      |                   | Gross                | Opening<br><sup>2</sup> m <sup>2</sup> |              | area      | U-value<br>W/m²K | AxUW           |             | value,<br>/ m² K | Ахк,    |       |
| _                                            |                   | area, m <sup>a</sup> | - m-                                   | -            | m²        | -                |                | к),         | /m².K            | kJ/K    |       |
| Door                                         |                   |                      |                                        |              | 08 X      | 1.80             | = 3.74         |             |                  |         | (26)  |
| Window                                       |                   |                      |                                        |              | .26 x     | 1.50             | = 19.94        |             |                  |         | (27)  |
| Ground floor                                 |                   |                      |                                        |              | .45 ×     | 0.22             | = 9.12         | _           |                  |         | (28a) |
| Exposed floor                                |                   |                      |                                        | 1.           | 12 ×      | 0.22             | = 0.25         | _           |                  |         | (28b  |
| External wall                                |                   |                      |                                        | 61           | .52 x     | 0.30             | = 18.46        |             |                  |         | (29a) |
| External wall                                |                   |                      |                                        | 2.           | 89 ×      | 0.28             | = 0.81         |             |                  |         | (29a) |
| Party wall                                   |                   |                      |                                        | 55           | .58 x     | 0.00             | = 0.00         |             |                  |         | (32)  |
| Roof                                         |                   |                      |                                        | 22           | .27 x     | 0.16             | = 3.56         |             |                  |         | (30)  |
| Roof                                         |                   |                      |                                        | 37           | .87 x     | 0.18             | = 6.82         |             |                  |         | (30)  |
| Total area of external element               | nts ∑A, m²        |                      |                                        | 182          | 2.46      |                  |                |             |                  |         | (31)  |
| Fabric heat loss, W/K = ∑(A ×                | : U)              |                      |                                        |              |           |                  | (26            | 5)(30) + (3 | 32) =            | 62.70   | (33)  |
| Heat capacity Cm = ∑(A x κ)                  |                   |                      |                                        |              |           | (28)             | .(30) + (32) + | + (32a)(32  | 2e) =            | N/A     | (34)  |
| Thermal mass parameter (TN                   | ۷P) in kJ/m²K     |                      |                                        |              |           |                  |                |             |                  | 450.00  | (35)  |
| Thermal bridges: $\Sigma(L \times \Psi)$ cal | lculated using A  | ppendix K            |                                        |              |           |                  |                |             |                  | 27.37   | (36)  |
| Total fabric heat loss                       |                   |                      |                                        |              |           |                  |                | (33) + (3   | 36) =            | 90.06   | (37)  |
| Jan                                          | Feb N             | lar Ap               | r May                                  | Jun          | Jul       | Aug              | Sep            | Oct         | Nov              | Dec     |       |
| Ventilation heat loss calculat               | ed monthly 0.3    | 33 x (25)m x         | (5)                                    |              |           |                  |                |             |                  |         |       |
| 50.67                                        | 50.14 49          | .63 47.2             | 46.74                                  | 44.63        | 44.63     | 44.24            | 45.44          | 46.74       | 47.66            | 48.62   | (38)  |
| Heat transfer coefficient, W/                | ′K (37)m + (38)   | m                    |                                        |              |           |                  |                |             |                  |         |       |
| 140.73                                       | 140.21 139        | 9.69 137.            | 26 136.81                              | 134.69       | 134.69    | 134.30           | 135.51         | 136.81      | 137.73           | 138.69  |       |
|                                              |                   |                      |                                        |              |           |                  | Average = ∑    | (39)112/    | /12 =            | 137.26  | (39)  |
| Heat loss parameter (HLP), V                 | V/m²K (39)m÷      | (4)                  |                                        |              |           |                  |                |             |                  |         |       |
| 1.68                                         | 1.67 1.           | .67 1.6              | 4 1.63                                 | 1.61         | 1.61      | 1.60             | 1.62           | 1.63        | 1.64             | 1.66    | 1     |
|                                              |                   |                      |                                        |              |           | •                | Average = ∑    | (40)112/    | /12 =            | 1.64    | (40)  |
| Number of days in month (Ta                  | able 1a)          |                      |                                        |              |           |                  |                |             | <u> </u>         |         |       |
| 31.00                                        | 28.00 31          | .00 30.0             | 0 31.00                                | 30.00        | 31.00     | 31.00            | 30.00          | 31.00       | 30.00            | 31.00   | (40)  |
|                                              |                   |                      |                                        |              | 1         | 1                |                |             |                  | 1       |       |
| 4. Water heating energy re                   | quirement         |                      |                                        |              |           |                  |                |             |                  |         |       |
| Assumed occupancy, N                         |                   |                      |                                        |              |           |                  |                |             |                  | 2.53    | (42)  |
| Annual average hot water us                  | age in litres pe  | r day Vd,avei        | rage = (25 x N)                        | + 36         |           |                  |                |             |                  | 94.30   | (43)  |
| Jan                                          | Feb N             | lar Ap               | r May                                  | Jun          | Jul       | Aug              | Sep            | Oct         | Nov              | Dec     |       |
| Hot water usage in litres per                | day for each m    | ionth Vd,m =         | factor from Ta                         | ble 1c x (43 | 3)        |                  |                |             |                  |         |       |
| 103.73                                       | 99.95 96          | 6.18 92.4            | 1 88.64                                | 84.87        | 84.87     | 88.64            | 92.41          | 96.18       | 99.95            | 103.73  |       |
|                                              |                   |                      |                                        |              |           |                  |                | ∑(44)1      | .12 =            | 1131.55 | (44)  |
| Energy content of hot water                  | used = 4.18 x V   | /d,m x nm x 1        | m/3600 kWh/r                           | month (see   | Tables 1b | , 1c 1d)         |                |             |                  |         |       |
| 153.82                                       | 134.53 138        | 8.83 121.            | 03 116.13                              | 100.21       | 92.86     | 106.56           | 107.83         | 125.67      | 137.18           | 148.97  |       |
| i                                            |                   |                      |                                        |              |           |                  |                | ∑(45)1      | .12 =            | 1483.64 | (45)  |
|                                              |                   |                      |                                        |              |           |                  |                |             |                  |         |       |

| Distribution loss 0.15 x (45)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |                                                                                                                                                                    |                                                                                                     |                                                                                                                                                  |                                                                                    |                                                                                        |                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 23.07 20.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.82 18.15                                                                                                                                                                                                                                                                                                                                                                             | 17.42 15.                                                                                                                                                                                                                                                                                                  | 03 13.93                                                                                                                                                      | 15.98                                                                                                                                                              | 16.18                                                                                               | 18.85                                                                                                                                            | 20.58                                                                              | 22.35                                                                                  | (46)                                                                         |
| Water storage loss calculated for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n month (55) x (41)m                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |                                                                                                                                                                    |                                                                                                     |                                                                                                                                                  |                                                                                    |                                                                                        |                                                                              |
| 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                               | 0.00 0.0                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                          | 0.00                                                                                                                                                               | 0.00                                                                                                | 0.00                                                                                                                                             | 0.00                                                                               | 0.00                                                                                   | (56)                                                                         |
| If the vessel contains dedicated solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | storage or dedicated V                                                                                                                                                                                                                                                                                                                                                                  | VWHRS (56)m x [(                                                                                                                                                                                                                                                                                           | 47) - Vs] ÷ (47),                                                                                                                                             | else (56)                                                                                                                                                          |                                                                                                     |                                                                                                                                                  |                                                                                    |                                                                                        |                                                                              |
| 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                               | 0.00 0.0                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                          | 0.00                                                                                                                                                               | 0.00                                                                                                | 0.00                                                                                                                                             | 0.00                                                                               | 0.00                                                                                   | (57)                                                                         |
| Primary circuit loss for each month fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | om Table 3                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |                                                                                                                                                                    |                                                                                                     |                                                                                                                                                  |                                                                                    |                                                                                        |                                                                              |
| 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                               | 0.00 0.0                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                          | 0.00                                                                                                                                                               | 0.00                                                                                                | 0.00                                                                                                                                             | 0.00                                                                               | 0.00                                                                                   | (59)                                                                         |
| Combi loss for each month from Tabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e 3a, 3b or 3c                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |                                                                                                                                                                    |                                                                                                     |                                                                                                                                                  |                                                                                    |                                                                                        |                                                                              |
| 50.96 46.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.96 49.32                                                                                                                                                                                                                                                                                                                                                                             | 50.96 49.                                                                                                                                                                                                                                                                                                  | 32 50.96                                                                                                                                                      | 50.96                                                                                                                                                              | 49.32                                                                                               | 50.96                                                                                                                                            | 49.32                                                                              | 50.96                                                                                  | (61)                                                                         |
| Total heat required for water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | calculated for each m                                                                                                                                                                                                                                                                                                                                                                   | onth  0.85 x (45)m                                                                                                                                                                                                                                                                                         | ı + (46)m + (57)ı                                                                                                                                             | m + (59)m +                                                                                                                                                        | (61)m                                                                                               |                                                                                                                                                  |                                                                                    |                                                                                        |                                                                              |
| 204.78 180.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 189.79 170.35                                                                                                                                                                                                                                                                                                                                                                           | 167.09 149                                                                                                                                                                                                                                                                                                 | .53 143.82                                                                                                                                                    | 157.52                                                                                                                                                             | 157.15                                                                                              | 176.63                                                                                                                                           | 186.49                                                                             | 199.93                                                                                 | (62)                                                                         |
| Solar DHW input calculated using App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | endix G or Appendix H                                                                                                                                                                                                                                                                                                                                                                   | ł                                                                                                                                                                                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                    |                                                                                                     |                                                                                                                                                  |                                                                                    |                                                                                        |                                                                              |
| 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                               | 0.00 0.0                                                                                                                                                                                                                                                                                                   | 00.00                                                                                                                                                         | 0.00                                                                                                                                                               | 0.00                                                                                                | 0.00                                                                                                                                             | 0.00                                                                               | 0.00                                                                                   | (63)                                                                         |
| Output from water heater for each m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | onth (kWh/month)(6                                                                                                                                                                                                                                                                                                                                                                      | 2)m + (63)m                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                                                                                    |                                                                                                     |                                                                                                                                                  |                                                                                    |                                                                                        |                                                                              |
| 204.78 180.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 189.79 170.35                                                                                                                                                                                                                                                                                                                                                                           | 167.09 149                                                                                                                                                                                                                                                                                                 | .53 143.82                                                                                                                                                    | 157.52                                                                                                                                                             | 157.15                                                                                              | 176.63                                                                                                                                           | 186.49                                                                             | 199.93                                                                                 |                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |                                                                                                                                                                    |                                                                                                     | ∑(64)11                                                                                                                                          | 2 = 2                                                                              | 083.64                                                                                 | (64)                                                                         |
| Heat gains from water heating (kWh/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | month) 0.25 × [0.85 ×                                                                                                                                                                                                                                                                                                                                                                   | (45)m + (61)m] +                                                                                                                                                                                                                                                                                           | 0.8 × [(46)m + (                                                                                                                                              | 57)m + (59)r                                                                                                                                                       | m]                                                                                                  |                                                                                                                                                  |                                                                                    |                                                                                        |                                                                              |
| 63.89 56.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58.90 52.57                                                                                                                                                                                                                                                                                                                                                                             | 51.35 45.                                                                                                                                                                                                                                                                                                  | 65 43.62                                                                                                                                                      | 48.17                                                                                                                                                              | 48.18                                                                                               | 54.53                                                                                                                                            | 57.94                                                                              | 62.27                                                                                  | (65)                                                                         |
| T to the second sectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |                                                                                                                                                                    |                                                                                                     |                                                                                                                                                  |                                                                                    |                                                                                        |                                                                              |
| 5. Internal gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Maria Array                                                                                                                                                                                                                                                                                                                                                                             | No.                                                                                                                                                                                                                                                                                                        |                                                                                                                                                               |                                                                                                                                                                    | 6                                                                                                   | 0.1                                                                                                                                              | N                                                                                  | Dee                                                                                    |                                                                              |
| Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mar Apr                                                                                                                                                                                                                                                                                                                                                                                 | May Ju                                                                                                                                                                                                                                                                                                     | n Jul                                                                                                                                                         | Aug                                                                                                                                                                | Sep                                                                                                 | Oct                                                                                                                                              | Nov                                                                                | Dec                                                                                    |                                                                              |
| Metabolic gains (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               | 1 100 50                                                                                                                                                           |                                                                                                     | 100 -0                                                                                                                                           | 100 -0                                                                             | 100 -0                                                                                 | 7 (60)                                                                       |
| 126.52 126.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 126.52 126.52                                                                                                                                                                                                                                                                                                                                                                           | 126.52 126                                                                                                                                                                                                                                                                                                 | .52 126.52                                                                                                                                                    | 126.52                                                                                                                                                             | 126.52                                                                                              | 126.52                                                                                                                                           | 126.52                                                                             | 126.52                                                                                 | 66)                                                                          |
| Lighting gains (calculated in Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                         | , also see Table 5                                                                                                                                                                                                                                                                                         |                                                                                                                                                               |                                                                                                                                                                    |                                                                                                     |                                                                                                                                                  |                                                                                    |                                                                                        | _                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40.44                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            | 0.07                                                                                                                                                          | 12.02                                                                                                                                                              | 47.04                                                                                               | 24.00                                                                                                                                            | 25 54                                                                              | 27.20                                                                                  | 1071                                                                         |
| 26.46 23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.11 14.47                                                                                                                                                                                                                                                                                                                                                                             | 10.82 9.1                                                                                                                                                                                                                                                                                                  |                                                                                                                                                               | 12.83                                                                                                                                                              | 17.21                                                                                               | 21.86                                                                                                                                            | 25.51                                                                              | 27.20                                                                                  | (67)                                                                         |
| Appliance gains (calculated in Append                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lix L, equation L13 or L                                                                                                                                                                                                                                                                                                                                                                | 13a), also see Tab                                                                                                                                                                                                                                                                                         | le 5                                                                                                                                                          |                                                                                                                                                                    |                                                                                                     |                                                                                                                                                  |                                                                                    | 1                                                                                      | - · ·                                                                        |
| Appliance gains (calculated in Append<br>227.12 229.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lix L, equation L13 or L<br>223.54 210.89                                                                                                                                                                                                                                                                                                                                               | 13a), also see Tab<br>194.93 179                                                                                                                                                                                                                                                                           | le 5<br>.93 169.91                                                                                                                                            | 12.83<br>167.56                                                                                                                                                    | 17.21<br>173.49                                                                                     | 21.86<br>186.14                                                                                                                                  | 25.51<br>202.10                                                                    | 27.20<br>217.10                                                                        | (67)<br>(68)                                                                 |
| Appliance gains (calculated in Appendix<br>227.12 229.48<br>Cooking gains (calculated in Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lix L, equation L13 or L<br>223.54 210.89<br>( L, equation L15 or L1)                                                                                                                                                                                                                                                                                                                   | 13a), also see Tab<br>194.93 179<br>5a), also see Table                                                                                                                                                                                                                                                    | le 5<br>.93 169.91<br>5                                                                                                                                       | 167.56                                                                                                                                                             | 173.49                                                                                              | 186.14                                                                                                                                           | 202.10                                                                             | 217.10                                                                                 | ] (68)                                                                       |
| Appliance gains (calculated in Append<br>227.12 229.48<br>Cooking gains (calculated in Appendix<br>35.65 35.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lix L, equation L13 or L<br>223.54 210.89                                                                                                                                                                                                                                                                                                                                               | 13a), also see Tab<br>194.93 179                                                                                                                                                                                                                                                                           | le 5<br>.93 169.91<br>5                                                                                                                                       |                                                                                                                                                                    |                                                                                                     |                                                                                                                                                  |                                                                                    | 1                                                                                      | - · ·                                                                        |
| Appliance gains (calculated in Appendi<br>227.12 229.48<br>Cooking gains (calculated in Appendia<br>35.65 35.65<br>Pump and fan gains (Table 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lix L, equation L13 or L<br>223.54 210.89<br>( L, equation L15 or L1)<br>35.65 35.65                                                                                                                                                                                                                                                                                                    | 13a), also see Tab<br>194.93 179<br>5a), also see Table<br>35.65 35.                                                                                                                                                                                                                                       | le 5<br>.93 169.91<br>5<br>65 35.65                                                                                                                           | 167.56       35.65                                                                                                                                                 | 173.49<br>35.65                                                                                     | 186.14<br>35.65                                                                                                                                  | 202.10<br>35.65                                                                    | 217.10<br>35.65                                                                        | ] (68)<br>] (69)                                                             |
| Appliance gains (calculated in Appendia<br>227.12 229.48<br>Cooking gains (calculated in Appendia<br>35.65 35.65<br>Pump and fan gains (Table 5a)<br>3.00 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lix L, equation L13 or L<br>223.54 210.89<br>( L, equation L15 or L1)                                                                                                                                                                                                                                                                                                                   | 13a), also see Tab<br>194.93 179<br>5a), also see Table                                                                                                                                                                                                                                                    | le 5<br>.93 169.91<br>5<br>65 35.65                                                                                                                           | 167.56                                                                                                                                                             | 173.49                                                                                              | 186.14                                                                                                                                           | 202.10                                                                             | 217.10                                                                                 | ] (68)                                                                       |
| Appliance gains (calculated in Appendia<br>227.12 229.48<br>Cooking gains (calculated in Appendia<br>35.65 35.65<br>Pump and fan gains (Table 5a)<br>3.00 3.00<br>Losses e.g. evaporation (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jix L, equation L13 or L         223.54       210.89         4 L, equation L15 or L15         35.65       35.65         3.00       3.00                                                                                                                                                                                                                                                 | 13a), also see Tab<br>194.93 179<br>5a), also see Table<br>35.65 35.<br>3.00 3.0                                                                                                                                                                                                                           | le 5<br>.93 169.91<br>5<br>65 35.65<br>00 3.00                                                                                                                | 167.56         35.65         3.00                                                                                                                                  | 173.49<br>35.65<br>3.00                                                                             | 186.14<br>35.65<br>3.00                                                                                                                          | 202.10<br>35.65<br>3.00                                                            | 217.10<br>35.65<br>3.00                                                                | ] (68)<br>] (69)<br>] (70)                                                   |
| Appliance gains (calculated in Appendia<br>227.12 229.48<br>Cooking gains (calculated in Appendia<br>35.65 35.65<br>Pump and fan gains (Table 5a)<br>3.00 3.00<br>Losses e.g. evaporation (Table 5)<br>-101.21 -101.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lix L, equation L13 or L<br>223.54 210.89<br>( L, equation L15 or L1)<br>35.65 35.65                                                                                                                                                                                                                                                                                                    | 13a), also see Tab<br>194.93 179<br>5a), also see Table<br>35.65 35.                                                                                                                                                                                                                                       | le 5<br>.93 169.91<br>5<br>65 35.65<br>00 3.00                                                                                                                | 167.56       35.65                                                                                                                                                 | 173.49<br>35.65                                                                                     | 186.14<br>35.65                                                                                                                                  | 202.10<br>35.65                                                                    | 217.10<br>35.65                                                                        | ] (68)<br>] (69)                                                             |
| Appliance gains (calculated in Appendia<br>227.12 229.48<br>Cooking gains (calculated in Appendia<br>35.65 35.65<br>Pump and fan gains (Table 5a)<br>3.00 3.00<br>Losses e.g. evaporation (Table 5)<br>-101.21 -101.21<br>Water heating gains (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jix L, equation L13 or L         223.54       210.89         4 L, equation L15 or L15         35.65       35.65         3.00       3.00         -101.21       -101.21                                                                                                                                                                                                                   | 13a), also see Tab<br>194.93 179<br>5a), also see Table<br>35.65 35.<br>3.00 3.0<br>-101.21 -101                                                                                                                                                                                                           | le 5<br>.93 169.91<br>5<br>65 35.65<br>00 3.00<br>.21 -101.21                                                                                                 | 167.56         35.65         3.00         -101.21                                                                                                                  | 173.49<br>35.65<br>3.00<br>-101.21                                                                  | 186.14<br>35.65<br>3.00<br>-101.21                                                                                                               | 202.10<br>35.65<br>3.00<br>-101.21                                                 | 217.10<br>35.65<br>3.00<br>-101.21                                                     | ] (68)<br>] (69)<br>] (70)<br>] (71)                                         |
| Appliance gains (calculated in Appendiate)227.12229.48Cooking gains (calculated in Appendiate)35.6535.6535.65Pump and fan gains (Table 5a)3.003.003.00Losses e.g. evaporation (Table 5)-101.21-101.21Water heating gains (Table 5)85.8783.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ix L, equation L13 or L         223.54       210.89         x L, equation L15 or L13         35.65       35.65         3.00       3.00         -101.21       -101.21         79.17       73.02                                                                                                                                                                                          | 13a), also see Table         194.93       179         5a), also see Table         35.65       35.         3.00       3.0         -101.21       -101         69.02       63.                                                                                                                                | le 5<br>.93 169.91<br>5<br>65 35.65<br>00 3.00<br>.21 -101.21                                                                                                 | 167.56         35.65         3.00                                                                                                                                  | 173.49<br>35.65<br>3.00                                                                             | 186.14<br>35.65<br>3.00                                                                                                                          | 202.10<br>35.65<br>3.00                                                            | 217.10<br>35.65<br>3.00                                                                | ] (68)<br>] (69)<br>] (70)                                                   |
| Appliance gains (calculated in Appendia<br>227.12 229.48<br>Cooking gains (calculated in Appendia<br>35.65 35.65<br>Pump and fan gains (Table 5a)<br>3.00 3.00<br>Losses e.g. evaporation (Table 5)<br>-101.21 -101.21<br>Water heating gains (Table 5)<br>85.87 83.69<br>Total internal gains (66)m + (67)m + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dix L, equation L13 or L         223.54       210.89         x L, equation L15 or L15         35.65       35.65         3.00       3.00         -101.21       -101.21         79.17       73.02         68)m + (69)m + (70)m                                                                                                                                                            | 13a), also see Tab<br>194.93 179<br>5a), also see Table<br>35.65 35.<br>3.00 3.0<br>-101.21 -101<br>69.02 63.<br>+ (71)m + (72)m                                                                                                                                                                           | le 5<br>.93 169.91<br>5<br>65 35.65<br>00 3.00<br>.21 -101.21<br>40 58.62                                                                                     | 167.56         35.65         3.00         -101.21         64.75                                                                                                    | 173.49<br>35.65<br>3.00<br>-101.21<br>66.92                                                         | 186.14         35.65         3.00         -101.21         73.29                                                                                  | 202.10<br>35.65<br>3.00<br>-101.21<br>80.47                                        | 217.10<br>35.65<br>3.00<br>-101.21<br>83.70                                            | ] (68)<br>] (69)<br>] (70)<br>] (71)<br>] (72)                               |
| Appliance gains (calculated in Appendiate)227.12229.48Cooking gains (calculated in Appendiate)35.6535.6535.65Pump and fan gains (Table 5a)3.003.003.00Losses e.g. evaporation (Table 5)-101.21-101.21Water heating gains (Table 5)85.8783.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ix L, equation L13 or L         223.54       210.89         x L, equation L15 or L13         35.65       35.65         3.00       3.00         -101.21       -101.21         79.17       73.02                                                                                                                                                                                          | 13a), also see Table         194.93       179         5a), also see Table         35.65       35.         3.00       3.0         -101.21       -101         69.02       63.                                                                                                                                | le 5<br>.93 169.91<br>5<br>65 35.65<br>00 3.00<br>.21 -101.21<br>40 58.62                                                                                     | 167.56         35.65         3.00         -101.21                                                                                                                  | 173.49<br>35.65<br>3.00<br>-101.21                                                                  | 186.14<br>35.65<br>3.00<br>-101.21                                                                                                               | 202.10<br>35.65<br>3.00<br>-101.21                                                 | 217.10<br>35.65<br>3.00<br>-101.21                                                     | ] (68)<br>] (69)<br>] (70)<br>] (71)                                         |
| Appliance gains (calculated in Appendia<br>227.12 229.48<br>Cooking gains (calculated in Appendia<br>35.65 35.65<br>Pump and fan gains (Table 5a)<br>3.00 3.00<br>Losses e.g. evaporation (Table 5)<br>-101.21 -101.21<br>Water heating gains (Table 5)<br>85.87 83.69<br>Total internal gains (66)m + (67)m + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dix L, equation L13 or L         223.54       210.89         x L, equation L15 or L15         35.65       35.65         3.00       3.00         -101.21       -101.21         79.17       73.02         68)m + (69)m + (70)m                                                                                                                                                            | 13a), also see Tab<br>194.93 179<br>5a), also see Table<br>35.65 35.<br>3.00 3.0<br>-101.21 -101<br>69.02 63.<br>+ (71)m + (72)m                                                                                                                                                                           | le 5<br>.93 169.91<br>5<br>65 35.65<br>00 3.00<br>.21 -101.21<br>40 58.62                                                                                     | 167.56         35.65         3.00         -101.21         64.75                                                                                                    | 173.49<br>35.65<br>3.00<br>-101.21<br>66.92                                                         | 186.14         35.65         3.00         -101.21         73.29                                                                                  | 202.10<br>35.65<br>3.00<br>-101.21<br>80.47                                        | 217.10<br>35.65<br>3.00<br>-101.21<br>83.70                                            | ] (68)<br>] (69)<br>] (70)<br>] (71)<br>] (72)                               |
| Appliance gains (calculated in Appendia<br>227.12 229.48<br>Cooking gains (calculated in Appendia<br>35.65 35.65<br>Pump and fan gains (Table 5a)<br>3.00 3.00<br>Losses e.g. evaporation (Table 5)<br>-101.21 -101.21<br>Water heating gains (Table 5)<br>85.87 83.69<br>Total internal gains (66)m + (67)m + (67)m + (67)m + (67)m + (67)m + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (7 | dix L, equation L13 or L         223.54       210.89         x L, equation L15 or L15         35.65       35.65         3.00       3.00         -101.21       -101.21         79.17       73.02         68)m + (69)m + (70)m                                                                                                                                                            | 13a), also see Tab<br>194.93 179<br>5a), also see Table<br>35.65 35.<br>3.00 3.0<br>-101.21 -101<br>69.02 63.<br>+ (71)m + (72)m                                                                                                                                                                           | le 5<br>.93 169.91<br>5<br>65 35.65<br>00 3.00<br>.21 -101.21<br>40 58.62                                                                                     | 167.56         35.65         3.00         -101.21         64.75         309.08                                                                                     | 173.49<br>35.65<br>3.00<br>-101.21<br>66.92                                                         | 186.14         35.65         3.00         -101.21         73.29                                                                                  | 202.10<br>35.65<br>3.00<br>-101.21<br>80.47                                        | 217.10<br>35.65<br>3.00<br>-101.21<br>83.70                                            | ] (68)<br>] (69)<br>] (70)<br>] (71)<br>] (72)                               |
| Appliance gains (calculated in Appendia<br>227.12 229.48<br>Cooking gains (calculated in Appendia<br>35.65 35.65<br>Pump and fan gains (Table 5a)<br>3.00 3.00<br>Losses e.g. evaporation (Table 5)<br>-101.21 -101.21<br>Water heating gains (Table 5)<br>85.87 83.69<br>Total internal gains (66)m + (67)m + (67)m + (67)m + (67)m + (67)m + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (70) + (7 | dix L, equation L13 or L         223.54       210.89         2.23.54       210.89         3.00       1.5 or L15         35.65       35.65         3.00       3.00         -101.21       -101.21         79.17       73.02         68)m + (69)m + (70)m       385.77         385.77       362.34                                                                                         | 13a), also see Tab<br>194.93 179<br>5a), also see Table<br>35.65 35.<br>3.00 3.0<br>-101.21 -101<br>69.02 63.<br>+ (71)m + (72)m<br>338.73 316                                                                                                                                                             | le 5<br>.93 169.91<br>5<br>65 35.65<br>00 3.00<br>.21 -101.21<br>40 58.62<br>.42 302.36                                                                       | 167.56<br>35.65<br>3.00<br>-101.21<br>64.75<br>309.08                                                                                                              | 173.49<br>35.65<br>3.00<br>-101.21<br>66.92<br>321.59<br>g<br>fic data                              | 186.14<br>35.65<br>3.00<br>-101.21<br>73.29<br>345.24<br>FF specific da                                                                          | 202.10<br>35.65<br>3.00<br>-101.21<br>80.47<br>372.04                              | 217.10<br>35.65<br>3.00<br>-101.21<br>83.70<br>391.95                                  | ] (68)<br>] (69)<br>] (70)<br>] (71)<br>] (72)                               |
| Appliance gains (calculated in Appendia<br>227.12 229.48<br>Cooking gains (calculated in Appendia<br>35.65 35.65<br>Pump and fan gains (Table 5a)<br>3.00 3.00<br>Losses e.g. evaporation (Table 5)<br>-101.21 -101.21<br>Water heating gains (Table 5)<br>85.87 83.69<br>Total internal gains (66)m + (67)m + 1<br>403.40 400.62<br>6. Solar gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dix L, equation L13 or L         223.54       210.89         2.23.54       210.89         3.00       1.5 or L15         35.65       35.65         3.00       3.00         -101.21       -101.21         79.17       73.02         68)m + (69)m + (70)m       385.77         385.77       362.34                                                                                         | 13a), also see Tab<br>194.93 179<br>5a), also see Table<br>35.65 35.<br>3.00 3.0<br>-101.21 -101<br>69.02 63.<br>+ (71)m + (72)m<br>338.73 316<br>Area<br>m <sup>2</sup>                                                                                                                                   | le 5<br>.93 169.91<br>5<br>65 35.65<br>00 3.00<br>.21 -101.21<br>40 58.62<br>.42 302.36<br>Solar flux<br>W/m <sup>2</sup>                                     | 167.56<br>35.65<br>3.00<br>-101.21<br>64.75<br>309.08<br>specif<br>or Ta                                                                                           | 173.49<br>35.65<br>3.00<br>-101.21<br>66.92<br>321.59<br>g<br>fic data<br>able 6b                   | 186.14<br>35.65<br>3.00<br>-101.21<br>73.29<br>345.24<br>FF<br>specific da<br>or Table                                                           | 202.10<br>35.65<br>3.00<br>-101.21<br>80.47<br>372.04                              | 217.10<br>35.65<br>3.00<br>-101.21<br>83.70<br>391.95<br>Gains<br>W                    | ] (68)<br>] (69)<br>] (70)<br>] (71)<br>] (72)<br>] (73)                     |
| Appliance gains (calculated in Appendia<br>227.12 229.48<br>Cooking gains (calculated in Appendia<br>35.65 35.65<br>Pump and fan gains (Table 5a)<br>3.00 3.00<br>Losses e.g. evaporation (Table 5)<br>-101.21 -101.21<br>Water heating gains (Table 5)<br>85.87 83.69<br>Total internal gains (66)m + (67)m + (403.40 400.62<br>6. Solar gains<br>South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iix L, equation L13 or L         223.54       210.89         x L, equation L15 or L13         35.65       35.65         3.00       3.00         -101.21       -101.21         79.17       73.02         68)m + (69)m + (70)m       385.77         385.77       362.34         Access factor Table 6d         0.77       x                                                               | 13a), also see Table         194.93       179         5a), also see Table         35.65       35.         3.00       3.0         -101.21       -101         69.02       63.         + (71)m + (72)m       338.73       316         Area       m²       5.16       x                                        | le 5<br>.93 169.91<br>5<br>65 35.65<br>00 3.00<br>.21 -101.21<br>40 58.62<br>.42 302.36<br>Solar flux<br>W/m <sup>2</sup><br>46.75 x                          | 167.56<br>35.65<br>3.00<br>-101.21<br>64.75<br>309.08<br>\$pecif<br>or Ta<br>0.9 x 0                                                                               | 173.49<br>35.65<br>3.00<br>-101.21<br>66.92<br>321.59<br>g<br>fic data<br>able 6b<br>.72 x          | 186.14<br>35.65<br>3.00<br>-101.21<br>73.29<br>345.24<br>FF<br>specific da<br>or Table<br>0.70                                                   | 202.10<br>35.65<br>3.00<br>-101.21<br>80.47<br>372.04                              | 217.10<br>35.65<br>3.00<br>-101.21<br>83.70<br>391.95<br>Gains<br>W<br>100.59          | ] (68)<br>] (69)<br>] (70)<br>] (71)<br>] (72)<br>] (73)<br>] (78)           |
| Appliance gains (calculated in Appendia<br>227.12 229.48<br>Cooking gains (calculated in Appendia<br>35.65 35.65<br>Pump and fan gains (Table 5a)<br>3.00 3.00<br>Losses e.g. evaporation (Table 5)<br>-101.21 -101.21<br>Water heating gains (Table 5)<br>85.87 83.69<br>Total internal gains (66)m + (67)m + 0<br>403.40 400.62<br>6. Solar gains<br>South<br>West                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dix L, equation L13 or L         223.54       210.89         2.23.54       210.89         3.00       1.5 or L15         35.65       35.65         3.00       3.00         -101.21       -101.21         79.17       73.02         68)m + (69)m + (70)m       385.77         385.77       362.34                                                                                         | 13a), also see Tab<br>194.93 179<br>5a), also see Table<br>35.65 35.<br>3.00 3.0<br>-101.21 -101<br>69.02 63.<br>+ (71)m + (72)m<br>338.73 316<br>Area<br>m <sup>2</sup>                                                                                                                                   | le 5<br>.93 169.91<br>5<br>65 35.65<br>00 3.00<br>.21 -101.21<br>40 58.62<br>.42 302.36<br>Solar flux<br>W/m <sup>2</sup><br>46.75 x                          | 167.56<br>35.65<br>3.00<br>-101.21<br>64.75<br>309.08<br>\$pecif<br>or Ta<br>0.9 x 0                                                                               | 173.49<br>35.65<br>3.00<br>-101.21<br>66.92<br>321.59<br>g<br>fic data<br>able 6b                   | 186.14<br>35.65<br>3.00<br>-101.21<br>73.29<br>345.24<br>FF<br>specific da<br>or Table<br>0.70                                                   | 202.10<br>35.65<br>3.00<br>-101.21<br>80.47<br>372.04                              | 217.10<br>35.65<br>3.00<br>-101.21<br>83.70<br>391.95<br>Gains<br>W                    | ] (68)<br>] (69)<br>] (70)<br>] (71)<br>] (72)<br>] (73)                     |
| Appliance gains (calculated in Appendiate cooking gains (Table 5a)<br>35.65 35.65<br>Pump and fan gains (Table 5a)<br>3.00 3.00<br>Losses e.g. evaporation (Table 5)<br>-101.21 -101.21<br>Water heating gains (Table 5)<br>85.87 83.69<br>Total internal gains (66)m + (67)m      | ix L, equation L13 or L         ix L, equation L13 or L13         223.54       210.89         x L, equation L15 or L13         35.65       35.65         3.00       3.00         -101.21       -101.21         79.17       73.02         68)m + (69)m + (70)m         385.77       362.34         Access factor Table 6d         0.77       x         0.77       x                      | 13a), also see Table         194.93       179         5a), also see Table         35.65       35.         3.00       3.0         -101.21       -101         69.02       63.         + (71)m + (72)m       338.73       316         Area       m²         6.16       x       x         7.10       x       x | le 5<br>.93 169.91<br>5<br>65 35.65<br>00 3.00<br>.21 -101.21<br>40 58.62<br>.42 302.36<br>Solar flux<br>W/m <sup>2</sup><br>46.75 x<br>19.64 x               | 167.56         35.65         3.00         -101.21         64.75         309.08         specifion         0.9 x       0         0.9 x       0         0.9 x       0 | 173.49<br>35.65<br>3.00<br>-101.21<br>66.92<br>321.59<br>g<br>fic data<br>able 6b<br>.72 x<br>.72 x | 186.14         35.65         3.00         -101.21         73.29         345.24         FF         specific da or Table         0.70         0.70 | 202.10<br>35.65<br>3.00<br>-101.21<br>80.47<br>372.04<br>ata<br>6c<br>= []<br>= [] | 217.10<br>35.65<br>3.00<br>-101.21<br>83.70<br>391.95<br>Gains<br>W<br>100.59<br>48.70 | ] (68)<br>] (69)<br>] (70)<br>] (71)<br>] (72)<br>] (73)<br>] (78)<br>] (80) |
| Appliance gains (calculated in Appendia<br>227.12 229.48<br>Cooking gains (calculated in Appendia<br>35.65 35.65<br>Pump and fan gains (Table 5a)<br>3.00 3.00<br>Losses e.g. evaporation (Table 5)<br>-101.21 -101.21<br>Water heating gains (Table 5)<br>85.87 83.69<br>Total internal gains (66)m + (67)m + 0<br>403.40 400.62<br>6. Solar gains<br>South<br>West<br>Solar gains in watts $\Sigma$ (74)m(82)m<br>149.29 260.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jix L, equation L13 or L13         223.54       210.89         223.54       210.89         35.65       35.65         35.65       35.65         3.00       3.00         -101.21       -101.21         79.17       73.02         68)m + (69)m + (70)m         385.77       362.34         Access factor<br>Table 6d         0.77       x         0.77       x         366.75       466.01 | 13a), also see Table         194.93       179         5a), also see Table         35.65       35.         3.00       3.0         -101.21       -101         69.02       63.         + (71)m + (72)m       338.73       316         Area       m²       5.16       x                                        | le 5<br>.93 169.91<br>5<br>65 35.65<br>00 3.00<br>.21 -101.21<br>40 58.62<br>.42 302.36<br>Solar flux<br>W/m <sup>2</sup><br>46.75 x<br>19.64 x               | 167.56<br>35.65<br>3.00<br>-101.21<br>64.75<br>309.08<br>\$pecif<br>or Ta<br>0.9 x 0                                                                               | 173.49<br>35.65<br>3.00<br>-101.21<br>66.92<br>321.59<br>g<br>fic data<br>able 6b<br>.72 x          | 186.14<br>35.65<br>3.00<br>-101.21<br>73.29<br>345.24<br>FF<br>specific da<br>or Table<br>0.70                                                   | 202.10<br>35.65<br>3.00<br>-101.21<br>80.47<br>372.04                              | 217.10<br>35.65<br>3.00<br>-101.21<br>83.70<br>391.95<br>Gains<br>W<br>100.59          | ] (68)<br>] (69)<br>] (70)<br>] (71)<br>] (72)<br>] (73)<br>] (78)           |
| Appliance gains (calculated in Appendiate cooking gains (calculated in Appendiate coo                      | Jix L, equation L13 or L13         223.54       210.89         223.54       210.89         35.65       35.65         35.65       35.65         3.00       3.00         -101.21       -101.21         79.17       73.02         68)m + (69)m + (70)m         385.77       362.34         Access factor<br>Table 6d         0.77       x         0.77       x         366.75       466.01 | 13a), also see Table         194.93       179         5a), also see Table         35.65       35.         3.00       3.0         -101.21       -101         69.02       63.         + (71)m + (72)m       338.73       316         Area       m²         6.16       x       x         7.10       x       x | le 5<br>.93 169.91<br>5<br>65 35.65<br>00 3.00<br>.21 -101.21<br>40 58.62<br>.42 302.36<br>Solar flux<br>W/m <sup>2</sup><br>46.75 x<br>19.64 x<br>.94 505.71 | 167.56         35.65         3.00         -101.21         64.75         309.08         specifion         0.9 x       0         0.9 x       0         0.9 x       0 | 173.49<br>35.65<br>3.00<br>-101.21<br>66.92<br>321.59<br>g<br>fic data<br>able 6b<br>.72 x<br>.72 x | 186.14         35.65         3.00         -101.21         73.29         345.24         FF         specific da or Table         0.70         0.70 | 202.10<br>35.65<br>3.00<br>-101.21<br>80.47<br>372.04<br>ata<br>6c<br>= []<br>= [] | 217.10<br>35.65<br>3.00<br>-101.21<br>83.70<br>391.95<br>Gains<br>W<br>100.59<br>48.70 | ] (68)<br>] (69)<br>] (70)<br>] (71)<br>] (72)<br>] (73)<br>] (78)<br>] (80) |

| 7. Mean inter    | nal tempera    | iture (heati   | ng season)    |              |                |                    |        |        |        |               |         |         |              |
|------------------|----------------|----------------|---------------|--------------|----------------|--------------------|--------|--------|--------|---------------|---------|---------|--------------|
| Temperature d    | uring heatin   | g periods ir   | the living    | area from T  | Table 9, Th1   | .(°C)              |        |        |        |               |         | 21.00   | (85)         |
|                  | Jan            | Feb            | Mar           | Apr          | May            | Jun                | Jul    | Aug    | Sep    | Oct           | Nov     | Dec     |              |
| Utilisation fact | or for gains f | for living are | ea n1,m (se   | e Table 9a)  | 1              |                    |        |        |        |               |         |         |              |
|                  | 1.00           | 1.00           | 1.00          | 0.99         | 0.97           | 0.87               | 0.70   | 0.75   | 0.94   | 1.00          | 1.00    | 1.00    | (86)         |
| Mean internal    | temp of livir  | ng area T1 (s  | steps 3 to 7  | in Table 90  | c)             |                    |        |        |        |               |         |         |              |
|                  | 19.83          | 19.96          | 20.17         | 20.45        | 20.72          | 20.92              | 20.98  | 20.97  | 20.84  | 20.49         | 20.11   | 19.82   | (87)         |
| Temperature d    | uring heatin   | g periods ir   | n the rest of | f dwelling f | rom Table 9    | ∋ <i>,</i> Th2(°C) |        |        |        |               |         |         |              |
|                  | 19.56          | 19.56          | 19.56         | 19.59        | 19.59          | 19.61              | 19.61  | 19.61  | 19.60  | 19.59         | 19.58   | 19.57   | (88)         |
| Utilisation fact | or for gains f | for rest of d  | welling n2,   | m            |                |                    |        |        |        |               |         |         |              |
|                  | 1.00           | 1.00           | 1.00          | 0.99         | 0.93           | 0.75               | 0.50   | 0.55   | 0.87   | 0.99          | 1.00    | 1.00    | (89)         |
| Mean internal    | temperature    | e in the rest  | of dwelling   | g T2 (follow | steps 3 to     | 7 in Table 9       | 9c)    |        |        |               |         |         |              |
|                  | 18.52          | 18.65          | 18.87         | 19.16        | 19.41          | 19.58              | 19.61  | 19.61  | 19.53  | 19.20         | 18.82   | 18.52   | (90)         |
| Living area frac | tion           |                |               |              |                |                    |        |        | Li     | ving area ÷   | (4) =   | 0.45    | (91)         |
| Mean internal    | temperature    | e for the wh   | ole dwellin   | g fLA x T1 + | +(1 - fLA) x T | Т2                 |        |        |        |               |         |         |              |
|                  | 19.11          | 19.24          | 19.46         | 19.74        | 20.00          | 20.18              | 20.23  | 20.22  | 20.12  | 19.78         | 19.40   | 19.11   | (92)         |
| Apply adjustme   | ent to the m   | ean interna    | l temperat    | ure from Ta  | able 4e whe    | ere appropi        | riate  |        |        |               |         |         |              |
|                  | 19.11          | 19.24          | 19.46         | 19.74        | 20.00          | 20.18              | 20.23  | 20.22  | 20.12  | 19.78         | 19.40   | 19.11   | (93)         |
|                  |                |                |               |              |                |                    | _      |        |        |               |         |         |              |
| 8. Space heat    |                |                |               |              |                |                    |        |        |        | _             |         |         |              |
|                  | Jan            | Feb            | Mar           | Apr          | May            | Jun                | Jul    | Aug    | Sep    | Oct           | Nov     | Dec     |              |
| Utilisation fact | _              | 1              | 1             | 1            | _              |                    |        | _      |        | T             | 1       | 1       | <b>.</b>     |
|                  | 1.00           | 1.00           | 1.00          | 0.99         | 0.95           | 0.81               | 0.59   | 0.65   | 0.91   | 0.99          | 1.00    | 1.00    | <b>(94)</b>  |
| Useful gains, η  |                |                | 1             |              |                |                    |        |        |        | 1             | 1       | 1       | т            |
|                  | 552.55         | 660.06         | 750.24        | 817.80       | 820.19         | 679.82             | 479.61 | 498.77 | 655.33 | 630.99        | 551.59  | 518.82  | (95)         |
| Monthly avera    | -              |                | 1             |              |                |                    |        | 1      |        | 1             | 1       |         | 7            |
|                  | 4.30           | 4.90           | 6.50          | 8.90         | 11.70          | 14.60              | 16.60  | 16.40  | 14.10  | 10.60         | 7.10    | 4.20    | (96)         |
| Heat loss rate f |                |                |               |              |                |                    |        | 1      |        | 1             | 1       | 1       | т            |
|                  |                | 2011.18        |               |              |                |                    | 488.45 | 513.50 | 815.24 | 1255.70       | 1694.51 | 2067.72 | (97)         |
| Space heating    | -              | 1              |               |              |                |                    |        | 1      |        | 1             | 1       | 1       | Т            |
|                  | 1139.92        | 907.95         | 788.23        | 482.90       | 234.69         | 0.00               | 0.00   | 0.00   | 0.00   | 464.78        | 822.91  | 1152.38 | ]            |
|                  |                |                |               |              |                |                    |        |        | ∑(9)   | 8)15, 10      |         | 5993.76 | _ (98)<br>□  |
| Space heating    | requirement    | : kWh/m²/y     | ear           |              |                |                    |        |        |        | (98)          | ÷ (4)   | 71.56   | (99)         |
| 9a. Energy ree   | quirements     | - individual   | heating sy    | stems inclu  | iding micro    | -CHP               |        |        |        |               |         |         |              |
| Space heating    |                |                |               |              |                |                    |        |        |        |               |         |         |              |
| Fraction of spa  | ce heat from   | n secondary    | /suppleme     | ntary syste  | m (table 11    | .)                 |        |        |        |               |         | 0.00    | (201)        |
| Fraction of spa  | ce heat from   | n main syste   | em(s)         |              |                |                    |        |        |        | 1 - (20       | 01) =   | 1.00    | (202)        |
| Fraction of spa  | ce heat from   | n main syste   | em 2          |              |                |                    |        |        |        |               |         | 0.00    | (202)        |
| Fraction of tota | al space heat  | t from main    | system 1      |              |                |                    |        |        | (20    | 02) x [1- (20 | 3)] =   | 1.00    | (204)        |
| Fraction of tota | al space heat  | t from main    | system 2      |              |                |                    |        |        |        | (202) x (20   | 03) =   | 0.00    | (205)        |
| Efficiency of m  |                |                |               |              |                |                    |        |        |        |               |         | 88.80   | (206)        |
|                  | Jan            | Feb            | Mar           | Apr          | May            | Jun                | Jul    | Aug    | Sep    | Oct           | Nov     | Dec     | _ `          |
| Space heating    | fuel (main sy  | vstem 1), kV   | Vh/month      |              |                |                    |        |        |        |               |         |         |              |
|                  | 1283.69        | 1022.47        | 887.65        | 543.81       | 264.29         | 0.00               | 0.00   | 0.00   | 0.00   | 523.40        | 926.70  | 1297.73 | ]            |
|                  |                |                |               |              |                |                    |        |        | ∑(21   | 1)15, 10      | .12 = 6 | 5749.73 | _<br>] (211) |

### Water heating

Efficiency of water heater

|                               | 07.05         | 07.11        | 06.00       | 06 17       | 04.00      | 70.50             | 70 50  | 70.50     | 70.50                  | 86.02                | 00.00  | 07.20                  | (217)        |
|-------------------------------|---------------|--------------|-------------|-------------|------------|-------------------|--------|-----------|------------------------|----------------------|--------|------------------------|--------------|
| Water heating f               | 87.25         | 87.11        | 86.83       | 86.17       | 84.68      | 79.50             | 79.50  | 79.50     | 79.50                  | 86.03                | 86.92  | 87.29                  | (217)        |
| water neating i               | 234.72        | 207.28       | 218.57      | 197.68      | 197.32     | 188.09            | 180.91 | 198.14    | 197.67                 | 205.31               | 214.56 | 229.04                 | 7            |
|                               | 254.72        | 207.28       | 216.57      | 197.08      | 197.52     | 100.09            | 160.91 | 196.14    | 197.07                 | <u>Σ(219a)1</u>      | ·      | 2469.29                | (219)        |
| Annual totals                 |               |              |             |             |            |                   |        |           |                        | 2(2198)1             | .12    | 2409.29                | _ (219)      |
| Space heating fu              | uel - main sv | vstem 1      |             |             |            |                   |        |           |                        |                      |        | 6749.73                | 7            |
| Water heating f               |               | Stell I      |             |             |            |                   |        |           |                        |                      |        | 2469.29                |              |
| Electricity for pu            |               | nd electric  | keep-hot (  | Table 4f)   |            |                   |        |           |                        |                      |        | 2105.25                |              |
| central heati                 |               |              |             |             | iting unit |                   |        |           | 30.00                  | 1                    |        |                        | (230c)       |
| boiler flue fa                |               |              |             |             | U          |                   |        |           | 45.00                  | ]                    |        |                        | (230e)       |
| Total electricity             | for the abo   | ve, kWh/ye   | ar          |             |            |                   |        |           |                        | _                    |        | 75.00                  | (231)        |
| Electricity for lig           | ghting (Appe  | endix L)     |             |             |            |                   |        |           |                        |                      |        | 467.31                 | (232)        |
| Total delivered               | energy for a  | ll uses      |             |             |            |                   |        | (211)(221 | l) + (231) +           | (232)(23             | 7b) =  | 9761.33                | (238)        |
|                               |               |              |             |             |            |                   |        |           | _                      |                      |        |                        | _            |
| 10a. Fuel costs               | s - individua | I heating sy | stems inclu | uding micro | o-CHP      |                   |        |           |                        |                      |        |                        |              |
|                               |               |              |             |             | k          | Fuel<br>Wh/year   |        | Fu        | iel price              |                      | co     | Fuel<br>ost £/year     |              |
| Space heating -               | main systen   | n 1          |             |             |            | 6749.73           | x      |           | 3.48                   | x 0.01               |        | 234.89                 | (240)        |
| Water heating                 |               |              |             |             |            | 2469.29           | x      |           | 3.48                   | x 0.01               |        | 85.93                  | (247)        |
| Pumps and fans                | ;             |              |             |             |            | 75.00             | x      |           | 13.19                  | x 0.01               | =      | 9.89                   | (249)        |
| Electricity for lig           |               |              |             |             |            | 467.31            | x      |           | 13.19                  | x 0.01               | =      | 61.64                  | (250)        |
| Additional stand              | ding charges  | ;            |             |             |            |                   |        |           |                        | -                    |        | 120.00                 | (251)        |
| Total energy cos              | st            |              |             |             |            |                   |        | (24       | 40)(242)               | + (245)(2            | 54) =  | 512.35                 | (255)        |
|                               |               |              |             |             |            |                   |        |           |                        |                      |        |                        |              |
| 11a. SAP rating               | -             |              | ystems incl | uding micr  | о-СНР      |                   |        |           |                        |                      |        |                        |              |
| Energy cost defl              |               | 12)          |             |             |            |                   |        |           |                        |                      |        | 0.42                   | (256)        |
| Energy cost fact              | or (ECF)      |              |             |             |            |                   |        |           |                        |                      |        | 1.67                   | _ (257)<br>_ |
| SAP value<br>SAP rating (sect | ion 12)       |              |             |             |            |                   |        |           |                        |                      |        | 76.69                  | (258)        |
| SAP band                      | 1011 13)      |              |             |             |            |                   |        |           |                        |                      |        | <br>С                  | _ (256)<br>_ |
| SAF Danu                      |               |              |             |             |            |                   |        |           |                        |                      |        | C                      |              |
| 12a. CO <sub>2</sub> emiss    | sions - indiv | idual heatir | ng systems  | including r | nicro-CHP  |                   |        |           |                        |                      |        |                        |              |
|                               |               |              |             |             |            | Energy<br>Wh/year |        |           | sion factor<br>CO₂/kWh |                      |        | missions<br>; CO₂/year |              |
| Space heating -               | main systen   | n 1          |             |             |            | 6749.73           | ] x    |           | 0.22                   | ] =                  |        | 1457.94                | (261)        |
| Water heating                 |               |              |             |             |            | 2469.29           | ] x    |           | 0.22                   | ] =                  |        | 533.37                 | (264)        |
| Space and wate                | r heating     |              |             |             |            |                   |        | (26       | 1) + (262) -           | + (263) + (2         | 64) =  | 1991.31                | (265)        |
| Pumps and fans                | ;             |              |             |             |            | 75.00             | ] x    |           | 0.52                   | ] =                  |        | 38.93                  | (267)        |
| Electricity for lig           | ghting        |              |             |             |            | 467.31            | ] x    |           | 0.52                   | ] =                  |        | 242.53                 | (268)        |
| Total CO₂, kg/ye              | ear           |              |             |             |            |                   |        |           |                        | (265)(2 <sup>-</sup> | 71) =  | 2272.77                | (272)        |
| Dwelling CO <sub>2</sub> en   | nission rate  |              |             |             |            |                   |        |           |                        | (272) ÷              | (4) =  | 27.13                  | (273)        |
| EI value                      |               |              |             |             |            |                   |        |           |                        |                      |        | 76.35                  |              |
| El rating (section            | n 14)         |              |             |             |            |                   |        |           |                        |                      |        | 76                     | (274)        |
| EI band                       |               |              |             |             |            |                   |        |           |                        |                      |        | С                      |              |
| 13a. Primary e                | noray indi    | vidual boat  | ing system  | s including | micro CH   | D                 |        |           |                        |                      |        |                        |              |
| 13a. Finnary e                | incry - inui  | Hada neat    | mg system   | 3-meruumg   | micro-cn   |                   |        |           |                        |                      |        |                        |              |

|                               | Energy<br>kWh/year |     | Primary factor |   | Primary Energy<br>kWh/year |  |  |
|-------------------------------|--------------------|-----|----------------|---|----------------------------|--|--|
| Space heating - main system 1 | 6749.73            | ) x | 1.22           | = | 8234.67 (261)              |  |  |
| Water heating                 | 2469.29            | x   | 1.22           | = | 3012.53 (264)              |  |  |

NHER Plan Assessor version 6.1.0 SAP version 9.92

| Space and water heating                  |        |   | (261) + (262) + | (263) + (264) = | 11247.20 | (265) |
|------------------------------------------|--------|---|-----------------|-----------------|----------|-------|
| Pumps and fans                           | 75.00  | х | 3.07            | =               | 230.25   | (267) |
| Electricity for lighting                 | 467.31 | х | 3.07            | =               | 1434.64  | (268) |
| Primary energy kWh/year                  |        |   |                 |                 | 12912.09 | (272) |
| Dwelling primary energy rate kWh/m2/year |        |   |                 |                 | 154.16   | (273) |



This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

| Assessor name                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mrs Nicola Battista                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                    |                                                                  | As                                 | sessor num                                                              | ber                                                                         | 3998    |                                                                                                                                                                               |                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The Halebourne Gr                                                                                                                                                                                                                                                                                       | oup                                                                                      |                                                                                    |                                                                  | Las                                | t modified                                                              |                                                                             | 26/08   | 3/2014                                                                                                                                                                        |                                                                                                     |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 The Old School Pa                                                                                                                                                                                                                                                                                     | ark Lane, Richm                                                                          | ond, London,                                                                       | TW9                                                              |                                    |                                                                         |                                                                             |         |                                                                                                                                                                               |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                         |                                                                                          |                                                                                    |                                                                  |                                    |                                                                         |                                                                             |         |                                                                                                                                                                               |                                                                                                     |
| 1. Overall dwelling dimen                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sions                                                                                                                                                                                                                                                                                                   |                                                                                          |                                                                                    |                                                                  |                                    |                                                                         |                                                                             |         |                                                                                                                                                                               |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                         |                                                                                          | Area (m                                                                            | 2)                                                               |                                    | age storey<br>ight (m)                                                  |                                                                             | Vo      | olume (m³)                                                                                                                                                                    |                                                                                                     |
| Lowest occupied                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                         |                                                                                          | 52.75                                                                              | (1a) x                                                           |                                    | 2.31                                                                    | (2a) =                                                                      |         | 121.85                                                                                                                                                                        | (3a)                                                                                                |
| +1                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                         |                                                                                          | 36.54                                                                              | (1b) x                                                           |                                    | 2.11                                                                    | (2b) =                                                                      |         | 77.10                                                                                                                                                                         | (3b)                                                                                                |
| Total floor area                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1a) + (1b) + (1                                                                                                                                                                                                                                                                                        | Lc) + (1d)(1n)                                                                           | = 89.29                                                                            | (4)                                                              |                                    |                                                                         |                                                                             |         |                                                                                                                                                                               |                                                                                                     |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                         |                                                                                          |                                                                                    |                                                                  | (3a)                               | + (3b) + (3c                                                            | ) + (3d)(3                                                                  | 8n) =   | 198.95                                                                                                                                                                        | (5)                                                                                                 |
| 2. Ventilation rate                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                          |                                                                                    |                                                                  |                                    | /                                                                       |                                                                             |         |                                                                                                                                                                               |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                         |                                                                                          |                                                                                    |                                                                  |                                    |                                                                         |                                                                             | m       | <sup>3</sup> per hour                                                                                                                                                         |                                                                                                     |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                         |                                                                                          |                                                                                    |                                                                  |                                    | 0                                                                       | x 40 =                                                                      |         | 0                                                                                                                                                                             | (6a)                                                                                                |
| Number of open flues                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                                                                                          |                                                                                    |                                                                  |                                    | 0                                                                       | x 20 =                                                                      |         | 0                                                                                                                                                                             | (6b                                                                                                 |
| Number of intermittent fan                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                                                                                                                                                                                                                                                                                       |                                                                                          |                                                                                    |                                                                  |                                    | 4                                                                       | x 10 =                                                                      |         | 40                                                                                                                                                                            | <b>(</b> 7a)                                                                                        |
| Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                         |                                                                                          |                                                                                    |                                                                  |                                    | 0                                                                       | x 10 =                                                                      |         | 0                                                                                                                                                                             | <b>(7</b> b                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                         |                                                                                          |                                                                                    |                                                                  |                                    |                                                                         |                                                                             |         | -                                                                                                                                                                             |                                                                                                     |
| Number of flueless gas fires                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                       |                                                                                          |                                                                                    |                                                                  |                                    | 0                                                                       | x 40 =                                                                      |         | 0                                                                                                                                                                             | (7c)                                                                                                |
| Number of flueless gas fires                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                       |                                                                                          |                                                                                    |                                                                  |                                    | 0                                                                       | x 40 =                                                                      |         | 0<br>changes pe<br>hour                                                                                                                                                       |                                                                                                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                         |                                                                                          | (6a) + (6b)                                                                        | + (7a) + (7b) + (                                                | 7c) =                              | 0                                                                       | x 40 =<br>÷ (5) =                                                           | Air     | changes pe                                                                                                                                                                    |                                                                                                     |
| nfiltration due to chimney                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s, flues, fans, PSVs                                                                                                                                                                                                                                                                                    | intended, proce                                                                          |                                                                                    |                                                                  |                                    | 40                                                                      |                                                                             | Air     | changes pe<br>hour                                                                                                                                                            | er                                                                                                  |
| nfiltration due to chimneys<br>f a pressurisation test has i                                                                                                                                                                                                                                                                                                                                                                                                                    | s, flues, fans, PSVs<br>been carried out or is                                                                                                                                                                                                                                                          | intended, proce                                                                          |                                                                                    |                                                                  |                                    | 40                                                                      |                                                                             | Air     | changes pe<br>hour                                                                                                                                                            | er                                                                                                  |
| nfiltration due to chimneys<br>f a pressurisation test has i                                                                                                                                                                                                                                                                                                                                                                                                                    | s, flues, fans, PSVs<br>been carried out or is                                                                                                                                                                                                                                                          | intended, proce                                                                          |                                                                                    |                                                                  |                                    | 40<br>(16)                                                              |                                                                             | Air     | changes pe<br>hour                                                                                                                                                            | er<br>(8)<br>(9)                                                                                    |
| nfiltration due to chimneys<br>f a pressurisation test has a<br>Number of storeys in the de                                                                                                                                                                                                                                                                                                                                                                                     | s, flues, fans, PSVs<br>been carried out or is<br>welling                                                                                                                                                                                                                                               |                                                                                          | eed to (17), oti                                                                   | nerwise continu                                                  |                                    | 40<br>(16)                                                              |                                                                             | Air     | changes pe<br>hour<br>0.20                                                                                                                                                    | er (8)<br>(9)<br>(10)                                                                               |
| nfiltration due to chimneys<br>of a pressurisation test has<br>Number of storeys in the de<br>Additional infiltration                                                                                                                                                                                                                                                                                                                                                           | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber                                                                                                                                                                                                                     | frame or 0.35                                                                            | eed to (17), oth                                                                   | nerwise continu                                                  |                                    | 40<br>(16)                                                              |                                                                             | Air     | changes pe<br>hour<br>0.20<br>0.10                                                                                                                                            | er (8)<br>(9)<br>(10)<br>(11)                                                                       |
| nfiltration due to chimneys<br>If a pressurisation test has a<br>Number of storeys in the de<br>Additional infiltration<br>Structural infiltration: 0.                                                                                                                                                                                                                                                                                                                          | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2                                                                                                                                                                                            | frame or 0.35                                                                            | eed to (17), oth                                                                   | nerwise continu                                                  |                                    | 40<br>(16)                                                              |                                                                             | Air     | changes per           hour           0.20           0.10           0.35                                                                                                       | (8)<br>(9)<br>(10)<br>(11)<br>(11)                                                                  |
| nfiltration due to chimneys<br>If a pressurisation test has a<br>Number of storeys in the de<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, ent                                                                                                                                                                                                                                                                    | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0                                                                                                                                                                   | frame or 0.35 f<br>(unsealed) or 0                                                       | eed to (17), oth                                                                   | nerwise continu                                                  | e from (9) to                      | 40<br>(16)                                                              |                                                                             | Air     | changes per           hour           0.20           0.10           0.35           0.00                                                                                        | (9)<br>(10)<br>(11)<br>(12)<br>(13)                                                                 |
| nfiltration due to chimneys<br>If a pressurisation test has a<br>Number of storeys in the de<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, ent                                                                                                                                                                                                                                                                    | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0                                                                                                                                                                   | frame or 0.35 f<br>(unsealed) or 0                                                       | eed to (17), oth                                                                   | nerwise continu                                                  | e from (9) to                      | 40<br>(16)<br>2                                                         | ÷ (5) =                                                                     | Air     | changes per           hour           0.20           0.10           0.35           0.00                                                                                        | (9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)                                                         |
| nfiltration due to chimneys<br>If a pressurisation test has a<br>Number of storeys in the de<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, ente<br>Percentage of windows and                                                                                                                                                                                                                                      | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0                                                                                                                                                                   | frame or 0.35 f<br>(unsealed) or 0                                                       | eed to (17), oth                                                                   | nerwise continu                                                  | e from (9) to                      | 40<br>(16)<br>2<br>.00.00                                               | ÷ (5) =<br>x (14) ÷ 10                                                      | Air     | changes per           hour           0.20           0.10           0.35           0.00           0.05                                                                         | (9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)                                                 |
| nfiltration due to chimneys<br>of a pressurisation test has<br>Number of storeys in the de<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, ente<br>Percentage of windows and<br>Window infiltration<br>Infiltration rate                                                                                                                                                                                            | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0<br>I doors draught proof                                                                                                                                          | frame or 0.35 f<br>(unsealed) or 0<br>ed                                                 | eed to (17), oth                                                                   | onstruction                                                      | e from (9) to                      | 40<br>(16)<br>2<br>00.00<br>0.25 - [0.2                                 | ÷ (5) =<br>x (14) ÷ 10                                                      | Air     | changes per           hour           0.20           0.10           0.35           0.00           0.05                                                                         | (9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)                                         |
| nfiltration due to chimneys<br>of a pressurisation test has a<br>Number of storeys in the de<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, ent<br>Percentage of windows and<br>Window infiltration<br>Infiltration rate<br>f based on air permeability                                                                                                                                                            | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0<br>I doors draught proof                                                                                                                                          | frame or 0.35 f<br>(unsealed) or 0<br>ed<br>.7) ÷ 20] + (8), o                           | eed to (17), oth                                                                   | onstruction                                                      | e from (9) to                      | 40<br>(16)<br>2<br>00.00<br>0.25 - [0.2                                 | ÷ (5) =<br>x (14) ÷ 10                                                      | Air     | changes per           hour           0.20           0.10           0.35           0.00           0.05           0.05           0.75                                           | (9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(18)                                 |
| Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, ent<br>Percentage of windows and<br>Window infiltration                                                                                                                                                                                                                                                                                                                                           | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0<br>I doors draught proof                                                                                                                                          | frame or 0.35 f<br>(unsealed) or 0<br>ed<br>.7) ÷ 20] + (8), o                           | eed to (17), oth                                                                   | onstruction                                                      | e from (9) to                      | 40<br>(16)<br>2<br>0.00.00<br>0.25 - [0.2<br>+ (11) + (12)              | ÷ (5) =<br>x (14) ÷ 10                                                      | Air     | changes per           hour           0.20           0.10           0.35           0.00           0.05           0.75           0.75                                           | (9)<br>(10)<br>(11)<br>(12)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(16)<br>(18)<br>(19)         |
| nfiltration due to chimneys<br>If a pressurisation test has a<br>Number of storeys in the de<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, ent<br>Percentage of windows and<br>Window infiltration<br>Infiltration rate<br>f based on air permeability<br>Number of sides on which t                                                                                                                              | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0<br>I doors draught proof                                                                                                                                          | frame or 0.35 f<br>(unsealed) or 0<br>ed<br>.7) ÷ 20] + (8), o                           | eed to (17), oth                                                                   | onstruction                                                      | e from (9) to                      | 40<br>(16)<br>2<br>0.00.00<br>0.25 - [0.2<br>+ (11) + (12)              | ÷ (5) =<br>x (14) ÷ 10<br>) + (13) + (1                                     | Air     | changes per           hour           0.20           0.10           0.35           0.00           0.05           0.75           0.75           4                               | (8)                                                                                                 |
| Infiltration due to chimneys<br>of a pressurisation test has a<br>Number of storeys in the de<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, ente<br>Percentage of windows and<br>Window infiltration<br>Infiltration rate<br>f based on air permeability<br>Number of sides on which to<br>Shelter factor                                                                                                         | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0<br>doors draught proof                                                                                                                                            | frame or 0.35 f<br>(unsealed) or 0<br>ed<br>.7) ÷ 20] + (8), o<br>ed                     | eed to (17), oth                                                                   | onstruction                                                      | e from (9) to                      | 40<br>(16)<br>2<br>0.00.00<br>0.25 - [0.2<br>+ (11) + (12)              | ÷ (5) =<br>x (14) ÷ 10<br>) + (13) + (1<br>[0.075 x (19                     | Air     | changes per           hour           0.20           0.10           0.35           0.00           0.05           0.75           0.75           4           0.70                | (9)<br>(10)<br>(11)<br>(12)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(18)<br>(18)<br>(19)<br>(20) |
| nfiltration due to chimneys<br>of a pressurisation test has a<br>Number of storeys in the de<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, ente<br>Percentage of windows and<br>Window infiltration<br>Infiltration rate<br>f based on air permeability<br>Number of sides on which to<br>Shelter factor<br>Infiltration rate incorporati                                                                         | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0<br>doors draught proof                                                                                                                                            | frame or 0.35 f<br>(unsealed) or 0<br>ed<br>.7) ÷ 20] + (8), o<br>ed                     | eed to (17), oth                                                                   | perwise continue<br>onstruction<br>se enter 0<br>= (16)          | e from (9) to                      | 40<br>(16)<br>2<br>0.00.00<br>0.25 - [0.2<br>+ (11) + (12)              | ÷ (5) =<br>x (14) ÷ 10<br>) + (13) + (1<br>[0.075 x (19                     | Air     | changes per           hour           0.20           0.10           0.35           0.00           0.05           0.75           0.75           4           0.70                | (9)<br>(10)<br>(11)<br>(12)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(18)<br>(18)<br>(19)<br>(20) |
| nfiltration due to chimneys<br>If a pressurisation test has a<br>Number of storeys in the de<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, ente<br>Percentage of windows and<br>Window infiltration<br>Infiltration rate<br>f based on air permeability<br>Number of sides on which to<br>Shelter factor<br>Infiltration rate incorporation                                                                       | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>round floor, enter 0.2<br>er 0.05, else enter 0<br>doors draught proof<br>value, then (18) = [(1<br>the dwelling is shelter<br>ing shelter factor<br>r monthly wind speed<br>Feb Mar                             | frame or 0.35 f<br>(unsealed) or 0<br>ed<br>.7) ÷ 20] + (8), o<br>ed                     | eed to (17), oth                                                                   | perwise continue<br>onstruction<br>se enter 0<br>= (16)          | (8) + (10)                         | 40<br>(16)<br>2<br>.00.00<br>0.25 - [0.2<br>+ (11) + (12)<br>1 -        | ÷ (5) =<br>x (14) ÷ 10<br>) + (13) + (1<br>[0.075 x (19<br>(18) x (2        | Air<br> | changes per           hour           0.20           0.10           0.35           0.00           0.05           0.75           0.75           4           0.70           0.53 | (9)<br>(10)<br>(11)<br>(12)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(18)<br>(18)<br>(19)<br>(20) |
| nfiltration due to chimneys<br>of a pressurisation test has a<br>Number of storeys in the de<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, enter<br>Percentage of windows and<br>Window infiltration<br>Infiltration rate<br>f based on air permeability<br>Number of sides on which to<br>Shelter factor<br>Infiltration rate incorporati<br>Infiltration rate modified for<br>Jan                               | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>round floor, enter 0.2<br>er 0.05, else enter 0<br>doors draught proof<br>value, then (18) = [(1<br>the dwelling is shelter<br>ing shelter factor<br>r monthly wind speed<br>Feb Mar                             | frame or 0.35 f<br>(unsealed) or 0<br>ed<br>.7) ÷ 20] + (8), o<br>ed<br>d:<br><b>Apr</b> | eed to (17), oth                                                                   | nerwise continue<br>onstruction<br>se enter 0<br>= (16)<br>n Jul | (8) + (10)                         | 40<br>(16)<br>2<br>.00.00<br>0.25 - [0.2<br>+ (11) + (12)<br>1 -        | ÷ (5) =<br>x (14) ÷ 10<br>) + (13) + (1<br>[0.075 x (19<br>(18) x (2        | Air<br> | changes per           hour           0.20           0.10           0.35           0.00           0.05           0.75           0.75           4           0.70           0.53 | (9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(16)<br>(18)<br>(19)<br>(20)<br>(21) |
| nfiltration due to chimneys<br>of a pressurisation test has a<br>Number of storeys in the de<br>Additional infiltration<br>Structural infiltration: 0.<br>If suspended wooden gr<br>If no draught lobby, enter<br>Percentage of windows and<br>Window infiltration<br>Infiltration rate<br>f based on air permeability<br>Number of sides on which the<br>Shelter factor<br>nfiltration rate incorporation<br>filtration rate modified for<br>Jan<br>Monthly average wind speed | s, flues, fans, PSVs<br>been carried out or is<br>welling<br>25 for steel or timber<br>ound floor, enter 0.2<br>er 0.05, else enter 0<br>d doors draught proof<br>value, then (18) = [(1<br>the dwelling is shelter<br>ing shelter factor<br>r monthly wind speed<br><b>Feb Mar</b><br>ed from Table U2 | frame or 0.35 f<br>(unsealed) or 0<br>ed<br>.7) ÷ 20] + (8), o<br>ed<br>d:<br><b>Apr</b> | eed to (17), oth<br>for masonry c<br>0.1 (sealed), els<br>otherwise (18)<br>May Ju | nerwise continue<br>onstruction<br>se enter 0<br>= (16)<br>n Jul | e from (9) to<br>(8) + (10)<br>Aug | 40<br>(16)<br>2<br>.00.00<br>0.25 - [0.2<br>+ (11) + (12)<br>1 -<br>Sep | ÷ (5) =<br>x (14) ÷ 10<br>) + (13) + (1<br>[0.075 x (19<br>(18) x (2<br>Oct | Air<br> | changes per<br>hour<br>0.20<br>0.10<br>0.35<br>0.00<br>0.05<br>0.75<br>0.75<br>4<br>0.70<br>0.53<br>0.75                                                                      | (9)<br>(10)<br>(11)<br>(12)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(16)<br>(18)<br>(19)<br>(20) |



| 0.67                                                                                                                                                                                                                                                                                                                       | 0.66                                                                                                                                                                                                | 0.64                                                                                                                                  | 0.58                                                                                                     | 0.57                                                                                           | 0.50                                                                                 | 0.50                                                                | 0.49                                                       | 0.53                                                                           | 0.57                                                                                                | 0.59                                                                                                                  | 0.62                                                                                                                         | (22b)                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Calculate effective air char                                                                                                                                                                                                                                                                                               | nge rate for                                                                                                                                                                                        | the applica                                                                                                                           | ble case:                                                                                                |                                                                                                |                                                                                      |                                                                     |                                                            |                                                                                |                                                                                                     |                                                                                                                       |                                                                                                                              |                                                                    |
| If mechanical ventilatio                                                                                                                                                                                                                                                                                                   | n: air chang                                                                                                                                                                                        | e rate thro                                                                                                                           | ugh system                                                                                               |                                                                                                |                                                                                      |                                                                     |                                                            |                                                                                |                                                                                                     |                                                                                                                       | N/A                                                                                                                          | (23a)                                                              |
| If balanced with heat re                                                                                                                                                                                                                                                                                                   | covery: effi                                                                                                                                                                                        | ciency in %                                                                                                                           | allowing fo                                                                                              | or in-use fac                                                                                  | tor from Ta                                                                          | able 4h                                                             |                                                            |                                                                                |                                                                                                     |                                                                                                                       | N/A                                                                                                                          | (23c)                                                              |
| d) natural ventilation o                                                                                                                                                                                                                                                                                                   | r whole hou                                                                                                                                                                                         | se positive                                                                                                                           | input venti                                                                                              | lation from                                                                                    | loft                                                                                 |                                                                     |                                                            |                                                                                |                                                                                                     |                                                                                                                       |                                                                                                                              |                                                                    |
| 0.72                                                                                                                                                                                                                                                                                                                       | 0.72                                                                                                                                                                                                | 0.71                                                                                                                                  | 0.67                                                                                                     | 0.66                                                                                           | 0.62                                                                                 | 0.62                                                                | 0.62                                                       | 0.64                                                                           | 0.66                                                                                                | 0.67                                                                                                                  | 0.69                                                                                                                         | (24d)                                                              |
| Effective air change rate -                                                                                                                                                                                                                                                                                                | enter (24a) o                                                                                                                                                                                       | or (24b) or                                                                                                                           | (24c) or (24                                                                                             | ld) in (25)                                                                                    |                                                                                      |                                                                     |                                                            |                                                                                |                                                                                                     |                                                                                                                       |                                                                                                                              |                                                                    |
| 0.72                                                                                                                                                                                                                                                                                                                       | 0.72                                                                                                                                                                                                | 0.71                                                                                                                                  | 0.67                                                                                                     | 0.66                                                                                           | 0.62                                                                                 | 0.62                                                                | 0.62                                                       | 0.64                                                                           | 0.66                                                                                                | 0.67                                                                                                                  | 0.69                                                                                                                         | (25)                                                               |
| _                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                          |                                                                                                |                                                                                      | -                                                                   |                                                            |                                                                                |                                                                                                     | ·                                                                                                                     |                                                                                                                              | _                                                                  |
| 3. Heat losses and heat lo                                                                                                                                                                                                                                                                                                 | oss paramet                                                                                                                                                                                         |                                                                                                                                       |                                                                                                          |                                                                                                |                                                                                      |                                                                     |                                                            | _                                                                              |                                                                                                     |                                                                                                                       |                                                                                                                              |                                                                    |
| Element                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                       | Gross<br>rea, m <sup>2</sup>                                                                             | Openings<br>m <sup>2</sup>                                                                     |                                                                                      | area<br>m²                                                          | U-value<br>W/m <sup>2</sup> K                              | AxUW                                                                           |                                                                                                     | /alue,<br>/m².K                                                                                                       | Ахк,<br>kJ/K                                                                                                                 |                                                                    |
| Door                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     | -                                                                                                                                     | ,                                                                                                        |                                                                                                |                                                                                      | 96 x                                                                | 1.80                                                       | = 7.13                                                                         |                                                                                                     | ,                                                                                                                     | ,                                                                                                                            | (26)                                                               |
| Window                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                          |                                                                                                |                                                                                      | .57 x                                                               | 1.50                                                       | = 18.90                                                                        |                                                                                                     |                                                                                                                       |                                                                                                                              | (20)                                                               |
| Ground floor                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                          |                                                                                                |                                                                                      | .75 x                                                               | 0.22                                                       | = 11.61                                                                        |                                                                                                     |                                                                                                                       |                                                                                                                              | (28a)                                                              |
| External wall                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                          |                                                                                                | 45                                                                                   |                                                                     | 0.22                                                       | = 13.74                                                                        | $\leq$                                                                                              |                                                                                                                       |                                                                                                                              | (29a)                                                              |
| Party wall                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                          |                                                                                                |                                                                                      | .01 × [                                                             | 0.00                                                       | = 0.00                                                                         |                                                                                                     |                                                                                                                       |                                                                                                                              | (32)                                                               |
| Roof                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                          |                                                                                                | 23                                                                                   |                                                                     | 0.16                                                       | = 0.00                                                                         | $\exists$                                                                                           |                                                                                                                       |                                                                                                                              | (32)                                                               |
| Roof                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                          |                                                                                                |                                                                                      | .01 × [                                                             | 0.10                                                       | = 3.33                                                                         |                                                                                                     |                                                                                                                       |                                                                                                                              | (30)                                                               |
| Total area of external elem                                                                                                                                                                                                                                                                                                | $rants \sum \Lambda m^2$                                                                                                                                                                            | 2                                                                                                                                     |                                                                                                          |                                                                                                |                                                                                      | 7.19                                                                | 0.18                                                       | - 3.33                                                                         |                                                                                                     |                                                                                                                       |                                                                                                                              | (31)                                                               |
| Fabric heat loss, W/K = $\Sigma$ (A                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                   |                                                                                                                                       |                                                                                                          |                                                                                                | 157                                                                                  | .15                                                                 |                                                            | (26                                                                            | 5)(30) + (1                                                                                         | 32) =                                                                                                                 | 58.48                                                                                                                        | (33)                                                               |
| Heat capacity Cm = $\Sigma(A \times K)$                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                          |                                                                                                |                                                                                      |                                                                     | (28)                                                       | .(30) + (32) +                                                                 |                                                                                                     |                                                                                                                       | N/A                                                                                                                          | (34)                                                               |
| Thermal mass parameter (                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                     | m²K                                                                                                                                   |                                                                                                          |                                                                                                |                                                                                      |                                                                     | (20)                                                       | .(50) * (52) *                                                                 | (320)(3                                                                                             |                                                                                                                       | 450.00                                                                                                                       | (35)                                                               |
| Thermal bridges: $\Sigma(L \times \Psi)$                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                       | div K                                                                                                    |                                                                                                |                                                                                      |                                                                     |                                                            |                                                                                |                                                                                                     |                                                                                                                       | 23.58                                                                                                                        | (36)                                                               |
| Total fabric heat loss                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                     | ыпа Арреп                                                                                                                             |                                                                                                          |                                                                                                |                                                                                      |                                                                     |                                                            |                                                                                | (33) + (                                                                                            | 36) =                                                                                                                 | 82.06                                                                                                                        | (37)                                                               |
|                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                          |                                                                                                |                                                                                      |                                                                     |                                                            |                                                                                |                                                                                                     |                                                                                                                       |                                                                                                                              |                                                                    |
|                                                                                                                                                                                                                                                                                                                            | Feb                                                                                                                                                                                                 | Mar                                                                                                                                   | Apr                                                                                                      | May                                                                                            | lun                                                                                  | Iul                                                                 | Aug                                                        | Sen                                                                            |                                                                                                     |                                                                                                                       |                                                                                                                              | ] (37)                                                             |
| Jan                                                                                                                                                                                                                                                                                                                        | Feb                                                                                                                                                                                                 | <b>Mar</b>                                                                                                                            | <b>Apr</b><br>25)m x (5)                                                                                 | May                                                                                            | Jun                                                                                  | Jul                                                                 | Aug                                                        | Sep                                                                            | Oct                                                                                                 | Nov                                                                                                                   | Dec                                                                                                                          | ] (37)                                                             |
| Jan<br>Ventilation heat loss calcu                                                                                                                                                                                                                                                                                         | ated month                                                                                                                                                                                          | ly 0.33 x (2                                                                                                                          | 25)m x (5)                                                                                               |                                                                                                |                                                                                      |                                                                     | -                                                          |                                                                                | Oct                                                                                                 | Nov                                                                                                                   | Dec                                                                                                                          | 1                                                                  |
| Jan<br>Ventilation heat loss calcu<br>47.58                                                                                                                                                                                                                                                                                | ated month<br>47.00                                                                                                                                                                                 | ly 0.33 x (2<br>46.44                                                                                                                 |                                                                                                          | May<br>43.31                                                                                   | Jun<br>41.02                                                                         | Jul<br>41.02                                                        | Aug<br>40.59                                               | <b>Sep</b>                                                                     |                                                                                                     |                                                                                                                       |                                                                                                                              | ] (38)                                                             |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V                                                                                                                                                                                                                                                | ated month<br>47.00<br>V/K (37)m +                                                                                                                                                                  | ly 0.33 x (2<br>46.44<br>⊦ (38)m                                                                                                      | 25)m x (5)<br>43.81                                                                                      | 43.31                                                                                          | 41.02                                                                                | 41.02                                                               | 40.59                                                      | 41.90                                                                          | Oct<br>43.31                                                                                        | Nov<br>44.31                                                                                                          | <b>Dec</b> 45.35                                                                                                             | 1                                                                  |
| Jan<br>Ventilation heat loss calcu<br>47.58                                                                                                                                                                                                                                                                                | ated month<br>47.00                                                                                                                                                                                 | ly 0.33 x (2<br>46.44                                                                                                                 | 25)m x (5)                                                                                               |                                                                                                |                                                                                      |                                                                     | -                                                          | 41.90                                                                          | Oct<br>43.31<br>125.37                                                                              | Nov<br>44.31<br>126.37                                                                                                | Dec<br>45.35                                                                                                                 | ] (38)                                                             |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64                                                                                                                                                                                                                                      | ated month<br>47.00<br>V/K (37)m +<br>129.07                                                                                                                                                        | ly 0.33 x (2<br>46.44<br>⊦ (38)m<br>128.50                                                                                            | 25)m x (5)<br>43.81                                                                                      | 43.31                                                                                          | 41.02                                                                                | 41.02                                                               | 40.59                                                      | 41.90                                                                          | Oct<br>43.31<br>125.37                                                                              | Nov<br>44.31<br>126.37                                                                                                | <b>Dec</b> 45.35                                                                                                             | 1                                                                  |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64<br>Heat loss parameter (HLP)                                                                                                                                                                                                         | ated month<br>47.00<br>V/K (37)m +<br>129.07<br>W/m <sup>2</sup> K (39                                                                                                                              | ly 0.33 x (2<br>46.44<br>⊦ (38)m<br>128.50<br>9)m ÷ (4)                                                                               | 25)m x (5)<br>43.81<br>125.87                                                                            | 43.31                                                                                          | 41.02                                                                                | 41.02                                                               | 40.59                                                      | 41.90<br>123.96<br>Average = Σ                                                 | Oct<br>43.31<br>125.37<br>:(39)112,                                                                 | Nov<br>44.31<br>126.37<br>/12 =                                                                                       | Dec       45.35       127.42       125.86                                                                                    | ] (38)                                                             |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64                                                                                                                                                                                                                                      | ated month<br>47.00<br>V/K (37)m +<br>129.07                                                                                                                                                        | ly 0.33 x (2<br>46.44<br>⊦ (38)m<br>128.50                                                                                            | 25)m x (5)<br>43.81                                                                                      | 43.31                                                                                          | 41.02                                                                                | 41.02                                                               | 40.59                                                      | 41.90<br>123.96<br>Average = Σ<br>1.39                                         | Oct<br>43.31<br>125.37<br>5(39)112,<br>1.40                                                         | Nov<br>44.31<br>126.37<br>/12 =<br>1.42                                                                               | Dec       45.35       127.42       125.86       1.43                                                                         | ] (38)<br>]<br>] (39)                                              |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64<br>Heat loss parameter (HLP)<br>1.45                                                                                                                                                                                                 | ated month<br>47.00<br>V/K (37)m +<br>129.07<br>W/m <sup>2</sup> K (39<br>1.45                                                                                                                      | ly 0.33 x (2<br>46.44<br>⊦ (38)m<br>128.50<br>9)m ÷ (4)                                                                               | 25)m x (5)<br>43.81<br>125.87                                                                            | 43.31                                                                                          | 41.02                                                                                | 41.02                                                               | 40.59                                                      | 41.90<br>123.96<br>Average = Σ                                                 | Oct<br>43.31<br>125.37<br>5(39)112,<br>1.40                                                         | Nov<br>44.31<br>126.37<br>/12 =<br>1.42                                                                               | Dec       45.35       127.42       125.86                                                                                    | ] (38)                                                             |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64<br>Heat loss parameter (HLP)<br>1.45<br>Number of days in month                                                                                                                                                                      | ated month<br>47.00<br>V/K (37)m +<br>129.07<br>W/m <sup>2</sup> K (39<br>1.45<br>(Table 1a)                                                                                                        | ly 0.33 x (2<br>46.44<br>+ (38)m<br>128.50<br>9)m ÷ (4)<br>1.44                                                                       | 25)m x (5)<br>43.81<br>125.87<br>1.41                                                                    | 43.31<br>125.37<br>1.40                                                                        | 41.02 123.08 1.38                                                                    | 41.02<br>123.08<br>1.38                                             | 40.59                                                      | 41.90<br>123.96<br>Average = Σ<br>1.39<br>Average = Σ                          | Oct<br>43.31<br>125.37<br>(39)112,<br>1.40<br>(40)112,                                              | Nov<br>44.31<br>126.37<br>/12 =<br>1.42<br>/12 =                                                                      | Dec       45.35       127.42       125.86       1.43       1.41                                                              | ] (38)<br>]<br>] (39)<br>] (40)                                    |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64<br>Heat loss parameter (HLP)<br>1.45                                                                                                                                                                                                 | ated month<br>47.00<br>V/K (37)m +<br>129.07<br>W/m <sup>2</sup> K (39<br>1.45                                                                                                                      | ly 0.33 x (2<br>46.44<br>⊦ (38)m<br>128.50<br>9)m ÷ (4)                                                                               | 25)m x (5)<br>43.81<br>125.87                                                                            | 43.31                                                                                          | 41.02                                                                                | 41.02                                                               | 40.59                                                      | 41.90<br>123.96<br>Average = Σ<br>1.39                                         | Oct<br>43.31<br>125.37<br>5(39)112,<br>1.40                                                         | Nov<br>44.31<br>126.37<br>/12 =<br>1.42                                                                               | Dec       45.35       127.42       125.86       1.43                                                                         | ] (38)<br>]<br>] (39)                                              |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64<br>Heat loss parameter (HLP)<br>1.45<br>Number of days in month                                                                                                                                                                      | ated month<br>47.00<br>V/K (37)m +<br>129.07<br>W/m <sup>2</sup> K (39<br>1.45<br>(Table 1a)<br>28.00                                                                                               | ly 0.33 x (2<br>46.44<br>← (38)m<br>128.50<br>9)m ÷ (4)<br>1.44<br>31.00                                                              | 25)m x (5)<br>43.81<br>125.87<br>1.41                                                                    | 43.31<br>125.37<br>1.40                                                                        | 41.02 123.08 1.38                                                                    | 41.02<br>123.08<br>1.38                                             | 40.59                                                      | 41.90<br>123.96<br>Average = Σ<br>1.39<br>Average = Σ                          | Oct<br>43.31<br>125.37<br>(39)112,<br>1.40<br>(40)112,                                              | Nov<br>44.31<br>126.37<br>/12 =<br>1.42<br>/12 =                                                                      | Dec       45.35       127.42       125.86       1.43       1.41                                                              | ] (38)<br>]<br>] (39)<br>] (40)                                    |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64<br>Heat loss parameter (HLP)<br>1.45<br>Number of days in month<br>31.00                                                                                                                                                             | ated month<br>47.00<br>V/K (37)m +<br>129.07<br>W/m <sup>2</sup> K (39<br>1.45<br>(Table 1a)<br>28.00                                                                                               | ly 0.33 x (2<br>46.44<br>← (38)m<br>128.50<br>9)m ÷ (4)<br>1.44<br>31.00                                                              | 25)m x (5)<br>43.81<br>125.87<br>1.41                                                                    | 43.31<br>125.37<br>1.40                                                                        | 41.02 123.08 1.38                                                                    | 41.02<br>123.08<br>1.38                                             | 40.59                                                      | 41.90<br>123.96<br>Average = Σ<br>1.39<br>Average = Σ                          | Oct<br>43.31<br>125.37<br>(39)112,<br>1.40<br>(40)112,                                              | Nov<br>44.31<br>126.37<br>/12 =<br>1.42<br>/12 =                                                                      | Dec       45.35       127.42       125.86       1.43       1.41                                                              | ] (38)<br>]<br>] (39)<br>] (40)                                    |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64<br>Heat loss parameter (HLP)<br>1.45<br>Number of days in month<br>31.00<br>4. Water heating energy                                                                                                                                  | ated month<br>47.00<br>V/K (37)m 4<br>129.07<br>W/m <sup>2</sup> K (39<br>1.45<br>(Table 1a)<br>28.00<br>requiremen                                                                                 | ly 0.33 x (2<br>46.44<br>+ (38)m<br>128.50<br>9)m ÷ (4)<br>1.44<br>31.00<br>t                                                         | 25)m x (5)<br>43.81<br>125.87<br>1.41<br>30.00                                                           | 43.31<br>125.37<br>1.40<br>31.00                                                               | 41.02 123.08 1.38 30.00                                                              | 41.02<br>123.08<br>1.38                                             | 40.59                                                      | 41.90<br>123.96<br>Average = Σ<br>1.39<br>Average = Σ                          | Oct<br>43.31<br>125.37<br>(39)112,<br>1.40<br>(40)112,                                              | Nov<br>44.31<br>126.37<br>/12 =<br>1.42<br>/12 =                                                                      | Dec       45.35       127.42       125.86       1.43       1.41       31.00                                                  | ] (38)<br>] (39)<br>] (40)<br>] (40)                               |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64<br>Heat loss parameter (HLP)<br>1.45<br>Number of days in month<br>31.00<br>4. Water heating energy<br>Assumed occupancy, N                                                                                                          | ated month<br>47.00<br>V/K (37)m 4<br>129.07<br>W/m <sup>2</sup> K (39<br>1.45<br>(Table 1a)<br>28.00<br>requiremen                                                                                 | ly 0.33 x (2<br>46.44<br>+ (38)m<br>128.50<br>9)m ÷ (4)<br>1.44<br>31.00<br>t                                                         | 25)m x (5)<br>43.81<br>125.87<br>1.41<br>30.00                                                           | 43.31<br>125.37<br>1.40<br>31.00                                                               | 41.02 123.08 1.38 30.00                                                              | 41.02<br>123.08<br>1.38                                             | 40.59                                                      | 41.90<br>123.96<br>Average = Σ<br>1.39<br>Average = Σ                          | Oct<br>43.31<br>125.37<br>(39)112,<br>1.40<br>(40)112,                                              | Nov<br>44.31<br>126.37<br>/12 =<br>1.42<br>/12 =                                                                      | Dec       45.35       127.42       125.86       1.43       1.41       31.00       2.62                                       | ] (38)<br>] (39)<br>] (40)<br>] (40)                               |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64<br>Heat loss parameter (HLP)<br>1.45<br>Number of days in month<br>31.00<br>4. Water heating energy<br>Assumed occupancy, N<br>Annual average hot water                                                                              | ated month<br>47.00<br>V/K (37)m 4<br>129.07<br>W/m <sup>2</sup> K (39<br>1.45<br>(Table 1a)<br>28.00<br>requiremen<br>usage in litra<br>Feb                                                        | ly 0.33 x (2<br>46.44<br>+ (38)m<br>128.50<br>9)m ÷ (4)<br>1.44<br>31.00<br>t<br>t<br>mar                                             | 25)m x (5)<br>43.81<br>125.87<br>1.41<br>30.00<br>Vd,average<br>Apr                                      | 43.31<br>125.37<br>1.40<br>31.00<br>= (25 x N) +<br>May                                        | 41.02<br>123.08<br>1.38<br>30.00<br>36<br>Jun                                        | 41.02<br>123.08<br>1.38<br>31.00                                    | 40.59<br>122.65<br>1.37<br>31.00                           | 41.90<br>123.96<br>Average = Σ<br>1.39<br>Average = Σ<br>30.00                 | Oct<br>43.31<br>125.37<br>(39)112,<br>1.40<br>(40)112,<br>31.00                                     | Nov<br>44.31<br>126.37<br>/12 =<br>1.42<br>/12 =<br>30.00                                                             | Dec       45.35       127.42       125.86       1.43       1.41       31.00       2.62       96.33                           | ] (38)<br>] (39)<br>] (40)<br>] (40)                               |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64<br>Heat loss parameter (HLP)<br>1.45<br>Number of days in month<br>31.00<br><b>4. Water heating energy</b><br>Assumed occupancy, N<br>Annual average hot water<br>Jan                                                                | ated month<br>47.00<br>V/K (37)m 4<br>129.07<br>W/m <sup>2</sup> K (39<br>1.45<br>(Table 1a)<br>28.00<br>requiremen<br>usage in litra<br>Feb                                                        | ly 0.33 x (2<br>46.44<br>+ (38)m<br>128.50<br>9)m ÷ (4)<br>1.44<br>31.00<br>t<br>t<br>mar                                             | 25)m x (5)<br>43.81<br>125.87<br>1.41<br>30.00<br>Vd,average<br>Apr                                      | 43.31<br>125.37<br>1.40<br>31.00<br>= (25 x N) +<br>May                                        | 41.02<br>123.08<br>1.38<br>30.00<br>36<br>Jun                                        | 41.02<br>123.08<br>1.38<br>31.00                                    | 40.59<br>122.65<br>1.37<br>31.00                           | 41.90<br>123.96<br>Average = Σ<br>1.39<br>Average = Σ<br>30.00                 | Oct<br>43.31<br>125.37<br>(39)112,<br>1.40<br>(40)112,<br>31.00                                     | Nov<br>44.31<br>126.37<br>/12 =<br>1.42<br>/12 =<br>30.00                                                             | Dec       45.35       127.42       125.86       1.43       1.41       31.00       2.62       96.33                           | ] (38)<br>] (39)<br>] (40)<br>] (40)                               |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64<br>Heat loss parameter (HLP)<br>1.45<br>Number of days in month<br>31.00<br>4. Water heating energy<br>Assumed occupancy, N<br>Annual average hot water<br>Jan<br>Hot water usage in litres p                                        | ated month<br>47.00<br>V/K (37)m +<br>129.07<br>W/m <sup>2</sup> K (39<br>1.45<br>(Table 1a)<br>28.00<br>requiremen<br>usage in litre<br>Feb<br>er day for ea                                       | ly 0.33 x (2<br>46.44<br>← (38)m<br>128.50<br>9)m ÷ (4)<br>1.44<br>31.00<br>t<br>ses per day <sup>1</sup><br>Mar<br>ach month         | 25)m x (5)<br>43.81<br>125.87<br>1.41<br>30.00<br>Vd,average<br>Apr<br>Vd,m = fact                       | 43.31<br>125.37<br>1.40<br>31.00<br>= (25 x N) +<br>May<br>cor from Tab                        | 41.02<br>123.08<br>1.38<br>30.00<br>30.00                                            | 41.02<br>123.08<br>1.38<br>31.00<br>Jul                             | 40.59<br>122.65<br>1.37<br>31.00<br>Aug                    | 41.90<br>123.96<br>Average = Σ<br>1.39<br>Average = Σ<br>30.00<br>Sep          | Oct<br>43.31<br>125.37<br>(39)112,<br>1.40<br>(40)112,<br>31.00<br>Oct                              | Nov<br>44.31<br>126.37<br>/12 =<br>1.42<br>/12 =<br>30.00<br>Nov<br>102.11                                            | Dec<br>45.35<br>127.42<br>125.86<br>1.41<br>1.41<br>31.00<br>2.62<br>96.33<br>Dec                                            | ] (38)<br>] (39)<br>] (40)<br>] (40)                               |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64<br>Heat loss parameter (HLP)<br>1.45<br>Number of days in month<br>31.00<br>4. Water heating energy<br>Assumed occupancy, N<br>Annual average hot water<br>Jan<br>Hot water usage in litres p                                        | ated month<br>47.00<br>V/K (37)m +<br>129.07<br>W/m <sup>2</sup> K (39<br>1.45<br>(Table 1a)<br>28.00<br>requirement<br>usage in litro<br>Feb<br>er day for ea<br>102.11                            | ly 0.33 x (2<br>46.44<br>(38)m<br>128.50<br>9)m ÷ (4)<br>1.44<br>31.00<br>t<br>ses per day <sup>1</sup><br>Mar<br>ach month<br>98.25  | 25)m x (5)<br>43.81<br>125.87<br>1.41<br>30.00<br>Vd,average<br>Apr<br>Vd,m = fact<br>94.40              | 43.31<br>125.37<br>1.40<br>31.00<br>= (25 x N) +<br>May<br>for from Tab<br>90.55               | 41.02<br>123.08<br>1.38<br>30.00<br>36<br>Jun<br>ole 1c x (43<br>86.69               | 41.02<br>123.08<br>1.38<br>31.00<br>Jul<br>)<br>86.69               | 40.59<br>122.65<br>1.37<br>31.00<br>Aug<br>90.55           | 41.90<br>123.96<br>Average = Σ<br>1.39<br>Average = Σ<br>30.00<br>Sep          | Oct<br>43.31<br>125.37<br>(39)112,<br>1.40<br>(40)112,<br>31.00<br>Oct<br>98.25                     | Nov<br>44.31<br>126.37<br>/12 =<br>1.42<br>/12 =<br>30.00<br>Nov<br>102.11                                            | Dec       45.35       127.42       125.86       1.41       1.41       31.00       2.62       96.33       Dec       105.96    | ] (38)<br>] (39)<br>] (39)<br>] (40)<br>] (40)<br>] (42)<br>] (43) |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64<br>Heat loss parameter (HLP)<br>1.45<br>Number of days in month<br>31.00<br>4. Water heating energy<br>Assumed occupancy, N<br>Annual average hot water<br>Jan<br>Hot water usage in litres p<br>105.96                              | ated month<br>47.00<br>V/K (37)m +<br>129.07<br>W/m <sup>2</sup> K (39<br>1.45<br>(Table 1a)<br>28.00<br>requirement<br>usage in litro<br>Feb<br>er day for ea<br>102.11                            | ly 0.33 x (2<br>46.44<br>(38)m<br>128.50<br>9)m ÷ (4)<br>1.44<br>31.00<br>t<br>ses per day <sup>1</sup><br>Mar<br>ach month<br>98.25  | 25)m x (5)<br>43.81<br>125.87<br>1.41<br>30.00<br>Vd,average<br>Apr<br>Vd,m = fact<br>94.40              | 43.31<br>125.37<br>1.40<br>31.00<br>= (25 x N) +<br>May<br>for from Tab<br>90.55               | 41.02<br>123.08<br>1.38<br>30.00<br>36<br>Jun<br>ole 1c x (43<br>86.69               | 41.02<br>123.08<br>1.38<br>31.00<br>Jul<br>)<br>86.69               | 40.59<br>122.65<br>1.37<br>31.00<br>Aug<br>90.55           | 41.90<br>123.96<br>Average = Σ<br>1.39<br>Average = Σ<br>30.00<br>Sep          | Oct<br>43.31<br>125.37<br>(39)112,<br>1.40<br>(40)112,<br>31.00<br>Oct<br>98.25                     | Nov<br>44.31<br>126.37<br>/12 =<br>1.42<br>/12 =<br>30.00<br>Nov<br>102.11                                            | Dec       45.35       127.42       125.86       1.41       1.41       31.00       2.62       96.33       Dec       105.96    | ] (38)<br>] (39)<br>] (39)<br>] (40)<br>] (40)<br>] (42)<br>] (43) |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64<br>Heat loss parameter (HLP)<br>1.45<br>Number of days in month<br>31.00<br>4. Water heating energy<br>Assumed occupancy, N<br>Annual average hot water<br>Jan<br>Hot water usage in litres p<br>105.96                              | ated month<br>47.00<br>V/K (37)m +<br>129.07<br>W/m <sup>2</sup> K (39<br>1.45<br>(Table 1a)<br>28.00<br>requirement<br>usage in litro<br>Feb<br>er day for ea<br>102.11<br>er used = 4.2           | ly 0.33 x (2<br>46.44<br>(38)m<br>128.50<br>9)m ÷ (4)<br>1.44<br>31.00<br>t<br>sper day '<br>Mar<br>ach month<br>98.25<br>18 x Vd,m x | 25)m x (5)<br>43.81<br>125.87<br>1.41<br>30.00<br>Vd,average<br>Apr<br>Vd,m = fact<br>94.40<br>nm x Tm/3 | 43.31<br>125.37<br>1.40<br>31.00<br>= (25 x N) +<br>May<br>for from Tab<br>90.55<br>3600 kWh/m | 41.02<br>123.08<br>1.38<br>30.00<br>36<br>Jun<br>ole 1c x (43<br>86.69<br>honth (see | 41.02<br>123.08<br>1.38<br>31.00<br>Jul<br>)<br>86.69<br>Tables 1b, | 40.59<br>122.65<br>1.37<br>31.00<br>Aug<br>90.55<br>1c 1d) | 41.90<br>123.96<br>Average = Σ<br>1.39<br>Average = Σ<br>30.00<br>Sep<br>94.40 | Oct<br>43.31<br>125.37<br>(39)112,<br>(40)112,<br>31.00<br>Oct<br>98.25<br>Σ(44)1                   | Nov<br>44.31<br>126.37<br>/12 =<br>1.42<br>/12 =<br>30.00<br>102.11<br>.12 =<br>102.11<br>.12 =                       | Dec       45.35       127.42       125.86       1.41       31.00       2.62       96.33       Dec       105.96       1155.92 | ] (38)<br>] (39)<br>] (39)<br>] (40)<br>] (40)<br>] (42)<br>] (43) |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64<br>Heat loss parameter (HLP)<br>1.45<br>Number of days in month<br>31.00<br>4. Water heating energy<br>Assumed occupancy, N<br>Annual average hot water<br>Jan<br>Hot water usage in litres p<br>105.96                              | ated month<br>47.00<br>V/K (37)m +<br>129.07<br>W/m <sup>2</sup> K (39<br>1.45<br>(Table 1a)<br>28.00<br>requirement<br>usage in litro<br>Feb<br>er day for ea<br>102.11<br>er used = 4.2<br>137.43 | ly 0.33 x (2<br>46.44<br>(38)m<br>128.50<br>9)m ÷ (4)<br>1.44<br>31.00<br>t<br>sper day '<br>Mar<br>ach month<br>98.25<br>18 x Vd,m x | 25)m x (5)<br>43.81<br>125.87<br>1.41<br>30.00<br>Vd,average<br>Apr<br>Vd,m = fact<br>94.40<br>nm x Tm/3 | 43.31<br>125.37<br>1.40<br>31.00<br>= (25 x N) +<br>May<br>for from Tab<br>90.55<br>3600 kWh/m | 41.02<br>123.08<br>1.38<br>30.00<br>36<br>Jun<br>ole 1c x (43<br>86.69<br>honth (see | 41.02<br>123.08<br>1.38<br>31.00<br>Jul<br>)<br>86.69<br>Tables 1b, | 40.59<br>122.65<br>1.37<br>31.00<br>Aug<br>90.55<br>1c 1d) | 41.90<br>123.96<br>Average = Σ<br>1.39<br>Average = Σ<br>30.00<br>Sep<br>94.40 | Oct<br>43.31<br>125.37<br>(39)112,<br>1.40<br>(40)112,<br>31.00<br>Oct<br>98.25<br>Σ(44)1<br>128.38 | Nov<br>44.31<br>126.37<br>/12 =<br>1.42<br>/12 =<br>30.00<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Dec<br>45.35<br>127.42<br>125.86<br>1.41<br>1.41<br>31.00<br>2.62<br>96.33<br>Dec<br>96.33<br>Dec<br>105.96<br>105.96        | ] (38)<br>] (39)<br>] (40)<br>] (40)<br>] (42)<br>] (43)<br>] (44) |
| Jan<br>Ventilation heat loss calcu<br>47.58<br>Heat transfer coefficient, V<br>129.64<br>Heat loss parameter (HLP)<br>1.45<br>Number of days in month<br>31.00<br>4. Water heating energy<br>Assumed occupancy, N<br>Annual average hot water<br>Jan<br>Hot water usage in litres p<br>105.96<br>Energy content of hot wat | ated month<br>47.00<br>V/K (37)m +<br>129.07<br>W/m <sup>2</sup> K (39<br>1.45<br>(Table 1a)<br>28.00<br>requirement<br>usage in litro<br>Feb<br>er day for ea<br>102.11<br>er used = 4.2<br>137.43 | ly 0.33 x (2<br>46.44<br>(38)m<br>128.50<br>9)m ÷ (4)<br>1.44<br>31.00<br>t<br>sper day '<br>Mar<br>ach month<br>98.25<br>18 x Vd,m x | 25)m x (5)<br>43.81<br>125.87<br>1.41<br>30.00<br>Vd,average<br>Apr<br>Vd,m = fact<br>94.40<br>nm x Tm/3 | 43.31<br>125.37<br>1.40<br>31.00<br>= (25 x N) +<br>May<br>for from Tab<br>90.55<br>3600 kWh/m | 41.02<br>123.08<br>1.38<br>30.00<br>36<br>Jun<br>ole 1c x (43<br>86.69<br>honth (see | 41.02<br>123.08<br>1.38<br>31.00<br>Jul<br>)<br>86.69<br>Tables 1b, | 40.59<br>122.65<br>1.37<br>31.00<br>Aug<br>90.55<br>1c 1d) | 41.90<br>123.96<br>Average = Σ<br>1.39<br>Average = Σ<br>30.00<br>Sep<br>94.40 | Oct<br>43.31<br>125.37<br>(39)112,<br>1.40<br>(40)112,<br>31.00<br>Oct<br>98.25<br>Σ(44)1<br>128.38 | Nov<br>44.31<br>126.37<br>/12 =<br>1.42<br>/12 =<br>30.00<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Dec<br>45.35<br>127.42<br>125.86<br>1.41<br>1.41<br>31.00<br>2.62<br>96.33<br>Dec<br>96.33<br>Dec<br>105.96<br>105.96        | ] (38)<br>] (39)<br>] (40)<br>] (40)<br>] (42)<br>] (43)<br>] (44) |

| Water storage los        | s calculate  | d for each   | month (55                             | ) x (41)m   |              |             |                 |             |                |                  |         |            |        |
|--------------------------|--------------|--------------|---------------------------------------|-------------|--------------|-------------|-----------------|-------------|----------------|------------------|---------|------------|--------|
|                          | 0.00         | 0.00         | 0.00                                  | 0.00        | 0.00         | 0.00        | 0.00            | 0.00        | 0.00           | 0.00             | 0.00    | 0.00       | (56)   |
| If the vessel conta      | ains dedica  | ted solar s  | torage or de                          | edicated W  | /WHRS (56)   | m x [(47) - | Vs] ÷ (47),     | else (56)   |                |                  |         |            |        |
|                          | 0.00         | 0.00         | 0.00                                  | 0.00        | 0.00         | 0.00        | 0.00            | 0.00        | 0.00           | 0.00             | 0.00    | 0.00       | (57)   |
| Primary circuit los      | ss for each  | month fro    | m Table 3                             |             |              |             |                 |             |                |                  |         |            |        |
|                          | 0.00         | 0.00         | 0.00                                  | 0.00        | 0.00         | 0.00        | 0.00            | 0.00        | 0.00           | 0.00             | 0.00    | 0.00       | (59)   |
| Combi loss for each      | ch month f   | rom Table    | 3a, 3b or 3o                          | C           |              |             |                 |             |                |                  |         |            |        |
|                          | 50.96        | 46.03        | 50.96                                 | 49.32       | 50.96        | 49.32       | 50.96           | 50.96       | 49.32          | 50.96            | 49.32   | 50.96      | (61)   |
| Total heat require       | ed for wate  | er heating o | alculated fo                          | or each mo  | onth 0.85 x  | (45)m + (4  | 6)m + (57)      | m + (59)m + | (61)m          |                  |         |            |        |
|                          | 208.09       | 183.46       | 192.78                                | 172.95      | 169.59       | 151.69      | 145.82          | 159.82      | 159.47         | 179.34           | 189.45  | 203.14     | (62)   |
| Solar DHW input          | calculated   | using Appe   | endix G or A                          | ppendix H   |              |             |                 |             |                |                  |         |            |        |
|                          | 0.00         | 0.00         | 0.00                                  | 0.00        | 0.00         | 0.00        | 0.00            | 0.00        | 0.00           | 0.00             | 0.00    | 0.00       | (63)   |
| Output from wate         | er heater fo | or each mo   | onth (kWh/n                           | nonth) (62  | 2)m + (63)m  | ı           |                 |             |                |                  |         |            |        |
|                          | 208.09       | 183.46       | 192.78                                | 172.95      | 169.59       | 151.69      | 145.82          | 159.82      | 159.47         | 179.34           | 189.45  | 203.14     |        |
|                          |              |              |                                       |             |              |             |                 |             |                | ∑(64)1           | .12 = 2 | 115.60     | (64)   |
| Heat gains from w        | vater heati  | ng (kWh/n    | nonth) 0.25                           | 5 × [0.85 × | (45)m + (61  | )m] + 0.8 × | : [(46)m + (    | 57)m + (59) | m]             |                  |         |            |        |
|                          | 64.99        | 57.20        | 59.89                                 | 53.44       | 52.19        | 46.37       | 44.28           | 48.93       | 48.96          | 55.43            | 58.92   | 63.34      | (65)   |
| 5. Internal gains        |              |              |                                       |             |              |             |                 |             | /              |                  |         |            |        |
| 5. Internal gains        | Jan          | Feb          | Mar                                   | Apr         | May          | Jun         | Jul             | Aug         | Sep            | Oct              | Nov     | Dec        |        |
| Metabolic gains (        |              | 100          | wiai                                  | Αþi         | ividy        | Jun         | 501             | Aug         | Sch            | 000              | NOV     | Det        |        |
| The case is gains (      | 130.79       | 130.79       | 130.79                                | 130.79      | 130.79       | 130.79      | 130.79          | 130.79      | 130.79         | 130.79           | 130.79  | 130.79     | (66)   |
| L<br>Lighting gains (cal |              |              |                                       |             |              |             | 130.75          | 130.75      | 150.75         | 150.75           | 150.75  | 150.75     | _ (00) |
|                          | 28.39        | 25.22        | 20.51                                 | 15.53       | 11.61        | 9.80        | 10.59           | 13.76       | 18.47          | 23.45            | 27.37   | 29.18      | (67)   |
| Appliance gains (c       |              |              | I I I I I I I I I I I I I I I I I I I |             |              |             | 10.55           | 15.70       | 10.47          | 23.43            | 27.57   | 25.10      |        |
| Г. тррициона (ч          | 237.77       | 240.23       | 234.02                                | 220.78      | 204.07       | 188.37      | 177.88          | 175.41      | 181.63         | 194.86           | 211.57  | 227.27     | (68)   |
| L<br>Cooking gains (cal  |              |              |                                       |             |              |             | 177.00          | 175.11      | 101.05         | 13 1.00          | 211.57  |            |        |
| рон (л.                  | 36.08        | 36.08        | 36.08                                 | 36.08       | 36.08        | 36.08       | 36.08           | 36.08       | 36.08          | 36.08            | 36.08   | 36.08      | (69)   |
| ∟<br>Pump and fan gai    |              |              |                                       |             |              |             |                 | 1           |                |                  |         |            | _ ( /  |
| · · ·                    | 3.00         | 3.00         | 3.00                                  | 3.00        | 3.00         | 3.00        | 3.00            | 3.00        | 3.00           | 3.00             | 3.00    | 3.00       | (70)   |
| Losses e.g. evapor       |              |              |                                       |             |              |             |                 |             |                |                  |         |            |        |
| <br>Г                    | -104.64      | -104.64      | -104.64                               | -104.64     | -104.64      | -104.64     | -104.64         | -104.64     | -104.64        | -104.64          | -104.64 | -104.64    | (71)   |
| Water heating gai        | ins (Table ! | 5)           |                                       |             |              |             |                 | 1           |                |                  |         |            |        |
| Γ                        | 87.35        | 85.12        | 80.50                                 | 74.22       | 70.14        | 64.40       | 59.52           | 65.77       | 67.99          | 74.50            | 81.84   | 85.13      | (72)   |
| Total internal gair      | ns (66)m +   | (67)m + (6   | 8)m + (69)r                           | n + (70)m · | + (71)m + (7 | 72)m        |                 |             |                |                  | 1       |            |        |
| Γ                        | 418.74       | 415.81       | 400.26                                | 375.76      | 351.06       | 327.80      | 313.22          | 320.18      | 333.33         | 358.05           | 386.02  | 406.83     | (73)   |
|                          | •            |              | · · · ·                               |             |              |             |                 | •           |                |                  | ,       |            |        |
| 6. Solar gains           |              |              |                                       | -           |              |             |                 |             |                |                  |         |            |        |
|                          |              |              | Access fa<br>Table                    |             | Area<br>m²   |             | ar flux<br>V/m² | sneci       | g<br>ific data | FF<br>specific c | lata    | Gains<br>W |        |
|                          |              |              | Tuble                                 | 04          |              | •           | ,               | •           | able 6b        | or Table         |         | ••         |        |
| West                     |              |              | 0.77                                  | 7 x         | 12.03        | x 1         | 9.64 x          | 0.9 x 0     | ).72 x         | 0.70             | =       | 82.52      | (80)   |
| East                     |              |              | 0.77                                  | 7 x         | 0.54         | x 1         | 9.64 x          | 0.9 x 0     | ).72 x         | 0.70             | =       | 3.70       | (76)   |
| Solar gains in wat       | ts ∑(74)m    | (82)m        |                                       |             |              |             |                 |             |                |                  |         |            |        |
| Γ                        | 86.23        | 168.68       | 277.79                                | 405.14      | 496.52       | 508.27      | 483.90          | 415.66      | 323.08         | 200.15           | 107.52  | 70.91      | (83)   |
| Total gains - inter      | nal and so   | lar (73)m +  | (83)m                                 |             |              |             |                 |             |                |                  |         |            |        |
| Γ                        | 504.97       | 584.49       | 678.05                                | 780.91      | 847.57       | 836.08      | 797.12          | 735.84      | 656.41         | 558.20           | 493.54  | 477.74     | (84)   |
| L                        | 1            |              |                                       |             | •            |             |                 | •           |                | •                | •       |            | _      |

7. Mean internal temperature (heating season)

| Temperature du    | ring heating   | g periods in  | the living a | rea from T   | able 9, Th1   | (°C)        |        |        |                                         |              |         | 21.00   | (85)  |
|-------------------|----------------|---------------|--------------|--------------|---------------|-------------|--------|--------|-----------------------------------------|--------------|---------|---------|-------|
|                   | Jan            | Feb           | Mar          | Apr          | May           | Jun         | Jul    | Aug    | Sep                                     | Oct          | Nov     | Dec     |       |
| Utilisation facto | r for gains fo | or living are | a n1,m (se   | e Table 9a)  |               |             |        |        |                                         |              |         |         |       |
|                   | 1.00           | 1.00          | 1.00         | 1.00         | 0.97          | 0.85        | 0.66   | 0.74   | 0.96                                    | 1.00         | 1.00    | 1.00    | (86)  |
| Mean internal to  | emp of living  | g area T1 (s  | teps 3 to 7  | in Table 9c  | )             |             |        |        |                                         |              |         |         |       |
|                   | 19.97          | 20.07         | 20.26        | 20.53        | 20.78         | 20.95       | 20.99  | 20.99  | 20.86                                   | 20.53        | 20.21   | 19.96   | (87)  |
| Temperature du    |                |               | the rest of  | dwelling fr  |               |             |        |        |                                         |              |         |         |       |
|                   | 19.72          | 19.73         | 19.73        | 19.76        | 19.76         | 19.78       | 19.78  | 19.78  | 19.77                                   | 19.76        | 19.75   | 19.74   | (88)  |
| Utilisation facto |                | I             |              |              | 15.70         | 15.70       | 15.70  | 15.70  | 15.77                                   | 15.70        | 15.75   | 15.74   | (00)  |
| otilisation facto | -              |               |              |              | 0.04          | 0.70        | 0.40   | 0.50   | 0.00                                    | 1.00         | 1.00    | 1.00    | (00)  |
|                   | 1.00           | 1.00          | 1.00         | 0.99         | 0.94          | 0.73        | 0.49   | 0.56   | 0.90                                    | 1.00         | 1.00    | 1.00    | (89)  |
| Mean internal to  |                |               |              |              | -             |             |        |        |                                         |              |         |         |       |
|                   | 18.79          | 18.90         | 19.09        | 19.38        | 19.62         | 19.76       | 19.78  | 19.78  | 19.70                                   | 19.39        | 19.06   | 18.80   | (90)  |
| Living area fract | ion            |               |              |              |               |             |        |        | Liv                                     | ving area ÷  | (4) =   | 0.45    | (91)  |
| Mean internal to  | emperature     | for the who   | ole dwellin  | g fLA x T1 + | (1 - fLA) x T | 2           |        |        |                                         |              |         |         |       |
|                   | 19.32          | 19.43         | 19.62        | 19.91        | 20.15         | 20.30       | 20.33  | 20.33  | 20.23                                   | 19.91        | 19.58   | 19.33   | (92)  |
| Apply adjustme    | nt to the me   | an internal   | temperatu    | ire from Ta  | ble 4e whe    | re appropri | iate   |        |                                         |              |         |         |       |
|                   | 19.32          | 19.43         | 19.62        | 19.91        | 20.15         | 20.30       | 20.33  | 20.33  | 20.23                                   | 19.91        | 19.58   | 19.33   | (93)  |
|                   |                |               |              |              |               |             |        |        |                                         |              | ×       |         |       |
| 8. Space heating  | ng requirem    | ent           |              |              |               |             |        |        |                                         |              |         |         |       |
|                   | Jan            | Feb           | Mar          | Apr          | May           | Jun         | Jul    | Aug    | Sep                                     | Oct          | Nov     | Dec     |       |
| Utilisation facto | r for gains, r | յՠ            |              |              |               |             |        |        |                                         |              |         |         |       |
|                   | 1.00           | 1.00          | 1.00         | 0.99         | 0.95          | 0.79        | 0.57   | 0.64   | 0.93                                    | 1.00         | 1.00    | 1.00    | (94)  |
| Useful gains, ηπ  | nGm, W (94     | )m x (84)m    |              |              |               |             |        |        |                                         |              |         |         |       |
|                   | 504.93         | 584.34        | 677.22       | 774.35       | 804.10        | 658.38      | 455.01 | 473.15 | 609.85                                  | 556.45       | 493.42  | 477.71  | (95)  |
| Monthly average   | e external te  | emperature    | from Table   | e U1         |               |             |        |        |                                         |              |         |         |       |
|                   | 4.30           | 4.90          | 6.50         | 8.90         | 11.70         | 14.60       | 16.60  | 16.40  | 14.10                                   | 10.60        | 7.10    | 4.20    | (96)  |
| Heat loss rate fo | or mean inte   | rnal tempe    | rature, Lm,  | W [(39)m     | x [(93)m - (  | (96)m]      |        |        |                                         |              |         | ,       |       |
|                   | 1947.76        | 1875.31       | 1686.42      | 1385.28      | 1059.45       | 701.85      | 459.05 | 481.78 | 759.54                                  | 1166.97      | 1577.33 | 1927.63 | (97)  |
| Space heating re  |                |               |              |              |               |             | 100100 | 102170 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1100107      | 1077100 | 101/100 | (01)  |
| Space nearing re  | 1073.46        | 867.53        | 750.85       | 439.87       | 189.98        | 0.00        | 0.00   | 0.00   | 0.00                                    | 454.23       | 780.41  | 1078.74 |       |
|                   | 1075.40        | 807.55        | 750.85       | 459.67       | 169.96        | 0.00        | 0.00   | 0.00   |                                         |              |         |         | (00)  |
|                   |                |               |              |              |               |             |        |        | ∑(98                                    | 3)15, 10     |         | 635.06  | (98)  |
| Space heating re  | equirement     | kWh/m²/ye     | ear          |              |               |             |        |        |                                         | (98) -       | ÷ (4)   | 63.11   | (99)  |
| 9a. Energy req    | uirements -    | individual    | heating sys  | tems inclu   | ding micro    | -CHP        |        |        |                                         |              |         |         |       |
| Space heating     |                |               |              |              |               |             |        |        |                                         |              |         |         |       |
| Fraction of space | e heat from    | secondary     | /sunnlemer   | ntary system | n (table 11   | )           |        |        |                                         |              |         | 0.00    | (201) |
| Fraction of space |                |               |              | itary syster |               | 1           |        |        |                                         | 1 - (20      | )1) _ [ | 1.00    |       |
|                   |                |               |              |              |               |             |        |        |                                         | 1 - (20      |         |         | (202) |
| Fraction of spac  |                | -             |              |              |               |             |        |        | (2.2                                    |              |         | 0.00    | (202) |
| Fraction of total |                |               |              |              |               |             |        |        | (20                                     | 2) x [1- (20 |         | 1.00    | (204) |
| Fraction of total |                |               | system 2     |              |               |             |        |        |                                         | (202) x (20  | )3) =   | 0.00    | (205) |
| Efficiency of ma  | in system 1    | (%)           |              |              |               |             |        |        |                                         |              |         | 88.80   | (206) |
|                   | Jan            | Feb           | Mar          | Apr          | May           | Jun         | Jul    | Aug    | Sep                                     | Oct          | Nov     | Dec     |       |
| Space heating fu  | iel (main sy   | stem 1), kW   | /h/month     |              |               |             |        |        |                                         |              |         |         |       |
|                   | 1208.86        | 976.95        | 845.55       | 495.35       | 213.94        | 0.00        | 0.00   | 0.00   | 0.00                                    | 511.52       | 878.84  | 1214.79 |       |
|                   |                |               |              |              |               |             |        |        | ∑(211                                   | .)15, 10     | 12 = 6  | 345.79  | (211) |
| Water heating     |                |               |              |              |               |             |        |        |                                         |              |         |         |       |
| Efficiency of wat | ter heater     |               |              |              |               |             |        |        |                                         |              |         |         |       |
|                   | 87.14          | 87.02         | 86.73        | 85.96        | 84.16         | 79.50       | 79.50  | 79.50  | 79.50                                   | 85.95        | 86.82   | 87.18   | (217) |
|                   |                |               |              |              |               |             |        |        |                                         |              |         |         |       |

| Water heating fuel, kWh/month                                               |                    |       |                       |                    |                            |         |
|-----------------------------------------------------------------------------|--------------------|-------|-----------------------|--------------------|----------------------------|---------|
| 238.79 210.82 222.28 201.20 20                                              | 1.52 190.80 18     | 83.42 | 201.03 200.59         | 208.64 218         | 3.22 233.00                | ]       |
|                                                                             |                    |       | Σ                     | <u>(219a)112 =</u> | 2510.32                    | (219)   |
| Annual totals                                                               |                    |       |                       |                    |                            | -       |
| Space heating fuel - main system 1                                          |                    |       |                       |                    | 6345.79                    |         |
| Water heating fuel                                                          |                    |       |                       |                    | 2510.32                    |         |
| Electricity for pumps, fans and electric keep-hot (Table 4f)                |                    |       |                       |                    |                            |         |
| central heating pump or water pump within warm air heating                  | unit               |       | 30.00                 |                    |                            | (230c)  |
| boiler flue fan                                                             |                    |       | 45.00                 |                    |                            | (230e)  |
| Total electricity for the above, kWh/year                                   |                    |       |                       |                    | 75.00                      | (231)   |
| Electricity for lighting (Appendix L)                                       |                    |       |                       |                    | 501.40                     | (232)   |
| Total delivered energy for all uses                                         |                    | (2    | 11)(221) + (231) + (2 | 232)(237b) =       | 9432.51                    | (238)   |
| 10a. Fuel costs - individual heating systems including micro-CH             | Р                  |       |                       |                    |                            |         |
|                                                                             | Fuel<br>kWh/year   |       | Fuel price            |                    | Fuel<br>cost £/year        |         |
| Space heating - main system 1                                               | 6345.79            | x     | 3.48                  | x 0.01 =           | 220.83                     | (240)   |
| Water heating                                                               | 2510.32            | x     | 3.48                  | x 0.01 =           | 87.36                      | (240)   |
| Pumps and fans                                                              | 75.00              | x     | 13.19                 | x 0.01 =           | 9.89                       | (249)   |
| Electricity for lighting                                                    | 501.40             | x     | 13.19                 | x 0.01 =           | 66.13                      | (250)   |
| Additional standing charges                                                 | 501.40             | ^     | 15.15                 | x 0.01 -           | 120.00                     | (251)   |
| Total energy cost                                                           |                    |       | (240) (242) +         | (245)(254) =       | 504.22                     | (255)   |
|                                                                             |                    |       | (240)(242)            | (243)(234) -       | 504.22                     | _ (233) |
| 11a. SAP rating - individual heating systems including micro-CH             | IP                 |       |                       |                    |                            |         |
| Energy cost deflator (Table 12)                                             |                    |       |                       |                    | 0.42                       | (256)   |
| Energy cost factor (ECF)                                                    |                    |       |                       |                    | 1.58                       | (257)   |
| SAP value                                                                   |                    |       |                       |                    | 78.00                      | ]       |
| SAP rating (section 13)                                                     |                    |       |                       |                    | 78                         | (258)   |
| SAP band                                                                    |                    |       |                       |                    | С                          | ]       |
| 12a. CO <sub>2</sub> emissions - individual heating systems including micro | o-CHP              |       |                       |                    |                            |         |
|                                                                             | Energy             |       | Emission factor       |                    | Emissions                  |         |
|                                                                             | kWh/year           |       | kg CO₂/kWh            |                    | kg CO₂/year                | -       |
| Space heating - main system 1                                               | 6345.79            | х     | 0.22                  | =                  | 1370.69                    | (261)   |
| Water heating                                                               | 2510.32            | х     | 0.22                  | =                  | 542.23                     | (264)   |
| Space and water heating                                                     |                    |       | (261) + (262) +       | (263) + (264) =    | 1912.92                    | (265)   |
| Pumps and fans                                                              | 75.00              | х     | 0.52                  | =                  | 38.93                      | (267)   |
| Electricity for lighting                                                    | 501.40             | х     | 0.52                  | =                  | 260.23                     | (268)   |
| Total CO <sub>2</sub> , kg/year                                             |                    |       |                       | (265)(271) =       | 2212.07                    | (272)   |
| Dwelling CO <sub>2</sub> emission rate                                      |                    |       |                       | (272) ÷ (4) =      | 24.77                      | (273)   |
| El value                                                                    |                    |       |                       |                    | 77.93                      | ]       |
| El rating (section 14)                                                      |                    |       |                       |                    | 78                         | (274)   |
| El band                                                                     |                    |       |                       |                    | C                          |         |
| 13a. Primary energy - individual heating systems including micr             | ro-CHP             |       |                       |                    |                            |         |
|                                                                             | Energy<br>kWh/year |       | Primary factor        |                    | Primary Energy<br>kWh/year | ,       |
| Space heating - main system 1                                               | 6345.79            | x     | 1.22                  | =                  | 7741.87                    | (261)   |

3062.59

10804.45

(264)

(265)

х

1.22

=

(261) + (262) + (263) + (264) =

2510.32

| Pumps and fans                           | 75.00  | ] x | 3.07 | ] = | 230.25   | (267) |
|------------------------------------------|--------|-----|------|-----|----------|-------|
| Electricity for lighting                 | 501.40 | ] x | 3.07 | ] = | 1539.30  | (268) |
| Primary energy kWh/year                  |        |     |      |     | 12574.00 | (272) |
| Dwelling primary energy rate kWh/m2/year |        |     |      |     | 140.82   | (273) |



This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

| Assessor name                                                                                                                                                                                                             | Mrs Nicola Battist                                                                                                                    | а                                                     |                   |               | Ass                 | essor numb                                   | er                                                      | 3998                        |                                                         |                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------|---------------|---------------------|----------------------------------------------|---------------------------------------------------------|-----------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Client                                                                                                                                                                                                                    | The Halebourne G                                                                                                                      | iroup                                                 |                   |               | Las                 | t modified                                   |                                                         | 26/08                       | /2014                                                   |                                                                                                 |
| Address                                                                                                                                                                                                                   | 6 The Old School I                                                                                                                    | Park Lane, Richmon                                    | d, London, TW9    |               |                     |                                              |                                                         |                             |                                                         |                                                                                                 |
|                                                                                                                                                                                                                           |                                                                                                                                       |                                                       |                   |               |                     |                                              |                                                         |                             |                                                         |                                                                                                 |
| 1. Overall dwelling dimen                                                                                                                                                                                                 | isions                                                                                                                                |                                                       |                   |               |                     | _                                            |                                                         |                             |                                                         |                                                                                                 |
|                                                                                                                                                                                                                           |                                                                                                                                       |                                                       | Area (m²)         |               |                     | age storey<br>ght (m)                        |                                                         | Vo                          | lume (m³)                                               |                                                                                                 |
| Lowest occupied                                                                                                                                                                                                           |                                                                                                                                       | [                                                     | 39.96             | (1a) x        |                     | 2.31                                         | (2a) =                                                  |                             | 92.31                                                   | (3a)                                                                                            |
| +1                                                                                                                                                                                                                        |                                                                                                                                       | [                                                     | 36.77             | (1b) x        |                     | 2.11                                         | (2b) =                                                  |                             | 77.58                                                   | (3b)                                                                                            |
| Total floor area                                                                                                                                                                                                          | (1a) + (1b) + (                                                                                                                       | (1c) + (1d)(1n) = [                                   | 76.73             | (4)           |                     |                                              |                                                         |                             |                                                         |                                                                                                 |
| Dwelling volume                                                                                                                                                                                                           |                                                                                                                                       |                                                       |                   |               | (3a) ·              | + (3b) + (3c)                                | + (3d)(3r                                               | n) =                        | 169.89                                                  | (5)                                                                                             |
| 2. Ventilation rate                                                                                                                                                                                                       |                                                                                                                                       |                                                       |                   |               |                     |                                              |                                                         |                             |                                                         |                                                                                                 |
|                                                                                                                                                                                                                           |                                                                                                                                       |                                                       |                   |               |                     |                                              |                                                         | m                           | ³ per hour                                              |                                                                                                 |
| Number of chimneys                                                                                                                                                                                                        |                                                                                                                                       |                                                       |                   |               |                     | 0                                            | x 40 =                                                  |                             | 0                                                       | (6a)                                                                                            |
| Number of open flues                                                                                                                                                                                                      |                                                                                                                                       |                                                       |                   |               |                     | 0                                            | x 20 =                                                  |                             | 0                                                       | (6b)                                                                                            |
| Number of intermittent fai                                                                                                                                                                                                | ns                                                                                                                                    |                                                       |                   |               |                     | 4                                            | x 10 =                                                  |                             | 40                                                      | (7a)                                                                                            |
| Number of passive vents                                                                                                                                                                                                   |                                                                                                                                       |                                                       |                   |               |                     | 0                                            | x 10 =                                                  |                             | 0                                                       | (7b)                                                                                            |
| Number of flueless gas fire                                                                                                                                                                                               | !S                                                                                                                                    |                                                       |                   |               |                     | 0                                            | x 40 =                                                  |                             | 0                                                       | (7c)                                                                                            |
|                                                                                                                                                                                                                           |                                                                                                                                       |                                                       |                   |               |                     |                                              |                                                         | Air o                       | changes per<br>hour                                     | -                                                                                               |
| Infiltration due to chimney                                                                                                                                                                                               | s, flues, fans, PSVs                                                                                                                  |                                                       | (6a) + (6b) + (7a | ) + (7b) + (7 | 7c) =               | 40                                           | ÷ (5) =                                                 |                             | 0.24                                                    | (8)                                                                                             |
| If a pressurisation test has                                                                                                                                                                                              | been carried out or is                                                                                                                | s intended, proceed                                   | to (17), otherwi  | se continue   | e from (9) to       | o (16)                                       |                                                         |                             |                                                         |                                                                                                 |
| Number of storeys in the d                                                                                                                                                                                                | welling                                                                                                                               |                                                       |                   |               |                     | 2                                            |                                                         |                             |                                                         | (9)                                                                                             |
| Additional infiltration                                                                                                                                                                                                   |                                                                                                                                       |                                                       |                   |               |                     |                                              |                                                         |                             | 0.10                                                    | (10)                                                                                            |
| Structural infiltration: 0                                                                                                                                                                                                | .25 for steel or timbe                                                                                                                | er frame or 0.35 for                                  | masonry constru   | uction        |                     |                                              |                                                         |                             | 0.35                                                    | (11)                                                                                            |
| If suspended wooden g                                                                                                                                                                                                     | round floor, enter 0.2                                                                                                                | 2 (unsealed) or 0.1 (                                 | sealed), else ent | ter 0         |                     |                                              |                                                         |                             | 0.00                                                    | (12)                                                                                            |
| If no draught lobby, ent                                                                                                                                                                                                  | er 0.05, else enter 0                                                                                                                 |                                                       |                   |               |                     |                                              |                                                         |                             |                                                         | ] (12)                                                                                          |
|                                                                                                                                                                                                                           |                                                                                                                                       |                                                       |                   |               |                     |                                              |                                                         |                             | 0.05                                                    | (12)                                                                                            |
| Percentage of windows an                                                                                                                                                                                                  | d doors draught proc                                                                                                                  | ofed                                                  |                   |               | 1                   | 00.00                                        |                                                         |                             | 0.05                                                    | _ · ·                                                                                           |
| Percentage of windows an Window infiltration                                                                                                                                                                              | d doors draught proc                                                                                                                  | ofed                                                  |                   |               | 1                   | 00.00                                        | x (14) ÷ 100                                            | D] =                        | 0.05                                                    | ] (13)                                                                                          |
| -                                                                                                                                                                                                                         | d doors draught proc                                                                                                                  | ofed                                                  |                   |               |                     |                                              |                                                         |                             |                                                         | ] (13)<br>(14)                                                                                  |
| Window infiltration                                                                                                                                                                                                       |                                                                                                                                       |                                                       | erwise (18) = (16 | )             |                     | 0.25 - [0.2                                  |                                                         |                             | 0.05                                                    | ] (13)<br>(14)<br>] (15)                                                                        |
| Window infiltration                                                                                                                                                                                                       | y value, then (18) = [(                                                                                                               | 17) ÷ 20] + (8), othe                                 | erwise (18) = (16 | )             |                     | 0.25 - [0.2                                  |                                                         |                             | 0.05<br>0.79                                            | ] (13)<br>(14)<br>] (15)<br>] (16)                                                              |
| Window infiltration<br>Infiltration rate<br>If based on air permeabilit                                                                                                                                                   | y value, then (18) = [(                                                                                                               | 17) ÷ 20] + (8), othe                                 | erwise (18) = (16 | )             |                     | 0.25 - [0.2<br>- (11) + (12)                 |                                                         | 5) = [                      | 0.05<br>0.79<br>0.79                                    | ] (13)<br>(14)<br>] (15)<br>] (16)<br>] (18)                                                    |
| Window infiltration<br>Infiltration rate<br>If based on air permeabilit<br>Number of sides on which                                                                                                                       | y value, then (18) = [(<br>the dwelling is shelte                                                                                     | 17) ÷ 20] + (8), othe                                 | erwise (18) = (16 | )             |                     | 0.25 - [0.2<br>- (11) + (12)                 | + (13) + (15                                            | 5) = [<br>[]<br>]] = [      | 0.05<br>0.79<br>0.79<br>3                               | (13)         (14)         (15)         (16)         (18)         (19)                           |
| Window infiltration<br>Infiltration rate<br>If based on air permeabilit<br>Number of sides on which<br>Shelter factor                                                                                                     | y value, then (18) = [(<br>the dwelling is shelte<br>ing shelter factor                                                               | 17) ÷ 20] + (8), othe<br>ered                         | erwise (18) = (16 | )             |                     | 0.25 - [0.2<br>- (11) + (12)                 | + (13) + (15<br>0.075 x (19                             | 5) = [<br>[]<br>]] = [      | 0.05<br>0.79<br>0.79<br>3<br>0.78                       | (13)         (14)         (15)         (16)         (18)         (19)         (20)              |
| Window infiltration<br>Infiltration rate<br>If based on air permeabilit<br>Number of sides on which<br>Shelter factor<br>Infiltration rate incorporat                                                                     | y value, then (18) = [(<br>the dwelling is shelte<br>ing shelter factor                                                               | 17) ÷ 20] + (8), othe<br>ered                         |                   | )<br>Jul      |                     | 0.25 - [0.2<br>- (11) + (12)                 | + (13) + (15<br>0.075 x (19                             | 5) = [<br>[]<br>]] = [      | 0.05<br>0.79<br>0.79<br>3<br>0.78                       | (13)         (14)         (15)         (16)         (18)         (19)         (20)              |
| Window infiltration<br>Infiltration rate<br>If based on air permeabilit<br>Number of sides on which<br>Shelter factor<br>Infiltration rate incorporat<br>Infiltration rate modified for                                   | y value, then (18) = [(<br>the dwelling is shelte<br>ing shelter factor<br>or monthly wind spee<br>Feb Mar                            | 17) ÷ 20] + (8), othe<br>ered                         |                   |               | (8) + (10) +        | 0.25 - [0.2<br>- (11) + (12)<br>1 - [        | + (13) + (15<br>0.075 x (19<br>(18) x (20               | 5) = [<br>                  | 0.05<br>0.79<br>0.79<br>3<br>0.78<br>0.61               | (13)         (14)         (15)         (16)         (18)         (19)         (20)              |
| Window infiltration<br>Infiltration rate<br>If based on air permeabilit<br>Number of sides on which<br>Shelter factor<br>Infiltration rate incorporat<br>Infiltration rate modified for<br>Jan                            | y value, then (18) = [(<br>the dwelling is shelte<br>ing shelter factor<br>or monthly wind spee<br>Feb Mar                            | 17) ÷ 20] + (8), othe<br>ered                         | y Jun             |               | (8) + (10) +        | 0.25 - [0.2<br>- (11) + (12)<br>1 - [        | + (13) + (15<br>0.075 x (19<br>(18) x (20               | 5) = [<br>                  | 0.05<br>0.79<br>0.79<br>3<br>0.78<br>0.61               | (13)         (14)         (15)         (16)         (18)         (19)         (20)              |
| Window infiltration<br>Infiltration rate<br>If based on air permeabilit<br>Number of sides on which<br>Shelter factor<br>Infiltration rate incorporat<br>Infiltration rate modified fo<br>Jan<br>Monthly average wind spe | y value, then (18) = [(<br>the dwelling is shelte<br>ing shelter factor<br>or monthly wind spee<br><b>Feb Mar</b><br>ed from Table U2 | 17) ÷ 20] + (8), othe<br>ered<br>ed:<br><b>Apr Ma</b> | y Jun             | lut           | (8) + (10) +<br>Aug | 0.25 - [0.2<br>- (11) + (12)<br>1 - [<br>Sep | + (13) + (15<br>0.075 x (19<br>(18) x (20<br><b>Oct</b> | 5) =<br>]] =<br>)] =<br>Nov | 0.05<br>0.79<br>0.79<br>3<br>0.78<br>0.61<br><b>Dec</b> | (13)         (14)         (15)         (16)         (18)         (19)         (20)         (21) |



|                                                                                                                                                                                                                              | 0.78                                                                                                                                                         | 0.76                                                                                                                                                                          | 0.75                                                                                                                               | 0.67                                                                                                     | 0.65                                                                                           | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.58                                                                | 0.56                                                              | 0.61                                                                           | 0.65                                                                              | 0.68                                                                                                                  | 0.72                                                                                                                                          | (22b)                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Calculate effective ai                                                                                                                                                                                                       | ir chang                                                                                                                                                     | e rate for t                                                                                                                                                                  | he applica                                                                                                                         | ble case:                                                                                                |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |                                                                   |                                                                                |                                                                                   |                                                                                                                       |                                                                                                                                               |                                                                    |
| If mechanical ven                                                                                                                                                                                                            | tilation:                                                                                                                                                    | air change                                                                                                                                                                    | e rate thro                                                                                                                        | ugh system                                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |                                                                   |                                                                                |                                                                                   |                                                                                                                       | N/A                                                                                                                                           | (23a)                                                              |
| If balanced with h                                                                                                                                                                                                           | neat reco                                                                                                                                                    | overy: effic                                                                                                                                                                  | ciency in %                                                                                                                        | allowing fo                                                                                              | or in-use fac                                                                                  | tor from Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | able 4h                                                             |                                                                   |                                                                                |                                                                                   |                                                                                                                       | N/A                                                                                                                                           | (23c)                                                              |
| d) natural ventila                                                                                                                                                                                                           | tion or v                                                                                                                                                    | whole hous                                                                                                                                                                    | se positive                                                                                                                        | input venti                                                                                              | lation from                                                                                    | loft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                                                   |                                                                                |                                                                                   |                                                                                                                       |                                                                                                                                               |                                                                    |
|                                                                                                                                                                                                                              | 0.80                                                                                                                                                         | 0.79                                                                                                                                                                          | 0.78                                                                                                                               | 0.72                                                                                                     | 0.71                                                                                           | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.67                                                                | 0.66                                                              | 0.69                                                                           | 0.71                                                                              | 0.73                                                                                                                  | 0.76                                                                                                                                          | (24d)                                                              |
| Effective air change                                                                                                                                                                                                         | rate - en                                                                                                                                                    | nter (24a) c                                                                                                                                                                  | or (24b) or                                                                                                                        | (24c) or (24                                                                                             | ld) in (25)                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |                                                                   |                                                                                |                                                                                   |                                                                                                                       |                                                                                                                                               |                                                                    |
| (                                                                                                                                                                                                                            | 0.80                                                                                                                                                         | 0.79                                                                                                                                                                          | 0.78                                                                                                                               | 0.72                                                                                                     | 0.71                                                                                           | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.67                                                                | 0.66                                                              | 0.69                                                                           | 0.71                                                                              | 0.73                                                                                                                  | 0.76                                                                                                                                          | (25)                                                               |
|                                                                                                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                                               |                                                                                                                                    |                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |                                                                   |                                                                                |                                                                                   |                                                                                                                       |                                                                                                                                               |                                                                    |
| 3. Heat losses and l                                                                                                                                                                                                         | heat los                                                                                                                                                     | s paramete                                                                                                                                                                    |                                                                                                                                    | -                                                                                                        |                                                                                                | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                   |                                                                                |                                                                                   |                                                                                                                       | -                                                                                                                                             |                                                                    |
| Element                                                                                                                                                                                                                      |                                                                                                                                                              |                                                                                                                                                                               |                                                                                                                                    | Gross<br>rea, m <sup>2</sup>                                                                             | Opening<br>m <sup>2</sup>                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | area<br>m²                                                          | U-value<br>W/m <sup>2</sup> K                                     | AxUW                                                                           |                                                                                   | /alue,<br>/m².K                                                                                                       | Ахк,<br>kJ/K                                                                                                                                  |                                                                    |
| Door                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                               |                                                                                                                                    |                                                                                                          |                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 98 x                                                                | 1.80                                                              | = 3.56                                                                         |                                                                                   |                                                                                                                       |                                                                                                                                               | (26)                                                               |
| Window                                                                                                                                                                                                                       |                                                                                                                                                              |                                                                                                                                                                               |                                                                                                                                    |                                                                                                          |                                                                                                | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     | 1.68                                                              | = 28.95                                                                        |                                                                                   |                                                                                                                       |                                                                                                                                               | (27)                                                               |
| Roof window                                                                                                                                                                                                                  |                                                                                                                                                              |                                                                                                                                                                               |                                                                                                                                    |                                                                                                          |                                                                                                | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     | 1.33                                                              | = 1.10                                                                         |                                                                                   |                                                                                                                       |                                                                                                                                               | (27a)                                                              |
| Ground floor                                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                               |                                                                                                                                    |                                                                                                          |                                                                                                | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     | 0.22                                                              | = 8.79                                                                         | =                                                                                 |                                                                                                                       |                                                                                                                                               | (28a)                                                              |
| External wall                                                                                                                                                                                                                |                                                                                                                                                              |                                                                                                                                                                               |                                                                                                                                    |                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .88 x                                                               | 0.30                                                              | = 14.36                                                                        |                                                                                   |                                                                                                                       |                                                                                                                                               | (29a)                                                              |
| Party wall                                                                                                                                                                                                                   |                                                                                                                                                              |                                                                                                                                                                               |                                                                                                                                    |                                                                                                          |                                                                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .71 x                                                               | 0.00                                                              | = 0.00                                                                         | Ę                                                                                 |                                                                                                                       |                                                                                                                                               | (32)                                                               |
| Roof                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                               |                                                                                                                                    |                                                                                                          |                                                                                                | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .04 x                                                               | 0.16                                                              | = 6.09                                                                         |                                                                                   |                                                                                                                       |                                                                                                                                               | (30)                                                               |
| Roof                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                               |                                                                                                                                    |                                                                                                          |                                                                                                | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .01 x                                                               | 0.18                                                              | = 4.32                                                                         |                                                                                   |                                                                                                                       |                                                                                                                                               | (30)                                                               |
| Total area of externa                                                                                                                                                                                                        | l eleme                                                                                                                                                      | nts ∑A, m²                                                                                                                                                                    |                                                                                                                                    |                                                                                                          |                                                                                                | 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.94                                                                |                                                                   |                                                                                |                                                                                   |                                                                                                                       |                                                                                                                                               | (31)                                                               |
| Fabric heat loss, W/k                                                                                                                                                                                                        | < = Σ(A ×                                                                                                                                                    | < U)                                                                                                                                                                          |                                                                                                                                    |                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |                                                                   | (26                                                                            | 5)(30) + (                                                                        | 32) =                                                                                                                 | 67.18                                                                                                                                         | (33)                                                               |
| Heat capacity Cm = 2                                                                                                                                                                                                         | <u>(</u> Ахк)                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                    |                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     | (28)                                                              | (30) + (32) -                                                                  | + (32a)(3                                                                         | 2e) =                                                                                                                 | N/A                                                                                                                                           | (34)                                                               |
| Thermal mass param                                                                                                                                                                                                           | neter (TN                                                                                                                                                    | MP) in kJ/m                                                                                                                                                                   | ۱²K                                                                                                                                |                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |                                                                   |                                                                                |                                                                                   |                                                                                                                       | 450.00                                                                                                                                        | (35)                                                               |
| Thermal bridges: ∑(L                                                                                                                                                                                                         | xΨ) cal                                                                                                                                                      | lculated us                                                                                                                                                                   | ing Appen                                                                                                                          | dix K                                                                                                    |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |                                                                   |                                                                                |                                                                                   |                                                                                                                       | 25.49                                                                                                                                         | (36)                                                               |
| Total fabric heat loss                                                                                                                                                                                                       |                                                                                                                                                              |                                                                                                                                                                               |                                                                                                                                    |                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |                                                                   |                                                                                | (33) + (                                                                          | 36) =                                                                                                                 | 92.67                                                                                                                                         |                                                                    |
|                                                                                                                                                                                                                              | •                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                                    |                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |                                                                   |                                                                                | (33) · (                                                                          | 50) =                                                                                                                 | 92.07                                                                                                                                         | (37)                                                               |
|                                                                                                                                                                                                                              | Jan                                                                                                                                                          | Feb                                                                                                                                                                           | Mar                                                                                                                                | Apr                                                                                                      | May                                                                                            | Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jul                                                                 | Aug                                                               | Sep                                                                            | Oct                                                                               | Nov                                                                                                                   | Dec                                                                                                                                           | _ (37)                                                             |
| Ventilation heat loss                                                                                                                                                                                                        | Jan                                                                                                                                                          |                                                                                                                                                                               |                                                                                                                                    |                                                                                                          | May                                                                                            | Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jul                                                                 | Aug                                                               | Sep                                                                            |                                                                                   | -                                                                                                                     |                                                                                                                                               | _ (37)                                                             |
| Ventilation heat loss                                                                                                                                                                                                        | Jan                                                                                                                                                          |                                                                                                                                                                               |                                                                                                                                    | 25)m x (5)                                                                                               | <b>May</b><br>40.04                                                                            | Jun<br>37.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jul<br>37.41                                                        | Aug<br>36.92                                                      | Sep<br>38.42                                                                   |                                                                                   | -                                                                                                                     |                                                                                                                                               | _ (37)<br>_ (38)                                                   |
| Ventilation heat loss                                                                                                                                                                                                        | Jan<br>calculat<br>4.92                                                                                                                                      | ted monthl<br>44.26                                                                                                                                                           | ly 0.33 x (2<br>43.62                                                                                                              | 25)m x (5)                                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     | -                                                                 |                                                                                | Oct                                                                               | Nov                                                                                                                   | Dec                                                                                                                                           | _ ` `                                                              |
| Ventilation heat loss 4 Heat transfer coeffic                                                                                                                                                                                | Jan<br>calculat<br>4.92                                                                                                                                      | ted monthl<br>44.26                                                                                                                                                           | ly 0.33 x (2<br>43.62                                                                                                              | 25)m x (5)                                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     | -                                                                 |                                                                                | Oct                                                                               | Nov                                                                                                                   | Dec                                                                                                                                           | _ ` `                                                              |
| Ventilation heat loss 4 Heat transfer coeffic                                                                                                                                                                                | Jan<br>calculat<br>4.92<br>ient, W/                                                                                                                          | ted monthl<br>44.26<br>/K (37)m +                                                                                                                                             | ly 0.33 x (2<br>43.62<br>(38)m                                                                                                     | 25)m x (5)<br>40.60                                                                                      | 40.04                                                                                          | 37.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37.41                                                               | 36.92                                                             | 38.42                                                                          | Oct<br>40.04<br>132.70                                                            | Nov<br>41.18<br>133.85                                                                                                | Dec 42.37                                                                                                                                     | _ ` `                                                              |
| Ventilation heat loss 4 Heat transfer coeffic                                                                                                                                                                                | Jan<br>calculat<br>4.92<br>ient, W/<br>37.59                                                                                                                 | ted monthl<br>44.26<br>/K (37)m +<br>136.93                                                                                                                                   | y 0.33 x (2<br>43.62<br>(38)m<br>136.29                                                                                            | 25)m x (5)<br>40.60                                                                                      | 40.04                                                                                          | 37.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37.41                                                               | 36.92                                                             | 38.42                                                                          | Oct<br>40.04<br>132.70                                                            | Nov<br>41.18<br>133.85                                                                                                | Dec<br>42.37<br>135.04                                                                                                                        | ] (38)                                                             |
| Ventilation heat loss 4 Heat transfer coeffic 1 Heat loss parameter                                                                                                                                                          | Jan<br>calculat<br>4.92<br>ient, W/<br>37.59                                                                                                                 | ted monthl<br>44.26<br>/K (37)m +<br>136.93                                                                                                                                   | y 0.33 x (2<br>43.62<br>(38)m<br>136.29                                                                                            | 25)m x (5)<br>40.60                                                                                      | 40.04                                                                                          | 37.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37.41                                                               | 36.92<br>129.59<br>1.69                                           | 38.42<br>131.09<br>Average = ∑<br>1.71                                         | Oct<br>40.04<br>132.70<br>5(39)112,<br>1.73                                       | Nov<br>41.18<br>133.85<br>/12 =<br>1.74                                                                               | Dec<br>42.37<br>135.04<br>133.27<br>1.76                                                                                                      | ] (38)<br>] (39)                                                   |
| Ventilation heat loss 4 Heat transfer coeffic 1 Heat loss parameter                                                                                                                                                          | Jan<br>calculat<br>4.92<br>ient, W/<br>37.59<br>(HLP), V<br>1.79                                                                                             | ted month<br>44.26<br>/K (37)m +<br>136.93<br>N/m <sup>2</sup> K (39<br>1.78                                                                                                  | ly 0.33 x (2<br>43.62<br>(38)m<br>136.29<br>I)m ÷ (4)                                                                              | 25)m x (5)<br>40.60<br>133.27                                                                            | 40.04                                                                                          | 37.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37.41                                                               | 36.92<br>129.59<br>1.69                                           | 38.42<br>131.09<br>Average = ∑                                                 | Oct<br>40.04<br>132.70<br>5(39)112,<br>1.73                                       | Nov<br>41.18<br>133.85<br>/12 =<br>1.74                                                                               | Dec<br>42.37<br>135.04<br>133.27                                                                                                              | ] (38)                                                             |
| Ventilation heat loss 4 Heat transfer coeffic 1 Heat loss parameter Number of days in m                                                                                                                                      | Jan<br>calculat<br>4.92<br>ient, W/<br>37.59<br>(HLP), V<br>1.79<br>nonth (Ti                                                                                | ted monthi<br>44.26<br>/K (37)m +<br>136.93<br>//m <sup>2</sup> K (39<br>1.78<br>able 1a)                                                                                     | ly 0.33 x (2<br>43.62<br>(38)m<br>136.29<br>I)m ÷ (4)<br>1.78                                                                      | 25)m x (5)<br>40.60<br>133.27<br>1.74                                                                    | 40.04 132.70 1.73                                                                              | 37.41<br>130.07<br>1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37.41<br>130.07<br>1.70                                             | 36.92<br>129.59<br>1.69                                           | 38.42<br>131.09<br>Average = ∑<br>1.71<br>Average = ∑                          | Oct<br>40.04<br>132.70<br>5(39)112,<br>1.73<br>5(40)112,                          | Nov<br>41.18<br>133.85<br>/12 =<br>1.74<br>/12 =                                                                      | Dec<br>42.37<br>135.04<br>133.27<br>1.76<br>1.74                                                                                              | ] (38)<br>] (39)<br>] (40)                                         |
| Ventilation heat loss 4 Heat transfer coeffic 1 Heat loss parameter Number of days in m                                                                                                                                      | Jan<br>calculat<br>4.92<br>ient, W/<br>37.59<br>(HLP), V<br>1.79                                                                                             | ted month<br>44.26<br>/K (37)m +<br>136.93<br>N/m <sup>2</sup> K (39<br>1.78                                                                                                  | ly 0.33 x (2<br>43.62<br>(38)m<br>136.29<br>I)m ÷ (4)                                                                              | 25)m x (5)<br>40.60<br>133.27                                                                            | 40.04                                                                                          | 37.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37.41                                                               | 36.92<br>129.59<br>1.69                                           | 38.42<br>131.09<br>Average = ∑<br>1.71                                         | Oct<br>40.04<br>132.70<br>5(39)112,<br>1.73                                       | Nov<br>41.18<br>133.85<br>/12 =<br>1.74                                                                               | Dec<br>42.37<br>135.04<br>133.27<br>1.76                                                                                                      | ] (38)<br>] (39)                                                   |
| Ventilation heat loss 4 Heat transfer coeffic 1 Heat loss parameter Number of days in m                                                                                                                                      | Jan<br>calculat<br>4.92<br>ient, W/<br>37.59<br>(HLP), V<br>1.79<br>1.00                                                                                     | ted monthi<br>44.26<br>/K (37)m +<br>136.93<br>//m <sup>2</sup> K (39<br>1.78<br>able 1a)<br>28.00                                                                            | ly 0.33 x (2<br>43.62<br>(38)m<br>136.29<br>h)m ÷ (4)<br>1.78<br>31.00                                                             | 25)m x (5)<br>40.60<br>133.27<br>1.74                                                                    | 40.04 132.70 1.73                                                                              | 37.41<br>130.07<br>1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37.41<br>130.07<br>1.70                                             | 36.92<br>129.59<br>1.69                                           | 38.42<br>131.09<br>Average = ∑<br>1.71<br>Average = ∑                          | Oct<br>40.04<br>132.70<br>5(39)112,<br>1.73<br>5(40)112,                          | Nov<br>41.18<br>133.85<br>/12 =<br>1.74<br>/12 =                                                                      | Dec<br>42.37<br>135.04<br>133.27<br>1.76<br>1.74                                                                                              | ] (38)<br>] (39)<br>] (40)                                         |
| Ventilation heat loss 4 Heat transfer coeffic 1 Heat loss parameter Number of days in m 3                                                                                                                                    | Jan<br>calculat<br>4.92<br>ient, W/<br>37.59<br>(HLP), V<br>1.79<br>1.79<br>nonth (Tr<br>1.00                                                                | ted monthi<br>44.26<br>/K (37)m +<br>136.93<br>//m <sup>2</sup> K (39<br>1.78<br>able 1a)<br>28.00                                                                            | ly 0.33 x (2<br>43.62<br>(38)m<br>136.29<br>h)m ÷ (4)<br>1.78<br>31.00                                                             | 25)m x (5)<br>40.60<br>133.27<br>1.74                                                                    | 40.04 132.70 1.73                                                                              | 37.41<br>130.07<br>1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37.41<br>130.07<br>1.70                                             | 36.92<br>129.59<br>1.69                                           | 38.42<br>131.09<br>Average = ∑<br>1.71<br>Average = ∑                          | Oct<br>40.04<br>132.70<br>5(39)112,<br>1.73<br>5(40)112,                          | Nov<br>41.18<br>133.85<br>/12 =<br>1.74<br>/12 =                                                                      | Dec<br>42.37<br>135.04<br>133.27<br>1.76<br>1.74                                                                                              | ] (38)<br>] (39)<br>] (40)                                         |
| Ventilation heat loss 4 Heat transfer coeffic 1 Heat loss parameter Number of days in m 3 4. Water heating er                                                                                                                | Jan<br>calculat<br>4.92<br>ient, W/<br>37.59<br>(HLP), V<br>1.79<br>nonth (Ti<br>1.00<br>nergy re                                                            | ted monthi<br>44.26<br>/K (37)m +<br>136.93<br>///m <sup>2</sup> K (39<br>1.78<br>able 1a)<br>28.00                                                                           | ly 0.33 x (2<br>43.62<br>(38)m<br>136.29<br>))m ÷ (4)<br>1.78<br>31.00                                                             | 25)m x (5)<br>40.60<br>133.27<br>1.74<br>30.00                                                           | 40.04<br>132.70<br>1.73<br>31.00                                                               | 37.41<br>130.07<br>1.70<br>30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37.41<br>130.07<br>1.70                                             | 36.92<br>129.59<br>1.69                                           | 38.42<br>131.09<br>Average = ∑<br>1.71<br>Average = ∑                          | Oct<br>40.04<br>132.70<br>5(39)112,<br>1.73<br>5(40)112,                          | Nov<br>41.18<br>133.85<br>/12 =<br>1.74<br>/12 =                                                                      | Dec<br>42.37<br>135.04<br>133.27<br>1.76<br>1.74<br>31.00                                                                                     | ] (38)<br>] (39)<br>] (40)<br>] (40)                               |
| Ventilation heat loss 4 Heat transfer coeffic 1 Heat loss parameter 3 Number of days in m 3 4. Water heating er Assumed occupancy, Annual average hot v                                                                      | Jan<br>calculat<br>4.92<br>ient, W/<br>37.59<br>(HLP), V<br>1.79<br>nonth (Ti<br>1.00<br>nergy re                                                            | ted monthi<br>44.26<br>/K (37)m +<br>136.93<br>///m <sup>2</sup> K (39<br>1.78<br>able 1a)<br>28.00                                                                           | ly 0.33 x (2<br>43.62<br>(38)m<br>136.29<br>))m ÷ (4)<br>1.78<br>31.00                                                             | 25)m x (5)<br>40.60<br>133.27<br>1.74<br>30.00                                                           | 40.04<br>132.70<br>1.73<br>31.00                                                               | 37.41<br>130.07<br>1.70<br>30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37.41<br>130.07<br>1.70                                             | 36.92<br>129.59<br>1.69                                           | 38.42<br>131.09<br>Average = ∑<br>1.71<br>Average = ∑                          | Oct<br>40.04<br>132.70<br>5(39)112,<br>1.73<br>5(40)112,                          | Nov<br>41.18<br>133.85<br>/12 =<br>1.74<br>/12 =                                                                      | Dec         42.37         135.04         133.27         1.76         1.74         31.00         2.40                                          | ] (38)<br>] (39)<br>] (40)<br>] (40)<br>] (42)                     |
| Ventilation heat loss 4 Heat transfer coeffic 1 Heat loss parameter 3 Number of days in m 3 4. Water heating er Assumed occupancy, Annual average hot v                                                                      | Jan<br>calculat<br>4.92<br>ient, W/<br>37.59<br>(HLP), V<br>1.79<br>toonth (Tr<br>1.00<br>nergy re<br>, N<br>water us<br>Jan                                 | ted monthi<br>44.26<br>/K (37)m +<br>136.93<br>///m <sup>2</sup> K (39<br>1.78<br>able 1a)<br>28.00<br>equirement<br>sage in litre<br><b>Feb</b>                              | ly 0.33 x (2<br>43.62<br>(38)m<br>136.29<br>))m ÷ (4)<br>1.78<br>31.00<br>t<br>es per day<br>Mar                                   | 25)m x (5)<br>40.60<br>133.27<br>1.74<br>30.00<br>Vd,average<br>Apr                                      | 40.04<br>132.70<br>1.73<br>31.00<br>= (25 x N) +<br>May                                        | 37.41<br>130.07<br>1.70<br>30.00<br>+ 36<br>Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37.41<br>130.07<br>1.70<br>31.00                                    | 36.92<br>129.59<br>1.69<br>31.00                                  | 38.42<br>131.09<br>Average = ∑<br>1.71<br>Average = ∑<br>30.00                 | Oct<br>40.04<br>132.70<br>5(39)112,<br>1.73<br>5(40)112,<br>31.00                 | Nov<br>41.18<br>133.85<br>/12 =<br>1.74<br>/12 =<br>30.00                                                             | Dec<br>42.37<br>135.04<br>133.27<br>1.76<br>1.74<br>31.00<br>2.40<br>91.15                                                                    | ] (38)<br>] (39)<br>] (40)<br>] (40)<br>] (42)                     |
| Ventilation heat loss 4 Heat transfer coeffic 1 Heat loss parameter 4 Heat loss parameter 5 Number of days in m 3 4. Water heating er Assumed occupancy, Annual average hot w Hot water usage in li                          | Jan<br>calculat<br>4.92<br>ient, W/<br>37.59<br>(HLP), V<br>1.79<br>toonth (Tr<br>1.00<br>nergy re<br>, N<br>water us<br>Jan                                 | ted monthi<br>44.26<br>/K (37)m +<br>136.93<br>///m <sup>2</sup> K (39<br>1.78<br>able 1a)<br>28.00<br>equirement<br>sage in litre<br><b>Feb</b>                              | ly 0.33 x (2<br>43.62<br>(38)m<br>136.29<br>))m ÷ (4)<br>1.78<br>31.00<br>t<br>es per day<br>Mar                                   | 25)m x (5)<br>40.60<br>133.27<br>1.74<br>30.00<br>Vd,average<br>Apr                                      | 40.04<br>132.70<br>1.73<br>31.00<br>= (25 x N) +<br>May                                        | 37.41<br>130.07<br>1.70<br>30.00<br>+ 36<br>Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37.41<br>130.07<br>1.70<br>31.00                                    | 36.92<br>129.59<br>1.69<br>31.00                                  | 38.42<br>131.09<br>Average = ∑<br>1.71<br>Average = ∑<br>30.00                 | Oct<br>40.04<br>132.70<br>5(39)112,<br>1.73<br>5(40)112,<br>31.00                 | Nov<br>41.18<br>133.85<br>/12 =<br>1.74<br>/12 =<br>30.00                                                             | Dec<br>42.37<br>135.04<br>133.27<br>1.76<br>1.74<br>31.00<br>2.40<br>91.15                                                                    | ] (38)<br>] (39)<br>] (40)<br>] (40)<br>] (42)                     |
| Ventilation heat loss 4 Heat transfer coeffic 1 Heat loss parameter 4 Heat loss parameter 5 Number of days in m 3 4. Water heating er Assumed occupancy, Annual average hot w Hot water usage in li                          | Jan<br>calculat<br>4.92<br>ient, W/<br>37.59<br>(HLP), V<br>1.79<br>t.79<br>honth (Tr<br>1.00<br>hergy re<br>, N<br>water us<br>Jan<br>tres per              | ted monthi<br>44.26<br>/K (37)m +<br>136.93<br>//m <sup>2</sup> K (39<br>1.78<br>able 1a)<br>28.00<br>equirement<br>sage in litre<br>Feb<br>r day for ea                      | ly 0.33 x (2<br>43.62<br>(38)m<br>136.29<br>)m ÷ (4)<br>1.78<br>31.00<br>t<br>as per day<br>Mar<br>cch month                       | 25)m x (5)<br>40.60<br>133.27<br>1.74<br>30.00<br>Vd,average<br>Apr<br>Vd,m = fact                       | 40.04<br>132.70<br>1.73<br>31.00<br>= (25 x N) +<br>May<br>for from Tal                        | 37.41<br>130.07<br>1.70<br>30.00<br>→ 36<br>Jun<br>ble 1c x (43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37.41<br>130.07<br>1.70<br>31.00<br>Jul                             | 36.92<br>129.59<br>1.69<br>31.00                                  | 38.42<br>131.09<br>Average = ∑<br>1.71<br>Average = ∑<br>30.00<br>Sep          | Oct<br>40.04<br>132.70<br>(39)112,<br>(40)112,<br>31.00<br>Oct                    | Nov<br>41.18<br>133.85<br>/12 =<br>1.74<br>/12 =<br>30.00<br><br>Nov<br>96.62                                         | Dec<br>42.37<br>135.04<br>133.27<br>1.76<br>1.74<br>31.00<br>2.40<br>91.15<br>Dec                                                             | ] (38)<br>] (39)<br>] (40)<br>] (40)<br>] (42)                     |
| Ventilation heat loss 4 Heat transfer coeffic 1 Heat loss parameter 4 Heat loss parameter 5 Number of days in m 3 4. Water heating er Assumed occupancy, Annual average hot w Hot water usage in li                          | Jan<br>calculat<br>4.92<br>ient, W/<br>37.59<br>(HLP), V<br>1.79<br>t.79<br>nonth (Tr<br>1.00<br>nergy re<br>, N<br>water us<br>Jan<br>tres per<br>00.26     | ted monthi<br>44.26<br>/K (37)m +<br>136.93<br>//m <sup>2</sup> K (39<br>1.78<br>able 1a)<br>28.00<br>equirement<br>sage in litre<br>Feb<br>day for ea<br>96.62               | ly 0.33 x (2<br>43.62<br>(38)m<br>136.29<br>)m ÷ (4)<br>1.78<br>31.00<br>t<br>as per day<br>Mar<br>ch month<br>92.97               | 25)m x (5)<br>40.60<br>133.27<br>1.74<br>30.00<br>Vd,average<br>Apr<br>Vd,m = fact<br>89.33              | 40.04<br>132.70<br>1.73<br>31.00<br>= (25 x N) +<br>May<br>for from Tal<br>85.68               | 37.41<br>130.07<br>1.70<br>30.00<br>→ 36<br>Jun<br>ble 1c x (43<br>82.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37.41<br>130.07<br>1.70<br>31.00<br>Jul<br>)<br>82.03               | 36.92<br>129.59<br>1.69<br>31.00<br>31.00<br>Aug<br>85.68         | 38.42<br>131.09<br>Average = ∑<br>1.71<br>Average = ∑<br>30.00<br>Sep          | Oct<br>40.04<br>132.70<br>5(39)112,<br>1.73<br>5(40)112,<br>31.00<br>Oct<br>92.97 | Nov<br>41.18<br>133.85<br>/12 =<br>1.74<br>/12 =<br>30.00<br><br>Nov<br>96.62                                         | Dec         42.37         135.04         133.27         1.76         1.74         31.00         2.40         91.15         Dec         100.26 | ] (38)<br>] (39)<br>] (40)<br>] (40)<br>] (42)<br>] (43)           |
| Ventilation heat loss 4 Heat transfer coeffic 1 Heat loss parameter 4 Heat loss parameter 5 Number of days in m 3 4. Water heating er Assumed occupancy, Annual average hot w Hot water usage in li 10 Energy content of hoc | Jan<br>calculat<br>4.92<br>ient, W/<br>37.59<br>(HLP), V<br>1.79<br>t.79<br>nonth (Tr<br>1.00<br>nergy re<br>, N<br>water us<br>Jan<br>tres per<br>00.26     | ted monthi<br>44.26<br>/K (37)m +<br>136.93<br>//m <sup>2</sup> K (39<br>1.78<br>able 1a)<br>28.00<br>equirement<br>sage in litre<br>Feb<br>day for ea<br>96.62               | ly 0.33 x (2<br>43.62<br>(38)m<br>136.29<br>)m ÷ (4)<br>1.78<br>31.00<br>t<br>as per day<br>Mar<br>ch month<br>92.97               | 25)m x (5)<br>40.60<br>133.27<br>1.74<br>30.00<br>Vd,average<br>Apr<br>Vd,m = fact<br>89.33              | 40.04<br>132.70<br>1.73<br>31.00<br>= (25 x N) +<br>May<br>for from Tal<br>85.68               | 37.41<br>130.07<br>1.70<br>30.00<br>→ 36<br>Jun<br>ble 1c x (43<br>82.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37.41<br>130.07<br>1.70<br>31.00<br>Jul<br>)<br>82.03               | 36.92<br>129.59<br>1.69<br>31.00<br>31.00<br>Aug<br>85.68         | 38.42<br>131.09<br>Average = ∑<br>1.71<br>Average = ∑<br>30.00<br>Sep          | Oct<br>40.04<br>132.70<br>5(39)112,<br>1.73<br>5(40)112,<br>31.00<br>Oct<br>92.97 | Nov<br>41.18<br>133.85<br>/12 =<br>1.74<br>/12 =<br>30.00<br><br>Nov<br>96.62                                         | Dec         42.37         135.04         133.27         1.76         1.74         31.00         2.40         91.15         Dec         100.26 | ] (38)<br>] (39)<br>] (40)<br>] (40)<br>] (42)<br>] (43)           |
| Ventilation heat loss 4 Heat transfer coeffic 1 Heat loss parameter 4 Heat loss parameter 5 Number of days in m 3 4. Water heating er Assumed occupancy, Annual average hot w Hot water usage in li 10 Energy content of hoc | Jan<br>calculat<br>4.92<br>ient, W/<br>37.59<br>(HLP), V<br>1.79<br>honth (Tr<br>1.00<br>hergy re<br>, N<br>water us<br>Jan<br>tres per<br>00.26<br>bt water | ted monthi<br>44.26<br>/K (37)m +<br>136.93<br>//m <sup>2</sup> K (39<br>1.78<br>able 1a)<br>28.00<br>equirement<br>sage in litre<br>Feb<br>day for ea<br>96.62<br>used = 4.1 | ly 0.33 x (2<br>43.62<br>(38)m<br>136.29<br>)m ÷ (4)<br>1.78<br>31.00<br>t<br>ss per day<br>Mar<br>ch month<br>92.97<br>8 x Vd,m × | 25)m x (5)<br>40.60<br>133.27<br>1.74<br>30.00<br>Vd,average<br>Apr<br>Vd,m = fact<br>89.33<br>nm x Tm/3 | 40.04<br>132.70<br>1.73<br>31.00<br>= (25 x N) +<br>May<br>for from Tal<br>85.68<br>3600 kWh/r | 37.41<br>130.07<br>1.70<br>30.00<br>30.00<br>30.00<br>1.70<br>30.00<br>1.70<br>30.00<br>1.70<br>30.00<br>1.70<br>30.00<br>1.70<br>30.00<br>1.70<br>30.00<br>1.70<br>30.00<br>1.70<br>1.70<br>30.00<br>1.70<br>30.00<br>1.70<br>30.00<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1. | 37.41<br>130.07<br>1.70<br>31.00<br>Jul<br>)<br>82.03<br>Tables 1b, | 36.92<br>129.59<br>1.69<br>31.00<br><b>Aug</b><br>85.68<br>1c 1d) | 38.42<br>131.09<br>Average = ∑<br>1.71<br>Average = ∑<br>30.00<br>Sep<br>89.33 | Oct<br>40.04<br>132.70<br>(39)112,<br>(40)112,<br>31.00<br>Oct<br>92.97<br>Σ(44)1 | Nov<br>41.18<br>133.85<br>/12 =<br>1.74<br>/12 =<br>30.00<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Dec<br>42.37<br>135.04<br>133.27<br>1.76<br>1.76<br>1.74<br>31.00<br>2.40<br>91.15<br>Dec<br>100.26<br>1093.80                                | ] (38)<br>] (39)<br>] (40)<br>] (40)<br>] (40)<br>] (42)<br>] (43) |

| 22.30 19.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.13 17.55                                                                                                                                                                                                                                                                     | 16.84 14.5                                                                                                                                                                                                                              | 3 13.46                                                                                                                                                                                                                     | 15.45 15.64                                                                                                                                                                                                                                                                                               | 18.22 19.89                                                                                                                                                                                                                                                     | 21.60 (46)                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water storage loss calculated for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                 | 10.04 14.5                                                                                                                                                                                                                              | 15.40                                                                                                                                                                                                                       | 15.45 15.04                                                                                                                                                                                                                                                                                               | 18.22 19.89                                                                                                                                                                                                                                                     | 21.00 (40)                                                                                                                                                              |
| 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00 0.00                                                                                                                                                                                                                                                                       | 0.00 0.0                                                                                                                                                                                                                                | 0 0.00                                                                                                                                                                                                                      | 0.00 0.00                                                                                                                                                                                                                                                                                                 | 0.00 0.00                                                                                                                                                                                                                                                       | 0.00 (56)                                                                                                                                                               |
| If the vessel contains dedicated solar s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                            |                                                                                                                                                                         |
| 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00 0.00                                                                                                                                                                                                                                                                       | 0.00 0.0                                                                                                                                                                                                                                |                                                                                                                                                                                                                             | 0.00 0.00                                                                                                                                                                                                                                                                                                 | 0.00 0.00                                                                                                                                                                                                                                                       | 0.00 (57)                                                                                                                                                               |
| Primary circuit loss for each month fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                 | 0.00 0.0                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                        | 0.00 0.00                                                                                                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                            | 0.00 (07)                                                                                                                                                               |
| 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00 0.00                                                                                                                                                                                                                                                                       | 0.00 0.0                                                                                                                                                                                                                                | 0 0.00                                                                                                                                                                                                                      | 0.00 0.00                                                                                                                                                                                                                                                                                                 | 0.00 0.00                                                                                                                                                                                                                                                       | 0.00 (59)                                                                                                                                                               |
| Combi loss for each month from Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                 | 0.00 0.0                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                        | 0.00 0.00                                                                                                                                                                                                                                                                                                 | 0.00 0.00                                                                                                                                                                                                                                                       | 0.00 (00)                                                                                                                                                               |
| 50.96 46.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.96 49.32                                                                                                                                                                                                                                                                     | 50.96 49.3                                                                                                                                                                                                                              | 2 50.96                                                                                                                                                                                                                     | 50.96 49.32                                                                                                                                                                                                                                                                                               | 50.96 49.32                                                                                                                                                                                                                                                     | 50.96 (61)                                                                                                                                                              |
| Total heat required for water heating of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                           | 00000 10002                                                                                                                                                                                                                                                     |                                                                                                                                                                         |
| 199.65 176.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 185.15 166.31                                                                                                                                                                                                                                                                   | 163.22 146.                                                                                                                                                                                                                             |                                                                                                                                                                                                                             | 153.97 153.55                                                                                                                                                                                                                                                                                             | 172.44 181.92                                                                                                                                                                                                                                                   | 194.96 (62)                                                                                                                                                             |
| Solar DHW input calculated using Appe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 | (                                                                                                                                                                       |
| 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00 0.00                                                                                                                                                                                                                                                                       | 0.00 0.0                                                                                                                                                                                                                                | 0 0.00                                                                                                                                                                                                                      | 0.00 0.00                                                                                                                                                                                                                                                                                                 | 0.00 0.00                                                                                                                                                                                                                                                       | 0.00 (63)                                                                                                                                                               |
| Output from water heater for each mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |
| 199.65 176.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 185.15 166.31                                                                                                                                                                                                                                                                   | 163.22 146.                                                                                                                                                                                                                             | 19 140.72                                                                                                                                                                                                                   | 153.97 153.55                                                                                                                                                                                                                                                                                             | 172.44 181.92                                                                                                                                                                                                                                                   | 194.96                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 | 2034.14 (64)                                                                                                                                                            |
| Heat gains from water heating (kWh/n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nonth) 0.25 × [0.85 × (4                                                                                                                                                                                                                                                        | 15)m + (61)m] + (                                                                                                                                                                                                                       | ).8 × [(46)m + (                                                                                                                                                                                                            | 57)m + (59)m]                                                                                                                                                                                                                                                                                             | 2(0),                                                                                                                                                                                                                                                           |                                                                                                                                                                         |
| 62.18 54.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.36 51.23                                                                                                                                                                                                                                                                     | 50.07 44.5                                                                                                                                                                                                                              |                                                                                                                                                                                                                             | 46.99 46.99                                                                                                                                                                                                                                                                                               | 53.13 56.42                                                                                                                                                                                                                                                     | 60.62 (65)                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |
| 5. Internal gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |
| Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mar Apr                                                                                                                                                                                                                                                                         | May Jur                                                                                                                                                                                                                                 | lut r                                                                                                                                                                                                                       | Aug Sep                                                                                                                                                                                                                                                                                                   | Oct Nov                                                                                                                                                                                                                                                         | Dec                                                                                                                                                                     |
| Metabolic gains (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |
| 119.89 119.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.89 119.89                                                                                                                                                                                                                                                                   | 119.89 119.                                                                                                                                                                                                                             | 89 119.89                                                                                                                                                                                                                   | 119.89 119.89                                                                                                                                                                                                                                                                                             | 119.89 119.89                                                                                                                                                                                                                                                   | 119.89 <mark>(66)</mark>                                                                                                                                                |
| Lighting gains (calculated in Appendix I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ., equation L9 or L9a), a                                                                                                                                                                                                                                                       | also see Table 5                                                                                                                                                                                                                        |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |
| 23.68 21.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.10 12.95                                                                                                                                                                                                                                                                     | 9.68 8.1                                                                                                                                                                                                                                | 7 8.83                                                                                                                                                                                                                      | 11.48 15.40                                                                                                                                                                                                                                                                                               | 19.56 22.83                                                                                                                                                                                                                                                     | 24.34 (67)                                                                                                                                                              |
| Appliance gains (calculated in Appendi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x L, equation L13 or L13                                                                                                                                                                                                                                                        | 3a), also see Tabl                                                                                                                                                                                                                      | e 5                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |
| 212.47 214.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 209.12 197.29                                                                                                                                                                                                                                                                   | 182.36 168.                                                                                                                                                                                                                             | 33 158.95                                                                                                                                                                                                                   | 156.75 162.30                                                                                                                                                                                                                                                                                             | 174.13 189.06                                                                                                                                                                                                                                                   | 203.10 (68)                                                                                                                                                             |
| Cooking going (coloulated in Annondiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             | 150.75 102.50                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L, equation L15 or L15a                                                                                                                                                                                                                                                         | ), also see Table                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                           | 100.75 102.00                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |
| 34.99         34.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L, equation L15 or L15a<br>34.99 34.99                                                                                                                                                                                                                                          | ), also see Table<br>34.99 34.9                                                                                                                                                                                                         |                                                                                                                                                                                                                             | 34.99 34.99                                                                                                                                                                                                                                                                                               | 34.99 34.99                                                                                                                                                                                                                                                     | 34.99 (69)                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 | 34.99 (69)                                                                                                                                                              |
| 34.99 34.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                         | 9 34.99                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 | 34.99 (69)<br>3.00 (70)                                                                                                                                                 |
| 34.9934.99Pump and fan gains (Table 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34.99 34.99                                                                                                                                                                                                                                                                     | 34.99 34.9                                                                                                                                                                                                                              | 9 34.99                                                                                                                                                                                                                     | 34.99 34.99                                                                                                                                                                                                                                                                                               | 34.99 34.99                                                                                                                                                                                                                                                     | `` ` `                                                                                                                                                                  |
| 34.99         34.99           Pump and fan gains (Table 5a)         3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34.99 34.99                                                                                                                                                                                                                                                                     | 34.99 34.9                                                                                                                                                                                                                              | 99     34.99       0     3.00                                                                                                                                                                                               | 34.99 34.99                                                                                                                                                                                                                                                                                               | 34.99 34.99                                                                                                                                                                                                                                                     | `` ` `                                                                                                                                                                  |
| 34.9934.99Pump and fan gains (Table 5a)3.003.00Losses e.g. evaporation (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.99     34.99       3.00     3.00                                                                                                                                                                                                                                             | 34.99     34.9       3.00     3.0                                                                                                                                                                                                       | 99     34.99       0     3.00                                                                                                                                                                                               | 34.99     34.99       3.00     3.00                                                                                                                                                                                                                                                                       | 34.99     34.99       3.00     3.00                                                                                                                                                                                                                             | 3.00 (70)                                                                                                                                                               |
| 34.99         34.99           Pump and fan gains (Table 5a)         3.00           3.00         3.00           Losses e.g. evaporation (Table 5)         -95.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34.99     34.99       3.00     3.00                                                                                                                                                                                                                                             | 34.99     34.9       3.00     3.0                                                                                                                                                                                                       | 99     34.99       0     3.00       92     -95.92                                                                                                                                                                           | 34.99     34.99       3.00     3.00                                                                                                                                                                                                                                                                       | 34.99     34.99       3.00     3.00                                                                                                                                                                                                                             | 3.00 (70)                                                                                                                                                               |
| 34.9934.99Pump and fan gains (Table 5a)3.003.00Losses e.g. evaporation (Table 5)-95.92-95.92Vater heating gains (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34.99     34.99       3.00     3.00       -95.92     -95.92       77.10     71.15                                                                                                                                                                                               | 34.99     34.9       3.00     3.0       -95.92     -95.9       67.29     61.8                                                                                                                                                           | 99     34.99       0     3.00       92     -95.92                                                                                                                                                                           | 34.99     34.99       3.00     3.00       -95.92     -95.92                                                                                                                                                                                                                                               | 34.99 34.99<br>3.00 3.00<br>-95.92 -95.92                                                                                                                                                                                                                       | 3.00 (70)<br>-95.92 (71)                                                                                                                                                |
| 34.99       34.99         Pump and fan gains (Table 5a)       3.00         3.00       3.00         Losses e.g. evaporation (Table 5)       -95.92         -95.92       -95.92         Water heating gains (Table 5)       83.57         83.57       81.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34.99     34.99       3.00     3.00       -95.92     -95.92       77.10     71.15                                                                                                                                                                                               | 34.99     34.9       3.00     3.0       -95.92     -95.9       67.29     61.8                                                                                                                                                           | 99     34.99       0     3.00       92     -95.92       36     57.24                                                                                                                                                        | 34.99     34.99       3.00     3.00       -95.92     -95.92                                                                                                                                                                                                                                               | 34.99 34.99<br>3.00 3.00<br>-95.92 -95.92                                                                                                                                                                                                                       | 3.00 (70)<br>-95.92 (71)                                                                                                                                                |
| 34.99       34.99         Pump and fan gains (Table 5a)       3.00         3.00       3.00         Losses e.g. evaporation (Table 5)       -95.92         -95.92       -95.92         Water heating gains (Table 5)       83.57         83.57       81.47         Total internal gains (66)m + (67)m + (6         381.69       379.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34.99 34.99<br>3.00 3.00<br>-95.92 -95.92<br>77.10 71.15<br>8)m + (69)m + (70)m +                                                                                                                                                                                               | 34.99 34.9<br>3.00 3.0<br>-95.92 -95.9<br>67.29 61.8<br>(71)m + (72)m                                                                                                                                                                   | 99     34.99       0     3.00       92     -95.92       36     57.24                                                                                                                                                        | 34.99       34.99         3.00       3.00         -95.92       -95.92         63.16       65.26                                                                                                                                                                                                           | 34.99 34.99<br>3.00 3.00<br>-95.92 -95.92<br>71.41 78.36                                                                                                                                                                                                        | 3.00 (70)<br>-95.92 (71)<br>81.48 (72)                                                                                                                                  |
| 34.99       34.99         Pump and fan gains (Table 5a)       3.00         3.00       3.00         Losses e.g. evaporation (Table 5)       -95.92         -95.92       -95.92         Water heating gains (Table 5)       83.57         83.57       81.47         Total internal gains (66)m + (67)m + (67 | 34.99       34.99         3.00       3.00         -95.92       -95.92         77.10       71.15         8)m + (69)m + (70)m +         365.29       343.36                                                                                                                       | 34.99       34.9         3.00       3.0         -95.92       -95.9         67.29       61.8         (71)m + (72)m         321.30       300.                                                                                             | 99     34.99       0     3.00       92     -95.92       36     57.24       33     286.99                                                                                                                                    | 34.99       34.99         3.00       3.00         -95.92       -95.92         63.16       65.26         293.35       304.94                                                                                                                                                                               | 34.99       34.99         3.00       3.00         -95.92       -95.92         71.41       78.36         327.07       352.22                                                                                                                                     | 3.00       (70)         -95.92       (71)         81.48       (72)         370.88       (73)                                                                            |
| 34.99       34.99         Pump and fan gains (Table 5a)       3.00         3.00       3.00         Losses e.g. evaporation (Table 5)       -95.92         -95.92       -95.92         Water heating gains (Table 5)       83.57         83.57       81.47         Total internal gains (66)m + (67)m + (6         381.69       379.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34.99 34.99<br>3.00 3.00<br>-95.92 -95.92<br>77.10 71.15<br>8)m + (69)m + (70)m +                                                                                                                                                                                               | 34.99 34.9<br>3.00 3.0<br>-95.92 -95.9<br>67.29 61.8<br>(71)m + (72)m                                                                                                                                                                   | 99     34.99       0     3.00       92     -95.92       36     57.24                                                                                                                                                        | 34.99 34.99<br>3.00 3.00<br>-95.92 -95.92<br>63.16 65.26<br>293.35 304.94<br>g<br>specific data                                                                                                                                                                                                           | 34.99 34.99<br>3.00 3.00<br>-95.92 -95.92<br>71.41 78.36<br>327.07 352.22<br>FF specific data                                                                                                                                                                   | 3.00       (70)         -95.92       (71)         81.48       (72)                                                                                                      |
| 34.99       34.99         Pump and fan gains (Table 5a)       3.00         3.00       3.00         Losses e.g. evaporation (Table 5)       -95.92         -95.92       -95.92         Water heating gains (Table 5)       83.57         83.57       81.47         Total internal gains (66)m + (67)m + (6         381.69       379.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34.99 34.99<br>3.00 3.00<br>-95.92 -95.92<br>77.10 71.15<br>8)m + (69)m + (70)m +<br>365.29 343.36                                                                                                                                                                              | 34.99 34.9<br>3.00 3.0<br>-95.92 -95.9<br>67.29 61.8<br>(71)m + (72)m<br>321.30 300.<br>Area                                                                                                                                            | 99 34.99<br>0 3.00<br>92 -95.92<br>36 57.24<br>33 286.99<br>Solar flux                                                                                                                                                      | 34.99       34.99         3.00       3.00         -95.92       -95.92         63.16       65.26         293.35       304.94         g<br>specific data<br>or Table 6b                                                                                                                                     | 34.99 34.99<br>3.00 3.00<br>-95.92 -95.92<br>71.41 78.36<br>327.07 352.22<br>FFF specific data or Table 6c                                                                                                                                                      | 3.00 (70)<br>-95.92 (71)<br>81.48 (72)<br>370.88 (73)<br>Gains                                                                                                          |
| 34.99       34.99         Pump and fan gains (Table 5a)       3.00         3.00       3.00         Losses e.g. evaporation (Table 5)       -95.92         -95.92       -95.92         Water heating gains (Table 5)       83.57         83.57       81.47         Total internal gains (66)m + (67)m + (6         381.69       379.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34.99 34.99<br>3.00 3.00<br>-95.92 -95.92<br>77.10 71.15<br>8)m + (69)m + (70)m +<br>365.29 343.36                                                                                                                                                                              | 34.99 34.9<br>3.00 3.0<br>-95.92 -95.9<br>67.29 61.8<br>(71)m + (72)m<br>321.30 300.<br>Area                                                                                                                                            | 99 34.99<br>0 3.00<br>92 -95.92<br>36 57.24<br>33 286.99<br>Solar flux<br>W/m <sup>2</sup>                                                                                                                                  | 34.99       34.99         3.00       3.00         -95.92       -95.92         63.16       65.26         293.35       304.94         g<br>specific data<br>or Table 6b         0.9 x       0.72       x                                                                                                    | 34.99 34.99<br>3.00 3.00<br>-95.92 -95.92<br>71.41 78.36<br>327.07 352.22<br>FF<br>specific data<br>or Table 6c                                                                                                                                                 | 3.00 (70)<br>-95.92 (71)<br>81.48 (72)<br>370.88 (73)<br>Gains<br>W<br>33.82 (80)                                                                                       |
| 34.99       34.99         Pump and fan gains (Table 5a)       3.00         3.00       3.00         Losses e.g. evaporation (Table 5)       -95.92         -95.92       -95.92         Water heating gains (Table 5)       83.57         83.57       81.47         Total internal gains (66)m + (67)m + (6)         381.69       379.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34.99       34.99         3.00       3.00         -95.92       -95.92         77.10       71.15         8)m + (69)m + (70)m +         365.29       343.36         Access factor<br>Table 6d         0.77       x         0.77       x                                           | 34.99       34.9         3.00       3.0         3.00       3.0         -95.92       -95.9         67.29       61.8         (71)m + (72)m         321.30       300.         Area m²       300.         4.93       x         7.99       x | 99       34.99         00       3.00         92       -95.92         36       57.24         33       286.99         Solar flux W/m²         19.64       x         19.64       x                                             | 34.99       34.99         3.00       3.00         -95.92       -95.92         63.16       65.26         293.35       304.94         g<br>specific data<br>or Table 6b         0.9 x       0.72       x         0.9 x       0.72       x                                                                   | 34.99       34.99         3.00       3.00         -95.92       -95.92         71.41       78.36         327.07       352.22         FF         specific data<br>or Table 6c         0.70       =         0.70       =                                           | 3.00 (70)<br>-95.92 (71)<br>81.48 (72)<br>370.88 (73)<br>Gains<br>W<br>33.82 (80)<br>54.81 (76)                                                                         |
| 34.99       34.99         Pump and fan gains (Table 5a)       3.00         3.00       3.00         Losses e.g. evaporation (Table 5)       -95.92         -95.92       -95.92         Water heating gains (Table 5)       83.57         83.57       81.47         Total internal gains (66)m + (67)m + (6         381.69       379.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34.99       34.99         3.00       3.00         -95.92       -95.92         77.10       71.15         8)m + (69)m + (70)m +         365.29       343.36         Access factor<br>Table 6d         0.77       x                                                                | 34.99       34.9         3.00       3.0         -95.92       -95.9         67.29       61.8         (71)m + (72)m         321.30       300.         Area m²                                                                             | 99       34.99         0       3.00         92       -95.92         36       57.24         33       286.99         Solar flux W/m²         19.64       x         19.64       x         19.64       x         10.63       x  | 34.99       34.99         3.00       3.00         -95.92       -95.92         63.16       65.26         293.35       304.94         g<br>specific data<br>or Table 6b         0.9 x       0.72       x         0.9 x       0.72       x         0.9 x       0.72       x         0.9 x       0.72       x | 34.99       34.99         3.00       3.00         -95.92       -95.92         71.41       78.36         327.07       352.22         FF         specific data<br>or Table 6c         0.70       =         0.70       =         0.70       =         0.70       = | 3.00       (70)         -95.92       (71)         81.48       (72)         370.88       (73)         Gains       (73)         54.81       (76)         16.04       (74) |
| 34.99 $34.99$ Pump and fan gains (Table 5a) $3.00$ $3.00$ $3.00$ Losses e.g. evaporation (Table 5) $-95.92$ $-95.92$ Water heating gains (Table 5) $83.57$ $81.47$ Total internal gains (66)m + (67)m + (6) $381.69$ $379.14$ 6. Solar gainsWestEastNorthEast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.99       34.99         3.00       3.00         -95.92       -95.92         77.10       71.15         8)m + (69)m + (70)m +         365.29       343.36         Access factor<br>Table 6d         0.77       x         0.77       x                                           | 34.99       34.9         3.00       3.0         3.00       3.0         -95.92       -95.9         67.29       61.8         (71)m + (72)m         321.30       300.         Area m²       300.         4.93       x         7.99       x | 99       34.99         0       3.00         92       -95.92         36       57.24         33       286.99         Solar flux W/m²         19.64       x         19.64       x         19.64       x         10.63       x  | 34.99       34.99         3.00       3.00         -95.92       -95.92         63.16       65.26         293.35       304.94         g<br>specific data<br>or Table 6b         0.9 x       0.72       x         0.9 x       0.72       x                                                                   | 34.99       34.99         3.00       3.00         -95.92       -95.92         71.41       78.36         327.07       352.22         FF         specific data<br>or Table 6c         0.70       =         0.70       =         0.70       =         0.70       = | 3.00 (70)<br>-95.92 (71)<br>81.48 (72)<br>370.88 (73)<br>Gains<br>W<br>33.82 (80)<br>54.81 (76)                                                                         |
| 34.99       34.99         Pump and fan gains (Table 5a)       3.00         3.00       3.00         Losses e.g. evaporation (Table 5)       -95.92         -95.92       -95.92         Water heating gains (Table 5)       83.57         83.57       81.47         Total internal gains (66)m + (67)m + (6         381.69       379.14         6. Solar gains         West         East         North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34.99       34.99         3.00       3.00         -95.92       -95.92         77.10       71.15         8)m + (69)m + (70)m +         365.29       343.36         Access factor<br>Table 6d         0.77       x         0.77       x         0.77       x         0.77       x | 34.99       34.9         3.00       3.0         -95.92       -95.9         67.29       61.8         (71)m + (72)m         321.30       300.         Area m²                                                                             | 99       34.99         00       3.00         92       -95.92         36       57.24         33       286.99         Solar flux W/m²         19.64       x         19.64       x         10.63       x         26.24       x | 34.99       34.99         3.00       3.00         -95.92       -95.92         63.16       65.26         293.35       304.94         g<br>specific data<br>or Table 6b         0.9 x       0.72       x         0.9 x       0.72       x         0.9 x       0.72       x         0.9 x       0.72       x | 34.99       34.99         3.00       3.00         -95.92       -95.92         71.41       78.36         327.07       352.22         FF         specific data<br>or Table 6c         0.70       =         0.70       =         0.70       =         0.70       = | 3.00       (70)         -95.92       (71)         81.48       (72)         370.88       (73)         Gains       (73)         54.81       (76)         16.04       (74) |

Total gains - internal and solar (73)m + (83)m

|                   | 496.24        | 603.01        | 736.85      | 895.02        | 1009.42       | 1010.85       | 960.87 | 863.56 | 739.79 | 593.16           | 494.93   | 465.20  | (84)               |
|-------------------|---------------|---------------|-------------|---------------|---------------|---------------|--------|--------|--------|------------------|----------|---------|--------------------|
| 7. Mean interr    | al tempera    | iture (heatii | ng season)  |               |               |               |        |        |        |                  |          |         |                    |
| Temperature du    |               |               |             | area from T   | able 9. Th1   | (°C)          |        |        |        |                  |          | 21.00   | (85)               |
|                   | Jan           | Feb           | Mar         | Apr           | May           | Jun           | Jul    | Aug    | Sep    | Oct              | Nov      | Dec     | ] ()               |
| Utilisation facto | r for gains f | or living are | ea n1,m (se | •             | •             |               |        | Ū      | •      |                  |          |         |                    |
|                   | 1.00          | 1.00          | 1.00        | 0.99          | 0.92          | 0.76          | 0.58   | 0.66   | 0.93   | 1.00             | 1.00     | 1.00    | (86)               |
| Mean internal t   | emp of livin  | g area T1 (s  | teps 3 to 7 | ' in Table 90 | :)            |               |        | •      |        |                  | •        |         | _                  |
|                   | 19.74         | 19.88         | 20.13       | 20.49         | 20.79         | 20.96         | 20.99  | 20.98  | 20.84  | 20.44            | 20.04    | 19.73   | (87)               |
| Temperature du    | Iring heatin  | g periods in  | the rest o  | f dwelling f  | rom Table 9   | 9, Th2(°C)    |        |        |        |                  | ·        |         | _                  |
|                   | 19.47         | 19.48         | 19.49       | 19.51         | 19.52         | 19.54         | 19.54  | 19.55  | 19.53  | 19.52            | 19.51    | 19.50   | (88)               |
| Utilisation facto | r for gains f | or rest of d  | welling n2, | m             |               |               |        |        |        |                  |          |         |                    |
|                   | 1.00          | 1.00          | 1.00        | 0.97          | 0.86          | 0.62          | 0.40   | 0.47   | 0.84   | 0.99             | 1.00     | 1.00    | (89)               |
| Mean internal t   | emperature    | e in the rest | of dwellin  | g T2 (follow  | steps 3 to    | 7 in Table 9  | əc)    |        |        |                  |          |         |                    |
|                   | 18.36         | 18.50         | 18.76       | 19.13         | 19.40         | 19.53         | 19.54  | 19.55  | 19.47  | 19.10            | 18.69    | 18.37   | (90)               |
| Living area fract | ion           |               |             |               |               |               |        |        | Li     | ving area ÷      | (4) =    | 0.24    | (91)               |
| Mean internal t   | emperature    | e for the wh  | ole dwellir | ng fLA x T1 - | +(1 - fLA) x⊺ | г2            |        |        |        |                  |          |         |                    |
|                   | 18.69         | 18.83         | 19.09       | 19.46         | 19.74         | 19.87         | 19.89  | 19.89  | 19.80  | 19.42            | 19.01    | 18.70   | (92)               |
| Apply adjustme    | nt to the me  | ean internal  | l temperat  | ure from Ta   | able 4e whe   | re appropr    | iate   |        |        |                  |          |         |                    |
|                   | 18.69         | 18.83         | 19.09       | 19.46         | 19.74         | 19.87         | 19.89  | 19.89  | 19.80  | 19.42            | 19.01    | 18.70   | (93)               |
| 8. Space heati    | ag roquiror   | aant          |             |               |               |               |        |        |        |                  |          |         |                    |
| o. Space fleath   | Jan           | Feb           | Mar         | Apr           | May           | Jun           | Jul    | Aug    | Sep    | Oct              | Nov      | Dec     |                    |
| Utilisation facto |               |               | IVIAI       | Арі           | Ividy         | Jun           | 101    | Aug    | Jep    | 000              | NOV      | Dec     |                    |
| othisution facto  | 1.00          | 1.00          | 1.00        | 0.97          | 0.88          | 0.65          | 0.44   | 0.52   | 0.86   | 0.99             | 1.00     | 1.00    | (94)               |
| Useful gains, ŋn  |               |               |             | 0.57          | 0.00          | 0.05          | 0.44   | 0.52   | 0.00   | 0.55             | 1.00     | 1.00    | ] (34)             |
| , (, -            | 496.09        | 602.41        | 733.42      | 870.22        | 883.94        | 662.08        | 426.07 | 447.78 | 635.32 | 587.50           | 494.53   | 465.11  | (95)               |
| Monthly averag    | L             |               | 1           |               |               | 001.00        |        | 1      | 000102 | 007.00           | 1.5.1.00 |         | ] (55)             |
| , .               | 4.30          | 4.90          | 6.50        | 8.90          | 11.70         | 14.60         | 16.60  | 16.40  | 14.10  | 10.60            | 7.10     | 4.20    | (96)               |
| Heat loss rate fo |               |               |             |               |               |               |        |        |        |                  |          |         | ] ( )              |
|                   | 1980.11       | 1908.00       | 1715.73     | 1406.85       | 1066.37       | 685.96        | 428.07 | 452.48 | 747.11 | 1170.76          | 1594.51  | 1958.15 | (97)               |
| Space heating r   | equirement    | , kWh/mon     |             | [(97)m - (9   | 5)m] x (41)   | m             |        |        |        |                  |          |         |                    |
|                   | 1104.11       | 877.36        | 730.84      | 386.37        | 135.73        | 0.00          | 0.00   | 0.00   | 0.00   | 433.94           | 791.98   | 1110.82 | ]                  |
|                   |               |               |             |               |               |               | •      |        | ∑(9)   | 8)15 <i>,</i> 10 | .12 =    | 5571.16 | (98)               |
| Space heating r   | equirement    | kWh/m²/ye     | ear         |               |               |               |        |        |        | (98)             | ÷ (4)    | 72.61   | (99)               |
|                   |               |               |             |               |               |               |        |        |        |                  |          |         | _                  |
| 9a. Energy req    | uirements -   | - individual  | heating sy  | stems inclu   | iding micro   | -СНР          |        |        |        |                  |          |         |                    |
| Space heating     |               |               |             |               |               |               |        |        |        |                  |          |         | 1                  |
| Fraction of space |               |               |             | ntary syste   | m (table 11   | )             |        |        |        |                  |          | 0.00    | ] (201)            |
| Fraction of space |               |               |             |               |               |               |        |        |        | 1 - (2           | 01) = [  | 1.00    | ] (202)<br>] (202) |
| Fraction of space |               | -             |             |               |               |               |        |        | (2)    |                  |          | 0.00    | ] (202)            |
| Fraction of tota  |               |               | -           |               |               |               |        |        | (20    | 02) x [1- (20    |          | 1.00    | ] (204)            |
| Fraction of tota  |               |               | system 2    |               |               |               |        |        |        | (202) x (2       | U3) = [  | 0.00    | ] (205)<br>] (205) |
| Efficiency of ma  | -             |               | Mar         | A             | Mari          | l <del></del> | 11     | ۸~     | 500    | 0.0              | Nevi     | 88.80   | <b>(206)</b>       |
| Space heating f   | Jan           | Feb           | Mar         | Apr           | May           | Jun           | Jul    | Aug    | Sep    | Oct              | Nov      | Dec     |                    |
| space neating n   |               |               |             | 125 10        | 152.04        | 0.00          | 0.00   | 0.00   | 0.00   | 100 00           | 001 07   | 1250.02 | 1                  |
|                   | 1243.37       | 988.01        | 823.02      | 435.10        | 152.84        | 0.00          | 0.00   | 0.00   |        | 488.68           | 891.87   | 1250.93 | ]                  |
| Water heating     |               |               |             |               |               |               |        |        | 2(21   | 1)15, 10         | .12 - [] | 6273.83 | ] (211)            |
| Water heating     |               |               |             |               |               |               |        |        |        |                  |          |         |                    |

| Efficiency of water             | r heater     |             |              |             |            |                   |        |           |                        |            |         |                         |              |
|---------------------------------|--------------|-------------|--------------|-------------|------------|-------------------|--------|-----------|------------------------|------------|---------|-------------------------|--------------|
|                                 | 87.24        | 87.10       | 86.75        | 85.78       | 83.47      | 79.50             | 79.50  | 79.50     | 79.50                  | 85.94      | 86.90   | 87.28                   | (217)        |
| Water heating fue               | el, kWh/me   | onth        |              |             |            |                   |        |           |                        |            |         |                         |              |
|                                 | 228.86       | 202.16      | 213.44       | 193.88      | 195.54     | 183.88            | 177.01 | 193.67    | 193.15                 | 200.65     | 209.34  | 223.38                  | ]            |
|                                 |              |             |              |             |            |                   |        |           |                        | ∑(219a)1   | .12 =   | 2414.95                 | (219)        |
| Annual totals                   |              |             |              |             |            |                   |        |           |                        |            |         |                         | -            |
| Space heating fuel              | l - main sy  | stem 1      |              |             |            |                   |        |           |                        |            |         | 6273.83                 | 1            |
| Water heating fue               | el .         |             |              |             |            |                   |        |           |                        |            |         | 2414.95                 | 1            |
| Electricity for pum             | nps, fans a  | nd electric | keep-hot (   | Table 4f)   |            |                   |        |           |                        |            |         |                         |              |
| central heating                 | g pump or    | water pun   | np within w  | arm air hea | ating unit |                   |        |           | 30.00                  | ]          |         |                         | (230c)       |
| boiler flue fan                 |              |             |              |             |            |                   |        |           | 45.00                  | ĺ          |         |                         | (230e)       |
| Total electricity fo            | r the abov   | /e, kWh/ye  | ar           |             |            |                   |        | 1         |                        | 75.00      | (231)   |                         |              |
| Electricity for light           | ing (Appe    | ndix L)     |              |             |            |                   |        |           |                        | 418.15     | (232)   |                         |              |
| Total delivered en              |              |             |              |             |            |                   |        | (211)(221 | L) + (231) +           | (232)(237  | 7b) =   | 9181.92                 | (238)        |
|                                 | 0,           |             |              |             |            |                   |        |           | ·                      |            |         |                         |              |
| 10a. Fuel costs -               | individual   | heating sy  | ystems inclu | uding micro | o-CHP      |                   |        |           |                        |            |         |                         |              |
|                                 |              |             |              |             |            | Fuel              |        | Fu        | uel price              |            |         | Fuel                    |              |
|                                 |              |             |              |             |            | Wh/year           |        |           |                        | 1          |         | ost £/year              | 7            |
| Space heating - ma              | ain system   | n 1         |              |             |            | 5273.83           | x      |           | 3.48                   | x 0.01     |         | 218.33                  | <b>(240)</b> |
| Water heating                   |              |             |              |             |            | 2414.95           | х      |           | 3.48                   | x 0.01     |         | 84.04                   | (247)        |
| Pumps and fans                  |              |             |              |             |            | 75.00             | x      |           | 13.19                  | x 0.01     |         | 9.89                    | <b>(249)</b> |
| Electricity for light           | -            |             |              |             |            | 418.15            | ×      |           | 13.19                  | x 0.01     | =       | 55.15                   | ] (250)<br>  |
| Additional standin              | ig charges   |             |              |             |            |                   |        |           |                        |            |         | 120.00                  | ] (251)<br>_ |
| Total energy cost               |              |             |              |             |            |                   |        | (2        | 40)(242) -             | + (245)(25 | 54) =   | 487.42                  | (255)        |
| 11a. SAP rating -               | individua    | I heating s | vstems incl  | luding micr | о-СНР      |                   |        |           |                        |            |         |                         |              |
| Energy cost deflat              |              | -           |              |             |            |                   |        |           |                        |            |         | 0.42                    | (256)        |
| Energy cost factor              |              | ,           |              |             |            |                   |        |           |                        |            |         | 1.68                    | (257)        |
| SAP value                       | ( - )        |             |              |             |            |                   |        |           |                        |            |         | 76.54                   | ]            |
| SAP rating (section             | n 13)        |             |              |             |            |                   |        |           |                        |            |         | 77                      | (258)        |
| SAP band                        | - 1          |             |              |             |            |                   |        |           |                        |            |         | С                       | ]            |
|                                 |              |             |              |             |            |                   |        |           |                        |            |         |                         | _            |
| 12a. CO <sub>2</sub> emissio    | ns - indivi  | idual heati | ng systems   | including   | micro-CHP  |                   |        |           |                        |            |         |                         |              |
|                                 |              |             |              |             |            | Energy<br>Wh/year |        |           | sion factor<br>CO₂/kWh |            |         | Emissions<br>g CO₂/year |              |
| Space heating - ma              | ain system   | n 1         |              |             | E          | 5273.83           | x      | _         | 0.22                   | ] =        |         | 1355.15                 | (261)        |
| Water heating                   |              |             |              |             |            | 2414.95           | x      |           | 0.22                   | ] =        |         | 521.63                  | (264)        |
| Space and water h               | neating      |             |              |             |            |                   |        | (26       | 51) + (262) +          | 1          | 54) =   | 1876.77                 | (265)        |
| Pumps and fans                  |              |             |              |             |            | 75.00             | x      | (         | 0.52                   | ] =        | - · · , | 38.93                   | (267)        |
| Electricity for light           | ing          |             |              |             |            | 418.15            | x      |           | 0.52                   | ] =        |         | 217.02                  | (268)        |
| Total CO <sub>2</sub> , kg/year | -            |             |              |             |            |                   |        |           |                        | (265)(2    | 71) =   | 2132.72                 | (272)        |
| Dwelling CO <sub>2</sub> emis   |              |             |              |             |            |                   |        |           |                        | (272) ÷    |         | 27.80                   | (273)        |
| El value                        |              |             |              |             |            |                   |        |           |                        | (_/_/      |         | 76.52                   | ]            |
| El rating (section 1            | 14)          |             |              |             |            |                   |        |           |                        |            |         | 77                      | (274)        |
| El band                         | - · /        |             |              |             |            |                   |        |           |                        |            |         | C                       | ]            |
|                                 |              |             |              |             |            |                   |        |           |                        |            |         | -                       | _            |
| 13a. Primary ene                | ergy - indiv | vidual heat | ting system  | s including |            |                   |        |           |                        |            |         |                         |              |
|                                 |              |             |              |             |            | Energy<br>Wh/year |        | Prim      | nary factor            |            |         | mary Energy<br>Wh/year  | 1            |
| Space heating - ma              | ain system   | n 1         |              |             |            | 5273.83           | x      | [         | 1.22                   | ] =        |         | 7654.07                 | (261)        |
| Space nearing - Ille            | uni systell  |             |              |             |            | 5.05              | l X    | L         | 1.22                   | ] –        | Ĺ       | 1054.07                 | ] (201)      |
|                                 |              |             |              |             |            |                   |        |           |                        |            |         |                         |              |

| Water heating                            | 2414.95 | x | 1.22            | =               | 2946.23  | (264) |
|------------------------------------------|---------|---|-----------------|-----------------|----------|-------|
| Space and water heating                  |         |   | (261) + (262) + | (263) + (264) = | 10600.30 | (265) |
| Pumps and fans                           | 75.00   | х | 3.07            | =               | 230.25   | (267) |
| Electricity for lighting                 | 418.15  | x | 3.07            | =               | 1283.72  | (268) |
| Primary energy kWh/year                  |         |   |                 |                 | 12114.27 | (272) |
| Dwelling primary energy rate kWh/m2/year |         |   |                 |                 | 157.88   | (273) |



This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

| Assessor name                                                                                                                                                                                           | Mrs Nicola I                                                                                                                                            | Battista                                                                                 |                                                                            |                                      |                              |                      | Ass                | essor num              | ber                 | 3998               |                             |                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|------------------------------|----------------------|--------------------|------------------------|---------------------|--------------------|-----------------------------|-------------------------------------------|
| Client                                                                                                                                                                                                  | The Halebo                                                                                                                                              | urne Groเ                                                                                | qu                                                                         |                                      |                              |                      | Las                | t modified             |                     | 26/08              | /2014                       |                                           |
| Address                                                                                                                                                                                                 | Plot 7 The C                                                                                                                                            | Old Schoo                                                                                | l Park Lane                                                                | , Richmon                            | d <i>,</i> TW9               |                      |                    |                        |                     |                    |                             |                                           |
|                                                                                                                                                                                                         |                                                                                                                                                         |                                                                                          |                                                                            |                                      |                              |                      |                    |                        |                     |                    |                             |                                           |
| 1. Overall dwelling dime                                                                                                                                                                                | nsions                                                                                                                                                  |                                                                                          |                                                                            | _                                    | 4 20                         |                      |                    |                        |                     |                    |                             |                                           |
|                                                                                                                                                                                                         |                                                                                                                                                         |                                                                                          |                                                                            | A                                    | rea (m²)                     |                      |                    | age storey<br>ight (m) |                     | Vo                 | lume (m³)                   |                                           |
| owest occupied                                                                                                                                                                                          |                                                                                                                                                         |                                                                                          |                                                                            |                                      | 54.80                        | (1a) x               |                    | 2.35                   | (2a) =              |                    | 128.78                      | (3a)                                      |
| 1                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                          |                                                                            |                                      | 48.78                        | (1b) x               |                    | 2.70                   | (2b) =              |                    | 131.71                      | (3b)                                      |
| 2                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                          |                                                                            |                                      | 27.71                        | (1c) x               |                    | 2.70                   | (2c) =              |                    | 74.82                       | <br>] (3c)                                |
| otal floor area                                                                                                                                                                                         | (1a) + (                                                                                                                                                | (1b) + (1c)                                                                              | ) + (1d)(1                                                                 | n) =                                 | 131.29                       | (4)                  |                    |                        |                     |                    |                             | _                                         |
| welling volume                                                                                                                                                                                          |                                                                                                                                                         |                                                                                          |                                                                            |                                      |                              |                      | (3a)               | + (3b) + (3d           | c) + (3d)(3         | n) =               | 335.30                      | (5)                                       |
| 2. Ventilation rate                                                                                                                                                                                     |                                                                                                                                                         |                                                                                          |                                                                            |                                      |                              |                      |                    |                        |                     |                    |                             | _                                         |
| z. ventilation rate                                                                                                                                                                                     |                                                                                                                                                         |                                                                                          |                                                                            |                                      |                              |                      |                    |                        |                     | m                  | ³ per hour                  |                                           |
| lumber of chimneys                                                                                                                                                                                      |                                                                                                                                                         |                                                                                          |                                                                            |                                      |                              |                      |                    | 0                      | x 40 =              |                    | 0                           | (6a)                                      |
| lumber of open flues                                                                                                                                                                                    |                                                                                                                                                         |                                                                                          |                                                                            |                                      |                              |                      |                    | 0                      | x 40 =              |                    | 0                           | ] (6b)                                    |
| lumber of intermittent fa                                                                                                                                                                               | anc                                                                                                                                                     |                                                                                          |                                                                            |                                      |                              |                      |                    | 4                      | x 10 =              |                    | 40                          | ] (00)<br>] (7a)                          |
| lumber of passive vents                                                                                                                                                                                 | 115                                                                                                                                                     |                                                                                          |                                                                            |                                      |                              |                      |                    | 0                      | x 10 =              |                    | 0                           | ] (7a)                                    |
| lumber of flueless gas fir                                                                                                                                                                              | <b>0</b> 5                                                                                                                                              |                                                                                          |                                                                            |                                      |                              |                      |                    | 0                      | x 40 =              |                    | 0                           | ] (75)                                    |
| fumber of fueless gas in                                                                                                                                                                                | 23                                                                                                                                                      |                                                                                          |                                                                            |                                      |                              |                      |                    | 0                      | x 40 -              | Airo               | hanges pe                   |                                           |
|                                                                                                                                                                                                         |                                                                                                                                                         |                                                                                          |                                                                            |                                      |                              |                      |                    |                        |                     |                    | hour                        |                                           |
| nfiltration due to chimne                                                                                                                                                                               | ys, flues, fans, P                                                                                                                                      | ۶Vs                                                                                      |                                                                            | (6a)                                 | + (6b) + (7a                 | a) + (7b) + (7       | 7c) =              | 40                     | ÷ (5) =             |                    | 0.12                        | (8)                                       |
| f a pressurisation test has                                                                                                                                                                             | s been carried o                                                                                                                                        | ut or is in                                                                              | tended, pro                                                                | oceed to (1                          | 17), otherw                  | ise continue         | e from (9) to      | o (16)                 |                     |                    |                             |                                           |
| ir permeability value, q5                                                                                                                                                                               | 0, expressed in                                                                                                                                         | cubic me                                                                                 | tres per ho                                                                | ur per squ                           | are metre o                  | of envelope          | area               |                        |                     |                    | 3.00                        | (17)                                      |
| based on air permeabili                                                                                                                                                                                 | ty value, then (1                                                                                                                                       | L8) = [(17)                                                                              | ÷ 20] + (8                                                                 | ), otherwis                          | se (18) = (16                | 5)                   |                    |                        |                     |                    | 0.27                        | (18)                                      |
| lumber of sides on which                                                                                                                                                                                | the dwelling is                                                                                                                                         | sheltered                                                                                | ł                                                                          |                                      |                              |                      |                    |                        |                     |                    | 2                           | (19)                                      |
| helter factor                                                                                                                                                                                           |                                                                                                                                                         |                                                                                          |                                                                            |                                      |                              |                      |                    | 1 -                    | [0.075 x (19        | 9)] =              | 0.85                        |                                           |
|                                                                                                                                                                                                         |                                                                                                                                                         |                                                                                          |                                                                            |                                      |                              |                      |                    |                        |                     |                    |                             | (20)                                      |
| nfiltration rate incorpora                                                                                                                                                                              | ting shelter fact                                                                                                                                       | or                                                                                       |                                                                            |                                      |                              |                      |                    |                        | (18) x (2           | 0) =               | 0.23                        | ] (20)<br>] (21)                          |
| •                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                          |                                                                            |                                      |                              |                      |                    |                        | (18) x (2           | 0) =               | 0.23                        | -                                         |
|                                                                                                                                                                                                         |                                                                                                                                                         |                                                                                          | Apr                                                                        | May                                  | Jun                          | Jul                  | Aug                | Sep                    | (18) x (2<br>Oct    | 0) =<br>Nov        | 0.23<br>Dec                 | -                                         |
| nfiltration rate modified f                                                                                                                                                                             | for monthly win<br>Feb                                                                                                                                  | nd speed:<br>Mar                                                                         | Apr                                                                        | May                                  | Jun                          | Jul                  |                    | Sep                    |                     |                    | Dec                         | ] <b>(21</b> )                            |
| nfiltration rate modified f<br>Jan<br>Nonthly average wind spo<br>5.10                                                                                                                                  | for monthly win<br>Feb                                                                                                                                  | nd speed:<br>Mar                                                                         | <b>Apr</b><br>4.40                                                         | <b>May</b><br>4.30                   | Jun<br>3.80                  | Jul<br>3.80          | <b>Aug</b><br>3.70 | <b>Sep</b>             |                     |                    |                             | -                                         |
| Nonthly average wind spe                                                                                                                                                                                | for monthly win<br><b>Feb</b><br>eed from Table                                                                                                         | nd speed:<br>Mar<br>U2                                                                   |                                                                            |                                      | 1                            |                      |                    | _                      | Oct                 | Nov                | Dec                         | ] <b>(21</b> )                            |
| nfiltration rate modified f<br>Jan<br>Nonthly average wind spo<br>5.10                                                                                                                                  | for monthly win<br><b>Feb</b><br>eed from Table                                                                                                         | nd speed:<br>Mar<br>U2                                                                   |                                                                            |                                      | 1                            |                      |                    | _                      | Oct                 | Nov                | Dec                         | ] <b>(21</b> )                            |
| filtration rate modified f<br>Jan<br>Ionthly average wind spo<br>5.10<br>Vind factor (22)m ÷ 4                                                                                                          | for monthly win<br>Feb<br>eed from Table<br>5.00<br>1.25                                                                                                | 1.23                                                                                     | 4.40                                                                       | 4.30                                 | 3.80<br>0.95                 | 3.80                 | 3.70               | 4.00                   | <b>Oct</b><br>4.30  | <b>Nov</b><br>4.50 | <b>Dec</b>                  | ] (21)<br>] (22)                          |
| nfiltration rate modified f<br>Jan<br>Nonthly average wind spo<br>5.10<br>Vind factor (22)m ÷ 4                                                                                                         | for monthly win<br>Feb<br>eed from Table<br>5.00<br>1.25                                                                                                | 1.23                                                                                     | 4.40                                                                       | 4.30                                 | 3.80<br>0.95                 | 3.80                 | 3.70               | 4.00                   | <b>Oct</b><br>4.30  | <b>Nov</b><br>4.50 | <b>Dec</b>                  | ] (21)<br>] (22)                          |
| filtration rate modified f<br>Jan<br>Ionthly average wind spo<br>5.10<br>Vind factor (22)m ÷ 4<br>1.28<br>djusted infiltration rate (<br>0.29                                                           | for monthly win<br>Feb<br>eed from Table<br>5.00<br>1.25<br>(allowing for she<br>0.29                                                                   | Mar         U2         4.90         1.23         elter and volume         0.28           | 4.40<br>1.10<br>wind facto<br>0.25                                         | 4.30<br>1.08<br>r) (21) x (2         | 3.80<br>0.95<br>2a)m         | 3.80<br>0.95         | 3.70<br>0.93       | 4.00                   | Oct<br>4.30<br>1.08 | Nov<br>4.50        | Dec 4.70                    | ] (21)<br>] (22)<br>] (22)                |
| nfiltration rate modified f<br>Jan<br>Monthly average wind spo<br>5.10<br>Vind factor (22)m ÷ 4<br>1.28<br>djusted infiltration rate (                                                                  | for monthly win<br>Feb<br>eed from Table<br>5.00<br>1.25<br>(allowing for she<br>0.29<br>nge rate for the                                               | Mar<br>U2<br>4.90<br>1.23<br>elter and<br>0.28<br>e applicab                             | 4.40<br>1.10<br>wind facto<br>0.25<br>le case:                             | 4.30<br>1.08<br>r) (21) x (2         | 3.80<br>0.95<br>2a)m         | 3.80<br>0.95         | 3.70<br>0.93       | 4.00                   | Oct<br>4.30<br>1.08 | Nov<br>4.50        | Dec 4.70                    | ] (21)<br>] (22)<br>] (22)<br>] (22)      |
| nfiltration rate modified f<br>Jan<br>Monthly average wind spa<br>5.10<br>Vind factor (22)m ÷ 4<br>1.28<br>djusted infiltration rate (<br>0.29<br>falculate effective air cha                           | for monthly win<br>Feb<br>eed from Table<br>5.00<br>1.25<br>(allowing for she<br>0.29<br>nge rate for the<br>on: air change rate                        | Mar<br>U2<br>4.90<br>1.23<br>elter and<br>0.28<br>e applicab<br>ate throug               | 4.40<br>1.10<br>wind facto<br>0.25<br>le case:<br>gh system                | 4.30<br>1.08<br>r) (21) x (2<br>0.25 | 3.80<br>0.95<br>2a)m<br>0.22 | 3.80<br>0.95<br>0.22 | 3.70<br>0.93       | 4.00                   | Oct<br>4.30<br>1.08 | Nov<br>4.50        | Dec 4.70 1.18 0.27          | ] (21)<br>] (22)<br>] (22)                |
| filtration rate modified f<br>Jan<br>Ionthly average wind spo<br>5.10<br>/ind factor (22)m ÷ 4<br>1.28<br>djusted infiltration rate (<br>0.29<br>alculate effective air cha<br>If mechanical ventilatio | for monthly win<br>Feb<br>eed from Table<br>5.00<br>1.25<br>(allowing for she<br>0.29<br>nge rate for the<br>on: air change rate<br>recovery: efficient | Mar<br>U2<br>4.90<br>1.23<br>elter and<br>0.28<br>e applicab<br>ate throug<br>ncy in % a | 4.40<br>1.10<br>wind facto<br>0.25<br>le case:<br>gh system<br>sllowing fo | 4.30<br>1.08<br>r) (21) x (2<br>0.25 | 3.80<br>0.95<br>2a)m<br>0.22 | 3.80<br>0.95<br>0.22 | 3.70<br>0.93       | 4.00                   | Oct<br>4.30<br>1.08 | Nov<br>4.50        | Dec<br>4.70<br>1.18<br>0.27 | ] (21<br>] (22<br>] (22<br>] (22<br>] (22 |



|                                     | 0.54                   | 0.54           | 0.54                | 0.53                         | 0.53                                    | 0.52           | 0.52       | 0.52             | 0.53        | 0.53             | 0.53            | 0.54              | (25                |
|-------------------------------------|------------------------|----------------|---------------------|------------------------------|-----------------------------------------|----------------|------------|------------------|-------------|------------------|-----------------|-------------------|--------------------|
|                                     |                        |                |                     |                              | · · ·                                   |                |            |                  |             |                  |                 | ·                 | _                  |
| 3. Heat losses a                    | nd heat lo             | ss paramet     |                     | <b>6</b>                     | 0                                       | <b>N</b> 1 - 4 |            |                  | A           |                  |                 | •                 |                    |
| Element                             |                        |                |                     | Gross<br>rea, m <sup>2</sup> | Openings<br>m <sup>2</sup>              |                | area<br>m² | U-value<br>W/m²K | A x U W     |                  | value,<br>/m².K | Ахк,<br>kJ/K      |                    |
| Door                                |                        |                |                     |                              |                                         | 3.             | 72 x       | 1.20             | = 4.46      |                  |                 |                   | (26                |
| Window                              |                        |                |                     |                              |                                         | 12             | .46 x      | 1.33             | = 16.52     | 2                |                 |                   | (27                |
| Roof window                         |                        |                |                     |                              |                                         | 6.             | 39 x       | 1.33             | = 8.47      |                  |                 |                   | (27                |
| Basement floor                      |                        |                |                     |                              |                                         | 54             | .80 x      | 0.10             | = 5.48      |                  |                 |                   | (28                |
| External wall                       |                        |                |                     |                              |                                         | 110            | D.66 x     | 0.20             | = 22.13     | 3                |                 |                   | (29                |
| Basement wall                       |                        |                |                     |                              |                                         | 51             | .47 x      | 0.18             | = 9.26      |                  |                 |                   | (29                |
| Party wall                          |                        |                |                     |                              |                                         | 61             | .28 x      | 0.00             | = 0.00      |                  |                 |                   | (32                |
| Roof                                |                        |                |                     |                              |                                         | 38             | .64 x      | 0.10             | = 3.86      |                  |                 |                   | (30                |
| Roof                                |                        |                |                     |                              |                                         | 10             | .03 x      | 0.12             | = 1.20      |                  |                 |                   | (30                |
| Roof                                |                        |                |                     |                              |                                         | 1.             | 11 x       | 0.15             | = 0.17      |                  |                 |                   | (30                |
| Total area of exte                  | ernal elem             | ents ∑A, m²    |                     |                              |                                         | 28             | 9.28       |                  |             |                  |                 |                   | (31                |
| abric heat loss,                    | W/K = ∑(A              | × U)           |                     |                              |                                         |                |            |                  | (2          | 6)(30) + (       | 32) =           | 71.57             | (33                |
| Heat capacity Cm                    | n = ∑(А x к)           | 1              |                     |                              |                                         |                |            | (28)             | (30) + (32) | + (32a)(3        | 2e) =           | N/A               | (34                |
| Thermal mass pa                     | rameter (T             | MP) in kJ/n    | ∩²K                 |                              |                                         |                |            |                  |             |                  |                 | 250.00            | (35                |
| Thermal bridges:                    | Σ(L x Ψ) ca            | alculated us   | ing Append          | dix K                        |                                         |                |            |                  |             |                  |                 | 19.77             | (36                |
| Total fabric heat                   | loss                   |                |                     |                              |                                         |                |            |                  |             | (33) + (         | 36) =           | 91.33             | (37                |
|                                     | Jan                    | Feb            | Mar                 | Apr                          | May                                     | Jun            | Jul        | Aug              | Sep         | Oct              | Nov             | Dec               |                    |
| Ventilation heat                    | loss calcula           | ated month     | ly 0.33 x (2        | 25)m x (5)                   |                                         |                |            |                  |             |                  |                 |                   | _                  |
|                                     | 60.04                  | 59.85          | 59.67               | 58.83                        | 58.67                                   | 57.94          | 57.94      | 57.81            | 58.22       | 58.67            | 58.99           | 59.33             | (38                |
| Heat transfer coe                   | efficient, W           | //K (37)m +    | · (38)m             |                              |                                         |                |            | _                |             |                  |                 |                   | _                  |
|                                     | 151.37                 | 151.19         | 151.01              | 150.17                       | 150.01                                  | 149.27         | 149.27     | 149.14           | 149.56      | 150.01           | 150.33          |                   |                    |
|                                     |                        |                |                     |                              |                                         |                |            |                  | Average = 2 | ∑(39)112,        | /12 =           | 150.17            | (39                |
| Heat loss parame                    |                        |                |                     |                              |                                         |                |            | 1                |             |                  | 1               |                   | -                  |
|                                     | 1.15                   | 1.15           | 1.15                | 1.14                         | 1.14                                    | 1.14           | 1.14       | 1.14             | 1.14        | 1.14             | 1.14            | 1.15              | <br>               |
| Number of doub                      |                        | Tabla 1a)      |                     |                              |                                         |                |            |                  | Average = 2 | ∑(40)112,        | /12 =           | 1.14              | (40                |
| Number of days i                    | •                      |                | 24.00               | 20.00                        | 21.00                                   | 20.00          | 21.00      | 21.00            | 20.00       | 24.00            | 20.00           | 21.00             |                    |
|                                     | 31.00                  | 28.00          | 31.00               | 30.00                        | 31.00                                   | 30.00          | 31.00      | 31.00            | 30.00       | 31.00            | 30.00           | 31.00             | (40                |
| 4. Water heatin                     | ig energy r            | equiremen      | t                   |                              |                                         |                |            |                  |             |                  |                 |                   |                    |
| Assumed occupa                      | ncy, N                 |                |                     |                              |                                         |                |            |                  |             |                  |                 | 2.90              | (42                |
|                                     | not water u            | usage in litre | es per day ۱        | √d,average                   | = (25 x N) +                            | 36             |            |                  |             |                  |                 | 103.03            | (43                |
| Annual average h                    |                        | Feb            | Mar                 | Apr                          | May                                     | Jun            | Jul        | Aug              | Sep         | Oct              | Nov             | Dec               |                    |
|                                     | Jan                    |                |                     |                              |                                         | le 1c x (43    | 3)         |                  |             |                  |                 |                   |                    |
| Annual average h                    |                        |                | ch month v          | Vd,m = fact                  | tor from Tab                            |                | •          |                  |             |                  |                 |                   |                    |
| Annual average h                    |                        |                | ach month<br>105.09 | Vd,m = fact<br>100.97        | tor from Tab<br>96.85                   | 92.73          | 92.73      | 96.85            | 100.97      | 105.09           | 109.22          | 113.34            |                    |
| Annual average h                    | in litres pe           | er day for ea  |                     |                              | r – – – – – – – – – – – – – – – – – – – |                |            | 96.85            | 100.97      | 105.09<br>Σ(44)1 | ·               | 113.34<br>1236.40 | (44                |
| Annual average h<br>Hot water usage | in litres pe<br>113.34 | er day for ea  | 105.09              | 100.97                       | 96.85                                   | 92.73          | 92.73      | -                | 100.97      |                  | ·               | 1                 | (44                |
|                                     | in litres pe<br>113.34 | er day for ea  | 105.09              | 100.97                       | 96.85                                   | 92.73          | 92.73      | -                | 100.97      |                  | ·               | 1236.40           | ]<br>] <b>(</b> 44 |

|                                                           | 25.21                                                                                                   | 22.05 | 22.75 | 19.84 | 19.03 | 16.43 | 15.22 | 17.47 | 17.67 | 20.60 | 22.48 | 24.42 | (46) |  |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|--|
| Water storage loss calculated for each month (55) x (41)m |                                                                                                         |       |       |       |       |       |       |       |       |       |       |       |      |  |
|                                                           | 0.00                                                                                                    | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | (56) |  |
| If the vessel cont                                        | If the vessel contains dedicated solar storage or dedicated WWHRS (56)m x [(47) - Vs] ÷ (47), else (56) |       |       |       |       |       |       |       |       |       |       |       |      |  |

|                    | 0.00         | 0.00         | 0.00              | 0.00        | 0.00          | 0.00         | 0.00             | 0.00      | 0.00            | 0.00             | 0.00    | 0.00       | (57) |
|--------------------|--------------|--------------|-------------------|-------------|---------------|--------------|------------------|-----------|-----------------|------------------|---------|------------|------|
| Primary circuit lo | oss for each | n month fro  | m Table 3         |             |               |              |                  |           |                 |                  |         |            |      |
|                    | 0.00         | 0.00         | 0.00              | 0.00        | 0.00          | 0.00         | 0.00             | 0.00      | 0.00            | 0.00             | 0.00    | 0.00       | (59) |
| Combi loss for e   | ach month    | from Table   | 3a, 3b or 3       | с           |               |              |                  |           |                 |                  |         |            |      |
|                    | 50.96        | 46.03        | 50.96             | 49.32       | 49.35         | 45.73        | 47.25            | 49.35     | 49.32           | 50.96            | 49.32   | 50.96      | (61) |
| Total heat requi   | red for wat  | er heating o | calculated f      | or each mo  | onth 0.85 x   | (45)m + (4   | 46)m + (57)r     | n + (59)m | + (61)m         |                  |         |            |      |
|                    | 219.03       | 193.03       | 202.65            | 181.56      | 176.25        | 155.23       | 148.72           | 165.79    | 167.14          | 188.27           | 199.21  | 213.73     | (62) |
| Solar DHW input    | t calculated | l using Appe | endix G or A      | Appendix H  |               |              |                  |           |                 |                  |         |            |      |
|                    | 0.00         | 0.00         | 0.00              | 0.00        | 0.00          | 0.00         | 0.00             | 0.00      | 0.00            | 0.00             | 0.00    | 0.00       | (63) |
| Output from wa     | ter heater f | for each mo  | onth (kWh/        | month) (62  | 2)m + (63)m   | ı            |                  |           |                 |                  |         |            |      |
|                    | 219.03       | 193.03       | 202.65            | 181.56      | 176.25        | 155.23       | 148.72           | 165.79    | 167.14          | 188.27           | 199.21  | 213.73     | ]    |
|                    |              |              |                   |             |               |              |                  |           |                 | ∑(64)1           | .12 =   | 2210.62    | (64) |
| Heat gains from    | water heat   | ing (kWh/m   | nonth) 0.2        | 5 × [0.85 × | (45)m + (61   | .)m] + 0.8 : | × [(46)m + (     | 57)m + (5 | 9)m]            |                  |         |            |      |
|                    | 68.62        | 60.38        | 63.18             | 56.30       | 54.53         | 47.84        | 45.55            | 51.05     | 51.51           | 58.40            | 62.17   | 66.86      | (65) |
|                    |              | •            | •                 | •           | •             | •            |                  |           |                 |                  |         | <b>.</b>   | _    |
| 5. Internal gain   | IS           |              |                   |             |               |              |                  |           |                 |                  |         |            |      |
|                    | Jan          | Feb          | Mar               | Apr         | May           | Jun          | Jul              | Aug       | Sep             | Oct              | Nov     | Dec        |      |
| Metabolic gains    | (Table 5)    |              |                   |             |               |              |                  |           |                 |                  |         |            | _    |
|                    | 144.91       | 144.91       | 144.91            | 144.91      | 144.91        | 144.91       | 144.91           | 144.91    | 144.91          | 144.91           | 144.91  | 144.91     | (66) |
| Lighting gains (c  | alculated in | Appendix I   | L, equation       | L9 or L9a), | also see Ta   | ble 5        |                  |           |                 |                  |         |            | _    |
|                    | 28.07        | 24.93        | 20.27             | 15.35       | 11.47         | 9.69         | 10.47            | 13.60     | 18.26           | 23.18            | 27.06   | 28.85      | (67) |
| Appliance gains    | (calculated  | in Appendi   | x L, equatio      | on L13 or L | 13a), also se | ee Table 5   |                  |           |                 |                  |         |            | _    |
|                    | 299.27       | 302.37       | 294.55            | 277.89      | 256.86        | 237.09       | 223.89           | 220.78    | 228.61          | 245.27           | 266.30  | 286.06     | (68) |
| Cooking gains (c   | alculated ir | n Appendix   | L, equation       | L15 or L15  | a), also see  | Table 5      |                  |           |                 |                  |         |            | _    |
|                    | 37.49        | 37.49        | 37.49             | 37.49       | 37.49         | 37.49        | 37.49            | 37.49     | 37.49           | 37.49            | 37.49   | 37.49      | (69) |
| Pump and fan ga    | ains (Table  | 5a)          |                   |             |               |              |                  |           |                 |                  |         |            |      |
|                    | 3.00         | 3.00         | 3.00              | 3.00        | 3.00          | 3.00         | 3.00             | 3.00      | 3.00            | 3.00             | 3.00    | 3.00       | (70) |
| Losses e.g. evap   | oration (Ta  | ble 5)       |                   |             |               |              |                  |           |                 |                  |         |            |      |
|                    | -115.93      | -115.93      | -115.93           | -115.93     | -115.93       | -115.93      | -115.93          | -115.93   | -115.93         | -115.93          | -115.93 | 3 -115.93  | (71) |
| Water heating g    | ains (Table  | 5)           |                   |             |               |              |                  |           |                 |                  |         |            |      |
|                    | 92.24        | 89.86        | 84.92             | 78.20       | 73.29         | 66.45        | 61.23            | 68.62     | 71.54           | 78.49            | 86.34   | 89.87      | (72) |
| Total internal ga  | ins (66)m -  | + (67)m + (6 | 58)m + (69)       | m + (70)m   | + (71)m + (7  | 72)m         |                  |           |                 |                  |         |            |      |
|                    | 489.05       | 486.63       | 469.21            | 440.91      | 411.10        | 382.70       | 365.05           | 372.48    | 387.88          | 416.42           | 449.18  | 474.25     | (73) |
| 6 Solar gains      |              |              |                   |             |               |              |                  |           |                 |                  |         |            |      |
| 6. Solar gains     |              |              |                   |             | A             | 6.           | las flux         |           | _               |                  |         | Caina      |      |
|                    |              |              | Access f<br>Table |             | Area<br>m²    |              | lar flux<br>N/m² | spe       | g<br>cific data | FF<br>specific c | lata    | Gains<br>W |      |
|                    |              |              |                   |             |               |              |                  | or        | Table 6b        | or Table         |         |            |      |
| South              |              |              | 0.7               | 7 X         | 10.58         | x            | 46.75 x          | 0.9 x     | 0.72 x          | 0.70             | =       | 172.76     | (78) |
| Horizontal         |              |              | 1.0               | 0 x [       | 4.50          | x 2          | 26.00 x          | 0.9 x     | 0.72 x          | 0.70             | =       | 53.07      | ]    |
| West               |              |              | 0.7               | 7 ×         | 0.94          | x            | 19.64 x          | 0.9 x     | 0.72 x          | 0.70             | =       | 6.45       | (80) |
| East               |              |              | 0.7               | 7 X         | 0.94          | x []         | 19.64 x          | 0.9 x     | 0.72 x          | 0.70             | =       | 6.45       | (76) |
| West               |              |              | 1.0               | 0 x [       | 1.89          | x 2          | 26.61 x          | 0.9 x     | 0.72 x          | 0.70             | =       | 22.81      | (80) |
| Solar gains in wa  | atts ∑(74)m  | n(82)m       |                   |             |               |              |                  |           |                 |                  |         |            | -    |
|                    | 261.54       | 464.51       | 677.60            | 896.24      | 1045.58       | 1053.70      | 1009.55          | 897.50    | 754.15          | 525.53           | 316.93  | 221.34     | (83) |
| Total gains - inte |              |              |                   |             | •             |              |                  | •         |                 |                  | •       |            |      |

7. Mean internal temperature (heating season)

695.59 **(84)** 

766.11

750.59 951.14 1146.81 1337.14 1456.68 1436.40 1374.60 1269.98 1142.03 941.95

| Temperature during heating periods in the living area from Table 9, Th1(°C)       21.00       (85)         Ian       Feb       Mar       Apr       Jun       Jul       Aug       Sep       Oct       Nov       Dec |                       |               |              |               |              |              |        |        |        |              |         |         | (85)  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|--------------|---------------|--------------|--------------|--------|--------|--------|--------------|---------|---------|-------|
|                                                                                                                                                                                                                    | Jan                   | Feb           | Mar          | Apr           | May          | Jun          | Jul    | Aug    | Sep    | Oct          | Nov     | Dec     |       |
| Utilisation facto                                                                                                                                                                                                  | r for gains f         | or living are | a n1,m (se   | e Table 9a)   |              |              |        |        |        |              |         |         |       |
|                                                                                                                                                                                                                    | 1.00                  | 0.99          | 0.98         | 0.93          | 0.82         | 0.63         | 0.47   | 0.53   | 0.79   | 0.97         | 1.00    | 1.00    | (86)  |
| Mean internal t                                                                                                                                                                                                    |                       |               |              |               |              |              | -      |        |        |              |         |         | ()    |
| Weathinternalt                                                                                                                                                                                                     | -                     | - · ·         | -            |               |              | 20.07        | 20.00  | 20.00  | 20.01  | 20 54        | 20.05   | 10.00   | (07)  |
|                                                                                                                                                                                                                    | 19.73                 | 19.94         | 20.24        | 20.59         | 20.85        | 20.97        | 20.99  | 20.99  | 20.91  | 20.54        | 20.05   | 19.69   | (87)  |
| Temperature du                                                                                                                                                                                                     | iring heatin          | g periods in  | the rest of  | dwelling fr   | om Table 9   | ), Th2("C)   |        |        |        |              |         |         |       |
|                                                                                                                                                                                                                    | 19.96                 | 19.96         | 19.96        | 19.97         | 19.97        | 19.97        | 19.97  | 19.97  | 19.97  | 19.97        | 19.96   | 19.96   | (88)  |
| Utilisation facto                                                                                                                                                                                                  | r for gains f         | or rest of d  | welling n2,  | m             |              |              |        |        |        |              |         |         |       |
|                                                                                                                                                                                                                    | 1.00                  | 0.99          | 0.97         | 0.91          | 0.76         | 0.54         | 0.36   | 0.42   | 0.71   | 0.95         | 0.99    | 1.00    | (89)  |
| Mean internal t                                                                                                                                                                                                    | emperature            | in the rest   | of dwelling  | g T2 (follow  | steps 3 to 3 | 7 in Table 9 | c)     |        |        |              |         |         |       |
|                                                                                                                                                                                                                    | 18.80                 | 19.01         | 19.31        | 19.65         | 19.87        | 19.96        | 19.97  | 19.97  | 19.92  | 19.60        | 19.13   | 18.76   | (90)  |
| Living area fract                                                                                                                                                                                                  |                       |               |              |               |              |              |        |        |        | /ing area ÷  |         | 0.14    | (91)  |
| -                                                                                                                                                                                                                  |                       | for the wh    | ala duyallia | ~ fl A v T1 i | /1 f( A) v T | · 1          |        |        |        |              | (4) -   | 0.14    | (91)  |
| Mean internal t                                                                                                                                                                                                    | -                     |               |              | -             |              |              |        |        |        |              |         |         |       |
|                                                                                                                                                                                                                    | 18.93                 | 19.14         | 19.44        | 19.78         | 20.01        | 20.10        | 20.11  | 20.11  | 20.06  | 19.73        | 19.25   | 18.89   | (92)  |
| Apply adjustme                                                                                                                                                                                                     | nt to the me          | ean internal  | temperatu    | ure from Ta   | ble 4e whe   | re appropr   | iate   |        |        |              |         |         |       |
|                                                                                                                                                                                                                    | 18.93                 | 19.14         | 19.44        | 19.78         | 20.01        | 20.10        | 20.11  | 20.11  | 20.06  | 19.73        | 19.25   | 18.89   | (93)  |
|                                                                                                                                                                                                                    |                       |               |              |               |              |              |        |        |        |              | ×       |         |       |
| 8. Space heating                                                                                                                                                                                                   | ng requirem           | ient          |              |               |              |              |        |        |        |              |         |         |       |
|                                                                                                                                                                                                                    | Jan                   | Feb           | Mar          | Apr           | May          | Jun          | Jul    | Aug    | Sep    | Oct          | Nov     | Dec     |       |
| Utilisation facto                                                                                                                                                                                                  | r for gains,          | ηm            |              |               |              |              |        |        |        |              |         |         |       |
|                                                                                                                                                                                                                    | 1.00                  | 0.99          | 0.97         | 0.91          | 0.76         | 0.56         | 0.38   | 0.43   | 0.72   | 0.95         | 0.99    | 1.00    | (94)  |
| Useful gains, ηn                                                                                                                                                                                                   | nGm, W (94            | )m x (84)m    |              |               |              |              |        |        |        |              |         |         |       |
| 0 / 1                                                                                                                                                                                                              | 748.40                | 942.28        | 1112.85      | 1211.39       | 1112.38      | 799.46       | 521.85 | 548.86 | 819.47 | 892.47       | 760.53  | 694.19  | (95)  |
| Monthly average                                                                                                                                                                                                    |                       | II            |              |               | 1112.50      | 755.40       | 521.05 | 540.00 | 015.47 | 052.47       | 700.55  | 054.15  | (55)  |
| Monthly averag                                                                                                                                                                                                     |                       | -             |              |               |              |              |        |        |        |              |         |         | (     |
|                                                                                                                                                                                                                    | 4.30                  | 4.90          | 6.50         | 8.90          | 11.70        | 14.60        | 16.60  | 16.40  | 14.10  | 10.60        | 7.10    | 4.20    | (96)  |
| Heat loss rate fo                                                                                                                                                                                                  | or mean inte          | ernal tempe   |              | , W [(39)m    | x [(93)m - ( | [96)m]       |        |        |        |              |         |         |       |
|                                                                                                                                                                                                                    | 2214.33               | 2152.27       | 1953.42      | 1633.70       | 1246.41      | 820.75       | 524.30 | 553.50 | 891.13 | 1369.93      | 1827.10 | 2213.05 | (97)  |
| Space heating re                                                                                                                                                                                                   | equirement            | , kWh/mont    | th 0.024 x   | [(97)m - (95  | 5)m] x (41)r | n            |        |        |        |              |         |         |       |
|                                                                                                                                                                                                                    | 1090.65               | 813.11        | 625.38       | 304.06        | 99.72        | 0.00         | 0.00   | 0.00   | 0.00   | 355.23       | 767.93  | 1130.04 |       |
|                                                                                                                                                                                                                    |                       |               |              |               |              |              |        |        | ∑(98   | 3)15, 10     | 12 = 5  | 186.12  | (98)  |
| Space heating re                                                                                                                                                                                                   | equirement            | kWh/m²/ve     | ar           |               |              |              |        |        |        | (98) -       | ÷ (4)   | 39.50   | (99)  |
| opuce nearing r                                                                                                                                                                                                    | equilence in enterine |               |              |               |              |              |        |        |        | (50)         |         |         | (55)  |
| 9a. Energy req                                                                                                                                                                                                     | uirements -           | individual    | heating sys  | stems inclu   | ding micro   | -CHP         |        |        |        |              |         |         |       |
| Space heating                                                                                                                                                                                                      |                       |               |              |               |              |              |        |        |        |              |         |         |       |
| Fraction of space                                                                                                                                                                                                  | e heat from           | secondary     | /suppleme    | ntarv syster  | n (table 11  | )            |        |        |        |              |         | 0.00    | (201) |
| Fraction of space                                                                                                                                                                                                  |                       |               |              |               |              |              |        |        |        | 1 - (20      | )1) –   | 1.00    | (202) |
|                                                                                                                                                                                                                    |                       |               |              |               |              |              |        |        |        | 1 - (20      |         |         |       |
| Fraction of space                                                                                                                                                                                                  |                       |               |              |               |              |              |        |        |        |              |         | 0.00    | (202) |
| Fraction of tota                                                                                                                                                                                                   | l space heat          | from main     | system 1     |               |              |              |        |        | (20    | 2) x [1- (20 | 3)] =   | 1.00    | (204) |
| Fraction of tota                                                                                                                                                                                                   | l space heat          | from main     | system 2     |               |              |              |        |        |        | (202) x (20  | )3) =   | 0.00    | (205) |
| Efficiency of ma                                                                                                                                                                                                   | in system 1           | (%)           |              |               |              |              |        |        |        |              |         | 91.80   | (206) |
|                                                                                                                                                                                                                    | Jan                   | Feb           | Mar          | Apr           | May          | Jun          | Jul    | Aug    | Sep    | Oct          | Nov     | Dec     |       |
| Space heating fu                                                                                                                                                                                                   | uel (main sy          | stem 1), kW   | /h/month     |               |              |              |        |        |        |              |         |         |       |
|                                                                                                                                                                                                                    | 1188.07               | 885.74        | 681.24       | 331.22        | 108.62       | 0.00         | 0.00   | 0.00   | 0.00   | 386.96       | 836.53  | 1230.98 |       |
|                                                                                                                                                                                                                    |                       | 000174        |              | 551.22        | 100.02       | 0.00         | 0.00   | 0.00   |        | )15, 10      |         | 649.37  | (211) |
| Makes 1                                                                                                                                                                                                            |                       |               |              |               |              |              |        |        | 2(211  | .,1, 10      | 12 - 5  | J-13.37 | (211) |
| Water heating                                                                                                                                                                                                      |                       |               |              |               |              |              |        |        |        |              |         |         |       |
| Efficiency of wa                                                                                                                                                                                                   | ter heater            |               |              |               |              |              |        |        |        |              |         |         |       |
|                                                                                                                                                                                                                    | 87.10                 | 86.85         | 86.33        | 85.08         | 82.63        | 79.50        | 79.50  | 79.50  | 79.50  | 85.34        | 86.71   | 87.18   | (217) |
|                                                                                                                                                                                                                    |                       |               |              |               |              |              |        |        |        |              |         |         |       |

| Water heating fuel, kWh/month                                               |                    |        |                        |                 |                            |        |
|-----------------------------------------------------------------------------|--------------------|--------|------------------------|-----------------|----------------------------|--------|
| 251.49 222.25 234.74 213.40 213                                             | 3.31 195.26 187    | 7.07 2 | 08.54 210.24           | 220.61 229      | 9.74 245.17                | ]      |
|                                                                             |                    |        |                        | ∑(219a)112 =    | 2631.82                    | (219)  |
| Annual totals                                                               |                    |        |                        |                 |                            |        |
| Space heating fuel - main system 1                                          |                    |        |                        |                 | 5649.37                    | ]      |
| Water heating fuel                                                          |                    |        |                        |                 | 2631.82                    | ]      |
| Electricity for pumps, fans and electric keep-hot (Table 4f)                |                    |        |                        |                 |                            |        |
| central heating pump or water pump within warm air heating                  | unit               |        | 30.00                  |                 |                            | (230c) |
| boiler flue fan                                                             |                    |        | 45.00                  |                 |                            | (230e) |
| Total electricity for the above, kWh/year                                   |                    |        |                        |                 | 75.00                      | (231)  |
| Electricity for lighting (Appendix L)                                       |                    |        |                        |                 | 495.67                     | (232)  |
| Total delivered energy for all uses                                         |                    | (211   | l)(221) + (231) + (    | 232)(237b) =    | 8851.86                    | (238)  |
| 10a. Fuel costs - individual heating systems including micro-CHF            | •                  |        |                        |                 |                            |        |
|                                                                             | Fuel               |        | Fuel price             |                 | Fuel                       |        |
|                                                                             | kWh/year           |        |                        |                 | cost £/year                | _      |
| Space heating - main system 1                                               | 5649.37            | x      | 3.48                   | x 0.01 =        | 196.60                     | (240)  |
| Water heating                                                               | 2631.82            | x      | 3.48                   | x 0.01 =        | 91.59                      | (247)  |
| Pumps and fans                                                              | 75.00              | x      | 13.19                  | x 0.01 =        | 9.89                       | (249)  |
| Electricity for lighting                                                    | 495.67             | x      | 13.19                  | x 0.01 =        | 65.38                      | (250)  |
| Additional standing charges                                                 |                    |        |                        |                 | 120.00                     | (251)  |
| Total energy cost                                                           |                    |        | (240)(242) +           | (245)(254) =    | 483.46                     | (255)  |
| 11a. SAP rating - individual heating systems including micro-CH             | P                  |        |                        |                 |                            |        |
| Energy cost deflator (Table 12)                                             |                    |        |                        |                 | 0.42                       | (256)  |
| Energy cost factor (ECF)                                                    |                    |        |                        |                 | 1.15                       | (257)  |
| SAP value                                                                   |                    |        |                        |                 | 83.93                      | ]      |
| SAP rating (section 13)                                                     |                    |        |                        |                 | 84                         | (258)  |
| SAP band                                                                    |                    |        |                        |                 | В                          | ]      |
| 12a. CO <sub>2</sub> emissions - individual heating systems including micro | -СНР               |        |                        |                 |                            |        |
|                                                                             | Energy             |        | <b>Emission factor</b> |                 | Emissions                  |        |
|                                                                             | kWh/year           |        | kg CO₂/kWh             |                 | kg CO₂/year                |        |
| Space heating - main system 1                                               | 5649.37            | х      | 0.22                   | =               | 1220.26                    | (261)  |
| Water heating                                                               | 2631.82            | х      | 0.22                   | =               | 568.47                     | (264)  |
| Space and water heating                                                     |                    |        | (261) + (262) +        | (263) + (264) = | 1788.74                    | (265)  |
| Pumps and fans                                                              | 75.00              | х      | 0.52                   | =               | 38.93                      | (267)  |
| Electricity for lighting                                                    | 495.67             | х      | 0.52                   | =               | 257.25                     | (268)  |
| Total CO <sub>2</sub> , kg/year                                             |                    |        |                        | (265)(271) =    | 2084.92                    | (272)  |
| Dwelling CO <sub>2</sub> emission rate                                      |                    |        |                        | (272) ÷ (4) =   | 15.88                      | (273)  |
| El value                                                                    |                    |        |                        |                 | 84.15                      |        |
| El rating (section 14)                                                      |                    |        |                        |                 | 84                         | (274)  |
| El band                                                                     |                    |        |                        |                 | В                          |        |
| 13a. Primary energy - individual heating systems including micro            | o-CHP              |        |                        |                 |                            |        |
|                                                                             | Energy<br>kWh/year |        | Primary factor         |                 | Primary Energy<br>kWh/year |        |
| Space heating - main system 1                                               | 5649.37            | x      | 1.22                   | =               | 6892.23                    | (261)  |
| · ····································                                      |                    |        |                        |                 | 2240.00                    |        |

3210.82

10103.05

(264)

(265)

2631.82

х

1.22

=

(261) + (262) + (263) + (264) =

Water heating

Space and water heating

| Pumps and fans                           | 75.00  | ] x | 3.07 | ] = | 230.25   | (267) |
|------------------------------------------|--------|-----|------|-----|----------|-------|
| Electricity for lighting                 | 495.67 | ] x | 3.07 | ] = | 1521.71  | (268) |
| Primary energy kWh/year                  |        |     |      |     | 11855.01 | (272) |
| Dwelling primary energy rate kWh/m2/year |        |     |      |     | 90.30    | (273) |



This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

|                                                                                                                                                                                                                                                                                                                                                                                         | Mrs Nicola                                                                                                                                                                                                                  | a Battista                                                                                                                                                       |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                | Ass           | sessor num                           | ber                                             | 3998                          |                                                                         |                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------|--------------------------------------|-------------------------------------------------|-------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Client                                                                                                                                                                                                                                                                                                                                                                                  | The Haleb                                                                                                                                                                                                                   | ourne Gro                                                                                                                                                        | up                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                | Las           | t modified                           |                                                 | 26/08                         | /2014                                                                   |                                                                                        |
| Address                                                                                                                                                                                                                                                                                                                                                                                 | Plot 8 The                                                                                                                                                                                                                  | Old Schoo                                                                                                                                                        | ol Park Lane                                                                                               | e, Richmon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d, TW9                                                                                  |                                                                                |               |                                      |                                                 |                               |                                                                         |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                |               |                                      |                                                 |                               |                                                                         |                                                                                        |
| 1. Overall dwelling dimer                                                                                                                                                                                                                                                                                                                                                               | isions                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                            | Δ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rea (m²)                                                                                |                                                                                | Aver          | age storey                           |                                                 | Ve                            | olume (m³)                                                              |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iea (iii )                                                                              |                                                                                |               | ight (m)                             |                                                 | vc                            | June (m )                                                               |                                                                                        |
| owest occupied                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.54                                                                                   | (1a) x                                                                         |               | 2.35                                 | (2a) =                                          |                               | 118.77                                                                  | (3a)                                                                                   |
| +1                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44.62                                                                                   | (1b) x                                                                         |               | 2.70                                 | (2b) =                                          |                               | 120.47                                                                  | ] (3b)                                                                                 |
| -2                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41.85                                                                                   | (1c) x                                                                         |               | 2.70                                 | (2c) =                                          |                               | 113.00                                                                  | <br>(3c)                                                                               |
| Total floor area                                                                                                                                                                                                                                                                                                                                                                        | (1a) +                                                                                                                                                                                                                      | + (1b) + (1c                                                                                                                                                     | :) + (1d)(1                                                                                                | Ln) = 🗌 🗄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 137.01                                                                                  | (4)                                                                            |               |                                      |                                                 |                               |                                                                         |                                                                                        |
| Owelling volume                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                | (3a)          | + (3b) + (3                          | c) + (3d)(3                                     | n) =                          | 352.24                                                                  | (5)                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                |               |                                      |                                                 |                               |                                                                         |                                                                                        |
| 2. Ventilation rate                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                |               |                                      |                                                 | m                             | <sup>3</sup> per hour                                                   |                                                                                        |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                |               | 0                                    | x 40 =                                          |                               | 0                                                                       | (6a)                                                                                   |
| Number of open flues                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                |               | 0                                    | x 40 =                                          |                               | 0                                                                       | (0a)                                                                                   |
| Number of intermittent far                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                |               | 4                                    | x 10 =                                          |                               | 40                                                                      | _ (00)<br>_ (7a)                                                                       |
| Number of passive vents                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                |               | 0                                    | x 10 =                                          |                               | 0                                                                       | (78)                                                                                   |
| Number of flueless gas fire                                                                                                                                                                                                                                                                                                                                                             | s                                                                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                |               | 0                                    | x 40 =                                          |                               | 0                                                                       | ] (70)                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                | L             |                                      |                                                 | L                             | changes pe                                                              |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                |               |                                      |                                                 |                               | hour                                                                    |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                |               |                                      |                                                 |                               |                                                                         |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + (6b) + (7a                                                                            |                                                                                | -             | 40                                   | ÷ (5) =                                         |                               | 0.11                                                                    | (8)                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                  | ntended, pr                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                | -             | -                                    | ÷ (5) =                                         |                               | 0.11                                                                    | (8)                                                                                    |
| f a pressurisation test has                                                                                                                                                                                                                                                                                                                                                             | been carried                                                                                                                                                                                                                | out or is ir                                                                                                                                                     |                                                                                                            | roceed to (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17), otherwi                                                                            | ise continue                                                                   | e from (9) to | -                                    | ÷ (5) =                                         |                               | 0.11 3.00                                                               |                                                                                        |
| f a pressurisation test has<br>Air permeability value, q50                                                                                                                                                                                                                                                                                                                              | been carried<br>, expressed i                                                                                                                                                                                               | <i>out or is ir</i><br>n cubic me                                                                                                                                | etres per ho                                                                                               | roceed to (1<br>our per squ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17), otherwi                                                                            | <i>ise continue</i><br>of envelope                                             | e from (9) to | -                                    | ÷ (5) =                                         |                               |                                                                         | _ (8)<br>_ (17)<br>_ (18)                                                              |
| f a pressurisation test has<br>Air permeability value, q50<br>f based on air permeability                                                                                                                                                                                                                                                                                               | <i>been carried</i><br>, expressed i<br>y value, then                                                                                                                                                                       | <i>out or is ir</i><br>n cubic me<br>(18) = [(17                                                                                                                 | etres per ho<br>) ÷ 20] + (8                                                                               | roceed to (1<br>our per squ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17), otherwi                                                                            | <i>ise continue</i><br>of envelope                                             | e from (9) to | -                                    | ÷ (5) =                                         |                               | 3.00                                                                    | (17)                                                                                   |
| f a pressurisation test has<br>Air permeability value, q50<br>f based on air permeability<br>Number of sides on which<br>Shelter factor                                                                                                                                                                                                                                                 | <i>been carried</i><br>), expressed i<br>y value, then<br>the dwelling                                                                                                                                                      | out or is ir<br>n cubic me<br>(18) = [(17<br>is sheltere                                                                                                         | etres per ho<br>) ÷ 20] + (8                                                                               | roceed to (1<br>our per squ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17), otherwi                                                                            | <i>ise continue</i><br>of envelope                                             | e from (9) to | o (16)                               | [0.075 x (19                                    | 9)] = [                       | 3.00<br>0.26                                                            | ] (17)<br>] (18)<br>] (19)<br>] (20)                                                   |
| nfiltration due to chimney<br>If a pressurisation test has<br>Air permeability value, q50<br>f based on air permeability<br>Number of sides on which<br>Shelter factor<br>nfiltration rate incorporati                                                                                                                                                                                  | been carried<br>), expressed i<br>y value, then<br>the dwelling<br>ng shelter fa                                                                                                                                            | out or is ir<br>n cubic me<br>(18) = [(17<br>is sheltere<br>ctor                                                                                                 | etres per ho<br>) ÷ 20] + (8<br>d                                                                          | roceed to (1<br>our per squ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17), otherwi                                                                            | <i>ise continue</i><br>of envelope                                             | e from (9) to | o (16)                               |                                                 | 9)] = [                       | 3.00<br>0.26<br>3                                                       | ] (17)<br>] (18)<br>] (19)                                                             |
| f a pressurisation test has<br>Air permeability value, q50<br>f based on air permeability<br>Number of sides on which<br>Shelter factor<br>nfiltration rate incorporation                                                                                                                                                                                                               | been carried<br>), expressed i<br>y value, then<br>the dwelling<br>ing shelter fac<br>or monthly w                                                                                                                          | out or is in<br>n cubic me<br>(18) = [(17<br>is sheltere<br>ctor<br>ind speed:                                                                                   | etres per ho<br>) ÷ 20] + (8<br>d                                                                          | roceed to (1<br>our per squ<br>3), otherwis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17), otherwi<br>lare metre c<br>se (18) = (16                                           | ise continue<br>of envelope                                                    | area          | 1 -                                  | [0.075 x (19<br>(18) x (2                       | ())] = [<br>()) = [           | 3.00<br>0.26<br>3<br>0.78<br>0.20                                       | ] (17)<br>] (18)<br>] (19)<br>] (20)                                                   |
| f a pressurisation test has<br>Air permeability value, q50<br>f based on air permeability<br>Number of sides on which<br>Shelter factor<br>nfiltration rate incorporation<br>nfiltration rate modified for<br>Jan                                                                                                                                                                       | been carried<br>), expressed i<br>y value, then<br>the dwelling<br>ng shelter fa<br>or monthly w<br>Feb                                                                                                                     | out or is ir<br>n cubic me<br>(18) = [(17<br>is sheltere<br>ctor<br>ind speed:<br><b>Mar</b>                                                                     | etres per ho<br>) ÷ 20] + (8<br>d                                                                          | roceed to (1<br>our per squ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17), otherwi                                                                            | <i>ise continue</i><br>of envelope                                             | e from (9) to | o (16)                               | [0.075 x (19                                    | 9)] = [                       | 3.00<br>0.26<br>3<br>0.78                                               | ] (17)<br>] (18)<br>] (19)<br>] (20)                                                   |
| f a pressurisation test has<br>Air permeability value, q50<br>f based on air permeability<br>Number of sides on which<br>Shelter factor<br>nfiltration rate incorporati<br>nfiltration rate modified fo<br>Jan<br>Monthly average wind spe                                                                                                                                              | been carried<br>, expressed i<br>y value, then<br>the dwelling<br>ing shelter fa-<br>or monthly w<br><b>Feb</b><br>ed from Table                                                                                            | out or is ir<br>n cubic me<br>(18) = [(17<br>is sheltere<br>ctor<br>ind speed:<br>Mar<br>e U2                                                                    | etres per ho<br>) ÷ 20] + (8<br>d<br><b>Apr</b>                                                            | roceed to (1<br>our per squ<br>)), otherwis<br>May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17), otherwi<br>lare metre o<br>se (18) = (16<br>Jun                                    | ise continue<br>of envelope<br>5)<br>Jul                                       | area<br>Aug   | р (16)<br>1 -<br>Sep                 | [0.075 x (19<br>(18) x (2<br><b>Oct</b>         | ()] = (0) = Nov               | 3.00<br>0.26<br>3<br>0.78<br>0.20<br>Dec                                | ] (17)<br>] (18)<br>] (19)<br>] (20)<br>] (21)                                         |
| If a pressurisation test has<br>Air permeability value, q50<br>f based on air permeability<br>Number of sides on which<br>Shelter factor<br>nfiltration rate incorporati<br>nfiltration rate modified fo<br>Jan<br>Monthly average wind spe<br>5.10                                                                                                                                     | been carried<br>), expressed i<br>y value, then<br>the dwelling<br>ng shelter fa<br>or monthly w<br>Feb                                                                                                                     | out or is ir<br>n cubic me<br>(18) = [(17<br>is sheltere<br>ctor<br>ind speed:<br><b>Mar</b>                                                                     | etres per ho<br>) ÷ 20] + (8<br>d                                                                          | roceed to (1<br>our per squ<br>3), otherwis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17), otherwi<br>lare metre c<br>se (18) = (16                                           | ise continue<br>of envelope                                                    | area          | 1 -                                  | [0.075 x (19<br>(18) x (2                       | ())] = [<br>()) = [           | 3.00<br>0.26<br>3<br>0.78<br>0.20                                       | ] (17)<br>] (18)<br>] (19)<br>] (20)                                                   |
| f a pressurisation test has<br>Air permeability value, q50<br>f based on air permeability<br>Number of sides on which<br>Shelter factor<br>nfiltration rate incorporati<br>nfiltration rate modified fo<br>Jan<br>Monthly average wind spect<br>5.10<br>Wind factor (22)m ÷ 4                                                                                                           | been carried<br>, expressed i<br>y value, then<br>the dwelling<br>ng shelter fa-<br>or monthly w<br>Feb<br>ed from Table<br>5.00                                                                                            | out or is ir<br>n cubic me<br>(18) = [(17<br>is sheltere<br>ctor<br>ind speed:<br>Mar<br>e U2<br>4.90                                                            | etres per ho<br>) ÷ 20] + (8<br>d<br><b>Apr</b><br><u>4.40</u>                                             | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17), otherwi<br>iare metre o<br>se (18) = (16<br>Jun<br>3.80                            | ise continue<br>of envelope<br>5)<br>Jul<br>3.80                               | Aug           | 2 (16)<br>1 -<br>Sep<br>4.00         | [0.075 x (19<br>(18) x (2<br><b>Oct</b><br>4.30 | ()] =<br>(0) =<br>Nov<br>4.50 | 3.00<br>0.26<br>3<br>0.78<br>0.20<br>Dec<br>4.70                        | ] (17)<br>] (18)<br>] (19)<br>] (20)<br>] (21)<br>] (22)                               |
| f a pressurisation test has<br>Air permeability value, q50<br>f based on air permeability<br>Number of sides on which<br>shelter factor<br>nfiltration rate incorporation<br>filtration rate modified for<br>Jan<br>Monthly average wind spectrum<br>5.10<br>Vind factor (22)m ÷ 4                                                                                                      | been carried<br>), expressed i<br>y value, then<br>the dwelling<br>ng shelter fa-<br>or monthly w<br>Feb<br>ed from Table<br>5.00                                                                                           | out or is ir<br>n cubic me<br>(18) = [(17<br>is sheltere<br>ctor<br>ind speed:<br>Mar<br>e U2<br>4.90                                                            | etres per ho<br>) ÷ 20] + (8<br>d<br><b>Apr</b><br><u>4.40</u><br>1.10                                     | May<br>1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17), otherwi<br>are metre o<br>se (18) = (16<br>Jun<br>3.80                             | ise continue<br>of envelope<br>5)<br>Jul                                       | area<br>Aug   | р (16)<br>1 -<br>Sep                 | [0.075 x (19<br>(18) x (2<br><b>Oct</b>         | ()] = (0) = Nov               | 3.00<br>0.26<br>3<br>0.78<br>0.20<br>Dec                                | ] (17)<br>] (18)<br>] (19)<br>] (20)<br>] (21)                                         |
| f a pressurisation test has<br>Air permeability value, q50<br>f based on air permeability<br>Number of sides on which<br>Shelter factor<br>Infiltration rate incorporation<br>filtration rate modified for<br>Jan<br>Monthly average wind spection<br>5.10<br>Nind factor (22)m ÷ 4                                                                                                     | been carried<br>), expressed i<br>y value, then<br>the dwelling<br>ng shelter fa-<br>or monthly w<br>Feb<br>ed from Table<br>5.00                                                                                           | out or is ir<br>n cubic me<br>(18) = [(17<br>is sheltere<br>ctor<br>ind speed:<br>Mar<br>e U2<br>4.90                                                            | etres per ho<br>) ÷ 20] + (8<br>d<br><b>Apr</b><br><u>4.40</u><br>1.10                                     | May<br>1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17), otherwi<br>are metre o<br>se (18) = (16<br>Jun<br>3.80                             | ise continue<br>of envelope<br>5)<br>Jul<br>3.80                               | Aug           | 2 (16)<br>1 -<br>Sep<br>4.00         | [0.075 x (19<br>(18) x (2<br><b>Oct</b><br>4.30 | ()] =<br>(0) =<br>Nov<br>4.50 | 3.00<br>0.26<br>3<br>0.78<br>0.20<br>Dec<br>4.70                        | ] (17)<br>] (18)<br>] (19)<br>] (20)<br>] (21)<br>] (22)                               |
| f a pressurisation test has<br>Air permeability value, q50<br>f based on air permeability<br>Number of sides on which<br>Shelter factor<br>Infiltration rate incorporation<br>filtration rate modified for<br>Jan<br>Monthly average wind spect<br>5.10<br>Wind factor (22)m ÷ 4<br>1.28<br>Adjusted infiltration rate (a<br>0.26                                                       | been carried<br>), expressed i<br>y value, then<br>the dwelling<br>ng shelter fac-<br>or monthly w<br>Feb<br>ed from Table<br>5.00<br>1.25<br>sllowing for s<br>0.26                                                        | out or is ir<br>n cubic me<br>(18) = [(17<br>is sheltere<br>ctor<br>ind speed:<br>Mar<br>e U2<br>4.90<br>1.23<br>helter and<br>0.25                              | etres per ho<br>) ÷ 20] + (8<br>d<br><b>Apr</b><br>4.40<br>1.10<br>wind facto<br>0.22                      | May<br>4.30<br>(21) x (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17), otherwi<br>iare metre o<br>se (18) = (16<br>Jun<br>3.80<br>0.95<br>2a)m            | ise continue<br>of envelope<br>5)<br>Jul<br>3.80                               | Aug<br>3.70   | 2 (16)<br>1 -<br>Sep<br>4.00<br>1.00 | [0.075 x (19<br>(18) x (2<br><b>Oct</b><br>4.30 | ()] = (0) = Nov 4.50 1.13     | 3.00<br>0.26<br>3<br>0.78<br>0.20<br><b>Dec</b><br>4.70                 | ] (17)<br>] (18)<br>] (19)<br>] (20)<br>] (21)<br>] (22)<br>] (22a                     |
| f a pressurisation test has<br>Air permeability value, q50<br>f based on air permeability<br>Number of sides on which<br>Shelter factor<br>Infiltration rate incorporation<br>filtration rate modified for<br>Jan<br>Monthly average wind spect<br>5.10<br>Wind factor (22)m ÷ 4<br>1.28<br>Adjusted infiltration rate (a<br>0.26                                                       | been carried<br>, expressed i<br>y value, then<br>the dwelling<br>ng shelter fa-<br>or monthly w<br>Feb<br>ed from Table<br>5.00<br>1.25<br>allowing for s<br>0.26<br>ge rate for th                                        | out or is ir<br>n cubic me<br>(18) = [(17<br>is sheltere<br>ctor<br>ind speed:<br>Mar<br>e U2<br>4.90<br>1.23<br>helter and<br>0.25<br>ne applicat               | etres per ho<br>) ÷ 20] + (8<br>d<br>Apr<br>4.40<br>1.10<br>wind facto<br>0.22<br>ole case:                | May<br>4.30<br>(21) x (2<br>(21) x (2<br>(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17), otherwi<br>iare metre o<br>se (18) = (16<br>Jun<br>3.80<br>0.95<br>2a)m            | ise continue<br>of envelope<br>5)<br>Jul<br>3.80                               | Aug<br>3.70   | 2 (16)<br>1 -<br>Sep<br>4.00<br>1.00 | [0.075 x (19<br>(18) x (2<br><b>Oct</b><br>4.30 | ()] = (0) = Nov 4.50 1.13     | 3.00<br>0.26<br>3<br>0.78<br>0.20<br><b>Dec</b><br>4.70                 | ] (17)<br>] (18)<br>] (19)<br>] (20)<br>] (21)<br>] (22)<br>] (22a                     |
| f a pressurisation test has<br>Air permeability value, q50<br>f based on air permeability<br>Number of sides on which<br>Shelter factor<br>nfiltration rate incorporati<br>nfiltration rate modified fo<br>Jan<br>Monthly average wind spe<br>5.10<br>Wind factor (22)m ÷ 4<br>1.28<br>Adjusted infiltration rate (a<br>0.26<br>Calculate effective air chan                            | been carried<br>b, expressed i<br>y value, then<br>the dwelling<br>ing shelter fa-<br>or monthly w<br>Feb<br>ed from Table<br>5.00<br>1.25<br>allowing for s<br>0.26<br>ge rate for th<br>n: air change                     | out or is ir<br>n cubic me<br>(18) = [(17<br>is sheltere<br>ctor<br>ind speed:<br>Mar<br>e U2<br>4.90<br>1.23<br>helter and<br>0.25<br>ne application            | etres per ho<br>) ÷ 20] + (8<br>d<br>Apr<br>4.40<br>1.10<br>wind factor<br>0.22<br>ole case:<br>ugh system | May<br>4.30<br>1.08<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17), otherwi<br>lare metre o<br>se (18) = (16<br>Jun<br>3.80<br>0.95<br>2a)m<br>0.19    | <i>ise continue</i><br>of envelope<br>5)<br><i>Jul</i><br>3.80<br>0.95<br>0.19 | Aug<br>3.70   | 2 (16)<br>1 -<br>Sep<br>4.00<br>1.00 | [0.075 x (19<br>(18) x (2<br><b>Oct</b><br>4.30 | ()] = (0) = Nov 4.50 1.13     | 3.00<br>0.26<br>3<br>0.78<br>0.20<br><b>Dec</b><br>4.70<br>1.18         | ] (17)<br>] (18)<br>] (19)<br>] (20)<br>] (21)<br>] (22)<br>] (22a<br>] (22a           |
| f a pressurisation test has<br>ir permeability value, q50<br>based on air permeability<br>lumber of sides on which<br>helter factor<br>hfiltration rate incorporation<br>filtration rate modified for<br>Jan<br>Monthly average wind spect<br>5.10<br>Vind factor (22)m ÷ 4<br>1.28<br>djusted infiltration rate (a<br>0.26<br>alculate effective air chant<br>If mechanical ventilatio | been carried<br>, expressed i<br>y value, then<br>the dwelling<br>ng shelter fa-<br>or monthly w<br>Feb<br>ed from Table<br>5.00<br>1.25<br>allowing for s<br>0.26<br>ng e rate for the<br>n: air change<br>ecovery: effici | out or is ir<br>n cubic me<br>(18) = [(17<br>is sheltere<br>ctor<br>ind speed:<br>Mar<br>e U2<br>4.90<br>1.23<br>helter and<br>0.25<br>ne applicat<br>rate throu | Apr<br>4.40<br>1.10<br>wind facto<br>0.22<br>ble case:<br>allowing fo                                      | May<br>1.08<br>(1), 21) x (2<br>(2), 21) x (2<br>(2), 22<br>(2), 21) x (2<br>(2), 22<br>(2), 22<br>(3), 21) x (2<br>(3), 22<br>(4), 20<br>(4), | 17), otherwin<br>nare metre of<br>se (18) = (16)<br>Jun<br>3.80<br>0.95<br>2a)m<br>0.19 | <i>ise continue</i><br>of envelope<br>5)<br><i>Jul</i><br>3.80<br>0.95<br>0.19 | Aug<br>3.70   | 2 (16)<br>1 -<br>Sep<br>4.00<br>1.00 | [0.075 x (19<br>(18) x (2<br><b>Oct</b><br>4.30 | ()] = (0) = Nov 4.50 1.13     | 3.00<br>0.26<br>3<br>0.78<br>0.20<br><b>Dec</b><br>4.70<br>1.18<br>0.24 | ] (17)<br>] (18)<br>] (19)<br>] (20)<br>] (21)<br>] (22)<br>] (22a<br>] (22a<br>] (22a |



| Γ                    | 0.53         | 0.53          | 0.53       | r (24c) or (24<br>0.53 | 0.52                       | 0.52                         | 0.52     | 0.52             | 0.52        | 0.52              | 0.53            | 0.53              | (25)         |
|----------------------|--------------|---------------|------------|------------------------|----------------------------|------------------------------|----------|------------------|-------------|-------------------|-----------------|-------------------|--------------|
| L                    | 0.55         | 0.55          | 0.00       | 0.55                   | 0.52                       | 0.02                         | 0.52     | 0.52             | 0.52        | 0.52              | 0.55            | 0.55              | (23)         |
| 3. Heat losses an    | id heat los  | s paramete    | er         |                        |                            |                              |          |                  |             |                   |                 |                   |              |
| Element              |              |               | i          | Gross<br>area, m²      | Openings<br>m <sup>2</sup> | Net are<br>A, m <sup>2</sup> |          | U-value<br>W/m²K | A x U W     |                   | /alue,<br>/m².K | Ахк,<br>kJ/K      |              |
| Door                 |              |               |            |                        |                            | 3.72                         | x        | 1.20             | = 4.46      |                   |                 |                   | (26)         |
| Window               |              |               |            |                        |                            | 12.46                        | x        | 1.33             | = 16.52     | 2                 |                 |                   | (27)         |
| Roof window          |              |               |            |                        |                            | 6.39                         | x        | 1.33             | = 8.47      |                   |                 |                   | <b>(</b> 27a |
| Basement floor       |              |               |            |                        |                            | 50.54                        | x        | 0.10             | = 5.05      |                   |                 |                   | (28)         |
| External wall        |              |               |            |                        |                            | 97.25                        | x [      | 0.20             | = 19.45     | 5                 |                 |                   | <b>(2</b> 9a |
| Basement wall        |              |               |            |                        |                            | 34.76                        | x        | 0.18             | = 6.26      |                   |                 |                   | (29)         |
| Party wall           |              |               |            |                        |                            | 69.11                        | x        | 0.00             | = 0.00      |                   |                 |                   | (32)         |
| Roof                 |              |               |            |                        |                            | 27.09                        | x        | 0.10             | = 2.71      |                   |                 |                   | (30)         |
| Roof                 |              |               |            |                        |                            | 18.49                        | _ x [    | 0.12             | = 2.22      |                   |                 |                   | (30)         |
| Roof                 |              |               |            |                        |                            | 1.11                         | _ x [    | 0.15             | = 0.17      |                   |                 |                   | (30)         |
| Total area of exte   | rnal eleme   | ents ∑A, m²   |            |                        |                            | 251.81                       |          |                  |             |                   |                 |                   | (31)         |
| Fabric heat loss, W  | V/K = ∑(A >  | × U)          |            |                        |                            |                              |          |                  | (2          | 6)(30) + (        | 32) =           | 65.31             | (33)         |
| Heat capacity Cm     | = ∑(А х к)   |               |            |                        |                            |                              |          | (28)             | (30) + (32) | + (32a)(3         | 2e) =           | N/A               | (34)         |
| Thermal mass par     | ameter (T    | MP) in kJ/m   | ۱²K        |                        |                            |                              |          |                  |             |                   |                 | 250.00            | (35)         |
| Thermal bridges: S   | ∑(L x Ѱ) са  | lculated us   | ing Apper  | ndix K                 |                            |                              |          |                  |             |                   |                 | 17.35             | (36)         |
| Total fabric heat lo | oss          |               |            |                        |                            |                              |          |                  |             | (33) + (          | 36) =           | 82.66             | (37)         |
|                      | Jan          | Feb           | Mar        | Apr                    | Мау                        | Jun                          | Jul      | Aug              | Sep         | Oct               | Nov             | Dec               |              |
| Ventilation heat lo  | oss calcula  | ted monthl    | y 0.33 x ( | (25)m x (5)            |                            |                              |          |                  |             |                   |                 |                   |              |
|                      | 62.06        | 61.91         | 61.76      | 61.05                  | 60.92                      | 60.31 6                      | 50.31    | 60.19            | 60.54       | 60.92             | 61.19           | 61.47             | (38)         |
| Heat transfer coef   | fficient, W  | /K (37)m +    | (38)m      |                        |                            |                              |          |                  |             |                   |                 |                   |              |
| L                    | 144.72       | 144.57        | 144.42     | 143.71                 | 143.58                     | 142.96 1                     | 42.96    | 142.85           | 143.20      | 143.58            | 143.85          | 144.12            |              |
| Heat loss paramet    | ter (HLP), \ | W/m²K (39     | )m ÷ (4)   |                        |                            |                              |          |                  | Average = 2 | ∑(39)112,         | /12 =           | 143.71            | (39)         |
|                      | 1.06         | 1.06          | 1.05       | 1.05                   | 1.05                       | 1.04                         | 1.04     | 1.04             | 1.05        | 1.05              | 1.05            | 1.05              |              |
|                      |              |               |            |                        |                            |                              |          |                  | Average = 2 | <u>Σ</u> (40)112, | /12 =           | 1.05              | (40)         |
| Number of days ir    | n month (T   | able 1a)      |            |                        |                            |                              |          |                  |             |                   |                 |                   |              |
|                      | 31.00        | 28.00         | 31.00      | 30.00                  | 31.00                      | 30.00                        | 31.00    | 31.00            | 30.00       | 31.00             | 30.00           | 31.00             | (40)         |
| 4. Water heating     | g energy re  | equirement    |            |                        |                            |                              |          |                  |             |                   |                 |                   |              |
| Assumed occupan      | icy, N       |               |            |                        |                            |                              |          |                  |             |                   |                 | 2.91              | (42)         |
| Annual average ho    | ot water u   | sage in litre | es per day | Vd,average             | e = (25 x N) + 3           | 36                           |          |                  |             |                   |                 | 103.34            | (43)         |
|                      | Jan          | Feb           | Mar        | Apr                    | May                        | Jun                          | Jul      | Aug              | Sep         | Oct               | Nov             | Dec               |              |
| Hot water usage ii   | n litres pei | r day for ea  | ch month   | Vd,m = fact            | tor from Tabl              | e 1c x (43)                  |          |                  |             |                   |                 |                   |              |
| Γ                    | 113.67       | 109.54        | 105.41     | 101.27                 | 97.14                      | 93.01 9                      | 93.01    | 97.14            | 101.27      | 105.41            | 109.54          | 113.67            |              |
|                      |              |               |            |                        |                            |                              |          |                  |             | ∑(44)1            | .12 =           | 1240.08           | (44)         |
| Energy content of    | hot water    | r used = 4.1  | .8 x Vd,m  | x nm x Tm/3            | 3600 kWh/m                 | onth (see Tak                | oles 1b, | 1c 1d)           |             |                   |                 |                   |              |
| 07                   |              |               |            |                        |                            |                              |          |                  |             |                   |                 |                   | _            |
| Г                    | 168.58       | 147.44        | 152.14     | 132.64                 | 127.27                     | 109.83 1                     | .01.77   | 116.78           | 118.18      | 137.72            | 150.34          | 163.26            |              |
| Distribution loss (  | ł            |               | 152.14     | 132.64                 | 127.27                     | 109.83 1                     | .01.77   | 116.78           | 118.18      | 137.72<br>∑(45)1  | ·               | 163.26<br>1625.94 | (45)         |

|                    | 0.00          | 0.00         | 0.00              | 0.00        | 0.00          | 0.00         | 0.00             | 0.00        | 0.00           | 0.00             | 0.00                                             | 0.00       | (57)        |
|--------------------|---------------|--------------|-------------------|-------------|---------------|--------------|------------------|-------------|----------------|------------------|--------------------------------------------------|------------|-------------|
| Primary circuit lo | oss for each  | month fro    | m Table 3         |             |               |              |                  |             |                |                  |                                                  |            |             |
|                    | 0.00          | 0.00         | 0.00              | 0.00        | 0.00          | 0.00         | 0.00             | 0.00        | 0.00           | 0.00             | 0.00                                             | 0.00       | (59)        |
| Combi loss for e   | ach month     | from Table   | 3a, 3b or 3       | с           |               | •            |                  | •           | •              |                  | <u> </u>                                         |            | -           |
|                    | 50.96         | 46.03        | 50.96             | 49.32       | 49.50         | 45.87        | 47.39            | 49.50       | 49.32          | 50.96            | 49.32                                            | 50.96      | (61)        |
| Total heat requi   |               |              |                   | 1           | 1             |              | 1                | 1           |                |                  |                                                  |            | ] ()        |
|                    | 219.53        | 193.46       | 203.10            | 181.96      | 176.77        | 155.69       | 149.17           | 166.28      | 167.49         | 188.68           | 199.65                                           | 214.22     | (62)        |
| Solar DHW input    |               |              |                   |             |               | 155.05       | 149.17           | 100.28      | 107.49         | 188.08           | 199.05                                           | 214.22     | ] (02)      |
|                    |               |              | 1                 |             | i             | 0.00         | 0.00             | 0.00        | 0.00           |                  |                                                  |            |             |
| <b>a f</b>         | 0.00          | 0.00         | 0.00              | 0.00        | 0.00          | 0.00         | 0.00             | 0.00        | 0.00           | 0.00             | 0.00                                             | 0.00       | (63)        |
| Output from wa     | r             | 1            |                   |             | 1             | 1            | 1                |             |                |                  | <del>,                                    </del> |            | -           |
|                    | 219.53        | 193.46       | 203.10            | 181.96      | 176.77        | 155.69       | 149.17           | 166.28      | 167.49         | 188.68           | 199.65                                           | 214.22     | _           |
|                    |               |              |                   |             |               |              |                  |             |                | ∑(64)1           | .12 = 2                                          | 216.02     | (64)        |
| Heat gains from    | water heat    | ing (kWh/n   | nonth) 0.2        | 5 × [0.85 × | (45)m + (61   | .)m] + 0.8 × | < [(46)m + (     | 57)m + (59) | m]             |                  |                                                  |            |             |
|                    | 68.79         | 60.53        | 63.33             | 56.43       | 54.69         | 47.98        | 45.69            | 51.21       | 51.62          | 58.53            | 62.32                                            | 67.02      | (65)        |
|                    |               |              |                   |             |               |              |                  |             |                |                  |                                                  |            |             |
| 5. Internal gain   | S             |              |                   |             |               |              |                  |             |                | -                |                                                  |            |             |
|                    | Jan           | Feb          | Mar               | Apr         | May           | Jun          | Jul              | Aug         | Sep            | Oct              | Nov                                              | Dec        |             |
| Metabolic gains    | (Table 5)     |              |                   |             |               |              |                  |             |                |                  |                                                  |            | _           |
|                    | 145.56        | 145.56       | 145.56            | 145.56      | 145.56        | 145.56       | 145.56           | 145.56      | 145.56         | 145.56           | 145.56                                           | 145.56     | (66)        |
| Lighting gains (ca | alculated in  | Appendix     | L, equation       | L9 or L9a), | also see Ta   | able 5       |                  |             |                |                  |                                                  |            |             |
|                    | 28.95         | 25.72        | 20.91             | 15.83       | 11.84         | 9.99         | 10.80            | 14.03       | 18.84          | 23.92            | 27.92                                            | 29.76      | (67)        |
| Appliance gains    | (calculated   | in Appendi   | ix L, equatio     | on L13 or L | 13a), also se | ee Table 5   |                  |             |                |                  |                                                  |            |             |
|                    | 305.99        | 309.16       | 301.16            | 284.13      | 262.62        | 242.41       | 228.91           | 225.74      | 233.74         | 250.77           | 272.28                                           | 292.49     | (68)        |
| Cooking gains (c   | alculated in  | Appendix     | L, equation       | L15 or L15  | a), also see  | Table 5      |                  |             |                |                  | •                                                |            | -           |
|                    | 37.56         | 37.56        | 37.56             | 37.56       | 37.56         | 37.56        | 37.56            | 37.56       | 37.56          | 37.56            | 37.56                                            | 37.56      | (69)        |
| Pump and fan ga    | ains (Table ! | 5a)          | 1                 |             |               |              |                  |             |                |                  | 1                                                |            | _ · · /     |
|                    | 3.00          | 3.00         | 3.00              | 3.00        | 3.00          | 3.00         | 3.00             | 3.00        | 3.00           | 3.00             | 3.00                                             | 3.00       | (70)        |
| Losses e.g. evap   |               |              | 5.00              | 5.00        | 5.00          | 5.00         | 5.00             | 5.00        | 5.00           | 5.00             |                                                  | 5.00       | ] (/0)      |
| 203323 C.g. CVap   | ```           | ,            | 110 45            | 110 45      | 110 45        | 110 45       | 110 45           | 110 45      | 110 45         | 110 45           | 110 45                                           | 110 45     | 7 (74)      |
|                    | -116.45       | -116.45      | -116.45           | -116.45     | -116.45       | -116.45      | -116.45          | -116.45     | -116.45        | -116.45          | -116.45                                          | -116.45    | (71)        |
| Water heating g    | ``            | ,            |                   |             |               |              | <b>I</b> .       | 1           |                |                  |                                                  | 1          | ٦           |
|                    | 92.46         | 90.07        | 85.12             | 78.38       | 73.51         | 66.64        | 61.41            | 68.82       | 71.70          | 78.67            | 86.55                                            | 90.08      | (72)        |
| Total internal ga  | ins (66)m +   | + (67)m + (6 | 58)m + (69)       | m + (70)m   | + (71)m + (7  | 72)m         |                  |             |                |                  |                                                  |            | _           |
|                    | 497.07        | 494.62       | 476.86            | 448.00      | 417.64        | 388.72       | 370.79           | 378.26      | 393.94         | 423.03           | 456.41                                           | 482.00     | (73)        |
| 6. Solar gains     |               |              |                   |             |               |              |                  |             |                |                  |                                                  |            |             |
| 0. Solar gains     |               |              |                   |             | <b>A</b>      | Cal          | a                |             | -              |                  |                                                  | Caina      |             |
|                    |               |              | Access f<br>Table |             | Area<br>m²    |              | lar flux<br>V/m² | spec        | g<br>ific data | FF<br>specific o | data                                             | Gains<br>W |             |
|                    |               |              |                   |             |               |              |                  | •           | able 6b        | or Table         |                                                  |            |             |
| South              |               |              | 0.7               | 7 X         | 10.58         | x 4          | 6.75 x           | 0.9 x 0     | ).72 x         | 0.70             | =                                                | 172.76     | (78)        |
| Horizontal         |               |              | 1.0               |             | 4.50          |              |                  |             | 0.72 x         |                  |                                                  | 53.07      | ייי<br>ר    |
| West               |               |              | 0.7               |             | 0.94          |              |                  |             | 0.72 x         |                  |                                                  | 6.45       | _<br>] (80) |
|                    |               |              |                   |             |               |              |                  |             |                | Г                |                                                  |            |             |
| East               |               |              | 0.7               |             | 0.94          |              |                  |             | 0.72 x         |                  |                                                  | 6.45       | (76)        |
| West               |               | (02)         | 1.0               | 0 X         | 1.89          | X 2          | .6.61 x          | 0.9 x (     | 0.72 x         | 0.70             | =                                                | 22.81      | (80)        |
| Solar gains in wa  | _ , ,         | . ,          |                   |             | 1             |              | T                | 1           | 1              |                  | <del></del>                                      |            | -           |
|                    | 261.54        | 464.51       | 677.60            | 896.24      | 1045.58       | 1053.70      | 1009.55          | 897.50      | 754.15         | 525.53           | 316.93                                           | 221.34     | (83)        |

| otal gains - internal and solar (73)m + (83)m |  |
|-----------------------------------------------|--|
|                                               |  |

758.61 959.13 1154.46 1344.24 1463.22 1442.42 1380.34 1275.77 1148.09 948.57

7. Mean internal temperature (heating season)

703.34 (84)

773.34

| Temperature du                          | ring heating  | g periods in  | the living a | area from T  | able 9, Th1    | .(°C)     |        |                        |        |                |         | 21.00   | (85)         |
|-----------------------------------------|---------------|---------------|--------------|--------------|----------------|-----------|--------|------------------------|--------|----------------|---------|---------|--------------|
|                                         | Jan           | Feb           | Mar          | Apr          | Мау            | Jun       | Jul    | Aug                    | Sep    | Oct            | Nov     | Dec     |              |
| Utilisation facto                       | r for gains f | or living are | ea n1,m (se  | e Table 9a)  |                |           |        |                        |        |                |         |         |              |
|                                         | 1.00          | 1.00          | 0.98         | 0.93         | 0.80           | 0.61      | 0.45   | 0.51                   | 0.77   | 0.97           | 1.00    | 1.00    | (86)         |
| Mean internal te                        | emp of livin  | g area T1 (s  | teps 3 to 7  | in Table 9c  | :)             |           |        |                        |        |                |         |         |              |
|                                         | 19.84         | 20.04         | 20.33        | 20.66        | 20.89          | 20.98     | 21.00  | 20.99                  | 20.93  | 20.60          | 20.14   | 19.80   | (87)         |
| Temperature du                          | L             |               |              |              |                |           |        |                        |        |                |         |         | ] ( )        |
|                                         | 20.04         | 20.04         | 20.04        | 20.04        | 20.04          | 20.05     | 20.05  | 20.05                  | 20.05  | 20.04          | 20.04   | 20.04   | (88)         |
| Utilisation facto                       | L             |               |              |              | 20.04          | 20.05     | 20.05  | 20.05                  | 20.05  | 20.04          | 20.04   | 20.04   | ] (00)       |
| Othisation facto                        | -             |               | _            |              |                | 0.50      |        |                        | 0.70   |                |         |         |              |
|                                         | 1.00          | 0.99          | 0.98         | 0.91         | 0.75           | 0.53      | 0.36   | 0.41                   | 0.70   | 0.95           | 0.99    | 1.00    | (89)         |
| Mean internal te                        | -             |               | _            |              |                |           | 1      |                        |        |                |         | T       | 7            |
|                                         | 18.98         | 19.18         | 19.46        | 19.78        | 19.97          | 20.04     | 20.05  | 20.05                  | 20.01  | 19.73          | 19.28   | 18.94   | (90)         |
| Living area fract                       | ion           |               |              |              |                |           |        |                        | Li     | ving area ÷ (  | 4) =    | 0.12    | (91)         |
| Mean internal te                        | emperature    | for the wh    | ole dwellin  | g fLA x T1 + | -(1 - fLA) x 1 | Г2        |        |                        |        |                |         |         |              |
|                                         | 19.08         | 19.28         | 19.56        | 19.88        | 20.08          | 20.15     | 20.16  | 20.16                  | 20.12  | 19.83          | 19.38   | 19.04   | (92)         |
| Apply adjustme                          | nt to the me  | ean internal  | temperatu    | ure from Ta  | ble 4e whe     | re approp | riate  |                        |        |                |         |         |              |
|                                         | 19.08         | 19.28         | 19.56        | 19.88        | 20.08          | 20.15     | 20.16  | 20.16                  | 20.12  | 19.83          | 19.38   | 19.04   | (93)         |
|                                         |               |               |              |              | •              |           |        |                        |        |                | ×       |         |              |
| 8. Space heatir                         | ng requirem   | ient          |              |              |                |           |        |                        |        |                |         |         |              |
|                                         | Jan           | Feb           | Mar          | Apr          | Мау            | Jun       | Jul    | Aug                    | Sep    | Oct            | Nov     | Dec     |              |
| Utilisation facto                       | r for gains,  | ηm            |              |              |                |           |        |                        |        |                |         |         |              |
|                                         | 1.00          | 0.99          | 0.97         | 0.90         | 0.75           | 0.54      | 0.37   | 0.42                   | 0.70   | 0.95           | 0.99    | 1.00    | (94)         |
| Useful gains, ηm                        | nGm, W (94    | l)m x (84)m   |              |              |                |           |        |                        |        |                |         |         | -            |
|                                         | 756.76        | 951.06        | 1121.29      | 1214.05      | 1099.49        | 778.96    | 507.06 | 533.76                 | 807.91 | 898.64         | 768.33  | 702.17  | (95)         |
| Monthly average                         | e external t  | emperature    |              |              | 1              |           |        |                        |        | 1 1            |         |         |              |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 4.30          | 4.90          | 6.50         | 8.90         | 11.70          | 14.60     | 16.60  | 16.40                  | 14.10  | 10.60          | 7.10    | 4.20    | (96)         |
| Heat loss rate fo                       |               |               |              |              |                |           | 10.00  | 10.40                  | 14.10  | 10.00          | 7.10    | 4.20    | ] (50)       |
|                                         |               |               |              |              |                |           | 500.47 | <b>5</b> 26 <b>5</b> 7 | 861.65 | 4224.05        | 4766.00 | 2138.41 |              |
| Constanting of                          | 2138.50       | 2078.30       | 1886.17      | 1577.78      | 1203.00        | 793.08    | 508.47 | 536.57                 | 801.05 | 1324.95        | 1766.33 | 2138.41 | ] (97)       |
| Space heating re                        | · ·           | ,             |              |              | , , , ,        |           |        | I                      |        | TT             |         | T       | г            |
|                                         | 1028.02       | 757.50        | 569.07       | 261.88       | 77.01          | 0.00      | 0.00   | 0.00                   | 0.00   | 317.17         | 718.56  | 1068.56 |              |
|                                         |               |               |              |              |                |           |        |                        | ∑(9)   | 8)15, 10:      |         | 1797.79 | (98)         |
| Space heating re                        | equirement    | kWh/m²/ye     | ear          |              |                |           |        |                        |        | (98) ÷         | ÷ (4)   | 35.02   | (99)         |
| 9a. Energy req                          | uiromonte     | individual    | hosting sy   | stoms inclu  | ding micro     | СНР       |        |                        |        |                |         |         |              |
|                                         | unements -    | muividuai     | neating sys  | stems inclu  |                | -спр      |        |                        |        |                |         |         |              |
| Space heating                           |               |               |              |              |                |           |        |                        |        |                |         |         | Т            |
| Fraction of space                       |               |               |              | ntary syste  | m (table 11    | .)        |        |                        |        |                |         | 0.00    | (201)        |
| Fraction of space                       | e heat from   | main syste    | m(s)         |              |                |           |        |                        |        | 1 - (20        | 1) =    | 1.00    | (202)        |
| Fraction of space                       | e heat from   | main syste    | m 2          |              |                |           |        |                        |        |                |         | 0.00    | (202)        |
| Fraction of total                       | space heat    | from main     | system 1     |              |                |           |        |                        | (20    | 02) x [1- (203 | 3)] =   | 1.00    | (204)        |
| Fraction of total                       | space heat    | from main     | system 2     |              |                |           |        |                        |        | (202) x (20    | 3) =    | 0.00    | (205)        |
| Efficiency of ma                        | in system 1   | (%)           |              |              |                |           |        |                        |        |                |         | 91.80   | (206)        |
|                                         | Jan           | Feb           | Mar          | Apr          | Мау            | Jun       | Jul    | Aug                    | Sep    | Oct            | Nov     | Dec     | _            |
| Space heating fu                        | iel (main sv  | stem 1), kW   | /h/month     |              | -              |           |        | -                      | ~      |                |         |         |              |
|                                         | 1119.85       | 825.17        | 619.91       | 285.28       | 83.89          | 0.00      | 0.00   | 0.00                   | 0.00   | 345.50         | 782.75  | 1164.01 | 1            |
|                                         |               | 020.17        | 515.51       | 200.20       | 05.05          | 0.00      | 0.00   | 0.00                   |        | 1)15, 10:      |         | 5226.35 | 」<br>] (211) |
| Water basting                           |               |               |              |              |                |           |        |                        | 2(21)  | ±/±), ±0       |         | ,220.33 | ] (211)      |
| Water heating                           | or basta      |               |              |              |                |           |        |                        |        |                |         |         |              |
| Efficiency of wat                       |               |               |              |              |                |           |        |                        |        |                |         | L -     | ٦.,          |
|                                         | 87.01         | 86.74         | 86.15        | 84.74        | 82.11          | 79.50     | 79.50  | 79.50                  | 79.50  | 85.09          | 86.60   | 87.10   | (217)        |
|                                         |               |               |              |              |                |           |        |                        |        |                |         |         |              |

| Water heating fuel, kWh/month                                      |                    |       |                               |                      |                          |              |
|--------------------------------------------------------------------|--------------------|-------|-------------------------------|----------------------|--------------------------|--------------|
| -                                                                  | 5.29 195.84 187    | .63 2 | 209.16 210.68                 | 221.75 230           | ).55 245.95              | ]            |
|                                                                    |                    |       |                               | <u>Σ</u> (219a)112 = | 2642.70                  | (219)        |
| Annual totals                                                      |                    |       |                               | _()                  |                          | ] (,         |
| Space heating fuel - main system 1                                 |                    |       |                               |                      | 5226.35                  | 1            |
| Water heating fuel                                                 |                    |       |                               |                      | 2642.70                  | ]            |
| Electricity for pumps, fans and electric keep-hot (Table 4f)       |                    |       |                               |                      |                          | 1            |
| central heating pump or water pump within warm air heating         | unit               |       | 30.00                         |                      |                          | (230c)       |
| boiler flue fan                                                    |                    |       | 45.00                         |                      |                          | (230e)       |
| Total electricity for the above, kWh/year                          |                    |       |                               |                      | 75.00                    | (231)        |
| Electricity for lighting (Appendix L)                              |                    |       |                               |                      | 511.34                   | (232)        |
| Total delivered energy for all uses                                |                    | (21   | 1)(221) + (231) + (           | 232)(237b) =         | 8455.39                  | (238)        |
| 10a. Fuel costs - individual heating systems including micro-CHF   | D                  |       |                               |                      |                          |              |
| Toa. Tuer costs - mulvidual heating systems including micro-chr    | Fuel               |       | Fuel price                    |                      | Fuel                     |              |
|                                                                    | kWh/year           |       | r del price                   |                      | cost £/year              |              |
| Space heating - main system 1                                      | 5226.35            | x     | 3.48                          | x 0.01 =             | 181.88                   | (240)        |
| Water heating                                                      | 2642.70            | x     | 3.48                          | x 0.01 =             | 91.97                    | (247)        |
| Pumps and fans                                                     | 75.00              | x     | 13.19                         | x 0.01 =             | 9.89                     | (249)        |
| Electricity for lighting                                           | 511.34             | x     | 13.19                         | x 0.01 =             | 67.45                    | (250)        |
| Additional standing charges                                        |                    |       |                               |                      | 120.00                   | (251)        |
| Total energy cost                                                  |                    |       | (240)(242) +                  | (245)(254) =         | 471.18                   | (255)        |
|                                                                    |                    |       |                               |                      |                          |              |
| 11a. SAP rating - individual heating systems including micro-CH    | P                  |       |                               |                      |                          |              |
| Energy cost deflator (Table 12)                                    |                    |       |                               |                      | 0.42                     | (256)        |
| Energy cost factor (ECF)                                           |                    |       |                               |                      | 1.09                     | ] (257)<br>] |
| SAP value                                                          |                    |       |                               |                      | 84.83                    |              |
| SAP rating (section 13)                                            |                    |       |                               |                      | 85                       | ] (258)<br>] |
| SAP band                                                           |                    |       |                               |                      | В                        |              |
| 12a. $CO_2$ emissions - individual heating systems including micro | -СНР               |       |                               |                      |                          |              |
|                                                                    | Energy<br>kWh/year |       | Emission factor<br>kg CO₂/kWh |                      | Emissions<br>kg CO₂/year |              |
| Space heating - main system 1                                      | 5226.35            | x     | 0.22                          | =                    | 1128.89                  | (261)        |
| Water heating                                                      | 2642.70            | x     | 0.22                          | =                    | 570.82                   | (264)        |
| Space and water heating                                            |                    |       | (261) + (262) +               | (263) + (264) =      | 1699.72                  | (265)        |
| Pumps and fans                                                     | 75.00              | x     | 0.52                          | =                    | 38.93                    | (267)        |
| Electricity for lighting                                           | 511.34             | x     | 0.52                          | =                    | 265.38                   | (268)        |
| Total CO <sub>2</sub> , kg/year                                    |                    |       |                               | (265)(271) =         | 2004.02                  | (272)        |
| Dwelling CO <sub>2</sub> emission rate                             |                    |       |                               | (272) ÷ (4) =        | 14.63                    | (273)        |
| El value                                                           |                    |       |                               |                      | 85.25                    | ]            |
| El rating (section 14)                                             |                    |       |                               |                      | 85                       | (274)        |
| El band                                                            |                    |       |                               |                      | В                        | ]            |
| 13a. Primary energy - individual heating systems including micr    | O-CHP              |       |                               |                      |                          |              |
|                                                                    | Energy             |       | Primary factor                |                      | Primary Energy           |              |
|                                                                    | kWh/year           |       | ,                             |                      | kWh/year                 |              |
| Space heating - main system 1                                      | 5226.35            | x     | 1.22                          | =                    | 6376.14                  | (261)        |
| Water heating                                                      | 2642 70            | v     | 1 22                          | _                    | 2224 10                  | (264)        |

Space and water heating

3224.10

9600.24

(264)

(265)

2642.70

х

1.22

=

(261) + (262) + (263) + (264) =

| Pumps and fans                           | 75.00  | ] x | 3.07 | = | 230.25   | (267) |
|------------------------------------------|--------|-----|------|---|----------|-------|
| Electricity for lighting                 | 511.34 | ) x | 3.07 | = | 1569.80  | (268) |
| Primary energy kWh/year                  |        |     |      |   | 11400.30 | (272) |
| Dwelling primary energy rate kWh/m2/year |        |     |      |   | 83.21    | (273) |



This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

|                                                                                                                                                                                                                                                                                                                                                                           | Mrs Nicola B                                                                                                                                                                                                                                                                    | attista                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                            |                                                 |                                                                                                                   |                                                                                | Ass                          | sessor num                           | iber                                            | 3998                                                                                              |                                                                                                                                    |                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------|--------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Client                                                                                                                                                                                                                                                                                                                                                                    | The Halebou                                                                                                                                                                                                                                                                     | irne Grou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | qu                                                                                                                         |                                                 |                                                                                                                   |                                                                                | Las                          | t modified                           |                                                 | 26/08                                                                                             | /2014                                                                                                                              |                                                                                                 |
| Address                                                                                                                                                                                                                                                                                                                                                                   | Plot 9 The Ol                                                                                                                                                                                                                                                                   | ld School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l Park Lane                                                                                                                | e, Richmon                                      | d, TW9                                                                                                            |                                                                                |                              |                                      |                                                 |                                                                                                   |                                                                                                                                    |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                 |                                                                                                                   |                                                                                |                              |                                      |                                                 |                                                                                                   |                                                                                                                                    |                                                                                                 |
| 1. Overall dwelling dime                                                                                                                                                                                                                                                                                                                                                  | nsions                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                 |                                                                                                                   |                                                                                |                              |                                      |                                                 |                                                                                                   |                                                                                                                                    |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            | A                                               | rea (m²)                                                                                                          |                                                                                |                              | age storey<br>ight (m)               |                                                 | Vo                                                                                                | olume (m³)                                                                                                                         |                                                                                                 |
| owest occupied                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                 | 54.80                                                                                                             | ] <mark>(1a)</mark> x                                                          |                              | 2.35                                 | ] (2a) =                                        |                                                                                                   | 128.78                                                                                                                             | (3a)                                                                                            |
| +1                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                 | 48.78                                                                                                             | ] (1b) x                                                                       |                              | 2.70                                 | (2b) =                                          |                                                                                                   | 131.71                                                                                                                             | (3b)                                                                                            |
| -2                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                 | 27.71                                                                                                             | ] (1c) x                                                                       |                              | 2.70                                 | (2c) =                                          |                                                                                                   | 74.82                                                                                                                              | (3c)                                                                                            |
| otal floor area                                                                                                                                                                                                                                                                                                                                                           | (1a) + (1                                                                                                                                                                                                                                                                       | 1b) + (1c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) + (1d)(1                                                                                                                 | Ln) =                                           | 131.29                                                                                                            | (4)                                                                            |                              |                                      |                                                 |                                                                                                   |                                                                                                                                    |                                                                                                 |
| Owelling volume                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                 |                                                                                                                   |                                                                                | (3a)                         | + (3b) + (3                          | c) + (3d)(3                                     | sn) =                                                                                             | 335.30                                                                                                                             | (5)                                                                                             |
| 2. Ventilation rate                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                 |                                                                                                                   |                                                                                |                              |                                      |                                                 |                                                                                                   |                                                                                                                                    |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                 |                                                                                                                   |                                                                                |                              |                                      |                                                 | m                                                                                                 | <sup>3</sup> per hour                                                                                                              |                                                                                                 |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                 |                                                                                                                   |                                                                                |                              | 0                                    | ] x 40 =                                        |                                                                                                   | 0                                                                                                                                  | (6a)                                                                                            |
| Number of open flues                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                 |                                                                                                                   |                                                                                |                              | 0                                    | ] x 20 =                                        |                                                                                                   | 0                                                                                                                                  | (6b)                                                                                            |
| Number of intermittent fa                                                                                                                                                                                                                                                                                                                                                 | ins                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                 |                                                                                                                   |                                                                                |                              | 4                                    | ] x 10 =                                        |                                                                                                   | 40                                                                                                                                 | (7a)                                                                                            |
| lumber of passive vents                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                 |                                                                                                                   |                                                                                |                              | 0                                    | ] x 10 =                                        |                                                                                                   | 0                                                                                                                                  | ] (7b)                                                                                          |
| Number of flueless gas fire                                                                                                                                                                                                                                                                                                                                               | es                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                 |                                                                                                                   |                                                                                |                              | 0                                    | ] x 40 =                                        |                                                                                                   | 0                                                                                                                                  | (7c)                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                 |                                                                                                                   |                                                                                |                              |                                      |                                                 |                                                                                                   |                                                                                                                                    |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                 |                                                                                                                   |                                                                                |                              |                                      |                                                 | Air                                                                                               | changes pe<br>hour                                                                                                                 | r                                                                                               |
| nfiltration due to chimne                                                                                                                                                                                                                                                                                                                                                 | ys, flues, fans, PS                                                                                                                                                                                                                                                             | SVs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            | (6a)                                            | + (6b) + (7a                                                                                                      | a) + (7b) + (7                                                                 | 7c) =                        | 40                                   | ) ÷ (5) =                                       |                                                                                                   |                                                                                                                                    | r<br>(8)                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tended, pr                                                                                                                 |                                                 |                                                                                                                   |                                                                                |                              | -                                    | ] ÷ (5) =                                       |                                                                                                   | hour                                                                                                                               | _                                                                                               |
| f a pressurisation test has                                                                                                                                                                                                                                                                                                                                               | s been carried ou                                                                                                                                                                                                                                                               | it or is in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                                                                                                          | oceed to (                                      | 17), otherw                                                                                                       | ise continue                                                                   | e from (9) to                | -                                    | ] ÷ (5) =                                       |                                                                                                   | hour                                                                                                                               | _                                                                                               |
| f a pressurisation test has<br>Air permeability value, q50                                                                                                                                                                                                                                                                                                                | s been carried ou<br>0, expressed in c                                                                                                                                                                                                                                          | <i>it or is in</i><br>cubic met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tres per ho                                                                                                                | oceed to (<br>our per squ                       | 17), otherw<br>are metre o                                                                                        | <i>ise continue</i><br>of envelope                                             | e from (9) to                | -                                    | ] ÷ (5) =                                       |                                                                                                   | <b>hour</b><br>0.12                                                                                                                | ] (8)<br>] (17)                                                                                 |
| f a pressurisation test has<br>Air permeability value, q50<br>f based on air permeabilit                                                                                                                                                                                                                                                                                  | s <i>been carried ou</i><br>0, expressed in c<br>ty value, then (18                                                                                                                                                                                                             | <i>it or is in:</i><br>cubic met<br>8) = [(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tres per ho<br>) ÷ 20] + (8                                                                                                | oceed to (<br>our per squ                       | 17), otherw<br>are metre o                                                                                        | <i>ise continue</i><br>of envelope                                             | e from (9) to                | -                                    | ] ÷ (5) =                                       |                                                                                                   | hour           0.12           3.00                                                                                                 | ] (8)<br>] (17)<br>] (18)                                                                       |
| f a pressurisation test has<br>Air permeability value, q5<br>f based on air permeabilit<br>Number of sides on which                                                                                                                                                                                                                                                       | s <i>been carried ou</i><br>0, expressed in c<br>ty value, then (18                                                                                                                                                                                                             | <i>it or is in:</i><br>cubic met<br>8) = [(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tres per ho<br>) ÷ 20] + (8                                                                                                | oceed to (<br>our per squ                       | 17), otherw<br>are metre o                                                                                        | <i>ise continue</i><br>of envelope                                             | e from (9) to                | o (16)                               |                                                 |                                                                                                   | hour           0.12           3.00           0.27           2                                                                      | ) (8)<br>) (17)<br>) (18)<br>) (19)                                                             |
| f a pressurisation test has<br>Air permeability value, q50<br>f based on air permeabilit<br>Number of sides on which<br>Shelter factor                                                                                                                                                                                                                                    | s been carried ou<br>0, expressed in c<br>ty value, then (18<br>the dwelling is s                                                                                                                                                                                               | ut or is in:<br>cubic met<br>8) = [(17)<br>shelterec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tres per ho<br>) ÷ 20] + (8                                                                                                | oceed to (<br>our per squ                       | 17), otherw<br>are metre o                                                                                        | <i>ise continue</i><br>of envelope                                             | e from (9) to                | o (16)                               | [0.075 x (19                                    | 9)] = [                                                                                           | hour           0.12           3.00           0.27           2           0.85                                                       | ) (8)<br>) (17)<br>) (18)<br>) (19)<br>) (20)                                                   |
| f a pressurisation test has<br>air permeability value, q50<br>f based on air permeabilit<br>Jumber of sides on which<br>helter factor<br>nfiltration rate incorporat                                                                                                                                                                                                      | s been carried ou<br>0, expressed in c<br>ty value, then (18<br>the dwelling is s<br>ting shelter facto                                                                                                                                                                         | ut or is int<br>cubic met<br>8) = [(17)<br>shelterec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tres per ho<br>) ÷ 20] + (8                                                                                                | oceed to (<br>our per squ                       | 17), otherw<br>are metre o                                                                                        | <i>ise continue</i><br>of envelope                                             | e from (9) to                | o (16)                               |                                                 | 9)] = [                                                                                           | hour           0.12           3.00           0.27           2                                                                      | ) (8)<br>) (17)<br>) (18)<br>) (19)                                                             |
| f a pressurisation test has<br>air permeability value, q50<br>f based on air permeabilit<br>Jumber of sides on which<br>helter factor<br>nfiltration rate incorporat                                                                                                                                                                                                      | s been carried ou<br>0, expressed in c<br>ty value, then (18<br>the dwelling is s<br>ting shelter facto<br>for monthly wind                                                                                                                                                     | ut or is int<br>cubic met<br>8) = [(17)<br>shelterec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tres per ho<br>) ÷ 20] + (8                                                                                                | oceed to (<br>our per squ                       | 17), otherw<br>are metre o                                                                                        | <i>ise continue</i><br>of envelope                                             | e from (9) to                | o (16)                               | [0.075 x (19                                    | 9)] = [                                                                                           | hour           0.12           3.00           0.27           2           0.85                                                       | ) (8)<br>) (17)<br>) (18)<br>) (19)<br>) (20)                                                   |
| f a pressurisation test has<br>Air permeability value, q50<br>f based on air permeabilit<br>Number of sides on which<br>Shelter factor<br>nfiltration rate incorporat<br>nfiltration rate modified f                                                                                                                                                                      | s been carried ou<br>0, expressed in c<br>ty value, then (18<br>the dwelling is s<br>ting shelter facto<br>for monthly wind<br><b>Feb</b>                                                                                                                                       | ut or is int<br>cubic met<br>8) = [(17)<br>shelterec<br>or<br>d speed:<br><b>Mar</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tres per hc<br>) ÷ 20] + (8                                                                                                | roceed to (<br>our per squ<br>), otherwis       | 17), otherw<br>lare metre (<br>se (18) = (16                                                                      | ise continue<br>of envelope<br>5)                                              | e from (9) to                | D (16)<br>1 -                        | [0.075 x (19<br>(18) x (2                       | 9)] =<br>20) =                                                                                    | hour           0.12           3.00           0.27           2           0.85           0.23                                        | ) (8)<br>) (17)<br>) (18)<br>) (19)<br>) (20)                                                   |
| f a pressurisation test has<br>air permeability value, q50<br>f based on air permeabilit<br>Jumber of sides on which<br>helter factor<br>nfiltration rate incorporat<br>nfiltration rate modified f<br>Jan                                                                                                                                                                | s been carried ou<br>0, expressed in c<br>ty value, then (18<br>the dwelling is s<br>ting shelter facto<br>for monthly wind<br><b>Feb</b><br>Leed from Table U                                                                                                                  | ut or is int<br>cubic met<br>8) = [(17)<br>shelterec<br>or<br>d speed:<br><b>Mar</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tres per hc<br>) ÷ 20] + (8                                                                                                | roceed to (<br>our per squ<br>), otherwis       | 17), otherw<br>lare metre (<br>se (18) = (16                                                                      | ise continue<br>of envelope<br>5)                                              | e from (9) to                | D (16)<br>1 -                        | [0.075 x (19<br>(18) x (2                       | 9)] =<br>20) =                                                                                    | hour           0.12           3.00           0.27           2           0.85           0.23                                        | ) (8)<br>) (17)<br>) (18)<br>) (19)<br>) (20)                                                   |
| f a pressurisation test has<br>sir permeability value, q50<br>f based on air permeabilit<br>Jumber of sides on which<br>helter factor<br>nfiltration rate incorporat<br>nfiltration rate modified f<br>Jan<br>Monthly average wind spe                                                                                                                                    | s been carried ou<br>0, expressed in c<br>ty value, then (18<br>the dwelling is s<br>ting shelter facto<br>for monthly wind<br><b>Feb</b><br>Leed from Table U                                                                                                                  | ut or is int<br>cubic met<br>8) = [(17)<br>shelterec<br>or<br>d speed:<br><b>Mar</b><br>J2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tres per ho<br>) ÷ 20] + (8<br>d<br>Apr                                                                                    | oceed to (<br>our per squ<br>), otherwis<br>May | 17), otherw<br>lare metre (<br>se (18) = (16<br>Jun                                                               | ise continue<br>of envelope<br>5)<br>Jul                                       | e from (9) to<br>area<br>Aug | р (16)<br>1 -<br>Sep                 | [0.075 x (19<br>(18) x (2<br><b>Oct</b>         | 9)] =<br>Nov                                                                                      | hour 0.12 3.00 0.27 2 0.85 0.23 Dec                                                                                                | ) (8)<br>) (17)<br>) (18)<br>) (19)<br>) (20)<br>] (21)                                         |
| f a pressurisation test has<br>ir permeability value, q50<br>based on air permeabilit<br>lumber of sides on which<br>helter factor<br>nfiltration rate incorporat<br>nfiltration rate modified f<br>Jan<br>Monthly average wind spe                                                                                                                                       | s been carried ou<br>0, expressed in c<br>ty value, then (18<br>the dwelling is s<br>ting shelter facto<br>for monthly wind<br>Feb 1<br>eed from Table U<br>5.00 4                                                                                                              | ut or is int<br>cubic met<br>8) = [(17)<br>shelterec<br>or<br>d speed:<br><b>Mar</b><br>J2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tres per ho<br>) ÷ 20] + (8<br>d<br>Apr                                                                                    | oceed to (<br>our per squ<br>), otherwis<br>May | 17), otherw<br>lare metre (<br>se (18) = (16<br>Jun                                                               | ise continue<br>of envelope<br>5)<br>Jul                                       | e from (9) to<br>area<br>Aug | р (16)<br>1 -<br>Sep                 | [0.075 x (19<br>(18) x (2<br><b>Oct</b>         | 9)] =<br>Nov                                                                                      | hour 0.12 3.00 0.27 2 0.85 0.23 Dec                                                                                                | ) (8)<br>) (17)<br>) (18)<br>) (19)<br>) (20)<br>] (21)                                         |
| f a pressurisation test has<br>ir permeability value, q50<br>i based on air permeabilit<br>lumber of sides on which<br>helter factor<br>nfiltration rate incorporat<br>nfiltration rate modified f<br>Jan<br>Monthly average wind spec<br>5.10<br>Vind factor (22)m ÷ 4<br>1.28                                                                                           | s been carried ou<br>0, expressed in c<br>ty value, then (18<br>the dwelling is s<br>ting shelter facto<br>for monthly wind<br>Feb I<br>eed from Table U<br>5.00 4                                                                                                              | It or is interest<br>cubic met<br>8) = [(17)<br>shelterest<br>or<br>d speed:<br>Mar<br>J2<br>4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tres per ho<br>; 20] + (8<br>4<br><b>Apr</b><br>4.40<br>1.10                                                               | May<br>1.08                                     | 17), otherw<br>are metre of<br>se (18) = (16<br>Jun<br>3.80                                                       | ise continue<br>of envelope<br>5)<br>Jul<br>3.80                               | Aug                          | 2 (16)<br>1 -<br>Sep<br>4.00         | [0.075 x (19<br>(18) x (2<br><b>Oct</b><br>4.30 | 9)] =<br>20) =<br>Nov<br>4.50                                                                     | hour 0.12 3.00 0.27 2 0.85 0.23 Dec 4.70                                                                                           | ) (8)<br>) (17)<br>) (18)<br>) (19)<br>) (20)<br>) (21)<br>) (22)                               |
| f a pressurisation test has<br>ir permeability value, q50<br>i based on air permeabilit<br>lumber of sides on which<br>helter factor<br>nfiltration rate incorporat<br>nfiltration rate modified f<br>Jan<br>Monthly average wind spec<br>5.10<br>Vind factor (22)m ÷ 4<br>1.28                                                                                           | s been carried ou<br>0, expressed in c<br>ty value, then (18<br>the dwelling is s<br>ting shelter facto<br>for monthly wind<br>Feb 1<br>eed from Table U<br>5.00 4<br>1.25 5<br>allowing for shel                                                                               | It or is interest<br>cubic met<br>8) = [(17)<br>shelterest<br>or<br>d speed:<br>Mar<br>J2<br>4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tres per ho<br>; 20] + (8<br>4<br><b>Apr</b><br>4.40<br>1.10                                                               | May<br>1.08                                     | 17), otherw<br>are metre of<br>se (18) = (16<br>Jun<br>3.80                                                       | ise continue<br>of envelope<br>5)<br>Jul<br>3.80                               | Aug                          | 2 (16)<br>1 -<br>Sep<br>4.00         | [0.075 x (19<br>(18) x (2<br><b>Oct</b><br>4.30 | 9)] =<br>20) =<br>Nov<br>4.50                                                                     | hour 0.12 3.00 0.27 2 0.85 0.23 Dec 4.70                                                                                           | ) (8)<br>) (17)<br>) (18)<br>) (19)<br>) (20)<br>) (21)<br>) (22)                               |
| f a pressurisation test has<br>sir permeability value, q50<br>f based on air permeability<br>lumber of sides on which<br>helter factor<br>nfiltration rate incorporat<br>nfiltration rate modified f<br>Jan<br>Monthly average wind spect<br>5.10<br>Vind factor (22)m ÷ 4<br>1.28<br>solution rate (<br>0.29                                                             | s been carried ou<br>0, expressed in c<br>ty value, then (18<br>the dwelling is s<br>ting shelter factor<br>for monthly wind<br>Feb 1<br>eed from Table U<br>5.00 4<br>1.25 5<br>allowing for shell<br>0.29 0                                                                   | at or is interpretent         cubic met         cubic met         sheltered         or         d speed:         Mar         J2         4.90         1.23         Iter and work         0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tres per ho<br>÷ 20] + (8<br>Apr<br>4.40<br>1.10<br>wind factor<br>0.25                                                    | May<br>4.30<br>1.08<br>(21) x (2                | 17), otherw<br>hare metre of<br>se (18) = (16<br>Jun<br>3.80<br>0.95<br>22a)m                                     | ise continue<br>of envelope<br>5)<br>Jul<br>3.80                               | Aug<br>3.70                  | 2 (16)<br>1 -<br>Sep<br>4.00<br>1.00 | [0.075 x (19<br>(18) x (2<br><b>Oct</b><br>4.30 | <ul> <li>())] =</li> <li>()) =</li> <li>()) =</li> <li>Nov</li> <li>4.50</li> <li>1.13</li> </ul> | hour         0.12         3.00         0.27         2         0.85         0.23         Dec         4.70         1.18              | ) (8)<br>) (17)<br>) (18)<br>) (19)<br>) (20)<br>] (21)<br>) (22)<br>] (22a                     |
| f a pressurisation test has<br>ir permeability value, q50<br>f based on air permeability<br>Jumber of sides on which<br>helter factor<br>nfiltration rate incorporat<br>nfiltration rate modified f<br>Jan<br>Monthly average wind spe<br>5.10<br>Vind factor (22)m ÷ 4<br>1.28<br>vdjusted infiltration rate (                                                           | s been carried ou<br>0, expressed in c<br>ty value, then (18<br>the dwelling is s<br>ting shelter factor<br>for monthly wind<br>Feb I<br>eed from Table U<br>5.00 4<br>1.25 5<br>allowing for shell<br>0.29 0<br>nge rate for the a                                             | at or is in:         cubic met         cubic met         8) = [(17)         shelterec         or         d speed:         Mar         J2         4.90         1.23         Iter and v         0.28         applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tres per ho<br>÷ 20] + (8<br>4<br><b>Apr</b><br>4.40<br>1.10<br>wind facto<br>0.25<br>le case:                             | May<br>4.30<br>1.08<br>(21) x (2                | 17), otherw<br>hare metre of<br>se (18) = (16<br>Jun<br>3.80<br>0.95<br>22a)m                                     | ise continue<br>of envelope<br>5)<br>Jul<br>3.80                               | Aug<br>3.70                  | 2 (16)<br>1 -<br>Sep<br>4.00<br>1.00 | [0.075 x (19<br>(18) x (2<br><b>Oct</b><br>4.30 | <ul> <li>())] =</li> <li>()) =</li> <li>()) =</li> <li>Nov</li> <li>4.50</li> <li>1.13</li> </ul> | hour         0.12         3.00         0.27         2         0.85         0.23         Dec         4.70         1.18              | ) (8)<br>) (17)<br>) (18)<br>) (19)<br>) (20)<br>] (21)<br>) (22)<br>] (22a                     |
| f a pressurisation test has<br>ir permeability value, q50<br>i based on air permeabilit<br>lumber of sides on which<br>helter factor<br>nfiltration rate incorporat<br>nfiltration rate modified f<br>Jan<br>Monthly average wind spe<br>5.10<br>Vind factor (22)m ÷ 4<br>1.28<br>djusted infiltration rate (<br>0.29<br>falculate effective air char                     | s been carried ou<br>0, expressed in c<br>ty value, then (18<br>the dwelling is s<br>ting shelter factor<br>for monthly wind<br>Feb 1<br>eed from Table U<br>5.00 4<br>1.25 5<br>allowing for shel<br>0.29 0<br>inge rate for the a<br>pon: air change rate                     | at or is interval in the second seco | tres per ho<br>÷ 20] + (8<br>Apr<br>4.40<br>1.10<br>wind factor<br>0.25<br>le case:<br>gh system                           | May<br>4.30<br>1.08<br>0.25                     | 17), otherw<br>lare metre (<br>se (18) = (16<br>Jun<br>3.80<br>0.95<br>(2a)m<br>0.22                              | <i>ise continue</i><br>of envelope<br>5)<br><b>Jul</b><br>3.80<br>0.95<br>0.22 | Aug<br>3.70                  | 2 (16)<br>1 -<br>Sep<br>4.00<br>1.00 | [0.075 x (19<br>(18) x (2<br><b>Oct</b><br>4.30 | <ul> <li>())] =</li> <li>()) =</li> <li>()) =</li> <li>Nov</li> <li>4.50</li> <li>1.13</li> </ul> | hour         0.12         3.00         0.27         2         0.85         0.23         Dec         4.70         1.18         0.27 | ] (8)<br>] (17)<br>] (18)<br>] (19)<br>] (20)<br>] (21)<br>] (22)<br>] (22a<br>] (22a           |
| a pressurisation test has<br>ir permeability value, q50<br>based on air permeabilit<br>umber of sides on which<br>helter factor<br>filtration rate incorporat<br>filtration rate modified f<br>Jan<br>lonthly average wind spe<br>5.10<br>/ind factor (22)m ÷ 4<br>1.28<br>djusted infiltration rate (<br>0.29<br>alculate effective air char<br>If mechanical ventilatio | s been carried ou<br>0, expressed in c<br>ty value, then (18<br>the dwelling is s<br>ting shelter factor<br>for monthly wind<br>Feb 1<br>eed from Table U<br>5.00 4<br>1.25 5<br>allowing for shell<br>0.29 0<br>nge rate for the a<br>on: air change rate<br>ecovery: efficien | at or is interest<br>ability of the second<br>shelterest<br>or<br>dispeed:<br>Mar<br>J2<br>4.90<br>1.23<br>1ter and so<br>0.28<br>applicable<br>te through<br>acy in % a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tres per ho<br>÷ 20] + (8<br>4<br><b>Apr</b><br>4.40<br>1.10<br>wind facto<br>0.25<br>le case:<br>gh system<br>allowing fo | May<br>4.30<br>1.08<br>0.25<br>nr in-use fa     | 17), otherware metre of<br>are metre of<br>se (18) = (16)<br>Jun<br>3.80<br>0.95<br>22a)m<br>0.22<br>ctor from Ta | <i>ise continue</i><br>of envelope<br>5)<br><b>Jul</b><br>3.80<br>0.95<br>0.22 | Aug<br>3.70                  | 2 (16)<br>1 -<br>Sep<br>4.00<br>1.00 | [0.075 x (19<br>(18) x (2<br><b>Oct</b><br>4.30 | <ul> <li>())] =</li> <li>()) =</li> <li>()) =</li> <li>Nov</li> <li>4.50</li> <li>1.13</li> </ul> | hour 0.12 3.00 0.27 2 0.85 0.23 Dec 4.70 1.18 0.27 0.27                                                                            | ] (8)<br>] (17)<br>] (18)<br>] (19)<br>] (20)<br>] (21)<br>] (22)<br>] (22)<br>] (22i<br>] (22i |



|                                                            | 0.54                                                                  | 0.54                                                                             | 0.54                                              | 0.53                                             | 0.53                         | 0.52                                    | 0.52                     | 0.52             | 0.53        | 0.53             | 0.53                     | 0.54                               | (25)         |
|------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|------------------------------|-----------------------------------------|--------------------------|------------------|-------------|------------------|--------------------------|------------------------------------|--------------|
|                                                            |                                                                       |                                                                                  |                                                   | •                                                | · ·                          |                                         | 1                        | -1               |             | •                | 1                        | - 1                                |              |
| 3. Heat losses a                                           | nd heat lo                                                            | ss paramet                                                                       |                                                   |                                                  |                              |                                         |                          |                  |             |                  |                          |                                    |              |
| Element                                                    |                                                                       |                                                                                  |                                                   | Gross<br>rea, m²                                 | Openings<br>m <sup>2</sup>   |                                         | area<br>m²               | U-value<br>W/m²K | A x U W     |                  | value,<br>/m².K          | Ахк,<br>kJ/К                       |              |
| Door                                                       |                                                                       |                                                                                  |                                                   |                                                  |                              |                                         | 72 x                     | 1.20             | = 4.46      |                  |                          |                                    | (26)         |
| Window                                                     |                                                                       |                                                                                  |                                                   |                                                  |                              |                                         | .46 x                    | 1.33             | = 16.52     |                  |                          |                                    | (27)         |
| Roof window                                                |                                                                       |                                                                                  |                                                   |                                                  |                              |                                         | 39 x                     | 1.33             | = 8.47      |                  |                          |                                    | (27a)        |
| Basement floor                                             |                                                                       |                                                                                  |                                                   |                                                  |                              | 54                                      | .80 x                    | 0.10             | = 5.48      |                  |                          |                                    | (28)         |
| External wall                                              |                                                                       |                                                                                  |                                                   |                                                  |                              | 110                                     | ).66 x                   | 0.20             | = 22.13     | 3                |                          |                                    | (29a)        |
| Basement wall                                              |                                                                       |                                                                                  |                                                   |                                                  |                              | 51                                      | .47 x                    | 0.18             | = 9.26      |                  |                          |                                    | (29)         |
| Party wall                                                 |                                                                       |                                                                                  |                                                   |                                                  |                              | 61                                      | .28 x                    | 0.00             | = 0.00      |                  |                          |                                    | (32)         |
| ,<br>Roof                                                  |                                                                       |                                                                                  |                                                   |                                                  |                              |                                         | .64 x                    | 0.10             | = 3.86      | =                |                          |                                    | (30)         |
| Roof                                                       |                                                                       |                                                                                  |                                                   |                                                  |                              |                                         | .03 x                    | 0.12             | = 1.20      |                  |                          |                                    | (30)         |
| Roof                                                       |                                                                       |                                                                                  |                                                   |                                                  |                              | 1.                                      | 11 x                     | 0.15             | = 0.17      |                  |                          |                                    | (30)         |
| Total area of exte                                         | ernal elem                                                            | ents ∑A, m²                                                                      |                                                   |                                                  |                              | 289                                     | 9.28                     |                  |             | _                |                          |                                    | (31)         |
| Fabric heat loss,                                          | W/K = ∑(A                                                             | × U)                                                                             |                                                   |                                                  |                              |                                         |                          |                  | (2          | 6)(30) + (       | 32) =                    | 71.57                              | (33)         |
| Heat capacity Cm                                           | п = ∑(Ахк)                                                            | 1                                                                                |                                                   |                                                  |                              |                                         |                          | (28)             | (30) + (32) | + (32a)(3        | 2e) =                    | N/A                                | (34)         |
| Thermal mass pa                                            | rameter (1                                                            | 「MP) in kJ/n                                                                     | n²K                                               |                                                  |                              |                                         |                          |                  |             |                  |                          | 250.00                             | (35)         |
| Thermal bridges:                                           | Σ(L x Ψ) c                                                            | alculated us                                                                     | sing Appen                                        | dix K                                            |                              |                                         |                          |                  |             |                  |                          | 19.77                              | (36)         |
| Total fabric heat                                          | loss                                                                  |                                                                                  |                                                   |                                                  |                              |                                         |                          |                  |             | (33) + (         | 36) =                    | 91.33                              | (37)         |
|                                                            | Jan                                                                   | Feb                                                                              | Mar                                               | Apr                                              | Мау                          | Jun                                     | Jul                      | Aug              | Sep         | Oct              | Nov                      | Dec                                |              |
| Ventilation heat                                           | loss calcula                                                          | ated month                                                                       | ly 0.33 x (2                                      | 25)m x (5)                                       |                              |                                         |                          |                  |             |                  |                          |                                    |              |
|                                                            | 60.04                                                                 | 59.85                                                                            | 59.67                                             | 58.83                                            | 58.67                        | 57.94                                   | 57.94                    | 57.81            | 58.22       | 58.67            | 58.99                    | 59.33                              | (38)         |
| Heat transfer coe                                          | efficient, W                                                          | //K (37)m +                                                                      | - (38)m                                           |                                                  |                              |                                         |                          |                  |             |                  |                          |                                    |              |
|                                                            | 151.37                                                                | 151.19                                                                           | 151.01                                            | 150.17                                           | 150.01                       | 149.27                                  | 149.27                   | 149.14           | 149.56      | 150.01           | 150.33                   | 150.66                             |              |
|                                                            |                                                                       |                                                                                  |                                                   |                                                  |                              |                                         |                          |                  | Average = 2 | ∑(39)112         | /12 =                    | 150.17                             | (39)         |
| Heat loss parame                                           | eter (HLP),                                                           | W/m²K (39                                                                        | 9)m ÷ (4)                                         |                                                  |                              |                                         |                          |                  |             |                  |                          |                                    |              |
| [                                                          | 1.15                                                                  | 1.15                                                                             | 1.15                                              | 1.14                                             | 1.14                         | 1.14                                    | 1.14                     | 1.14             | 1.14        | 1.14             | 1.14                     | 1.15                               |              |
|                                                            |                                                                       |                                                                                  |                                                   |                                                  |                              |                                         |                          |                  | Average = 2 | ∑(40)112         | /12 =                    | 1.14                               | (40)         |
| Number of days i                                           | in month (                                                            | Table 1a)                                                                        |                                                   |                                                  |                              |                                         |                          |                  |             |                  |                          |                                    |              |
|                                                            | 24.00                                                                 | 28.00                                                                            | 31.00                                             | 30.00                                            | 31.00                        | 30.00                                   | 31.00                    | 31.00            | 30.00       | 31.00            | 30.00                    | 31.00                              | (40)         |
| i                                                          | 31.00                                                                 |                                                                                  |                                                   |                                                  |                              |                                         |                          |                  |             |                  |                          |                                    |              |
| 4. Water heatin                                            |                                                                       |                                                                                  |                                                   |                                                  |                              |                                         |                          |                  |             |                  |                          |                                    |              |
| 4. Water heatin                                            | ıg energy r                                                           |                                                                                  |                                                   |                                                  |                              |                                         |                          |                  |             |                  |                          | 2 90                               | (42)         |
| Assumed occupa                                             | ng energy r<br>ncy, N                                                 | requirement                                                                      | t                                                 | Vd average                                       | = (25 x N) +                 | 36                                      |                          |                  |             |                  |                          | 2.90                               | (42)         |
| Assumed occupa                                             | ng energy r<br>ncy, N<br>not water u                                  | requirement<br>usage in litre                                                    | t<br>es per day '                                 |                                                  |                              |                                         | Jul                      | Aug              | Sep         | Oct              |                          | 103.03                             | (42)<br>(43) |
| Assumed occupa<br>Annual average h                         | ng energy r<br>ncy, N<br>not water u<br>Jan                           | requirement<br>usage in litre<br>Feb                                             | t<br>es per day v<br>Mar                          | Apr                                              | May                          | Jun                                     | Jul                      | Aug              | Sep         | Oct              | Nov                      |                                    | _            |
|                                                            | g energy r<br>ncy, N<br>not water u<br>Jan<br>in litres pe            | requirement<br>usage in litre<br><b>Feb</b><br>er day for ea                     | t<br>es per day '<br><b>Mar</b><br>ich month '    | <b>Apr</b><br>Vd,m = fact                        | May<br>or from Tabl          | <b>Jun</b><br>e 1c x (43                | 5)                       | _                |             |                  |                          | 103.03<br>Dec                      | _            |
| Assumed occupa<br>Annual average h                         | ng energy r<br>ncy, N<br>not water u<br>Jan                           | requirement<br>usage in litre<br>Feb                                             | t<br>es per day v<br>Mar                          | Apr                                              | May                          | Jun                                     |                          | Aug<br>96.85     | <b>Sep</b>  | 105.09           | 109.22                   | 103.03<br>Dec<br>113.34            | ] (43)       |
| Assumed occupa<br>Annual average h<br>Hot water usage<br>[ | ncy, N<br>ncy, N<br>not water u<br>Jan<br>in litres pe<br>113.34      | requirement<br>usage in litre<br>Feb<br>er day for ea<br>109.22                  | t<br>es per day V<br>Mar<br>ach month V<br>105.09 | <b>Apr</b><br>Vd,m = fact<br>100.97              | May<br>or from Tabl          | <b>Jun</b><br>le 1c x (43<br>92.73      | 92.73                    | 96.85            |             |                  | 109.22                   | 103.03<br>Dec                      | _            |
| Assumed occupa<br>Annual average h                         | ng energy r<br>ncy, N<br>not water u<br>Jan<br>in litres pe<br>113.34 | requirement<br>usage in litre<br>Feb<br>er day for ea<br>109.22<br>er used = 4.1 | t<br>Mar<br>Mar<br>105.09<br>.8 x Vd,m x          | <b>Apr</b><br>Vd,m = fact<br>100.97<br>nm x Tm/3 | May<br>or from Tabl<br>96.85 | Jun<br>e 1c x (43<br>92.73<br>onth (see | 5)<br>92.73<br>Tables 1b | 96.85            | 100.97      | 105.09<br>∑(44)1 | 109.22                   | 103.03<br>Dec<br>113.34<br>1236.40 | ] (43)       |
| Assumed occupa<br>Annual average h<br>Hot water usage<br>[ | ncy, N<br>ncy, N<br>not water u<br>Jan<br>in litres pe<br>113.34      | requirement<br>usage in litre<br>Feb<br>er day for ea<br>109.22                  | t<br>es per day V<br>Mar<br>ach month V<br>105.09 | <b>Apr</b><br>Vd,m = fact<br>100.97              | May<br>or from Tabl          | <b>Jun</b><br>le 1c x (43<br>92.73      | 92.73                    | 96.85            |             | 105.09           | 109.22<br>12 =<br>149.89 | 103.03<br>Dec<br>113.34<br>1236.40 | ] (43)       |

|                    | 25.21        | 22.05        | 22.75       | 19.84      | 19.03     | 16.43        | 15.22       | 17.47     | 17.67 | 20.60 | 22.48 | 24.42 | (46) |
|--------------------|--------------|--------------|-------------|------------|-----------|--------------|-------------|-----------|-------|-------|-------|-------|------|
| Water storage lo   | ss calculate | ed for each  | month (55   | 5) x (41)m |           |              |             |           |       |       |       |       |      |
|                    | 0.00         | 0.00         | 0.00        | 0.00       | 0.00      | 0.00         | 0.00        | 0.00      | 0.00  | 0.00  | 0.00  | 0.00  | (56) |
| If the vessel cont | ains dedica  | ated solar s | torage or d | edicated W | WHRS (56) | )m x [(47) - | Vs] ÷ (47), | else (56) |       |       |       |       |      |

|                    | 0.00         | 0.00         | 0.00              | 0.00        | 0.00          | 0.00         | 0.00             | 0.00      | 0.00            | 0.00             | 0.00    | 0.00       | (57) |
|--------------------|--------------|--------------|-------------------|-------------|---------------|--------------|------------------|-----------|-----------------|------------------|---------|------------|------|
| Primary circuit lo | oss for each | n month fro  | m Table 3         |             |               |              |                  |           |                 |                  |         |            |      |
|                    | 0.00         | 0.00         | 0.00              | 0.00        | 0.00          | 0.00         | 0.00             | 0.00      | 0.00            | 0.00             | 0.00    | 0.00       | (59) |
| Combi loss for e   | ach month    | from Table   | 3a, 3b or 3       | с           |               |              |                  |           |                 |                  |         |            |      |
|                    | 50.96        | 46.03        | 50.96             | 49.32       | 49.35         | 45.73        | 47.25            | 49.35     | 49.32           | 50.96            | 49.32   | 50.96      | (61) |
| Total heat requi   | red for wat  | er heating o | calculated f      | or each mo  | onth 0.85 x   | (45)m + (4   | 46)m + (57)r     | n + (59)m | + (61)m         |                  |         |            |      |
|                    | 219.03       | 193.03       | 202.65            | 181.56      | 176.25        | 155.23       | 148.72           | 165.79    | 167.14          | 188.27           | 199.21  | 213.73     | (62) |
| Solar DHW input    | t calculated | l using Appe | endix G or A      | Appendix H  |               |              |                  |           |                 |                  |         |            |      |
|                    | 0.00         | 0.00         | 0.00              | 0.00        | 0.00          | 0.00         | 0.00             | 0.00      | 0.00            | 0.00             | 0.00    | 0.00       | (63) |
| Output from wa     | ter heater f | for each mo  | onth (kWh/        | month) (62  | 2)m + (63)m   | ı            |                  |           |                 |                  |         |            |      |
|                    | 219.03       | 193.03       | 202.65            | 181.56      | 176.25        | 155.23       | 148.72           | 165.79    | 167.14          | 188.27           | 199.21  | 213.73     | ]    |
|                    |              |              |                   |             |               |              |                  |           |                 | ∑(64)1           | .12 =   | 2210.62    | (64) |
| Heat gains from    | water heat   | ing (kWh/m   | nonth) 0.2        | 5 × [0.85 × | (45)m + (61   | .)m] + 0.8 : | × [(46)m + (     | 57)m + (5 | 9)m]            |                  |         |            |      |
|                    | 68.62        | 60.38        | 63.18             | 56.30       | 54.53         | 47.84        | 45.55            | 51.05     | 51.51           | 58.40            | 62.17   | 66.86      | (65) |
|                    |              | •            | •                 | •           | •             | •            |                  |           |                 |                  |         |            | _    |
| 5. Internal gain   | IS           |              |                   |             |               |              |                  |           |                 |                  |         |            |      |
|                    | Jan          | Feb          | Mar               | Apr         | May           | Jun          | Jul              | Aug       | Sep             | Oct              | Nov     | Dec        |      |
| Metabolic gains    | (Table 5)    |              |                   |             |               |              |                  |           |                 |                  |         |            | _    |
|                    | 144.91       | 144.91       | 144.91            | 144.91      | 144.91        | 144.91       | 144.91           | 144.91    | 144.91          | 144.91           | 144.91  | 144.91     | (66) |
| Lighting gains (c  | alculated in | Appendix I   | L, equation       | L9 or L9a), | also see Ta   | ble 5        |                  |           |                 |                  |         |            | _    |
|                    | 28.07        | 24.93        | 20.27             | 15.35       | 11.47         | 9.69         | 10.47            | 13.60     | 18.26           | 23.18            | 27.06   | 28.85      | (67) |
| Appliance gains    | (calculated  | in Appendi   | x L, equatio      | on L13 or L | 13a), also se | ee Table 5   |                  |           |                 |                  |         |            | _    |
|                    | 299.27       | 302.37       | 294.55            | 277.89      | 256.86        | 237.09       | 223.89           | 220.78    | 228.61          | 245.27           | 266.30  | 286.06     | (68) |
| Cooking gains (c   | alculated ir | n Appendix   | L, equation       | L15 or L15  | a), also see  | Table 5      |                  |           |                 |                  |         |            | _    |
|                    | 37.49        | 37.49        | 37.49             | 37.49       | 37.49         | 37.49        | 37.49            | 37.49     | 37.49           | 37.49            | 37.49   | 37.49      | (69) |
| Pump and fan ga    | ains (Table  | 5a)          |                   |             |               |              |                  |           |                 |                  |         |            |      |
|                    | 3.00         | 3.00         | 3.00              | 3.00        | 3.00          | 3.00         | 3.00             | 3.00      | 3.00            | 3.00             | 3.00    | 3.00       | (70) |
| Losses e.g. evap   | oration (Ta  | ble 5)       |                   |             |               |              |                  |           |                 |                  |         |            |      |
|                    | -115.93      | -115.93      | -115.93           | -115.93     | -115.93       | -115.93      | -115.93          | -115.93   | -115.93         | -115.93          | -115.93 | 3 -115.93  | (71) |
| Water heating g    | ains (Table  | 5)           |                   |             |               |              |                  |           |                 |                  |         |            |      |
|                    | 92.24        | 89.86        | 84.92             | 78.20       | 73.29         | 66.45        | 61.23            | 68.62     | 71.54           | 78.49            | 86.34   | 89.87      | (72) |
| Total internal ga  | ins (66)m -  | + (67)m + (6 | 58)m + (69)       | m + (70)m   | + (71)m + (7  | 72)m         |                  |           |                 |                  |         |            |      |
|                    | 489.05       | 486.63       | 469.21            | 440.91      | 411.10        | 382.70       | 365.05           | 372.48    | 387.88          | 416.42           | 449.18  | 474.25     | (73) |
| 6 Solar gains      |              |              |                   |             |               |              |                  |           |                 |                  |         |            |      |
| 6. Solar gains     |              |              |                   |             | A             | 6.           | las flux         |           | _               |                  |         | Caina      |      |
|                    |              |              | Access f<br>Table |             | Area<br>m²    |              | lar flux<br>N/m² | spe       | g<br>cific data | FF<br>specific c | lata    | Gains<br>W |      |
|                    |              |              |                   |             |               |              |                  | or        | Table 6b        | or Table         |         |            |      |
| South              |              |              | 0.7               | 7 X         | 10.58         | x            | 46.75 x          | 0.9 x     | 0.72 x          | 0.70             | =       | 172.76     | (78) |
| Horizontal         |              |              | 1.0               | 0 x [       | 4.50          | x 2          | 26.00 x          | 0.9 x     | 0.72 x          | 0.70             | =       | 53.07      | ]    |
| West               |              |              | 0.7               | 7 ×         | 0.94          | x            | 19.64 x          | 0.9 x     | 0.72 x          | 0.70             | =       | 6.45       | (80) |
| East               |              |              | 0.7               | 7 X         | 0.94          | x []         | 19.64 x          | 0.9 x     | 0.72 x          | 0.70             | =       | 6.45       | (76) |
| West               |              |              | 1.0               | 0 x [       | 1.89          | x 2          | 26.61 x          | 0.9 x     | 0.72 x          | 0.70             | =       | 22.81      | (80) |
| Solar gains in wa  | atts ∑(74)m  | n(82)m       |                   |             |               |              |                  |           |                 |                  |         |            | -    |
|                    | 261.54       | 464.51       | 677.60            | 896.24      | 1045.58       | 1053.70      | 1009.55          | 897.50    | 754.15          | 525.53           | 316.93  | 221.34     | (83) |
| Total gains - inte |              |              |                   |             |               |              |                  | •         |                 |                  | •       |            |      |

7. Mean internal temperature (heating season)

695.59 **(84)** 

766.11

750.59 951.14 1146.81 1337.14 1456.68 1436.40 1374.60 1269.98 1142.03 941.95

| Temperature du     | ring heating  | g periods in  | the living a | area from T   | able 9, Th1  | (°C)         |        |        |        |              |         | 21.00   | (85)  |
|--------------------|---------------|---------------|--------------|---------------|--------------|--------------|--------|--------|--------|--------------|---------|---------|-------|
|                    | Jan           | Feb           | Mar          | Apr           | May          | Jun          | Jul    | Aug    | Sep    | Oct          | Nov     | Dec     |       |
| Utilisation factor | for gains f   | or living are | a n1,m (se   | e Table 9a)   |              |              |        |        |        |              |         |         |       |
|                    | 1.00          | 0.99          | 0.98         | 0.93          | 0.82         | 0.63         | 0.47   | 0.53   | 0.79   | 0.97         | 1.00    | 1.00    | (86)  |
| Mean internal te   |               |               |              |               |              |              | -      |        |        |              |         |         | ()    |
| Wedninternarte     | -             |               | -            |               |              | 20.07        | 20.00  | 20.00  | 20.01  | 20 5 4       | 20.05   | 10.00   | (07)  |
|                    | 19.73         | 19.94         | 20.24        | 20.59         | 20.85        | 20.97        | 20.99  | 20.99  | 20.91  | 20.54        | 20.05   | 19.69   | (87)  |
| Temperature du     | ring heating  | g periods in  | the rest of  | dwelling fr   | om Table 9   | ), Th2("C)   |        |        |        |              |         |         |       |
|                    | 19.96         | 19.96         | 19.96        | 19.97         | 19.97        | 19.97        | 19.97  | 19.97  | 19.97  | 19.97        | 19.96   | 19.96   | (88)  |
| Utilisation factor | r for gains f | or rest of d  | welling n2,r | n             |              |              |        |        |        |              |         |         |       |
|                    | 1.00          | 0.99          | 0.97         | 0.91          | 0.76         | 0.54         | 0.36   | 0.42   | 0.71   | 0.95         | 0.99    | 1.00    | (89)  |
| Mean internal te   | emperature    | in the rest   | of dwelling  | T2 (follow    | steps 3 to 3 | 7 in Table 9 | c)     |        |        |              |         |         |       |
|                    | 18.80         | 19.01         | 19.31        | 19.65         | 19.87        | 19.96        | 19.97  | 19.97  | 19.92  | 19.60        | 19.13   | 18.76   | (90)  |
| Living area fracti |               |               |              |               |              |              |        |        |        | ving area ÷  |         | 0.14    | (91)  |
| -                  |               | for the wh    | ala durallin | ~ fl A v T1 i | /1 f( A) v T | - <b>-</b> - |        |        |        |              | (4) -   | 0.14    | (91)  |
| Mean internal te   | -             |               |              | -             |              |              |        |        |        |              |         |         |       |
|                    | 18.93         | 19.14         | 19.44        | 19.78         | 20.01        | 20.10        | 20.11  | 20.11  | 20.06  | 19.73        | 19.25   | 18.89   | (92)  |
| Apply adjustmer    | nt to the me  | an internal   | temperatu    | ire from Ta   | ble 4e whe   | re appropr   | iate   |        |        |              |         |         |       |
|                    | 18.93         | 19.14         | 19.44        | 19.78         | 20.01        | 20.10        | 20.11  | 20.11  | 20.06  | 19.73        | 19.25   | 18.89   | (93)  |
|                    |               |               |              |               |              |              |        |        |        |              |         |         |       |
| 8. Space heatin    | ig requirem   | ent           |              |               |              |              |        |        |        |              |         |         |       |
|                    | Jan           | Feb           | Mar          | Apr           | May          | Jun          | Jul    | Aug    | Sep    | Oct          | Nov     | Dec     |       |
| Utilisation factor | for gains,    | յՠ            |              |               |              |              |        |        |        |              |         |         |       |
|                    | 1.00          | 0.99          | 0.97         | 0.91          | 0.76         | 0.56         | 0.38   | 0.43   | 0.72   | 0.95         | 0.99    | 1.00    | (94)  |
| Useful gains, ηm   | Gm, W (94     | )m x (84)m    |              |               |              |              |        |        |        |              |         |         |       |
|                    | 748.40        | 942.28        | 1112.85      | 1211.39       | 1112.38      | 799.46       | 521.85 | 548.86 | 819.47 | 892.47       | 760.53  | 694.19  | (95)  |
| Monthly average    | e external t  | emperature    | e from Table | e U1          |              |              |        |        |        |              |         |         |       |
| , c                | 4.30          | 4.90          | 6.50         | 8.90          | 11.70        | 14.60        | 16.60  | 16.40  | 14.10  | 10.60        | 7.10    | 4.20    | (96)  |
| Heat loss rate fo  |               |               |              |               |              |              | 10.00  | 10.40  | 14.10  | 10.00        | 7.10    | 4.20    | (30)  |
|                    |               |               |              |               |              |              | 524.20 |        | 004.42 | 4262.02      | 4007.40 | 2242.05 | (07)  |
|                    | 2214.33       | 2152.27       | 1953.42      | 1633.70       | 1246.41      | 820.75       | 524.30 | 553.50 | 891.13 | 1369.93      | 1827.10 | 2213.05 | (97)  |
| Space heating re   |               |               | th 0.024 x   | [(97)m - (95  | 5)m] x (41)r |              |        |        |        |              |         |         |       |
|                    | 1090.65       | 813.11        | 625.38       | 304.06        | 99.72        | 0.00         | 0.00   | 0.00   | 0.00   | 355.23       | 767.93  | 1130.04 |       |
|                    |               |               |              |               |              |              |        |        | ∑(98   | 3)15, 10     | 12 = 5  | 186.12  | (98)  |
| Space heating re   | quirement     | kWh/m²/ye     | ear          |               |              |              |        |        |        | (98)         | ÷ (4)   | 39.50   | (99)  |
|                    |               |               |              |               |              |              |        |        |        |              |         |         |       |
| 9a. Energy requ    | uirements -   | individual    | heating sys  | stems inclu   | ding micro   | -СНР         |        |        |        |              |         |         |       |
| Space heating      |               |               |              |               |              |              |        |        |        |              |         |         |       |
| Fraction of space  | e heat from   | secondary     | /supplemer   | ntary syster  | m (table 11  | )            |        |        |        |              |         | 0.00    | (201) |
| Fraction of space  | e heat from   | main syste    | m(s)         |               |              |              |        |        |        | 1 - (20      | )1) =   | 1.00    | (202) |
| Fraction of space  | e heat from   | main syste    | m 2          |               |              |              |        |        |        |              |         | 0.00    | (202) |
| Fraction of total  |               |               |              |               |              |              |        |        | (20    | 2) x [1- (20 | 3)] =   | 1.00    | (204) |
| Fraction of total  |               |               |              |               |              |              |        |        | (      | (202) x (20  |         | 0.00    | (205) |
|                    |               |               | System 2     |               |              |              |        |        |        | (202) × (20  |         |         |       |
| Efficiency of mai  |               |               |              |               |              |              |        |        |        | • •          |         | 91.80   | (206) |
|                    | Jan           | Feb           | Mar          | Apr           | May          | Jun          | Jul    | Aug    | Sep    | Oct          | Nov     | Dec     |       |
| Space heating fu   | el (main sy   | stem 1), kW   | /h/month     |               |              |              |        |        |        |              |         |         |       |
|                    | 1188.07       | 885.74        | 681.24       | 331.22        | 108.62       | 0.00         | 0.00   | 0.00   | 0.00   | 386.96       | 836.53  | 1230.98 |       |
|                    |               |               |              |               |              |              |        |        | ∑(211  | .)15, 10     | 12 = 5  | 649.37  | (211) |
| Water heating      |               |               |              |               |              |              |        |        |        |              |         |         |       |
| Efficiency of wat  | er heater     |               |              |               |              |              |        |        |        |              |         |         |       |
|                    | 87.10         | 86.85         | 86.33        | 85.08         | 82.63        | 79.50        | 79.50  | 79.50  | 79.50  | 85.34        | 86.71   | 87.18   | (217) |
|                    |               |               |              |               |              |              |        |        |        |              |         | -       | . /   |

| Water heating fuel, kWh/month                                                      |                    |        |                        |                |                            | _       |
|------------------------------------------------------------------------------------|--------------------|--------|------------------------|----------------|----------------------------|---------|
| 251.49 222.25 234.74 213.40 21                                                     | 13.31 195.26 2     | 187.07 | 208.54 210.24          | 220.61 229     | 9.74 245.17                |         |
| Annual totals                                                                      |                    |        | Σ                      | (219a)112 =    | 2631.82                    | (219)   |
| Space heating fuel - main system 1                                                 |                    |        |                        |                | 5649.37                    | 1       |
|                                                                                    |                    |        |                        |                | 2631.82                    | ]<br>T  |
| Water heating fuel<br>Electricity for pumps, fans and electric keep-hot (Table 4f) |                    |        |                        |                | 2031.82                    |         |
|                                                                                    |                    |        | 20.00                  |                |                            | (220-)  |
| central heating pump or water pump within warm air heating                         | gunit              |        | 30.00                  |                |                            | (230c)  |
| boiler flue fan                                                                    |                    |        | 45.00                  |                | 75.00                      | (230e)  |
| Total electricity for the above, kWh/year                                          |                    |        |                        |                | 75.00                      | (231)   |
| Electricity for lighting (Appendix L)                                              |                    | 1-     |                        | 22) (2271)     | 495.67                     | ] (232) |
| Total delivered energy for all uses                                                |                    | (2     | 211)(221) + (231) + (2 | 32)(237b) =    | 8851.86                    | (238)   |
| 10a. Fuel costs - individual heating systems including micro-CH                    |                    |        |                        |                |                            |         |
|                                                                                    | Fuel<br>kWh/year   |        | Fuel price             |                | Fuel<br>cost £/year        |         |
| Space heating - main system 1                                                      | 5649.37            | х      | 3.48                   | x 0.01 =       | 196.60                     | (240)   |
| Water heating                                                                      | 2631.82            | x      | 3.48                   | x 0.01 =       | 91.59                      | (247)   |
| Pumps and fans                                                                     | 75.00              | x      | 13.19                  | x 0.01 =       | 9.89                       | (249)   |
| Electricity for lighting                                                           | 495.67             | x      | 13.19                  | x 0.01 =       | 65.38                      | (250)   |
| Additional standing charges                                                        |                    |        |                        |                | 120.00                     | (251)   |
| Total energy cost                                                                  |                    |        | (240)(242) + (         | 245)(254) =    | 483.46                     | (255)   |
| 11a. SAP rating - individual heating systems including micro-CH                    | НР                 |        |                        |                |                            |         |
| Energy cost deflator (Table 12)                                                    |                    |        |                        |                | 0.42                       | (256)   |
| Energy cost factor (ECF)                                                           |                    |        |                        |                | 1.15                       | (257)   |
| SAP value                                                                          |                    |        |                        |                | 83.93                      | ]       |
| SAP rating (section 13)                                                            |                    |        |                        |                | 84                         | (258)   |
| SAP band                                                                           |                    |        |                        |                | B                          | ]       |
|                                                                                    |                    |        |                        |                | _                          | _       |
| 12a. CO <sub>2</sub> emissions - individual heating systems including micr         | o-CHP<br>Energy    | V.     | Emission factor        |                | Emissions                  |         |
|                                                                                    | kWh/year           |        | kg CO₂/kWh             |                | kg CO₂/year                |         |
| Space heating - main system 1                                                      | 5649.37            | х      | 0.22                   | =              | 1220.26                    | (261)   |
| Water heating                                                                      | 2631.82            | х      | 0.22                   | =              | 568.47                     | (264)   |
| Space and water heating                                                            |                    |        | (261) + (262) + (      | 263) + (264) = | 1788.74                    | (265)   |
| Pumps and fans                                                                     | 75.00              | х      | 0.52                   | =              | 38.93                      | (267)   |
| Electricity for lighting                                                           | 495.67             | х      | 0.52                   | =              | 257.25                     | (268)   |
| Total CO <sub>2</sub> , kg/year                                                    |                    |        | (                      | 265)(271) =    | 2084.92                    | (272)   |
| Dwelling CO <sub>2</sub> emission rate                                             |                    |        |                        | (272) ÷ (4) =  | 15.88                      | (273)   |
| El value                                                                           |                    |        |                        |                | 84.15                      | ]       |
| El rating (section 14)                                                             |                    |        |                        |                | 84                         | (274)   |
| El band                                                                            |                    |        |                        |                | В                          | ]       |
| 13a. Primary energy - individual heating systems including mic                     | cro-CHP            |        |                        |                |                            |         |
|                                                                                    | Energy<br>kWh/year |        | Primary factor         |                | Primary Energy<br>kWh/year | ,       |
| Space heating - main system 1                                                      | 5649.37            | x      | 1.22                   | =              | 6892.23                    | (261)   |

Space and water heating

3210.82

10103.05

(264)

(265)

х

1.22

=

(261) + (262) + (263) + (264) =

2631.82

| Pumps and fans                           | 75.00  | ] x | 3.07 | ] = | 230.25   | (267) |
|------------------------------------------|--------|-----|------|-----|----------|-------|
| Electricity for lighting                 | 495.67 | ] x | 3.07 | ] = | 1521.71  | (268) |
| Primary energy kWh/year                  |        |     |      |     | 11855.01 | (272) |
| Dwelling primary energy rate kWh/m2/year |        |     |      |     | 90.30    | (273) |

### APPENDIX C

Code for Sustainable Homes Ene7 Worksheet



Energy averaging for the Code for Sustainable Homes Ene 1 and Ene 2 is permitted where a building contains multiple dwellings. For Ene 1 the area weighted average DER and TER must be calculated in accordance with the block averaging methodology defined in clauses 4.6 and 4.14 of the ADL1A. For apartment blocks it is acceptable to assess Ene 2 based on area weighted average FEE. The area weighted FEE must be calculated in accordance with the methodology defined in clauses 4.6 of ADL1A. The use of energy averaging to assess performance against Ene 2 is at the discretion of the developer and Assessor.

| Assessor name    |     | Mr Victor Battista         |               |       | Assesso | or numb | er                 | 3472                |                     |
|------------------|-----|----------------------------|---------------|-------|---------|---------|--------------------|---------------------|---------------------|
|                  |     |                            |               |       | Created | ł       |                    | 26/08/201           | 4                   |
| Energy Averaging |     |                            |               |       |         |         |                    |                     |                     |
| URN              | Vrs | Address                    | Built Form    | DER   | TER     | FEE     | Floor Area<br>(m²) | DER x<br>Floor Area | TER x<br>Floor Area |
| 0912006          | 2   | 6 The Old School Park Lane | Semi-detached | 10.52 | 18.02   | -1.0    | 76.73              | 807.20              | 1382.67             |
| 0912005          | 2   | 5 The Old School Park Lane | Enclosed mid  | 8.72  | 16.40   | -1.0    | 89.29              | 778.61              | 1464.36             |
| 0912004          | 2   | 4 The Old School Park Lane | Enclosed end  | 11.02 | 18.00   | -1.0    | 83.76              | 923.04              | 1507.68             |
| 0912003          | 2   | 3 The Old School Park Lane | Enclosed end  | 18.47 | 22.01   | -1.0    | 60.01              | 1108.38             | 1320.82             |
| 0912002          | 2   | 2 The Old School Park Lane | Enclosed mid  | 9.42  | 16.83   | -1.0    | 79.20              | 746.06              | 1332.94             |
|                  |     |                            |               |       |         | Total   | 388.99             | 4363.29             | 7008.47             |

Multiple dwelling DER = 11.22

Multiple dwelling TER = 18.02

Multiple dwelling FEE = -1.0

#### Ene 1 Results

Ene 1 using energy averaging = 37.7 % improvement\*

4.1 credits

\*100 x (1 - (DER/TER))

#### Ene 2 Results

#### Mid terrace and apartment blocks

Number of dwellings of this type = 2

FEE using energy averaging = -1 credits = 9

End terrace, semi-detached and detached

Number of dwellings of this type = 3

FEE using energy averaging = -1

credits = 9

Ene 2 credits using energy averaging for all dwelling types = 9 (Flats-MidTerrace-TFA x Flats-MidTerrace-Credits) + (Detached-Semi-TFA x Detached-Semi-Credits) / (TFA-All-Dwellings) (168.49 x 9) + (220.5 x 9) / (388.99)



Energy averaging for the Code for Sustainable Homes Ene 1 and Ene 2 is permitted where a building contains multiple dwellings. For Ene 1 the area weighted average DER and TER must be calculated in accordance with the block averaging methodology defined in clauses 4.6 and 4.14 of the ADL1A. For apartment blocks it is acceptable to assess Ene 2 based on area weighted average FEE. The area weighted FEE must be calculated in accordance with the methodology defined in clauses 4.6 of ADL1A. The use of energy averaging to assess performance against Ene 2 is at the discretion of the developer and Assessor.

| Assessor name    |     | Mr Victor Battista              |             | Assesso | or numb | er    | 3472               |                     |                     |  |
|------------------|-----|---------------------------------|-------------|---------|---------|-------|--------------------|---------------------|---------------------|--|
|                  |     | c c                             |             |         |         | ł     |                    | 26/08/2014          |                     |  |
| Energy Averaging |     |                                 |             |         |         |       |                    |                     |                     |  |
| URN              | Vrs | Address                         | Built Form  | DER     | TER     | FEE   | Floor Area<br>(m²) | DER x<br>Floor Area | TER x<br>Floor Area |  |
| 0614009          | 2   | Plot 9 The Old School Park Lane | End-terrace | 7.71    | 16.03   | -1.0  | 131.29             | 1012.25             | 2104.58             |  |
| 0614008          | 2   | Plot 8 The Old School Park Lane | Mid-terrace | 6.46    | 14.44   | -1.0  | 137.01             | 885.08              | 1978.42             |  |
| 0614007          | 2   | Plot 7 The Old School Park Lane | End-terrace | 7.71    | 16.03   | -1.0  | 131.29             | 1012.25             | 2104.58             |  |
|                  |     |                                 |             |         |         | Total | 399.59             | 2909.58             | 6187.58             |  |

Multiple dwelling DER = 7.28

Multiple dwelling TER = 15.48

Multiple dwelling FEE = -1.0

### Ene 1 Results

Ene 1 using energy averaging = 53.0 % improvement\*

5.4 credits

\*100 x (1 - (DER/TER))

### Ene 2 Results

Mid terrace and apartment blocks Number of dwellings of this type = 1

FEE using energy averaging = -1

credits = 9

#### End terrace, semi-detached and detached

Number of dwellings of this type = 2

FEE using energy averaging = -1

credits = 9

Ene 2 credits using energy averaging for all dwelling types = 9

(Flats-MidTerrace-TFA x Flats-MidTerrace-Credits) + (Detached-Semi-TFA x Detached-Semi-Credits) / (TFA-All-Dwellings)

(137.01 x 9) + (262.58 x 9) / (399.59)

#### CSH Ene 7 Assessment Tool

#### Code Addendum 2014 - Revision 00 (England Only)

| Job no:           | The Old School, Park Lane, Richmond |
|-------------------|-------------------------------------|
| Assessment date:  | July 2014                           |
| Assessor name:    | Victor Battista                     |
| Registration no:  | 200                                 |
| Development name: | The Old School, Park Lane, Richmond |

| Ene 7 Dwelling Assessme  |                                                                     |                                       | Energ                     | у Туре |        |        |        |        |        |        |        |        |
|--------------------------|---------------------------------------------------------------------|---------------------------------------|---------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                          |                                                                     |                                       |                           | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |
|                          |                                                                     |                                       | Description               | Plot 7 | Plot 8 | Plot 9 | Plot 1 | Plot 2 | Plot 3 | Plot 4 | Plot 5 | Plot 6 |
| Standard case DER        | SAP Worksheet Version<br>9.92                                       | kgCO <sub>2</sub> /m²/yr              | SAP box [273] or<br>[384] | 15.88  | 14.63  | 15.88  | 0.00   | 24.59  | 32.68  | 27.13  | 24.77  | 27.80  |
| Floor area               | SAP Worksheet Version<br>9.92                                       | m²                                    | SAP box [4]               | 131.29 | 137.01 | 131.29 |        | 79.20  | 60.01  | 83.76  | 89.29  | 76.23  |
| CO <sub>2</sub> emission | s from electrical appliances                                        | kgCO <sub>2</sub> /m <sup>2</sup> /yr |                           | 13.46  | 13.18  | 13.46  |        | 16.23  | 17.01  | 16.01  | 15.72  | 16.37  |
| С                        | $CO_2$ emissions from Cooking kgCO <sub>2</sub> /m <sup>2</sup> /yr |                                       |                           | 1.44   | 1.38   | 1.44   |        | 2.24   | 2.78   | 2.15   | 2.04   | 2.31   |
| Sta                      | Standard case CO <sub>2</sub> emissions                             |                                       |                           | 30.77  | 29.19  | 30.77  |        | 43.06  | 52.47  | 45.28  | 42.52  | 46.48  |

| Actual case DER                                                       | SAP Worksheet Version<br>9.92         | kgCO <sub>2</sub> /m <sup>2</sup> /yr | SAP box [273] or<br>[384]       | 9.50  | 8.70  | 9.50  | 16.25 | 15.20 | 20.25 | 17.00 | 14.80 | 17.20 |
|-----------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Are SAP Sect                                                          | Are SAP Section 16 allowances sought? |                                       | n drop down menus               | No    |
| Residual CO <sub>2</sub> emissions offset from biomass CHP            | SAP Worksheet Version<br>9.92         | kgCO <sub>2/</sub> m²/yr              | SAP Section 16<br>SAP box [ZC5] |       |       |       |       |       |       |       |       |       |
| CO <sub>2</sub> reduction from<br>additional allowable<br>electricity | SAP Worksheet Version<br>9.92         | kgCO <sub>2</sub> /m <sup>2</sup> /yr | SAP Section 16<br>SAP box [ZC7] |       |       |       |       |       |       |       |       |       |
|                                                                       | Actual case CO <sub>2</sub> emissions | kgCO <sub>2</sub> /m <sup>2</sup> /yr | Equivalent to SAP<br>box [ZC8]  | 24.39 | 23.26 | 24.39 |       | 33.67 | 40.04 | 35.15 | 32.55 | 35.88 |

| Ene 7 Results                                                        |          | Energy Type |        |        |        |        |        |        |        |        |
|----------------------------------------------------------------------|----------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|
|                                                                      |          | 1           | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |
|                                                                      | Des      | Plot 7      | Plot 8 | Plot 9 | Plot 1 | Plot 2 | Plot 3 | Plot 4 | Plot 5 | Plot 6 |
|                                                                      | criptio  |             |        |        |        |        |        |        |        |        |
|                                                                      | lion     |             |        |        |        |        |        |        |        |        |
| % improvement in actual / standard case CO <sub>2</sub><br>emissions | <b>%</b> | 20          | 20     | 20     |        | 21     | 23     | 22     | 23     | 22     |
| Ene 7 Credits                                                        |          | 2           | 2      | 2      |        | 2      | 2      | 2      | 2      | 2      |

BRE Global 2014. BRE Certification is a registered trademark owned by BRE Global Ltd and may not be used without BRE Global's written permission.

Permission is given for this tool to be copied without infringement of copyright for use only on projects where a Code for Sustainable Homes assessment is carried out on a dwelling registered with BRE Global. Whilst every care has been taken in preparing this assessment tool, BRE Global cannot accept responsibility for any inaccuracies or for consequential loss incurred as a result of such inaccuracies arising through its use.

All values to be taken from box numbers described within the worksheets set out within The Government's Standard Assessment Procedure for the Energy Ratings of SAP Worksheet Version 9.92, October 2013.

### APPENDIX D

Code for Sustainable Homes Pre-Assessments

|                   | -            |                                                                                         |                       |                     |                                      |       |                                                                                                                                                 |          |
|-------------------|--------------|-----------------------------------------------------------------------------------------|-----------------------|---------------------|--------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| AM                | ONI          | TOR                                                                                     |                       | The Old Sc          | hool, Park I                         | ane   | , Richmond, TW9 2AR                                                                                                                             |          |
| 11 ene            | rgy cor      | nsultancy                                                                               |                       | 22 August 2014      |                                      |       |                                                                                                                                                 |          |
|                   |              |                                                                                         |                       | 1                   |                                      |       |                                                                                                                                                 |          |
| louse Type        | 1            | Dwellings 2 - 6 - Ene                                                                   | rgy averaging used fo | or Ene1 and 2 and t | o achieve CSH Lev<br>Dwellings 2 - 6 | Code  | other Categories to achieve CSH Level 3.                                                                                                        | Approved |
|                   |              |                                                                                         |                       |                     | Weighted Score                       | Level |                                                                                                                                                 | onfirmed |
| Category          | Section      | Description                                                                             | Credits Available     | Credits             |                                      |       | Comment                                                                                                                                         |          |
| inergy            | Ene1         | Dwelling Emissions energy averaged ≥ 32%                                                | 10                    | 4.10                | 4.80                                 | 4     | Ground Floor U-Value=0.10                                                                                                                       |          |
|                   | Ene2         | Building Fabric energy averaged                                                         | 9                     | 9.00                | 10.53                                | 4     | External Wall U-Value=0.25; Timber Walls U-Values =0.25 and 0.23                                                                                |          |
|                   |              |                                                                                         |                       |                     |                                      |       | Party Wall U-Value=0.00 - fully filled and sealed                                                                                               |          |
|                   |              |                                                                                         |                       |                     |                                      |       | Roof Pitched=0.11; Roof Other=0.14<br>Windows U-Value=1.2; Rooflights U-value=1.40                                                              |          |
|                   |              |                                                                                         |                       |                     |                                      |       | Doors U-Value=1.2                                                                                                                               |          |
|                   |              |                                                                                         |                       |                     |                                      |       | Y-Value=0.07 Units 1-6; 0.069 for Units 7 and 9; 0.074 for Unit 8.                                                                              |          |
|                   |              |                                                                                         |                       |                     |                                      |       | Air Permeability Rate=4<br>Mechanical Ventilation with heat recovery 94% efficient and with a                                                   |          |
|                   |              |                                                                                         |                       |                     |                                      |       | SFP of 0.45 to Units 7 - 9 and extract fans to Units 1-6.                                                                                       |          |
|                   |              |                                                                                         |                       |                     |                                      |       | Condensing Combination Boiler=Sedbuk - Efficiency 89.5%<br>Heating Controls=Zone control and weather compensator and                            |          |
|                   |              |                                                                                         |                       |                     |                                      | -     | waste flue gas recovery system                                                                                                                  |          |
|                   | Ene3         | Energy Display Devices                                                                  | 2                     | 2                   | 2.34                                 | 3     | 100% Low energy light fittings<br>That the correctly specified energy display device is dedicated to                                            |          |
|                   |              |                                                                                         |                       |                     |                                      |       | the dwelling and the consumption data displayed by the correctly specified energy display device                                                |          |
|                   | Ene4         | Drying Space                                                                            | 1                     | 1                   | 1.17                                 | 3     | Drying= 6m+ of Drying Line                                                                                                                      |          |
|                   | Ene5<br>Ene6 | White Goods A+ Rated plus Leaflet<br>External Lighting                                  | 2                     | 1                   | 1.17<br>1.17                         | 3     | A= Rated White Goods<br>Energy Efficient External Lighting                                                                                      | -        |
|                   | Ene7         | LZCT                                                                                    | 2                     | 2                   | 2.34                                 | 3     | PV Panels=1KwPeak (approx. 8m2 per roof)                                                                                                        |          |
|                   | Ene8         | Cycle Storage                                                                           | 2                     | 1                   | 1.17                                 | 3     | Safe, secure and weather-proof storage for 1 cycle, 2m long x 1.5m wide.                                                                        |          |
|                   | Ene9         | Home Office                                                                             | 1                     | 1                   | 1.17                                 | 3     | Provision in 2nd or 3rd Bedroom for 1.8m long desk and chair and<br>also 2 double electric sockets and a telephone point.                       |          |
|                   |              | Total                                                                                   | 31                    | 22.1                | 25.86                                |       |                                                                                                                                                 | 1        |
| /ater             | Wat1         | Internal Potable Water                                                                  | 5                     | 3                   | 4.50                                 | 3     | To achieve 105 litres/person/day. Waste water recovery system.                                                                                  |          |
|                   | Wat2         | External Water Use                                                                      | 1                     | 1                   | 1.50                                 | 3     | Water butts - 200 litre for each property                                                                                                       |          |
| laterials         | Mat1         | Total<br>Environmental Impact of Materials                                              | 6<br>15               | 4 10                | 6.00<br>3.00                         | 3     | 10 of 15 Credits taken                                                                                                                          |          |
|                   | Mat2<br>Mat3 | Responsible Sourcing Basic Building Materials<br>Responsible Sourcing Internal Elements | 6                     | 3                   | 0.90                                 | 3     | 3 Credits taken<br>1 Credits taken                                                                                                              |          |
|                   | IVIAL3       | Total                                                                                   | 24                    | 14                  | 4.20                                 | 3     |                                                                                                                                                 | 1        |
| urface Water      | Sur1<br>Sur2 | Reduction of Surface Water Run-Off Flood Risk                                           | 2                     | 2                   | 1.10<br>1.10                         |       | Site is in an area of low flood risk<br>Site is in an area of low flood risk                                                                    |          |
|                   |              | Total                                                                                   | 4                     | 4                   | 2.20                                 | 1     |                                                                                                                                                 | 1        |
| Vaste             | Was1         | Recycling and Storage                                                                   | 4                     | 4                   | 3.20                                 | 3     | Local Authority collection, pre-collection sorting, 30 litre total<br>capacity. Internal storage of 3 bins all with 7 litre minimum<br>capacity |          |
|                   | Was2         | SWMP                                                                                    | 3                     | 1                   | 0.80                                 | 3     | 1 Credit taken                                                                                                                                  |          |
|                   | Was3         | Composting<br>Total                                                                     | 1 8                   | 1 6                 | 0.80<br>4.80                         | 3     | Green waste bin provide by LBRUT                                                                                                                |          |
| ollution          | Pol1         | Global Warming Potential                                                                | 8                     | 1                   | 4.80                                 | 3     | All insulation to have GWP of less than 5                                                                                                       | 1        |
|                   | Pol2         | N0x Emissions<br>Total                                                                  | 3                     | 3                   | 2.10<br>2.80                         | 3     | Dry N0x levels for boiler to be less than 40mg/kWh.                                                                                             |          |
| ealth & Wellbeing | Hea1         | Daylighting                                                                             | 3                     | 0                   | 0.00                                 | 0     | 0 Credit not taken at this stage. Potential to gain credits on issue of                                                                         |          |
|                   |              |                                                                                         |                       |                     |                                      |       | detailed layouts and elevations. NB Home Office window has to<br>achieve                                                                        |          |
|                   | Hea2         | Sound Insulation                                                                        | 4                     | 3                   | 3.51                                 | 3     | 5dB Higher/lower taken. Lower value to account for the                                                                                          |          |
|                   |              |                                                                                         |                       |                     |                                      |       | requirement for Party Walls to be insulated under Building<br>Regulations 2010                                                                  |          |
|                   | Hea3         | Private Space                                                                           | 1 4                   | 1 0                 | 1.17<br>0.00                         |       | Private outdoor space of 4.5m2 provided<br>30% Lifetime Homes compliant                                                                         |          |
|                   | Hea4         | Lifetime Homes<br>Total                                                                 | 12                    | 4                   | 4.68                                 | 0     | 30% Litetime nomes compliant                                                                                                                    | 1        |
| lanagement        | Man1         | Home User Guide                                                                         | 3                     | 3                   | 3.33                                 | 3     | To be provided and compiled using Checklist Man1 and in an<br>appropriate format for users                                                      |          |
|                   | Man2         | Considerate Constructor's Scheme                                                        | 2                     | 1                   | 1.11                                 | 3     | The site will be signed up to the Considerate Constructor's Scheme<br>and will be appropriately audited to achieve minimum credit               |          |
|                   | Man3         | Site Impacts                                                                            | 2                     | 1                   | 1.11                                 | 3     | A record to be maintained for on-site water usage and diesel                                                                                    |          |
|                   | Man4         | Secured By Design                                                                       | 2                     | 1                   | 1.11                                 | 3     | consumption<br>This credit is attained through the requirement of the LPA and the                                                               |          |
|                   |              |                                                                                         |                       |                     |                                      |       | Design Guide to ensure that the requirements of Secured by Design are considered.                                                               |          |
| cology            | Eco1         | Total<br>Environmental Value of The Site                                                | 9                     | 6<br>1              | 6.66<br>1.33                         | 3     | Compliance has been assumed for Eco1 - Eco4. A qualified                                                                                        |          |
| -07               |              |                                                                                         | -                     | _                   |                                      |       | Ecologist should be appointed prior to works commencing on site                                                                                 |          |
|                   | Eco2         | Ecological Enhancement                                                                  | 1                     | 1                   | 1.33                                 | 3     |                                                                                                                                                 |          |
|                   | Eco3<br>Eco4 | Protection of Ecological Features<br>Change of Ecological Value of the Site             | 1 4                   | 1 2                 | 1.33<br>2.66                         | 3     |                                                                                                                                                 |          |
|                   | Eco5         | Building Footprint                                                                      | 2                     | 0                   | 0.00                                 | 0     |                                                                                                                                                 |          |
|                   |              | Total                                                                                   | 9                     | 5                   | 6.65                                 |       |                                                                                                                                                 |          |
|                   |              | Grand Total                                                                             | 107                   | 69.1                | 63.85                                |       |                                                                                                                                                 |          |
|                   | -            | Pre-Assessment Score (rounded down)<br>Code for Sustainable Homes Level                 | +                     |                     | 63<br>3                              |       |                                                                                                                                                 |          |
|                   | 1            | PASS/FAIL                                                                               |                       |                     | PASS                                 |       |                                                                                                                                                 | 1        |

| AM                | ON              | ITOR<br>nsultancy                                                           |                        | The Old Scl     | nool, Park L                      | ane,          | , Richmond, TW9 2AR                                                                                                                                                                                                 |                       |
|-------------------|-----------------|-----------------------------------------------------------------------------|------------------------|-----------------|-----------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 17 ene            | rgy co          | nsultancy                                                                   |                        | 22 August 2014  |                                   |               |                                                                                                                                                                                                                     |                       |
| louse Type        |                 | Dwellings 7 - 9 - En                                                        | argy averaging used fo | 1               |                                   |               | other Categories to achieve CSH Level 3.                                                                                                                                                                            |                       |
|                   |                 | Swellings 7 - 5 - Eli                                                       |                        |                 | Dwellings 7 - 9<br>Weighted Score | Code<br>Level |                                                                                                                                                                                                                     | Approved,<br>onfirmed |
|                   |                 |                                                                             |                        | -               |                                   |               |                                                                                                                                                                                                                     |                       |
| ategory<br>nergy  | Section<br>Ene1 | Description<br>Dwelling Emissions energy averaged ≥ 32%                     | Credits Available      | Credits<br>5.40 | 6.32                              | 4             | Comment<br>Ground Floor U-Value=0.10                                                                                                                                                                                |                       |
| neigy             |                 |                                                                             |                        |                 |                                   |               |                                                                                                                                                                                                                     |                       |
|                   | Ene2            | Building Fabric energy averaged                                             | 9                      | 9.00            | 10.53                             | 4             | External Wall U-Value=0.25; Timber Walls U-Values =0.25 and 0.23<br>Party Wall U-Value=0.00 - fully filled and sealed<br>Roof Pitched=0.11; Roof Other=0.14<br>Windows U-Value=1.2; Rooflights U-value=1.40         | 3                     |
|                   |                 |                                                                             |                        |                 |                                   |               | Doors U-Value=1.2                                                                                                                                                                                                   |                       |
|                   |                 |                                                                             |                        |                 |                                   |               | Y-Value=0.07 Units 1-6; 0.069 for Units 7 and 9; 0.074 for Unit 8.<br>Air Permeability Rate=4<br>Mechanical Ventilation with heat recovery 94% efficient and with a                                                 | a                     |
|                   |                 |                                                                             |                        |                 |                                   |               | SFP of 0.45 to Units 7 - 9 and extract fans to Units 1-6.<br>Condensing Combination Boiler=Sedbuk - Efficiency 89.5%<br>Heating Controls=Zone control and weather compensator and<br>waste flue gas recovery system |                       |
|                   |                 |                                                                             |                        |                 |                                   |               | 100% Low energy light fittings                                                                                                                                                                                      |                       |
|                   | Ene3            | Energy Display Devices                                                      | 2                      | 2               | 2.34                              | 3             | That the correctly specified energy display device is dedicated to<br>the dwelling and the consumption data displayed by the correctly<br>specified energy display device                                           |                       |
|                   | Ene4            | Drying Space                                                                | 1                      | 1               | 1.17<br>1.17                      | 3             | Drying= 6m+ of Drying Line                                                                                                                                                                                          |                       |
|                   | Ene5<br>Ene6    | White Goods A+ Rated plus Leaflet<br>External Lighting                      | 2                      | 1               | 1.17                              | 3             | A= Rated White Goods<br>Energy Efficient External Lighting                                                                                                                                                          |                       |
|                   | Ene7            | LZCT                                                                        | 2                      | 2               | 2.34                              | 3             | PV Panels=1KwPeak (approx. 8m2 per roof)                                                                                                                                                                            |                       |
|                   | Ene8            | Cycle Storage                                                               | 2                      | 1               | 1.17                              | 3             | Safe, secure and weather-proof storage for 1 cycle, 2m long x 1.5n wide.                                                                                                                                            |                       |
|                   | Ene9            | Home Office                                                                 | 1                      | 1               | 1.17                              | 3             | Provision in 2nd or 3rd Bedroom for 1.8m long desk and chair and also 2 double electric sockets and a telephone point.                                                                                              |                       |
|                   |                 | Total                                                                       | 31                     | 23.4            | 27.38                             | 1             |                                                                                                                                                                                                                     | 1                     |
| ater              | Wat1            | Internal Potable Water                                                      | 5                      | 3               | 4.50                              |               | To achieve 105 litres/person/day. Waste water recovery system.                                                                                                                                                      |                       |
|                   | Wat2            | External Water Use<br>Total                                                 | 1 6                    | 1 4             | 1.50<br>6.00                      | 3             | Water butts - 200 litre for each property                                                                                                                                                                           |                       |
| aterials          | Mat1            | Environmental Impact of Materials                                           | 15                     | 10              | 3.00                              | 3             | 10 of 15 Credits taken                                                                                                                                                                                              | 1                     |
|                   | Mat2            | Responsible Sourcing Basic Building Materials                               | 6                      | 3               | 0.90                              |               | 3 Credits taken                                                                                                                                                                                                     |                       |
|                   | Mat3            | Responsible Sourcing Internal Elements<br>Total                             | 3                      | 1<br>14         | 0.30<br>4.20                      | 3             | 1 Credits taken                                                                                                                                                                                                     |                       |
| urface Water      | Sur1            | Reduction of Surface Water Run-Off                                          | 2                      | 2               | 1.10                              | 3             | Site is in an area of low flood risk                                                                                                                                                                                | 1                     |
|                   | Sur2            | Flood Risk                                                                  | 2                      | 2               | 1.10                              | 3             | Site is in an area of low flood risk                                                                                                                                                                                |                       |
| /aste             | Was1            | Total<br>Recycling and Storage                                              | 4                      | 4               | 2.20<br>3.20                      | 3             | Local Authority collection, pre-collection sorting, 30 litre total<br>capacity. Internal storage of 3 bins all with 7 litre minimum<br>capacity                                                                     |                       |
|                   | Was2            | SWMP                                                                        | 3                      | 1               | 0.80                              | 3             | 1 Credit taken                                                                                                                                                                                                      |                       |
|                   | Was3            | Composting                                                                  | 1                      | 1               | 0.80                              | 3             | Green waste bin provide by LBRUT                                                                                                                                                                                    |                       |
| - U. Alta a       | D-14            | Total                                                                       | 8                      | 6               | 4.80                              |               | All insulation to have CWD of loss than 5                                                                                                                                                                           | 1                     |
| ollution          | Pol1<br>Pol2    | Global Warming Potential<br>N0x Emissions                                   | 1 3                    | 1               | 0.70 2.10                         |               | All insulation to have GWP of less than 5<br>Dry N0x levels for boiler to be less than 40mg/kWh.                                                                                                                    |                       |
|                   | -               | Total                                                                       | 4                      | 4               | 2.80                              |               | ,                                                                                                                                                                                                                   | 1                     |
| ealth & Wellbeing | Hea1            | Daylighting                                                                 | 3                      | 0               | 0.00                              | 0             | 0 Credit not taken at this stage. Potential to gain credits on issue o<br>detailed layouts and elevations. NB Home Office window has to<br>achieve                                                                  | f                     |
|                   | Hea2            | Sound Insulation                                                            | 4                      | 3               | 3.51                              | 3             | 5dB Higher/lower taken. Lower value to account for the<br>requirement for Party Walls to be insulated under Building<br>Regulations 2010                                                                            |                       |
|                   | Hea3            | Private Space                                                               | 1                      | 1               | 1.17                              | 3             | Private outdoor space of 4.5m2 provided                                                                                                                                                                             |                       |
|                   | Hea4            | Lifetime Homes<br>Total                                                     | 4                      | 0               | 0.00<br>4.68                      | 0             | 30% Lifetime Homes compliant                                                                                                                                                                                        |                       |
| lanagement        | Man1            | Home User Guide                                                             | 3                      | 3               | 3.33                              | 3             | To be provided and compiled using Checklist Man1 and in an                                                                                                                                                          |                       |
| -                 | Man2            | Considerate Constructor's Scheme                                            | 2                      | 1               | 1.11                              | 3             | appropriate format for users<br>The site will be signed up to the Considerate Constructor's Scheme<br>and will be appropriately audited to achieve minimum credit                                                   | 2                     |
|                   | Man3            | Site Impacts                                                                | 2                      | 1               | 1.11                              | 3             | A record to be maintained for on-site water usage and diesel                                                                                                                                                        |                       |
|                   | Man4            | Secured By Design                                                           | 2                      | 1               | 1.11                              | 3             | consumption<br>This credit is attained through the requirement of the LPA and the                                                                                                                                   |                       |
|                   | IVIAI14         |                                                                             |                        |                 |                                   | 5             | Design Guide to ensure that the requirements of Secured by<br>Design are considered.                                                                                                                                |                       |
| cology            | Eco1            | Total<br>Environmental Value of The Site                                    | 9                      | 6               | 6.66<br>1.33                      | 3             | Compliance has been assumed for Eco1 - Eco4. A qualified<br>Ecologist should be appointed prior to works commencing on site                                                                                         |                       |
|                   | Eco2            | Ecological Enhancement                                                      | 1                      | 1               | 1.33                              | 3             |                                                                                                                                                                                                                     |                       |
|                   | Eco3<br>Eco4    | Protection of Ecological Features<br>Change of Ecological Value of the Site | 1 4                    | 1 2             | 1.33<br>2.66                      | 3             |                                                                                                                                                                                                                     |                       |
|                   | Eco4<br>Eco5    | Building Footprint                                                          | 2                      | 0               | 0.00                              | 3             |                                                                                                                                                                                                                     |                       |
|                   |                 | Total                                                                       | 9                      | 5               | 6.65                              |               |                                                                                                                                                                                                                     | 1                     |
|                   |                 | Grand Total                                                                 | 107                    | 70.4            | 65.37                             | -             |                                                                                                                                                                                                                     |                       |
|                   |                 | Pre-Assessment Score (rounded down)<br>Code for Sustainable Homes Level     |                        |                 | 65<br>3                           | -             |                                                                                                                                                                                                                     |                       |
|                   | +               | PASS/FAIL                                                                   | 1                      |                 | PASS                              |               |                                                                                                                                                                                                                     | 1                     |