

St James Group Ltd

Former Royal Mail Depot, London Road, Twickenham - Metropolitan Open Land (MOL)

Supplementary Geoenvironmental Site Investigation

25024-R06 (00)

RSK GENERAL NOTES

Project No.: 25024-R06 (00)

Title: Supplementary Geoenvironmental Site Investigation: Former Royal Mail Depot,

London Road, Twickenham – Metropolitan Open Land (MOL)

Client: St James Group Ltd

17th February 2015 Date:

Office: RSK Environment Limited, 18 Frogmore Road, Hemel Hempstead, Herts,

HP3 9RT

Final Status:

Author Verity Macfarlane **Technical reviewer** Andrew Kent

Signature Signature

17th February 2015 17th February 2015 Date: Date:

Project manager Verity Macfarlane **Quality reviewer** Carys Baker

Signature Signature

17th February 2015 17th February 2015 Date: Date:

RSK Environment Limited (RSK) has prepared this report for the sole use of the client, showing reasonable skill and care, for the intended purposes as stated in the agreement under which this work was completed. The report may not be relied upon by any other party without the express agreement of the client and RSK. No other warranty, expressed or implied, is made as to the professional advice included in this report.

Where any data supplied by the client or from other sources have been used, it has been assumed that the information is correct. No responsibility can be accepted by RSK for inaccuracies in the data supplied by any other party. The conclusions and recommendations in this report are based on the assumption that all relevant information has been supplied by those bodies from whom it was requested.

No part of this report may be copied or duplicated without the express permission of RSK and the party for whom it was

Where field investigations have been carried out, these have been restricted to a level of detail required to achieve the stated objectives of the work.

This work has been undertaken in accordance with the quality management system of RSK Environment Ltd.

CONTENTS

1	INT	RODUC	TION	1
	1.1	Object	ive and aims	1
	1.2	Scope		1
	1.3	Existin	g reports	2
	1.4	Limitat	ions	2
2	THE	SITE		3
	2.1	Site lo	cation and description	3
	2.2	Propos	sed development	3
3	PRE	VIOUS	INVESTIGATION WORKS	4
	3.1	Introdu	uction	4
	3.2	Ground	d conditions	4
		3.2.1	Geology	4
		3.2.2	Landfills	4
	3.3	Hydrog	geology and hydrology	4
		3.3.1	Hydrogeology	4
		3.3.2	Groundwater vulnerability	4
		3.3.3	Groundwater source protection zones	5
		3.3.4	Surface watercourses	5
	3.4	History	of site and surrounding area	5
	3.5	Initial o	conceptual model	
		3.5.1	Summary of potential contaminant sources	8
		3.5.2	Sensitive receptors	8
		3.5.3	Summary of plausible pathways	
		3.5.4	Potentially complete pollutant linkages	
4	SUF	PPLEME	ENTARY SITE INVESTIGATION METHODOLOGY	11
	4.1	Sampl	ing strategy and methodology	11
	4.2	Soil sa	mpling, in-situ testing and laboratory analysis	
		4.2.1	Soil laboratory testing	11
		4.2.2	Groundwater monitoring	12
		4.2.3	Groundwater developing, sampling and analysis	12
		4.2.4	Surface water sampling	
		4.2.5	Ground gas monitoring	
5			CONDITIONS	
	5.1	Soil		
		5.1.1	Made ground	
		5.1.2	Alluvium	
		5.1.3	Kempton Park Gravels	
		5.1.4	London Clay Formation	
		5.1.5	Groundwater	
	5.2		d gas regime	
	5.3	Refine	ment of the initial conceptual site model	17

ii

6	QU	ANTITA	TIVE RISK ASSESSMENT	18
	6.1	Linkag	es for assessment	18
	6.2	Metho	dology and results	19
		6.2.1	Direct contact with impacted soil by future residents	19
		6.2.2	Inhalation exposure of future residents to asbestos fibres	24
		6.2.3	Uptake of contaminants by vegetation potentially inhibiting plant growth	24
		6.2.4	Leaching of contaminants to groundwater in principal aquifer and subsequent migration to surface watercourse	25
		6.2.5	Migration of dissolved phase contaminants to adjacent surface watercourse	26
		6.2.6	Migration of dissolved phase contaminants to wider secondary aquifer body	26
		6.2.7	Ground gas	27
7	COI	NCLUS	IONS AND RECOMMENDATIONS	28
	7.1	Conclu	usions	28
	7.2	Recon	nmendations	29
BIE	BLIO	GRAPH	Y	30
	BLES	_	etting	3
			ary of historical development	
			ial sources and types of contamination	
			stimation for potentially complete pollutant linkages	
			uled analysis – soils	
			uled analysis – groundwater	
			uled analysis – surface water	
Tal	ole 8:	Genera	al succession of strata encountered	15
Tal	ole 9:	Summ	ary of ground gas monitoring results	17
Tal	ole 10	0: Linka	ges for generic quantitative risk assessment	18
Tal	ole 1	1: Chem	nical testing data summary table for human health (non-targeted samples)	19
Tal	ole 12	2: Null a	and alternative hypotheses	21
Tal	ole 13	3: Datas	sets considered for statistical assessment	21
Tal	ole 14	4: Sumr	nary of outliers	22
Tal	ole 1	5: Sumr	mary of statistical assessment – dataset 1 (general made ground)	23
Tal	ole 16	6: chem	ical testing data summary table for phytotoxic effects	24
			nary of soil leachate results with respect to controlled waters	
Tal	ole 18	8: sumn	nary of surface water results with respect to controlled waters	26

FIGURES

Figure 1 Site location plan

Figure 2 Exploratory hole location plan
Figure 3 Proposed development plan

APPENDICES

Appendix L

Appendix A Service constraints Appendix B Summary of legislation and policy relating to contaminated land Appendix C Risk assessment methodology Appendix D Exploratory hole records Appendix E Ground gas and groundwater monitoring data Appendix F Laboratory certificates for soil analysis Appendix G Laboratory certificates for surface water analysis Appendix H Laboratory certificates for groundwater Appendix I Human health generic assessment criteria Appendix J Generic assessment criteria for phytotoxic effects Appendix K Generic assessment criteria for controlled waters

Previous site investigation report

1

1 INTRODUCTION

RSK Environment Limited (RSK) was commissioned by the St James Group Ltd (the 'client') to carry out a Supplementary Geoenvironmental Site Investigation of open land adjacent to the former Royal Mail Depot Redevelopment, Twickenham. The site area, as detailed in **Figure 2**, is from here-on in referred to as the Municipal Open Land or MOL.

It is understood that the MOL, which is currently heavily overgrown, is due to undergo localised clearance works to facilitate the construction of a footpath around the perimeter of the site, ahead of being transferred to the ownership of the London Borough of Richmond-upon-Thames.

This report is subject to the RSK service constraints given in **Appendix A**.

1.1 Objective and aims

The purpose of this report is to assess the contamination status of the site with a view to identifying any future liabilities and the associated requirement for mitigation measures.

1.2 Scope

The scope of the investigation and layout of this report has been designed with consideration of CLR11 (Environment Agency, 2004a) and BS 10175: 2011 (BSI, 2011) and guidance on land contamination reports issued by the Environment Agency (EA) (2010a). A summary of this legislation is presented as **Appendix B**.

The project was carried out to an agreed brief as set out in RSK's proposal (reference: 25024-02AK Quo (Rev 1), dated 31st October 2014). The scope of works for the assessment included:

- A review of RSK's previous works conducted within the footprint of the MOL;
- · A supplementary investigation consisting of:
 - o Ten shallow drive-in sampler boreholes;
 - installation of seven monitoring wells using continuous flight-auger boreholes (CFA);
 - Excavation of two shallow hand dug inspection pits through existing soils bunds;
 - o Groundwater and surface water sampling from the River Crane;
 - Subsequent groundwater and ground gas monitoring;
 - Laboratory analysis of selected soil and groundwater samples;
- Development of a refined conceptual site model followed by generic quantitative risk assessment (GQRA) to assess complete pollutant linkages that may require the implementation of mitigation measures;

- Identification of outline mitigation measures for complete pollutant linkages or recommendations for further work; and
- Preparation of a factual and interpretative report with recommendations for further works (i.e. undertake a remedial options appraisal to identify appropriate mitigation measures/produce a remedial implementation and verification plan) and/or remediation as necessary.

1.3 Existing reports

RSK have previously conducted a Contamination Assessment Report for the wider Royal Mail Depot website, which included limited intrusive investigation works within eastern areas of the MOL (owing to the remainder of the MOL being heavily overgrown), as detailed in RSK Report Ref: 25024-01 (00), dated, April 2012.

Pertinent information from this report has been detailed in **Section 3**.

1.4 Limitations

The comments given in this report and the opinions expressed are based on the ground conditions encountered during the site work and on the results of tests made in the field and in the laboratory. However, there may be conditions pertaining to the site that have not been disclosed by the investigation and therefore could not be taken into account. In particular, it should be noted that there may be areas of made ground not detected due to the limited nature of the investigation or the thickness and quality of made ground across the site may be variable. In addition, groundwater levels and ground gas concentrations and flows may vary from those reported due to seasonal, or other, effects.

2 THE SITE

2.1 Site location and description

The site, which is located at National Grid Reference 515701E, 173548N as shown in **Figure 1**, currently comprises an area sensibly level, heavily vegetated open space extending over an area of approximately 2.8 hectares.

At the time of conducting the investigation works reported herein, narrow strips of vegetation had been cleared along the northern and southern site boundaries in order to provide access to the desired borehole locations. The reminder of the site was heavily overgrown containing mature deciduous trees together with impenetrable shrubs and brambles extending to a height of approximately 2.0m.

Where the site was accessible, the presence of brick and concrete rubble was evident in several locations together with a 2.0m high bund measuring approximately 3.0m wide by 10.0m long in southern central areas. In two locations, discarded sleepers and track sections were noted in the undergrowth.

Railways sidings are located along the southern boundary of the site with the canalised River Crane running along the northern boundary. Land to the immediate east of the site is occupied by an active construction site whilst allotments/gardens are present to the west.

The area around the site comprises a mixture of commercial/industrial land, together with residential dwellings as detailed in **Table 1**.

Table 1: Site setting

To the north: River Crane, with residential housing and open land beyond	
To the east:	Active residential construction site with the London Road and Twickenham railway station beyond
To the south:	Railway lines and sidings with occasional residential properties and unidentified commercial properties beyond
To the west:	Allotment gardens and open land

2.2 Proposed development

The MOL is due to undergo localised clearance works to facilitate the construction of a footpath running around the perimeter of the site linking in to the ongoing development on the east and open land to the west of the site.

The footpath will comprise a 3.0m wide gravel path with a 1.0m wide maintained grass strip along either side of the path. Beyond this 1.0m wide buffer strip, it is proposed to leave the remainder of the MOL untouched and therefore in its current overgrown condition.

The proposed footpath layout is contained in Figure 3.

3 PREVIOUS INVESTIGATION WORKS

3.1 Introduction

RSK has previously undertakes a Contamination Assessment of the wider Royal Mail Depot development site (Report Ref. 25024-01, dated April 2012).

The assessment included a Preliminary Risk Assessment (PRA) of the existing residential development site and MOL footprint, together with an intrusive investigation of residential development area and eastern edge of the MOL. The remainder of the MOL could not be accessed owing to the overgrown nature of the site

Pertinent information from this report is outlined in the following sections, with details on the MOL ground conditions and associated chemical testing results incorporated into the supplementary assessment contained in **Sections 5** and **6**.

3.2 Ground conditions

3.2.1 Geology

The published geological map for the area (South London, Sheet 270) indicates the site to be underlain by the Kempton Park Gravel Formation (River Terrace Deposits) with the London Clay Formation at depth.

Given the site setting, with the River Crane running along the northern site boundary, Alluvial deposits should also be anticipated on site. Made ground deposits, attributable to historical use of the site as railway sidings, are also likely to be present.

3.2.2 Landfills

No landfills, either active of historical, waste treatment or disposal sites are present within a 500m radius of the site. The nearest identified landfill is located approximately 600m north of the site at Twickenham Trading Estate, and was authorised to accept inert waste between 1946 and 1963.

3.3 Hydrogeology and hydrology

3.3.1 Hydrogeology

25024-R06 (00)

Given the geological sequence underlying the site, the hydrogeology of the area is likely to be characterised by the presence of a shallow unconfined aquifer within the Kempton Park Gravel Formation, perched upon the underlying London Clay Formation.

3.3.2 Groundwater vulnerability

Reference to Environment Agency web-based information indicates that the superficial Kempton Park Gravel Formation has been designated as a Principal Aquifer whilst the underlying London Clay Formation is designated an Unproductive Strata. This reflects the predominantly cohesive nature of the geological London Clay Formation, which acts

as an aquiclude, thereby restricting the downwards migration of shallow groundwater (and mobile contaminants, if present) to deeper groundwater resources. However, the presence of low permeability clay at relatively shallow depths beneath the site, whilst restricting downwards migration, may increase the potential for lateral migration of perched groundwater and therefore mobile contamination, if present.

3.3.3 Groundwater source protection zones

Reference to Environment Agency web-based information indicates the site is not located within a currently designated Groundwater Source Protection Zone.

3.3.4 Surface watercourses

The River Crane is located to the immediate north of the site flowing along the site boundary in an easterly direction though a concrete lined channel.

Reference to historical map records has revealed that the watercourse previously meandered through the northern part of the site during the late 1800's prior to be canalised to follow its present day course. As such, groundwater in the shallow aquifer beneath the site is unlikely to be in hydraulic continuity with the river.

Notwithstanding the above, it should be noted that as part of the adjoining residential development (located hydraulically down-gradient of the site) the Environment Agency is seeking to gain ecological improvement of the watercourse via opening of the concrete channel and local naturalisation of the riverbanks. The potential for such works to result in the establishment of hydraulic continuity between groundwater beneath the site and the River Crane should be noted.

3.4 History of site and surrounding area

The history of the site and surrounding area has been assessed by means of a review of available Ordnance Survey maps (contained in shown in RSK's preceding Contamination Assessment Report as contained **Appendix L**), with a summary of pertinent information contained in **Table 2**.

Table 2: Summary of historical development

Year	Land use/feature on site	Land use/features in the vicinity of site (of relevance to the assessment)
1880	No details given	Adjacent to the site in the east is a series of orchards. Beyond the orchards (approximately 150m from the site) is a Brewery (numerous buildings are present).
1869	No details given	Adjacent orchards in the east have now been removed and replaced with a St Mark's Nursery with a number of greenhouse.
1896	The River Crane is shown to meander in an open channel traversing north-western and central areas of the site. Railway tracks and sidings are shown to be present across the site area, together with associated buildings, predominantly in the west and east, together with a spherical feature (possible turntable) located in southern areas	Running along the southern boundary of the site are railway tracks and sidings. Numerous residential properties are located 50m south of the site. Open land dominates the surrounding area of the site along with orchards present (60m northeast) and housing (60m south). 70m south of the site are allotment gardens. 240m southwest of the site is a small gravel pit.
1920	As above	The allotment gardens located 70m south of the site have been replaced with a school. Sewage works are located approximately 200m west of the site.
1934- 1959	River Crane shown to run through realigned channel along northern boundary.	The Brewery located in the east has been demolished and replaced with an extensive structures identified as 'Corporation Depot'. The nursery (adjacent to the site in the east) is still identified, although it appears that the associated river inlet is in the process of being backfilled. This appears to be associated with the canalisation River Crane, which appears to be complete in an aerial photograph dated 1946. Twickenham Station has been constructed to the east of the site, on the opposite side of London Road. Adjacent to the site in the east (associated with the nursery) is an area of worked ground. Garage and works area located approximately 170m southeast of the site. The aerial photography dated 1948 shows that allotment gardens are located adjacent to the site in the west.

Year	Land use/feature on site	Land use/features in the vicinity of site (of relevance to the assessment)
1967	As above.	The 'Corporation Depot' is now labelled as 'Sorting office'. The nursery is no longer identified, with the majority of associated structures removed. This area is now partially incorporated into sorting office.
1970s to 1990s	Former railway and sidings across the site are no longer present.	As above.

Notes: At the time of writing, it is noted that the depot located adjacent to the site in the east, has now been demolished associated with the ongoing construction of multi-storey flats as part of St James Group redevelopment.

3.5 Initial conceptual model

The information summarised above has been used to compile an initial conceptual model. The identified sources of potential contamination, associated contaminants and receptors have been considered with plausible pathways that may link them. The resulting potential pollutant linkages are considered with risk classification estimated in accordance with information in **Appendix C**.

3.5.1 Summary of potential contaminant sources

Potential sources and contaminants of concern are summarised in Table 3.

Table 3: Potential sources and types of contamination

Potential sources	Contaminants of concern		
On-site			
In filled watercourse / made ground (includes historic channel of River Crane and inlet supplying brewery and any associated Alluvial deposits)	Unknown fill material (but potentially including heavy metals, ash, clinker, sulphates, PAHs, asbestos etc.). Possible soil gases including methane and carbon dioxide.		
Railway lines / sidings and associated structures, e.g. turntable	Fuel oils, lubricating oils, heavy metals, PAHs, PCBs, ethylene glycol, ash, sulphate, herbicides and asbestos.		
Off-site			
Railway land present to the south of the site	Fuel oils, lubricating oils, heavy metals, PAHs, PCBs, ethylene glycol, ash, sulphate, herbicides and asbestos.		
Brewery and Depot (Royal Mail sorting depot) to the east of the site (1880 to 2013).	Coal and ash, fuel oils, lubricating oils, heavy metals, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), chlorinated and other organic solvents, sulphates, asbestos, etc.		

On-site sources of potential contamination have been identified in the form of made ground and the infilled river channel in northern areas together with historical use of the site as railway land, with associated tracks and sidings.

Off-site sources of potential contamination relate to the former brewery and Royal Mail depot to the east of the site together with the presence of railway land to the immediate south of the site.

3.5.2 Sensitive receptors

Sensitive receptors at this site include:

- Future site visitors;
- · Adjacent site users/occupants;

- Vegetation;
- Groundwater beneath the site within the Kempton Park Gravel Formation; and
- Surface watercourses (the River Crane).

3.5.3 Summary of plausible pathways

The plausible pathways for the migration of contamination are summarised below:

- Direct contact (soil, dust ingestion, dermal contact, dust and fibre inhalation);
- · Ground gas and soil gas inhalation;
- · Root uptake; and
- Vertical and lateral migration including leaching.

3.5.4 Potentially complete pollutant linkages

The outline conceptual model and an estimate of the risk associated with each linkage is summarised in **Table 4** on the following page. The risk classification has been undertaken in accordance with CIRIA C552 (Rudland et al., 2001), a summary of which is included in **Appendix C**.

3.5.4.1 Summary

The potential pollutant linkages with a risk of moderate or above that may drive site investigation works are:

- Risk to future site users from any identified made ground,/Alluvium (in-filled historical channel of the River Crane) via direct contact (dermal contact, ingestion and inhalation) pathways;
- Risk to adjacent site users from any identified made ground/Alluvium (in-filled historical channel of the River Crane) via inhalation pathways; and
- Risk to groundwater (Principal aquifer) from any identified made ground/Alluvium (in-filled historical channel of the River Crane) via vertical/lateral migration.

Table 4: Risk estimation for potentially complete pollutant linkages

Potential Contaminant	Potential receptor	Possible pathway	Severity	Likelihood	Risk and justification
On-site sources					
	Future site visitors	Direct contact (dermal contact, ingestion and inhalation)	Medium	Unlikely	Low: Any potential contamination identified poses a risk to future site visitors. However, site users are likely to be transient and intermittent in nature and with visits being for a short duration
In filled watercourse / made ground (includes historic channel of River Crane and inlet	Adjacent site users	Inhalation of ground gases, vapours and asbestos fibres	Medium	Unlikely	Low: Pathways for the migration of ground gases between any identified source and sensitive receptors are unlikely to exist. Where the inhalation of fibres is concerned, the presence and intended retention of significant vegetation would impede their liberation, if present.
supplying brewery and any associated Alluvial deposits)	Vegetation	Root uptake	Mild	Likely	Moderate/low: Sensitive vegetation may be susceptible to contamination where present
Railway lines / sidings and associated structures, e.g. turntable	Groundwater	Vertical/lateral migration	Medium	Low likelihood	Moderate/low: The principal aquifer within the granular Kempton Park Gravel Formation is in direct contact with made ground deposits, therefore a risk to groundwater/aquifer via vertical migration maybe present depending on the extent of any contamination and associated leaching potential.
	Surface watercourse (The River Crane)	Lateral migration	Medium	Low likelihood	Moderate/low: Any potential contamination may pose a risk to the River Crane although the presence of a canalised channel along the site boundary would act to limit the risk.

Notes: It is noted that, the former brewery and depot (former Royal Mail sorting office) located adjacent to the site in the east, have been removed with the site currently undergoing development with residential properties. As such, these off-site sources have not been detailed within the conceptual site model as any contamination on these sites would have been identified and addressed as part of the ongoing redevelopment works.

4 SUPPLEMENTARY SITE INVESTIGATION METHODOLOGY

Supplementary intrusive works were conducted across the MOL on the 28th November and the 2nd and 3rd December 2014 to confirm the potential pollutant linkages identified in the outline conceptual model.

These works supplemented an earlier investigation conducted across eastern sections of the MOL in August 2012. Relevant information from the 2012 investigation has been included in the following sections.

4.1 Sampling strategy and methodology

The techniques adopted for the investigation have been chosen considering the anticipated ground conditions, existing land use and the redevelopment proposals.

The intrusive works comprised the following:

- The drilling of ten drive-in sampler boreholes in 2012, designated PH1 to PH10, to a maximum depth of 2.0mbgl together with associated sampling;
- The drilling of ten additional drive-in sampler boreholes in 2014, designated WS204, WS206 to WS207, WS209 to WS210 and WS212 to WS216, to a maximum depth of 3.0mbgl with associated sampling;
- The drilling of seven continuous flight auger (CFA) boreholes in 2014, designated WS201 to WS203, WS205, WS208, WS211 and WS217 for the installation of groundwater and ground gas monitoring wells to a maximum of 5.0mbgl; and
- The excavation of two hand dug inspection pits through existing soils bunds;

The investigation and the soil descriptions were carried out in general accordance with 'BS 5930:1999. Code of Practice for Site Investigations' (BSI, 1999). The relevant exploratory hole records are presented in **Appendix D**.

The locations of the intrusive investigations are shown in **Figure 2**. The investigation points, as agreed with the London Borough of Richmond-upon-Thames, were located approximately by reference to physical features present on the site at the time of investigation. The ground levels at the borehole locations have not been determined.

4.2 Soil sampling, in-situ testing and laboratory analysis

Selected samples were placed in polythene bags for headspace screening with a photoionisation detector (PID) fitted with a 10.2eV bulb.

4.2.1 Soil laboratory testing

A programme of chemical testing was carried out on selected samples taken from various strata encountered within the exploratory holes.

Samples were stored in accordance with the RSK quality procedures to maintain sample integrity and preservation and to minimise the chance of cross contamination. All analysis was undertaken by UKAS and MCERTS certified laboratories. The samples were transported to the laboratory in chilled boxes.

The testing rationale is presented in **Table 5** with the laboratory results included in **Appendix F**.

Table 5: Scheduled analysis – soils

Location and sample depth (m bgl)	Analyte	
PH1 to PH5, PH9 and PH10 at depths ranging between 0.25m and 0.5m WS201 to WS217, SH1 and SH2 at various depths ranging between ground level and 1.0m	Polycyclic Aromatic Hydrocarbons (PAH's), Total Petroleum Hydrocarbons (TPHCWG), pH, heavy metals, total sulphate	
WS201 to WS217, SH1 and SH2 at various	Asbestos Screen	
depths ranging between ground level and 1.0m	Soil Organic Matter	
WS201, WS205, WS206, WS209, WS213 at depths ranging between 0.3m and 0.5m	Altrazine and Simazine herbicides	
WS214 @ 0.6m WS215 @ 0.5m	Asbestos quantification	
WS214 @ 0.6m		
WS205 @ 0.3m and 0.6m	Leachate Proparation and leachable metals	
WS217 @ 0.4m	Leachate Preparation and leachable metals	
WS216 @ 0.2m		

4.2.2 Groundwater monitoring

Depths to groundwater encountered during the intrusive investigation were recorded during the progression of the exploratory holes.

In addition, standing groundwater levels were also monitored using an electronic dip meter during three subsequent visits (conducted on 15th and 22nd December 2014 and the 13th January 2015).

The groundwater monitoring data is included in Appendix E.

4.2.3 Groundwater developing, sampling and analysis

Subsequent to the installation of groundwater monitoring wells the installations were developed at least one week before sampling. Groundwater samples were obtained from boreholes WS201, WS202, WS203 and WS205.

Groundwater samples were retrieved using a United States Environment Protection Agency (USEPA) approved low-flow purging and sampling methodology. The low-flow method relies on moving groundwater through the well screen at approximately the same rate as it flows through the geological formation. This results in a significant reduction in the volume of water extracted before sampling and significantly reduces the amount of disturbance of the water in the monitoring well during purging and sampling. Drawdown levels in the monitoring well and water quality indicator parameters (pH, temperature, electrical conductivity, redox potential and dissolved oxygen) are monitored during low-flow purging and sampling, with stabilisation indicating that purging is complete and sampling can begin. As the flow rate used for purging, in most cases, is the same or only slightly higher than the flow rate used for sampling, and because purging and sampling are conducted as one continuous operation in the field, the process is referred to as low-flow purging and sampling.

The groundwater samples were collected in containers appropriate to the anticipated testing suite required. The containers were filled to capacity and placed in a cool box to minimise volatilisation. Samples were transported directly to the testing laboratory under chain of custody documentation. The rationale for groundwater analysis is presented in **Table 6** with the laboratory results included in **Appendix H**.

Table 6: Scheduled analysis - groundwater

Location	Analyte	Rationale
WS201, WS202, WS203 and WS205	Polycyclic Aromatic Hydrocarbons (PAH's), Total Petroleum Hydrocarbons (TPHCWG), Metals, pH, alkalinity, EC,	To assess the contamination status of
	NH4, CI, SO4, tCN and H ₂ S	shallow groundwater

4.2.4 Surface water sampling

Two surface water samples were collected from the adjacent River Crane at locations directly upstream (to the west) and downstream (to the east) of the site.

The groundwater samples were collected in containers appropriate to the anticipated testing suite required. The containers were filled to capacity and placed in a cool box to minimise volatilisation. Samples were transported directly to the testing laboratory under chain of custody documentation. The rationale for groundwater analysis is presented in **Table 7** with the laboratory results included in **Appendix G**.

Table 7: Scheduled analysis – surface water

Location	Analyte	Rationale
Water 1 (River Crane upstream) and Water 2 (River Crane downstream)	Polycyclic Aromatic Hydrocarbons (PAH's), Total Petroleum Hydrocarbons (TPHCWG), Metals, pH, alkalinity, EC, NH4, CI, SO4, tCN and H ₂ S, TOC, COD and BOD	To assess the contamination status of the surface water in the River Crane

4.2.5 Ground gas monitoring

In line with the conceptual model three ground gas monitoring rounds have been undertaken. This included periods of low and/or falling atmospheric pressures and after/during rainfall. Monitoring was undertaken on the 15th and 22nd December 2014 and the 13th January 2015

An infrared gas meter was used to measure gas flow, concentrations of carbon dioxide (CO_2) , methane (CH_4) and oxygen (O_2) in percentage by volume, while hydrogen sulphide (H_2S) and carbon monoxide (CO) were recorded in parts per million. Initial and steady state concentrations were recorded.

The atmospheric pressure before and during monitoring, together with the weather conditions, was recorded.

All monitoring results together with the temporal conditions are contained within **Appendix E** and discussed in **Section 5.2**.

5 GROUND CONDITIONS

The results of the intrusive investigation and subsequent laboratory analysis and monitoring undertaken are detailed below. The descriptions of the strata encountered, notes regarding visual or olfactory evidence of contamination, list of samples taken, field observations of soil and groundwater and details of monitoring well installations are included on the exploratory hole records presented in **Appendix D**.

5.1 Soil

The exploratory holes revealed that the site is underlain by a variable thickness of made ground and/or imported topsoil overlying the Kempton Park Gravel Formation and the London Clay Formation at depth. Alluvial deposits were also encountered in northern areas of the site. These findings appear to confirm the stratigraphical succession described within the initial conceptual model.

For the purpose of discussion, the ground conditions are summarised in **Table 8** and the strata discussed in subsequent subsections.

Table 8: General succession of strata encountered

Strata	Exploratory holes encountered	Depth to top of stratum m bgl	Thickness (m)
Made ground	All exploratory holes	Ground level	0.3m to 1.3m
Alluvium	WS202-WS206, WS208, WS217	0.4mbgl to 1.0mbgl	0.8m to 1.3m
Kempton Park Gravels	All exploratory holes apart from WS2013	0.3mbgl to 1.9mbgl	0.5m confirmed to 2.4m
London Clay Formation	WS201-WS203, WS205, WS208, WS211 and WS217	2.7mbgl to 3.6mbgl	Confirmed to 5.0mbgl

5.1.1 Made ground

Made ground was encountered in all exploratory holes extending from ground level to depths ranging between 0.80m and 1.80m with the maximum depth encountered in WS201, advanced in the east of the site.

The stratum comprised a localised upper horizon of imported topsoil (encountered in WS201, WS203, WS205, WS207, WS208, WS211, WS213 and WS215 to WS217, typically overlying a dark brown clayey sand with inclusions of gravel and anthropogenic materials.

Where present, the imported topsoil typically comprised a friable blackish brown sandy clay/sandy silt with occasional to frequent rootlets. The stratum typically extended to depths in the order of 0.2m to 0.4m with a maximum depth of 1.0m recorded WS201.

The underlying made ground was predominantly granular in nature comprising of a clayey sand albeit with subordinate pockets of sandy clay. Anthropogenic materials including glass, mortar, concrete, ash, brick, clinker, chalk, slate, metal and ceramic tile were encountered throughout the stratum.

In several locations, notably WS206, WS208 and WS215, the presence of concrete slabs, typically 0.2-0.3m thick, were encountered at or just beneath the existing ground surface.

With the exception of the identified anthropogenic materials, no visual or olfactory evidence of contamination was encountered on site.

5.1.2 Alluvium

Alluvium was encountered beneath the made ground in WS202 to WS206, WS208 and WS217, generally located along the northern edge of the site in close proximity to the existing or former course of the River Crane.

The stratum, which generally comprised firm to stiff (locally soft) brown mottled orange silty clay with occasional inclusions of sand and flint gravel extended to depths ranging between 1.60mbgl and 1.80mbgl.

No visual or olfactory evidence of contamination was encountered within the stratum.

5.1.3 Kempton Park Gravels

The Kempton Park Gravel Formation was encountered within all exploratory holes except WS213, which terminated within deep made ground deposits.

The stratum was typically encountered at depths ranging between 0.30mbgl and 1.90mbgl (beneath either made ground or Alluvium) extending to depths ranging between 1.0mbgl and 3.60mbgl.

The stratum was predominantly granular in nature, and generally comprised of an orange/brown/grey sandy gravel with varied inclusions of clay and silt or gravelly sand.

Subordinate cohesive strata were encountered in PH4 to PH10, WS203, WS207, WS209 to WS212, and WS214 to WS16, inter-bedded with the granular portion of the stratum. These cohesive strata generally comprised firm to stiff (locally soft) light greyish brown mottled orange/brown sandy gravelly clay.

No visual or olfactory evidence of contamination was encountered within the stratum.

5.1.4 London Clay Formation

The London Clay Formation was encountered directly beneath the Kempton Park Gravels (within all boreholes that fully penetrated the overlying gravels) at depths ranging between 2.70mbgl and 3.60mbgl. The stratum extended to the full depth of the investigation at 5.0mbgl.

The London Clay Formation generally comprised a firm to stiff fissured greyish brown (locally blue/gray) silty clay.

5.1.5 Groundwater

Groundwater was encountered within WS201, WS202, WS203 and WS205 at depths ranging between 1.80mbgl and 2.0mbgl.

Subsequent monitoring visits encountered groundwater between 2.10mbgl and 4.90mbgl and therefore predominantly within the Kempton Park Gravel Formation. A summary of groundwater levels during subsequent monitoring visits is presented in **Table 9**.

It should be noted that groundwater levels might fluctuate for a number of reasons including seasonal. Ongoing monitoring would be required to establish both the full range of conditions and any trends in groundwater levels.

5.2 Ground gas regime

The results of the ground gas monitoring and testing conducted on site are present in full in **Appendix E**. The minimum and maximum results are summarised in **Table 9**.

Table 9: Summary of ground gas monitoring results

Location	Number of monitoring visits	Methane (%)	Carbon dioxide (%)	Oxygen (%)	Flow rate (I/hr)	Water level (m b TOC)	Atmospheric pressure (mbar)
WS201	3	<0.1 to 0.2	0.1 to 0.9	19.6 to 21.9	-0.2 to 0	2.22 to 2.27	999 to 1019
WS202	3	<0.1 to 0.2	0.1 to 7.4	9.1 to 21.9	-0.1 to 0	2.10 to 2.19	999 to 1019
WS203	3	<0.1 to 0.2	0.1 to 7.1	13.7 to 21.4	-0.1 to 0	2.36 to 2.37	999 to 1019
WS205	3	<0.1 to 0.1	0.1 to 2.4	18.3 to 21.5	-0.1 to 0	2.53 to 2.62	999 to 1018
WS208	3	<0.1 to 0.1	0.1 to 4.9	15.1 to 21.6	-0.1 to 0	3.36 to 4.9	998 to 1018
WS211	3	<0.1 to 0.1	0.1 to 4.9	15.6 to 21.4	-0.1 to 0.1	Dry	998 to 1018
WS217	3	<0.1 to 0.1	0.1 to 2.4	18.7 to 21.5	-0.1 to 0	Dry	998 to 1018

5.3 Refinement of the initial conceptual site model

The ground conditions encountered during the intrusive investigation generally confirm those predicted within the initial conceptual model. Therefore, refinement of the initial conceptual site model is not considered necessary.

6 QUANTITATIVE RISK ASSESSMENT

In line with CLR11 (EA, 2004a), there are two stages of quantitative risk assessment, generic and detailed. The GQRA comprises the comparison of soil, groundwater, soil gas and ground gas results with generic assessment criteria (GAC) that are appropriate to the linkage being assessed. This comparison can be undertaken directly against the laboratory results or following statistical analysis depending upon the sampling procedure that was adopted.

6.1 Linkages for assessment

Section 5.3 presents the refined conceptual model which identified the linkages that required assessment after the findings of the site investigation had been considered. These linkages together with the method of assessment are presented in **Table 10**.

Table 10: Linkages for generic quantitative risk assessment

Potentially relevant pollutant linkage	Assessment method
Direct contact with impacted soil by future residents	The assessment has predominantly been undertaken by means of a direct comparison of the laboratory results against Generic Assessment Criteria (GAC) derived for a residential with communal soft landscaping end land use scenario as contained in Appendix I . Given that, the site is subject to minor redevelopment including clearing of overgrown vegetation and re-landscaping to open land. This GAC is considered the most appropriate from of assessment, albeit very conservative. In addition to the above, where exceedances of the identified GAC's have been recorded, these have been further assessed by means of comparison against C4SL's published by DEFRA.
Inhalation exposure of future residents to asbestos fibres	Qualitative assessment based on the asbestos minerals present, their form, concentration, location and the nature of the proposed development.
3. Uptake of contaminants by vegetation potentially impacting plant growth	Comparison of soil data to GAC in Appendix J .
4. Leaching of soil contaminants and dissolved phase migration to Principal aquifer and the River Crane	Comparison of leachate data to lowest of those recorded in Table 1 of Appendix K for a Principal Aquifer owing to linkages identified relating to both a Principal Aquifer and a river (upon which the GAC for Principal aquifer are based).
5. Migration of contaminants to wider secondary aquifer body	Comparison of groundwater data to GAC in Table 1 of Appendix K for a Principal Aquifer.

6.2 Methodology and results

The findings of the exploratory site investigation have been assessed in relation to the future proposed development.

During the combined investigation works, chemical analysis have been performed on a total of twenty-eight soil samples comprising samples of the imported topsoil and underlying made ground. Twenty-six of the samples were retrieved from the shallow boreholes advanced across the site with two samples analysed from hand-dug inspection pits advanced though a linear soil bund located in the east of the site.

All soil samples scheduled for laboratory testing were also inspected visually on receipt at the laboratory for the presence of materials potential containing asbestos, e.g. fragments of asbestos-cement products.

The full chemical testing results are presented within **Appendices F** to **H**. The results have been assessed with respect to human health, vegetation and controlled waters in the following sections. The methodology and results of the GQRA are presented for each relevant pollutant linkage in turn.

6.2.1 Direct contact with impacted soil by future residents

Since both targeted (soil samples retrieved from the linear soil bund in the east of the site) and non-targeted soil samples were obtained during the site investigation, the results of these have been evaluated in the following subsections.

6.2.1.1 Assessment of non-targeted samples

Non-targeted samples were retrieved across the majority of the site with the notable exception of the two samples analysed from the linear soil bund in the east of the site.

The laboratory testing results for these samples have been initially compared directly against the Generic Assessment Criteria (GAC) for residential development with communal soft landscaping presented in **Appendix I**. The comparison of testing against the adopted GAC's are summarised within **Table 11** based upon an average Soil Organic Matter (SOM) of 6%. Only those determinants where exceedances have been reported are included within the table.

Table 11: Chemical testing data summary table for human health (non-targeted samples)

Determinant	No. of	GAC	No of	Maximum concentration (mg/kg)		
	samples tested	(mg/kg)	exceedances	Value	Location / depth	
General made groun	d					
Lead	24	300	11	2040	WS205 @ 0.2m	
Benzo(a)pyrene	24	1.0	9	5.76	WS203 @ 0.3m	
Benzo(a)anthracene	24	6.1	1	7.46 WS212 @ 0.5		

	No. of GAC		No of	Maximum concentration (mg/kg)				
Determinant	samples tested	(mg/kg)	exceedances	Value	Location / depth			
Imported topsoil ove	Imported topsoil overlying general made ground							
Lead	2	300	1	3400	WS216 @ 0.2m			
Benzo(a)pyrene	2	1.0	1	1.29 WS216 @ 0.2				

On the basis of the above assessment, it can be seen that samples of both the general made ground and imported topsoil have recorded elevated concentrations of Lead, Benzo(a)pyrene and Benzo(a)anthracene with respect to the identified GAC's.

Where justified by the conceptual model, Category 4 Screening Level (C4SL) values for public open spaces have been used as a second level of assessment of the identified compounds. The C4SLs were issued by DEFRA in March 2014, and are intended for use as a technical tool for defining which land is suitable for use, definitely not contaminated land, and therefore requiring no further assessment with respect to Part 2a.

C4SLs provide a more pragmatic approach than SGVs / GACs, and yet are still strongly precautionary. C4SLs have been developed using the CLEA model, which is the same framework used for the development of the SGVs / GACs; however, C4SL's have been derived using a newly termed 'Low Level of Toxicological Concern (LLTC)' which represents an intake of low concern that remains suitably protective of health, instead of the minimal risk Health Criteria Values (HCV) which have been used in the development of the SGV / GACs. The C4SLs also take into account a number of updated exposure parameters which have been selected following several stakeholder engagement workshops.

Where the recorded concentrations of Lead are concerned, the maximum-recorded concentrations in both the general made ground and imported topsoil still exceed the relevant C4SL of 1,300mg/kg (for a public open space scenario). Comparison of the Benzo(a)pyrene concentrations indicate that the maximum values identified in both the general made ground and imported topsoil are below corresponding C4SL of 21.0mg/kg (for a public open space scenario). C4SL's are not in placed for Benzo(a)anthracene.

To assess the testing results further, statistical analysis of the results has been conducted in accordance with *Guidance on Comparing Soil Contamination Data with a Critical Concentration* (CIEH and CL:AIRE, 2008).

Statistical analysis is utilised to establish whether the land is suitable for the proposed use under the land use planning system by attempting to answer a key question. For a site being developed the key question is: 'can we confidently say that the level of contamination on this land is low relative to some appropriate measure of risk?' More specifically, this is expressed as 'Is there sufficient evidence that the true mean concentration of the contaminant (μ) is less than the critical concentration (C_c) ?', where the critical concentration could be the GAC or a site-specific assessment criterion

(SSAC). The true mean (μ) is unknown and therefore a conservative estimate, termed the upper confidence limit (UCL), of this value is derived from the data. The UCL is then compared against the GAC.

In statistical terms the question above is handled through the use of a formal hypothesis – the null hypothesis and the alternate hypothesis. The statistical tests are structured to show (with a defined level of confidence, in this case 95%) which of the two hypothesies is most likely to be true, by determining whether the null hypothesis can be rejected.

For consideration under the planning regime, the null (H_0) and alternative (H_1) hypotheses are presented in **Table 12**.

Table 12: Null and alternative hypotheses

Hypothesis	Equation	Description
Null (H ₀)	µ ≥ C _c	The true mean concentration is equal to, or greater than, the critical concentration
Alternative (H ₁)	μ < C _c	The true mean concentration is less than the critical concentration

Therefore, if the null hypothesis is accepted for a certain contaminant it can be concluded that its concentration is high relative to the critical concentration, which in the case of this assessment is taken to be the GAC/SSAC and as such the whole site may be classed as being contaminated by a particular substance.

In addition, the statistical guidance provides an outlier test (Grubbs' test) that has been used within this assessment for the identification of 'outliers' or 'hotspots'. The 'outlier' test is conducted before undertaking statistical analysis (and 'outliers' may be removed from the dataset) but **only** where the conceptual model supports this.

The statistical tests applied to the dataset are selected based on whether the data is normally or non-normally distributed. The distribution of the dataset has been assessed using the Shapiro-Wilks normality test. Where the dataset has been found to be normally distributed the one sample t-test is undertaken. Where data has been found to be non-normally distributed Chebyshev's theorem is utilised.

The datasets being considered for assessment are detailed in **Table 13**.

Table 13: Datasets considered for statistical assessment

Dataset	Dataset Size	Rationale				
Dataset 1 – General made ground deposits	24					
Dataset 2 – Imported topsoil deposits overlying the general made ground	2	Non-targeted samples				
It is noted that targeted samples have not been included within the datasets.						

Based upon the above, an insufficient number of samples have been analysed from dataset 2 (imported topsoil) to conduct statistical analysis. As such, the direct comparison contained in **Table 11** will be utilised for assessment purposes together with the follow-on comments relating to C4SL thresholds.

For dataset 1 (general made ground deposits) outliers have been indentified using Grubb's outlier test. A summary of the identified outliers and their subsequent assessment is provided in **Table 14**.

Table 14: Summary of outliers

Outliers	Assessment of outlier (determinant)	Removed from dataset?	Rationale
WS212 @ 0.5m	Benzo(a)anthracene	No	Material not dissimilar to other made ground; result considered to reflect heterogeneous nature of made ground

The normality of the statistical distribution of the datasets has been tested and appropriate statistical tests carried out. The results of the assessment is summarised in **Table 15** on the following page.

Table 15: Summary of statistical assessment – dataset 1 (general made ground)

Determinant	No of samples in dataset	Percentage non-detect	Normality	Test used	Mean mg/kg	Cc* mg/kg	UCL mg/kg	Reject H0? (% confidence level)
Lead	24	0	Normal	One sample t-test	488	1300	1001	Yes (98% confidence level) Upper confidence level is lower that the critical concentration
Benzo(a)pyrene	24	0	Not normal	Chebyshev's theorem	1.41	21.00	3.04	Yes (100% confidence level) Upper confidence level is lower that the critical concentration
Benzo(a)anthracene	24	0	Not normal	Chebyshev's theorem	1.45	6.20	3.23	Yes (99% confidence level) Upper confidence level is lower that the critical concentration

Note: * Cc = critical concentration

24

The results of the statistical assessment have revealed that the recorded concentrations of Lead, Benzo(a)pyrene and Benzo(a)anthracene have all returned upper confidence limits that pass the corresponding assessment criterion (C4SL's for Lead and Benzo(a)pyrene and GAC's for Benzo(a)anthracene). In each instance, the statistical assessment has returned a confidence limit in excess of 95%.

On this basis the unacceptable risk to end users of the site are not anticipated to exist with respect to the concentrations of chemical determinants recorded within the general made ground.

Where samples of the imported topsoil are concerned, an elevated concentration of Lead has been recorded in WS216 at a depth of 0.2m. On this basis, either further risk assessment of remediation will be required to break the identified pollutant linkages.

6.2.1.2 Assessment of Targeted samples (soil bunds)

Two targeted soil samples (SH1 and SH2) were analysed from the existing soil bund in the east of the site.

The laboratory testing results for these samples have initially been compared directly against the Generic Assessment Criteria (GAC) for residential development with communal soft landscaping presented in **Appendix I**.

Against these criteria, a marginally elevated concentration of Benzo(a)pyrene has been recorded in sample SH1 returning a concentrations of 1.84mg/kg with respect to an assessment criterion of 1.0mg/kg. Comparison of this concentrations against the corresponding Benzo(a)pyrene C4SL of 21.0mg/kg reveals that concentration of Benzo(a)pyrene recorded in samples SH1 does not give cause for concern.

6.2.2 Inhalation exposure of future residents to asbestos fibres

The laboratory screening for asbestos identified detectable asbestos containing materials and/or fibres within two samples of made ground analysed from WS214 at a depth of 0.6mbgl and in WS215 at a depth of 0.5mbgl.

These samples were then further analysed with the sample from WS214 returning the presence of Chrysotile board at a concentration of 0.169% weight/weight whilst the sample from WS216 confirmed the presence of Chrysotile loose fibres at a concentration of <0.001% weight/weight.

On this basis, either further risk assessment of remediation will be required to break the identified pollutant linkages.

6.2.3 Uptake of contaminants by vegetation potentially inhibiting plant growth

Samples of the near surface soils, have been used to undertake an assessment for the phytotoxic metals; Zinc, Copper, Nickel, Lead, Cadmium and Mercury.

The direct comparison of testing results against the adopted GAC (presented in **Appendix J**) is summarised in **Table** 16. Only those determinants where exceedances have been reported are included within the table.

Table 16: chemical testing data summary table for phytotoxic effects

Determinant	No. of samples	GAC (mg/kg)	No of exceedances	Maximum concentration (mg/kg)		
	tested		exceedances	Value	Location / depth	
Lead	28	300	12	3400	WS216 @ 0.2m	
Mercury	28	1	8	2.38	WS212 @ 0.5m	
Zinc	28	300	4	1900	WS214 @ 0.6m	

The results indicate that a relevant pollutant linkage may exist associated with plant phytotoxic effects.

However, given the development proposals, with minimal surface disruption outside of the footpath footprint, and the relatively healthy nature of the existing vegetation, the risks associated with plant phytotoxicity are unlikely to be realised unless additional planting of sensitive vegetation (i.e. grass or shrubs) is proposed.

6.2.4 Leaching of contaminants to groundwater in principal aquifer and subsequent migration to surface watercourse

Leachability tests have been conducted on the five samples of made ground returning the highest concentrations of heavy metals. The results, as contained in Appendix F, have been compared against the adopted GAC (presented in **Appendix K**) and summarised in **Table 17**. Only those determinants where exceedances have been reported are included within the table.

Table 17: summary of soil leachate results with respect to controlled waters

	No. of	Freshwater	hwater No of		Maximum concentration (μ/Ι)		
Determinant	samples tested	GAC (μ/l)*	exceedances	Value	Location / depth		
Lead	5	7.2	5	347	WS205 @ 0.3m		
Copper	5	28	1	31	WS205 @ 0.3m		
Zinc	5	125	2	422	WS214 @ 0.6m		

^{*} Threshold values are based on hardness ranges, 100-<200mg/l CaCO₃ for Cadmium and >250 mg/l CaCO₃ for Copper and Zinc.

Based on the assessment above, **Table 17** indicates exceedances of the GAC for Lead, Copper and Zinc implying that complete pollutant linkage associated with the leaching of contaminants may exist.

However, given the aggressive nature of the leachability testing and depth of the unsaturated zone, the recorded concentrations of these compounds are not considered to pose an unacceptable risk to controlled waters.

6.2.5 Migration of dissolved phase contaminants to adjacent surface watercourse

Analytical testing results for surface water samples retrieved from the River Crane are contained in **Appendix G**. The analytical results have been compared directly against the adopted GAC (presented in **Appendix G**) and summarised in **Table 18**. Only those determinants where exceedances have been reported are included within the table.

Table 18: summary of surface water results with respect to controlled waters

	No. of	Freshwater	No of	Maximum concentration		
Determinant	samples tested	GAC	exceedances	Value	Location / depth	
Ammonical Nitrogen	2	0.3mg/l	2	0.55mg/l	Water 1	
Ammonical Nitrogen	۷	0.5mg/1	۷	1.44mg/l	Water 2	
Benzo(a)anthracene	2	0.018µg/l	1	0.08 µg/l	Water 1	
Benzo(a)pyrene	2	0.05µg/l	1	0.08µg/l	Water 1	
Benzo(b)fluoranthene	2	0.03µg/l	1	0.10µg/l	Water 1	
Benzo(ghi)perylene	2	0.002µg/l	1	0.06µg/l	Water 1	
Benzo(k)fluoranthene	2	0.03µg/l	1	0.03µg/l	Water 1	
Chrysono	2	0.01110/	2	0.11µg/l	Water 1	
Chrysene	2	0.01µg/l	2	0.02µg/l	Water 2	
Dibenzo(ah)anthracene	2	0.01µg/l	1	0.01µg/l	Water 1	
Fluoranthene	2	0.1µg/l	1	0.14µg/l	Water 1	
Indeno(123-cd)pyrene	2	0.002µg/l	1	0.05µg/l	Water 1	

As can be seen from **Table 18**, a number of marginally elevated concentrations of several inorganic compounds have been recorded within the sample referenced as 'Water 1' (sampled upstream of the site) together with an elevated concentration of Ammonical Nitrogen.

Within the down-gradient sample (Water 2) marginal exceedances were only recorded for two compounds, namely Chrysene and Ammonical Nitrogen.

Given the absence of the compounds identified up-stream of the site, and the decrease in the concentration of Chrysene recorded in the down-gradient sample, the site is not considered to have a detrimental impact upon surface water quality within the adjacent River Crane.

6.2.6 Migration of dissolved phase contaminants to wider secondary aquifer body

Analytical testing results for groundwater samples retrieved from WS201, WS202, WS203 and WS205 are contained in **Appendix H**. The analytical results have been compared directly against the adopted GAC (presented in **Appendix K**).

The testing results have revealed that one groundwater sample from WS201 returned a marginally elevated concentration of Mercury, recording a concentration of 0.12µg/l with

respect to the assessment criterion of $0.05\mu g/l$. No other determinants were identified in excess of the relevant GAC.

Whilst a marginally elevated concentration of Mercury was recorded in WS201, shallow soil testing in this area, including leachability testing, has not identified a source of mercury within the unsaturated zone. When combined with the absence of elevated concentrations of Mercury in the surrounding groundwater samples and adjacent surface water samples, the recorded concentration of Mercury is not considered to give cause for concern. As such, pollutant linkages relating to contaminants in the dissolved phase are considered incomplete.

6.2.7 Ground gas

The development proposals do not include for the placement of any structures or deep excavations or similar with the potential create of a feasible scenario under which sensitive receptors would be exposed to ground gases.

As such, an assessment of the ground gas concentrations summarised in **Table 9** has not been completed.

28

7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The results of the GQRA indicate that pollutant linkages relating to end users of the site are likely to be present in localised areas relating to the presence of elevated concentrations of Lead, most notably in the vicinity of WS216, associated with topsoil deposits at a depth of 0.2mbgl.

Whilst the assessment of general made ground deposits initially encountered the presence of elevated concentrations of Lead, Benzo(a)pyrene and Benzo(a)anthracene, further assessment by means of statistical assessment and comparison of the results against C4SL's (for public open spaces) have revealed that unacceptable risk to end users of the site are not anticipated to exist. The same is true for samples of the existing soil bunds where testing initially recorded a marginally elevated concentration of Benzo(a)pyrene, albeit below the corresponding C4SL for public open spaces.

The laboratory screening for asbestos identified detectable asbestos containing materials and/or fibres within two samples of made ground analysed from WS214 at a depth of 0.6mbgl and in WS215 at a depth of 0.5mbgl. Both samples have been confirmed to contain Chrysotile fibres or board materials at concentrations ranging between <0.001% and 0.169% weight/weight. On this basis, either further risk assessment of remediation will be required to break the identified pollutant linkages.

The assessment of potential phytotoxicity effects has identified the presence of elevated concentrations of Lead, Mercury and Zinc. However, given the development proposals, with minimal surface disruption outside of the footpath footprint, and the relatively healthy nature of the existing vegetation, the risks associated with plant phytotoxicity are unlikely to be realised unless additional planting of sensitive vegetation (i.e. grass or shrubs) is proposed.

An assessment of the potential for leachable contaminants to migrate into the underlying aquifer has revealed the presence of leachable concentrations of Lead, Copper and Zinc implying that complete pollutant linkage associated with the leaching of contaminants may exist. However, given the aggressive nature of the leachability testing and depth of the unsaturated zone, the recorded concentrations of these compounds are not considered to pose an unacceptable risk to controlled waters. In addition, the absence of these compounds within the underlying groundwater would support his assessment suggesting that contaminants are not leaching from the unsaturated zone into the underlying groundwater body.

Assessment of surface water quality within the neighbouring River Crane has revealed a number of marginally elevated concentrations of several inorganic compounds, together with Ammonical Nitrogen, in a sample analysed from an upstream stretch of the River.

Within the down-gradient sample, marginal exceedances were only recorded for two compounds, namely Chrysene and Ammonical Nitrogen. With the recorded concentration of Chrysene having reduced markedly from that recorded upstream of the

site. As such, the site is not considered to have a detrimental impact upon surface water quality within the adjacent River Crane.

Analytical testing of groundwater samples has identified a marginally elevated concentration of Mercury in WS201. No other determinants were identified in excess of the relevant GAC. Given the absence of elevated concentrations of Mercury within the near surface soils (and associated leachability testing) together with groundwater samples and adjacent surface water samples, the recorded concentration of Mercury is not considered to give cause for concern. As such, pollutant linkages relating to contaminants in the dissolved phase are considered incomplete.

The development proposals do not include for the placement of any structures or deep excavations or similar with the potential create of a feasible scenario under which sensitive receptors would be exposed to ground gases.

7.2 Recommendations

Potentially complete pollutant linkages have been identified with respect to end users of the site. These are attributable to an elevated concentration of Lead in WS216 and the presence of Asbestos containing materials in WS214 and WS215. Remedial measures will be necessary in these areas of the site in order to break the pollutant linkages.

Essentially this will need to comprise the targeted excavation of impacted soils within these three areas for disposal off-site at an appropriately licensed facility. Given the nature of the contamination source, with asbestos fibres and board noted in WS214 and WS215, appropriate mitigation measures will need to be put in place to protect workers and neighbouring resident during the implementation of the works.

Potentially complete pollutant linkages have been identified with respect to plant phytotoxicity effects. Whilst existing vegetation does not appear so show significant signs of distress, appropriate measures will need to be put in place where new areas of soft landscaping/planting are proposed (such as along the flanks of the proposed footpath).

It is possible that ground works could encounter different conditions from those revealed by the site investigation, including the presence of additional asbestos containing materials. It is therefore recommended that the ground works be monitored for previously undetected suspect materials and if found appropriate additional testing and advice is sought.

It is recommended that the Local Authority be contacted at an early stage to seek their views on the remediation of contamination on the site. As part of this process a detailed Remediation Method Statement may need to be prepared and submitted to the Local Authority and Environment Agency for their approval.

BIBLIOGRAPHY

British Standards Institution (1999), 'BS 5930:1999. Code of practice for site investigations'.

British Standards Institution (2011), 'BS 10175:2013. Investigation of potentially contaminated sites: Code of practice'.

Chartered Institute for Environmental Health and Land Quality Management (2009), 'The LQM/CIEH Generic Assessment Criteria for Human Health', second edition.

Chartered Institute of Environmental Health (CIEH) and CL:AIRE (2008), *Guidance on Comparing Soil Contamination Data with a Critical Concentration* (London: CIEH).

CL:AIRE (2009), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).

Department for Environment, Food and Rural Affairs (2010), *The River Basin Districts Typology, Standards and Groundwater Threshold Values (Water Framework Directive) (England and Wales) Directions 2010* (London: HMSO).

Environment Agency (2004a), *Model Procedures for the Management of Contaminated Land.* Contaminated Land Report Number 11 (CLR11), September (Bristol: Environment Agency).

Environment Agency (2004b), 'Policy Number 199_04, dated 9 March 2004, Part IIA – Detailed Quantitative Assessment of Chronic Risks to Human Health from Contaminated Soils'.

Environment Agency (2006a), 'Remedial Targets Methodology: Hydrogeological Risk Assessment for Land Contamination'.

Environment Agency (2008), Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values (Bristol: Environment Agency).

Environment Agency (2009b), *Human health toxicological assessment of contaminants in soil. Science Report – Final SC050021/SR2*, January (Bristol: Environment Agency).

Environment Agency (2009c), 'Science Report SC050021/benzene SGV, toluene SGV, ethylbenzene SGV, xylene SGV, mercury SGV, selenium SGV, nickel SGV, arsenic SGV, cadmium SGV, phenol SGV, dioxins, furans and dioxin like PCBs SGVs', 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin- like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin- like PCBs', March 2009, May 2009 and September 2009.

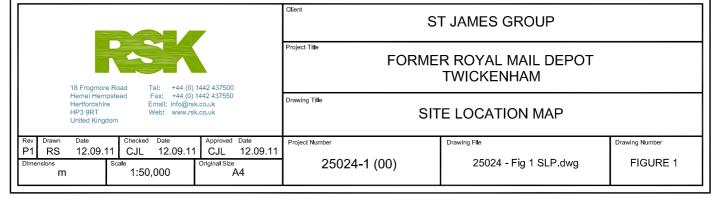
Environment Agency www.environment-agency.gov.uk/.

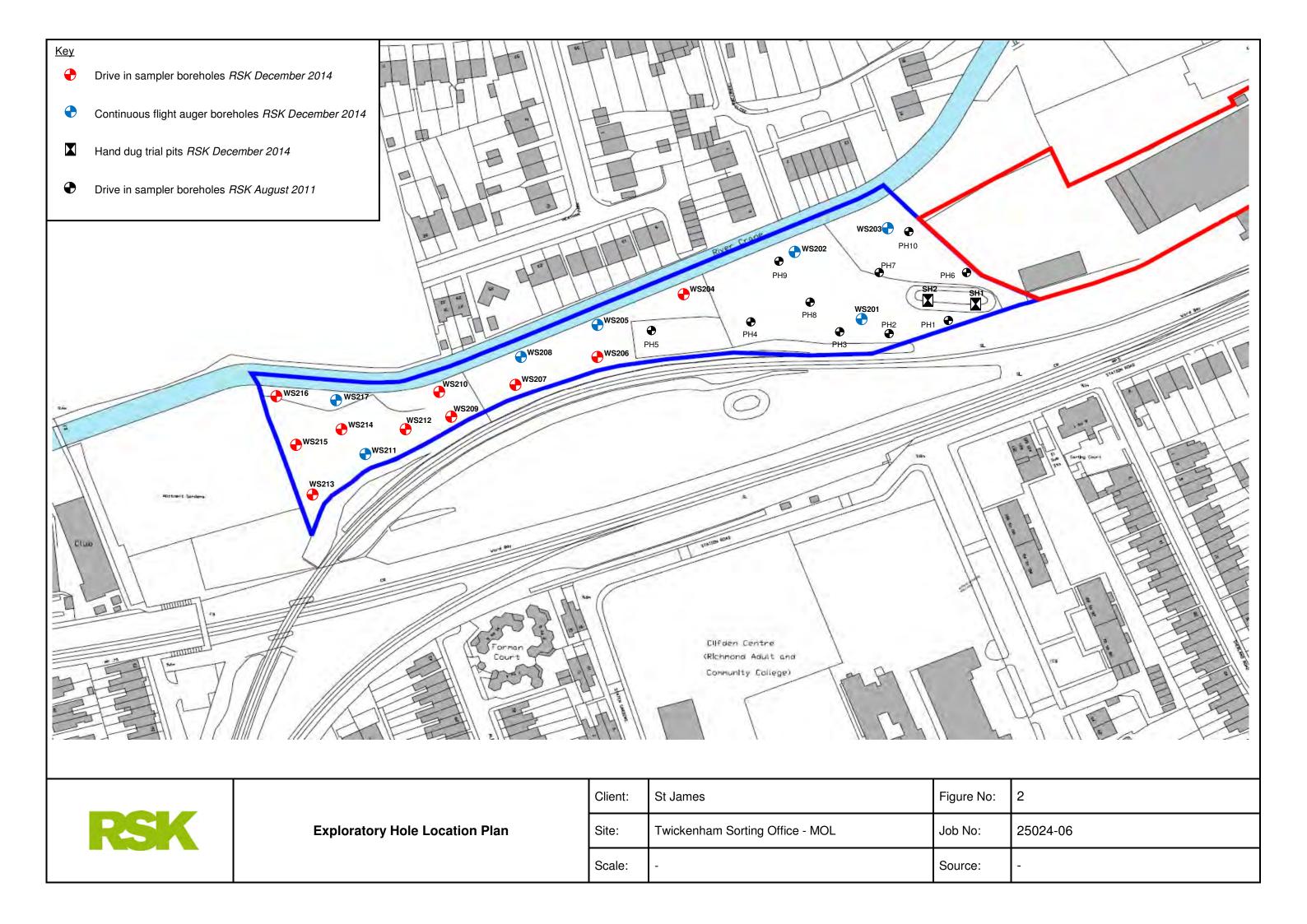
Part IIA of the Environmental Protection Act (Contaminated Land Regulations (England) 2002 (London: HMSO).

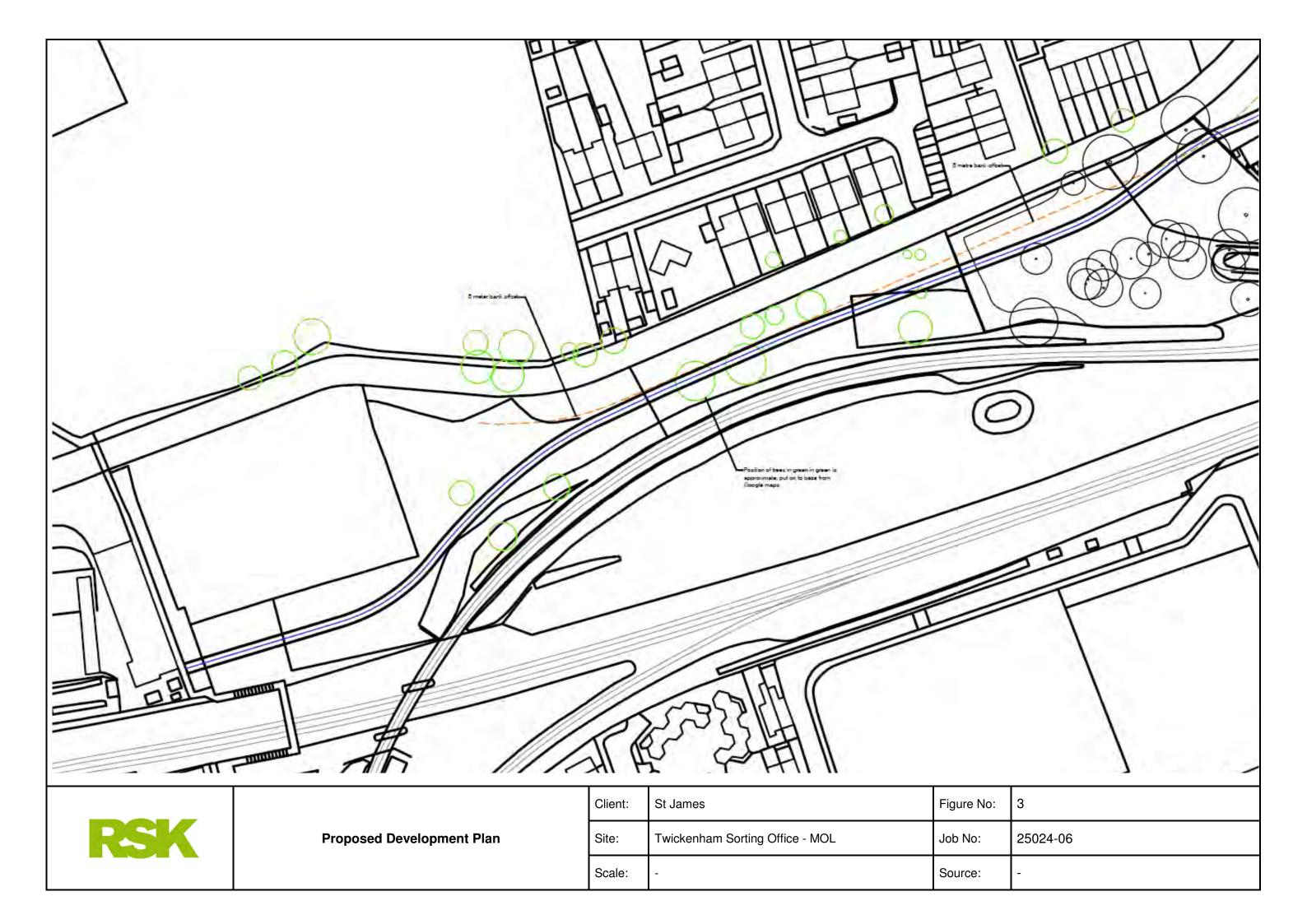
RSK (2012), 'Contamination Assessment Report – Former Royal Mail Depot, Twickenham' (ref: 25024-01)

Rudland, D. J., Lancefield, R. M. and Mayell, P. N. (2001), CIRIA C552. Contaminated Land Risk Assessment: A Guide to Good Practice (London: CIRIA).

The Surface Waters (Abstraction for Drinking Water) (Classification) Regulations 1996 (London: HMSO).


The Surface Waters (Dangerous Substances) (Classification) Regulations 1998 (London: HMSO). Transport and Road Research Laboratory (1970), 'TRRL Road Note 29 (Appendix 1). Road WRc plc (2002), 'Polycyclic Aromatic Hydrocarbons (PAH): Priorities for Environmental Quality Standard Development, R&D Technical Report P45'.


FIGURES


Bog Lodg TWICKENHAM Site Location 和 Deer TEDDINGTON KINGSTON UPON THAMES Hampton Court

Reproduced from the 2006 Ordnance Survey 1:50,000 Scale Landranger Map 176, OSGR - TQ159736 with the permission of the Controller of Her Majesty's Stationery Office, Crown Copyright. Licence No. 100014807 RSK Group PLC, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT.

_

APPENDIX A SERVICE CONSTRAINTS

- 1. This report and the site investigation carried out in connection with the report (together the "Services") were compiled and carried out by RSK Environment Limited (RSK) for the St James Group Ltd (the "client") in accordance with the terms of a contract between RSK and the "client", dated the 31st October 2014. The Services were performed by RSK with the skill and care ordinarily exercised by a reasonable environmental consultant at the time the Services were performed. Further, and in particular, the Services were performed by RSK taking into account the limits of the scope of works required by the client, the time scale involved and the resources, including financial and manpower resources, agreed between RSK and the client.
- Other than that expressly contained in paragraph 1 above, RSK provides no other representation or warranty whether express or implied, in relation to the Services.
- 3. Unless otherwise agreed in writing the Services were performed by RSK exclusively for the purposes of the client. RSK is not aware of any interest of or reliance by any party other than the client in or on the Services. Unless expressly provided in writing, RSK does not authorise, consent or condone any party other than the client relying upon the Services. Should this report or any part of this report, or otherwise details of the Services or any part of the Services be made known to any such party, and such party relies thereon that party does so wholly at its own and sole risk and RSK disclaims any liability to such parties. Any such party would be well advised to seek independent advice from a competent environmental consultant and/or lawyer.
- 4. It is RSK's understanding that this report is to be used for the purpose described in the introduction to the report. That purpose was a significant factor in determining the scope and level of the Services. Should the purpose for which the report is used, or the proposed use of the site change, this report may no longer be valid and any further use of or reliance upon the report in those circumstances by the client without RSK 's review and advice shall be at the client's sole and own risk. Should RSK be requested to review the report after the date of this report, RSK shall be entitled to additional payment at the then existing rates or such other terms as agreed between RSK and the client.
- 5. The passage of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable. The information and conclusions contained in this report should not be relied upon in the future without the written advice of RSK. In the absence of such written advice of RSK, reliance on the report in the future shall be at the client's own and sole risk. Should RSK be requested to review the report in the future, RSK shall be entitled to additional payment at the then existing rate or such other terms as may be agreed between RSK and the client.
- 6. The observations and conclusions described in this report are based solely upon the Services which were provided pursuant to the agreement between the client and RSK. RSK has not performed any observations, investigations, studies or testing not specifically set out or required by the contract between the client and RSK. RSK is not liable for the existence of any condition, the discovery of which would require performance of services not otherwise contained in the Services. For the avoidance of doubt, unless otherwise expressly referred to in the introduction to this report, RSK did not seek to evaluate the presence on or off the site of asbestos, electromagnetic fields, lead paint, heavy metals, radon gas or other radioactive or hazardous materials.
- 7. The Services are based upon RSK's observations of existing physical conditions at the Site gained from a walk-over survey of the site together with RSK's interpretation of information including documentation, obtained from third parties and from the client on the history and usage of the site. The Services are also based on information and/or analysis provided by independent testing and information services or laboratories upon which RSK was reasonably entitled to rely. The Services clearly are limited by the accuracy of the information, including documentation, reviewed by RSK and the observations possible at the time of the walk-over survey. Further RSK was not authorised and did not attempt to independently verify the accuracy or completeness of information, documentation or materials received from the client or third parties, including laboratories and information services, during the performance of the Services. RSK is not liable for any inaccurate information or conclusions, the discovery of which inaccuracies required the doing of any act including the gathering of any information which was not reasonably available to RSK and including the doing of any independent investigation of the information provided to RSK save as otherwise provided in the terms of the contract between the client and RSK.
- 8. The intrusive environmental site investigation aspects of the Services is a limited sampling of the site at pre-determined borehole and soil vapour locations based on the operational configuration of the site. The conclusions given in this report are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around those locations. The extent of the limited area depends on the soil and groundwater conditions, together with the position of any current structures and underground facilities and natural and other activities on site. In addition chemical analysis was carried out for a limited number of parameters [as stipulated in the contract between the client and RSK] [based on an understanding of the available operational and historical information,] and it should not be inferred that other chemical species are not present.
- 9. Any site drawing(s) provided in this report is (are) not meant to be an accurate base plan, but is (are) used to present the general relative locations of features on, and surrounding, the site. Features (boreholes, trial pits etc) annotated on site plans are not drawn to scale but are centred over the approximate location. Such features should not be used for setting out and should be considered indicative only.

APPENDIX B SUMMARY OF LEGISLATION AND POLICY RELATING TO CONTAMINATED LAND

Part IIA of the Environmental Protection Act 1990 (EPA) and its associated Contaminated Land Regulations 2000 (SI 2000/227), which came into force in England on 1 April 2000, formed the basis for the current regulatory framework and the statutory regime for the identification and remediation of contaminated land. Part IIA of the EPA 1990 defines contaminated land as 'any land which appears to the Local Authority in whose area it is situated to be in such a condition by reason of substances in, on or under the land, that significant harm is being caused, or that there is significant possibility of significant harm being caused, or that pollution of controlled waters is being or is likely to be caused'. Controlled waters are considered to include all groundwater, inland waters and estuaries.

In August 2006, the Contaminated Land (England) Regulations 2006 (SI 2006/1380) were implemented, which extended the statutory regime to include Part IIA of the EPA as originally introduced on 1 April 2000, together with changes intended chiefly to address land that is contaminated by virtue of radioactivity. These have been replaced subsequently by the Contaminated Land (England) (Amendment) Regulations 2012, which now exclude land that is contaminated by virtue of radioactivity.

The intention of Part IIA of the EPA is to deal with contaminated land issues that are considered to cause significant harm on land that is not undergoing development (see Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance, April 2012). This document replaces Annex III of Defra Circular 01/2006, published in September 2006 (the remainder of this document is now obsolete).

Water Framework Directive (WFD)

The Water Framework Directive 2000/60/EC is designed to:

- enhance the status and prevent further deterioration of aquatic ecosystems and associated wetlands that depend on the aquatic ecosystems
- promote the sustainable use of water
- reduce pollution of water, especially by 'priority' and 'priority hazardous' substances
- ensure progressive reduction of groundwater pollution.

The WFD requires a management plan for each river basin be developed every six years.

Groundwater Directive (GWD)

The 1980 Groundwater Directive 80/68/EEC and the 2006 Groundwater Daughter Directive 2006/118/EC of the WFD are the main European legislation in place to protect groundwater. The 1980 Directive is due to be repealed in December 2013. The European legislation has been transposed into national legislation by regulations and directions to the Environment Agency.

Environmental Permitting Regulations (EPR)

The Environmental Permitting (England and Wales) Regulations 2010 provide a single regulatory framework that streamlines and integrates waste management licensing, pollution prevention and control, water discharge consenting, groundwater authorisations, and radioactive substances regulation. Schedule 22, paragraph 6 of EPR 2010 states: 'the regulator must, in exercising its relevant functions, take all necessary measures - (a) to prevent the input of any hazardous substance to groundwater; and (b) to limit the input of non-hazardous pollutants to groundwater so as to ensure that such inputs do not cause pollution of groundwater.'

Water Resources Act (WRA)

The Water Resources Act 1991 (Amendment) (England and Wales) Regulations 2009 updated the Water Resources Act 1991, which introduced the offence of causing or knowingly permitting pollution of controlled waters. The Act provides the Environment Agency with powers to implement remediation necessary to protect controlled waters and recover all reasonable costs of doing so.

Priority Substances Directive (PSD)

The Priority Substances Directive 2008/105/EC is a 'Daughter' Directive of the WFD, which sets out a priority list of substances posing a threat to or via the aquatic environment. The PSD establishes environmental quality standards for priority substances, which have been set at concentrations that are safe for the aquatic environment and for human health. In addition, there is a further aim of reducing (or eliminating) pollution of surface water (rivers, lakes, estuaries and coastal waters) by pollutants on the list. The WFD requires that countries establish a list of dangerous substances that are being discharged and EQS for them. In England and Wales, this list is provided in the River Basin Districts Typology, Standards and Groundwater threshold values (Water Framework Directive) (England and Wales) Directions 2010. In order to achieve the objectives of the WFD, classification schemes are used to describe where the water environment is of good quality and where it may require improvement.

Planning Policy

Contaminated land is often dealt with through planning because of land redevelopment. This approach was documented in Planning Policy Statement: Planning and Pollution Control PPS23, which states that it remains the responsibility of the landowner and developer to identify land affected by contamination and carry out sufficient remediation to render the land suitable for use. PPS23 was withdrawn early in 2012 and has been replaced by much reduced guidance within the National Planning Policy Framework (NPPF).

The new framework has only limited guidance on contaminated land, as follows:

- "planning policies and decisions should also ensure that:
 - the site is suitable for its new use taking account of ground conditions and land instability, including from natural hazards or former activities such as mining, pollution arising from previous uses and any proposals for mitigation including land remediation or impacts on the natural environment arising from that remediation;

- after remediation, as a minimum, land should not be capable of being determined as contaminated land under Part IIA of the Environmental Protection Act 1990; and
- o adequate site investigation information, prepared by a competent person, is presented".

APPENDIX C RISK ASSESSMENT METHODOLOGY

CLR11 outlines the framework to be followed for risk assessment in the UK. The framework is designed to be consistent with UK legislation and policies including planning. Under CLR11, three stages of risk assessment exist: preliminary, generic quantitative and detailed quantitative. An outline conceptual model should be formed at the preliminary risk assessment stage that collates all the existing information pertaining to a site in text, tabular or diagrammatic form. The outline conceptual model identifies potentially complete (termed possible) pollutant linkages (contaminant–pathway–receptor) and is used as the basis for the design of the site investigation. The outline conceptual model is updated as further information becomes available, for example as a result of the site investigation.

Production of a conceptual model requires an assessment of risk to be made. Risk is a combination of the likelihood of an event occurring and the magnitude of its consequences. Therefore, both the likelihood and the consequences of an event must be taken into account when assessing risk. RSK has adopted guidance provided in CIRIA C552 for use in the production of conceptual models.

The likelihood of an event can be classified on a four-point system using the following terms and definitions based on CIRIA C552:

- highly likely: the event appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution
- likely: it is probable that an event will occur or circumstances are such that the event is not inevitable, but possible in the short term and likely over the long term
- low likelihood: circumstances are possible under which an event could occur, but it is not certain even in the long term that an event would occur and it is less likely in the short term
- unlikely: circumstances are such that it is improbable the event would occur even in the long term

The severity can be classified using a similar system also based on CIRIA C552. The terms and definitions relating to severity are:

- severe: short term (acute) risk to human health likely to result in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resources. Catastrophic damage to buildings or property. Short-term risk to an ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000)
- medium: chronic damage to human health ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000), pollution of sensitive water resources, significant change in an ecosystem or organism forming part of that ecosystem
- mild: pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000). Damage to sensitive buildings, structures or the environment

minor: harm, not necessarily significant, but that could result in financial loss or expenditure
to resolve. Non-permanent human health effects easily prevented by use of personal
protective clothing. Easily repairable damage to buildings, structures and services.

Once the probability of an event occurring and its consequences have been classified, a risk category can be assigned according to the table below.

		Consequences								
		Severe	Medium	Mild	Minor					
	Highly likely	Very high	High	Moderate	Moderate/low					
Probability	Likely	High	Moderate	Moderate/low	Low					
Prob	Low likelihood	Moderate	Moderate/low	Low	Very low					
	Unlikely	Moderate/low	Low	Very low	Very low					

Definitions of these risk categories are as follows together with an assessment of the further work that may be required:

- Very high: there is a high probability that severe harm could occur or there is evidence that severe harm is currently happening. This risk, if realised, could result in substantial liability; urgent investigation and remediation are likely to be required.
- High: harm is likely to occur. Realisation of the risk is likely to present a substantial liability.
 Urgent investigation is required. Remedial works may be necessary in the short term and are likely over the long term.
- Moderate: it is possible that harm could arise, but it is unlikely that the harm would be severe
 and it is more likely that the harm would be relatively mild. Investigation is normally required
 to clarify the risk and determine the liability. Some remedial works may be required in the
 longer term.
- Low: it is possible that harm could occur, but it is likely that if realised this harm would at worst normally be mild.
- Very low: there is a low possibility that harm could occur and if realised the harm is unlikely to be severe.

APPENDIX D EXPLORATORY HOLE RECORDS

Contract:					Clien	:			Win	dow Sar	nple	: :	
Former I	Royal Mail Dep	oot, T	wickenha	m			S	t James Group				Pŀ	1 1
Contract Ref:		Start:	23.08.11	Groun	d Leve	el:		Co-ordinates:	She	et:			
2	5024	End:	23.08.11		-					1	0	f	1
Progress	Sam	ples / T	Tests	_	T ;=					Dep	th N	Vlate	erial

25	024		End:	23.08.11			-		1	of 1
Progress			oles / T		Water	Backfill		Description of Strata	Depth (Thick	Material Graphic
Window Run	Depth	No	Туре	Results	Wa	Ва	MADE C	ROUND: TOPSOIL comprising very d	ness)	Legend
-							brown slig	phtly organic slightly clayey sand with a casional fine to medium sub-rounded gra	sh, (0.30)	
-							roots and r	rootlets. E MADE GROUND: Brown slightly clay		
							gravelly sa	and and flint fragments. Gravel is fine gular to sub-rounded with roots and rootlets	to (0.00)	
							Light brow	wn mottled orange brown sandy clar with flint cobbles and fragments, roots a	yey	.0.0°
							rootlets.	N PARK GRAVEL)	(0.40)	0.200
	_						Window sa	ample hole terminated at 1.0 m depth.	1.00	3 000 €
-									-	
									F	
-									-	
- -									-	
-									-	
	-								-	
-										
-									-	
									-	
<u> </u> -									<u> </u>	
	-								-	
									-	
<u> </u>									ļ	

= [[Orilling Pro	gress and	Water 0	Observation	s		Con	orol	Domork	•	
	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)			Gene	erai	Remark	S 	
1										I		
5							_ A	Il dimensions in metres		Scale:	1:25	
ا ٿ	Method	Tracke	d windov	v Pla	nt Archy	ay Comp	etitor	Drilled	Logge	ed .	Checked	

GINT_LIBRARY_V8_04.GLB!Log WINDOW SAMPLE LOG | 25024 GINT DATA.GPJ - v8_04 | 12/01/15 - 13:26 | VM.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Used: sampling

Used:

Ву: MB By: By: **CLarkin**

								•		VOAIVI	. –			
Contract:						(Client:				Windo	w Samp	ole:	
									t James Group	o			Ρ	H2
Contract Ref:			Start:	23.08.11	Gro	und	Level	:	Co-ordinates:		Sheet:			
25	024		End:	23.08.11				_		-		1	of	1
Progress		Sam	ples / ٦	Гests		jo O	■					Depth		terial
Window Run	Depth	No	Туре	Results		Water	Backfill		Description of	f Strata		(Thick ness)	Gra Le	aphic gend
-	-							brown slig	ROUND: TOPSOIL htly organic slightly casional fine to med	clayey sand wi	ťh ash,	0.20		\bigotimes

Progress		Samp	oies / i	esis	Į.	₩	Description of Otroto	Depth	Material
Window Run	Depth	No	Туре	Results	Water	Backfill	Description of Strata	ness)	Graphic Legend
	-						MADE GROUND: TOPSOIL comprising very dark brown slightly organic slightly clayey sand with ash, clinker, occasional fine to medium sub-rounded gravel, roots and rootlets. POSSIBLE MADE GROUND: Brown slightly clayey	0.20	
	-						gravelly sand and flint fragments. Gravel is fine to coarse angular to subrounded with roots and rootlets.	0.60	
	-						Light brown mottled orange brown sandy clayey GRAVEL with flint cobbles and fragments, roots and rootlets. (KEMPTON PARK GRAVEL)	(0.40)	
-	-						Window sample hole terminated at 1.0 m depth.	1.00	ه څه د
	-							-	
	-							-	
	-							- -	
-	-							-	
	-							-	
	_							-	
	- -							- -	
	-							-	
-	_							-	
	_							-	
								-	
	- -							- -	
-	- -							-	
	<u>-</u>							-	
	-							-	

<u>:</u>	[Orilling Pro	gress and	Water Ob	servations	3		Can	orol	Domorko		
, - ici	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)		Gen	erai	Remarks		
1							II dimension	e in metree		Scale:	1:25	
100	Method Used:		d windov npling	Plan Used	t Archw d:	ay Comp	Drilled By:	MB	Logge By:		Checked By:	AGS

GINT LIBRARY V8 04.GLBILOg WINDOW SAMPLE LOG | 25024 GINT DATA.GPJ - v8 04 | 1201/15 - 13:26 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Contract:					Client			V	Vindow	Samp	le:	
Former F	Royal Mail Dep	oot, T	wickenha	m		S	t James Group				Ρ	Н3
Contract Ref:		Start:	23.08.11	Groun	d Leve	l:	Co-ordinates:	S	Sheet:			
25	5024	End:	23.08.11			-				1	of	1
Progress	Sam	ples / T	Tests		T ;≡					Depth	Ma	terial

25	024		End:	23.08.11			-			1	of 1
Progress			oles / T		Water	Backfill	Description of Strata			(Thick	Material Graphic
Window Run	Depth	No	Туре	Results	>	ă —	slightly org	ROUND: TOPSOIL comprising dark by panic clayey sand with ash, clinker and for any angular to sub-rounded gravel.	orown ine to	ness) - (0.45)	Legend
- - -							Brown to	light brown slightly clayey SAND	with	- 0.45	
							gravel.	fine to medium sub-angular to sub-rountly park GRAVEL)	ınded	- -(0.55) -	
t t										1.00	·-# · :-
	- - - -						coarse sub roots and r	n very sandy clayey GRAVEL, gravel is f b-angular to sub-rounded fragments of cootlets. N PARK GRAVEL)	ine to	(0.55)	
	-									1.55	ċ <i></i> 0. ₩
<u> </u>							Window sa	ample hole terminated at 1.55 m depth.		-	
<u> </u>										_	
t t										_	
	-										
										-	
ļ. ļ	•									-	
<u> </u>	-									-	
† †										-	
t t	•									-	
	•										
										_	
										-	
	=									_	
<u> </u>										_	
† †										-	
† †	•									-	
	:										
										_	
										-	
ļ .	•									-	
}										-	
<u> </u>	_									F	
<u> </u>										-	
† †										-	
† †	-									-	
[· 										

= [[Orilling Pro	gress and	Water (Observation	s		Con	orol	Domork	•	
	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)		Gen	erai	Remark	S 	
2												
1										I		
5							P	All dimensions in metres		Scale:	1:25	
ا ٿ	Method	Tracke	d windov	v Pla	nt Archy	av Comr	etitor	Drilled	Logge	ed .	Checked	

GINT LIBRARY V8 04.GLBILOg WINDOW SAMPLE LOG | 25024 GINT DATA.GPJ - v8 04 | 12/01/15 - 13:26 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tei: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Method Used: Tracked windown sampling

Plant **Archway Competitor** Used:

By: **MB**

By: **CLarkin**

Checked By:

Contract:		Client:		Window Sample:				
Former Royal Mail Dep	oot, Twickenha	am S	St James Group			Ρ	Ή4	Ļ
Contract Ref:	Start: 23.08.11	Ground Level:	Co-ordinates:	Sheet:				
25024	End: 23.08.11				1 0	of	1	

	,0 <u>_</u>		LIIU.	23.00.11					01 1
Progress		Samr	oles / T	Tests		_		Denth	Material
Window Run	Depth		Туре		Water	Backfill	Description of Strata	(Thick ness)	Graphic
-	- - -						MADE GROUND: TOPSOIL comprising dark brown slightly organic clayey sand with ash, clinker and fine to coarse sub-angular to sub-rounded gravel.	(0.50)	
-	-						Brown to light brown slightly clayey dense SAND with	0.50	
-	- - -						flint fragments and fine to coarse angular to sub-rounded gravel with roots and rootlets. (KEMPTON PARK GRAVEL)	(0.50)	######################################
<u> </u>	-							1.00	-° ;:
-	- - -						Light brown very sandy CLAY with frequent fine to coarse gravel and fragments of flint, roots and rootlets. (KEMPTON PARK GRAVEL)	(0.40)	
Ī	-							1.40	<u> </u>
-	- - -						Light brownish grey clayey SAND AND GRAVEL. (KEMPTON PARK GRAVEL)	(0.40)	0.0.0
-	-						Window sample hole terminated at 1.8 m depth.	1.80	000
-	-						window sample note terminated at 1.0 m depth.	-	
-	-							-	
-	-							-	
-	-							-	
	_							-	
[[-								
L l	=							L	
-	-							-	
-	-							-	
-	-							-	
-	_							-	
[-							Ĺ	
	-								
	-							-	
-	-							-	
-	_							F	
}	-							-	
†	-							-	
	-							[

[Drilling Pro	gress and	Water Ob	servations	3			Con	orol	Domorko		
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gen	erai	Remarks		
						P	II dimensio	ns in metres		Scale:	1:25	
Method Used:		d windov npling	V Plan Use	t Archw	ay Comp	etitor	Drilled By:	MB	Logge By:	d CLarkin	Checked By:	AGS

GINT_LIBRARY_V8_04.GLBILog WINDOW SAMPLE LOG | 25024 GINT DATA.GPJ - v8_04 | 12/01/15 - 13:26 | VM.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Contract:		Client:		Window S	ole:			
Former Royal Mail Dep	oot, Twickenh	am	St James Group			P	Ή	5
Contract Ref:	Start: 23.08.11	Ground Level:	Co-ordinates:	Sheet:				
25024	End: 23.08.11				1	of	1	

	,0 <u>_</u> _		Liiu.	23.00.11					01 1
Progress		Samr	oles / 1	Tests		_		Donth	Material
Window Run	Depth		Туре		Water	Backfill	Description of Strata	(Thick ness)	Graphic Legend
	- - -						MADE GROUND: TOPSOIL comprising very dark brown slightly organic clayey sand.	(0.50)	
-	-						Brown sandy CLAY with pockets of brownish orange	0.50	
	- - -						sand with occasional fine to medium sub-angular to sub-rounded gravel. (KEMPTON PARK GRAVEL)	(0.50)	
	_							1.00	
	- - -						Light grey brown becoming light grey sandy CLAY with flint cobbles recovered as fragments. (KEMPTON PARK GRAVEL)	(0.60)	
-	-							1.60	
	-						Window sample hole terminated at 1.6 m depth.	1.00	
-	-							_	
-	-							-	
-	-							_	
	-								
-	_							-	
-	-							-	
-	-							_	
-	_							_	
	-							_	
	-								
	_								
-	-							-	
-	-							-	
-	-							-	
-	-							_	
-	_							-	
-	-							-	
†	-							<u> </u>	
[_							Ĺ	
	_								
[_							_	
	_							-	
-	-							-	
-	-							-	
								L	

	[Orilling Pro	gress and	Water Ob	servations	5		Con	orol	Domork	10	
Oau, nei	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)		Gen	Elai	Remark	\ 5	
וווווו												
2												
פור												
5							P	All dimensions in metres		Scale:	1:25	
	Method	Tracke	d windov	v Plan	t Archw	ay Comp	etitor	Drilled	Logge	ed	Checked	

GINT_LIBRARY_V8_04.GLBILog WINDOW SAMPLE LOG | 25024 GINT DATA.GPJ - v8_04 | 12/01/15 - 13:26 | VM.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Method Used: Tracked windows

Plant **Archway Competitor** Used:

Drilled By: **MB** By: **CLarkin** Che By:

Contract:		Client:		Window	Sam	ple:	
Former Royal Mail Dep	oot, Twickenha	m	St James Group			P	PH6
Contract Ref:	Start: 23.08.11	Ground Level:	Co-ordinates:	Sheet:			
25024	End: 23.08.11				1	of	1

25	024		End:	23.08.11			-		1	of 1
Progress	,	Sam	ples / T	Tests	ter	Backfill		Description of Strata	Dept	Materia
Window Run	Depth	No	Туре	Results	Water	Вас		·	ness	
-							MADE GF brown sligh	ROUND: TOPSOIL comprising very ntly organic clayey sand.	dark 0.25	. 💥
							MADE GR	OUND: Brick.	0.20)
-							Light greyis	sh brown slightly clayey SAND. N PARK GRAVEL)	(0.30	
-							(IVEIVII TOI	TARK GIVAVEL)	0.60	ر . النظام الم
- -							with pocke	w brown mottled orange brown sandy C ets of brownish orange sand with fin	CLAY	<u> </u>
							coarse gra	vel and flint fragments. N PARK GRAVEL)	0.90) [
_							No recover	,	1.00) ZCL
- - -	-						Light brown	nish grey slightly sandy clayey GRAVEL ents and cobbles.		0-6.0
								N PARK GRAVEL)	1.30)
-							fragments.		d as	00
-							(KEMPTO	N PARK GRAVEL)	(0.70)) [
- -									-	
- }									2.00) <u> </u>
- -	-						Window sa	ample hole terminated at 2.0 m depth.	- 2.00	<u></u>
-									<u> </u>	
-									_	
·									Ī	
									[
_	_								_	
.									-	
									-	
									-	
.									-	
.									-	
									-	
									-	
. [-	
. [-	
	_								L	
_ [[
Ī									[
·									Ī	
·									t	

Date Time Depth Depth Diameter Depth	Seneral Remarks	
(m) (m) (mm) (m)		
All dimensions in m	etres Scale: 1:25	
Method Tracked window Plant Archway Competitor Drilled	Logged Checked	7

GINT_LIBRARY_V8_04.GLB!Log WINDOW SAMPLE LOG | 25024 GINT DATA.GPJ - v8_04 | 12/01/15 - 13:26 | VM.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Used: sampling

Used:

Ву: MB By: **CLarkin**

AGS Ву:

Contract:		Client:	Client:					
Former Royal Mail Dep	oot, Twickenha	m	St James Group		PH7			
Contract Ref:	Start: 23.08.11	Ground Level:	Co-ordinates:	Sheet:				
25024	End: 23.08.11			1 a	of 1			

	/U <u>L</u> T		Liiu.	25.00.11				•	01 1
Progress		Samp	oles / T	Tests	_			Denth	Material
Window Run	Depth		Туре		Water	Backfill	Description of Strata	(Thick ness)	Graphic Legend
-	-						MADE GROUND: TOPSOIL comprising of very dark brown slightly organic slightly clayey sand with ash, clinker occasional fine to medium sub-rounded gravel, roots and rootlets.	0.25	
-	- - -						MADE GROUND: Dark brown clayey sand with ash, clinker and metal fragments.	- - (0.55) -	
_	-						No recovery	0.80	
	-							1.00	ZCL
-	- -						Light brownish grey slightly sandy clayey GRAVEL with flint fragments and cobbles. (KEMPTON PARK GRAVEL)	1.30	
	-						Light grey sandy CLAY with flint cobbles recovered as fragments. (KEMPTON PARK GRAVEL)	-	
-	-						((CIM 10/11/WC 0/U(V22)	(0.70)	
	-							2.00	00.0
_	-						Window sample hole terminated at 2.0 m depth.	-	
-	-							-	
_	-							-	
-	-							- -	
-	-							-	
	-							-	
-	-							-	
-	-							-	
	-							-	
-	- -							-	
_	_							_	

[Orilling Pro	gress and	Water Ol	oservations	3			Con	orol	Domorko		
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gen	erai	Remarks		
						P	II dimensio	ns in metres		Scale:	1:25	
Method Used:		d windov npling	N Plan Use	t Archw	ay Comp	etitor	Drilled By:	MB	Logge By:	d CLarkin	Checked By:	AGS

GINT_LIBRARY_V8_04.GLBILog WINDOW SAMPLE LOG | 25024 GINT DATA.GPJ - v8_04 | 12/01/15 - 13:26 | VM.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Contract:					Client:			Windo	w Sam	ple:	
Former F	Royal Mail Dep	oot, T	wickenha	m		St	James Group			P	PH8
Contract Ref:		Start:	23.08.11	Groun	id Level:		Co-ordinates:	Sheet:			
25	5024	End:	23.08.11						1	of	1_
	0										

	/U L T		LIIU.	23.00.11				•	01 1
Progress	:	Samr	oles / 1	Tests		_		Donth	Material
1.109.000	·	- Cup	1	1	Water	Backfill	Description of Strata	(Thick	Graphic
Window Run	Depth	Nο	Туре	Results	Ş	3ac	Description of Strata	ness)	Legend
TTINGOTI TO	Борин		. , , ,	11000110	_			11633)	Logona
	_						MADE GROUND: TOPSOIL comprising very dark		
							brown slightly organic clayey sand.		
	-							0.25	
-	-						MADE GROUND: Brick.	0.30	$\times \times $
-	-						Light greyish brown slightly clayey SAND.	(0.30)	÷ : : ÷ : :
_	-						(KEMPTON PARK GRAVEL)	($\bot \top \dot{\bot} \Box$
								0.60	. —
	_						Light yellowish brown mottled orange brown sandy		<u></u>
Ī	-						CLAY with pockets of brown sand with fine to coarse	(0.30)	
-	-						gravel including flint fragments.		-:-:-
-	-						(KEMPTON PÄRK GRÄVEL)	0.90	
	_						No recovery.	1.00	ZCL
	_						Light brownish grey slightly sandy clayey GRAVEL with	(0.00)	<u>rr0.</u> 0.0
							flint fragments and cobbles.	(0.30)	1 Jan -
†	-						(KEMPTON PARK GRAVEL)	1.30	<u></u>
}	-						Light grey sandy CLAY with flint cobbles recovered as	1.50	[[
	_						fragments.	ŀ	<u>-0</u>
ļ	_						(KEMPTON PARK GRAVEL)		20-
	_						(INC. IN TOTAL CITY CL.)	(0.70)	<u> </u>
	-							(0.70)	-6-0V4
-	-							<u> </u>	<u> </u>
-	-							-	
-	_							-	74-00-4
	_							2.00	<u> </u>
							Window sample hole terminated at 2.0 m depth.		
	-							Ī .	
-	=							F	
-	-							-	
-	-							-	
	_								
	_							Ī	
-	-							F	
-	-							<u> </u>	
-	-							-	
<u> </u>	_							L	
	_							L	
†	-							ļ .	
}	-							ŀ	
-	-							ŀ	
	-							ļ	
	_							L	
†	-							ļ .	
-	-							ŀ	
-	-							ŀ	
	_							L	
	-								
†	-							t	
}	-							ŀ	
-	=							ļ	
			1			1		1	

	[Orilling Pro	gress and	Water Ob	oservations	3			Con	orol	Remarks		
יסמת, - יכו	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gene	ziai	Remarks		
2													
1								II dimananaia			01	1:25	
<u>É</u>					L				ns in metres		Scale:		
	Method Jsed:		d windov npling	N Plan Use	t Archw d:	ay Comp	etitor	Drilled By:	МВ	Logge By:	d CLarkin	Checked By:	AGS

GINT_LIBRARY_V8_04.GLB!Log WINDOW SAMPLE LOG | 25024 GINT DATA.GPJ - v8_04 | 12/01/15 - 13:26 | VM.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Contract:		Clie	ent:		Windo	w Samp	le:	
Former Royal Mail Dep	oot, Twickenha	m		St James Group			Pŀ	H9
Contract Ref:	Start: 23.08.11	Ground Le	vel:	Co-ordinates:	Sheet:			
25024	End: 23.08.11					1	of	1_
Progress Sam	ples / Tests	iter (Description of Strata		Depth	Mate	erial

Progress		Sam	oles / T	ests	er	-		Depth	Material
Window Run	Depth	No	Туре	Results	Water	Backfill	Description of Strata	(Thick ness)	Graphic Legend
-	-						MADE GROUND: TOPSOIL comprising very dark brown clayey sand with occasional ash and roots.	(0.50)	
	- - -						Light yellowish brown mottled orange brown sandy CLAY with pockets of sand and fine to coarse gravel including flint fragments.	0.50	
-	- - -						(KEMPTON PARK GRAVEL) Light brownish grey slightly sandy clayey GRAVEL with	1.00	0-000
	- -						flint fragments and cobbles. (KEMPTON PARK GRAVEL) Light grey sandy CLAY with flint cobbles recovered as	1.30	
	- - -						fragments. (KEMPTON PARK GRAVEL)	(0.35)	
	-						Window sample hole terminated at 1.65 m depth.	-	
-	<u>-</u> -							-	
	-							-	
	-							-	
-	- -							-	
	- - -							-	
	-							-	
	_ - - -							- -	
-	_ - -							_ - -	
	- -							-	

	[Drilling Pro	gress and	Water Ob	servations	3			Con	orol	Domorko		
	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gen	erai	Remarks		
!													
							P	II dimensio	ns in metres		Scale:	1:25	
	Method Used:		d windov npling	V Plan Use	t Archw d:	ay Comp	etitor	Drilled By:	MB	Logge By:	d CLarkin	Checked By:	AGS

GINT_LIBRARY_V8_04.GLBILog WINDOW SAMPLE LOG | 25024 GINT DATA.GPJ - v8_04 | 12/01/15 - 13:26 | VM.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Contract:					Client:			Windov	v Sam	ple:	
Former F	Royal Mail Dep	oot, T	wickenha	m		St	t James Group			PH	1 10
Contract Ref:		Start:	23.08.11	Groun	d Level:		Co-ordinates:	Sheet:			
25	5024	End:	23.08.11						1	of	1
D	Ca	/ T								1	

25	U 24		Ena:	23.00.11					ı	OT I
Progress			oles / T		Water	Backfill		Description of Strata	Depth (Thick	Graphic
Window Run	Depth	No	Туре	Results	Š	Ba	MADE GI	ROUND: TOPSOIL comprising very dark	ness)	
-							brown clay	yey sand with occasional ash and roots.	(0.50)	
	•								0.50	
							CLAY with including fl	owish brown mottled orange brown sandy n pockets of sand and fine to coarse grave lint fragments. N PARK GRAVEL)	(0.50)	
	-						flint fragme	nish grey slightly sandy clayey GRAVEL with ents and cobbles. N PARK GRAVEL)	(0.30)	
							fragments.	sandy CLAY with flint cobbles recovered as N PARK GRAVEL)	(0.35)	00-
	•						Windowed	ample hole terminated at 1.65 m depth.	1.65	000
-	-						VVIIIdow Se	ample note terminated at 1.00 m depth.	-	
- -	-								-	
_										
-	-								-	
- -										
-									ŀ	
-									-	
	-								-	
_	-								-	
									-	
-									-	
 -									-	
-	- -								-	
									-	
- -									-	
-									-	

Ē		Orilling Pro	gress and	Water Ob	servations	S		Con	orol	Domorko		
Jau, Hell	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)		Gen	erai	Remarks		
5												
60												
,												
5							A	Il dimensions in metres		Scale:	1:25	
<u>.</u>	Method	Tracke	d windov	v Plan	Archw	ay Competi	itor	Drilled	Logge	d	Checked	

GINT_LIBRARY_V8_04.GLB!Log WINDOW SAMPLE LOG | 25024 GINT DATA.GPJ - v8_04 | 12/01/15 - 13:26 | VM.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Used: sampling Used:

Ву: MB By: **CLarkin**

Contract:				Client:			Windo	w Sar	nple:	
Twickenham Sortir	ng Of	fice MO	L		St J	ames Group Ltd			WS:	201
Contract Ref:	Start:	02.12.14	Groun	d Level:		Co-ordinates:	Sheet:			
25024	End:	02.12.14						1	of	1

	7027		LIIU.	VZ. 1Z. 17					01 1
Progress			oles / T		Water	Backfill & Instru-mentation	Description of Strata	Depth (Thick	Graphic
Window Run	Depth	No	Туре	Results	×	Bac In: mer		ness)	Legend
-	0.10 0.10 0.10	ES1	ES PID	Tub/J/VL 0.4ppm			Friable dark brown silty slightly sandy slightly gravelly CLAY with frequent to occasional roots and rootlets. Sand is fine to coarse. Gravel is rare subrounded fine to medium flint. (IMPORTED TOPSOIL)	-	17 · 7 · 1 · 7 · 1 · 7 · 1 · 7 · 7 · 7 ·
	0.30 0.30	ES2	ES PID	Tub/J/VL 3.3ppm			inediani iiiii. (iivir OKTED TOFSOIL)	(1.00)	12 × 12 × 13
-	-							-	5 27 25 57 77 5 5 77 74 5
_	-							1.00	<u>7.7.</u> . 7.7. 7
_	-						MADE GROUND: Yellowish brown clayey sandy GRAVEL. Sand is fine to coarse. Gravel is subangular medium to coarse mortar, concrete and flint.	- -	
-	-							(0.80)	
-	-						Orangish brown gravelly fine to coarse SAND. Gravel is	1.80	
-	- 2.00 -	D1	D		<u></u>		subrounded fine to medium flint. (KEMPTON PARK GRAVEL)	-	0 S
-	- - - -							(1.60)	0 0 0 0
-	- - - - - 3.40	D2	D				Firm to stiff fissured dark grey silty CLAY.	3.40	. 0 . 0
-	-						(LONDON CLAY FORMAŤIÓN)	(0.60)	X X
-	- - -						Terminated at 4.00m.	4.00	x
-	- -							- -	

5	ſ	Orilling Pro	ogress and	Water Ob	servations	3		Con	orol	Domorl	' 0	
,	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)		Gene	erai	Remark	(5	
)				-		2.00						
9												
:												
,												
5							P	All dimensions in metres		Scale:	1:25	
	Method	Tracked	d windov	v Plan	Archw	ay Comp	etitor	Drilled	Logge	d	Checked	

GINT_LIBRARY_V8_05.GLB LibVersion: v8_05 - Lib0004 PrjVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:06 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Herifordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Method Used: Tracked windown sampling

Used: Competitor

Drilled By: **CD** By: **VMacfarlane** Che By:

Checked By: AGS

Contract:		Client:		Window	/ Samp	ole:	
Twickenham Sortir	ng Office MOI	L St J	James Group Ltd		V	VS2	202
Contract Ref:	Start: 02.12.14	Ground Level:	Co-ordinates:	Sheet:			
25024	End: 02.12.14				1	of	2
			<u> </u>			_	

				V					
Progress		Samp	oles / T	ests	er	fill & ru- ation		Depth	Materia
Window Run	Depth	No	Туре	Results	Water	Backfill & Instru-mentation	Description of Strata	(Thick ness)	Graphi Legen
	0.30	ES1	ES	Tub/J/VL			MADE GROUND: Friable dark brown silty slightly sandy slightly gravelly CLAY with occasional roots and rootlets. Gravel is subangular fine to medium ash and brick.	(0.50)	
	0.30	LOT	PID	0.0ppm			Chiff light grow goothed groups allhy CLAV with your to	0.50	
	0.60	ES2	ES PID	Tub/J/VL 0.1ppm			Stiff light grey mottled orange silty CLAY with rare to very rare roots. (ALLUVIUM) at 0.50 to 0.55m rare to occasional inclusions of subrounded flint	-	
	1.00 1.00	ES3	ES PID	Tub/J/VL 0.3ppm				- (1.30) -	x x
	-							-	X
_	-				1		Yellowish brown gravelly fine to coarse SAND. Gravel is subrounded fine to medium flint. (KEMPTON PARK GRAVEL)	1.80	x
	2.30	D1	D				(KEMI TONT ARK GIVAVEE)	- (0.90) -	
	-							2.70	
-	3.00	D2	D				Firm to stiff fissured greyish brown silty CLAY. (LONDON CLAY FORMATION)	- -	× × ×
	3.00	02						- -	
	-							-	x
-	-							(2.30)	x x x
	- - -							- -	x
	_							-	x

2	Г	Orilling Pro	gress and	Water Ob	servations	3			Con	orol	Domorko		
, - 10	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gen	erai	Remarks		
10 1091110				-		2.00							
ו סווווופוור בנגי							, A	All dimension	ns in metres		Scale:	1:25	
	Method Used:		d windov npling	Plan Use	t Archw	ay Comp	etitor	Drilled By:	CD	Logge By:	d VMacfarlane	Checked By:	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_05 - Lib0004 PŋVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:06 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

1.								WINDOW SAM	PLI	EL	OG.
Contract:						Clie	nt:		Windov	w Samp	le:
Twicke	enham Sc	rtir	ng Of	ffice MO	L			St James Group Ltd		W	/ S202
Contract Ref:			Start:	02.12.14	Grour	nd Lev	vel:	Co-ordinates:	Sheet:		
2	5024		End:	02.12.14				·		2	of 2
Progress		Sam	ples / ٦	Tests	ē	<u>≅</u> ≥	ation			Depth	Material
Window Run	Depth	No	Туре	Results	Water	Backfill & Instru-	menta	Description of Strata		(Thick ness)	Graphic Legend
-	-					* * * * * * * * * * * * * * * * * * * *		Firm to stiff fissured greyish brown silty CLAY. (LONDON CLAY FORMATION) (stratum copied from 2.70m from previous sheet)		- - - 5.00	X X
								Terminated at 5.00m.			

	Г	Drilling Pro	gress and	Water Ob	oservations	3			Con	orol	Remarks		
	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gen	erai	Remarks		
2													
:													
<u> </u>							A	II dimension	ns in metres		Scale:	1:25	
	Method Used:		d windov npling	Plan Use	t Archw	ay Comp	etitor	Drilled By:	CD	Logge By:	d VMacfarlane	Checked By:	AGS

GINT_LIBRARY_W8_05.GLB LibVersion: v8_05 - Lib0004 PŋVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:06 | VM. RSK Environment Ltd. 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Contract:			Client:		Window	San	ıple:	
Twickenham Sortir	ng Office MO	L	St J	lames Group Ltd		1	NS2	203
Contract Ref:	Start: 02.12.14	Ground	d Level:	Co-ordinates:	Sheet:			
25024	End: 02.12.14					1	of	1

	JU Z T		LIIU.	02.12.17				•	01
Progress		Samı	oles / T	Tests	_	Backfill & Instru-mentation		Depth	Material
					Water	itati E	Description of Strata	(Thick	Graphic
Window Run	Depth	No	Type	Results	×	3ac Ins	Decomption of other	ness)	Legend
	-					- L	Dark brown friable silty slightly sandy CLAY with		. 74 1×. 1/1 1×. 1,
	_						occasional roots, rootlets and plant material.	0.10	
-	-						(IMPORTED TOPSOIL)	(0.30)	
_							MADE GROUND: Dark brown silty slightly sandy slightly	(0.00)	$\times\!\!\times\!\!\times\!\!\times$
_	0.30	ES1		Tub/J/VL			gravelly CLAY with rare rootlets. Sand is fine to coarse.	0.40	$\times\!\!\times\!\!\times\!\!\times$
-	0.30		PID	0.0ppm			Gravel is subangular fine to medium flint, brick, ash and		<u>x </u>
-	0.50	ES2	ES	Tub/J/VL			clinker.		
-	0.50		PID	0.4ppm			Firm to stiff light brown mottled orange silty CLAY with	-	^^
-	_						rare black subrounded fine flint gravel.	<u> </u>	× ×
-	-						(ALLUVIUM)	-	x
-	_							·	<u>x </u>
_								(1.20)	×
_	1.00	ES3	ES	Tub/J/VL				-	× _ ×
									×
						I;H∴			[— <u>x</u> —
-								<u> </u>	xx
=	_							-	×
_	-							1 00	XX
_	_						Drawn and dighth, gravally CLAV Cond is fine to	1.60	<u> </u>
-	_				1		Brown sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subrounded fine to coarse flint.	-	_ <u>`</u>
_	_				<u>_</u>		(KEMPTON PARK GRAVEL)	-	
-	_						(NEIW TOTT / WAY OF TVEE)		<u></u>
									- <u>·</u> -·
	_							Ī	
	_							(1.30)	
-	-					! ∙::::::::		-	<u></u>
-	_							-	
-	_							-	
-	_							-	- <u>^</u>
_	_								
									<u></u>
								2.90	
_							Firm to stiff fissured light greyish brown silty CLAY.		<u> </u>
_	3.00-4.00	D1	D				(LONDON CLAY FORMATION)	i i	×
-								-	× ×
-	_							-	
-	_							-	
=	_							(1.10)	xx
=	_							[(1.10)	×
								L	XX
									├
						I;:E::·			[<u></u>
-	<u> </u>					lÿH;;		†	xx
-	<u> </u>							100	
H	F					<u>Г•°П••</u> •	Torminated at 4 00m	4.00	x -x
-	-						Terminated at 4.00m.	-	
-	-							-	
_	Ļ							1	
_								L	

1	Drilling Pro	gress and	Water Ob	servations	3
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)
			-		1.80

General Remarks

1. Kempton Park Gravel poorly recovered and mixed with the alluvium and London Clay Formation.

1:25 All dimensions in metres Scale: Drilled Checked Logged CD

GINT_LIBRARY_V8_06.GLB LibVersion: v8_05 - Lib0004 PrjVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:06 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Tracked window Method Used: sampling

Plant Archway Competitor Used:

VMacfarlane

Ву:

Contract:		Client:		Windo	v San	ple:	
Twickenhan	n Sorting Office MOL	_	St James Group Ltd		1	NS	204
Contract Ref:	Start: 02.12.14	Ground Level:	Co-ordinates:	Sheet:			
25024	End: 02.12.14				1	of	1

Progress		Samp	oles / ٦	ests	er	<u></u>		Depth	Material
Window Run	Depth	No	Туре	Results	Water	Backfill	Description of Strata	(Thick ness)	Graphic Legend
-	0.30	ES1	PID	Tub/J/VL 0.0ppm			Black organic sandy SILT with roots and vegetation. \Sand is fine to coarse (IMPORTED TOPSOIL) MADE GROUND: Black silty gravelly fine to coarse SAND. Gravel is angular to rounded fine to coarse flint, brick, glass, clinker and occasional roots.	0.10	
-	0.50 - 0.50 - - - - - - 1.30	ES2	ES PID	Tub/J/VL 0.3ppm			Dark brown very sandy gravelly CLAY. Sand is fine to coarse. Gravel is subangular to rounded fine to coarse flint with rare roots. (ALLUVIUM) Firm dark grey mottled orangish brown slightly gravelly CLAY. (ALLUVIUM)	0.55 - - - - (1.15)	
-	- · · · · · · · · · · · · · · · · · · ·						Brownish grey sandy GRAVEL. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse flint.	1.70	
-	- - -						(KEMPTON PARK GRAVEL) Orangish brown slightly gravelly fine to coarse SAND.	2.20	
-		D2	D				Gravel is subangular to rounded fine to medium flint. (KEMPTON PARK GRAVEL)	(0.70)	0 0
	-						Terminated at 2.90m.	2.90	
_	-							-	

	[Orilling Pro	gress and						Con	oral	Remarks		
	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gen	ciai	INCIIIAINS		
: -			(m)	(m)	(mm)	(m)							
,													
							P	II dimensio	ns in metres		Scale:	1:25	
	Method	Tracke	d windov	v Plan	t Archw	ay Comp	etitor	Drilled		Logge	d	Checked	
Ľ	Used:	san	npling	Use	d:			Ву:	KDS	Ву:	CBrill-Edwards	By:	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_05 - Lib0004 PŋVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:06 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Contract:		Client:			Window	/ Sam	ıple:	
Twickenham So	rting Office MOL	_	St James	s Group Ltd		1	WS2	205
Contract Ref:	Start: 02.12.14	Ground Level:	Co-ord	dinates:	Sheet:			
25024	End: 02.12.14					1	of	1
							$\overline{}$	

	0024		⊏⊓u.	02.12.14			_				OT I
Progress		Samp	oles / T	Γests		& ¹.iö			•	Depth	Material
Window Run	Depth	No	Туре	Results	Water	Backfill & Instru-mentation		Description of Strata		(Thick ness)	Graphic
-	0.30	ES1	ES PID	Tub/J/VL 0.2ppm			Friable da occasional matter.(IMF MADE GRe gravelly C	ark brown silty slightly sandy CLA fine roots and rootlets with occasional PORTED TOPSOIL) OUND: Dark brown silty slightly sandy cLAY. Sand is fine to coarse. Grar fine to medium flint, brick, mortar, a	al plant slightly avel is	0.10	
- - -	0.60 0.60	ES2	ES PID	Tub/J/VL 0.2ppm				tiff light brown slightly mottled orang	ge silty	0.70	X X
	1.00	ES3	ES PID	Tub/J/VL 0.2ppm			`			(1.20)	X X X X X X X X X X X X X X X X X X X
-	2.00	D1	D		<u>‡</u>		SAND. Gra	brown clayey slightly gravelly fine to avel is subrounded fine to medium flints N PARK GRAVEL)	coarse s.	1.90	
-	3.00-4.00	D2	D				Firm to stiff (LONDON	f fissured greyish brown silty CLAY. CLAY FORMATION)		2.80	
- - - - - - -	- - - - - - -						Terminated	d at 4.00m.		4.00	

5	[Orilling Pro	gress and	Water Ob	servations	3			Con	orol	Domorko		
, i ici	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gen	erai	Remarks		
פומויי				-		2.00							
,													
בוו													
							P	II dimensions	in metres		Scale:	1:25	
100	Method Used:		d windov npling	V Plan Used		ay Comp	etitor	Drilled By:	CD	Logge By:	d VMacfarlane	Checked By:	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_05 - Lib0004 PŋVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:06 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Contract:		Client:		Window	Window Sample:			
Twickenham Sortin	ng Office MO	L	St James Group Ltd		1	WS2	206	
Contract Ref:	Start: 02.12.14	Ground Level:	Co-ordinates:	Sheet:				
25024	End: 02.12.14				1	of	1	

Progress Samples / Tests Type Results Progress Description of Strata Description of Str			T
Window Run Depth No Type Results MADE GROUND: Concrete MADE GROUND: Dark grey clayey very grace coarse SAND. Gravel is subangular fine to concrete and with occasional roots. Black very sandy gravelly SILT with rare roof fine to coarse. Gravel is subangular to roumedium flint. (ALLUVIUM) Soft light brown slightly sandy silty		Denth	Material
O.20 ES1 ES Tub/J/VL O.0ppm O.50 ES2 ES PID O.4ppm O.50 ES2 ES PID O.4ppm O.50 Soft light brown slightly sandy silty		(Thick ness)	Graphic Legend
0.20 ES1 ES PID Tub/J/VL 0.0ppm coarse SAND. Gravel is subangular fine to concrete and with occasional roots. Black very sandy gravelly SILT with rare rounding fine to coarse. Gravel is subangular to rounding medium flint. (ALLUVIUM) Soft light brown slightly sandy silty		0.10	300300
fine to coarse. Gravel is subangular to rou medium flint. O.50 PID O.4ppm fine to coarse. Gravel is subangular to rou medium flint. (ALLUVIUM) Soft light brown slightly sandy silty	cobble sized	(0.30)	
Soft light brown slightly sandy silty	ots. Sand is nded fine to	0.60	× × × × × ×
occasional roots. (ALLUVIUM)	CLAY with	(0.60)	× · · ×
		1.20	× · · · ·
Soft to firm grey mottled orange brown locall CLAY. Sand is fine to coarse. (ALLUVIUM)	y sandy silty	(0.50)	× ×
1.50 D1 D		1.70	- <u>*</u> x
Brown slightly gravelly locally clayey moder SAND. Gravel is angular to subrounded fir	ately coarse ne to coarse	(0.30)	× × ×
flint. (KEMPTON PARK GRAVEL)		2.00	
Light brown very gravelly fine to coarse SAN angular to rounded fine to coarse flint. (KEMPTON PARK GRAVEL) 2.50 D2 D	ID. Gravel is	(1.00)	
Terminated at 3.00m.		- - -	
		- - -	
		-	

2	Ι	Orilling Pro	gress and	Water Ob	servations	3			Can	امسما	Damadia		
,	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gene	erai	Remarks		
;			(111)	(111)	(11111)	()							
5													
2													
3													
)													
5							_ A	II dimension	ns in metres		Scale:	1:25	
	Method	Tracke	d windov	v Plan	Archw	ay Comp	etitor	Drilled		Logge	d	Checked	
;	Used:	san	npling	Used	d:			Ву:	KDS	Ву:	CBrill-Edwards	By:	AGS

GINT_LIBRARY_V8_05.GLB LibVersion: v8_05 - Lib0004 PrjVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:06 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Herifordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Ву:

Contract:		Client:		Window Sample:				
Twickenham Sortir	ng Office MO	L St .	St James Group Ltd					
Contract Ref:	Start: 02.12.14	Ground Level:	Co-ordinates:	Sheet:				
25024	End: 02.12.14				1 of	1		

Progress Samples / Tests					-				
Progress				er	I≡		Depth	Material	
Window Run	Depth	No	Туре	Results	Water	Backfill	Description of Strata	(Thick ness)	Graphic Legend
-	_						Black sandy SILT with frequent rootlets. Sand is fine to coarse. (IMPORTED TOPSOIL)	0.10	XXXXX
	0.20	ES1		Tub/J/VL			MADE GROUND: Grey sandy GRAVEL. Sand is coarse. Gravel is subangular to angular fine to coarse	(0.30)	
_	0.20		PID	0.7ppm			concrete.	0.40	
-	0.50 0.50	ES2	ES PID	Tub/J/VL 0.0ppm			MADE GROUND: Black slightly silty gravelly fine to coarse SAND. Gravel is angular to subrounded fine to	0.60	
-	0.50		110	о.оррии			coarse clinker, ash and flint with rare medium sized brick and flint.	_	*
-	_						Dark brown silty gravelly fine to coarse SAND. Gravel is angular to subrounded fine to medium flint frequent	(0.55)	
-	-						roots and rootlets. (KEMPTON PARK GRAVEL)	1.15	○ · × . × · Ø · . •
-	_						Stiff brown mottled orange brown sandy slightly gravelly CLAY.	-	
-							(KEMPTON PARK GRAVEL)	<u> </u>	
	1.50	D1	D					-	
-	_							-	
-	-							-	<u> </u>
-	_							(1.85)	
-	_							-	
-	_								
	_							_	
-	_							-	
-	_							-	
	_						Terminated at 3.00m.	3.00	<u> </u>
-	-							-	
	-							-	
-	_							_	
-								-	
-	-							-	
+	-							_	
-								<u> </u>	
-	_							_	

	Γ	Orilling Pro	gress and	Water Ob	servations	3			Con	orol	Domorko		
	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gene	erai	Remarks		
			()	. ,	,	()							
,													
)							_ A	II dimensio	ns in metres		Scale:	1:25	
	Method Used:	d Tracked window Plant sampling				ay Comp	etitor	Drilled By:	KDS	Logge By:	d CBrill-Edwards	Checked By:	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_05 - Lib0004 PŋVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:06 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Used: sampling

Contract:		Client:			Window Sample:			
Twickenham Sortir	ng Office MO	L	St James Gro	oup Ltd		W	IS2	208
Contract Ref:	Start: 02.12.14	Ground Level:	Co-ordinates:		Sheet:			
25024	End: 02.12.14					1	of	2

Progress		Samp	oles / T	ests	ē	fill &		Depth	
Window Run	Depth	No	Туре	Results	Water	Backfill & Instrumentation	Description of Strata	(Thick ness)	Graphic Legend
-	0.00-0.10 - 0.00 -	ES1	ES PID	Tub 1.0ppm			Friable dark brown blackish brown slightly sandy CLAY with frequent rootlets and roots. Plant material and an organic odour. (IMPORTED TOPSOIL)	0.10 0.17	
-	0.40	ES2	ES	Tub/J/VL			MADE GROUND: Concrete recovered as subangular coarse concrete fragments. MADE GROUND: Brown clayey gravelly fine to coarse	(0.43)	
_	- 0.40 -		PID	0.6ppm			SAND with rare rootlets. Gravel is subangular fine cobble sized flint, slate, brick and mortar.	0.60	
-	0.80-1.00 0.80	ES3	ES PID	Tub/J/VL 0.0ppm			MADE GROUND: Firm brown slightly sandy slightly gravelly CLAY with rare rootlets. Sand is fine. Gravel is subangular fine to medium flint, chalk, brick and ash.	(0.40)	
-	1.00	D2	D				Brown sandy very gravelly CLAY. Sand is fine to coarse. Gravel is subrounded fine to medium flint. (ALLUVIUM)	1.00	××××
-	-							(0.80)	
-	1.90	D3	D				Brown clayey sandy GRAVEL. Sand is fine to coarse. Gravel is subrounded fine to medium flint. (KEMPTON PARK GRAVEL)	1.80	
	- - - - - -							_ - - - _ (1.80)	
-	3.00-4.00	D4	D					-	
-	- - - - - -						Firm to stiff grey silty CLAY. (LONDON CLAY FORMATION)	3.60	
-	-							(1.40)	x x

	[Drilling Pro	gress and	Water Ob	servations	3			Con	orol	Domorko		
,	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gene	Elai	Remarks		
,													
								II dimensio	ns in metres		Scale:	1:25	
5	Method Used:		d windov npling	V Plan Used		ay Comp	etitor	Drilled By:	CD	Logge By:	d VMacfarlane	Checked By:	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_05 - Lib0004 PŋVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:06 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Contract:						Client:			Windo	ow Samp	le:
Twicker	nham S	ortin	ıg Of	fice MO	L		St J	lames Group Ltd		W	/S208
Contract Ref:			Start:	02.12.14	Groun	d Level:		Co-ordinates:	Sheet	:	
25	024		End:	02.12.14			•			2	of 2
Progress		Sam	oles / T	ests	Ö	r- tion				Depth	Materia
Window Run	Depth	No	Туре	Results	Water	Backfill & Instru-mentation		Description of Strata		(Thick ness)	Graphic Legend
-							Firm to stiff	f grey silty CLAY. CLAY FORMATION)		-	×>
-								opied from 3.60m from previous	sheet)	-	<u>x</u> x
-	-						Terminated	1 at 5 00m		5.00	x ->
_							101111110101	. 4. 0.00111.			
-										-	
-										-	
-										-	
Į											
	-									-	
-										-	
-											
-										-	
t										ţ	

4 .	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$							
5	ıΓ	Drilling Pro	ogress and	Water Ob	servations	3		Can	امسما	م الم معرف		
,	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)		Gen	erai	Remarks		
:			(111)	("')	(11111)	(111)						
<u> </u>	i !					i II.						
3	i !					i II.						
5	i			, ,		ı II.						
í	i			, ,		ı II.						
:	i !					i II.						
<u> </u>	i !					ı IH		U diai i		01	4.05	
:	!					<u> </u>		Il dimensions in metres		Scale:	1:25	
į	Method	Tracke	d windov	w Plant		ay Compet	titor	Drilled	Logge	.d	Checked	

GINT_LIBRARY_W8_05.GLB LibVersion: v8_05 - Lib0004 PŋVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:06 | VM. RSK Environment Ltd. 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Used: sampling

Used:

Ву: CD

VMacfarlane By: By:

Contract:				Client:			Window Sample:				
Twicke	ng Of	ffice MO	L		St J		٧	/ S2	09		
Contract Ref:		Start:	02.12.14	Ground	d Level:		Co-ordinates:	Sheet:			
25024		End:	02.12.14						1	of	1
Progress Samp		nlee / T	- - - -						L	1.4-4	

Slightly gravelly CLAY with rare roots. Sand is fine to coarse. Gravel is subangular medium to coarse concrete, glass, clinker, flint and brick. O.30		JU L T	Liiu.	02.12.17					01 1
MADE GROUND: Dark brown mottled black sandy slightly gravelly CLAY with rare roots. Sand is fine to coarse. Gravel is subangular medium to coarse concrete, glass, clinker, flint and brick. 0.80	Progress	S	Samples /	Tests	Ē	₩.	Description (COL)	Depth	Material Graphic
slightly gravelly CLAY with rare roots. Sand is fine to coarse. Gravel is subangular medium to coarse concrete, glass, clinker, flint and brick. Light brown silty slightly gravelly fine to coarse SANE with occasional rootlets. Gravel is subrounded fine to medium of flint. (KEMPTON PARK GRAVEL) Stiff grey mottled orangish brown slightly gravelly CLAY Gravel is subrounded fine to medium flint. (KEMPTON PARK GRAVEL) Brown sandy GRAVEL. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse flint. (KEMPTON PARK GRAVEL) Fine orange fine to coarse SAND. (KEMPTON PARK GRAVEL)	Window Run	Depth	No Type	Results	Wat	Вас	Description of Strata	(Thick ness)	
Brown sandy GRAVEL. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse flint. (KEMPTON PARK GRAVEL) Brown Sandy GRAVEL. Sand is fine to coarse flint. (KEMPTON PARK GRAVEL) Fine orange fine to coarse SAND. (KEMPTON PARK GRAVEL)							MADE GROUND: Dark brown mottled black sandy slightly gravelly CLAY with rare roots. Sand is fine to coarse. Gravel is subangular medium to coarse concrete, glass, clinker, flint and brick.	(0.60)	
Gravel is subrounded fine to medium flint. (KEMPTON PARK GRAVEL) Brown sandy GRAVEL. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse flint. (KEMPTON PARK GRAVEL) Fine orange fine to coarse SAND. (KEMPTON PARK GRAVEL)								(0.70)	*
angular to subrounded fine to coarse flint. (KEMPTON PARK GRAVEL) Fine orange fine to coarse SAND. (KEMPTON PARK GRAVEL)		1.60	D1 D				Stiff grey mottled orangish brown slightly gravelly CLAY. Gravel is subrounded fine to medium flint. (KEMPTON PARK GRAVEL)	(1.20)	
angular to subrounded fine to coarse flint. (KEMPTON PARK GRAVEL) Fine orange fine to coarse SAND. (KEMPTON PARK GRAVEL)		-					Prown sandy CDAVEL Sand is fine to coarse. Gravel is	2.50	
(KEMPTON PARK GRAVEL)		-					angular to subrounded fine to coarse flint.	(0.50)	
		-					(KEMPTON PARK GRAVEL)	3.00	

	[Orilling Pro	gress and	Water Ob	servations	3			Con	orol	Domorko		
	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gen	erai	Remarks		
i													
							P	II dimensio	ns in metres		Scale:	1:25	
	Method Used:		d windov npling	V Plant		ay Comp	etitor	Drilled By:	KDS	Logge By:	d CBrill-Edwards	Checked By:	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_05 - Lib0004 PŋVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:06 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Used:

Contract:		Client:		Window Sample:			
Twickenham Sortin	ng Office MO	L :	St James Group Ltd		WS211		
Contract Ref:	Start: 02.12.14	Ground Level:	Co-ordinates:	Sheet:			
25024	End: 02.12.14			1	of 1		

				V					• •
Progress	Vindow Run Depth No Type Res					Backfill & Instru-mentation	Description of Strata	Depth (Thick	
Window Run	·				Water	Back Insi		ness)	Legend
-	0.00-0.10 - 0.00 -	ES1	ES PID	Tub 1.1ppm			Friable dark blackish brown slightly sandy slightly gravelly CLAY with occasional rootlets. Sand is fine to coarse. Gravel is subrounded fine to medium flint. (IMPORTED TOPSOIL)	0.10	
-	0.40 0.40	ES2	ES PID	Tub/J/VL 0.0ppm			MADE GROUND: Black slightly clayey grey sandy GRAVEL. Sand is fine to coarse. Gravel is subangular fine to coarse flint, ash, clinker, brick and chalk.	0.60	
-	0.60 0.65	ES3	PID ES	0.2ppm Tub/J/VL			MADE GROUND: Firm greyish brown mottled orange slightly gravelly CLAY. Gravel is subangular to subrounded fine to medium flint and rare brick and ash.	0.70	
- - - -	1.00	ES3	ES PID	Tub/J/VL 0.4ppm			Firm orangish brown silty slightly sandy CLAY. Sand is fine to coarse. (KEMPTON PARK GRAVEL)	- (0.90)	
-	1.80	D1	D				Orangish brown very clayey slightly sandy GRAVEL. Sand is fine t coarse. Gravel is subrounded fine to medium flint. (KEMPTON PARK GRAVEL)	1.60	
-	3.00-4.00	D2	D					(1.50)	
- - - - -		D2	D				Firm to stiff fissured brownish grey silty CLAY. (LONDON CLAY FORMATION)	(0.90)	\$ X X X X X X X X X X X X X X X X X X X
- - - -	- - - -					<u>∘.∘⊟.°∘</u>	Terminated at 4.00m.	4.00	

	[Orilling Pro	gress and	Water Ol	servations	3			Con	orol	Remarks		
,	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gen	erai	Remarks		
î													
							P	II dimension	s in metres		Scale:	1:25	
	Method Used:		d windov apling	V Plan Use	t Archw	ay Comp	etitor	Drilled By:	CD	Logge By:	d VMacfarlane	Checked By:	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_05 - Lib0004 PŋVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:06 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Contract:		Client:		Window	Window Sample:			
Twickenham Sortir	ng Office MO	L	St James Group Ltd		١	NS2	212	
Contract Ref:	Start: 02.12.14	Ground Level:	Co-ordinates:	Sheet:				
25024	End: 02.12.14				1	of	1	

	JU27		Liiu.	02.12.17				•	01 1
Progress	ogress Samples / Tests		Tests	L	=		Denth	Material	
Window Run	Depth	No	Туре	Results	Water	Backfill	Description of Strata	(Thick ness)	Graphic Legend
-	0.20	E04	E0	Tub/IA#			MADE GROUND: Black slightly gravelly CLAY. Gravel is subangular to rounded fine to medium brick, concrete, ash and occasional rootlets.	0.35)	
-	0.30 - 0.30 - 0.50 - 0.50	ES1	PID	Tub/J/VL 0.6ppm Tub/J/VL 0.0ppm			MADE GROUND: Soft to firm brown sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subrounded to subangular fine to medium flint, ash and brick fragments.	0.45	
-	-						MADE GROUND: Black gravelly fine to coarse SAND. Gravel is subangular fine to coarse ash concrete and clinker. Soft to firm brown mottled redish brown silty slightly	(0.85)	xx
-	-						gravelly CLAY. Gravel is subrounded to rounded fine to coarse flint. (KEMPTON PARK GRAVEL)	-	
-	-							1.40	XX
-	-						Brown clayey very sandy GRAVEL. Sand is fine to coarse. Gravel is subrounded fine to coarse flint. (KEMPTON PARK GRAVEL)	(0.40)	
	-							1.80	
						XXXXXX	Terminated at 1.80m.		
	_							-	
-	-							-	
-	-							-	
-	-							-	
-	-							-	
-	-							_	
	-							-	
								-	
	-							-	
-	-							-	
-	-							-	
-	-							-	
-	}							-	
-	}							-	
-	F							L	
-	}							-	
-	}							-	
+	}							-	
-	-							-	

	[Orilling Pro	gress and	Water Ob	servations	3			Con	orol	Domorko		
,	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gene	erai	Remarks		
:													
							Α	II dimensio	ons in metres		Scale:	1:25	
i	Method		d windov			ay Comp	etitor	Drilled		Logge	d	Checked	AGS
:	Used:	san	npling	Used	J.			By:	KDS	By:	CBrill-Edwards	By:	AGS

GINT_LIBRARY_V8_05.GLB LibVersion: v8_05 - Lib0004 PrjVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:06 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Herifordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Contract:				Client:		V	Vindow	ple:				
Twicke	ng Of	ffice MO	L		St J	ames Group Ltd			٧	VS2	213	
Contract Ref:		Start:	02.12.14	Groun	d Level:		Co-ordinates:	S	heet:			
25	End:	02.12.14							1	of	1	
_	•										T	

	Progress Samples / Tests								· ·
Progress					ē	I		Depth	Material
Window Run	Depth	No	Туре	Results	Water	Backfill	Description of Strata	(Thick ness)	Graphic Legend
-	-						Brown fine to coarse SAND with frequent roots. (IMPORTED TOPSOIL) MADE GROUND: Brown Subangular to angular fine to	0.20	××××
-	0.30	ES1	PID	Tub/J/VL 0.0ppm			coarse GRAVEL of flint, concrete and with occasional brick and ceramic. MADE GROUND: Black sandy GRAVEL with pockets of	0.40	
-	0.50 0.50	ES2	ES PID	Tub/J/VL 0.0ppm			stiff brown very sandy gravelly SILT. Sand is fine to coarse. Gravel is subangular fine to medium brick and flint.	-	
- - -	0.80 0.80	ES3	ES PID	Tub/J/VL 0.8ppm				(1.10)	
-	-							_ _ _	
_	-						Terminated at 1.50m.	1.50	
	_						Terrimated at 1.50m.	_	
_	_							-	
-	-								
_								_	
_								-	
_	-							-	
-	_							-	
_	-							-	
_	-							-	
_	-							-	
_	-							-	
-	-							F	
-	ļ .							-	
_	-							-	
	<u> </u>							<u> </u>	
								Ī	
L								L	
L									

	[Orilling Pro	gress and						Gan	aral	Remarks		
	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gen	- ai	INCIIIAINS		
			(m)	(m)	(mm)	(m)							
,													
.													
							P	II dimensio	ns in metres		Scale:	1:25	
	Method	Tracke	d windov		t Archw	ay Comp	etitor	Drilled		Logge	d	Checked	
	Used:	san	npling	Use	Used:			Ву:	KDS	Ву:	CBrill-Edwards	By:	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_05 - Lib0004 PŋVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:06 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Contract:		Client:		Window	Samp	ole:	
Twickenham So	rting Office MOL	. 5	St James Group Ltd		V	VS 2	214
Contract Ref:	Start: 02.12.14	Ground Level:	Co-ordinates:	Sheet:			
25024	End: 02.12.14				1	of	1
						1	

Window Run Depth No Type Results Depth No Type Results Description of Strata	Progress	Samples / Tests		er	₩ W	2	Depth	Material		
coarse SAND. Gravel is angular to subrounded fine to coarse filmt, slate, ceramic, concrete, sheet of metal and rootlets. MADE GROUND: Black slightly slity very sandy GRAVEL with rare subangular cobble sized concrete Sand is fine to coarse. Gravel is angular fine to coarse slate. Zone core loss. Tub/J/VL 0.0ppm Brown clayey sandy GRAVEL. Sand is fine to coarse. Gravel is angular fine to coarse fint. (KEMPTON PARK GRAVEL) Brown very sandy CLAY. Sand is fine to coarse. (KEMPTON PARK GRAVEL) Brown very gravelly SAND. Sand is fine to coarse. Gravel is subangular to rounded fine to coarse flint. (KEMPTON PARK GRAVEL)	Window Run	Depth	No	Туре	Results	Water	Backfill	Description of Strata	(Thick ness)	
Slate. Zone core loss. 1.50	-	- - -						coarse SAND. Gravel is angular to subrounded fine to coarse flint, slate, ceramic, concrete, sheet of metal and rootlets. MADE GROUND: Black slightly silty very sandy GRAVEL with rare subangular cobble sized concrete	(0.40)	
Brown clayey sandy GRAVEL. Sand is fine to coarse. Gravel is angular fine to coarse flint. (KEMPTON PARK GRAVEL) 1.90 D1 D Brown very sandy CLAY. Sand is fine to coarse. (KEMPTON PARK GRAVEL)	-		ES1	ES PID				\slate.	- - - (0.90) - - -	ZCL
Brown very sandy CLAY. Sand is fine to coarse. (KEMPTON PARK GRAVEL) Brown very gravelly SAND. Sand is fine to coarse. Gravel is subangular to rounded fine to coarse flint. (KEMPTON PARK GRAVEL) 2.30 2.30 (0.70) 3.00	-	- - -						Gravel is angular fine to coarse flint.	(0.40)	
Gravel is subangular to rounded fine to coarse flint. (KEMPTON PARK GRAVEL) (0.70) 3.00		- 1.90 - - -	D1	D				(KEMPTON PARK GRAVEL)	(0.40)	
	-	- - - 2.70	D2	D				Gravel is subangular to rounded fine to coarse flint.	- -	
								Terminated at 3.00m.	3.00	

	Drilling Progress and Water Observations							General Remarks					
,	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gen	Remaiks			
			()	()	,	()							
,													
											Г		
							ļ A	II dimensio	ons in metres		Scale:	1:25	
	Method Used:		d windov npling	V Plan Use	t Archw ad:	ay Comp	etitor	Drilled By:	KDS	Logge By:	d CBrill-Edwards	Checked By:	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_05 - Lib0004 PŋVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:06 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

WINDOW SAMPLE LOG

Contract:		Client:		Window	Sam	ple:	
Twickenham Sort	ting Office MOL	_	St James Group Ltd		٧	VS2	215
Contract Ref:	Start: 02.12.14	Ground Level:	Co-ordinates:	Sheet:			
25024	End: 02.12.14				1	of	1

	JU Z T		Liiu.	02.12.17				<u> </u>	01 1
Progress		Samp	oles / T	Tests	je	₩.	Description (C)	Depth	Material
Window Run	Depth	No	Туре	Results	Water	Backfill	Description of Strata	(Thick ness)	Legend
-	-						Brown fine to coarse SAND with frequent roots (IMPORTED TOPSOIL)	0.20	17 · 74 · 14 · 74 · 17 · 74 · 17 · 74 · 17 · 74 · 74
-	0.30 0.30	ES1	ES PID	Tub/J/VL 0.9ppm			MADE GROUND: Concrete MADE GROUND: Dark brownish black silty gravelly fine	0.40	
-	0.50 0.50	ES2	ES PID	Tub/J/VL 0.0ppm			to coarse SAND. Gravel is subangular to rounded fine to medium clinker, flint and concrete. Brown silty gravelly fine to coarse SAND. Gravel is	0.60	* *
- - - -	0.80 - 0.80	ES3	ES PID	Tub/J/VL 0.7ppm			subangular to rounded fine to coarse flint. (KEMPTON PARK GRAVEL)	(0.90)	
_	1.50	D1	D				Drown mattled black conductors grovelly CLAV Sond in	1.50	\mathcal{O}_{X}
- - -	-	Di					Brown mottled black sandy very gravelly CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse flint. (KEMPTON PARK GRAVEL)	(0.70)	
-	2.00	D2	D					2.20	
-	2.30	D3	D				Light brown gravelly fine to coarse SAND. Gavel is subrounded fine to coarse flint. (KEMPTON PARK GRAVEL)	2.40	
-	-						Terminated at 2.40m.	_	
-	-								
_	_							_	
_	-							-	
-	- -							_	
-	-							-	
-	- -							_	
-	-								
-	-							_	

	Γ	Drilling Pro	ogress and	Water Ob	servations	S	Con	orol l	Domorle	•	
,	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	Gen	erari	Remark	S 	
5											
,											
						,	All dimensions in metres		Scale:	1:25	
	Method	Tracke	d window	v Plant	Archw	ay Competitor	Drilled	Logge	d	Checked	

GINT_LIBRARY_V8_06.GLB LibVersion: v8_05 - Lib0004 PŋVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:06 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Used: sampling

Used:

Ву: **KDS** By: By: CBrill-Edwards

AGS

WINDOW SAMPLE LOG

Contract:		Client:		Window	Sample:
Twickenham Sortir	ng Office MO	L S	t James Group Ltd		WS216
Contract Ref:	Start: 02.12.14	Ground Level:	Co-ordinates:	Sheet:	
25024	End: 02.12.14				1 of 1

	- -			V					
Progress		Samp	oles / 1	ests	ē	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Depth	Material
Window Run	Depth	No	Туре	Results	Water	Backfill	Description of Strata	(Thick ness)	Graphic Legend
-	0.20	ES1	ES	Tub/J/VL			Brown fine to coarse SAND with frequent roots (IMPORTED TOPSOIL)	0.30	1/ · 3 · 1/ · 3 · 1/ 1/ · 3 · 1/ · 3 · 1/ - 3 · 1/ · 3 · 1/
-	0.20		PID	0.0ppm			MADE GROUND: Dark blackish brown silty fine to coarse SAND with rare ceramic tile and organic matter.	0.50	
-	0.50 0.50	ES2	ES PID	Tub/J/VL 0.9ppm			Brown sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to rounded fine to coarse flint.	(0.50)	
-	0.80 0.80	ES3	ES PID	Tub/J/VL 0.8ppm			(KEMPTON PARK GRAVEL) Brown silty gravelly fine to coarse SAND. Gravel is	1.00	
	-						subangular to rounded fine to coarse flint. (KEMPTON PARK GRAVEL)	(0.50)	0. 6
_	_						Brown slightly silty sandy GRAVEL. Sand is fine to	1.50	× 0 · 8
-	-						coarse. Gravel is subangular to subrounded fine to $_{\mbox{\scriptsize T}}$ coarse flint.	1.70	(3. ×) (3. · <i>O</i> · Q
-	-						\((KEMPTON PARK GRAVEL)\) Terminated at 1.70m.	-	
-	-							-	
_								-	
_	_							-	
_	_							=	
								-	
-	-							-	
-	-							-	
	_							-	
_	_							_	
_								_	
-	-							-	
-	-							-	
_	_							-	
_	_							-	
				•	•			_	

[Orilling Pro	gress and	Water O	oservations	3			Con	orol	Domorko		
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gen	erai	Remarks		
						P	All dimension	ns in metres		Scale:	1:25	
Method Used:		d windov npling	Plar Use	t Archw d:	ay Comp	etitor	Drilled By:	KDS	Logge By:	d CBrill-Edwards	Checked By:	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_05 - Lib0004 PŋVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:07 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

WINDOW SAMPLE LOG

0 4 4							OI:4.	_			\\\(\frac{1}{2} = \frac{1}{2}		
Contract:	nhom Ca	~ ~4 : ~	·~ O	erica MO			Client:		omoo Croup I td		vvindo	w Samp	
Contract Ref:	enham So)i tii		02.12.14		ounc	l I ovol		ames Group Ltd Co-ordinates:		Sheet:	V	/S217
	-004				Gi	ouric	Level	•	Co-ordinates.		Sileet.	4	
	5024			02.12.14				-					of 1
Progress		Sam	ples / T	Γests ⊤		Water	fill & tru- tatior		Description of Strata			Depth (Thick	Material Graphic
Window Run	Depth	No	Туре	Results		Wa	Backfill & Instru- mentation		Description of Strata	l		ness)	Legend
-	_							Friable dar	k blackish brown slightly s	sandy CLA	/ with	0.10	<u>74 1</u> 8 <u>77 1</u> 7)
-	-								rootlets and roots. Sand in TOPSOIL)	is line to c	barse.	-	
-	-								OUND: Black slightly classified and is fine to coarse. Gra			(0.60)	
_	0.40	ES1		Tub/J/VL					ium flint, ash, clinker and ra		iguiai	(0.00)	
-	0.40		PID	0.0ppm								-	
-	-							Firm orang	sh brown silty slightly sand	lv sliahtly ar	avelly	0.70	
_	0.80	ES2		Tub/J/VL				CLAY with	rare rootlets.	ay onginay gi	avony	_	
-	0.80		PID	1.4ppm				(ALLUVIUN	1)			-	
-	1.00	D1	D									-	
_	-											(1.10)	<u> </u>
_	-											-	
-													
-	-											-	
-	-											1.80	
_								Yellowish b	rown slightly gravelly fine to	coarse SAI	ND.		. •
_	2.00	D2	D					(KEMPION	I PARK GRAVEL)			_	06
-	2.00	DZ	D									_	
_	_											(0.90)	0
-													.0.
-	-											-	
_	_											2.70	0
_								Firm to stiff	fissured greyish brown silty	CLAY.		2.70	xx
-	-							(LONDON	CLAY FORMATION)			-	<u>x x</u>
_	3.00-4.00	D3	D									_	
_												_	
= =												(1.30)	
-	-											(1.50)	x
_	-											-	x
_													xx
							r:::::::						

[Orilling Pro	gress and	Water Ob	servations				Con	orol	Remarks		
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gene	ziai	Remarks		
						<i>A</i>	II dimension	s in metres		Scale:	1:25	
Method Used:		d windov npling	Plan Used	t Archw	ay Comp	etitor	Drilled By:	CD	Logge By:	d VMacfarlane	Checked By:	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_05 - Lib0004 PŋVersion: v8_05 - Core+Logs 0003 | Log WINDOW SAMPLE LOG | 25024_TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:07 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

Used: sampling Terminated at 4.00m.

By: VMacfarlane By:

TRIAL PIT LOG

Contract:		С	Client:		Trial Pit:			
Twickenham Sortir	ng Office MO	L	St J	ames Group Ltd			S	3H1
Contract Ref:	Start: 28.11.14	Ground I	Level:	Co-ordinates:	Sheet:			
25024	End: 28.11.14					1	of	1

Sam	ples a	ind In-s	itu Tests	Water	Kfill	D	Depth	Material
Depth	No	Туре	Results	Wa	Backfill	Description of Strata	(Thick ness)	Graphic Legend
0.00	ES1	ES PID	Tub/J/VL 0.0ppm			MADE GROUND: Dark brown friable slightly sandy slightly gravelly CLAY with frequent rootlets and a weak organic odour. Sand is fine to coarse. Gravel is subrounded to subangular fine to coarse flint and rare glass.	0.00	
-							-	
-							- -	
-							-	
							-	
-							-	
							-	
							-	
							-	
							-	
							-	
- - -							-	

TRIAL PIT LOG

Contract:			Client:			Trial Pit:			
Twickenham Sortir	ng Office MC)L		St J	ames Group Ltd			S	3H2
Contract Ref:	Start: 28.11.14	Grour	nd Level:		Co-ordinates:	Sheet:			
25024	End: 28.11.1 4	L L					1	of	1

Samples and In-situ Tests Samples and In-situ Tests Depth No Type Results Samples Results Results		200		Liiu.	20.1	1.17			01 1
0.00 ES1 ES Tub/J/VL 0.0ppm MADE GROUND: Dark brown friable slightly sandy slightly gravelly CLAY with frequent rootlets and a weak organic odour. Sand is fine to coarse. Gravel is subrounded to subangular fine to coarse flint and				T .	/ater	ackfill	Description of Strata	(Thick	Materia Graphic
0.00 ES1 ES TUBUJUL 0.0ppm	Depth	No	Type	Results	>	ñ		ness)	Legend
	0.00 0.00	ES1	ES PID	Tub/J/VL 0.0ppm			MADE GROUND: Dark brown friable slightly sandy slightly gravelly CLAY with frequent rootlets and a weak organic odour. Sand is fine to coarse. Gravel is subrounded to subangular fine to coarse flint and rare glass.	0.00	
								-	
								-	
								-	
								-	
								-	
								-	
								-	

GINT LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PŋVersion: v8 05 - Core+Logs 0003 | Log TRIAL PIT LOG | 25024 TWICKENHAM SORTING OFFICE MOL. GPJ - v8 05 | 12/01/15 - 17:10 | VM. RSK Environment Ltd. 18 Frogmore Road, Hemel Hempstead, Herifordshire, HP3 9RT. Tel: 01442 437550, Fax: 01442 437550, Web: www.rsk.co.uk.

Contract:							Client:			Trial P		
Twic	ken	ham S	Sortin		fice MO			it J	lames Group Ltd		V	VS210
Contract Re	ef:			Start:	02.12.14	Grour	nd Level:		Co-ordinates:	Sheet		
	250	24		End:	02.12.14				1	of 1		
Sam	ples a	nd In-si	tu Tests	;	ter			Depth				
Depth	No	Туре	Res	sults	Water			ı	Description of Strata		(Thick ness)	Graph Legen
0.30 0.30 0.50 0.50	ES1 ES2	ES PID ES PID D	Tub/ 0.3p Tub/ 0.0p	opm J/VL		Grey suba (KEI Gray (KEI	occasional roots crete metal glass yish brown slight angular to subrou MPTON PARK G	ily s inde RA sai to r	silty gravelly fine to coarse SAND. Id fine to medium flint. VEL) Indy gravelly CLAY. Sand is fine ounded fine to medium flint.	to coarse Gravel is	(0.50) 0.50 (0.30) 0.80 1.00	**************************************

General Remarks Plan (Not to Scale) 1. Hand dug trail pit was performed in this area due to access constraints. 1:25 All dimensions in metres Scale: Logged By: Method Plant Checked Used: Hand dug Used: Ву: Hand tools **CBrill-Edwards**

GINT_LIBRARY_V8_05.GLB LibVersion: v8_05 - Lib0004 PŋVersion: v8_05 - Core+Logs 0003 | Log TRIAL PIT LOG | 25024 TWICKENHAM SORTING OFFICE MOL.GPJ - v8_05 | 12/01/15 - 17:10 | VM. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Herifordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk.

APPENDIX E GROUND GAS MONITORING DATA

[Pressures] Previous	<u>During</u>	<u>Start</u>	<u>End</u>	Equipment Used & Remarks
Round 1 - Round 2 -	-	-	-	
Round 3 -	-	-	-	

Exploratory Position ID	Monitoring Round	Measured Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
WS201	1	3.42	15/12/2014	1010	1010	0.0	2.26	0.1	0.1	21.5	1.0	0.0	0.0	
WS201	1		15 secs	-	-	0.0	-	0.3	0.1	21.1	1.0	0.0	0.0	
WS201	1		30 secs	-	-	0.0	-	0.3	0.1	21.0	1.0	0.0	0.0	
WS201	1		60 secs	-	-	0.0	-	0.3	0.1	21.0	1.0	0.0	0.0	
WS201	1		90 secs	-	-	0.0	-	0.3	0.1	20.9	1.0	0.0	0.0	
WS201	1		120 secs	-	-	0.0	-	0.3	0.1	20.9	1.0	0.0	0.0	
WS201	1		180 secs	-	-	0.0	-	0.3	0.1	20.8	1.0	0.0	0.0	
WS201	1		240 secs	-	-	0.0	-	0.4	0.1	20.7	1.0	0.0	0.0	
WS201	1		300 secs	-	-	0.0	-	0.4	0.1	20.7	1.0	0.0	0.0	
WS201	1		360 secs	-	-	0.0	-	0.4	0.1	20.7	1.0	0.0	0.0	
WS201	1		420 secs	-	-	0.0	-	0.4	0.1	20.7	1.0	0.0	0.0	
WS201	2	3.42	22/12/2014	1019	1019	0.0	2.27	0.1	0.0	20.1	0.0	0.0	0.0	
WS201	2		15 secs	-	-	0.0	-	0.4	0.0	19.9	0.0	0.0	0.0	
WS201	2		30 secs	-	-	0.0	-	0.4	0.0	19.7	0.0	0.0	0.0	
WS201	2		60 secs	-	-	0.0	-	0.4	0.0	19.6	0.0	0.0	0.0	
WS201	2		90 secs	-	-	0.0	-	0.4	0.0	19.7	0.0	0.0	0.0	
WS201	2		120 secs	-	-	0.0	-	0.4	0.0	19.6	0.0	0.0	0.0	
WS201	2		180 secs	-	-	0.0	-	0.4	0.0	19.7	0.0	0.0	0.0	

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

1	Compiled By	Date	Checked By	Date	Contract Ref:
	V. Macfarlane	15/01/15			25024
	Contract:		•		Page:

Twickenham Sorting Office MOL

1 of **10**

10 A

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
WS201	2		240 secs	-	-	0.0	-	0.4	0.0	19.7	0.0	0.0	0.0	
WS201	2		300 secs	-	-	0.0	-	0.4	0.0	19.7	0.0	0.0	0.0	
WS201	2		360 secs	-	-	0.0	-	0.4	0.0	19.7	0.0	0.0	0.0	
WS201	2		420 secs	-	-	0.0	-	0.4	0.0	19.7	0.0	0.0	0.0	
WS201	3	3.42	13/01/2015	999	999	-0.2	2.22	0.1	0.2	21.9	3.0	0.0	0.0	
WS201	3		15 secs	-	-	-0.1	-	0.5	0.2	21.4	3.0	0.0	0.0	
WS201	3		30 secs	-	-	-0.2	-	0.5	0.2	21.3	3.0	0.0	0.0	
WS201	3		60 secs	-	-	-0.2	-	0.5	0.2	21.2	3.0	0.0	0.0	
WS201	3		90 secs	-	-	-0.2	-	0.5	0.2	21.2	3.0	0.0	0.0	
WS201	3		120 secs	-	-	-0.2	-	0.5	0.2	21.1	3.0	0.0	0.0	
WS201	3		180 secs	-	-	-0.2	-	0.5	0.2	20.4	3.0	0.0	0.0	
WS201	3		240 secs	-	-	-0.2	-	0.8	0.2	20.4	3.0	0.0	0.0	
WS201	3		300 secs	-	-	-0.2	-	0.9	0.2	20.3	3.0	0.0	0.0	
WS201	3		360 secs	-	-	-0.2	-	0.8	0.2	20.3	3.0	0.0	0.0	
WS201	3		420 secs	-	-	-0.2	-	0.8	0.2	20.3	3.0	0.0	0.0	
WS202	1	4.70	15/12/2014	1010	1010	0.0	2.20	0.2	0.1	21.6	1.0	0.0	0.0	
WS202	1		15 secs	-	-	0.0	-	3.7	0.1	17.5	1.0	0.0	0.0	
WS202	1		30 secs	-	-	-0.1	-	3.8	0.1	15.3	1.0	0.0	0.0	
WS202	1		60 secs	-	-	-0.1	-	3.8	0.1	15.0	1.0	0.0	0.0	
WS202	1		90 secs	-	-	-0.1	-	3.9	0.1	14.8	1.0	0.0	0.0	
WS202	1		120 secs	-	-	-0.1	-	4.2	0.1	14.1	1.0	0.0	0.0	
WS202	1		180 secs	-	-	-0.1	-	4.8	0.1	12.7	1.0	0.0	0.0	
WS202	1		240 secs	-	-	-0.1	-	6.2	0.1	10.4	1.0	0.0	0.0	
WS202	1		300 secs	-	-	-0.1	-	7.1	0.1	9.1	1.0	0.0	0.0	

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

d	Compiled By	Date	Checked By	Date	Contract Ref:
u	V. Macfarlane	15/01/15			25024
	Contract:				Page:

Twickenham Sorting Office MOL

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
WS202	1		360 secs	-	-	-0.1	-	7.2	0.1	9.1	1.0	0.0	0.0	
WS202	1		420 secs	-	-	-0.1	-	7.4	0.1	8.7	1.0	0.0	0.0	
WS202	2	4.00	22/12/2014	1019	1019	0.0	2.10	0.1	0.0	20.1	0.0	0.0	0.0	
WS202	2		15 secs	-	-	0.0	-	4.1	0.0	17.7	0.0	0.0	0.0	
WS202	2		30 secs	-	-	0.0	-	4.4	0.0	15.4	0.0	0.0	0.0	
WS202	2		60 secs	-	-	0.0	-	4.5	0.0	15.2	0.0	0.0	0.0	
WS202	2		90 secs	-	-	0.0	-	4.5	0.0	15.0	0.0	0.0	0.0	
WS202	2		120 secs	-	-	0.0	-	4.5	0.0	15.0	0.0	0.0	0.0	
WS202	2		180 secs	-	-	0.0	-	4.9	0.0	13.6	0.0	0.0	0.0	
WS202	2		240 secs	-	-	0.0	-	6.4	0.0	10.4	0.0	0.0	0.0	
WS202	2		300 secs	-	-	0.0	-	7.1	0.0	9.3	0.0	0.0	0.0	
WS202	2		360 secs	-	-	0.0	-	7.2	0.0	9.1	0.0	0.0	0.0	
WS202	2		420 secs	-	-	0.0	-	7.0	0.0	9.4	0.0	0.0	0.0	
WS202	3	4.74	13/01/2015	999	999	-0.1	2.19	0.1	0.2	21.9	3.0	0.0	0.0	
WS202	3		15 secs	-	-	-0.1	-	4.2	0.1	17.9	2.0	0.0	0.0	
WS202	3		30 secs	-	-	-0.1	-	4.3	0.1	14.8	2.0	0.0	0.0	
WS202	3		60 secs	-	-	-0.1	-	4.4	0.2	14.3	3.0	0.0	0.0	
WS202	3		90 secs	-	-	-0.1	-	4.5	0.2	14.1	3.0	0.0	0.0	
WS202	3		120 secs	-	-	-0.1	-	4.8	0.2	13.7	3.0	0.0	0.0	
WS202	3		180 secs	-	-	-0.1	-	5.9	0.2	11.7	3.0	0.0	0.0	
WS202	3		240 secs	-	-	-0.1	-	6.8	0.2	10.1	3.0	0.0	0.0	
WS202	3		300 secs	-	-	-0.1	-	7.0	0.2	9.9	3.0	0.0	0.0	
WS202	3		360 secs	-	-	-0.1	-	7.0	0.2	9.9	3.0	0.0	0.0	
WS202	3		420 secs	-		-0.1	-	7.1	0.2	9.8	3.0	0.0	0.0	
						· · · · · · · · · · · · · · · · · · ·					·			

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By	Date	Checked By	Date	Contract Ref:
V. Macfarlane	15/01/15			25024
Contract:		•	•	Page:

Twickenham Sorting Office MOL

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
WS203	1	4.00	15/12/2014	1010	1010	0.0	2.37	0.1	0.1	21.4	1.0	0.0	0.0	
WS203	1		15 secs	-	-	0.0	-	1.5	0.1	20.1	1.0	0.0	0.0	
WS203	1		30 secs	-	-	0.0	-	1.5	0.1	20.0	1.0	0.0	0.0	
WS203	1		60 secs	-	-	0.0	-	1.5	0.1	20.0	1.0	0.0	0.0	
WS203	1		90 secs	-	-	0.0	-	1.6	0.1	19.9	1.0	0.0	0.0	
WS203	1		120 secs	-	-	0.0	-	2.0	0.1	19.4	1.0	0.0	0.0	
WS203	1		180 secs	-	-	0.0	-	3.6	0.1	17.7	1.0	0.0	0.0	
WS203	1		240 secs	-	-	0.0	-	5.9	0.1	15.2	1.0	0.0	0.0	
WS203	1		300 secs	-	-	0.0	-	6.1	0.1	15.1	1.0	0.0	0.0	
WS203	1		360 secs	-	-	0.0	-	5.8	0.1	15.3	1.0	0.0	0.0	
WS203	1		420 secs	-	-	0.0	-	5.6	0.1	15.6	1.0	0.0	0.0	
WS203	2	4.07	22/12/2014	1019	1019	0.0	2.36	0.3	0.0	20.0	0.0	0.0	0.0	
WS203	2		15 secs	-	-	0.0	-	1.6	0.0	18.8	0.0	0.0	0.0	
WS203	2		30 secs	-	-	0.0	-	1.6	0.0	18.8	0.0	0.0	0.0	
WS203	2		60 secs	-	-	0.0	-	1.6	0.0	18.7	0.0	0.0	0.0	
WS203	2		90 secs	-	-	0.0	-	1.5	0.0	18.8	0.0	0.0	0.0	
WS203	2		120 secs	-	-	0.0	-	1.5	0.0	18.9	0.0	0.0	0.0	
WS203	2		180 secs	-	-	0.0	-	1.8	0.0	18.7	0.0	0.0	0.0	
WS203	2		240 secs	-	-	0.0	-	2.2	0.0	18.4	0.0	0.0	0.0	
WS203	2		300 secs	-	-	0.0	-	2.5	0.0	18.2	0.0	0.0	0.0	
WS203	2		360 secs	-	-	0.0	-	2.4	0.0	18.2	0.0	0.0	0.0	
WS203	2		420 secs	-	-	0.0	-	2.2	0.0	18.4	0.0	0.0	0.0	
WS203	3	3.99	13/01/2015	999	999	-0.1	2.37	0.1	0.1	21.2	2.0	0.0	0.0	
WS203	3		15 secs	-	-	-0.1	-	2.0	0.2	20.0	3.0	0.0	0.0	
WS203	3		30 secs	-	-	-0.1	-	2.0	0.2	19.2	3.0	0.0	0.0	

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

d	Compiled By	Date	Checked By	Date	Contract Ref:
u	V. Macfarlane	15/01/15			25024
	Contract:				Page:

Twickenham Sorting Office MOL

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
WS203	3		60 secs	-	-	-0.1	-	2.1	0.2	19.0	3.0	0.0	0.0	
WS203	3		90 secs	-	-	-0.1	-	2.1	0.2	18.9	3.0	0.0	0.0	
WS203	3		120 secs	-	-	-0.1	-	2.9	0.2	18.2	3.0	0.0	0.0	
WS203	3		180 secs	-	-	-0.1	-	3.0	0.1	17.4	3.0	0.0	0.0	
WS203	3		240 secs	-	-	-0.1	-	6.9	0.2	13.9	3.0	0.0	0.0	
WS203	3		300 secs	-	-	-0.1	-	7.1	0.1	13.7	3.0	0.0	0.0	
WS203	3		360 secs	-	-	-0.1	-	7.0	0.2	13.8	3.0	0.0	0.0	
WS203	3		420 secs	-	-	-0.1	-	6.8	0.2	14.0	3.0	0.0	0.0	
WS205	1	3.96	15/12/2014	1009	1009	0.0	2.62	0.1	0.1	21.5	1.0	0.0	0.0	
WS205	1		15 secs	-	-	0.0	-	1.5	0.1	20.1	1.0	0.0	0.0	
WS205	1		30 secs	-	-	0.0	-	1.5	0.1	19.9	1.0	0.0	0.0	
WS205	1		60 secs	-	-	0.0	-	1.5	0.1	19.9	1.0	0.0	0.0	
WS205	1		90 secs	-	-	0.0	-	1.5	0.1	19.8	1.0	0.0	0.0	
WS205	1		120 secs	-	-	0.0	-	1.6	0.1	19.6	1.0	0.0	0.0	
WS205	1		180 secs	-	-	0.0	-	1.9	0.1	19.0	1.0	0.0	0.0	
WS205	1		240 secs	-	-	0.0	-	2.1	0.1	18.5	1.0	0.0	0.0	
WS205	1		300 secs	-	-	0.0	-	2.1	0.1	18.5	1.0	0.0	0.0	
WS205	1		360 secs	-	-	0.0	-	2.1	0.1	18.6	1.0	0.0	0.0	
WS205	1		420 secs	-	-	0.0	-	2.0	0.1	18.7	1.0	0.0	0.0	
WS205	2	3.96	22/12/2014	1018	1018	0.0	2.57	0.2	0.0	20.2	0.0	0.0	0.0	
WS205	2		15 secs	-	-	0.0	-	1.9	0.0	19.4	0.0	0.0	0.0	
WS205	2		30 secs	-	-	0.0	-	2.0	0.0	18.7	0.0	0.0	0.0	
WS205	2		60 secs	-	-	0.0	-	2.0	0.0	18.6	0.0	0.0	0.0	
WS205	2		90 secs	-	-	0.0	-	2.0	0.0	18.7	0.0	0.0	0.0	

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

d	Compiled By	Date	Checked By	Date	Contract Ref:
u	V. Macfarlane	15/01/15			25024
	Contract:				Page:

Twickenham Sorting Office MOL

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
WS205	2		120 secs	-	-	0.0	-	2.0	0.0	18.8	0.0	0.0	0.0	
WS205	2		180 secs	-	-	0.0	-	2.1	0.0	18.7	0.0	0.0	0.0	
WS205	2		240 secs	-	-	0.0	-	2.3	0.0	18.5	0.0	0.0	0.0	
WS205	2		300 secs	-	-	0.0	-	2.4	0.0	18.3	0.0	0.0	0.0	
WS205	2		360 secs	-	-	0.0	-	2.3	0.0	18.5	0.0	0.0	0.0	
WS205	2		420 secs	-	-	0.0	-	2.3	0.0	18.5	0.0	0.0	0.0	
WS205	3	4.00	13/01/2015	999	999	-0.1	2.53	0.1	0.1	21.3	2.0	0.0	0.0	
WS205	3		15 secs	-	-	-0.1	-	1.2	0.1	21.0	2.0	0.0	0.0	
WS205	3		30 secs	-	-	-0.1	-	1.2	0.1	20.8	2.0	0.0	0.0	
WS205	3		60 secs	-	-	-0.1	-	1.2	0.1	20.7	2.0	0.0	0.0	
WS205	3		90 secs	-	-	-0.1	-	1.3	0.1	20.5	2.0	0.0	0.0	
WS205	3		120 secs	-	-	-0.1	-	1.3	0.1	20.4	2.0	0.0	0.0	
WS205	3		180 secs	-	-	-0.1	-	1.5	0.1	19.8	2.0	0.0	0.0	
WS205	3		240 secs	-	-	-0.1	-	1.7	0.1	19.3	2.0	0.0	0.0	
WS205	3		300 secs	-	-	-0.1	-	1.9	0.1	19.0	2.0	0.0	0.0	
WS205	3		360 secs	-	-	-0.1	-	1.9	0.1	19.0	2.0	0.0	0.0	
WS205	3		420 secs	-	-	-0.1	-	1.9	0.1	19.0	2.0	0.0	0.0	
WS208	1	5.03	15/12/2014	1009	1009	0.0	4.90	0.1	0.1	21.6	1.0	0.0	0.0	
WS208	1		15 secs	-	-	0.0	-	2.9	0.1	20.1	1.0	0.0	0.0	
WS208	1		30 secs	-	-	0.0	-	3.1	0.1	19.2	1.0	0.0	0.0	
WS208	1		60 secs	-	-	0.0	-	3.1	0.1	19.0	1.0	0.0	0.0	
WS208	1		90 secs	-	-	0.0	-	3.1	0.1	19.1	1.0	0.0	0.0	
WS208	1		120 secs	-	-	0.0	-	3.1	0.1	19.1	1.0	0.0	0.0	
WS208	1		180 secs	-	-	0.0	-	3.3	0.1	18.9	1.0	0.0	0.0	

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

1	Compiled By	Date	Checked By	Date	Contract Ref:
	V. Macfarlane	15/01/15			25024
	Contract:				Page.

Twickenham Sorting Office MOL

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
WS208	1		240 secs	-	-	0.0	-	3.6	0.1	18.2	1.0	0.0	0.0	
WS208	1		300 secs	-	-	0.0	-	3.8	0.1	17.9	1.0	0.0	0.0	
WS208	1		360 secs	-	-	0.0	-	3.9	0.1	17.7	1.0	0.0	0.0	
WS208	1		420 secs	-	-	0.0	-	4.0	0.1	17.6	1.0	0.0	0.0	
WS208	2	5.03	22/12/2014	1018	1018	0.0	4.76	0.2	0.0	20.2	0.0	0.0	0.0	
WS208	2		15 secs	-	-	0.0	-	4.3	0.0	16.5	0.0	0.0	0.0	
WS208	2		30 secs	-	-	0.0	-	4.5	0.0	15.9	0.0	0.0	0.0	
WS208	2		60 secs	-	-	0.0	-	4.5	0.0	15.7	0.0	0.0	0.0	
WS208	2		90 secs	-	-	0.0	-	4.5	0.0	15.6	0.0	0.0	0.0	
WS208	2		120 secs	-	-	0.0	-	4.5	0.0	15.6	0.0	0.0	0.0	
WS208	2		180 secs	-	-	0.0	-	4.7	0.0	15.4	0.0	0.0	0.0	
WS208	2		240 secs	-	-	0.0	-	4.8	0.0	15.3	0.0	0.0	0.0	
WS208	2		300 secs	-	-	0.0	-	4.9	0.0	15.1	0.0	0.0	0.0	
WS208	2		360 secs	-	-	0.0	-	4.9	0.0	15.1	0.0	0.0	0.0	
WS208	2		420 secs	-	-	0.0	-	4.9	0.0	15.1	0.0	0.0	0.0	
WS208	3	5.06	13/01/2015	998	998	-0.1	3.36	0.1	0.1	21.4	2.0	0.0	0.0	
WS208	3		15 secs	-	-	-0.1	-	4.2	0.1	17.2	2.0	0.0	0.0	
WS208	3		30 secs	-	-	-0.1	-	4.3	0.1	16.8	2.0	0.0	0.0	
WS208	3		60 secs	-	-	-0.1	-	4.3	0.1	16.6	2.0	0.0	0.0	
WS208	3		90 secs	-	-	-0.1	-	4.3	0.1	16.7	2.0	0.0	0.0	
WS208	3		120 secs	-	-	-0.1	-	4.3	0.1	17.2	2.0	0.0	0.0	
WS208	3		180 secs	-	-	-0.1	-	4.4	0.1	17.9	2.0	0.0	0.0	
WS208	3		240 secs	-	-	-0.1	-	4.5	0.1	17.8	2.0	0.0	0.0	
WS208	3		300 secs	-	-	-0.1	-	4.5	0.1	17.6	2.0	0.0	0.0	
WS208	3		360 secs	-	-	-0.1	-	4.5	0.1	17.5	2.0	0.0	0.0	

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

d	Compiled By	Date	Checked By	Date	Contract Ref:
u	V. Macfarlane	15/01/15			25024
	Contract:				Page:

Twickenham Sorting Office MOL

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
WS208	3		420 secs	-	-	-0.1	-	4.6	0.1	17.3	2.0	0.0	0.0	
WS211	1	4.09	15/12/2014	1009	1009	0.0	DRY	0.1	0.1	21.4	1.0	0.0	0.0	
WS211	1		15 secs	-	-	0.1	-	2.4	0.1	20.2	1.0	0.0	0.0	
WS211	1		30 secs	-	-	0.0	-	2.4	0.1	19.3	1.0	0.0	0.0	
WS211	1		60 secs	-	-	0.0	-	2.4	0.1	19.3	1.0	0.0	0.0	
WS211	1		90 secs	-	-	0.0	-	2.4	0.1	19.3	1.0	0.0	0.0	
WS211	1		120 secs	-	-	0.0	-	2.5	0.1	19.3	1.0	0.0	0.0	
WS211	1		180 secs	-	-	0.0	-	2.8	0.1	19.0	1.0	0.0	0.0	
WS211	1		240 secs	-	-	0.0	-	3.3	0.1	18.5	1.0	0.0	0.0	
WS211	1		300 secs	-	-	0.0	-	3.2	0.1	18.5	1.0	0.0	0.0	
WS211	1		360 secs	-	-	0.0	-	3.2	0.1	18.6	1.0	0.0	0.0	
WS211	1		420 secs	-	-	0.0	-	3.1	0.1	18.7	1.0	0.0	0.0	
WS211	2	4.09	22/12/2014	1018	1018	0.0	DRY	0.3	0.0	20.1	0.0	0.0	0.0	
WS211	2		15 secs	-	-	0.0	-	3.4	0.0	18.5	0.0	0.0	0.0	
WS211	2		30 secs	-	-	0.0	-	3.4	0.0	17.2	0.0	0.0	0.0	
WS211	2		60 secs	-	-	0.0	-	3.5	0.0	16.9	0.0	0.0	0.0	
WS211	2		90 secs	-	-	0.0	-	3.6	0.0	16.9	0.0	0.0	0.0	
WS211	2		120 secs	-	-	0.0	-	3.7	0.0	16.8	0.0	0.0	0.0	
WS211	2		180 secs	-	-	0.0	-	4.2	0.0	16.6	0.0	0.0	0.0	
WS211	2		240 secs	-	-	0.0	-	4.7	0.0	15.8	0.0	0.0	0.0	
WS211	2		300 secs	-	-	0.0	-	4.9	0.0	15.7	0.0	0.0	0.0	
WS211	2		360 secs	-	-	0.0	-	4.9	0.0	15.6	0.0	0.0	0.0	
WS211	2		420 secs	-	-	0.0	-	4.9	0.0	15.6	0.0	0.0	0.0	
WS211	3	4.12	13/01/2015	998	998	-0.1	4.04	0.1	0.1	21.2	2.0	0.0	0.0	

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

1	Compiled By	Date	Checked By	Date	Contract Ref:
	V. Macfarlane	15/01/15			25024
	Contract:				Page.

Twickenham Sorting Office MOL

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
WS211	3		15 secs	-	-	-0.1	-	3.6	0.1	19.7	2.0	0.0	0.0	
WS211	3		30 secs	-	-	-0.1	-	3.7	0.1	19.7	2.0	0.0	0.0	
WS211	3		60 secs	-	-	-0.1	-	3.7	0.1	17.8	2.0	0.0	0.0	
WS211	3		90 secs	-	-	-0.1	-	3.8	0.1	17.8	2.0	0.0	0.0	
WS211	3		120 secs	-	-	-0.1	-	4.1	0.1	17.8	2.0	0.0	0.0	
WS211	3		180 secs	-	-	-0.1	-	4.3	0.1	17.1	2.0	0.0	0.0	
WS211	3		240 secs	-	-	-0.1	-	4.3	0.1	17.6	2.0	0.0	0.0	
WS211	3		300 secs	-	-	-0.1	-	4.3	0.1	17.7	2.0	0.0	0.0	
WS211	3		360 secs	-	-	-0.1	-	4.3	0.1	17.7	2.0	0.0	0.0	
WS211	3		420 secs	-	-	-0.1	-	4.3	0.1	17.8	2.0	0.0	0.0	
WS217	1	3.97	15/12/2014	1009	1009	0.0	DRY	0.1	0.1	21.5	1.0	0.0	0.0	
WS217	1		15 secs	-	-	0.0	-	1.7	0.1	21.5	1.0	0.0	0.0	
WS217	1		30 secs	-	-	0.0	-	1.8	0.1	20.4	1.0	0.0	0.0	
WS217	1		60 secs	-	-	0.0	-	1.8	0.1	20.3	1.0	0.0	0.0	
WS217	1		90 secs	-	-	0.0	-	1.8	0.1	20.3	1.0	0.0	0.0	
WS217	1		120 secs	-	-	0.0	-	1.8	0.1	20.3	1.0	0.0	0.0	
WS217	1		180 secs	-	-	0.0	-	2.0	0.1	20.1	1.0	0.0	0.0	
WS217	1		240 secs	-	-	0.0	-	2.3	0.1	19.9	1.0	0.0	0.0	
WS217	1		300 secs	-	-	0.0	-	2.3	0.1	19.9	1.0	0.0	0.0	
WS217	1		360 secs	-	-	0.0	-	2.2	0.1	19.9	1.0	0.0	0.0	
WS217	1		420 secs	-	-	0.0	-	2.1	0.1	19.9	1.0	0.0	0.0	
WS217	2	4.00	22/12/2014	1018	1018	0.0	DRY	0.5	0.0	20.0	0.0	0.0	0.0	
WS217	2		15 secs	-	-	0.0	-	1.7	0.0	19.4	0.0	0.0	0.0	
WS217	2		30 secs	-	-	0.0	-	1.8	0.0	19.0	0.0	0.0	0.0	

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

1	Compiled By	Date	Checked By	Date	Contract Ref:
	V. Macfarlane	15/01/15			25024
	Contract:				Page.

Twickenham Sorting Office MOL

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
WS217	2		60 secs	-	-	0.0	-	1.8	0.0	19.0	0.0	0.0	0.0	
WS217	2		90 secs	-	-	0.0	-	1.8	0.0	19.0	0.0	0.0	0.0	
WS217	2		120 secs	-	-	0.0	-	1.8	0.0	19.0	0.0	0.0	0.0	
WS217	2		180 secs	-	-	0.0	-	2.0	0.0	18.9	0.0	0.0	0.0	
WS217	2		240 secs	-	-	0.0	-	2.3	0.0	18.7	0.0	0.0	0.0	
WS217	2		300 secs	-	-	0.0	-	2.4	0.0	18.7	0.0	0.0	0.0	
WS217	2		360 secs	-	-	0.0	-	2.4	0.0	18.7	0.0	0.0	0.0	
WS217	2		420 secs	-	-	0.0	-	2.4	0.0	18.7	0.0	0.0	0.0	
WS217	3	4.06	13/01/2015	998	998	-0.1	DRY	0.1	0.1	20.2	2.0	0.0	0.0	
WS217	3		15 secs	-	-	-0.1	-	1.7	0.1	20.2	2.0	0.0	0.0	
WS217	3		30 secs	-	-	-0.1	-	1.7	0.1	20.1	2.0	0.0	0.0	
WS217	3		60 secs	-	-	-0.1	-	1.8	0.1	20.1	2.0	0.0	0.0	
WS217	3		90 secs	-	-	-0.1	-	1.8	0.1	20.0	2.0	0.0	0.0	
WS217	3		120 secs	-	-	-0.1	-	1.9	0.1	20.0	2.0	0.0	0.0	
WS217	3		180 secs	-	-	-0.1	-	2.0	0.1	19.9	2.0	0.0	0.0	
WS217	3		240 secs	-	-	-0.1	-	2.1	0.1	19.7	2.0	0.0	0.0	
WS217	3		300 secs	-	-	-0.1	-	2.2	0.1	19.7	2.0	0.0	0.0	
WS217	3		360 secs	-	-	-0.1	-	2.1	0.1	19.8	2.0	0.0	0.0	
WS217	3		420 secs	-	-	-0.1	-	2.1	0.1	19.8	2.0	0.0	0.0	

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK 18

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By	Date	Checked By	Date	Contract Ref:	
V. Macfarlane	15/01/15				25024
Contract:				Page:	

Twickenham Sorting Office MOL

	K			Gro	ound	water (Samp	ling I	Data F	orm		
	Pro	ject Nar	ne:	Twicke	enham							
	Proj	ect Num	ber:	25024								
Project	San	npling D	ate:	22-De	С		San	npled b	oy: VM	1		
Information	1		:	Dry/clo	oudy							
		tes - e.g. Co										
	Ad	ccess, Safet	y:			\			Interface P	robe:		
	Water C	Quality Mete	er Used:			Water Lev (as ap	ei Meter (plicable):	JSEU	Dip Mete			
Monitoring		Quality Met	er Last	Disso					ORP, Speci			
Monitoring Information		Calibrated:		Охус		lved Oxyge	n (D.O.)	Co	onductivity:		mg/	1
		ical Parame				Conductivity		nd)			3%	
		ion Criteria				p.H					l unit	:
	FIG	ow Samplir	ng	O>	kygen Re	* For PED			e separate	OmV		
						FUI NED	OX correc	Ction, see	e separate :	guldarice	=	
Well Location	WS	205		rge Start T			1		Depth to			Notes / Flow
Well Diameter (mm)		12	Time (HH:mm)	Temp (oC)	Sp.Con		pH (units)	ORP (mV)	Water (mTOC)		_	(ml/min)
Well Material		VC	13:00	11.7	(μο/οπ	, (g,.,	7.03	89.8	2.57			400/1
Static Water Level	2	.57	13:03	11.6	760	5.21	6.86	91.5				
(mTOC)			13:06	11.5	760	5.56	6.83	87.4		-		
LNAPL Present? LNAPL Level (mTOC)	Y	N	13:09 13:12	11.5 11.5	760 759	5.54 5.4	6.81 6.81	88.8 89.2		_#		
Well Headspace			13.12	11.5	759	3.4	0.01	09.2		$-\parallel$	-	
Reading (PID/FID)										\dashv		
Purge Method	Low Flow Other:											
Sampling Method	Peristaltic	Other:										
	Bladder									_		
Pump Intake Depth (mTOC)	3.	.07	Samplin	g Notes (e	g. oil/cole	our/odour),						
Well Depth (mTOC)	3.	.96		easons if r								
DNAPL Present?	Y	N		nple Conta			Yes					DCK
DNAPL Level (mTOC)			5	Sample Co	llection Ti	me	13:15					
Well Location	\\/\\$	202	Pu	rge Start T	ime				Depth to	о Со	rr.	Notes / Flow
			Time	Temp	Sp.Con		рН	ORP	Water (mTOC		_	(ml/min)
Well Diameter (mm) Well Material		12 VC	(HH:mm) 11:03	(oC) 11.8	(μS/cm) (mg/l)	(units) 6.81	(mV)	`) (111)	,,	400/1
Static Water Level			11:06	11.7	782	5.42	6.75	144.9		+	_	700/1
(mTOC)	2.	.12	11:09	11.7	779	5.57	6.74	142.8	1			
LNAPL Present?	Υ	N	11:12	11.7	777	5.8	6.73	141.2				
LNAPL Level (mTOC)			11:15	11.7	776	6.21	6.73	139.9	_			
Well Headspace Reading (PID/FID)			11:18 11:21	11.7 11.7	775 774	6.67 6.96	6.73 6.73	138.4 136.9	_	\dashv		
Purge Method	Low Flow		11:24	11.7	774	6.87	6.72	135.7	_			
_	Other: Peristaltic	Other:	11:27	11.7	773	6.55	6.72	135.1		$-\parallel$	\dashv	
Sampling Method	Bladder									二二		
Pump Intake Depth (mTOC)						1,						
Well Depth (mTOC)				g Notes (e leasons if r		our/odour), ored						
DNAPL Present?	Y	N		nple Conta			Yes					DCI/
DNAPL Level (mTOC)				Sample Co			11:30					KSK

Well Location	\\/\	203	Pu	rge Start T	ïme				Depth to	Corr.	Notes / Flow
vveii Location	773	203	Time	Temp	Sp.Cond	D.O.	рН	ORP	Water	REDOX	Notes / Flow (ml/min)
Well Diameter (mm)	4	12	(HH:mm)	(oC)	(μS/cm)	(mg/l)	(units)	(mV)	(mTOC)	(mV)*	,
Well Material	P'	VC	12:00	12.1			6.74	138.8	2.86		400/1
Static Water Level	2	36	12:03	12.1	894	5.4	6.7	113.4			
(mTOC)	۷.	30	12:06	12	893	3.71	6.7	97			
LNAPL Present?	Υ	N	12:09	12.1	894	2.93	6.7	82			
LNAPL Level (mTOC)			12:12	12.1	894	2.25	6.7	68.8			
Well Headspace			12:15	12.1	895	1.95	6.7	63.3			
Reading (PID/FID)			12:18	12.1	897	1.7	6.7	57.2			
Durge Method	Low Flow		12:21	12.1	897	1.55	6.7	52.6			
Purge Method	Other:		12:24	12.1	898	1.43	6.7	48.5			
Compling Mathed	Peristaltic	Other:	12:27	12.1	898	1.28	6.7	44.7			
Sampling Method	Bladder										
Pump Intake Depth	0	86									
(mTOC)	۷.	00	Samplin	g Notes (e	.g. oil/coloui	/odour),					
Well Depth (mTOC)			· R	easons if r	not monitore	d					
DNAPL Present?	Υ	N	San	nple Conta	iners Obtair	ned	Yes				DCV
DNAPL Level (mTOC)			S	Sample Co	llection Time)	12:30				

Well Location	WS2	201	Pui	ge Start T	ime				Depth to	Corr.	Nata - / Flanc
			Time	Temp	Sp.Cond	D.O.	pH	ORP	Water (mTOC)	REDOX (mV)*	Notes / Flow (ml/min)
Well Diameter (mm)	42	<u> </u>	(HH:mm)	(oC)	(μS/cm)	(mg/l)	(units)	(mV)	(111100)	(111 V)	
Well Material	PV	С	09:50	12.5			7.5		2.77		400/1
Static Water Level	3.4	2	09:53	12.6	718	5.32	7.25	158.9			
(mTOC)	5.4	-2	09:56	12.6	710	5.82	7.23	157			
LNAPL Present?	Υ	N	09:59	12.6	705	6.19	7.22	155.7			
LNAPL Level (mTOC)	2.2	27	10:02	12.6	702	6.3	7.22	154.7			
Well Headspace			10:05	12.6	700	6.41	7.21	153.4			
Reading (PID/FID)			10:08	12.6	698	6.51	7.21	152.2			
Purge Method	Low Flow		10:11	12.6	698	6.56	7.2	151.3			
Furge Method	Other:										
Sampling Method	Peristaltic	Other:									
Sampling Method	Bladder										
Pump Intake Depth	2.7	.7									
(mTOC)	2.7	1	Sampling	g Notes (e	.g. oil/colour	/odour),					
Well Depth (mTOC)			R	easons if r	not monitore	d					
DNAPL Present?	Υ	N	San	nple Conta	ainers Obtair	ned	Yes				DCV
DNAPL Level (mTOC)			S	ample Co	llection Time)	10:38				

APPENDIX F LABORATORY CERTIFICATES FOR SOIL ANALYSIS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 11/03771

Issue Number: Date: 12 September, 2011

Client: **RSK STATS Hemel Hempstead**

> 18 Frogmore Road Hemel Hempstead

Hertfordshire

IJK

HP3 9RT

Project Manager: Christopher Larkin **Project Name:** Twickenham (Twix)

Project Ref: 25024

Order No: Not specified

Date Samples Received: 25/08/11 **Date Instructions Received:** 25/08/11 **Date Analysis Completed:** 12/09/11

Prepared by: Approved by:

Melanie Marshall

Marshall

Liz McDermott **Project Coordinator Laboratory Coordinator**

Notes - Soil analysis

All results are reported as dry weight (<40 ℃).

Stones >10mm are removed from the sample prior to analysis and results corrected where appropriate.

For soil samples subscript A indicates analysis performed on the sample as received, D indicates analysis performed on dried & crushed

Superscript M indicates method accredited to MCERTS.

Predominant Matrix Codes - 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our MCERTS accreditation. Secondary Matrix Codes - A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis. NDP indicates No Determination Possible. NFI indicates No Fibres Identified. Superscript # indicates method accredited to ISO 17025.

Accreditation for TPH (C6-C40) applies to the range C6-C36 only.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

Envirolab Job Number: 11/03771 Client Project Name: Twickenham (Twix)

Lab Sample ID	11/03771/1	11/03771/2	11/03771/3	11/03771/4	11/03771/5	11/03771/6	11/03771/7		
Client Sample No									
Client Sample ID	PH1	PH2	PH3	PH4	PH5	PH9	PH10		
Depth to Top	0.30	0.40	0.40	0.50	0.50	0.45	0.25		
Depth To Bottom									
Date Sampled									eŧ
Sample Type	Soil	s	Method ref						
Sample Matrix Code	4AE	7	6AE	4AE	5E	5AE	4AE	Units	Meth
pH _D ^{M#}	7.84	7.13	8.18	7.33	6.74	7.03	7.65	рН	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	<0.01	0.05	0.02	<0.01	0.03	0.02	<0.01	g/l	A-T-026s
Sulphate (acid soluble) _D ^{M#}	<200	290	<200	270	300	<200	480	mg/kg	A-T-028
Arsenic _D ^{M#}	7	9	8	6	3	8	9	mg/kg	A-T-024
Cadmium _D ^{M#}	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	mg/kg	A-T-024
Copper _D ^{M#}	6	8	27	23	17	8	34	mg/kg	A-T-024
Chromium _D ^{M#}	19	17	16	14	48	15	18	mg/kg	A-T-024
Chromium (hexavalent) Dep _D	-	-	-	-	<1	-	-	mg/kg	A-T-040s
Lead _D ^{M#}	10	49	32	365	22	12	189	mg/kg	A-T-024
Mercury _D	<0.17	<0.17	<0.17	0.34	0.17	<0.17	0.46	mg/kg	A-T-024
Nickel _D ^{M#}	15	17	27	12	22	15	15	mg/kg	A-T-024
Selenium _D ^{M#}	<1	<1	<1	<1	2	<1	<1	mg/kg	A-T-024
Zinc _D ^{M#}	32	23	37	43	77	21	133	mg/kg	A-T-024

Envirolab Job Number: 11/03771 Client Project Name: Twickenham (Twix)

Lab Sample ID	11/03771/1	11/03771/2	11/03771/3	11/03771/4	11/03771/5	11/03771/6	11/03771/7		
Client Sample No									
Client Sample ID	PH1	PH2	PH3	PH4	PH5	PH9	PH10		
Depth to Top	0.30	0.40	0.40	0.50	0.50	0.45	0.25		
Depth To Bottom									
Date Sampled									-
Sample Type	Soil		od re						
Sample Matrix Code	4AE	7	6AE	4AE	5E	5AE	4AE	Units	Method ref
TPH CWG									
Ali >C5-C6 _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C6-C8 _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C8-C10 _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C10-C12 _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C12-C16 _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C16-C21 _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C21-C35 _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Total Aliphatics _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-022+23s
Aro >C5-C7 _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C7-C8 _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C8-C9 _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C9-C10 _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C10-C12 _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C12-C16 _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5.5	mg/kg	A-T-023s
Aro >C16-C21 _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	19.0	mg/kg	A-T-023s
Aro >C21-C35 _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	76.8	mg/kg	A-T-023s
Total Aromatics _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	102	mg/kg	A-T-022+23s
TPH (Ali & Aro) _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	102	mg/kg	A-T-022+23s
BTEX - Benzene _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Toluene _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Ethyl Benzene _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	 mg/kg	A-T-022s
BTEX - m & p Xylene _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	 mg/kg	A-T-022s
BTEX - o Xylene _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
MTBE _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	 mg/kg	A-T-022s

Envirolab Job Number: 11/03771 Client Project Name: Twickenham (Twix)

T						i roject nei			
Lab Sample ID	11/03771/1	11/03771/2	11/03771/3	11/03771/4	11/03771/5	11/03771/6	11/03771/7		
Client Sample No									
Client Sample ID	PH1	PH2	PH3	PH4	PH5	PH9	PH10		
Depth to Top	0.30	0.40	0.40	0.50	0.50	0.45	0.25		
Depth To Bottom									
Date Sampled									əŧ
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	6 0	Method ref
Sample Matrix Code	4AE	7	6AE	4AE	5E	5AE	4AE	Units	Meth
PAH 16									
Acenapthene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	mg/kg	A-T-019s
Acenapthylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.06	mg/kg	A-T-019s
Anthracene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.09	mg/kg	A-T-019s
Benzo(a)anthracene _A #	<0.01	0.03	0.14	0.14	<0.01	0.02	0.95	mg/kg	A-T-019s
Benzo(a)pyrene _A #	<0.01	<0.01	0.11	0.15	<0.01	0.02	0.96	mg/kg	A-T-019s
Benzo(b)fluoranthene _A	<0.01	0.03	0.19	0.22	<0.01	0.07	1.29	mg/kg	A-T-019s
Benzo(ghi)perylene _A #	<0.01	<0.01	0.12	0.17	<0.01	<0.01	1.09	mg/kg	A-T-019s
Benzo(k)fluoranthene _A	<0.01	<0.01	0.04	<0.01	<0.01	<0.01	0.16	mg/kg	A-T-019s
Chrysene _A #	<0.01	0.09	0.31	0.32	<0.01	0.10	1.79	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.07	mg/kg	A-T-019s
Fluoranthene _A #	<0.01	0.08	0.24	0.25	<0.01	0.07	1.95	mg/kg	A-T-019s
Fluorene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A #	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	0.48	mg/kg	A-T-019s
Napthalene _A #	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	0.09	mg/kg	A-T-019s
Phenanthrene _A #	<0.01	0.01	0.10	0.10	<0.01	0.03	0.93	mg/kg	A-T-019s
Pyrene _A #	<0.01	0.06	0.23	0.22	<0.01	0.09	1.73	mg/kg	A-T-019s
Total PAH _A	<0.01	0.30	1.52	1.59	<0.01	0.42	11.7	mg/kg	A-T-019s

FINAL ANALYTICAL TEST REPORT SUPPLEMENT TO TEST REPORT 14/06836/1

Envirolab Job Number: 14/06836

Issue Number: 2 **Date:** 15 January, 2015

Client: RSK Environment Ltd Hemel

18 Frogmore Road Hemel Hempstead

Hertfordshire

UK

HP3 9RT

Project Manager: Andrew Kent/Nigel Austin/Verity Macfarlane

Project Name: Twickenham MOL

Project Ref: 25024 Order No: N/A

Date Samples Received: 08/12/14 **Date Instructions Received:** 08/12/14 **Date Analysis Completed:** 15/01/15

Prepared by: Approved by:

Melanie Marshall Iain Hasloc

Laboratory Coordinator Analytical Consultant

Lab Sample ID	14/06836/1	14/06836/2	14/06836/3	14/06836/4	14/06836/5	14/06836/6	14/06836/7	14/06836/8		
Client Sample No										
Client Sample ID	WS213	WS209	WS206	WS205	WS201	WS202	WS203	WS208		
Depth to Top	0.50	0.30	0.20	0.60	0.30	0.30	0.30	0.80		
Depth To Bottom								1.00		
Date Sampled	02-Dec-14	02-Dec-14	03-Dec-14	02-Dec-14	02-Dec-14	02-Dec-14	02-Dec-14	03-Dec-14		*
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Solid	Soil - ES	Soil - ES	Soil - ES	, o	Method ref
MCERTS Sample Matrix Code	4ABE	4AE	4AE	6AE	7	6AE	6AE	6AE	Units	Meth
% Stones >10mm _A #	5.3	12.9	36.8	2.1	14.3	8.4	3.5	9.1	% w/w	A-T-044
Organic matter _D ^{M#}	65.7	-	4.2	-	2.8	-	9.2	-	% w/w	A-T-032 OM
Arsenic _D ^{M#}	19	17	6	16	7	13	14	11	mg/kg	A-T-024s
Cadmium _D ^{M#}	1.4	0.5	<0.5	0.6	<0.5	0.5	0.8	<0.5	mg/kg	A-T-024s
Copper _D ^{M#}	114	33	18	72	21	55	74	55	mg/kg	A-T-024s
Chromium _D ^{M#}	13	11	10	23	21	27	26	23	mg/kg	A-T-024s
Lead _D ^{M#}	1500	927	337	2040	81	244	257	304	mg/kg	A-T-024s
Mercury _D	1.93	0.30	<0.17	1.67	0.41	1.81	0.76	0.79	mg/kg	A-T-024s
Nickel _D ^{M#}	32	15	12	24	19	21	23	19	mg/kg	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	2	<1	<1	2	<1	mg/kg	A-T-024s
Zinc _D ^{M#}	921	53	160	263	83	141	166	73	mg/kg	A-T-024s

-						ect rier. 25				_
Lab Sample ID	14/06836/1	14/06836/2	14/06836/3	14/06836/4	14/06836/5	14/06836/6	14/06836/7	14/06836/8		
Client Sample No										
Client Sample ID	WS213	WS209	WS206	WS205	WS201	WS202	WS203	WS208		
Depth to Top	0.50	0.30	0.20	0.60	0.30	0.30	0.30	0.80		
Depth To Bottom								1.00		
Date Sampled	02-Dec-14	02-Dec-14	03-Dec-14	02-Dec-14	02-Dec-14	02-Dec-14	02-Dec-14	03-Dec-14		_
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Solid	Soil - ES	Soil - ES	Soil - ES	v	Method ref
MCERTS Sample Matrix Code	4ABE	4AE	4AE	6AE	7	6AE	6AE	6AE	Units	Meth
Leachate Prep BS EN 12457-1 (2:1) _A										A-T-046
Arsenic (leachable) _A #	-	-	-	8	-	-	-	-	μg/l	A-T-025w
Cadmium (leachable) _A #	-	-	-	<1	•	-	-	-	μg/l	A-T-025w
Copper (leachable) _A #	-	-	-	22	-	-	-	-	μg/l	A-T-025w
Chromium (leachable) _A #	-	-	-	4	-	-	-	-	μg/l	A-T-025w
Lead (leachable) _A #	-	-	-	321	-	-	-	-	μg/l	A-T-025w
Mercury (leachable) _A #	-	-	-	<0.1	-	-	-	-	μg/l	A-T-025w
Nickel (leachable) _A #	-	-	-	6	-	-	-	-	μg/l	A-T-025w
Selenium (leachable) _A #	-	-	-	<1	-	-	-	-	μg/l	A-T-025w
Zinc (leachable) _A #	-	-	-	43	-	-	-	-	μg/l	A-T-025w
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD		A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		Gravimetry
At+Sim Herbicides										
Atrazine	<50	<50	<50	<50	<50	-	-	-	μg/kg	Subcon
Simazine	<50	<50	<50	<50	<50	-	-	-	μg/kg	Subcon

					Onemer 10	ject Hei: 25	U			
Lab Sample ID	14/06836/1	14/06836/2	14/06836/3	14/06836/4	14/06836/5	14/06836/6	14/06836/7	14/06836/8		
Client Sample No										
Client Sample ID	WS213	WS209	WS206	WS205	WS201	WS202	WS203	WS208		
Depth to Top	0.50	0.30	0.20	0.60	0.30	0.30	0.30	0.80		
Depth To Bottom								1.00		
Date Sampled	02-Dec-14	02-Dec-14	03-Dec-14	02-Dec-14	02-Dec-14	02-Dec-14	02-Dec-14	03-Dec-14		J e
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Solid	Soil - ES	Soil - ES	Soil - ES	, .	Method ref
MCERTS Sample Matrix Code	4ABE	4AE	4AE	6AE	7	6AE	6AE	6AE	Units	Meth
PAH 16										
Acenaphthene _A ^{M#}	0.01	<0.01	0.04	0.04	0.02	0.04	0.34	<0.01	mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	0.02	<0.01	0.04	0.11	0.05	0.08	0.18	<0.01	mg/kg	A-T-019s
Anthracene _A ^{M#}	0.06	<0.02	0.08	0.33	0.08	0.29	1.03	0.06	mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.48	0.06	0.56	2.29	0.59	2.54	6.06	0.42	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.45	0.05	0.62	2.54	0.63	2.63	5.76	0.48	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.62	0.08	0.82	3.20	0.94	0.89	6.87	0.53	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.27	<0.05	0.39	1.56	0.44	1.51	3.41	0.23	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.21	<0.07	0.29	1.12	0.29	1.12	2.42	0.30	mg/kg	A-T-019s
Chrysene _A ^{M#}	0.58	0.07	0.68	2.53	0.78	2.75	6.31	0.55	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	0.07	<0.04	0.09	0.39	0.09	0.38	0.86	0.07	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	0.92	0.10	1.25	3.70	1.18	4.74	12.5	0.75	mg/kg	A-T-019s
Fluorene _A ^{M#}	0.02	<0.01	0.04	0.06	0.02	0.06	0.30	0.01	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.30	0.04	0.42	1.71	0.45	1.69	3.63	0.23	mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	0.04	0.07	<0.03	0.03	0.08	<0.03	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.44	0.05	0.52	1.11	0.33	1.44	5.37	0.30	mg/kg	A-T-019s
Pyrene _A ^{M#}	0.75	0.08	1.02	3.03	1.12	3.97	10.7	0.67	mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	5.18	0.53	6.89	23.8	6.99	24.1	65.8	4.62	mg/kg	A-T-019s

					Onent i io	ect Ref: 25	024			
Lab Sample ID	14/06836/1	14/06836/2	14/06836/3	14/06836/4	14/06836/5	14/06836/6	14/06836/7	14/06836/8		
Client Sample No										
Client Sample ID	WS213	WS209	WS206	WS205	WS201	WS202	WS203	WS208		
Depth to Top	0.50	0.30	0.20	0.60	0.30	0.30	0.30	0.80		
Depth To Bottom								1.00		
Date Sampled	02-Dec-14	02-Dec-14	03-Dec-14	02-Dec-14	02-Dec-14	02-Dec-14	02-Dec-14	03-Dec-14		-
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Solid	Soil - ES	Soil - ES	Soil - ES		Method ref
MCERTS Sample Matrix Code	4ABE	4AE	4AE	6AE	7	6AE	6AE	6AE	Units	Meth
TPH CWG										
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C6-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C8-C10 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C10-C12 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C12-C16 _A #	<0.1	<0.1	<0.1	<0.1	1.5	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C16-C21 _A #	<0.1	<0.1	<0.1	<0.1	5.3	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C21-C35 _A #	<0.1	<0.1	<0.1	<0.1	0.9	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Total Aliphatics _A	<0.1	<0.1	<0.1	<0.1	7.8	<0.1	<0.1	<0.1	mg/kg	A-T-022+23s
Aro >C5-C7 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C7-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C8-C9 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C9-C10 _A #	<0.01	<0.01	0.31	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C10-C12 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C12-C16 _A #	<0.1	<0.1	<0.1	<0.1	0.6	<0.1	0.4	<0.1	mg/kg	A-T-023s
Aro >C16-C21 _A #	1.8	<0.1	0.4	1.3	1.3	1.2	9.1	<0.1	mg/kg	A-T-023s
Aro >C21-C35 _A #	1.4	<0.1	0.4	2.5	1.0	2.0	13.4	<0.1	mg/kg	A-T-023s
Total Aromatics _A	3.2	<0.1	1.1	3.8	2.9	3.3	22.9	<0.1	mg/kg	A-T-022+23s
TPH (Ali & Aro) _A	3.2	<0.1	1.1	3.8	10.6	3.3	22.9	<0.1	mg/kg	A-T-022+23s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s

						1001 1101. 20	-			
Lab Sample ID	14/06836/9	14/06836/10	14/06836/11	14/06836/12	14/06836/13	14/06836/14	14/06836/15	14/06836/16		
Client Sample No										
Client Sample ID	WS211	WS217	WS204	WS210	WS214	WS215	WS212	WS207		
Depth to Top	0.40	0.40	0.30	0.50	0.60	0.50	0.50	0.50		
Depth To Bottom										
Date Sampled	03-Dec-14	03-Dec-14	03-Dec-14	03-Dec-14	02-Dec-14	02-Dec-14	02-Dec-14	03-Dec-14		*
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Solid	_o	Method ref
MCERTS Sample Matrix Code	4A	4AE	4ABE	4AE	4AE	4AE	4AE	7	Units	Meth
% Stones >10mm _A #	17.5	4.5	15.4	21.4	<0.1	<0.1	16.9	<0.1	% w/w	A-T-044
Organic matter _D ^{M#}	57.3	-	17.5	-	9.8	-	42.0	-	% w/w	A-T-032 OM
Arsenic _D ^{M#}	10	19	15	11	11	9	6	5	mg/kg	A-T-024s
Cadmium _D ^{M#}	<0.5	1.2	0.6	0.6	1.3	<0.5	<0.5	<0.5	mg/kg	A-T-024s
Copper _D ^{M#}	136	57	141	30	37	35	99	11	mg/kg	A-T-024s
Chromium _D ^{M#}	11	14	24	15	14	13	56	30	mg/kg	A-T-024s
Lead _D ^{M#}	386	824	257	625	1100	188	164	40	mg/kg	A-T-024s
Mercury _D	0.46	0.33	1.04	0.34	<0.17	0.36	2.38	0.38	mg/kg	A-T-024s
Nickel _D ^{M#}	40	27	41	17	20	13	42	17	mg/kg	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	<1	1	<1	<1	<1	mg/kg	A-T-024s
Zinc _D ^{M#}	125	521	133	210	1900	66	136	24	mg/kg	A-T-024s

_					Cilent Pro	ject Het: 25	024			
Lab Sample ID	14/06836/9	14/06836/10	14/06836/11	14/06836/12	14/06836/13	14/06836/14	14/06836/15	14/06836/16		
Client Sample No										
Client Sample ID	WS211	WS217	WS204	WS210	WS214	WS215	WS212	WS207		
Depth to Top	0.40	0.40	0.30	0.50	0.60	0.50	0.50	0.50		
Depth To Bottom										
Date Sampled	03-Dec-14	03-Dec-14	03-Dec-14	03-Dec-14	02-Dec-14	02-Dec-14	02-Dec-14	03-Dec-14		-
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Solid		Method ref
MCERTS Sample Matrix Code	4A	4AE	4ABE	4AE	4AE	4AE	4AE	7	Units	Meth
Leachate Prep BS EN 12457-1 (2:1) _A										A-T-046
Arsenic (leachable) _A #	-	2	-	-	<1	-	-	-	μg/l	A-T-025w
Cadmium (leachable) _A #	-	<1	-	-	<1	-	-	-	μg/l	A-T-025w
Copper (leachable) _A #	-	20	-	-	3	-	-	-	μg/l	A-T-025w
Chromium (leachable) _A #	-	<1	-	-	<1	-	-	-	μg/l	A-T-025w
Lead (leachable) _A #	-	281	-	-	12	-	-	-	μg/l	A-T-025w
Mercury (leachable) _A #	-	<0.1	-	-	<0.1	-	-	-	μg/l	A-T-025w
Nickel (leachable) _A #	-	7	-	-	3	-	-	-	μg/l	A-T-025w
Selenium (leachable) _A #	-	<1	-	-	<1	-	-	-	μg/l	A-T-025w
Zinc (leachable) _A #	-	249	-	-	422	-	-	-	μg/l	A-T-025w
Asbestos in Soil % Composition (Hand Picking & Weighing)										
Asbestos in soil % composition (hand picking and weighing) _D	-	-	-	-	0.169	<0.001	-	-	% w/w	A-T-054
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	NAD	NAD	NAD	NAD	Chrysotile	Chrysotile	NAD	NAD		A-T-045
Asbestos Matrix (visual) _D	-	-	-	-	Board	-	-	-		A-T-045
Asbestos Matrix (microscope) _D	-	-	-	-	-	Loose Fibres	-	-		A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A	N/A	NO	N/A	N/A	N/A		Gravimetry

Lab Sample ID	14/06836/9	14/06836/10	14/06836/11	14/06836/12	14/06836/13	14/06836/14	14/06836/15	14/06836/16		
Client Sample No										
Client Sample ID	WS211	WS217	WS204	WS210	WS214	WS215	WS212	WS207		
Depth to Top	0.40	0.40	0.30	0.50	0.60	0.50	0.50	0.50		
Depth To Bottom										
Date Sampled	03-Dec-14	03-Dec-14	03-Dec-14	03-Dec-14	02-Dec-14	02-Dec-14	02-Dec-14	03-Dec-14		Je
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Solid	"	Method ref
MCERTS Sample Matrix Code	4A	4AE	4ABE	4AE	4AE	4AE	4AE	7	Units	Meth
PAH 16										
Acenaphthene _A ^{M#}	<0.01	0.18	0.02	0.04	<0.01	<0.01	2.45	0.02	mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	0.02	0.31	0.03	0.17	<0.01	<0.01	0.04	0.12	mg/kg	A-T-019s
Anthracene _A ^{M#}	0.03	0.77	0.09	0.20	<0.02	<0.02	3.75	0.37	mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.23	4.46	0.76	1.45	0.12	0.17	7.46	1.89	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.28	5.67	0.70	1.39	0.11	0.16	5.30	2.33	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.43	7.18	1.27	1.91	0.17	0.23	7.08	2.68	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.14	3.05	0.41	0.88	0.08	0.11	2.43	1.60	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.14	2.47	0.44	0.60	<0.07	<0.07	2.36	0.89	mg/kg	A-T-019s
Chrysene _A ^{M#}	0.31	5.60	0.92	1.69	0.14	0.19	7.31	1.93	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	0.77	0.11	0.20	<0.04	<0.04	0.75	0.35	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	0.43	11.1	1.25	3.03	0.27	0.30	19	3.14	mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	0.20	0.02	0.06	<0.01	<0.01	2.20	0.04	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.15	3.49	0.47	0.91	0.08	0.11	2.73	1.63	mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	0.11	0.04	0.04	<0.03	<0.03	3.15	<0.03	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.13	5.90	0.38	1.06	0.18	0.13	21.6	0.70	mg/kg	A-T-019s
Pyrene _A ^{M#}	0.52	9.27	1.11	2.74	0.21	0.25	15	2.81	mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	2.80	60.5	8.02	16.4	1.35	1.66	103	20.5	mg/kg	A-T-019s

						ect Her. 25				
Lab Sample ID	14/06836/9	14/06836/10	14/06836/11	14/06836/12	14/06836/13	14/06836/14	14/06836/15	14/06836/16		
Client Sample No										
Client Sample ID	WS211	WS217	WS204	WS210	WS214	WS215	WS212	WS207		
Depth to Top	0.40	0.40	0.30	0.50	0.60	0.50	0.50	0.50		
Depth To Bottom										
Date Sampled	03-Dec-14	03-Dec-14	03-Dec-14	03-Dec-14	02-Dec-14	02-Dec-14	02-Dec-14	03-Dec-14		1
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Solid		Method ref
MCERTS Sample Matrix Code	4A	4AE	4ABE	4AE	4AE	4AE	4AE	7	Units	Meth
TPH CWG										
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C6-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C8-C10 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C10-C12 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C12-C16 _A #	<0.1	0.8	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C16-C21 _A #	<0.1	1.8	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C21-C35 _A #	<0.1	6.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Total Aliphatics _A	<0.1	8.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-022+23s
Aro >C5-C7 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C7-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C8-C9 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C9-C10 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.07	mg/kg	A-T-022s
Aro >C10-C12 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C12-C16 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C16-C21 _A #	<0.1	11.6	<0.1	4.2	<0.1	<0.1	4.1	0.2	mg/kg	A-T-023s
Aro >C21-C35 _A #	<0.1	20.2	<0.1	5.4	<0.1	<0.1	7.4	1.0	mg/kg	A-T-023s
Total Aromatics _A	<0.1	31.8	<0.1	9.6	<0.1	<0.1	11.6	1.3	mg/kg	A-T-022+23s
TPH (Ali & Aro) _A	<0.1	40.4	<0.1	9.6	<0.1	<0.1	11.6	1.3	mg/kg	A-T-022+23s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s

Lab Sample ID	14/06836/17	14/06836/18	14/06836/19	14/06836/20	14/06836/21			
Client Sample No				Surface	Surface			
Client Sample ID	WS216	WS213	WS205	SH1	SH2			
Depth to Top	0.20	0.30	0.30					
Depth To Bottom								
Date Sampled	02-Dec-14	02-Dec-14	02-Dec-14	28-Nov-14	28-Nov-14		1	Method ref
Sample Type	Soil - ES	Solid	Soil - ES	Soil - ES	Soil - ES		s	
MCERTS Sample Matrix Code	4AE	7	6AE	4AE	4AE		Units	
% Stones >10mm _A #	17.1	<0.1	12.0	33.2	<0.1		% w/w	A-T-044
Organic matter _D ^{M#}	20.0	-	-	-	67.9		% w/w	A-T-032 OM
Arsenic _D ^{M#}	18	4	14	11	18		mg/kg	A-T-024s
Cadmium _D ^{M#}	0.7	<0.5	0.6	<0.5	0.6		mg/kg	A-T-024s
Copper _D ^{M#}	90	12	66	49	65		mg/kg	A-T-024s
Chromium _D ^{M#}	19	16	25	15	12		mg/kg	A-T-024s
Lead _D ^{M#}	3400	105	1740	261	136		mg/kg	A-T-024s
Mercury _D	1.04	0.41	1.12	0.19	1.06		mg/kg	A-T-024s
Nickel _D ^{M#}	26	11	26	16	34		mg/kg	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	1	2		mg/kg	A-T-024s
Zinc _D ^{M#}	355	36	270	64	84		mg/kg	A-T-024s

						ect her. 25	-			
Lab Sample ID	14/06836/17	14/06836/18	14/06836/19	14/06836/20	14/06836/21					
Client Sample No				Surface	Surface					
Client Sample ID	WS216	WS213	WS205	SH1	SH2					
Depth to Top	0.20	0.30	0.30							
Depth To Bottom										
Date Sampled	02-Dec-14	02-Dec-14	02-Dec-14	28-Nov-14	28-Nov-14				Units	Method ref
Sample Type	Soil - ES	Solid	Soil - ES	Soil - ES	Soil - ES					
MCERTS Sample Matrix Code	4AE	7	6AE	4AE	4AE					
Leachate Prep BS EN 12457-1 (2:1) _A										A-T-046
Arsenic (leachable) _A #	9	-	12	-	-				μg/l	A-T-025w
Cadmium (leachable) _A #	<1	-	<1	-	-				μg/l	A-T-025w
Copper (leachable) _A #	12	-	31	-	-				μg/l	A-T-025w
Chromium (leachable) _A #	<1	-	<1	-	-				μg/l	A-T-025w
Lead (leachable) _A #	302	-	347	-	-				μg/l	A-T-025w
Mercury (leachable) _A #	<0.1	-	<0.1	-	-				μg/l	A-T-025w
Nickel (leachable) _A #	<1	-	5	-	-				μg/l	A-T-025w
Selenium (leachable) _A #	<1	-	<1	-	-				μg/l	A-T-025w
Zinc (leachable) _A #	13	-	101	-	-				μg/l	A-T-025w
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	NAD	NAD	NAD	NAD	NAD					A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A	N/A	N/A					Gravimetry

						001 11011 20			
Lab Sample ID	14/06836/17	14/06836/18	14/06836/19	14/06836/20	14/06836/21				
Client Sample No				Surface	Surface				
Client Sample ID	WS216	WS213	WS205	SH1	SH2				
Depth to Top	0.20	0.30	0.30						
Depth To Bottom									
Date Sampled	02-Dec-14	02-Dec-14	02-Dec-14	28-Nov-14	28-Nov-14				J.
Sample Type	Soil - ES	Solid	Soil - ES	Soil - ES	Soil - ES			"	Method ref
MCERTS Sample Matrix Code	4AE	7	6AE	4AE	4AE			Units	Meth
PAH 16									
Acenaphthene _A ^{M#}	0.02	0.14	0.02	0.06	<0.01			mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	0.06	0.11	0.07	0.19	0.02			mg/kg	A-T-019s
Anthracene _A ^{M#}	0.10	0.96	0.27	0.32	0.05			mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	1.14	2.49	2.10	2.09	0.39			mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	1.29	1.90	2.17	1.84	0.41			mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	1.62	2.57	2.83	2.86	0.70			mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.87	1.15	1.24	1.10	0.30			mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.55	0.87	0.95	0.89	0.21			mg/kg	A-T-019s
Chrysene _A ^{M#}	1.26	2.62	2.22	2.59	0.54			mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	0.21	0.25	0.34	0.29	0.09			mg/kg	A-T-019s
Fluoranthene _A ^{M#}	2.08	6.23	3.40	4.88	0.71			mg/kg	A-T-019s
Fluorene _A ^{M#}	0.03	0.37	0.04	0.11	0.01			mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.91	1.24	1.45	1.20	0.32			mg/kg	A-T-019s
Naphthalene _A ^{M#}	0.04	0.04	<0.03	0.11	0.05			mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.62	5.59	1.08	2.02	0.29			mg/kg	A-T-019s
Pyrene _A ^{M#}	1.72	4.85	2.73	4.53	0.63			mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	12.5	31.4	20.9	25.1	4.73			mg/kg	A-T-019s

Envirolab Job Number: 14/06836 Client Project Name: Twickenham MOL

					Onent i io	ect Het: 25	024		
Lab Sample ID	14/06836/17	14/06836/18	14/06836/19	14/06836/20	14/06836/21				
Client Sample No				Surface	Surface				
Client Sample ID	WS216	WS213	WS205	SH1	SH2				
Depth to Top	0.20	0.30	0.30						
Depth To Bottom									
Date Sampled	02-Dec-14	02-Dec-14	02-Dec-14	28-Nov-14	28-Nov-14				<u>.</u>
Sample Type	Soil - ES	Solid	Soil - ES	Soil - ES	Soil - ES				od re
MCERTS Sample Matrix Code	4AE	7	6AE	4AE	4AE			Units	Method ref
TPH CWG									
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Ali >C6-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Ali >C8-C10 _A #	<0.01	<0.01	<0.01	0.02	0.09			mg/kg	A-T-022s
Ali >C10-C12 _A #	<0.1	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Ali >C12-C16 _A #	<0.1	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Ali >C16-C21 _A #	<0.1	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Ali >C21-C35 _A #	<0.1	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Total Aliphatics _A	<0.1	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-022+23s
Aro >C5-C7 _A #	<0.01	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Aro >C7-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Aro >C8-C9 _A #	<0.01	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Aro >C9-C10 _A #	<0.01	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Aro >C10-C12 _A #	<0.1	<0.1	<0.1	<0.1	0.9			mg/kg	A-T-023s
Aro >C12-C16 _A #	<0.1	<0.1	<0.1	0.5	2.9			mg/kg	A-T-023s
Aro >C16-C21 _A #	1.0	16.6	0.7	7.0	0.7			mg/kg	A-T-023s
Aro >C21-C35 _A #	1.9	16.6	1.6	15.8	0.2			mg/kg	A-T-023s
Total Aromatics _A	2.9	33.2	2.3	23.3	4.8			mg/kg	A-T-022+23s
TPH (Ali & Aro) _A	2.9	33.2	2.3	23.4	4.8			mg/kg	A-T-022+23s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supercedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples from outside the European Union and this supercedes any "D" subscripts

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified a being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

APPENDIX G LABORATORY CERTIFICATES FOR SURFACE WATER ANALYSIS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 15/00291

Issue Number: 1 **Date:** 03 February, 2015

Client: RSK Environment Ltd Hemel

18 Frogmore Road Hemel Hempstead

Hertfordshire

UK

HP3 9RT

Project Manager: Nigel Austin/Verity Macfarlane

Project Name: Twickenham MOL

Project Ref: 25024
Order No: N/A
Pata Samples Received: 32/01/2

Date Samples Received:22/01/15Date Instructions Received:22/01/15Date Analysis Completed:31/01/15

Prepared by: Approved by:

Georgia King Iain Haslock

Administrative Assistant Analytical Consultant

Envirolab Job Number: 15/00291 Client Project Name: Twickenham MOL

				Onemer 10			
Lab Sample ID	15/00291/1	15/00291/2					
Client Sample No	Surface	Surface					
Client Sample ID	Water 1	Water 2					
Depth to Top							
Depth To Bottom							
Date Sampled	20-Jan-15	20-Jan-15					e e
Sample Type	Water - EW	Water - EW				, s	Method ref
MCERTS Sample Matrix Code	N/A	N/A				Units	Meth
pH (w) _A #	7.80	7.80				pН	A-T-031w
Electrical conductivity @ 20degC (w) _A #	784	791				μs/cm	A-T-037w
COD (settled) _A #	39	40				mg/l	A-T-034w
BOD (settled, 5 day) _A	1	2				mg/l	A-T-048
Alkalinity (total) (w) Colorimetry _A #	228	233				mg/l Ca CO3	A-T-038w
Ammoniacal nitrogen (w) _A #	0.55	1.44				mg/l	A-T-033w
Chloride (w) _A #	78.38	81.48				mg/l	A-T-026w
Sulphate (w) _A #	107	106				mg/l	A-T-026w
Cyanide (total) (w) _A #	<0.005	<0.005				mg/l	A-T-042wTCN
Sulphide (w) _A	<0.1	<0.1				mg/l	A-T-S2-w
DOC (w) _A #	6.6	7.3				mg/l	A-T-032w
Arsenic (dissolved) _A #	<1	<1				μg/l	A-T-025w
Cadmium (dissolved) _A #	<1	<1				μg/l	A-T-025w
Copper (dissolved) _A #	4	4				μg/l	A-T-025w
Chromium (dissolved) _A #	<1	<1				μg/l	A-T-025w
Lead (dissolved) _A #	<1	<1				μg/l	A-T-025w
Mercury (dissolved) _A #	<0.1	<0.1				μg/l	A-T-025w
Nickel (dissolved) _A #	3	3				μg/l	A-T-025w
Selenium (dissolved) _A #	<1	<1				μg/l	A-T-025w
Zinc (dissolved) _A #	14	15				μg/l	A-T-025w

Envirolab Job Number: 15/00291 Client Project Name: Twickenham MOL

-				Ciletti Più	ject Ref: 25	024		
Lab Sample ID	15/00291/1	15/00291/2						
Client Sample No	Surface	Surface						
Client Sample ID	Water 1	Water 2						
Depth to Top								
Depth To Bottom								
Date Sampled	20-Jan-15	20-Jan-15						7
Sample Type	Water - EW	Water - EW					"	Method ref
MCERTS Sample Matrix Code	N/A	N/A					Units	Meth
Ali >C5-C6 (w) _A #	<1	<1					μg/l	A-T-022w
Ali >C6-C8 (w) _A #	<1	<1					μg/l	A-T-022w
Ali >C8-C10 (w) _A #	<1	<1					μg/l	A-T-022w
Ali >C10-C12 (w) _A #	<5	<5					μg/l	A-T-023w
Ali >C12-C16 (w) _A #	<5	<5					μg/l	A-T-023w
Ali >C16-C21 (w) _A #	<5	<5					μg/l	A-T-023w
Ali >C21-C35 (w) _A #	<5	<5					μg/l	A-T-023w
Total Aliphatics (w) _A	<5	<5					μg/l	A-T-023w
Aro >C5-C7 (w) _A #	<1	<1					μg/l	A-T-022w
Aro >C7-C8 (w) _A #	<1	<1					μg/l	A-T-022w
Aro >C8-C9 (w) _A #	<1	<1					μg/l	A-T-022w
Aro >C9-C10 (w) _A #	<1	<1					μg/l	A-T-022w
Aro >C10-C12 (w) _A #	<5	<5					μg/l	A-T-023w
Aro >C12-C16 (w) _A #	<5	<5					μg/l	A-T-023w
Aro >C16-C21 (w) _A #	<5	<5					μg/l	A-T-023w
Aro >C21-C35 (w) _A #	<5	<5					μg/l	A-T-023w
Total Aromatics (w) _A	<5	<5					μg/l	A-T-023w
TPH (Ali & Aro) (w) _A	<5	<5					μg/l	A-T-023w
BTEX - Benzene (w) _A #	<1	<1					μg/l	A-T-022w
BTEX - Toluene (w) _A #	<1	<1					μg/l	A-T-022w
BTEX - Ethyl Benzene (w) _A #	<1	<1					μg/l	A-T-022w
BTEX - m & p Xylene (w) _A #	<1	<1					μg/l	A-T-022w
BTEX - o Xylene (w) _A #	<1	<1					μg/l	A-T-022w
MTBE (w) _A #	<1	<1					μg/l	A-T-022w

Envirolab Job Number: 15/00291 Client Project Name: Twickenham MOL

				ect fiel. 25			
Lab Sample ID	15/00291/1	15/00291/2					
Client Sample No	Surface	Surface					
Client Sample ID	Water 1	Water 2					
Depth to Top							
Depth To Bottom							
Date Sampled	20-Jan-15	20-Jan-15					₹
Sample Type	Water - EW	Water - EW				"	Method ref
MCERTS Sample Matrix Code	N/A	N/A				Units	Meth
PAH 16MS (w)							
Acenaphthene (w) _A #	<0.01	0.01				μg/l	A-T-019w
Acenaphthylene (w) _A #	0.01	<0.01				μg/l	A-T-019w
Anthracene (w) _A #	<0.01	<0.01				μg/l	A-T-019w
Benzo(a)anthracene (w) _A #	80.0	<0.01				μg/l	A-T-019w
Benzo(a)pyrene (w) _A #	80.0	<0.01				μg/l	A-T-019w
Benzo(b)fluoranthene (w) _A #	0.10	0.01				μg/l	A-T-019w
Benzo(ghi)perylene (w) _A #	0.06	<0.01				μg/l	A-T-019w
Benzo(k)fluoranthene (w) _A #	0.03	<0.01				μg/l	A-T-019w
Chrysene (w) _A #	0.11	0.02				μg/l	A-T-019w
Dibenzo(ah)anthracene (w) _A #	0.01	<0.01				μg/l	A-T-019w
Fluoranthene (w) _A #	0.14	0.02				μg/l	A-T-019w
Fluorene (w) _A #	<0.01	<0.01				μg/l	A-T-019w
Indeno(123-cd)pyrene (w) _A #	0.05	<0.01				μg/l	A-T-019w
Naphthalene (w) _A #	<0.01	<0.01				μg/l	A-T-019w
Phenanthrene (w) _A #	0.05	<0.01				μg/l	A-T-019w
Pyrene (w) _A #	0.16	0.04				μg/l	A-T-019w
PAH (total 16) (w) _A #	0.88	0.10				μg/l	A-T-019w

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 ℃).

For samples with Matrix Codes 1 - 6 natural stones >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supercedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples from outside the European Union and this supercedes any "D" subscripts

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified a being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

APPENDIX H LABORATORY CERTIFICATES FOR GROUNDWATER ANALYSIS

Andrew Kent

RSK Stats Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

t: 01442 437500 **f:** 01442 437550

e:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 14-65025

Project / Site name: Tickenham Sorting Office -MOL Samples received on: 22/12/2014

Your job number: 25024 Samples instructed on: 22/12/2014

Your order number: Analysis completed by: 08/01/2015

Report Issue Number: 1 **Report issued on:** 08/01/2015

Samples Analysed: 4 water samples

Signed: Colore

Dr Claire Stone

Quality Manager
For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Emma Winter

Signed:

Assistant Reporting Manager

For & on behalf of i2 Analytical Ltd.

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Sampling date indicates that recommended time for holding samples prior to analysis for pH and BTEX has been exceeded. The results for such parameters may be invalid and should be interpreted with care.

Analytical Report Number: 14-65025

Project / Site name: Tickenham Sorting Office -MOL

Lab Sample Number				404446	404447	404448	404449	
Sample Reference				WS201	WS202	WS203	WS205	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	
Date Sampled				22/12/2014	22/12/2014	22/12/2014	22/12/2014	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.3	7.4	7.3	7.3	
Electrical Conductivity	μS/cm	10	NONE	710	770	900	780	
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	
Sulphate as SO ₄	μg/l	45	ISO 17025	51700	106000	99200	112000	
Sulphide	μg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	
Chloride	mg/l	0.15	ISO 17025	36	63	54	54	
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	51	< 15	< 15	< 15	
Alkalinity	mg/l	3	ISO 17025	270	200	280	210	
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Total PAH Total EPA-16 PAHs		0.2	100 17025	10.20	. 0.20	. 0.20	. 0.20	
	μg/l	0.2	ISO 17025	< 0.20	< 0.20	< 0.20	< 0.20	
Heavy Metals / Metalloids Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.49	0.59	0.75	0.49	
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.02	0.09	0.03	< 0.02	
Chromium (dissolved)	μg/l	0.02	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	
Copper (dissolved)	μg/l	0.5	ISO 17025	14	11	12	11	
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	0.6	< 0.2	< 0.2	
Mercury (dissolved)	μg/l	0.05	ISO 17025	0.12	< 0.05	< 0.05	< 0.05	
Nickel (dissolved)	μg/I μg/I	0.03	ISO 17025	6.3	7.6	9.2	4.3	
Selenium (dissolved)	μg/l	0.6	ISO 17025	2.1	5.0	2.2	7.2	
Zinc (dissolved)		0.5	ISO 17025	< 0.5	1.1	1.3	1.0	
ZINC (dissolved)	μg/l	0.5	ISO 17025	< 0.5	1.1	1.3	1.0	

Analytical Report Number: 14-65025

Project / Site name: Tickenham Sorting Office -MOL

Lab Sample Number				404446	404447	404448	404449	
Sample Reference				WS201	WS202	WS203	WS205	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	
Date Sampled				22/12/2014	22/12/2014	22/12/2014	22/12/2014	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	•				
Monoaromatics								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Petroleum Hydrocarbons			,					
TPH-CWG - Aliphatic >C5 - C6	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C6 - C8	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C8 - C10	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >C5 - C7	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >C7 - C8	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >C8 - C10	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	
	µg/l µg/l µg/l	10 10 10	NONE NONE	< 10 < 10 < 10				

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 14-65025

Project / Site name: Tickenham Sorting Office -MOL

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Alkalinity in Water	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
BTEX and MTBE in water	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073W-PL	W	ISO 17025
Chloride in water	Determination of Chloride in water by Gallery Discrete Analyser based on reaction with mercury (II) thiocyanate and acid solution with iron (III) nitrate to form a red/brown iron (III) thiocyanate complex; followed by spectrophotometrice measurementat a wavelenght of 480 nm.	Methods for the Examination of Water and Associated Materials Chloride in Waters, Sewage and Effluents 1981.ISBN 0117516260 Accredited matrices: SW, PW, GW.	L082 B	W	ISO 17025
Electrical conductivity of water	Determination of electrical conductivity in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031-PL	W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L012-PL	W	ISO 17025
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L070-UK	W	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L010-PL	W	NONE
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-UK	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX I HUMAN HEALTH GENERIC ASSESSMENT CRITERIA

Generic assessment criteria (GAC) for human health: residential scenario – communal soft landscaping

The human health generic assessment criteria (GAC) have been developed during a period of regulatory review and updating of the Contaminated Land Exposure Assessment (CLEA) project. Therefore, the Environment Agency (EA) is in the process of publishing updated reports relating to the CLEA project and the GAC presented in this document may change to reflect these updates. This issue was prepared following the publication of soil guideline value (SGV) reports and associated publications⁽¹⁾ for mercury, selenium, benzene, toluene, ethylbenzene and xylene in March 2009, arsenic and nickel in May 2009, cadmium and phenol in June 2009, dioxins, furans and dioxin-like polychlorinated biphenyls (PCBs) in September 2009. It was also produced following publication of GAC by LQM⁽⁶⁾. Where available, the published soil guideline values (SGV)⁽¹⁾ were used as the GAC. The GAC for lead is discussed separately below owing to it not being derived using the same approach as other compounds.

Lead GAC derivation

The Environment Agency SGV and Tox reports for lead were withdrawn in 2009. In addition, the provisional tolerable weekly intake data published in the Netherlands were withdrawn in 2010 owing to concerns that they were not suitably protective of human health. The withdrawn SGVs were based on a target blood lead concentration of 10µg/dl. In the absence of current guidelines many consultants continue to use the withdrawn SGV. However, as this is not considered sufficiently protective of human health, after attendance at the SOBRA summer workshop June 2011, RSK has revised its GAC and is currently undertaking a review of recent toxicological developments that will be used to refine this GAC further in the coming months. In the meantime, RSK has undertaken sensitivity analysis using the Society of Environmental Geochemistry and Health (SEGH) equation and the CLEA model to produce an interim GAC value. The results are summarised below:

- Using CLEA with the former provisional tolerable weekly intake (PTWI) (25 μg/kg bw), assuming 100% lead is bioavailable, produces a GAC of 212 mg/kg
- Using CLEA with the former PTWI, assuming 50% lead is bioavailable, produces a GAC of 478 mg/kg
- Using the SEGH equation amended for a blood target concentration of 5.6 μ g/dl (equal to the LOAEL for IQ defects) gives a negative GAC number unless other factors such as child background blood concentration or delta are amended. Without undertaking further research into these numbers, RSK can present sensitivity analysis to demonstrate the sensitivity of these input parameters but cannot justify one parameter over another. The results are:
 - OGAC between 39mg/kg and 99mg/kg if the value of delta (the slope or response of blood Pb versus soil and dust Pb relationship) only is amended from 5 to 2μg/dl/1000μg/g. The value of 2 was chosen as it is within the reasonable range quoted in the former SGV report
 - O GAC between 244mg/kg and 610mg/kg if the geometric mean of blood lead concentration in young children is reduced from 3.4μg/dl to 2μg/dl. This decrease has been simulated on the basis that blood concentrations are likely to decrease over time across the UK owing to a ban on lead in petrol, lead within paint used internally and water pipe replacement. This decrease is considered reasonable as the site is a new development so lead-based paints will not be used internally and lead water supply pipelines will be absent.

Therefore, given the results above RSK proposes to use a GAC of **300mg/kg** for a residential end use. This value is broadly in the middle of the range of sensitivity modelling results quoted above when background mean blood lead concentrations in children are reduced to reflect a new development. The value is also broadly in the middle of the range of sensitivity modelling results for a range of bioavailability of lead between 50% and 100%. This number is considered reasonably protective of human health while being practical for use.

GAC derivation for other metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using CLEA v1.06 and the supporting UK guidance⁽¹⁻⁶⁾. Groundwater assessment criteria (GrAC) protective of human health via the inhalation pathway were derived using the RBCA 1.3b model. RSK has updated the inputs within RBCA to reflect the UK guidance⁽¹⁻⁵⁾. The SAC and GrAC collectively are termed GAC.

Conceptual model

In accordance with EA Science Report SC050021/SR3⁽³⁾, the residential with communal soft landscaping scenario considers risks to a female child between the ages of 0 and 6 years old. In accordance with Box 3.1, SR3, the pathways considered for production of the SAC in the residential with communal soft landscaping scenario are:

- direct soil and dust ingestion
- dermal contact with soil and indoor dust
- inhalation of indoor and outdoor dust and vapours.

Figure 1 is a conceptual model illustrating these linkages.

The pathway considered in production of the GrAC is the volatilisation of compounds from groundwater and subsequent vapour inhalation by residents while indoors. Figure 2 illustrates this linkage. Although the outdoor air inhalation pathway is also valid, this contributes little to the overall risks owing to the dilution in outdoor air. Within RBCA, the solubility limit of the determinant restricts the extent of volatilisation, which in turn drives the indoor air inhalation pathway. While the same restriction is not built into the CLEA model, the CLEA model output cells are flagged red where the soil saturation limit has been exceeded.

An assumption used in the CLEA model is that of simple linear partitioning of a chemical in the soil, between the sorbed, dissolved and vapour phase⁽⁴⁾. The upper boundaries of this partitioning are represented by the aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous-based or the vapour-based saturation limits. Where model output cells are flagged red the soil or vapour saturation has been exceeded and further consideration of the SAC to be used within the assessment is required. One approach that could be adopted is to use the 'modelled' solubility saturation limit or vapour saturation limit of the compound as the SAC. However, as stated within the CLEA

handbook⁽⁴⁾ this is likely not to be practical in many cases because of the subsequent very low solubility/vapour saturation limits and, in any case, is highly conservative. Unless free-phase product is present, concentrations of the chemical are unlikely to be present at sufficient concentration to result in an exceedance of the health criteria value (HCV).

RSK has adopted an approach for petroleum hydrocarbons in accordance with LQM/CIEH⁽⁶⁾ whereby the concentration modelled for each petroleum hydrocarbon fraction has been tabulated as the SAC with the corresponding solubility or vapour saturation limits given in brackets. Therefore, when using the SAC to screen laboratory analysis the assessor should take note if a given SAC has a corresponding solubility or vapour saturation limit (in brackets) and subsequently incorporate this information within the screening analytical discussion. If further assessment is required following this process then an additional approach can be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁴⁾, which explains how to calculate an effective assessment criterion manually.

Input selection

Chemical data was obtained from EA Report SC050021/SR7⁽⁵⁾ and the health criteria values (HCV) from the UK TOX⁽¹⁾ reports where available. For total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAH), toxicological and specific chemical parameters were obtained from the LQM/CIEH report⁽⁶⁾. Similarly, toxicological and specific chemical parameters for the volatile organic compound 1,2,4-trimethylbenzene were obtained from EIC/AGS/CL:AIRE⁽⁷⁾.

For TPH, aromatic hydrocarbons C_5 – C_8 were not modelled as benzene and toluene are being modelled separately. The aromatic C_8 – C_9 hydrocarbon fraction comprises ethylbenzene, xylene and styrene. As ethylbenzene and xylene are being modelled separately, the physical, chemical and toxicological data for this band have been taken from styrene.

Owing to the lack of UK-specific data, default information in the RBCA model was used to evaluate methyl tertiary butyl ether (MTBE). No published UK data was available for 1,3,5-trimethylbenzene, so information was obtained from the RBCA model. RBCA uses toxicity data for the inhalation pathway in different units to the CLEA model and cannot consider separately the mean daily intake (MDI), occupancy periods or breathing rates. Therefore, the HCV in RBCA was amended to take account of:

- amendments to the MDI using Table 3.4 of SR2⁽²⁾
- a child weighing 13.3kg (average of 0–6 year old female in accordance with Table 4.6 of SR3⁽³⁾) and breathing 11.85m³ (average daily inhalation rate for a 0–6-year old female in accordance with Table 4.14 of SR3⁽³⁾
- The 50% rule (for petroleum hydrocarbons, trimethylbenzenes and MTBE)⁽²⁾ where MDI data is not available but background exposure is considered important in the overall exposure.

Physical parameters

For the residential with communal soft landscaping scenario, the CLEA default building is a small two-storey terrace house with concrete ground-bearing slab. SR3⁽³⁾ notes this residential building

type to be the most conservative in terms of protection from vapour intrusion. The building parameters are outlined in Table 3.

The parameters for a sandy loam soil type were used in line with SR3⁽³⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for this parameter, RSK has produced an additional set of SAC for an SOM of 1% and 2.5%.

For the GrAC, the depth to groundwater was taken as 2.5m based on RSK's experience of assessing the volatilisation pathway from groundwater.

GAC

The SAC were produced using the input parameters in Tables 1 to 3 and the GrAC using the input parameters in Table 4. The GAC by pathway are presented in Table 5 and the combined GAC presented in Table 6.

Figure 1: Conceptual model for CLEA residential scenario – with communal soft landscaping

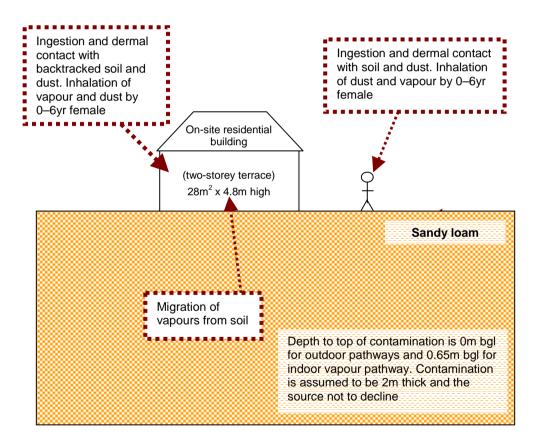


Table 1: Exposure assessment parameters for residential scenario – with communal soft landscaping – inputs for CLEA model

Paramotor	Value	Justification
Parameter	Value	Justification
Land use	Residential without homegrown produce	Chosen land use
Receptor	Female Child	Taken as female child exposed over 6 years from 0 to 6 years, Box 3.1, SR3 ⁽³⁾
Building	Small terraced house	Key generic assumption given in Box 3.1, SR3 ⁽³⁾ . Two-storey small terraced house chosen, as the most conservative residential building type in terms of protection from vapour intrusion (Section 3.2.6, report SC050021/SR3 ⁽³⁾). Table 3 presents building-specific input data
Soil type	Sandy loam	Most common UK soil type (Section 4.3.1, Table 4.4, SR3 ⁽³⁾). Table 4 presents soil-specific input data
Start age class (AC)	1	Range of AC corresponding to key generic assumption that the critical
End AC	6	receptor is a young female child aged 0–6 years. From Box 3.1, SR3 ⁽³⁾ . Data specific to the receptor is presented in Table 2
SOM (%)	6	Representative of sandy loam according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' ⁽⁸⁾
	2.5	To provide SAC for sites where SOM < 6% as often observed by RSK
рН	7	Model default

Table 2: Residential with communal soft landscaping – land use and receptor data for CLEA model

		Age cla	ss					
Parameter	Unit	1	2	3	4	5	6	
Exposure frequency (EF) (soil and dust ingestion)	day yr ⁻¹	180	365	365	365	365	365	
EF (skin contact, indoor)	day yr ⁻¹	180	365	365	365	365	365	
EF (skin contact, outdoor)	day yr ⁻¹	180	365	365	365	365	365	
EF (inhalation of dust and vapour, indoor)	day yr ⁻¹	365	365	365	365	365	365	
EF (inhalation of dust and vapour, outdoor)	day yr ⁻¹	365	365	365	365	365	365	
Justification		Table 3.	1, SR3 ⁽³⁾					
Occupancy period (indoor)	hr day ⁻¹	23	23	23	23	19	19	
Occupancy period (outdoor)	hr day ⁻¹	1	1	1	1	1	1	
Justification	Table 3.	2, SR3 ⁽³⁾						
Soil ingestion rate	g/day	0.1	0.1	0.1	0.1	0.1	0.1	
Justification		Table 6.	2, SR3 ⁽³⁾				_	
Soil to skin adherence factor – (indoor)	mg soil/cm ² skin	0.06	0.06	0.06	0.06	0.06	0.06	
Soil to skin adherence factor – (outdoor)	mg soil/cm ² skin	1	1	1	1	1	1	
Justification		Table 8.1, SR3 ⁽³⁾						
Body weight	kg	5.6	9.8	12.7	15.1	16.9	19.7	
Body height	m	0.7	0.8	0.9	0.9	1	1.1	
Justification		Table 4.6, SR3 ⁽³⁾						
Inhalation Rate	m ³ day ⁻¹	8.5	13.3	12.7	12.2	12.2	12.2	
Justification		Table 4.	14, SR3 ⁽³⁾				_	
Max exposed skin fraction (indoor)	m ² m ⁻²	0.32	0.33	0.32	0.35	0.35	0.33	
Max exposed skin fraction (outdoor)	m ² m ⁻²	0.26	0.26	0.25	0.28	0.28	0.26	
Justification		Table 4.	8, SR3 ⁽³⁾					

Note: for **cadmium**, the exposure assessment for a residential land use is based on estimates representative of lifetime exposure AC1–18. This is because the TDl_{oral} and TDl_{inh} are based on considerations of the kidney burden accumulated over 50 years. It is therefore reasonable to consider exposure not only in childhood but averaged over a longer time period. See the Environment Agency Science report SC050021 / TOX $3^{(1)}$ and Science Report SC050021/Cadmium SGV $^{(1)}$ for the full AC1-18 Land use Data suite.

Table 3: Residential with communal soft landscaping – soil, air and building specific inputs for CLEA model

Parameter	Unit	Value	Justification
Soil properties for sandy loam			
Porosity, total	cm³ cm ⁻³	0.53	
Porosity, air filled	cm ³ cm ⁻³	0.20	
Porosity, water filled	cm ³ cm ⁻³	0.33	Default soil type is sandy loam, Section
Residual soil water content	cm ³ cm ⁻³	0.12	4.3.1, SR3 ⁽³⁾
Saturated hydraulic conductivity	cm s ⁻¹	0.00356	Parameters for sandy loam from Table 4.4, SR3 ⁽³⁾
Van Genuchten shape parameter (<i>m</i>)	-	0.3201	
Bulk density	g cm ⁻³	1.21	
Threshold value of wind speed at 10m	m s ⁻¹	7.2	Default value taken from Section 9.2.2, SR3 ⁽³⁾
Empirical function (F _x) for dust model	-	1.22	Value taken from Section 9.2.2, SR3 ⁽³⁾
Ambient soil temperature	К	283	Annual average soil temperature of UK surface soils. Section 4.3.1, SR3 ⁽³⁾
Air dispersion model			
Mean annual wind speed (10m)	m s ⁻¹	5.0	Default value taken from Section 9.2.2, SR3 ⁽³⁾
Air dispersion factor at height of 0.8m	g m ⁻² s ⁻¹ per kg m ⁻³	2400	From Table 9.1, SR3 ⁽³⁾ . Values for a 0.01ha site, appropriate to a residential land use in Newcastle (representative city for UK, section 9.2.1, SR3 ⁽³⁾)
Fraction of site with hard or vegetative cover	m² m ⁻²	0.75	Section 3.2.6, SR3 ⁽³⁾ for residential land use
Building properties for house wi	th ground-be	aring floor	slab
Building footprint	m ²	28	
Living space air exchange rate	hr ⁻¹	0.50	From Table 3.3 and 4.21, SR3 ⁽³⁾
Living space height (above ground)	m	4.8	
Living space height (below ground)	m	0.0	Assumed no basement
Pressure difference (soil to enclosed space)	Pa	3.1	From Table 3.3 and 4.21, SR3 ⁽³⁾
Foundation thickness	m	0.15	

Parameter	Unit	Value	Justification
Floor crack area	cm ²	423	
Dust loading factor	μg m ⁻³	50	Default value for a residential site taken from Section 9.3, SR3 ⁽³⁾
Vapour model			
Default soil gas ingress rate	cm ³ s ⁻¹	25	Generic flow rate, Section 10.3, SR3 ⁽³⁾
Depth to top of source (beneath building for indoor exposure)	cm	50	Section 3.2.6, SR3 ⁽³⁾ states source is 50cm below building or 65cm below ground surface
Depth to top of source (outdoors)	cm	0	Section 10.2, SR3 ⁽³⁾ assumes impact from 0-1m for outdoor inhalation pathway
Thickness of contaminant layer	cm	200	Model default for indoor air, Section 4.9, SR4 ⁽⁴⁾
Time average period for surface emissions	years	6	Time period of a 0–6 year old, Box 3.5, SR3 ⁽³⁾
User-defined effective air permeability	cm ²	3.05E- 08	Calculated for sandy loam using equations in Appendix 1, SR3 ⁽³⁾

Figure 2: GrAC conceptual model for RBCA residential with communal soft landscaping scenario

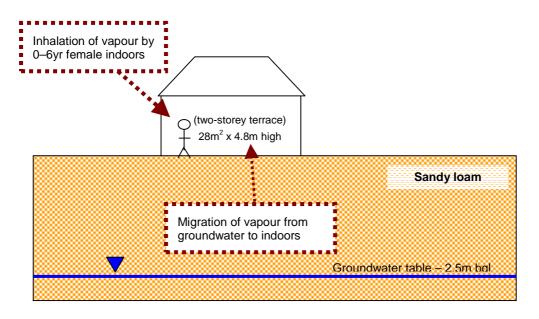
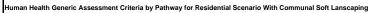


Table 4: Residential with communal soft landscaping – RBCA inputs

Parameter	Unit	Value	Justification
Receptor			
Averaging time	Years	6	From Box 3.1, SR3 ⁽³⁾
Receptor weight	kg	13.3	Average of CLEA 0-6 year old female data, Table 4.6, SR3 ⁽³⁾
Exposure duration	Years	6	From Box 3.1, report , SR3 ⁽³⁾
Exposure frequency	Days/yr	350	Weighted using occupancy period of 23 hours per day for 365 days of the year
Soil type – sandy loam			
Total porosity	-	0.53	
Volumetric water content	-	0.33	CLEA value for sandy loam. Parameters for sandy
Volumetric air content	-	0.20	loam from Table 4.4, SR3 ⁽³⁾
Dry bulk density	g cm ⁻³	1.21	
Vertical hydraulic conductivity	cm s ⁻¹	3.56E-3	CLEA value for saturated conductivity of sandy loam, Table 4.4, SR3 ⁽³⁾
Vapour permeability	m ²	3.05E-12	Calculated for sandy loam using equations in Appendix 1, SR3 ₍₃₎


Parameter	Unit	Value	Justification
Capillary zone thickness	m	0.1	Professional judgement
Building			
Building volume/ area ratio	m	4.8	Table 3.3, SR3 ⁽³⁾
Foundation area	m ²	28	
Foundation perimeter	m	22	Calculated assuming building measures 7m x 4m to give 28m ² foundation area
Building air exchange rate	d ⁻¹	12	
Depth to bottom of foundation slab	m	0.15	Table 3.3, SR3 ⁽³⁾
Foundation thickness	m	0.15	
Foundation crack fraction	-	0.0151	Calculated from floor crack area of 423 cm ² and building footprint of 28m ² in Table 4.21, SR3 ⁽³⁾
Volumetric water content of cracks	-	0.33	Assumed equal to underlying soil type in assumption that cracks become filled with soil over time.
Volumetric air content of cracks	-	0.2	Parameters for sandy loam from Table 4.4, SR3 ⁽³⁾
Indoor/outdoor differential pressure	Pa	3.1	From Table 3.3, SR3 ⁽³⁾

References

- 1. Environment Agency (2009), 'Science Report SC050021/benzene SGV, toluene SGV, ethylbenzene SGV, xylene SGV, mercury SGV, selenium SGV, nickel SGV, arsenic SGV, cadmium SGV, phenol SGV, dioxins, furans and dioxin like PCBs SGVs', 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin- like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin- like PCBs', March 2009, May 2009 and September 2009.
- 2. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR*2, January (Bristol: Environment Agency).
- 3. Environment Agency (2009), Science Report SC050021/SR3. Updated technical background to the CLEA model (Bristol: Environment Agency).
- 4. Environment Agency (2009), Contaminated Land Exposure Assessment (CLEA) software, version 1.06.
- 5. Environment Agency (2008), *Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values* (Bristol: Environment Agency).
- 6. Chartered Institute for Environmental Health and Land Quality Management (2009), 'The LQM/CIEH Generic Assessment Criteria for Human Health', second edition.
- 7. CL:AIRE (2009), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- 8. Changes made to the CLEA framework documents after the three-month evaluation period in 2008, released January 2009 by the Environment Agency.

Table 5

	z	GrAC	SAC Appropri	ate to Pathway So	OM 1% (ma/ka)		SAC Appropr	iate to Pathway SO	M 2 5% (ma/ka)		SAC Appropr	iate to Pathway S	OM 6% (ma/ka)	
Compound	Notes	(mg/l)	Oral	Inhalation	Combined	Soil Saturation Limit (mg/kg)	Oral	Inhalation	Combined	Soil Saturation Limit (mg/kg)	Oral	Inhalation	Combined	Soil Saturation Limit (mg/kg)
Compound	U)	(ilig/i)	Olai	IIIIIaiatioii	Combined	Lillit (lilg/kg)	Orai	iiiiaiatioii	Combined	Lillit (lilg/kg)	Orai	IIIIIaiatioii	Combined	Limit (mg/kg)
Metals														
	(c)		3.50E+01	8.50E+01		NR	3.50E+01	8.50E+01		NR	3.50E+01	8.50E+01		NR
Arsenic	(C)	-	1.21E+02	1.85E+02	8.49E+01		1.21E+02	1.85E+02	8.49E+01	NR NR	1.21E+02	1.85E+02	8.49E+01	NR NR
Cadmium		-				NR NR						1		
Chromium (III) -oxide		-	1.98E+04 8.40E+01	3.55E+03 4.25E+00	3.01E+03 4.12E+00	NR NR	1.98E+04 8.40E+01	3.55E+03 4.25E+00	3.01E+03 4.12E+00	NR NR	1.98E+04 8.40E+01	3.55E+03 4.25E+00	3.01E+03 4.12E+00	NR NB
Chromium (VI) - hexavalent		-	1.08E+04			NR NR				NR NR				NR NB
Copper	-	-		1.04E+04	6.20E+03		1.08E+04	1.04E+04	6.20E+03	NK	1.08E+04	1.04E+04	6.20E+03	NR
Lead	(a)		3.00E+02	-	-	NR	3.00E+02	-	-	1.07E+01	3.00E+02	-	-	NR
Elemental Mercury (Hg ⁰)	(d)	9.40E-03	-	1.70E-01		4.31E+00	2.62E+02	4.24E-01			<u>-</u>	1.02E+00		2.58E+01
Inorganic Mercury (Hg ²⁺)			2.62E+02	2.55E+03	2.38E+02	NR		2.55E+03	2.38E+02	NR	2.62E+02	2.55E+03	2.38E+02	NR
Methyl Mercury (Hg ⁴⁺)		2.00E+01	1.80E+01	1.59E+01	8.43E+00	7.33E+01	1.80E+01	1.59E+01	1.13E+01	1.42E+02	1.80E+01	6.53E+01	1.41E+01	3.04E+02
Nickel	(d)	-	7.86E+02	1.27E+02	-	NR	7.86E+02	1.27E+02	-	NR	7.86E+02	1.27E+02	-	NR
Selenium	(c)	-	5.95E+02	-	-	NR	5.95E+02	-	-	NR	5.95E+02	-	-	NR
Zinc	(c)	-	4.05E+04	2.55E+07	-	NR	4.05E+04	2.55E+07	-	NR	4.05E+04	2.55E+07	-	NR
Cyanide		-	7.69E+02	1.15E+02	1.06E+02	NR	7.69E+02	1.15E+02	1.06E+02	NR	7.69E+02	1.15E+02	1.06E+02	NR
Volatile Organic Compounds										,				
Benzene		7.00E+00	2.58E+01	2.69E-01	2.66E-01	1.22E+03	2.58E+01	4.99E-01	4.90E-01	2.26E+03	2.58E+01	1.04E+00	9.98E-01	4.71E+03
Toluene		1.90E+03	1.98E+04	6.26E+02	6.07E+02	8.69E+02	1.98E+04	1.38E+03	1.29E+03	1.92E+03	1.98E+04	3.14E+03	2.71E+03	4.36E+03
Ethylbenzene		2.60E+02	8.88E+03	1.70E+02	1.67E+02	5.18E+02	8.88E+03	3.98E+02	3.81E+02	1.22E+03	8.88E+03	9.32E+02	8.43E+02	2.84E+03
Xylene - m		8.40E+01	1.60E+04	5.56E+01	5.54E+01	6.25E+02	1.60E+04	1.31E+02	1.30E+02	1.47E+03	1.60E+04	3.07E+02	3.02E+02	3.46E+03
Xylene - o		1.00E+02	1.60E+04	5.98E+01	5.95E+01	4.78E+02	1.60E+04	1.40E+02	1.39E+02	1.12E+03	1.60E+04	3.27E+02	3.21E+02	2.62E+03
Xylene - p		8.70E+01	1.60E+04	5.34E+01	5.33E+01	5.76E+02	1.60E+04	1.26E+02	1.25E+02	1.35E+03	1.60E+04	2.94E+02	2.88E+02	3.17E+03
Total xylene		8.40E+01	1.60E+04	5.56E+01	5.54E+01	6.25E+02	1.60E+04	1.31E+02	1.30E+02	1.47E+03	1.60E+04	3.07E+02	3.02E+02	3.46E+03
Methyl tertiary butyl ether (MTBE)		2.20E+03	4.45E+02	1.84E+02	1.61E+02	1.66E+04	4.45E+02	2.40E+02	2.00E+02	2.16E+04	4.45E+02	3.70E+02	2.68E+02	3.34E+04
Trichloroethene		1.80E+00	4.63E+02	1.10E-01	1.10E-01	1.54E+03	4.63E+02	2.30E-01	2.30E-01	3.22E+03	4.63E+02	5.11E-01	5.11E-01	7.14E+03
Tetrachloroethene		3.60E+00	1.20E+03	1.03E+00	1.03E+00	4.24E+02	1.20E+03	2.30E+00	2.30E+00	9.51E+02	1.20E+03	5.28E+00	5.26E+00	2.18E+03
1,1,1-Trichloroethane		2.60E+01	5.34E+04	6.33E+00	6.33E+00	1.43E+03	5.34E+04	1.29E+01	1.29E+01	2.92E+03	5.34E+04	2.84E+01	2.84E+01	6.39E+03
1,1,1,2-Tetrachloroethane		1.40E+01	5.07E+02	1.08E+00	1.08E+00	2.60E+03	5.07E+02	2.50E+00	2.49E+00	6.02E+03	5.07E+02	5.83E+00	5.76E+00	1.40E+04
1,1,2,2-Tetrachloroethane		1.40E+01	5.07E+02	2.76E+00	2.74E+00	2.67E+03	5.07E+02	5.65E+00	5.58E+00	5.46E+03	5.07E+02	1.24E+01	1.21E+01	1.20E+04
Carbon tetrachloride		5.50E-02	1.25E+02	1.81E-02	1.81E-02	1.52E+03	1.25E+02	3.97E-02	3.96E-02	3.32E+03	1.25E+02	8.99E-02	8.99E-02	7.54E+03
1,2-Dichloroethane		3.00E-01	1.07E+01	6.46E-03	6.46E-03	3.41E+03	1.07E+01	9.32E-03	9.31E-03	4.91E+03	1.07E+01	1.60E-02	1.60E-02	8.43E+03
Vinyl chloride		1.90E-02	1.25E+00	5.43E-04	5.43E-04	1.36E+03	1.25E+00	7.02E-04	7.02E-04	1.76E+03	1.25E+00	1.07E-03	1.07E-03	2.69E+03
1,2,4-Trimethylbenzene		7.50E-02	_	4.08F-01	-	5.57E+02	-	9.91E-01	_	1.36E+03	-	2.33E+00	-	3.25E+03
1,3,5-Trimethylbenzene		4.70E-02	1.28E+03	4.60E-01	4.60E-01	9.47E+01	1.28E+03	1.10E+00	1.10E+00	2.26E+02	1.28E+03	2.59E+00	2.58E+00	5.33E+02
T,o,o TTIMOUTYISONESINO	-	02 02		1.002 01	1.002 01	0.112101		**		2.202102		2.002.100	2.002.100	0.002.102
Semi-Volatile Organic Compounds														
Acenaphthene		3.20E+00	4.85E+03	3.46E+03	2.02E+03	5.70E+01	4.85E+03	8.54E+03	3.09E+03	1.41E+02	4.85E+03	2.30E+04	3.91E+03	3.36E+02
Acenaphthylene		4.20E+00	4.85E+03	3.27E+03	1.95E+03	8.61E+01	4.85E+03	8.03E+03	3.02E+03	2.12E+02	4.85E+03	1.91E+04	3.87E+03	5.06E+02
Anthracene		2.10E-02	2.43E+04	1.08E+05	1.98E+04	1.17E+00	2.43E+04	2.65E+05	2.22E+04	2.91E+00	2.43E+04	6.15E+05	2.33E+04	6.96E+00
Benzo(a)anthracene		3.80E-03	1.12E+01	5.55E+00	3.71E+00	1.71E+00	1.12E+01	9.83E+00	5,23E+00	4.28E+00	1.12E+01	1.41E+01	6.22E+00	1.03E+01
Benzo(b)fluoranthene		2.00E-03	1.15E+00	1.79E+01	6.99E+00	1.22E+00	1.15E+01	1.97E+01	7.25E+00	3.04E+00	1.15E+01	2.05E+01	7.36E+00	7.29E+00
		2.60E-04	7.35E+01	1.79E+01	4.66E+01	1.54E-02	7.35E+01	1.32E+02	4.72E+01	3.85E-02	7.35E+01	1.34E+02	4.75E+01	9.23E-02
Benzo(g,h,i)perylene	-	8.00E-04	1.62E+01	2.66E+01	1.01E+01	6.87E-01	1.62E+01	2.83E+01	1.03E+01	1.72E+00	1.62E+01	2.91E+01	1.04E+01	4.12E+00
Benzo(k)fluoranthene		6.00E-04 2.00E-03	1.62E+01	1.95E+01	8.84E+00	4.40E-01	1.62E+01	2.45E+01	9.74E+00		1.62E+01	2.72E+01	1.04E+01 1.01E+01	2.64E+00
Chrysene	+									1.10E+00				
Dibenzo(a,h)anthracene	+ -	6.00E-04	1.46E+00	2.13E+00	8.65E-01	3.93E-03	1.46E+00	2.42E+00	9.09E-01	9.82E-03	1.46E+00	2.56E+00	9.28E-01	2.36E-02
Fluoranthene	+	2.30E-01	1.01E+03	2.69E+04	9.72E+02	1.89E+01	1.01E+03	6.23E+04	9.93E+02	4.73E+01	1.01E+03	1.28E+05	1.00E+03	1.13E+02
Fluorene	+	1.90E+00	3.23E+03	4.35E+03	1.85E+03	3.09E+01	3.23E+03	1.07E+04	2.48E+03	7.65E+01	3.23E+03	2.54E+04	2.87E+03	1.83E+02
Indeno(1,2,3-cd)pyrene	+	2.00E-04	6.95E+00	1.04E+01	4.17E+00	6.13E-02	6.95E+00	1.17E+01	4.35E+00	1.53E-01	6.95E+00	1.22E+01	4.43E+00	3.68E-01
Phenanthrene	+	5.30E-01	1.00E+03	5.04E+03	8.37E+02	3.60E+01	1.00E+03	1.23E+04	9.28E+02	8.96E+01	1.00E+03	2.86E+04	9.70E+02	2.14E+02
Pyrene	\perp	1.30E-01	2.42E+03	6.18E+04	2.33E+03	2.20E+00	2.42E+03	1.44E+05	2.38E+03	5.49E+00	2.42E+03	2.97E+05	2.40E+03	1.32E+01
Benzo(a)pyrene	\perp	3.80E-03	1.62E+00	2.62E+00	1.00E+00	9.11E-01	1.62E+00	2.81E+00	1.03E+00	2.28E+00	1.62E+00	2.90E+00	1.04E+00	5.46E+00
Naphthalene		1.90E+01	1.58E+03	1.64E+00	1.64E+00	7.64E+01	1.58E+03	3.93E+00	3.92E+00	1.83E+02	1.58E+03	9.27E+00	9.22E+00	4.32E+02
Phenol		-	9.17E+04	3.11E+02	3.10E+02	4.16E+04	9.17E+04	4.20E+02	4.18E+02	8.15E+04	9.17E+04	5.21E+02	5.19E+02	1.74E+05

Table 5 RSK GAC_2010_03_Rev04

Table 5

Human Health Generic Assessment Criteria by Pathway for Residential Scenario With Communal Soft Lanscaping

	Notes	GrAC	SAC Appropri	ate to Pathway So	OM 1% (mg/kg)	Soil Saturation	SAC Appropr	iate to Pathway SOI	/l 2.5% (mg/kg)	Soil Saturation	SAC Appropr	iate to Pathway S	OM 6% (mg/kg)	Soil Saturation
Compound	tes	(mg/l)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)
Total Petroleum Hydrocarbons														
Aliphatic hydrocarbons EC ₅ -EC ₆		1.00E+01	2.23E+05	2.98E+01	2.98E+01	3.04E+02	2.23E+05	5.47E+01	5.47E+01	5.58E+02	2.23E+05	1.13E+02	1.13E+02	1.15E+03
Aliphatic hydrocarbons >EC ₆ -EC ₈		5.40E+00	2.23E+05	7.27E+01	7.27E+01	1.44E+02	2.23E+05	1.62E+02	1.62E+02	3.22E+02	2.23E+05	3.72E+02	3.71E+02	7.36E+02
Aliphatic hydrocarbons >EC ₈ -EC ₁₀		2.30E-01	4.45E+03	1.89E+01	1.88E+01	7.77E+01	4.45E+03	4.60E+01	4.59E+01	1.90E+02	4.45E+03	1.09E+02	1.09E+02	4.51E+02
Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂		3.00E-02	4.45E+03	9.34E+01	9.29E+01	4.75E+01	4.45E+03	2.32E+02	2.29E+02	1.18E+02	4.45E+03	5.57E+02	5.38E+02	2.83E+02
Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆		8.00E-04	4.45E+03	7.82E+02	7.45E+02	2.37E+01	4.45E+03	1.95E+03	1.69E+03	5.91E+01	4.45E+03	4.68E+03	3.04E+03	1.42E+02
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅	(c)	-	4.53E+04	-	-	8.48E+00	6.41E+04	-	-	2.12E+01	7.66E+04	-	-	5.09E+01
Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄	(c)	-	4.53E+04	-	-	8.48E+00	6.41E+04	-	-	2.12E+01	7.66E+04	-	-	5.09E+01
Aromatic hydrocarbons >EC ₅ -EC ₇		-	1.98E+04	2.66E+02	2.63E+02	1.22E+03	1.98E+04	4.95E+02	4.83E+02	2.26E+03	1.98E+04	1.03E+03	9.78E+02	4.71E+03
Aromatic hydrocarbons >EC ₇ -EC ₈		-	1.98E+04	6.26E+02	6.07E+02	8.69E+02	1.98E+04	1.38E+03	1.29E+03	1.92E+03	1.98E+04	3.14E+03	2.71E+03	4.36E+03
Aromatic hydrocarbons >EC ₈ -EC ₉ (sty	rene)	7.40E+00	5.34E+03	2.65E+02	2.61E+02	6.20E+02	5.34E+03	6.47E+02	6.27E+02	1.52E+03	5.34E+03	1.54E+03	1.41E+03	3.61E+03
Aromatic hydrocarbons >EC ₉ -EC ₁₀		7.40E+00	1.78E+03	3.33E+01	3.32E+01	6.13E+02	1.78E+03	8.16E+01	8.07E+01	1.50E+03	1.78E+03	1.94E+02	1.89E+02	3.58E+03
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂		2.50E+01	1.78E+03	1.82E+02	1.77E+02	3.64E+02	1.78E+03	4.48E+02	4.17E+02	8.99E+02	1.78E+03	1.07E+03	8.66E+02	2.15E+03
Aromatic hydrocarbons >EC ₁₂ -EC ₁₆		5.80E+00	1.78E+03	2.00E+03	1.25E+03	1.69E+02	1.78E+03	4.96E+03	1.59E+03	4.19E+02	1.78E+03	1.18E+04	1.71E+03	1.00E+03
Aromatic hydrocarbons >EC ₁₆ -EC ₂₁	(c)	-	1.29E+03	-	-	5.37E+01	1.31E+03	-	-	1.34E+02	1.32E+03	-	-	3.21E+02
Aromatic hydrocarbons >EC ₂₁ -EC ₃₅	(c)	-	1.33E+03	-	-	4.83E+00	1.33E+03	-	-	1.21E+01	1.33E+03	-	-	2.90E+01
Aromatic hydrocarbons >EC ₃₅ -EC ₄₄	(c)	-	1.33E+03	-	-	4.83E+00	1.33E+03	-	-	1.21E+01	1.33E+03	-	-	2.90E+01

Notes:

'-' Generic assessment criteria not calculated owing to low volatility of substance and therefore no pathway, or an absence of toxicological data.

NR - the compound is not volatile and therefore a soil saturation limit not calculated within CLEA

EC - equivalent carbon. GrAC - groundwater assessment criteria. SAC - soil assessment criteria.

The CLEA model output is colour coded depending upon whether the soil saturation limit has been exceeded.

Calculated SAC exceeds soil saturation limit and may significantly effect the interpretation of any exceedances since the contribution of the indoor and outdoor vapour pathway to total exposure is

>10%. This shading has also been used for the RBCA output where the theoretical solubility limit has been exceeded. The SAC has been set as the model calculated SAC with the saturation limits shown in brackets. Calculated SAC exceeds soil saturation limit but will not effect the SAC significantly since the contribution of the indoor and outdoor vapour pathway to total exposure is <10%. Calculated SAC does not exceed the soil saturation limit.

For consistency where the theoretical solubility limit within RBCA has been exceeded in production of the GrAC, these cellis have also been hatched red.

The SAC for organic compounds are dependant upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994. SAC for TPH fractions, polycyclic aromatic hydrocarbons, MTBE, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway, section 10.1.1, SR3

(a) Sensitivity analysis undertaken on SEGH equation and CLEA model, considered reasonable in absence of UK specific data

- (b) GAC taken from the Environment Agency SGV reports published 2009.
- (c) SAC for selenium, aliphatic and aromatic hydrocarbons >EC16 do not include inhalation pathway owing to absence of toxicity data. SAC for arsenic is only based on oral contribution (rather than combined) owing to the relative small contribution from inhalation in accordance with the SGV report.
- (d) SAC for elemental mercury, chromium VI and nickel are based on the inhalation pathway only owing to an absence of toxicity for elemental mercury, in accordance with the SGV report for nickel and LQM report for chromium VI.

Table 5

RSK GAC_2010_03_Rev04

Table 6
Human health generic assessment criteria for residential with communal soft landscaping

Compound	GrAC for groundwater (mg/l)	SAC for soil SOM 1% (mg/kg)	SAC for soil SOM 2.5% (mg/kg)	SAC for soil SOM 6% (mg/kg)
·	(5')	(3, 3,	(5 5)	(3 3/
Metals Arsenic	-	35	35	35
Cadmium	-	85	85	85
Chromium (III) - oxide	-	3,000	3,000	3,000
Chromium (VI) - hexavalent	-	4.3	4.3	4.3
Copper	=	6,200	6,200	6,200
Lead	-	300	300	300
Elemental Mercury (Hg0)	0.0094	0.17	0.42	1.0
Inorganic Mercury (Hg2+) Methyl Mercury (Hq4+)	- 20	240	240 11	240 14
Nickel	20	8.4 130	130	130
Selenium	-	600	600	600
Zinc	-	41,000	41,000	41,000
Cyanide	-	110	110	110
Walatila annonia annonia				
Volatile organic compounds Benzene	7	0.27	0.49	1.0
Toluene	1,900	610	1,289	2,700
Ethylbenzene	260	170	381	840
Xylene - m	84	55	130	300
Xylene - o	100	60	139	320
Xylene - p	87	53	125	290
Total xylene	84	55	130	300
Methyl tertiary butyl ether (MTBE) Trichloroethene	2,200 1.8	160 0.11	199.55 0.2	270 0.51
Tetrachloroethene	3.6	1.0	2.3	5.3
1,1,1-Trichloroethane	26	6.3	12.9	28
1,1,1,2-Tetrachloroethane	14	1.1	2.5	5.8
1,1,2,2-Tetrachloroethane	14	2.7	5.58	12
Carbon tetrachloride	0.055	0.02	0.040	0.09
1,2-Dichloroethane	0.30	0.006	0.0093	0.02
Vinyl chloride	0.019	0.0005	0.0007	0.001
1,2,4-Trimethylbenzene	0.075	0.4	0.99	2.3
1,3,5-Trimethylbenzene	0.047	0.5	1.10	2.6
Semi-volatile organic compounds				
Acenaphthene	3.2	2,000 (57)	3,100 (141)	3,900 (340)
Acenaphthylene	4.2	2,000 (86)	3,000 (212)	3,900 (510)
Anthracene	0.021	20,000 (1.2) 3.7	22,000 5.2	23,000 6.2
			J.Z	0.2
Benzo(a)anthracene Benzo(b)fluoranthene	0.004		7.3	7.4
Benzo(b)fluoranthene	0.002	7.0	7.3 47	7.4 48
Benzo(b)fluoranthene Benzo(g,h,i)perylene	0.002 0.0003		7.3 47 10	7.4 48 10
Benzo(b)fluoranthene	0.002	7.0 47	47	48
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	0.002 0.0003 0.0008 0.002 0.0006	7.0 47 10 8.8 0.87	47 10 9.7 0.91	48 10 10 0.93
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	0.002 0.0003 0.0008 0.002 0.002 0.0006 0.23	7.0 47 10 8.8 0.87 970	47 10 9.7 0.91 993	48 10 10 0.93 1,000
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene	0.002 0.0003 0.0008 0.002 0.0006 0.23 1.9	7.0 47 10 8.8 0.87 970 1,900 (31)	47 10 9.7 0.91 993 2,500 (77)	48 10 10 0.93 1,000 2,900 (180)
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	0.002 0.0003 0.0008 0.002 0.0006 0.23 1.9 0.0002	7.0 47 10 8.8 0.87 970 1.900 (31) 4.2	47 10 9.7 0.91 993 2,500 (77) 4.4	48 10 10 0.93 1,000 2,900 (180) 4.4
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Phenanthrene	0.002 0.0003 0.0008 0.002 0.0006 0.23 1.9 0.0002 0.53	7.0 47 10 8.8 0.87 970 1.900 (31) 4.2 840 (36)	47 10 9.7 0.91 993 2.500 (77) 4.4 930	48 10 10 0.93 1,000 2,900 (180) 4.4 970
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene	0.002 0.0003 0.0008 0.002 0.0006 0.23 1.9 0.0002 0.53 0.13	7.0 47 10 8.8 0.87 970 1,900 (31) 4.2 840 (36) 2,300	47 10 9.7 0.91 993 2,500 (77) 4.4 930 2,400	48 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene	0.002 0.0003 0.0008 0.002 0.0006 0.23 1.9 0.0002 0.53 0.13	7.0 47 10 8.8 0.87 970 1.900 (31) 4.2 840 (36) 2.300 1.0	47 10 9.7 0.91 993 2,500 (77) 4.4 930 2,400 1.0	48 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene	0.002 0.0003 0.0008 0.002 0.0006 0.23 1.9 0.0002 0.53 0.13	7.0 47 10 8.8 0.87 970 1,900 (31) 4.2 840 (36) 2,300	47 10 9.7 0.91 993 2,500 (77) 4.4 930 2,400	48 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene Naphthalene Phenol	0.002 0.0003 0.0008 0.002 0.0006 0.23 1.9 0.0002 0.53 0.13	7.0 47 10 8.8 0.87 970 1,900 (31) 4.2 840 (36) 2,300 1.0	47 10 9.7 0.91 993 2,500 (77) 4.4 930 2,400 1.0 3.9	48 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0 9.2
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Filuoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene Naphthalene Phenol Total petroleum hydrocarbons	0.002 0.0003 0.0008 0.002 0.0006 0.23 1.9 0.0002 0.53 0.13	7.0 47 10 8.8 0.87 970 1,900 (31) 4.2 840 (36) 2,300 1.0 1.6 310	47 10 9.7 0.91 993 2,500 (77) 4.4 930 2,400 1.0 3.9 420	48 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0 9.2 520
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorante Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene Naphthalene Phenol Total petroleum hydrocarbons Aliphatic hydrocarbons EC ₅ –EC ₆	0.002 0.0003 0.0008 0.002 0.0006 0.23 1.9 0.0002 0.53 0.13 0.004 19	7.0 47 10 8.8 0.87 970 1.900 (31) 4.2 840 (36) 2.300 1.0 1.6 310	47 10 9.7 0.91 993 2,500 (77) 4.4 930 2,400 1.0 3.9 420	48 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0 9.2 520
Benzo(b)fluoranthene	0.002 0.0003 0.0008 0.002 0.0006 0.23 1.9 0.0002 0.53 0.13 0.004 19	7.0 47 10 8.8 0.87 970 1.900 (31) 4.2 840 (36) 2,300 1.0 1.6 310	47 10 9.7 0.91 993 2,500 (77) 4.4 930 2,400 1.0 3.9 420	48 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0 9.2 520
Benzo(b)fluoranthene	0.002 0.0003 0.0008 0.002 0.0006 0.23 1.9 0.0002 0.53 0.13 0.004 19 -	7.0 47 10 8.8 0.87 970 1.900 (31) 4.2 840 (36) 2.300 1.0 1.6 310 30 73	47 10 9.7 0.91 993 2,500 (77) 4.4 930 2,400 1.0 3.9 420 55 160 46	48 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0 9.2 520 110 370 110
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene Naphthalene Phenol Total petroleum hydrocarbons Aliphatic hydrocarbons >EC ₅ -EC ₆ Aliphatic hydrocarbons >EC ₆ -EC ₈ Aliphatic hydrocarbons >EC ₈ -EC ₁₀ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂	0.002 0.0003 0.0008 0.002 0.0006 0.23 1.9 0.0002 0.53 0.13 0.004 19 -	7.0 47 10 8.8 0.87 970 1.900 (31) 4.2 840 (36) 2.300 1.0 1.6 310 30 73 19	47 10 9.7 0.91 993 2,500 (77) 4.4 930 2,400 1.0 3.9 420 55 160 46 230 (118)	48 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0 9.2 520 110 370 110 540 (280)
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene Naphthalene Phenol Total petroleum hydrocarbons Aliphatic hydrocarbons >EC ₅ -EC ₆ Aliphatic hydrocarbons >EC ₆ -EC ₈ Aliphatic hydrocarbons >EC ₆ -EC ₁₀ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂	0.002 0.0003 0.0008 0.002 0.0006 0.23 1.9 0.0002 0.53 0.13 0.004 19 - 10 5.4 0.23 0.03 0.008	7.0 47 10 8.8 0.87 970 1.900 (31) 4.2 840 (36) 2.300 1.0 1.6 310 30 73 19 93 (48) 746 (24)	47 10 9.7 0.91 993 2,500 (77) 4.4 930 2,400 1.0 3.9 420 55 160 46 230 (118) 1,700 (59)	48 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0 9.2 520 110 370 110 540 (280) 3,000 (140)
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene Naphthalene Phenol Total petroleum hydrocarbons Aliphatic hydrocarbons >EC ₅ -EC ₆ Aliphatic hydrocarbons >EC ₆ -EC ₈ Aliphatic hydrocarbons >EC ₈ -EC ₁₀ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂	0.002 0.0003 0.0008 0.002 0.0006 0.23 1.9 0.0002 0.53 0.13 0.004 19 -	7.0 47 10 8.8 0.87 970 1.900 (31) 4.2 840 (36) 2.300 1.0 1.6 310 30 73 19	47 10 9.7 0.91 993 2,500 (77) 4.4 930 2,400 1.0 3.9 420 55 160 46 230 (118)	48 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0 9.2 520 110 370 110 540 (280)
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene Naphthalene Phenol Total petroleum hydrocarbons Aliphatic hydrocarbons >EC ₅ -EC ₈ Aliphatic hydrocarbons >EC ₆ -EC ₁₀ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂	0.002 0.0003 0.0008 0.002 0.0006 0.23 1.9 0.0002 0.53 0.13 0.004 19 - 10 5.4 0.23 0.03 0.008	7.0 47 10 8.8 0.87 970 1.900 (31) 4.2 840 (36) 2.300 1.0 1.6 310 30 73 19 93 (48) 746 (24)	47 10 9.7 0.91 993 2,500 (77) 4.4 930 2,400 1.0 3.9 420 55 160 46 230 (118) 1,700 (59)	48 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0 9.2 520 110 370 110 540 (280) 3,000 (140)
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorante Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene Naphthalene Phenol Total petroleum hydrocarbons Aliphatic hydrocarbons >EC ₅ -EC ₆ Aliphatic hydrocarbons >EC ₆ -EC ₈ Aliphatic hydrocarbons >EC ₇ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆ Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅	0.002 0.0003 0.0008 0.002 0.0006 0.23 1.9 0.0002 0.53 0.13 0.004 19 - 10 5.4 0.23 0.03 0.008	7.0 47 10 8.8 0.87 970 1.900 (31) 4.2 840 (36) 2.300 1.0 1.6 310 30 73 19 93 (48) 746 (24) 45,000	47 10 9.7 0.91 993 2,500 (77) 4.4 930 2,400 1.0 3.9 420 55 160 46 230 (118) 1,700 (59) 64,000 (21)	48 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0 9.2 520 110 370 110 540 (280) 3,000 (140) 77,000
Benzo(b)fluoranthene Benzo(g,h,l)perylene Benzo(s,h,l)perylene Benzo(s,h)perylene Benzo(s,h)perylene Benzo(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene Naphthalene Phenol Total petroleum hydrocarbons Aliphatic hydrocarbons >EC ₅ -EC ₈ Aliphatic hydrocarbons >EC ₆ -EC ₈ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₃₅ Aliphatic hydrocarbons >EC ₁₀ -EC ₃₅ Aliphatic hydrocarbons >EC ₁₀ -EC ₃₅ Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄ Aromatic hydrocarbons >EC ₆ -EC ₉ (styrene)	0.002 0.0003 0.0008 0.0002 0.0006 0.23 1.9 0.0002 0.53 0.13 0.004 19 10 5.4 0.23 0.03 0.003	7.0 47 10 8.8 0.87 970 1.900 (31) 4.2 840 (36) 2.300 1.0 1.6 310 30 73 19 93 (48) 746 (24) 45,000	47 10 9.7 0.91 993 2.500 (77) 4.4 930 2.400 1.0 3.9 420 55 160 46 230 (118) 1,700 (59) 64,000 (21)	48 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0 9.2 520 110 370 110 540 (280) 3,000 (140) 77,000
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene Naphthalene Phenol Total petroleum hydrocarbons Aliphatic hydrocarbons EC ₅ -EC ₆ Aliphatic hydrocarbons >EC ₆ -EC ₈ Aliphatic hydrocarbons >EC ₇ -EC ₁₀ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₆ -EC ₉ (styrene) Aromatic hydrocarbons >EC ₆ -EC ₁₀	0.002 0.0003 0.0008 0.0008 0.0002 0.0006 0.23 1.9 0.0002 0.53 0.13 0.004 19 10 5.4 0.23 0.03 0.0008 7.4 7.4	7.0 47 10 8.8 0.87 970 1,900 (31) 4.2 840 (36) 2,300 1.0 1.6 310 30 73 19 93 (48) 746 (24) 45,000 45,000 260 33	47 10 9.7 0.91 993 2.500 (77) 4.4 930 2.400 1.0 3.9 420 55 160 46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 627 81	48 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0 9.2 520 110 370 110 540 (280) 3,000 (140) 77,000 77,000 1,400 190
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene Naphthalene Phenol Total petroleum hydrocarbons Aliphatic hydrocarbons EC ₅ -EC ₈ Aliphatic hydrocarbons >EC ₆ -EC ₈ Aliphatic hydrocarbons >EC ₇ -EC ₁₀ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₅ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₆ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₆ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₆ Aliphatic hydrocarbons >EC ₂ -EC ₁₆ Aliphatic hydrocarbons >EC ₃ -EC ₄₄ Aromatic hydrocarbons >EC ₉ -EC ₁₀ Aromatic hydrocarbons >EC ₉ -EC ₁₀ Aromatic hydrocarbons >EC ₉ -EC ₁₀	0.002 0.0003 0.0008 0.0008 0.0002 0.0006 0.23 1.9 0.0002 0.553 0.13 0.004 19	7.0 47 10 8.8 0.87 970 1,900 (31) 4.2 840 (36) 2,300 1.0 1.6 310 30 73 19 93 (48) 746 (24) 45,000 45,000 260 33 180	47 10 9.7 0.91 993 2.500 (77) 4.4 930 2.400 1.0 3.9 420 55 160 46 230 (118) 1,700 (59) 64,000 (21) 627 81 417	48 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0 9.2 520 110 370 110 540 (280) 3,000 (140) 77,000 77,000 1,400 190 870
Benzo(b)fluoranthene Benzo(g,h,l)perylene Benzo(g,h,l)perylene Benzo(g,h,l)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene Naphthalene Phenol Total petroleum hydrocarbons Aliphatic hydrocarbons EC_5-EC_8 Aliphatic hydrocarbons >EC_6-EC_8 Aliphatic hydrocarbons >EC_6-EC_8 Aliphatic hydrocarbons >EC_1-EC_1 Aliphatic hydrocarbons >EC_1-EC_1 Aliphatic hydrocarbons >EC_5-EC_6 Aliphatic hydrocarbons >EC_6-EC_3 Aliphatic hydrocarbons >EC_6-EC_6 (styrene) Aromatic hydrocarbons >EC_9-EC_1 Aromatic hydrocarbons >EC_9-EC_1 Aromatic hydrocarbons >EC_1-EC_12 Aromatic hydrocarbons >EC_1-EC_12	0.002 0.0003 0.0008 0.0008 0.0002 0.0006 0.23 1.9 0.0002 0.53 0.13 0.004 19	7.0 47 10 8.8 0.87 970 1,900 (31) 4.2 840 (36) 2,300 1.0 1.6 310 30 73 19 93 (48) 746 (24) 45,000 45,000 260 33 180 1,300 (170)	47 10 9.7 0.91 993 2,500 (77) 4.4 930 2,400 1.0 3.9 420 55 160 46 230 (118) 1,700 (59) 64,000 (21) 627 81 417 1,600 (419)	48 10 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0 9.2 520 110 370 110 540 (280) 3,000 (140) 77,000 77,000 1,400 190 870 1,700
Benzo(b)fluoranthene Benzo(g,h,l)perylene Benzo(g,h,l)perylene Benzo(g,h,l)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene Naphthalene Phenol Total petroleum hydrocarbons Aliphatic hydrocarbons EC ₅ -EC ₆ Aliphatic hydrocarbons >EC ₆ -EC ₈ Aliphatic hydrocarbons >EC ₆ -EC ₁₀ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₅ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₆ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₀ Aromatic hydrocarbons >EC ₉ -EC ₁₀ Aromatic hydrocarbons >EC ₉ -EC ₁₀ Aromatic hydrocarbons >EC ₉ -EC ₁₀ Aromatic hydrocarbons >EC ₁₀ -EC ₁₂	0.002 0.0003 0.0008 0.0008 0.0002 0.0006 0.23 1.9 0.0002 0.53 0.13 0.004 19 7.4 7.4 25 5.8	7.0 47 10 8.8 0.87 970 1.900 (31) 4.2 840 (36) 2.300 1.0 1.6 310 30 73 19 93 (48) 746 (24) 45,000 45,000 260 33 180 1,300 (170) 1,300	47 10 9.7 0.91 993 2,500 (77) 4.4 930 2,400 1.0 3.9 420 55 160 46 230 (118) 1,700 (59) 64,000 (21) 627 81 417 1,600 (419) 1,300	48 10 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0 9.2 520 110 370 110 540 (280) 3,000 (140) 77,000 77,000 1,400 190 870 1,700 1,300
Benzo(b)fluoranthene Benzo(g,h,l)perylene Benzo(g,h,l)perylene Benzo(g,h,l)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene Naphthalene Phenol Total petroleum hydrocarbons Aliphatic hydrocarbons EC_5-EC_8 Aliphatic hydrocarbons >EC_6-EC_8 Aliphatic hydrocarbons >EC_6-EC_8 Aliphatic hydrocarbons >EC_1-EC_1 Aliphatic hydrocarbons >EC_1-EC_1 Aliphatic hydrocarbons >EC_5-EC_6 Aliphatic hydrocarbons >EC_6-EC_3 Aliphatic hydrocarbons >EC_6-EC_6 (styrene) Aromatic hydrocarbons >EC_9-EC_1 Aromatic hydrocarbons >EC_9-EC_1 Aromatic hydrocarbons >EC_1-EC_12 Aromatic hydrocarbons >EC_1-EC_12	0.002 0.0003 0.0008 0.0008 0.0002 0.0006 0.23 1.9 0.0002 0.53 0.13 0.004 19	7.0 47 10 8.8 0.87 970 1,900 (31) 4.2 840 (36) 2,300 1.0 1.6 310 30 73 19 93 (48) 746 (24) 45,000 45,000 260 33 180 1,300 (170)	47 10 9.7 0.91 993 2,500 (77) 4.4 930 2,400 1.0 3.9 420 55 160 46 230 (118) 1,700 (59) 64,000 (21) 627 81 417 1,600 (419)	48 10 10 10 0.93 1,000 2,900 (180) 4.4 970 2,400 1.0 9.2 520 110 370 110 540 (280) 3,000 (140) 77,000 77,000 1,400 190 870 1,700

Notes

'-' Generic assessment criteria not calculated owing to low volatility of substance and therefore no pathway or an absence of toxicological data.

EC - equivalent carbon. GrAC - groundwater assessment criteria. SAC - soil assessment criteria.

The SAC for organic compounds are dependent on Soil Organic Matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58; 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994.

SAC for TPH fractions, polycyclic aromatic hydrocarbons, MTBE, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway, section 10.1.1, SR3.

The SAC has been set as the model calculated SAC with the saturation limit shown in brackets.

For consistency where the GrAC exceeds the solubility limit, GrSV has been set at the solubility limit. These are highly conservative as concentrations of the chemical are very unlikely to be at sufficient concentration to result in an exceedance of the health criteria value at the point of exposure (i.e. indoor air) provided free-phase product is absent.

Table 6 RSK GAC_2010_03_Rev04

APPENDIX J GENERIC ASSESSMENT CRITERIA FOR PHYTOTOXIC EFFECTS

APPENDIX J GENERIC ASSESSMENT CRITERIA FOR PHYTOTOXIC EFFECTS

Several compounds can inhibit plant growth; hence it is important to have generic assessment criteria (GAC) to promote healthy plant growth. In the absence of other published GAC, the GAC have been obtained from legislation (UK and European) and guidance related to the use of sewage sludge on agricultural fields.

The Council of European Communities Sewage Sludge Directive (86/278/EEC) dated 1986, has been transposed into UK law by Statutory Instrument No. 1263, The Sludge (use in Agriculture) Regulations 1989 (Public Health England, Wales and Scotland), as ammended in 1990 and The Sludge (use in Agriculture) Regulations (Northern Ireland) SR No, 245, 1990. In addition the Department of Environment (DoE) produced a Code of Practice (CoP) (Updated 2nd Edition) in 2006 which provided guidance on the application of sewage sludge on agricultural land (however the status of this document is unclear as it is on the archive section of the Defra website).

The directive seeks to encourage the use of sewage sludge in agriculture and to regulate its use in such a way as to "prevent harmful effects on soil, vegetation, animals and man". To this end, it prohibits the use of <u>untreated sludge</u> on agricultural land unless it is injected or incorporated into the soil. Treated sludge is defined as having undergone "biological, chemical or heat treatment, long-term storage or any other appropriate process so as significantly to reduce its fermentability and the health hazards resulting from its use". To provide protection against potential health risks from residual pathogens, sludge must not be applied to soil in which fruit and vegetable crops are growing, or less than ten months before fruit and vegetable crops are to be harvested. Grazing animals must not be allowed access to grassland or forage land less than three weeks after the application of sludge.

The specified limits of concentrations of selected elements in soil are presented in Table 4 of the updated 2nd Edition of the DoE Code of Practice and are designed to protect plant growth. It is noted that these values are more stringent than the values set in current UK regulations. However since they were ammended following recommendations from the Independent Scientific Committee in 1993. (MAFF/DOE 1993). The GAC are presented in Table 1.

Table 1: Generic assessment criteria

Determinant	Generic assessment criteria (mg/kg)								
Determinant	pH 5.0 < 5.5	pH 5.5 < 6.0	pH 6.0 < 7.0	pH >7.0					
Zinc	200	200	200	300					
Copper	80	100	135	200					
Nickel	50	60	75	110					
Lead	300	300	300	300					
Cadmium	3	3	3	3					
Mercury	1	1	1	1					

Note: Only compounds with assessment criteria documented within the Directive 86/278/EEC have been included, although criteria for 5 additional compounds have been presented within the 2006 CoP.

APPENDIX K GENERIC ASSESSMENT CRITERIA FOR CONTROLLED WATERS

APPENDIX K GENERIC ASSESSMENT CRITERIA FOR CONTROLLED WATERS

The water environment in England and Wales is protected under a number of regulatory regimes, many regulated by the Environment Agency. The Environment Agency is consulted where there may be a risk that pollution of 'controlled waters' may occur or may have occurred in the past. Controlled waters are coastal waters, inland freshwaters and groundwaters. The EU Water Framework Directive (WFD) (2000/60/EC) is implemented via various regulations and guidance, covering aspects of groundwater, surface water and drinking water supply policy. The regulations mainly apply to England and Wales, therefore if you are working on a site in Scotland or Northern Ireland, please review the equivalent legislation and guidance provided by the Scottish Environmental Protection Agency (SEPA) or the Northern Ireland Environment Agency (NIEA).

The main objectives of the protection and remediation of groundwater under threat from land contamination are set out in the Environment Agency's Groundwater Protection: Principles and Practice (GP3) series of documents⁽¹⁾. When assessing risks to groundwater the following need to be taken into consideration:

- Where pollutants have not yet entered groundwater, all necessary and reasonable measures must be taken to:
 - Prevent the input of hazardous substances into groundwater (see description of hazardous substances below)
 - Limit the entry of other (non-hazardous) pollutants into groundwater so as to avoid pollution, and to avoid deterioration of the status of groundwater bodies or sustained, upward trends in pollutant concentration
- Where hazardous substances or non-hazardous pollutants have already entered groundwater, the priority is to:
 - Minimise further entry of hazardous substances and non-hazardous pollutants into groundwater
 - Take necessary and reasonable measures to limit the pollution of groundwater or impact on the status of the groundwater body from the future expansion of a contaminant 'plume', if necessary by actively reducing its extent.

Definitions

Hazardous Substances are defined in the Water Framework Directive 2000/60/EC as 'substances or groups of substances that are toxic, persistent and liable to bio-accumulate, and other substances or groups of substances which give rise to an equivalent level of concern. All List 1 substances under the old Groundwater Directive (80/68/EEC) are hazardous substances, all radioactive substances are hazardous substances.

Non-hazardous Substances are defined as 'substances capable of causing pollution that have not been classified as hazardous substances'. The non-hazardous list of pollutants does not simply replace the old WFD List II but includes a wider range.

For the current list of classified substances please visit the UKTAG website www.wfduk.org./jagdag/

When assessing the risks to surface waters, various standards apply, including Environmental Quality Standards which are protective of the water ecology⁽¹⁴⁾.

The Water Supply (Water Quality) Regulations^(2,3) are the primary source for assessing water bodies which may be used for public water supplies. There are also Private Water Supply Regulations which may be applicable in some cases.

This appendix presents the generic assessment criteria (GAC) that RSK considers are suitable for assessing risks to controlled waters.

The RSK GAC for controlled waters are presented in Table 1. In line with the Environment Agency's (2006b) Remedial Targets Methodology, the GAC for controlled waters are termed 'target concentrations'.

The target concentration can be derived by several means with consideration to:

- whether the substance is classified as hazardous or non-hazardous by the EU under the Water Framework Directive (2000/60/EC) and Groundwater Daughter Directive (2006/118/EC) implemented though the Environmental Permitting Regulations 2010
- background concentrations in the aquifer
- published guidance such as Environmental Quality Standards that are protective of ecology or The Water Supply (Water Quality) Regulations 2010 that are protective of drinking water
- Minimum Reporting Values (or method detection limits if MRV are not provided).

Table 1: Target concentrations for Controlled Waters

Analytes in bold are hazardous, analytes in italics are non hazardous, analytes in plain text are unclassified; according to JAGDAG Determination List June 2010

Target Concentrations shaded in GREEN are Statutory Values ORANGE are Non-Statutory Values

		Target (concentrations (mg/l)			
Determinant	Minimum Reporting	UK Drinking Water Standard or Best	Environmental Quality Standard or Best Equivalent			
	Value	Equivalent	Freshwater	Transitional (estuaries) and Coastal Waters		
		Metals				
Arsenic	-	0.01 ⁽²⁾	0.05 ^(13a)	0.025 ^(13a)		
Cadmium	0.0001 ⁽⁴⁾	0.005 ⁽²⁾	≤0.00008, 0.00008, 0.00009, 0.00015, 0.00025 (13b)	0.0002 ^(13c)		
Chromium (total)	-	0.05 ⁽²⁾	Use values for chrom	ium III and VI		
Chromium (III)		Lles value for total abramium	0.0047 ^(13a)	0.032 ^(13c)		
Chromium (VI)	_	Use value for total chromium	0.0034 ^(13a)	0.0006 ^(13a)		
Copper	-	2.0 ⁽²⁾	0.001, 0.006, 0.01, 0.028 ^(13e)	0.005 ^(13a)		
Lead	-	0.025 (before 25/12/2013), 0.01 (after 25/12/2013) ⁽²⁾	0.0072 ^(13c)	0.0072 ^(13c)		
Mercury	0.00001 ⁽⁴⁾	0.001 ⁽²⁾	0.00005 ^(13c)	0.00005 ^(13c)		

	Target concentrations (mg/l)						
Determinant	Minimum Reporting	UK Drinking Water Standard or Best	Environmental Quality Standard or Best Equivalent				
	Value	Equivalent	Freshwater	Transitional (estuaries) and Coastal Waters			
Nickel	-	0.02 ⁽²⁾	0.02 ^(13c)	0.02 ^(13c)			
Selenium	-	0.01 ⁽²⁾	-	-			
Zinc	-	5 ⁽³⁾	0.008, 0.05, 0.075, 0.125 (13e)	0.04 ^(13a)			
		Chlorinated solvents					
Trichloroethene	0.0001 ⁽⁴⁾	0.01 ⁽²⁾	0.01 ^(13c)	0.01 ^(13c)			
Tetrachloroethene	0.0001 ⁽⁴⁾	0.01 ⁽²⁾	0.01 ^(13c)	0.01 ^(13c)			
1,1,1-Trichloroethane	0.0001 ⁽⁴⁾	-	0.1 ^(13c)	0.1 ^(13c)			
1,1,2-Trichloroethane	0.0001 ⁽⁴⁾	-	0.4 ^(13c)	0.3 ^(13c)			
Carbon tetrachloride (Tetrachloromethane)	0.0001 ⁽⁴⁾	0.003 ⁽²⁾	0.012 ^(13c)	0.012 ^(13c)			
1,2-Dichloroethane	0.001 ⁽⁴⁾	0.003 ⁽²⁾	0.01 ^(13c)	0.01 ^(13c)			
Vinyl chloride (Chloroethene)	-	0.0005 ⁽²⁾	-	-			
Trihalomethanes	-	0.1 ^(2, 5)	-	-			
Chloroform (Trichloromethane) (one of the trihalomethanes included above)	0.0001 ⁽⁴⁾	0.1 ^(2, 5)	0.0025 ^(13c)	0.0025 ^(13c)			
	Po	lycyclic aromatic hydrocarbo	ons				
Acenaphthene	-	-	0.0058 ⁽¹⁾	0)			
Acenaphthylene	-	-	0.0058 ⁽¹⁾	0)			
Anthracene	-	-	0.0001 ^(13c)	0.0001 ^(13c)			

		Target (concentrations (mg/l)			
Determinant	Minimum Reporting	UK Drinking Water Standard or Best	Environmental Quality Standard or Best Equivalent			
	Value	Equivalent	Freshwater	Transitional (estuaries) and Coastal Waters		
Benzo(a)anthracene	-	-	0.000018	(10)		
Benzo(b)fluoranthene	-		0.00003 ^(13f)	0.00003 ^(13f)		
Benzo(k)fluoranthene	-	0.0001 ⁽²⁾	0.00003	0.00003		
Benzo(g,h,i)perylene	-		0.000002 ^(13g)	0.000002 ^(13g)		
Indeno(1,2,3-cd)pyrene	-		0.000002	0.000002		
Chrysene	-	-	0.00001(10)			
Dibenzo(a,h)anthracene	-	-	0.00001(10)			
Fluoranthene	-	-	0.0001 ^(13c)	0.0001 ^(13c)		
Fluorene	-	-	0.0021 ⁽¹	0)		
Phenanthrene	-	-	0.003 ⁽¹⁾	0)		
Pyrene	-	-	0.00004	10)		
Benzo(a)pyrene	-	0.00001 ⁽²⁾	0.00005 ^(13c)	0.00005 ^(13c)		
Naphthalene	-	-	0.0024 ^(13c)	0.0012 ^(13c)		
		Petroleum hydrocarbons				
Total petroleum hydrocarbons	-	0.01 ⁽³⁾	0.01 ^(3, 1)	1)		
Benzene	0.001 ⁽⁴⁾	0.001 ⁽²⁾	0.01 ^(13c)	0.008 ^(13c)		
Toluene	0.004 ⁽⁴⁾	0.7 ⁽⁹⁾	0.05 ^(13a)	0.04 ^(13a)		
Ethylbenzene	-	0.3 ⁽⁹⁾	0.02 ⁽¹²⁾	0.02 ⁽¹²⁾		
Xylene	0.003 ⁽⁴⁾	0.5 ⁽⁹⁾	0.03 ^(13c)	0.03 ^(13c)		

	Target concentrations (mg/l)						
Determinant	Minimum Reporting	UK Drinking Water Standard or Best	Environmental Quality Standard or Best Equivalent				
	Value	Equivalent	Freshwater	Transitional (estuaries) and Coastal Waters			
Methyl tertiary butyl ether	-	0.015 ⁽⁷⁾					
		Pesticides and herbicides					
Aldrin	0.000003 ⁽⁴⁾	0.00003 ⁽²⁾					
Dieldrin	0.003 ⁽⁴⁾	0.00003 ⁽²⁾	0.00001 ^(13d)	0.000005 ^(13d)			
Endrin	0.000003 ⁽⁴⁾	0.0006 ⁽⁹⁾	0.00001	0.000003			
Isodrin	0.000003 ⁽⁴⁾	-					
Heptachlor	-	0.00003 ⁽²⁾					
Heptachlor epoxide	-	0.00003 ⁽²⁾					
Other pesticides	-	0.0001 ⁽²⁾					
Total pesticides	-	0.0005 ⁽²⁾					
Total DDT	0.000004 ⁽⁴⁾	0.001 ⁽⁹⁾	0.000025 ^(13c)	0.000025 ^(13c)			
Azinphos – methyl	0.000001(4)	-	0.00001	(1)			
Cyfluthrin	0.0001 ⁽⁴⁾	-	0.00000	(14)			
Demeton	0.00005 ⁽⁴⁾	-	0.0005	14			
Dichlorvos	-	-	0.000001 ^(13c)	0.00004 ^(13c)			
Dimethoate	0.00001(4)	-	0.00048 ^(13a)	0.00048 ^(13a)			
Endosulphan	0.000005 ⁽⁴⁾	-	0.000005 ^(13c)	0.0000005 ^(13c)			
Fenitrothion	0.000001(4)	-	0.00001 ^(13c)	0.00001 ^(13c)			
Flucofuron	0.0001 ⁽⁴⁾	-	0.001 ⁽¹	4)			

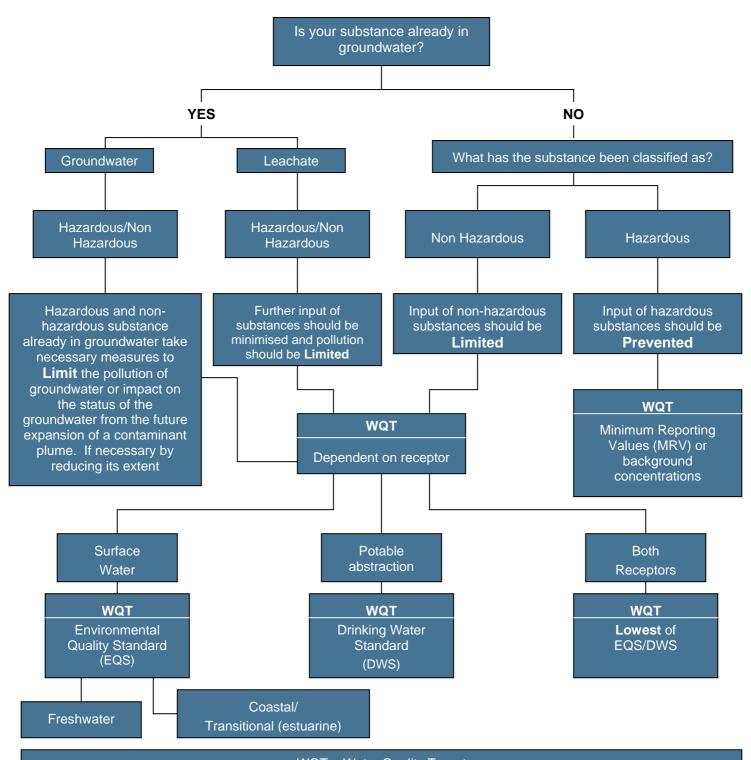
	Target concentrations (mg/l)						
Determinant	Minimum Reporting	UK Drinking Water Standard or Best	Environmental Quality Stan	dard or Best Equivalent			
	Value	Equivalent	Freshwater	Transitional (estuaries) and Coastal Waters			
Malathion	0.000001(4)	-	0.00001 ^(13c)	0.00002 ^(13c)			
Mevinphos	0.000005 ⁽⁴⁾	-	0.00002 ⁽¹⁴⁾	-			
Omethoate	0.0001 ⁽⁴⁾	-	0.0000	1 (14)			
PCSDs (cyfluthrin, sulcofuron, flucofuron and permethrin)	-	-	0.00005 ⁽¹⁵⁾				
Permethrin	0.000001(4)	-	0.00001 ^(13a)	0.00001 ⁽¹³⁾			
Sulcofuron	0.0001 ⁽⁴⁾	-	0.025 ^(8,14)				
Triazaphos	0.0001 ⁽⁴⁾	-	0.00000	05 ⁽⁸⁾			
Atrazine	0.00003 ⁽⁴⁾	-	0.0006 ^(13c)	0.0006 ^(13c)			
Simazine	0.00003 ⁽⁴⁾	-	0.001 ^(13c)	0.001 ^(13c)			
Bentazone	0.1 ⁽⁴⁾	-	0.5 ^(13c)	0.5 ^(13a)			
Linuron	0.0001 ⁽⁴⁾	-	0.0005 ^(13a)	0.0005 ^(13a)			
Mecoprop	0.00004 ⁽⁴⁾	-	0.018 ^(13a)	0.018 ^(13a)			
Trifluralin	0.00001 ⁽⁴⁾	-	0.00003 ^(13c)	0.00003 ^(13c)			
		Miscellaneous					
Cyanide (Hydrogen cyanide)	-	0.05 ⁽²⁾	0.001 ^(13a)	0.001 ^(13a)			
Phenol	0.0005 ⁽⁴⁾	-	0.0077 ^(13a)	0.0077 ^(13a)			
Sodium	-	200 ⁽²⁾	-				
Chloride	-	250 ⁽²⁾	250 ^(6,14)	-			

	Target concentrations (mg/l)						
Determinant	Minimum Reporting	UK Drinking Water Standard or Best	Environmental Quality Standard or Best Equivalent				
	Value	Equivalent	Freshwater	Transitional (estuaries) and Coastal Waters			
Ammonium (as NH ₄ ⁺)	-	0.5 ⁽²⁾	0.3 ^(13a)				
Ammonia (NH ₃)	-	-	0.025 ⁽¹⁵⁾	0.021 ^(13a)			
Sulphate	-	250 ⁽²⁾	400 ^(6,14)	-			
Iron	-	0.20 ⁽²⁾	1 ^(13a)	1 ^(13a)			
Manganese	-	0.05 ⁽²⁾	0.03 ^(6,14)	No EQS required (12)			
Aluminium	-	0.2 ⁽²⁾	-				
Nitrate (as NO ₃)	-	50 ⁽²⁾	-				
Nitrite (as NO ₂)	-	0.1 ⁽²⁾	0.01 ⁽¹⁵⁾	-			

Analytes in bold are hazardous, *analytes in italics are non hazardous*, analytes in plain text are unclassified; according to JAGDAG Determination List June 2010

Notes:

- 1. Environment Agency. Groundwater Protection: Principles and Policy (GP3). Part 1 4. Part 4 and 5 under consultation.
- Statutory Instrument 2000 No. 3184. The Water Supply (Water Quality) Regulations 2000, as amended by SI 2001/2885, SI 2002/2469, SI 2005/2035, SI 2007/2734 and SI 2010/991 (applying from April 20 2010)
- 3. Statutory Instrument 1989 No. 1147. The Water Supply (Water Quality) Regulations 1989, as amended.
- 4. Minimum reporting values listed in Annex (j) of Horizontal Guidance Note H1 (H1 Environmental Risk Assessment Framework, Environment Agency, April 2010 v2.0). Note target concentration for xylenes is 0.003mg/l each for o-xylene and m/p xylene.
- 5. Statutory Instrument 2000 No. 3184. The Water Supply (Water Quality) Regulations 2000 sum of chloroform, bromoform, dibromochloromethane and bromodichloromethane.
- 6. Proposed list of EQS for implementation of the Dangerous Substances Directive (76/464.EEC).
- 7. Environment Agency MTBE guidance, 2006.
- 8. Freshwater Environmental Quality Standards: The Water Framework Directive 200/60/EC.
- 9. WHO (2004) guidelines for drinking-water quality.
- 10. WRc plc (2002), R&D Technical Report P45. Where predicted no-effect concentration is below the laboratory method detection limit (LMDL) for chrysene, dibenzo(a,h)anthracene and fluoranthene, the target concentration has been set at the LMDL of 0.00001mg/l.
- 11. Please note this is a very conservative value. If necessary please refer to EA, 2009. Petroleum hydrocarbons in Groundwater Supplementary Guidance for Hydrogeological Risk Assessment, which provides advice on risk rankings of TPH CWG fractions. It may be possible to eliminate low risk fractions and/or those not detected above LMDL from concern.
- 12. Environment Agency Chemical Standards Database (May 2011). http://evidence.environment-agency.gov.uk/ChemicalStandards/home.aspx
- 13. The River Basin Districts Typology, Standards and Groundwater Threshold Values (Water Framework Directive) (England and Wales) Directions 2010.
 - 13a. Annual mean concentration (mg/l) for 'Good' standard.
 - 13b. Applies to hardness ranges of <40mg/l CaCO₃, 40–<50mg/l CaCO₃, 50–<100mg/l CaCO₃, 100–<200mg/l CaCO₃ and >/=200mg/l CaCO₃. The target concentrations included in Table 1 are listed in order of increasing calcium carbonate concentrations.
 - 13c Annual Average EQS (surface waters).
 - 13d. Sum of aldrin, dieldrin, endrin and isodrin.
 - 13e. Applies to hardness ranges of 0–50mg/l CaCO₃, 50–100mg/l CaCO₃, 100–250mg/l CaCO₃ and >250mg/l CaCO₃. The target concentrations included in Table 1 are listed in order of increasing calcium carbonate concentrations; applies to annual mean concentration (mg/l) of CaCO₃. Applies to annual mean concentration of metal (mg/l) for 'Good' standard.



- 13f. Sum of benzo(b)fluoranthene and benzo(k)fluoranthene.
- 13g. Sum of benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene.
- Council Directive on Pollution Caused by Certain Dangerous Substances Discharged into the Aquatic Environment of the Community (Dangerous Substances Directive) - List II Substances. Council Directive 76/464/EEC and Surface Waters (Dangerous Substances) (Classification) Regulations 1998
- 15. Council Directive on the Quality of Fresh Waters Needing Protection or Improvement in Order to Support Fish Life (Freshwater Fish Directive). Surface Waters (Fishlife) (Classification) Regulations 1997.

Note: '-' A target concentration is not available.

FLOW CHART TO ASSIST WITH SELECTION OF TARGET CONCENTRATIONS

WQT = Water Quality Target

When leachate is being assessed the 'compliance point' is the groundwater body. Therefore dilution within the groundwater body may be applied <u>with caution</u> before comparing with the WQT.

When directly assessing a receptor, e.g., a river, the appropriate WQT should be selected.

APPENDIX L PREVIOUS SITE INVESTIGATION REPORTS