Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.1.25 Printed on 03 November 2015 at 15:18:06

Proiect Information:

Assessed By: Joe Solti (STRO003946) Building Type: Semi-detached House

Dwelling Details:

NEW DWELLING DESIGN STAGE

Total Floor Area: 209m²

Site Reference: TJ-34

Plot Reference: TJ3401

Address: Plots 1-4, 59 Ham Street, Richmond, TW10 7HR

Client Details:

Name: Ascot Design

Address:

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Electricity

Fuel factor: 1.47 (electricity)

Target Carbon Dioxide Emission Rate (TER) 21.03 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER)

13.65 kg/m²

OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 52.0 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 47.8 kWh/m²

OK

2 Fabric U-values

Element Highest Average External wall 0.22 (max. 0.30) 0.22 (max. 0.70) OK Party wall 0.00 (max. 0.20) **OK** Floor 0.16 (max. 0.25) 0.22 (max. 0.70) OK Roof 0.12 (max. 0.20) 0.16 (max. 0.35) OK Openings 1.40 (max. 2.00) 1.40 (max. 3.30) OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 5.00 (design value)

Maximum 10.0 OK

4 Heating efficiency

Main Heating system: Database: (rev 383, product index 100013):

Heat pumps with radiators or underfloor heating - electric

Brand name: Model:

Model qualifier:

()

Minimum 88.0 %

Secondary heating system: Room heaters - wood

Closed room heater Efficiency 65.0 %

Minimum 65.0 %

OK

Regulations Compliance Report

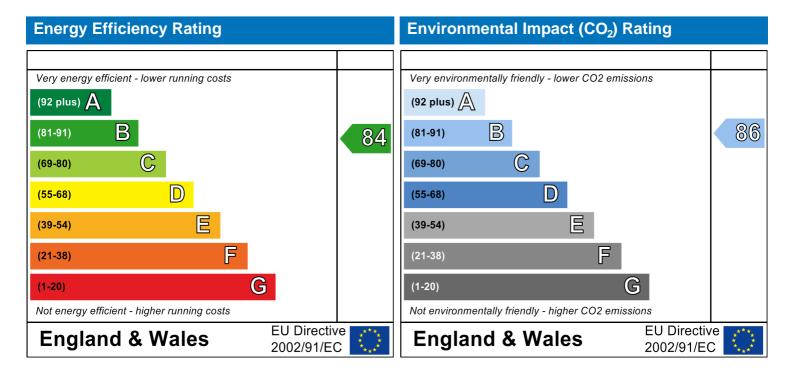
5 Cylinder insulation			
	Magaurad avlindar las	20.1.60 kWh/day	
Hot water Storage:	Measured cylinder los	· · · · · · · · · · · · · · · · · · ·	
	Permitted by DBSCG:	2.86 kvvn/day	
Primary pipework insulated:	Yes		OK
6 Controls			
Space heating controls	TTZC by plumbing an	d electrical services	ок
Hot water controls:	Cylinderstat		ОК
	Independent timer for	DHW	OK
Boiler interlock:	Yes		OK
7 Low energy lights	100		Oit
	- I Cutin	400.00/	
Percentage of fixed lights with	n low-energy fittings	100.0%	214
Minimum		75.0%	OK
8 Mechanical ventilation			
Not applicable			
9 Summertime temperature			
Overheating risk (Thames va	lley):	Not significant	OK
Based on:	,	o	
Overshading:		Average or unknown	
Windows facing: North East		12m²	
Windows facing: South East		12m²	
Ventilation rate:		4.00	
Blinds/curtains:		None	
Dillius/cui tallis.			
		Closed 100% of daylight hours	

10 Key features

Thermal bridging 0.037 W/m²K
Roofs U-value 0.11 W/m²K
Party Walls U-value 0 W/m²K

Secondary heating (wood logs) Secondary heating fuel wood logs

Predicted Energy Assessment


Plots 1-4 59 Ham Street Richmond TW10 7HR Dwelling type:
Date of assessment:
Produced by:

Semi-detached House 03 November 2015 Joe Solti

Produced by: Joe Sol Total floor area: 209 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Property Details: TJ340⁻

Address: Plots 1-4, 59 Ham Street, Richmond, TW10 7HR

Located in: England Region: Thames valley

UPRN:

Date of assessment:

Date of certificate:

Assessment type:

03 November 2015

03 November 2015

New dwelling design stage

Transaction type:

Tenure type:

Related party disclosure:

Thermal Mass Parameter:

New dwelling

Unknown

No related party

Indicative Value Medium

Water use <= 125 litres/person/day: True

PCDF Version: 383

Property description:

Dwelling type: House

Detachment: Semi-detached

Year Completed: 2015

Floor Location: Floor area:

Basement floor 71 m^2 2.8 m Floor 1 69 m^2 3 m Floor 2 69 m^2 2.5 m

Living area: 28 m² (fraction 0.134)

Front of dwelling faces: North East

Opening types:

Name:	Source:	Type:	Glazing:	Argon:	Frame:
Front Door	Manufacturer	Half glazed	low-E, $En = 0.05$, soft coat	Yes	Wood
Windows (NE/NW)	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Wood
Windows (SE/SW)	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Wood

Name:	Gap:	Frame Factor	: g-value:	U-value:	Area:	No. of Openings:
Front Door	16mm or more mm	0.7	0.63	1.4	2.5	1
Windows (NE/NW)	16mm or more	0.7	0.63	1.4	12	1
Windows (SE/SW)	16mm or more	0.7	0.63	1.4	12	1

Storey height:

Name: Type-Name: Location: Orient: Width: Height: Front Door Wall North East Windows (NE/NW) Wall North East 0 0 Windows (SE/SW) Wall South East 0 0

Overshading: Average or unknown

Opaque Elements

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Kappa:
External Elements	<u>S</u>						
Wall	198	26.5	171.5	0.22	0	False	N/A
Roof (loft)	63	0	63	0.11	0		N/A
Roof (skeilings)	10	0	10	0.16	0		N/A
Basement Floor	71			0.16			N/A
Exposed Upper Floo	or 4			0.22			N/A
Internal Elements	<u>i</u>						
Party Elements							
Party Walls	90						N/A

SAP Input

Thermal bridges:

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.0365

	Length	Psi-value	·	
	11	0.056	E2	Other lintels (including other steel lintels)
	15	0.038	E3	Sill
	52	0.042	E4	Jamb
	24	0.061	E5	Ground floor (normal)
	48	0	E6	Intermediate floor within a dwelling
[Approved]	0	0.06	E10	Eaves (insulation at ceiling level)
[Approved]	0	0.04	E11	Eaves (insulation at rafter level)
[Approved]	11	0.24	E12	Gable (insulation at ceiling level)
[Approved]	12.5	0.04	E13	Gable (insulation at rafter level)
	16	0.052	E16	Corner (normal)
[Approved]	0	-0.09	E17	Corner (inverted internal area greater than external area)
[Approved]	32	0.06	E18	Party wall between dwellings
	6	0.32	E20	Exposed floor (normal)

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0

Number of open flues: 1 (main: 0, secondary: 1, other: 0)

Number of fans: 6
Number of passive stacks: 0
Number of sides sheltered: 2
Pressure test: 5

Main heating system:

Main heating system: Heat pumps with radiators or underfloor heating

Electric heat pumps Fuel: Electricity

Info Source: Boiler Database

Database: (rev 383, product index 100013, SEDBUK 400%):

Brand name: Daikin Altherma Model: ERHQ006BV3 + EKHBH008B

Model qualifier: Underfloor (provides DHW all year)

Underfloor heating and radiators, pipes in screed above insulation

Central heating pump: 2012 or earlier

Design flow temperature: Design flow temperature >45°C

Unknown

Boiler interlock: Yes

Main heating Control:

Main heating Control: Time and temperature zone control by suitable arrangement of plumbing and electrical services

Control code: 2207

Secondary heating system:

Secondary heating system: Room heaters

Solid fuel room heaters

Fuel: wood logs

Info Source: SAP Tables Closed room heater HETAS Approved

Water heating

Water heating: From main heating system

SAP Input

Water code: 901 Fuel :Electricity Hot water cylinder

Cylinder volume: 300 litres

Cylinder insulation: Measured loss, 1.6kWh/day

Primary pipework insulation: True

Cylinderstat: True

Cylinder in heated space: True

Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English
Wind turbine: No
Photovoltaics: None
Assess Zero Carbon Home: No

		-			
		User Details:			
Assessor Name:	Joe Solti	Stroma Num	ber: STRC	0003946	
Software Name:	Stroma FSAP 2012	Software Ver	sion: Version	on: 1.0.1.25	
	Pro	perty Address: TJ3401			
Address :	Plots 1-4, 59 Ham Street, Rich	hmond, TW10 7HR			
1. Overall dwelling dime	ensions:				
Danasas		Area(m²)	Av. Height(m)	Volume(m³)	_
Basement		71 (1a) x	2.8 (2a) =	198.8	(3a)
Ground floor		69 (1b) x	3 (2b) =	207	(3b)
First floor		69 (1c) x	2.5 (2c) =	172.5	(3c)
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e)+(1n)	209 (4)			
Dwelling volume		(3a)+(3b)	+(3c)+(3d)+(3e)+(3n) =	578.3	(5)
2. Ventilation rate:					
	main secondary heating heating	other	total	m³ per hour	
Number of chimneys	0 + 0	+ 0 =	0 x 40 =	0	(6a)
Number of open flues	0 + 1	+ 0 =	1 x 20 =	20	(6b)
Number of intermittent fa	ns		6 x 10 =	60	(7a)
Number of passive vents		Ī	0 x 10 =	0	(7b)
Number of flueless gas fi	res	Ī	0 x 40 =	0	(7c)
		_	Air al		
1.600	(0-) (0) (7-)) - (7h) - (7 -)		nanges per hou	_
•	ys, flues and fans = $(6a)+(6b)+(7a)$ seen carried out or is intended, proceed in		\div (5) =	0.14	(8)
Number of storeys in the		to (17), otherwise continue no	on (9) to (10)	0	(9)
Additional infiltration	io alloming (no)		[(9)-1]x0.1 =	0	(10)
	.25 for steel or timber frame or 0	0.35 for masonry constru		0	(11)
if both types of wall are p	resent, use the value corresponding to t	· · · · · · · · · · · · · · · · · · ·			」 ` ′
deducting areas of opening		(applied) also enter 0			7(40)
•	floor, enter 0.2 (unsealed) or 0.1	(Sealed), else elliel 0		0	(12)
If no draught lobby, en				0	(13)
· ·	s and doors draught stripped	0.25 - [0.2 x (14) ÷ 10	201 –	0](14)
Window infiltration				0	(15)
Infiltration rate	-50	(8) + (10) + (11) + (1		0	(16)
•	q50, expressed in cubic metres		etre of envelope area	5	(17)
·	ity value, then $(18) = [(17) \div 20] + (8)$,		to the feature of	0.39	(18)
Number of sides sheltere	es if a pressurisation test has been done	or a degree air permeability i	s being usea		7(40)
Shelter factor	:u	(20) = 1 - [0.075 x (1	9)] =	0.85	(19) (20)
Infiltration rate incorporat	ing shelter factor	(21) = (18) x (20) =](20)](21)
Infiltration rate modified f	_	() () () () () ()		0.33	(۱۵۱)
Jan Feb	- 	Jul Aug Sep	Oct Nov Dec	1	
l l	1 . 1	Jul Aug Sep	Oct Nov Dec	J	
Monthly average wind sp	eed from Table /		1 1	1	

3.8

3.7

4.3

4

4.5

4.7

4.4

4.3

3.8

4.9

5.1

(22)m=

5

Wind Factor (22a)m =	(22)m ÷	4										
(22a)m= 1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18]	
Adjusted infilt	ration rat	e (allowi	ng for sh	nelter an	d wind s	speed) =	(21a) x	(22a)m					
0.42	0.41	0.4	0.36	0.35	0.31	0.31	0.31	0.33	0.35	0.37	0.39]	
Calculate effe		•	rate for t	he appli	cable ca	se							(23a)
If exhaust air I			endix N. (2	3b) = (23a	a) × Fmv (e	eguation (N	N5)) . othe	rwise (23b) = (23a)			0	(23b)
If balanced wi									, (,			0	(23c)
a) If balanc		-	-	_					2b)m + (23b) × [1 – (23c)		(200)
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24a)
b) If balanc	ed mech	anical ve	entilation	without	heat red	covery (N	ЛV) (24t	m = (22)	2b)m + (23b)		J	
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24b)
c) If whole I	house ex	tract ver	ntilation o	or positiv	e input v	ventilatio	n from o	outside	•	•	•	•	
if (22b)	m < 0.5 ×	(23b), t	hen (24	c) = (23b); other	wise (24	c) = (22l	o) m + 0	.5 × (23b	p)		,	
(24c)m = 0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If natural if (22b)	ventilation $\mathbf{m} = 1$, the				•				0.51				
(24d)m = 0.59	0.59	0.58	0.57	0.56	0.55	0.55	0.55	0.55	0.56	0.57	0.58]	(24d)
Effective ai	r change	rate - er	nter (24a) or (24k	o) or (24	c) or (24	d) in bo	x (25)		!		•	
(25)m= 0.59	0.59	0.58	0.57	0.56	0.55	0.55	0.55	0.55	0.56	0.57	0.58]	(25)
2 Hoot loos												_	
3. Heat 1055	es and ne	eat loss r	paramete	er:									
ELEMENT	Gros	SS	oaramete Openin	gs	Net Ar		U-val		A X U		k-value		A X k
ELEMENT		SS		gs	A ,r	m²	W/m2	2K	(W/		k-value kJ/m²-		kJ/K
ELEMENT Doors	Gros area	SS	Openin	gs	A ,r	m² x	W/m2	2K =	(W/ 3.5				kJ/K (26)
ELEMENT Doors Windows Typ	Gros area e 1	SS	Openin	gs	A ,r 2.5	m² x x x 1/	W/m2 1.4 /[1/(1.4)+	2K = - 0.04] =	(W/ 3.5 15.91				kJ/K (26) (27)
ELEMENT Doors Windows Typ Windows Typ	Gros area e 1	SS	Openin	gs	A ,r 2.5 12	m ² x x1/2 x1/2	W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+	2K = 0.04] = 0.04] =	(W/ 3.5 15.91 15.91				(26) (27) (27)
ELEMENT Doors Windows Typ Windows Typ Floor Type 1	Gros area e 1	SS	Openin	gs	A ,r 2.5 12 12 71	m ²	W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+	eK = 0.04] = 0.04] = = =	(W/ 3.5 15.91 15.91 11.36				(26) (27) (27) (28)
ELEMENT Doors Windows Typ Windows Typ Floor Type 1 Floor Type 2	Gros area e 1 e 2	ss (m²)	Openin m	gs ²	A ,r 2.5 12 12 71 4	m ²	W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.16 0.22	eK = 0.04] = 0.04] = = = =	(W/ 3.5 15.91 15.91 11.36 0.88				(26) (27) (27) (28) (28)
ELEMENT Doors Windows Typ Windows Typ Floor Type 1 Floor Type 2 Walls	Gros area e 1 e 2	ss (m²)	Openin m	gs ²	A ,r 2.5 12 12 71 4 171.5	x1/2 x x x x x x x x x x x x x x x x x x x	W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.16 0.22 0.22	eK = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = =	(W/ 3.5 15.91 15.91 11.36 0.88 37.73				(26) (27) (27) (28) (28) (29)
ELEMENT Doors Windows Typ Windows Typ Floor Type 1 Floor Type 2 Walls Roof Type1	Gros area e 1 e 2	ss (m²)	26.5 0	gs ²	A ,r 2.5 12 12 71 4 171.5	x1/2 x x x x x x x x x x x x x x x x x x x	W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.16 0.22 0.22 0.11	eK = 0.04] = 0.04] = = = = =	(W/ 3.5 15.91 15.91 11.36 0.88 37.73 6.93				(26) (27) (27) (28) (28) (29) (30)
ELEMENT Doors Windows Typ Windows Typ Floor Type 1 Floor Type 2 Walls Roof Type1 Roof Type2	Gros area e 1 e 2 198 63	ss (m²)	Openin m	gs ²	A ,r 2.5 12 12 71 4 171.5 63	x1/2 x x x x x x x x x x x x x x x x x x x	W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.16 0.22 0.22	eK = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = =	(W/ 3.5 15.91 15.91 11.36 0.88 37.73				(26) (27) (27) (28) (28) (29) (30)
ELEMENT Doors Windows Typ Windows Typ Floor Type 1 Floor Type 2 Walls Roof Type1 Roof Type2 Total area of	Gros area e 1 e 2 198 63	ss (m²)	26.5 0	gs ²	A ,r 2.5 12 12 71 4 171.5 63 10 346	x1/2 x x x x x x x x x x x x x x x x x x x	W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.16 0.22 0.22 0.11 0.16	2K = 0.04 = 0.04 = = = = =	(W/ 3.5 15.91 15.91 11.36 0.88 37.73 6.93 1.6				(26) (27) (27) (28) (28) (29) (30) (30) (31)
ELEMENT Doors Windows Typ Windows Typ Floor Type 1 Floor Type 2 Walls Roof Type1 Roof Type2 Total area of Party wall	Gros area e 1 e 2 198 63 10 elements	3 3 3 4, m ²	26.5 0	gs ²	A ,r 2.5 12 71 4 171.5 63 10 346	m ²	W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.16 0.22 0.22 0.11 0.16	EK = 0.04] = 0.04] = = = = = =	(W/ 3.5 15.91 15.91 11.36 0.88 37.73 6.93 1.6	K)	kJ/m²-	k	(26) (27) (27) (28) (28) (29) (30)
ELEMENT Doors Windows Typ Windows Typ Floor Type 1 Floor Type 2 Walls Roof Type1 Roof Type2 Total area of	Gros area e 1 e 2 198 63 10 elements	ss (m²)	Openin m 26.5 0 0	gs ₁ 2	A ,r 2.5 12 12 71 4 171.5 63 10 346 90 alue calcul	m ²	W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.16 0.22 0.22 0.11 0.16	EK = 0.04] = 0.04] = = = = = =	(W/ 3.5 15.91 15.91 11.36 0.88 37.73 6.93 1.6	K)	kJ/m²-	k	(26) (27) (27) (28) (28) (29) (30) (30) (31)
ELEMENT Doors Windows Typ Windows Typ Floor Type 1 Floor Type 2 Walls Roof Type1 Roof Type2 Total area of Party wall * for windows and	Gros area e 1 e 2 198 63 10 elements d roof winderas on both	3 3 3 5, m ² ows, use e	26.5 0 0 effective winternal wall	gs ₁ 2	A ,r 2.5 12 12 71 4 171.5 63 10 346 90 alue calcul	x1/2 x1/2 x1/2 x1/2 x x x x x x x x x x x x x x x x x x x	W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.16 0.22 0.22 0.11 0.16	2K = 0.04 = 0.04 = = = = = = = = = =	(W/ 3.5 15.91 15.91 11.36 0.88 37.73 6.93 1.6	K)	kJ/m²-	k	(26) (27) (27) (28) (28) (29) (30) (30) (31)
ELEMENT Doors Windows Typ Windows Typ Floor Type 1 Floor Type 2 Walls Roof Type1 Roof Type2 Total area of Party wall * for windows and the include the area.	Gros area e 1 e 2 198 63 10 elements d roof winddeas on both	SS (m²) 3 3 4, m² ows, use e sides of in = S (A x	26.5 0 0 effective winternal wall	gs ₁ 2	A ,r 2.5 12 12 71 4 171.5 63 10 346 90 alue calcul	x1/2 x1/2 x1/2 x1/2 x x x x x x x x x x x x x x x x x x x	W/m ² 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.16 0.22 0.21 0.11 0.16	2K = 0.04] = 0.04] = = = = = = =	(W/ 3.5 15.91 15.91 11.36 0.88 37.73 6.93 1.6	K)	kJ/m²-l	K	(26) (27) (28) (28) (29) (30) (31) (32)
ELEMENT Doors Windows Typ Windows Typ Floor Type 1 Floor Type 2 Walls Roof Type1 Roof Type2 Total area of Party wall * for windows and the include the area fabric heat loog	Gros area e 1 e 2 198 63 10 elements d roof winders on both eas on both eas, W/K:	ss (m²) 3 6, m² cows, use e sides of in a sides of in a sides (A x k)	26.5 0 0 effective winternal walk	gs 2 ndow U-ve	A ,r 2.5 12 71 4 171.5 63 10 346 90 alue calcultitions	x1/2 x x1/2 x x x x x x x x x x x x x x x x x x x	W/m ² 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.16 0.22 0.21 0.11 0.16	EK = 0.04] = 0.04] = = = = = =	(W/ 3.5 15.91 15.91 11.36 0.88 37.73 6.93 1.6	K)	kJ/m²-l	K	(26) (27) (28) (28) (29) (30) (31) (32)
ELEMENT Doors Windows Typ Windows Typ Floor Type 1 Floor Type 2 Walls Roof Type1 Roof Type2 Total area of Party wall * for windows an ** include the are Fabric heat lo Heat capacity Thermal mass For design assess	Gros area e 1 e 2 198 63 10 elements d roof winddeas on both eas on both eas, W/K: r Cm = S(s parame	SS (m²) 3 3 5, m² cows, use e sides of interest (A x k) eter (TMF)	26.5 26.5 0 offective with ternal walk U) P = Cm : tails of the	gs page 12 gs and year grand page 13 grand p	A ,r 2.5 12 12 71 4 171.5 63 10 346 90 alue calcul titions	x1/2 x1/2 x1/2 x x x x x x x x x x x x x x x x x x x	W/m ² 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.16 0.22 0.22 0.11 0.16 0 formula 1 (26)(30	2K = 0.04] = 0.04] = = = = = =	(W/ 3.5 15.91 11.36 0.88 37.73 6.93 1.6 0 ue)+0.04] a	K)	kJ/m²-l	7 3.2 93.82 36752	(26) (27) (27) (28) (28) (29) (30) (31) (32)
ELEMENT Doors Windows Typ Windows Typ Floor Type 1 Floor Type 2 Walls Roof Type1 Roof Type2 Total area of Party wall * for windows and the include the area fabric heat lood Heat capacity Thermal mass	Gros area e 1 e 2 198 63 10 elements d roof wind eas on both eas, W/K: c Cm = S(s parame essments whe ead of a de	ss (m²) 3 3 4, m² ows, use e sides of in = S (A x (A x k)) eter (TMF) ere the de tailed calculations	Openin m 26.5 0 0 effective winternal walk U) P = Cm - tails of the pulation.	gs indow U-ve ls and pan TFA) ir construct	A ,r 2.5 12 12 71 4 171.5 63 10 346 90 alue calculatitions	x1/2 x x1/2 x x x x x x x x x x x x x x x x x x x	W/m ² 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.16 0.22 0.22 0.11 0.16 0 formula 1 (26)(30	2K = 0.04] = 0.04] = = = = = =	(W/ 3.5 15.91 11.36 0.88 37.73 6.93 1.6 0 ue)+0.04] a	K)	kJ/m²-l	7 3.2 93.82 36752	(26) (27) (27) (28) (28) (29) (30) (31) (32)

if details of therma	al bridging	are not kn	own (36) =	= 0.15 x (3	1)								
Total fabric he	at loss							(33) +	(36) =			106.46	(37)
Ventilation hea	at loss ca	alculated	monthly	y .				(38)m	= 0.33 × ((25)m x (5))	İ	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m= 112.32	111.66	111.02	108	107.43	104.8	104.8	104.32	105.82	107.43	108.58	109.77		(38)
Heat transfer of	coefficier	nt, W/K						(39)m	= (37) + (38)m			
(39)m= 218.78	218.13	217.49	214.46	213.9	211.27	211.27	210.78	212.28	213.9	215.04	216.24		
Heat loss para	meter (H	HLP), W/	m²K						Average = = (39)m ÷	Sum(39) _{1.} · (4)	12 /12=	214.46	(39)
(40)m= 1.05	1.04	1.04	1.03	1.02	1.01	1.01	1.01	1.02	1.02	1.03	1.03		
									Average =	Sum(40) ₁ .	12 /12=	1.03	(40)
Number of day	s in mor	nth (Tab	le 1a)									1	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Water heat	ina ener	rav reaui	rement:								kWh/ye	ear:	
Assumed occu			[4	(0 0000	140 v /TF	- 10.0	\2\1 · 0 (0040 v /	TEA 40		.01		(42)
if TFA > 13.9 if TFA £ 13.9		+ 1.76 X	[1 - exp	(-0.0003	349 X (11	-A -13.9)2)] + 0.0	0013 X (IFA -13.	.9)			
Annual averag	•	ater usac	ae in litre	s per da	ay Vd,av	erage =	(25 x N)	+ 36		109	5.77		(43)
Reduce the annua	al average	hot water	usage by	5% if the a	lwelling is	designed t			se target o		0.11		(- /
not more that 125	litres per p	person per	day (all w	ater use, l	hot and co	ld) 				-	-		
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water usage in	n litres per	day for ea	ach month	Vd,m = fa	ctor from T	Table 1c x	(43)						
(44)m= 116.35	112.12	107.89	103.66	99.43	95.2	95.2	99.43	103.66	107.89	112.12	116.35		
Energy content of	hot water	used - cal	culated mo	onthly = 4.	190 x Vd,r	m x nm x D	OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		1269.28	(44)
(45)m= 172.55	150.91	155.72	135.76	130.27	112.41	104.17	119.53	120.96	140.97	153.88	167.1		
									rotal = Su	m(45) ₁₁₂ =	=	1664.23	(45)
If instantaneous w	ater heatii	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46)) to (61)					
(46)m= 25.88	22.64	23.36	20.36	19.54	16.86	15.63	17.93	18.14	21.15	23.08	25.07		(46)
Water storage						-						' I	
Storage volum	e (litres)	includin	ig any so	olar or W	/WHRS	storage	within sa	ame ves	sel		300		(47)
If community h	_			-			' '						
Otherwise if no		hot wate	er (this in	ıcludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
Water storage a) If manufact		odorod k	ooo foot	or io kno	(Id\A/k	2/dox4):					_		(40)
,				JI IS KIIO	WII (KVVI	i/uay).					.6		(48)
Temperature fa										0.	.54		(49)
Energy lost fro		_	-		or ic not		(48) x (49)) =		0.	.86		(50)
b) If manufactHot water stora			-								0		(51)
If community h	_			(,,					•		(5.)
Volume factor	_										0		(52)
Temperature fa	actor fro	m Table	2b							—	0		(53)
Energy lost fro	m water	storage	, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0		(54)
Enter (50) or (_	•							—	.86		(55)
												ı	

Water storage	loss cal	culated f	or each	month			((56)m = (55) × (41)ı	m			
(56)m= 26.78	24.19	26.78	25.92	26.78	25.92	26.78	26.78	25.92	26.78	25.92	26.78	(56)
If cylinder contain	s dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (L H11)] ÷ (5	0), else (5	7)m = (56)	m where (L H11) is fro	m Append	l lix H
(57)m= 26.78	24.19	26.78	25.92	26.78	25.92	26.78	26.78	25.92	26.78	25.92	26.78	(57)
Primary circui	t loss (ar	nual) fro	m Table	3							0	(58)
Primary circui	•	,			59)m = ((58) ÷ 36	55 × (41)	m				I
(modified by	factor f	rom Tabl	le H5 if t	here is s	olar wat	er heatir	ng and a	cylinde	r thermo	stat)		_
(59)m= 23.26	21.01	23.26	22.51	23.26	0	0	0	0	23.26	22.51	23.26	(59)
Combi loss ca	lculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m					_
(61)m= 0	0	0	0	0	0	0	0	0	0	0	0	(61)
Total heat req	uired for	water he	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m
(62)m= 222.59	196.11	205.77	184.2	180.32	138.33	130.95	146.32	146.88	191.01	202.31	217.15	(62)
Solar DHW input	calculated	using App	endix G or	Appendix	H (negati	ve quantity	v) (enter '0	' if no sola	r contributi	ion to wate	er heating)	
(add additiona	I lines if	FGHRS	and/or V	VWHRS	applies	, see Ap	pendix (3)				•
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0	(63)
Output from w	ater hea	ter										_
(64)m= 222.59	196.11	205.77	184.2	180.32	0	0	0	0	191.01	202.31	217.15	
							Outp	out from wa	ater heatei	r (annual)₁	12	1599.46 (64)
Output immer	sion											_
(64)m= 0	0	0	0	0	138.33	130.95	146.32	146.88	0	0	0	
							Outp	out from im	mersion (a	annual) ₁₁₂		562.480541922569 (64)
Heat gains fro	m water	heating,	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 x	([(46)m	+ (57)m	+ (59)m]
(65)m= 97.41	86.34	91.82	83.89	83.35	58.11	56.06	61.17	60.96	86.91	89.91	95.6	(65)
include (57)	m in cald	culation o	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating
5. Internal g	ains (see	e Table 5	and 5a):								
Metabolic gair	ns (Table	e 5), Wat	4									
Jan	Feb		เร									
(66)m= 180.82		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Lighting gains	180.82	Mar 180.82	Ĭ	May 180.82	Jun 180.82	Jul 180.82	Aug 180.82	Sep 180.82	Oct 180.82	Nov 180.82	Dec 180.82	(66)
Lighting gains	ļ	180.82	Apr 180.82	180.82	180.82	180.82	180.82	180.82				(66)
(67)m= 92.75	ļ	180.82	Apr 180.82	180.82	180.82	180.82	180.82	180.82				(66)
	(calcula	180.82 ted in Ap 66.99	Apr 180.82 opendix 50.72	180.82 L, equati	180.82 on L9 o	180.82 r L9a), a 34.59	180.82 Iso see	180.82 Table 5	180.82 76.61	180.82	180.82	, ,
(67)m= 92.75	(calcula	180.82 ted in Ap 66.99	Apr 180.82 opendix 50.72	180.82 L, equati	180.82 on L9 o	180.82 r L9a), a 34.59	180.82 Iso see	180.82 Table 5	180.82 76.61	180.82	180.82	, ,
(67)m= 92.75 Appliances ga	(calcula 82.38 iins (calc 572.33	180.82 ted in Ap 66.99 culated in	Apr 180.82 opendix 50.72 n Append 525.98	180.82 L, equati 37.91 dix L, equ	180.82 on L9 o 32.01 uation L 448.76	180.82 r L9a), a 34.59 13 or L1 423.77	180.82 Iso see 44.96 3a), also	180.82 Table 5 60.34 see Tal 432.7	76.61 ble 5 464.24	180.82 89.42	180.82 95.33	(67)
(67)m= 92.75 Appliances ga (68)m= 566.45	(calcula 82.38 iins (calc 572.33	180.82 ted in Ap 66.99 culated in	Apr 180.82 opendix 50.72 n Append 525.98	180.82 L, equati 37.91 dix L, equ	180.82 on L9 o 32.01 uation L 448.76	180.82 r L9a), a 34.59 13 or L1 423.77	180.82 Iso see 44.96 3a), also	180.82 Table 5 60.34 see Tal 432.7	76.61 ble 5 464.24	180.82 89.42	180.82 95.33	(67)
(67)m= 92.75 Appliances ga (68)m= 566.45 Cooking gains (69)m= 56.1	(calcula 82.38 ins (calc 572.33 s (calcula 56.1	180.82 ted in Ap 66.99 culated in 557.51 ated in Ap 56.1	Apr 180.82 ppendix 50.72 Append 525.98 ppendix 56.1	180.82 L, equati 37.91 dix L, equ 486.18 L, equat	180.82 ion L9 of 32.01 uation L 448.76 ion L15	180.82 r L9a), a 34.59 13 or L1: 423.77 or L15a)	180.82 Iso see 44.96 3a), also 417.89	180.82 Table 5 60.34 see Tal 432.7	76.61 ble 5 464.24	89.42 504.04	95.33 541.46	(67)
(67)m= 92.75 Appliances ga (68)m= 566.45 Cooking gains	(calcula 82.38 ins (calc 572.33 s (calcula 56.1	180.82 ted in Ap 66.99 culated in 557.51 ated in Ap 56.1	Apr 180.82 ppendix 50.72 Append 525.98 ppendix 56.1	180.82 L, equati 37.91 dix L, equ 486.18 L, equat	180.82 ion L9 of 32.01 uation L 448.76 ion L15	180.82 r L9a), a 34.59 13 or L1: 423.77 or L15a)	180.82 Iso see 44.96 3a), also 417.89	180.82 Table 5 60.34 see Tal 432.7	76.61 ble 5 464.24	89.42 504.04	95.33 541.46	(67)
(67)m= 92.75 Appliances ga (68)m= 566.45 Cooking gains (69)m= 56.1 Pumps and fa	(calcula 82.38 tins (calcula 572.33 (calcula 56.1 ns gains	180.82 ted in Ap 66.99 culated in 557.51 ated in Ap 56.1 (Table 5	Apr 180.82 opendix 50.72 n Append 525.98 opendix 56.1 5a)	180.82 L, equati 37.91 dix L, equ 486.18 L, equat 56.1	180.82 on L9 of 32.01 uation L 448.76 ion L15 56.1	180.82 r L9a), a 34.59 13 or L1: 423.77 or L15a) 56.1	180.82 Iso see 44.96 3a), also 417.89 , also se 56.1	180.82 Table 5 60.34 see Tal 432.7 ee Table 56.1	76.61 ble 5 464.24 5 56.1	180.82 89.42 504.04 56.1	95.33 541.46 56.1	(67)
(67)m= 92.75 Appliances ga (68)m= 566.45 Cooking gains (69)m= 56.1 Pumps and fa (70)m= 0	(calcula 82.38 sins (calcula 572.33 s (calcula 56.1 ns gains 0 vaporatio	ted in Ap 66.99 sulated in 557.51 ated in Ap 56.1 (Table 5 0 on (negat	Apr 180.82 ppendix 50.72 Append 525.98 ppendix 56.1 5a) 0	180.82 L, equati 37.91 dix L, equ 486.18 L, equat 56.1	180.82 on L9 of 32.01 uation L 448.76 ion L15 56.1	180.82 r L9a), a 34.59 13 or L1: 423.77 or L15a) 56.1	180.82 Iso see 44.96 3a), also 417.89 , also se 56.1	180.82 Table 5 60.34 see Tal 432.7 ee Table 56.1	76.61 ble 5 464.24 5 56.1	180.82 89.42 504.04 56.1	95.33 541.46 56.1	(67)
(67)m= 92.75 Appliances ga (68)m= 566.45 Cooking gains (69)m= 56.1 Pumps and fa (70)m= 0 Losses e.g. ev	(calcula 82.38 ins (calcula 572.33 c (calcula 56.1 ns gains 0 vaporatio -120.55	180.82 ted in Ap 66.99 culated in 557.51 ated in Ap 56.1 (Table 5 0 on (negat	Apr 180.82 ppendix 50.72 Append 525.98 ppendix 56.1 5a) 0	180.82 L, equati 37.91 dix L, equ 486.18 L, equat 56.1 0 es) (Tab	180.82 fon L9 of 32.01 uation L 448.76 ion L15 56.1	180.82 r L9a), a 34.59 13 or L1: 423.77 or L15a) 56.1	180.82 Iso see 44.96 3a), also 417.89 , also se 56.1	180.82 Table 5 60.34 see Tal 432.7 ee Table 56.1	76.61 ble 5 464.24 5 56.1	180.82 89.42 504.04 56.1	95.33 541.46 56.1	(67) (68) (69) (70)
(67)m= 92.75 Appliances ga (68)m= 566.45 Cooking gains (69)m= 56.1 Pumps and fa (70)m= 0 Losses e.g. ev (71)m= -120.55	(calcula 82.38 ins (calcula 572.33 c (calcula 56.1 ns gains 0 vaporatio -120.55	180.82 ted in Ap 66.99 culated in 557.51 ated in Ap 56.1 (Table 5 0 on (negat	Apr 180.82 ppendix 50.72 Append 525.98 ppendix 56.1 5a) 0	180.82 L, equati 37.91 dix L, equ 486.18 L, equat 56.1 0 es) (Tab	180.82 fon L9 of 32.01 uation L 448.76 ion L15 56.1	180.82 r L9a), a 34.59 13 or L1: 423.77 or L15a) 56.1	180.82 Iso see 44.96 3a), also 417.89 , also se 56.1	180.82 Table 5 60.34 see Tal 432.7 ee Table 56.1	76.61 ble 5 464.24 5 56.1	180.82 89.42 504.04 56.1	95.33 541.46 56.1	(67) (68) (69) (70)
(67)m= 92.75 Appliances ga (68)m= 566.45 Cooking gains (69)m= 56.1 Pumps and fa (70)m= 0 Losses e.g. ev (71)m= -120.55 Water heating	(calcula 82.38 ins (calcula 572.33 c (calcula 56.1 ns gains 0 /aporatic 120.55 gains (Table 128.48	180.82 ted in Ap 66.99 culated in 557.51 ated in Ap 56.1 (Table 5 0 on (negat -120.55 able 5) 123.41	Apr 180.82 ppendix 50.72 Append 525.98 ppendix 56.1 5a) 0 tive valu -120.55	180.82 L, equati 37.91 dix L, equ 486.18 L, equat 56.1 0 es) (Tab	180.82 fon L9 of 32.01 uation L 448.76 fon L15 56.1 0 le 5) -120.55	180.82 r L9a), a 34.59 13 or L1: 423.77 or L15a) 56.1 0	180.82 Iso see 44.96 3a), also 417.89 , also se 56.1	180.82 Table 5 60.34 see Tal 432.7 ee Table 56.1 0 -120.55	76.61 ble 5 464.24 5 56.1	180.82 89.42 504.04 56.1 0 -120.55	95.33 541.46 56.1 0 -120.55	(67) (68) (69) (70) (71)
(67)m= 92.75 Appliances ga (68)m= 566.45 Cooking gains (69)m= 56.1 Pumps and fa (70)m= 0 Losses e.g. ev (71)m= -120.55 Water heating (72)m= 130.93	(calcula 82.38 ins (calcula 572.33 c (calcula 56.1 ns gains 0 /aporatic 120.55 gains (Table 128.48	180.82 ted in Ap 66.99 culated in 557.51 ated in Ap 56.1 (Table 5 0 on (negat -120.55 able 5) 123.41	Apr 180.82 ppendix 50.72 Append 525.98 ppendix 56.1 5a) 0 tive valu -120.55	180.82 L, equati 37.91 dix L, equ 486.18 L, equat 56.1 0 es) (Tab	180.82 fon L9 of 32.01 uation L 448.76 fon L15 56.1 0 le 5) -120.55	180.82 r L9a), a 34.59 13 or L1: 423.77 or L15a) 56.1 0	180.82 Iso see 44.96 3a), also 417.89 , also se 56.1	180.82 Table 5 60.34 see Tal 432.7 ee Table 56.1 0 -120.55	76.61 ble 5 464.24 5 56.1 0 -120.55	180.82 89.42 504.04 56.1 0 -120.55	95.33 541.46 56.1 0 -120.55	(67) (68) (69) (70) (71)

6. Solar gai	ns: e calculated using	solar	flux from Ta	hle 6a a	nd assoc	iated equa	ations	to convert to th	e applic	able orientat	ion		
_	Access Facto Table 6d		Area m²	Die Oa a	Flu		alions	g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x	0.77	x	12	,	, ,	11.28	x	0.63	×	0.7	=	41.38	(75)
Northeast 0.9x	0.77	x	12	,	, :	22.97	X	0.63	×	0.7	= =	84.23	(75)
Northeast 0.9x	0.77	x	12		(11.38	X	0.63	×	0.7	-	151.75	(75)
Northeast 0.9x	0.77	x	12		· (67.96	X	0.63	x	0.7	=	249.22	(75)
Northeast 0.9x	0.77	x	12	,	, ,	91.35	X	0.63	x	0.7	=	335	(75)
Northeast 0.9x	0.77	x	12	,	(9	97.38	x	0.63	x	0.7	=	357.14	(75)
Northeast 0.9x	0.77	x	12	,	(91.1	X	0.63	x	0.7	=	334.1	(75)
Northeast 0.9x	0.77	x	12		(72.63	X	0.63	x	0.7	=	266.35	(75)
Northeast 0.9x	0.77	x	12	,	(!	50.42	X	0.63	X	0.7	=	184.91	(75)
Northeast 0.9x	0.77	x	12	,	(2	28.07	X	0.63	x	0.7	=	102.93	(75)
Northeast 0.9x	0.77	x	12)	(14.2	X	0.63	X	0.7	=	52.06	(75)
Northeast 0.9x	0.77	x	12	,	(9.21	X	0.63	X	0.7	=	33.79	(75)
Southeast 0.9x	0.77	x	12	,	(;	36.79	X	0.63	X	0.7	=	134.94	(77)
Southeast 0.9x	0.77	X	12)	(62.67	X	0.63	X	0.7	=	229.85	(77)
Southeast 0.9x	0.77	X	12	,	({	35.75	X	0.63	X	0.7	=	314.49	(77)
Southeast 0.9x	0.77	x	12	,	(1	06.25	X	0.63	X	0.7	=	389.66	(77)
Southeast 0.9x	0.77	x	12	,	(1	19.01	X	0.63	x	0.7	=	436.45	(77)
Southeast 0.9x	0.77	X	12	,	(1	18.15	X	0.63	X	0.7	=	433.3	(77)
Southeast 0.9x	-	X	12	,	(1	13.91	X	0.63	X	0.7	=	417.75	(77)
Southeast 0.9x	0.77	X	12	,	(1	04.39	X	0.63	X	0.7	=	382.84	(77)
Southeast 0.9x	0	X	12	,	((92.85	X	0.63	X	0.7	=	340.52	(77)
Southeast 0.9x		X	12	,	·	69.27	X	0.63	X	0.7	=	254.03	(77)
Southeast 0.9x		X	12	,	، ،	14.07	X	0.63	X	0.7	=	161.62	(77)
Southeast 0.9x	0.77	X	12	,	(;	31.49	X	0.63	X	0.7	=	115.48	(77)
Solar gains ii (83)m= 176.3	n watts, calcula 1 314.07 466			nonth 71.45	790.44	751.85	(83)m 649	n = Sum(74)m	(82)m 356.96	3 213.69	149.27	1	(83)
` '	internal and s						049	.19 323.43	330.90	213.09	149.21		(00)
(84)m= 1082.8			` 		1468.29		1310	0.62 1219.5	1131	1048.39	1030.91]	(84)
7 Mean inte	ernal temperat	ure (heating se	eason)		L	ı						
	e during heatir				g area	from Tal	ble 9	Th1 (°C)				21	(85)
-	actor for gains	•			•			, ,					`
Jan	 	lar		May	Jun	Jul	А	ug Sep	Oct	Nov	Dec]	
(86)m= 1	1 0.9	99	 	0.93	0.81	0.64	0.		0.99	1	1	1	(86)
Mean intern	al temperature	e in li	ving area	T1 (fo	llow ste	ps 3 to 7	7 in T	able 9c)		•	•	•	
(87)m= 21	21 2		21	21	21	21	2		21	21	21]	(87)
Temperatur	e during heatir	ng pe	eriods in re	est of o	dwelling	from Ta	able 9	9, Th2 (°C)			-	-	
(88)m= 20.04	 			20.06	20.07	20.07	20.		20.06	20.06	20.05]	(88)

l Itilicat	ion fact	tor for a	aine for I	rest of d	velling l	n2 m (se	ee Table	Qa)						
(89)m=	1	1 101 g	0.99	0.97	0.91	0.73	0.52	9a) 0.58	0.86	0.98	1	1		(89)
_		-					<u> </u>				ı	'		(00)
(90)m=	internal 20.04	20.05	20.05	the rest	of dwelli 20.06	ng 12 (fo 20.07	ollow ste	20.08	20.07	e 9c) 20.06	20.06	20.05		(90)
(90)111=	20.04	20.03	20.00	20.00	20.00	20.07	20.07	20.00		LA = Livin		L	0.13	(91)
											3 (' [0.13	
			<u> </u>				LA × T1	_	_					(00)
(92)m=	20.17	20.17	20.18	20.19	20.19	20.2	20.2	20.2	20.19	20.19	20.19	20.18		(92)
· · · · · · -	20.17	20.17	ne mean 20.18	20.19	tempera 20.19	20.2	m Table		20.19	20.19	20.19	20.40		(93)
(93)m=					20.19	20.2	20.2	20.2	20.19	20.19	20.19	20.18		(93)
		·	uirement		o obtoin	ad at at	on 11 of	Tabla Ol	a aa tha	tTim /	76\m an	d ro oolo	uloto	
				using Ta		eu ai si	ерттог	rable 9i), so ma	u 11,m=(76)III an	d re-calc	uiate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisat	ion fac	tor for g	ains, hm	:										
(94)m=	1	1	0.99	0.98	0.91	0.74	0.53	0.6	0.87	0.98	1	1		(94)
_				4)m x (84						1				
(95)m= 1	1081.46	1210.44	1321.29	1412.89	1387.34	1092.08	748.56	780.31	1062.7	1111.66	1045.51	1029.95		(95)
				perature						1				
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
_							=[(39)m :	- ,	<u> </u>	-		1		(07)
` '	L			2420.72				800.96		2051.13	2813.9	3455.74		(97)
	- i						th = 0.02				·	4004.70		
(98)m = 1	1779.05	1425.59	1230.01	725.64	318.8	0	0	0	0	698.96		1804.79		7(00)
0			, .		.,			Tota	l per year	(kWh/year) = Sum(9	8) _{15,912} = [9256.09	<u> </u> (98)
Space	heating	g require	ement in	kWh/m²	/year								44.29	(99)
			ıts – Indi	vidual h	eating sy	/stems i	ncluding	micro-C	HP)					
•	heatin	_	. .		./							г		7(004)
	•			econdar	• • •	mentary	•	(000)	(004)			ļ	0	(201)
	•			nain syst	` ,			(202) = 1 -	` '			ļ	1	(202)
Fractio	n of tot	al heatii	ng from i	main sys	stem 1			(204) = (204)	02) x [1 –	(203)] =			1	(204)
Efficier	ncy of n	nain spa	ce heat	ing syste	em 1								399.94	(206)
Efficier	ncy of s	econda	ry/supple	ementar	y heating	g system	າ, %						65	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Space	heating	g require	ement (c	alculated	d above)									
_1	1779.05	1425.59	1230.01	725.64	318.8	0	0	0	0	698.96	1273.24	1804.79		
(211)m	= {[(98)	m x (20	4)] } x 1	00 ÷ (20	6)									(211)
	444.83	356.45	307.55	181.44	79.71	0	0	0	0	174.77	318.36	451.27		
_	•						•	Tota	l (kWh/yea	ar) =Sum(2	211),,,,5,10,12	=	2314.37	(211)
Space	heating	g fuel (s	econdar	y), kWh/	month							L		_
= {[(98 <u>)</u> r	m x (20	1)] } x 1	00 ÷ (20	8)										
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		_
								Tota	I (kWh/yea	ar) =Sum(2	215) _{15,1012}	=	0	(215)

222.59 196.11	ei (Calcula	ated abo	ove)									
			180.32	0	0	0	0	191.01	202.31	217.15		_
Efficiency of water heat	er										100	(216
(217)m= 100 100		100	100	100	100	100	100	100	100	100		(217
Fuel for water heating, $(219)m = (64)m \times 100$:h										
(219)m= 222.59 196.11		184.2	180.32	0	0	0	0	191.01	202.31	217.15]	
	-					Tota	I = Sum(2	19a) ₁₁₂ =			1599.46	(219
Water heating requirem	nent (imme	ersion) 0	0	138.33	130.95	146.32	146.88	0	0	0	1	
Efficiency of water heat				130.33	130.95	140.32	140.00	U			100	(216
(217)m = 0 0	0	0	0	100	100	100	100	0	0	0	100	(217
Fuel for water heating (Immersion	 າ), kWh	/month				l		l		J	
(219)m = [(64)m + (218) (219)m = 0 0		00 ÷ (21 0	ī	138.33	130.95	146.32	146.88	0		Ι ο	1	
(219)m= 0 0	0	<u> </u>	0	130.33	130.95		I = Sum(2		0	0	562.48	(219
Annual totals							,	2	Wh/year	r	kWh/year	۱٬۲۰۰
Space heating fuel used	d, main sy	stem 1							·		2314.37	
Water heating fuel used	t										1599.46	1
Water heating fuel used	d (Immersi	on)									562.48	Ī
Electricity for pumps, fa	ins and ele	ectric ke	eep-hot	•								
Total electricity for the a	above, kW	/h/year				sum	of (230a).	(230g) =			0	(231
Electricity for lighting											655.18	(232
10a. Fuel costs - indiv	idual heati	ing syst	tems:									_
				Fu kW	el /h/year			Fuel P (Table			Fuel Cost £/year	
Space heating - main sy	ystem 1			(211	I) x			13.	19	x 0.01 =	305.27	(240
	vetom 2				2) v					x 0.01 =	0	_](241
Space heating - main sy	yoleni Z			(213	o) X			0		X 0.01 =		
Space heating - main system Space heating - second	-				5) x 5) x			4.2		x 0.01 = x 0.01 =	0	_](242
	dary				5) x				23			[] [(242] [(247
Space heating - second	dary ner fuel)			(215	5) x			4.2	19	x 0.01 =	0	_
Space heating - second Water heating cost (oth	dary ner fuel) mersion)	ot		(215 (215	5) x 9)			13.	19	x 0.01 = x 0.01 =	210.97] (247
Space heating - second Water heating cost (oth Water heating cost (Imr	dary ner fuel) mersion) ic keep-ho		30g) se	(218 (219 (219 (237	5) x 9) 9) 1) y as app	licable a	nd apply	4.2 13. 0	19 19 19 ce accor	x 0.01 = x 0.01 = x 0.01 = x 0.01 =	0 210.97 74.19	[(247](247
Space heating - second Water heating cost (oth Water heating cost (Imr Pumps, fans and electri (if off-peak tariff, list each	dary ner fuel) mersion) ric keep-ho ch of (230a	a) to (23	30g) se	(215 (219 (219 (237 eparately	5) x 9) 9) 1) y as app	licable a	nd apply	4.2 13. 0 13. 7 fuel pri	19 19 19 ce accor	x = 0.01 = 0.001 = 0	0 210.97 74.19 0 Table 12a](247](247](249
Space heating - second Water heating cost (oth Water heating cost (Imr Pumps, fans and electri (if off-peak tariff, list eac Energy for lighting Additional standing cha	dary ner fuel) mersion) ric keep-ho ch of (230a	a) to (23 le 12)		(215 (219 (219 (237 eparately (232	5) x 9) 9) 1) / as app	licable a	nd apply	4.2 13. 0 13. 7 fuel pri	19 19 19 ce accor	x = 0.01 = 0.001 = 0	0 210.97 74.19 0 Table 12a 86.42	(247) (247) (249) (250)
Space heating - second Water heating cost (oth Water heating cost (Imr Pumps, fans and electri (if off-peak tariff, list eac Energy for lighting Additional standing cha	dary ner fuel) mersion) ric keep-ho ch of (230a	a) to (23 le 12) 253) and	d (254)	(215 (215 (215 (232 eparately (232 as need	5) x 9) 9) / as appl 2)		nd apply	4.2 13. 0 13. 7 fuel pri	19 19 19 ce accor	x = 0.01 = 0.001 = 0	0 210.97 74.19 0 Table 12a 86.42 0	(247) (247) (249) (250) (251)
Space heating - second Water heating cost (oth Water heating cost (Imr Pumps, fans and electri (if off-peak tariff, list eac Energy for lighting Additional standing cha Appendix Q items: reper	dary her fuel) mersion) hic keep-ho hic keep-ho hic f (230a hirges (Table heat lines (2	a) to (23 le 12) 253) and	d (254) (245)(2	(215 (215 (215 (232 eparately (232 as need	5) x 9) 9) 1) / as app		nd apply	4.2 13. 0 13. 7 fuel pri	19 19 19 ce accor	x = 0.01 = 0.001 = 0	0 210.97 74.19 0 Table 12a 86.42	(247) (247) (249) (250)
Space heating - second Water heating cost (oth Water heating cost (Imr Pumps, fans and electri (if off-peak tariff, list eac Energy for lighting Additional standing cha	dary her fuel) mersion) hic keep-ho hic keep-ho ch of (230a hirges (Table heat lines (2- hidual heat	a) to (23 le 12) 253) and	d (254) (245)(2	(215 (215 (215 (232 eparately (232 as need	5) x 9) 9) / as appl 2)		nd apply	4.2 13. 0 13. 7 fuel pri	19 19 19 ce accor	x = 0.01 = 0.001 = 0	0 210.97 74.19 0 Table 12a 86.42 0	(247) (247) (249) (250) (251)

Energy cost factor (ECF) [(255) x (25	56)] ÷ [(4) + 45.0] =		1.12 (257)
SAP rating (Section 12)			84.39 (258
12a. CO2 emissions – Individual heating system	s including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.519	1201.16 (261
Space heating (secondary)	(215) x	0.019	0 (263
Water heating	(219) x	0.519	830.12 (264
Water heating (Immersion)	(219) x	0.519 =	291.93 (264
Space and water heating	(261) + (262) + (263) + (264) =	=	2323.21 (265
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	0 (267
Electricity for lighting	(232) x	0.519 =	340.04 (268
Total CO2, kg/year	SI	um of (265)(271) =	2663.25 (272
CO2 emissions per m²	(272) ÷ (4) =		12.74 (273
El rating (section 14)			86 (274
13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	3.07	7105.13 (261
Space heating (secondary)	(215) x	1.04	0 (263
Energy for water heating	(219) x	3.07	4910.34 (264
Energy for water heating (Immersion)	(219) x	3.07	1726.82 (264
Space and water heating	(261) + (262) + (263) + (264) =	=	13742.28 (265
Electricity for pumps, fans and electric keep-hot	(231) x	3.07	0 (267
Electricity for lighting	(232) x	0 =	2011.42 (268
'Total Primary Energy	SI	um of (265)(271) =	15753.69 (272

 $(272) \div (4) =$

Primary energy kWh/m²/year