

Energy and Sustainability Statement

61 Belmont Road Twickenham

Prepared for: Hazam Smith & Partners

Prepared	l by:	Checked by:	
-36	R	Rivian	
Joseph Price-Buchanan BSc (Hons)		Robert Waiting BSc (hons) MSc	
Sustainability Consultant		Principal Sustainability Consultant	
Date: 01/02/2016		Date: 01/02/2016	
File reference: 01-16-55567 ES1			

Version	Status	Date	Change Summary
ES1	Final	01/02/16	Issued to client for comment

CONTENTS

1.	Executive Summary	2
2.	Introduction	5
3.	The Development Site	
4.	Planning Policy	8
4.1	National Policy - England	
4.2	Regional Policy – London Plan	
4.3	Local Policy- London Borough of Richmond	<u>c</u>
5.	Regulations and Local Policy	
5.1	Building Regualtions	10
5.2	Methodology	10
6.	Be Lean – Use Less Energy	12
6.1	Building Fabric	12
6.2	Building Services	13
6.3	8	
	.3.1. Common Causes	14
	.3.2. Mitigation	15
	.3.3. Quantifying Overheating Risk	
0	.3.4. Results	I.
7.	Be Clean – Decentralised Energy	19
7.1	District Heating	20
7.2	Combined Heat And Power	20
8.	Be Green – Renewable Technology	22
8.1	Solar Photovoltaics	22

8.2	. Technology Analysis – Solar Photovoltaics	22
8.3	. Unregulated Energy	23
9.	Conclusion	25
9.1	. Be Lean – use less energy	25
9.2	. Be Clean – supply energy efficiently	25
9.3	. Be Green – use renewable energy	25
10.	Summary	26
11.	Appendices	27

1. Executive Summary

This Energy Statement has been produced to demonstrate compliance with the London Borough of Richmond upon Thames Development Management Plan Policy DM SD1. This policy requires all developments to achieve a minimum 40 per cent improvement over a Part L1A 2010 compliant baseline, in line with requirements of The London Plan 2015.

This has been achieved using the energy hierarchy outlined within Policy 5.2 of the London Plan 2015₁. The London Plan stipulates that new-build 'major' developments must achieve a 40% CO_2 saving against a 2010 Part L1a compliant baseline. This corresponds to 35% CO_2 savings against a 2013 Part L1a compliant baseline.

This site is not considered to be a major development under the definition in the London Plan; however Policy DM SD1 of the Local Development Plan stipulates that all developments should achieve a 40% saving in CO2 emissions.

SAP calculations have been carried out using Government approved FSAP software in accordance with the current Building Regulations. Results of this assessment demonstrate that the required CO2 savings can be achieved through a combination of passive design measures and renewable energy technology. Savings have been expressed against each stage of the hierarchy. The results of this assessment can be seen in Table 1 (figures have been calculated to 1 decimal place), all data produced has been based on assumptions and will require reassessment at detailed design stage.

	Predicted Annual CO ₂ Emissions (kg.CO ₂ /year)	CO ₂ Reduction (%)	Cumulative CO ₂ Reduction (%)
Baseline	1,857	-	-
Be Lean	1,853	0.2%	0.2%
Be Clean	1,853	0.0%	0.2%
Be Green	1,193	35.6%	35.8%
Target	1,207	35.0%	Target Achieved

Table 1. CO₂ reduction summary

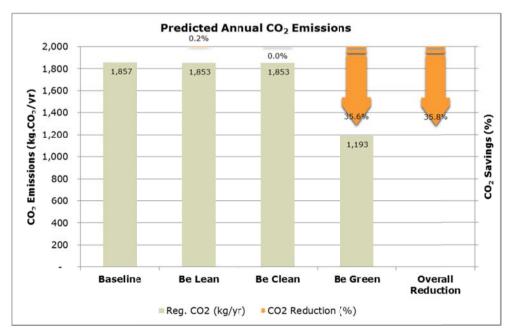


Figure 1. Predicted annual CO₂ emissions

2. Introduction

Stroma Technology has been commissioned by Hazam Smith & Partners to prepare a Sustainability Statement in support of the planning application at 61 Belmont Road, Twickenham.

The proposed development is located within the London Borough of Richmond upon Thames and will need to meet the requirements of the Richmond Core Strategy (adopted April 2009) and the Development Management Plan (Adopted November 2011). A further Supplementary Planning Document entitled 'Sustainable Construction Checklist Guidance Document' (Adopted August 2011) sets out the requirements of the content for Energy Statements and this statement has been prepared in accordance with this SBD.

Policy 5.2 of the London Plan 2015 will be followed, which adopts a fabric first approach using the Energy Hierarchy shown in Figure 2. The hierarchy uses a tiered methodology which follows fabric first, then low and zero carbon technology and finally renewable energy generation.

The Energy Strategy for the proposed development will be as follows:

- 1. Incorporate passive features such as low U-values, low air permeability and correct orientation.
- 2. Install energy efficient building services such as high efficiency gas condensing boilers.
- 3. Research the possibility of decentralised energy and integrate where viable.
- 4. Use solar PV to reduce CO2 emissions towards the target DER.

Use Less Energy

E LEAN

CLEAN

E GREEN

Incorporating a high standard of fabric and energy efficiency through passive design:

- Natural Ventilation
- Low Air Permeability
- Enhanced Fabric U-Values

Supply Energy Efficiency

Provide energy efficient building services by researching:

- District Heating
- Combined Heat and Power (CHP)

Use Renewable Energy Provide on-site renewable energy generation such as:

- Solar Hot Water
 Photovoltaics
- Biomass
- Wind Energy
- Heat Pumps

3. The Development Site

The development site is located in Twickenham within the London Borough of Richmond upon Thames and is situated on the land behind between Belmont Road and the River Crane. The surrounding area is predominantly residential units comprising of both detached and semi-detached houses and flats.

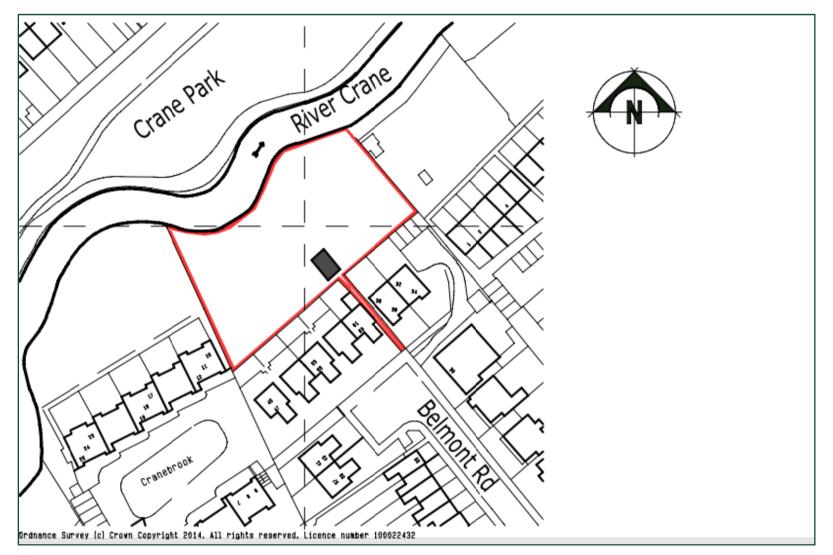

Figure 3. Street view of access from Belmont Road

Figure 4. Aerial view of the development site

The proposed development consists of a single storey dwelling approximately 80m2 in floor area. The dwelling incorporates design features such as projecting roofs, to prevent light spillage from windows into the trees in order to minimise disruption to wildlife as well as nesting boxes in the sides of projecting roofs to provide habitats.

Figure 5. Site location

4. Planning Policy

4.1. National Policy - England

The Department for Communities and Local Government (DCLG) released the National Planning Policy Framework (NPPF) in March 2012. In revising this framework, the Government's objective is to streamline the process encouraging sustainable development and promoting the needs and priorities of local communities.

This framework is to be used as the base by councils to develop their own local planning policy. Section 10 of the framework addresses climate change, flooding and costal change. Considerations include;

- Minimising CO₂ emissions
- Vulnerability of fuel supply
- A promotion of decentralised, low carbon and renewable energy sources wherever viable
- Convergence towards existing 'zero carbon' policy targets (postponed)

4.2. Regional Policy – London Plan

The spatial development strategy plan for London was revised on 10th March 2015, and replaced the London Plan (July 2011) first published in February 2008.

Policy 5.2-Minimising Carbon Dioxide Emissions

This states that development proposals must follow the energy hierarchy to make the fullest contribution to minimising CO_2 emissions:

- Be Lean: use less energy
- **Be Clean:** supply energy efficiency
- **Be Green:** use renewable energy

Developers are to ensure that major developments meet minimum targets for CO_2 emissions, which are outlined as improvements over the Target Emission Rate (TER) which is benchmarked in Building Regulations, Approved Document L1A. Table 1 shows the following targets have been introduced with a move towards residential development being Zero Carbon by 2016.

Year	L1A:2010 Limits
2010-2013	25% (Code for Sustainable Homes Level 4)
2013-2016	40%
2016-2031	Zero Carbon

Table 2. London Plan 2015 limits

4.3. Local Policy- London Borough of Richmond

The Richmond Local Development Management Plan (Adopted November 2011) and Core Strategy (adopted April 2009) contains the following policies that this Energy Strategy must address^{2:}

Policy DM SD1: Sustainable Construction

All development in terms of materials, design, landscaping, standard of construction and operation should include measures capable of mitigating and adapting to climate change to meet future needs.

New buildings should be flexible to respond to future social, technological and economic needs by conforming to the Borough's Sustainable Construction Checklist SPD. New homes will be required to meet or exceed requirements of the Code for Sustainable Homes Level 3.

They also must achieve a minimum 25 per cent reduction in carbon dioxide emissions over Building Regulations (2010) in line with best practice from 2010 to 2013, 40 percent improvement from 2013 to 2016, and 'zero carbon' standards (2) from 2016. It is expected that efficiency measures will be prioritised as a means towards meeting these targets. These requirements may be adjusted in future years to take into account the then prevailing standards and any other national guidance to ensure the standards are met or exceeded.

Policy DM SD 2: Renewable Energy and Decentralised Energy Networks

New development will be required to conform with the Sustainable Construction Checklist SPD and:

(a) Maximise opportunities for the micro-generation of renewable energy. Some form of low carbon renewable and/or de-centralised energy will be expected in all new development, and

(b) Developments of 1 dwelling unit or more, or 100sqm of non-residential floor space or more will be required to reduce their total carbon dioxide emissions by following a hierarchy that first requires an efficient design to minimise the amount of energy used, secondly, by using low carbon technologies and finally, where feasible and viable, including a contribution from renewable sources.

(c) Local opportunities to contribute towards decentralised energy supply from renewable and low-carbon technologies will be encouraged where there is no over-riding adverse local impact.

(d) All new development will be required to connect to existing or planned decentralised energy networks where one exists. In all major developments and large Proposals Sites identified in the (forthcoming) Site Allocations DPD, provision should be made for future connection to a local energy network should one become available.

² Richmond Local Development Management Plan, November 2011

5. Regulations and Local Policy

5.1. Building Regualtions

Approved document L1A – Conservation of fuel and Power sets the standard for carbon emissions for new dwellings and was last revised in April 2014 (Part L: 2013). The properties will need to comply with the criteria set out in the document, as follows:

- 1. The predicted Dwelling Emission Rate of CO_2 emissions from dwellings (DER) are not greater than the Target Emission Rate (TER).
- 2. The performance of the building fabric and fixed building services should be no worse than the design limits set out in Table 2 of the Approved Document.
- 3. The dwellings will have appropriate passive control measures to limit the effect of solar gains on indoor temperatures in summer.
- 4. That the performance of dwellings as-built comply with the DER values achieved, including site testing of a representative sample of dwellings demonstrating that the 'air permeability' rate achieved is as per that specified, or better.
- 5. The necessary provisions for energy efficient operation of dwellings are put in place, including operation and maintenance instructions aimed at achieving economy in the use of fuel and power in a way that householders can understand.

Compliance with the Approved Document Part L1a should be demonstrated at detailed design stage, prior to construction.

5.2. **Methodology**

The Standard Assessment Procedure (SAP) is the Government's approved methodology for assessing the predicted energy consumption and carbon dioxide emissions of new buildings. Results are derived in respect of floor area and consider energy use $(kWh/m^2/yr)$ and associated CO_2 emissions $(kg.CO_2/m^2/yr)$ from the following:

- Space heating
- Domestic hot water
- Ventilation
- Lighting
- Ancillary pumps and fans
- Energy generating technology

SAP is compliant with the EU Energy Performance of Buildings Directive and is carried out using approved software. For the purposes of this report FSAP 2012 version 1.0.1.24 has been used to generate the data.

BE LEAN USE LESS ENERGY

6. Be Lean – Use Less Energy

This section outlines the proposals for specifying building fabric and services beyond the requirements of Building Regulations (the baseline).

6.1. Building Fabric

Fundamental to achieving energy efficiency in any new building is the specification of a thermally efficient building envelope. Passive design features such as **high levels of insulation**, designing to maximise **solar gain** and limiting heat loss through **reduced air leakage and enhanced thermal bridging** are all proven techniques to increase energy consumption and reduce emissions.

Assumptions have been on this development in order to meet the fabric efficiency targets for Building Regulations 2013. This has been attained by targeting the notional u-values set out within *Table 4: Summary of concurrent notional dwelling specification, Approved Document L1A.* The Target Fabric Energy Efficiency (TFEE) has been achieved by incorporating Accredited Construction Details (ACDs) and Enhanced Construction Details (ECDs) into the calculation to reduce heat losses via thermal bridging.

Tables 3 shows the proposed building fabric specification applied to the SAP calculations with respect to the upper limits stipulated by Part L: 2010.

Building fabric			
Element	L1A:2010 limiting ³ U-value (W/m ² .K)	Proposed U- value (W/m².K)	Improvement (%)
Ground Floor	0.25	0.13	48%
External walls	0.30	0.20	33%
Party wall between dwelling	0.20	N/A	N/A
Roof	0.20	0.15	25%
Windows	2.00	1.20	40%
Doors	2.00	1.40	30%
y-value	0.15	0.034	77%
Air permeability (m ³ /h.m ² @ 50 Pa)			
Entire building	10.0	4.0	60%

Table 3. Building fabric performance

It can be seen that the values currently proposed for the development show a significant bettering of the mandatory requirements set out in the current Building Regulations.

³ Building Regulations, Approved Document L1a

6.2. Building Services

Proposed space heating for the residential development will be provided by individual Potterton Promax Ultra 24 ErP condensing combi boilers (or a boiler of equivalent efficiency). Condensing boilers can increase efficiency by condensing water vapour produced from combustion in order to extract heat which would otherwise be lost. Weather compensators have also been assumed to further reduce the Dwelling Emission Rate.

The heating system will be equipped with two independent time and temperature controls. The efficiency of a heating system is greatly increased by dividing the home into distinct heating zones covering different heating needs. In most cases there is no need to heat bedrooms during the day, when they are not in use, or to run the whole system at the same temperature. This allows residents to make a more targeted and efficient use of heat generation.

Ventilation will be provided through natural ventilation utilising openable windows and trickle vents with intermittent extract fans in kitchens and wet rooms to minimise electrical consumption further reducing CO2 emissions over mechanical systems.

Low energy lighting will be specified throughout, i.e. having a luminous efficacy of greater than 45 lumens per circuit watt (residential). Typically this will be achieved with LEDs or compact fluorescent lights. Low voltage halogen spot lights will not be used as these are not low energy.

Element	Specification		
Boilers	Potterton Promax Ultra 24 (or equivalent efficiency)		
Heating emitter	Radiant – low surface temperature.		
Heating control	Time and temperature zone control.		
Domestic hot water	From main heating system.		
Water consumption	≤125 litres/person/day		
Internal fixed lighting	100% low energy.		
Ventilation	Natural ventilation with intermittent extract fans		
Thermal bridging	Accredited & Enhanced Construction Details incorporated into design.		
Thermal mass parameter	Low		

Table 4. Building services specification (houses)

	Predicted Annual CO ₂ Emissions (kg.CO ₂ /year)	CO ₂ Reduction	Cumulative CO ₂ Reduction (%)
Baseline	1,857	-	-
Be Lean	1,853	0.2%	0.2%
Be Clean			
Be Green			
Target	1,207	35.0%	Insuffcient Reduction

Table 5. Whole site CO₂ emissions after 'Be Lean' measures

6.3. Summertime Overheating

Effects of overheating have been well documented over recent years, often cited to result from climate change and modern construction techniques.

Although guidance exists across the industry to forecast the risk of overheating, design considerations are often required at concept stage to provide adequate mitigation.

6.3.1. Common Causes

The Zero Carbon Hub state three factors associated with overheating risk; location, building design and the occupants.

Location

The climate or, microclimate is subject to the geographic site location. Sun, wind and rain intensity are dependent upon where the development is situated and as such the design approach will vary accordingly - for example, average summertime temperatures are higher in the south east of England compared to the north east therefore, increased ventilation levels may be less effective.

Dense urban development with minimal open green space may present risk associated with the 'urban heat island' effect. This comprises of heat absorbed by heavy man-made structures which is then radiated at night increasing the local temperature.

Building Design

There are several elements of building design that effect overheating performance. Fundamentally, the orientation of a building together with the proportion and location of glazing areas will determine the level of transmitted solar gain. Where solar gain cannot be absorbed or, removed, internal

temperature levels will increase. Although there is benefit in utilising 'free' solar energy to heat a building, the amount of energy must be controlled.

Due to increasing energy efficiency standards, modern structures are often well insulated and constructed to high levels of air tightness. In addition to lower levels of thermal mass, this often results in a reduced ability to absorb or, purge heat compared to that of older buildings.

Occupants

Although the exact occupant use cannot generally be controlled for new construction projects, the setting out of a building should consider the impact of room use type and location in the context of solar and other incident heat gains. Overheating risk is effected by both the occupant density and anticipated activity type in a zone.

6.3.2. Mitigation

For new-build construction projects, design considerations to reduce an overheating risk should be made at the earliest possible opportunity. Although performance measures can be incorporated at later stages, the most robust and effective techniques are often inherent to a buildings design.

The 'cooling hierarchy', defined by the London Plan and often referred to by other regions indicates the preferred approach to reducing overheating risk and a reliance upon mechanical cooling. The hierarchal steps are as follows;

- 1. Minimise heat generation through energy efficient design.
- Reduce the amount of heat entering a building in summer through orientation, shading, albedo, fenestration, insulation and green roofs and walls.
- Manage the heat within the building through exposed thermal mass and high ceilings.
- 4. Passive ventilation.
- 5. Mechanical cooling.

Further to appropriate siting and orientation, there are several properties or, functions that influence overheating performance.

Glazed proportion and specification

The location, proportion and specification of glazing should balance the benefits of natural light and 'free heat' though also ensure that levels of gain are not excessive. Glass manufacturers offer a broad variety of products including solar control coatings to enable the level of transmitted solar gain (denoted by the glass 'g-value') to be reduced with minimal impact upon visual performance. Certain glass specifications may be more appropriate for certain orientations, e.g. a lower g-value to a south façade than the north.

Solar shading

In a similar vein to solar control glass coatings, external solar shading can be used to prevent the direct transmission of solar gain whilst enabling glazed areas to be maintained or, maximized. Horizontal overhangs are usually more appropriate for south facing windows due to higher sun angles. Conversely, vertical fins are more appropriate for east and west facing windows.

Figure 6. External solar shading⁴

4 http://levolux.com/tag/timber-fins/

Thermal Mass

Thermal mass is a physical property which defines the ability of an object or, construction to absorb heat energy; the greater the mass, the greater the heat absorption potential. Higher thermal mass construction enables heat to be absorbed during the day then released at night. This can reduce daytime temperatures and improve the thermal *stability* of a building. However, as greater energy is also then required to 'heat' the fabric, overall consumption can increase. Therefore, as with all of these approaches, a balance must be struck. Thermal mass can be increased by exposing dense fabric or increasing the physical connection between finishing materials, e.g. plaster, and the structural core, e.g. blockwork.

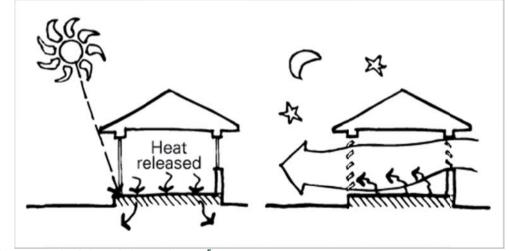


Figure 7. Principles of thermal mass⁵

Ventilation

The ventilation strategy is critical to overheating performance. Background ventilation levels are low compared to the rates generally required to purge heat. Therefore, the ventilation strategy must enable the greatest volume of air to be moved should the requirement arise. The potential rate of ventilation is determined by a number of factors including;

- Opening type, size and duration.
- Building height and exposure.
- The number of storeys and opportunity for cross-ventilation.

Ventilation openings should enable the greatest possible opening for the greatest duration without compromising security and water ingress protection.

⁵ http://levolux.com/tag/timber-fins/

6.3.3. Quantifying Overheating Risk

Several guidance documents exist which define overheating risk assessment and acceptable thresholds. These include; CIBSE Guide A, BB101 (schools), TM52 and SAP. The first three methods predominantly concern non-domestic development and require a Dynamic Simulation Modelling (DSM) exercise to be undertaken to calculate predicted internal temperatures against standard regional weather data. Predicted temperatures are compared against recommended limits to determine whether they are acceptable or, excessive.

The SAP assessments process is used for new residential developments and incorporates a summer overheating risk calculation. Similarly to the other methods, SAP calculations consider heat gain from regional weather data, site exposure, solar and internal heat gains. The calculation determines a mean internal temperature which can be compared against the following thresholds. In order to comply with the SAP and Part L1a criteria, 'the likelihood of high internal temperatures during hot weather' must be less than 'high'.

Threshold Temperature (°C)	'Likelihood of high internal temperatures during hot weather'	
< 20.5 °C	Not Significant	
≥ 20.5 °C and < 22.0 °C	Slight	
≥ 22.0 °C and < 23.5 °C	Medium	
≥ 23.5 °C	High	

Table 6. SAP overheating criteria ⁶

6.3.4. **Results**

The development incorporates the following features to mitigate the risk of overheating;

- Substantial trees are located along the North elevation, with the existing flats to the South which will provide shelter to the building from solar gain.
- External shading is also provided by the projecting roofs.
- In accordance with the proposed construction type, an indicative thermal mass of 'low' has been applied to the SAP calculation (corresponding to a TMP of 100 kJ/m2.K).
- Large opening windows will enable heat to be purged.

SAP calculations carried out for the development show all dwellings to comply with the overheating criteria. Results of all calculations are appended to this report.

⁶ The governments Standard Assessment Procedure (SAP) for Energy Rating of Dwellings (2012)

BE CLEAN SUPPLY ENERGY EFFICIENTLY

7. Be Clean – Decentralised Energy

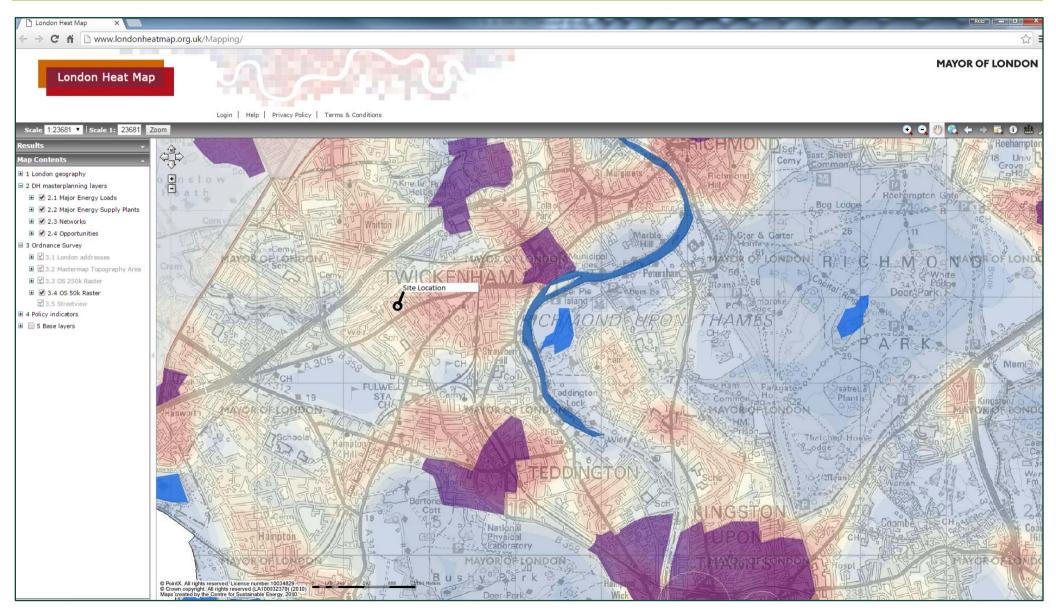


Figure 8. London heat map for site region

7.1. District Heating

Analysis of the UK CHP Development Map and London Heat Map was made to determine whether existing or proposed district heating networks are present in the vicinity of the development site. There are no existing district heat networks (yellow), proposed networks (red) and the development does not lie in a District Heating Opportunity Area (purple). As such it is not recommended to add development cost through the provision for future connection.

7.2. Combined Heat And Power

The development size and nature renders Combined Heat and Power systems unsuitable due to the lack of a sufficient base heating load. The well insulated fabric naturally lowers the demand for heat. Analysis of the Department of Energy & Climate Change CHP Site Assessment Tool supports this assertion, indicating that a CHP engine which has been sized to meet such a small demand would have poor efficiency and high maintenance costs.

Given that the development is solely residential this also means that the relatively low demand will very likely be limited to short periods in the morning and evening. This would create further operational inefficiencies, as the CHP engine would need to run uninterrupted for long periods. This is required to generate enough electricity to provide CO_2 reductions and financial economies which justify the capital and maintenance costs, and make it a practical and economically viable installation. CHP is much better suited to larger developments where the efficiencies and CO_2 savings can be greater. Therefore it is not considered viable to achieve further CO_2 reductions through a decentralised energy strategy on this development.

	Predicted Annual CO ₂ Emissions	CO ₂ Reduction	Cumulative CO ₂ Reduction
	(kg.CO ₂ /year)	(%)	(%)
Baseline	1,857	-	-
Be Lean	1,853	0.2%	0.2%
Be Clean	1,853	0.0%	0.2%
Be Green			
Target	1,207	35.0%	Insuffcient Reduction

Table 7. Whole site CO2 emissions after 'Be Clean' measures

BE GREEN USE RENEWABLE ENERGY

8. Be Green – Renewable Technology

The CO_2 emissions after 'Be Lean' and 'Be Clean' measures have been assessed against the baseline CO_2 emissions. Reductions have been recorded after each stage in the energy hierarchy; this will help clarify the impact that renewable energy generation has on whole site CO_2 emissions.

8.1. Solar Photovoltaics

Solar Photovoltaic (PV) panels comprise of a number of inter-connected cells that utilise semi-conductor technology to convert solar energy into electricity. High voltage, direct current is converted to alternating current and phased into the mains supply via an inverter. PV panels are most effective where mounted on exposed, south-facing areas, at an inclination close to 30° from the horizontal.

The technology is well proven and requires little maintenance; most panels are designed to be self-cleaning when mounted at appropriate angles and the design life of a panel typically exceeds the likely pay-back period by a considerable margin. PV has the significant advantage of reducing energy use and costs on site for residents whilst also reducing demand from the national grid and even contributing to grid energy. This can save significant carbon dioxide emissions by reducing the relatively inefficient and fossil-fuel heavy heat generation in the national infrastructure.

8.2. Technology Analysis – Solar Photovoltaics

The potential for CO2 savings from solar PV has been assessed using the Governments approved SAP: 2012 (Standard Assessment Procedure) methodology. This SAP methodology considers UK solar irradiance data, collector pitch, orientation and over-shading to determine the expected annual energy yield. In order to represent a semi-optimal installation, it is taken that solar PV could be installed on the rear elevation roof area to all dwellings. On this basis, calculations show that a total minimum installed PV capacity of 1.55 kWp (kilo-Watt peak) would be expected to generate 1276 kWh per annum. Applying the current CO2 emissions factor for grid-displaced electricity (0.519 kg.CO2/kWh), this generation corresponds to a CO2 abatement of 662 kg.CO2 per annum; to meet the target of 35% reduction from baseline site emissions.

Using current known PV panel efficiencies, 1.55 kWp of PV corresponds to approximately 10.385 m2. Therefore, it is considered feasible that solar PV could be used to meet the 35% CO2 saving requirement.

	Predicted Annual CO ₂ Emissions (kg.CO ₂ /year)	CO ₂ Reduction (%)	Cumulative CO ₂ Reduction (%)
Baseline	1,857	-	-
Be Lean	1,853	0.2%	0.2%
Be Clean	1,853	0.0%	0.2%
Be Green	1,193	35.6%	35.8%
Target	1,207	35.0%	Target Achieved

Table 8. Whole site CO₂ emissions after 'Be Green' measures

8.3. Unregulated Energy

Unregulated energy use is not currently measured under Building Regulations Part L, which focuses on the **building energy load** otherwise known as **regulated energy**. The building energy load is limited to consumption covered by space and water heating, cooling, ventilation and fixed lighting. The **occupant energy load** is known as **unregulated energy** which covers energy used for appliances used for refrigeration, cooking and personal use (computers, televisions etc.).

The unregulated energy demand for this development has been measured using the methodology outlined within **SAP 2012, Appendix L: Energy for lighting and electrical appliances**. The data extracted from Appendix L is then applied a fuel factor measured in kg.CO₂ per kWh.

The methodology used to derive the total unregulated energy use is shown in figure 8 for electrical appliances and figure 9 for cooking. Using this calculation method has produced an unregulated energy load figure of **1,472 kg.CO₂/yr** or **2,836 kWh/yr**.

Unregulated energy use can be reduced for the development through occupant awareness using the following methods:

- Specifying energy efficient white goods and technology;
- Installing automatic lighting control and LED fittings;
- Effective use of heating controls and reducing thermostat temperatures;
- Ensuring all electrical devices are turned off at the mains when not in use;
- Power monitoring.

L2 Electrical Appliances

The initial value of the annual energy use in kWh for electrical appliances is:	
$E_A = 207.8 \times (TFA \times N)^{0.4714}$	(L10)
where TFA is the total floor area in m^2 and N is the assumed number of occupants (see Table 1b).	
The appliances energy use in kWh in month m (January = 1 to December = 12) is	
$E_{A,m} = E_A \times [1 + 0.157 \times cos(2\pi (m - 1.78) / 12)] \times n_m / 365 \text{ kWh}$	(L11)
Then re-calculate the annual total as the sum of the monthly values:	
$E_A = \sum_{m=1}^{12} E_{A,m}$	(L12)
The associated internal heat gain for each month in watts is	
$G_{A,m} = E_{A,m} \times 1000 / (24 \times n_m)$	(L13)
where n_m is the number of days in month m. When reduced internal heat gains are assumed for the appliance gains are based on efficient cold and wet appliances and below average use of other appl	
$G_{A,m} = 0.67 \times E_{A,m} \times 1000 / (24 \times n_m)$	(L13a)
The annual CO ₂ emissions in kg/m ² /year associated with electrical appliances is	
$E_A \times EF_{electricity} / TFA$	(L14)
where $EF_{electricity}$ is the emission factor for electricity (Table 12).	
Equation (L13) or (L13a) is used for the heat gain from appliances in each month in Section 5 of th Equation (L14) is used for the annual emissions for appliances in Section 16 of the calculation (wh only for calculations in relation to Level 6 of the Code for Sustainable Homes).	

Figure 9. SAP Methodology extracted from Appendix L for electrical appliances

L3 Cooking

GC = 35 + 7 N	(L15
When lower internal heat gains are assumed for the calculation,	
GC = 23 + 5 N	(L15a)
CO2 emissions in kg/m ² /year associated with cooking:	
(119 + 24 N) / TFA	(L16
where TFA is the total floor area in m ² and N is the assumed number of occupants (see Table 1b	b).
Equation (L15) or (L15a) is used for the heat gain from cooking in Section 5 of the calculation. emissions for cooking in Section 16 of the calculation (which is applicable only for calculations Sustainable Homes and to Stamp Duty Land Tax).	

Figure 10. SAP Methodology extracted from Appendix L for cooking

9. Conclusion

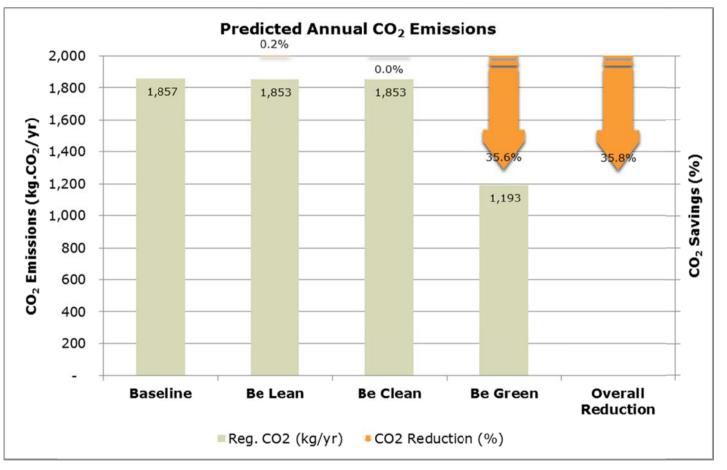
This Energy Strategy has outlined how this development will meet the requirements by following the energy hierarchy from the London Plan 2015. This structure suggests to initially address the fabric first approach by upgrading thermal elements and building services. Decentralised energy has been researched as part of the 'Be Clean' section and finally renewable technology has been implemented to achieve a 19% reduction in CO_2 emissions.

9.1. Be Lean – use less energy

A building fabric and services specification is proposed which incorporates high efficiency heating, lighting and controls and a thermally efficient building fabric: low u-values; limiting air leakage and limiting thermal bridging.

9.2. **Be Clean – supply energy efficiently**

There is no current district heating network in the locality of this site. Combined Heat and Power is deemed unsuitable for a development of this type due to it requiring the provision for large plant area and a community heating infrastructure.


9.3. **Be Green – use renewable energy**

The renewable analysis has highlighted that the most appropriate technology for this development is Solar PV with a 1.55 kWp system. The PV output will need to be verified at detailed design stage to ensure compliance.

10. Summary

This statement has set out how the development will incorporate an energy efficient design which exceeds Part L 2013 regulations and, with the application of PV arrays to the roof, can achieve the required 35% reduction carbon dioxide emissions as required for the London Borough of Richmond upon Thames Development Management Plan Policy DM SD1.

Figure 11. Whole site reduction in CO₂ emissions

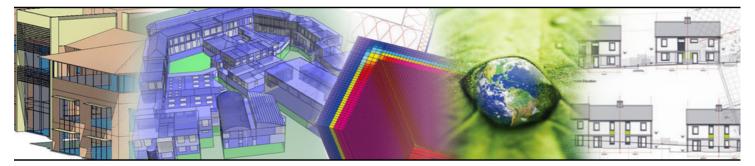
Appendices

Notes on presentation

An Energy Statement should present technical data while remaining easy to read and to understand. Clearly laid out tables should be used to present data for ease of reading and comparison. Site plans should be used where possible, e.g. to indicate suitable roof areas for installing solar technologies or the location of a plant room. References should be used to explain where data has been obtained from.

Example Tables

1. Summary of baseline energy demand.


This table may be amended or duplicated to show energy demand before and after the application of energy efficiency measures or renewable energy technologies.

	Total Energy Demand (kWh/yr)	Associated Total CO2 (kgCO2/yr)
Hot water	1921.18	414.99
Space Heating	5663.38	1223.29
Fixed Electrical	418.81	217.37
Appliances/Non-regulated	2836	1472
(any other energy consumption)		
TOTAL	10839.37	3327.65

2. Summary of CO2 emissions reductions

	Total CO2 emissions (kgCO2/year)
Baseline emissions	1856.59
Improved emissions (after application of energy efficiency measures)	1855.63
Improved emissions (after incorporation of efficient energy supply)	1855.63
Improved emissions (after incorporation of renewable energy technology)	1193.28
% CO2 displaced in total	35.8
% CO2 displaced by energy efficiency measures	0.2
% CO2 displaced by efficient supply of energy	0.0
% CO2 displaced by renewable energy	35.6

SAP Summary Report

61 Belmont Road Twickenham As Designed Part L1A (2012)

Ref:01-16-55567Issue Date01/02/2016Prepared for:Hazan Smith & Partners

61 Belmont Road
01-16-55567
-
Joseph Price-Buchanan
STRO016219

Project Status SAP compliance achieved

Project Status Details

SAP compliance achieved, but assumptions have been made that require client review and response to finalise the calculations, please see details below;

Comments by Assessor

DISCLAIMER

The results in the attached schedule have been prepared based on drawings, specification and other correspondence provided, unless otherwise stated above. Any deviation from any of this document or the specifications will invalidate the SAP, DER, and TER results.

Project Name	61 Belmont Road
Project Number	01-16-55567
Revision	-
SAP Assessor	Joseph Price-Buchanan
Assessor Number	STR0016219

Project Status SAP compliance achieved

	SAP Summary Report											
Property Type	e Plot	Built Form	TER	DER	Percent Improvement	Total Floor Area	FEE	Air permeability	Air Target (if Sample testing, only applies to 2010 B Regs)	Regulations	DFEE - BR 2012	TFEE - BR 2012
House	Plot 1	Detached	23.36	15.01	35.74	79.49	66.60	4	n/a	Yes	66.60	79.10

Project Name	61 Belmont Road
Project Number	01-16-55567
Revision	-
SAP Assessor	Joseph Price-Buchanan
Assessor Reference	STR0016219

			Design SAP Input Data Table	
	Description	Reference/Source	Details	Comments
	Roof	Architect calculation	0.15	100mm phenolic foam board between studs, 50mm board over (0.02λ) , 12.5mm plasterboard
	External Wall	Architect calculation	0.20	100mm concrete block, 150mm mineral wool quilt (0.02λ), brick outer leaf
Fabric U-values (W/m ² K)	Ground Floor	Architect calculation	0.13	75mm screed, 150mm Celotex (0.022λ), 100mm concrete beam & block
(WW/III K)	Windows / Roof light	Email & specification	1.40	Double glazed, Argon filled, low-e
	Doors	Email & specification	1.20	Double glazed, Argon filled, low-e
	y-value	Default	0.03	Based on accredited construction details and enhanced details for lintel and ground floor junctions
Thermal Mass		Specification	Indicative - Low	
	Airtightness m3/(hr.m ²)	Email	4.0	
Ventilation	Mechanical Ventilation	Email & Specification	Natural ventilation and intermittent extract fans	
	Main Heating System	Email confirmation	Potterton Promax Ultra 24 ErP	
Heating	Controls	Email confirmation	Time and temperature zone control	
пеациу	Water Heating	Specification	From main heating system	
	Secondary Heating System	N/A	None	
Low energy light	ing	Email Specification	100%	
Renewables		Email Specification	1.55 kWp	

REVISION	DESCRIPTION OF AMENDMENTS	DATE
1	First issue	01/02/2016

Regulations Compliance Report

••	ent L1A, 2013 Editior ruary 2016 at 09:59::	•	na FSAP 2012 program, Ver	rsion: 1.0.1.24
Project Information	on:			
Assessed By:	Joseph Price-Buch	nanan (STRO016219)	Building Type:	Detached House
Dwelling Details:				
NEW DWELLING	DESIGN STAGE		Total Floor Area: 7	9.49m²
Site Reference :	61 Belmont Road	- Twickenham	Plot Reference:	01-16-55567 Plot 1 PL1
Address :				
Client Details:				
Name:	Hazan Smith & Pa	rtners		
Address :				
•	s items included w te report of regulat	ithin the SAP calculations. ions compliance.		
1a TER and DER	2			
	ing system: Mains ga	as		
Fuel factor: 1.00 (r	• /			
-	xide Emission Rate	. ,	23.36 kg/m ²	
	ioxide Emission Rat	e (DER)	15.01 kg/m²	OK
1b TFEE and DF		\ \	70.0 1/1/1/1/1/22	
-	rgy Efficiency (TFEE hergy Efficiency (DFE	•	79.2 kWh/m² 66.6 kWh/m²	
Dwelling Fablic El	leigy Eniciency (DFE	- -)	00.0 KVVII/III-	ОК
2 Fabric U-value	S			
Element		Average	Highest	
External	wall	0.20 (max. 0.30)	0.20 (max. 0.70)	OK
Floor		0.13 (max. 0.25)	0.13 (max. 0.70)	OK
Roof		0.15 (max. 0.20)	0.15 (max. 0.35)	OK
Openings		1.21 (max. 2.00)	1.40 (max. 3.30)	OK
2a Thermal bridg		om linger thermal transmitte	ages for each junction	
3 Air permeabilit		om linear thermal transmitta	nces for each junction	
Air permeat	pility at 50 pascals		4.00 (design val	ue)
Maximum			10.0	OK
4 Heating efficie	ncy			
Main Heatir	ng system:	Database: (rev 387, produ Boiler systems with radiato Brand name: Potterton Model: Promax Ultra Model qualifier: Combi 24 (Combi) Efficiency 89.1 % SEDBUR Minimum 88.0 %	ors or underfloor heating - ma	ains gas OK
Secondary	heating system:	None		

Regulations Compliance Report

Cylinder insulation			
Hot water Storage:	No cylinder		
Controls			
Space heating controls	Time and temperature zo	ne control by device in database	ок
Hot water controls:	No cylinder		_
Boiler interlock:	Yes		ОК
Low energy lights			
Percentage of fixed lights wi	th low-energy fittings	100.0%	
Minimum		75.0%	OK
Mechanical ventilation			
Not applicable			
Summertime temperature			
Overheating risk (Thames va	alley):	Medium	ОК
ased on:			
Overshading:		Average or unknown	
Windows facing: South East		0.92m ²	
Windows facing: North West		16.36m ²	
Windows facing: South Wes	t	12.82m ²	
Windows facing: North East		4.89m ²	
Ventilation rate:		3.00	
Blinds/curtains:		Dark-coloured curtain or roller b	lind
		Closed 100% of daylight hours	
0 Key features			
Thermal bridging		0.034 W/m²K	

Thermal bridging Photovoltaic array

Dwelling type: Date of assessment: Produced by: Total floor area:

Detached House 24 January 2016 Joseph Price-Buchanan 79.49 m²

Environmental Impact (CO₂) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

Energy Efficiency Rating

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Property Details: 01-16-55567 Plot 1 PL1

	te: e: e: sclosure:						
PCDF Version:		387					
Property descriptio	n:						
Dwelling type: Detachment: Year Completed: Floor Location:		House Detached 2016 Floor area:					
			5	Storey height	:		
Floor 0		79.49 m ²		3.32 m			
Living area: Front of dwelling f	aces:	17.478 m ² (fraction 0.22) South East					
Opening types:							
Name: SE Elevation	Source: Manufacturer	Type: Solid	Glazing:		Argon:	Frame Wood):
SE Elevation	Manufacturer	Windows	low-E, En = 0.05, soft coat		Yes	PVC-U	
NW Elevation	Manufacturer	Windows	low-E, En = 0.05, soft coat		Yes	PVC-U	
SW Elevation	Manufacturer	Windows	low-E, En = 0.05 , soft coat		Yes	PVC-U	
NE Elevation	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	PVC-U	
Name:	Gap:	Frame Factor:	g-value:	U-value:	Area:	No. of	Openings:
SE Elevation	mm	0.7	0	1.4	2	1	
SE Elevation	16mm or more	0.7	0.5	1.2	0.92	1	
NW Elevation SW Elevation	16mm or more 16mm or more	0.7 0.7	0.5 0.5	1.2 1.2	16.36 12.82	1 1	
NE Elevation	16mm or more	0.7	0.5	1.2	4.89	1	
Name:	Type-Name:	Location:	Orient:	1.2	Width:	Heigh	t:
SE Elevation		External Wall	South East		0	0	
SE Elevation		External Wall	South East		0	0	
NW Elevation		External Wall External Wall	North West		0	0	
SW Elevation NE Elevation		External Wall	South West North East		0 0	0 0	
Overshading:		Average or unknown					
Opaque Elements:							
Type: <u>External Elements</u>		nings: Net area:	U-value:	Ru value:	Curtain	wall:	Kappa:
External Wall	118.12 36.		0.2	0	False		N/A
Pitched Roof	84.44 0	84.44	0.15	0			N/A
Ground Floor	79.49		0.13				N/A

Internal Elements

SAP Input

Party Elements

Thermal bridges:	Line and C	al (in all states 1.5		V Value 0.0241
Thermal bridges:		d (individual F Psi-valu		Y-Value = 0.0341
	Length 22.67	PSI-Value 0.01	e E1	Steel lintel with perforated steel base plate
[Approved]	22.07	0.01	E3	Sill
[Approved]	29.3	0.04	E4	Jamb
[Approved]	48.61	0.05	E5	Ground floor (normal)
[Approved]			E3	Eaves (insulation at rafter level)
[Approved]	18.4	0.04		Gable (insulation at rafter level)
[Approved]	32.22	0.04	E13	
[Approved]	15.981	0.09	E16	Corner (normal)
[Approved]	4.015	-0.09	E17	Corner (inverted internal area greater than external area)
[Approved]	9.81	0.07	E6	Intermediate floor within a dwelling
Ventilation:				
Pressure test:	Yes (As des	-		
Ventilation:	Natural ven	tilation (extra	ct fans)	
Number of chimneys:	0			
Number of open flues:	0			
Number of fans:	2			
Number of passive stacks:	0			
Number of sides sheltered:	2			
Pressure test:	4			
Main heating system:				
Main heating system:	Boiler syste	ms with radia	tors or und	lerfloor heating
	Gas boilers	and oil boilers	5	
	Fuel: mains	gas		
	Info Source	: Boiler Datab	ase	
	Database: ((rev 387, prod	uct index (017614) Efficiency: Winter 86.7 % Summer: 90.0
	Brand name	e: Potterton		
	Model: Pror	nax Ultra		
	Model quali	fier: Combi 24	ErP	
	(Combi boil			
	Systems wit	•		
	-	ting pump : 2	013 or late	or and the second se
				bw temperature<=35°C
	Boiler interl	•	Design no	
Main heating Control:				
Main heating Control:			ne control	by device in database
Conservations to an it is a strength of the st	Control cod	e: 2112		
Secondary heating system:				
Secondary heating system:	None			
Water heating:				
Water heating:		heating syster	n	
	Water code			
	Fuel :mains	•		
	No hot wate	er cylinder		
		-		
Others:	No hot wate Solar panel:	: False		
Electricity tariff:	No hot wate Solar panel: Standard Ta	: False		
Electricity tariff: In Smoke Control Area:	No hot wate Solar panel: Standard Ta Unknown	: False ariff		
Others: Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights:	No hot wate Solar panel: Standard Ta	: False ariff		

SAP Input

Terrain type: EPC language: Wind turbine: Photovoltaics: Low rise urban / suburban English No <u>Photovoltaic 1</u> Installed Peak power: 1.55 Tilt of collector: 30° Overshading: None or very little Collector Orientation: South East No

Assess Zero Carbon Home:

			User D	etails:						
Assessor Name: Software Name:	Joseph Price-Bu Stroma FSAP 20			Stroma Softwa					016219 on: 1.0.1.24	
		Р	roperty /	Address:	01-16-5	5567 PI	ot 1 PL1			
Address :										
1. Overall dwelling dimer	isions:		_	<i>.</i>						
Ground floor			-	a(m²) 9.49	(1a) x	Av. Hei	32	(2a) =	Volume(m ³) 263.91	(3a)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1	le)+(1r	I) 7	9.49	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d)+(3e)+	.(3n) =	263.91	(5)
2. Ventilation rate:									<u>, , ,</u>	
Number of chimneys	main heating 0 +	secondar heating	у] + [_	0 0] = [total	× 4	40 =	m ³ per hour	(6a)
Number of open flues	0 +	0] + [0] = [0	x 2	20 =	0	(6b)
Number of intermittent fan	s				- <u> </u>	2	x ′	10 =	20	(7a)
Number of passive vents						0	x	10 =	0	(7b)
Number of flueless gas fire	es					0	x 4	40 =	0	(7c)
								Air ch	anges per ho	ur
Infiltration due to chimney	s flues and fans =	(6a)+(6b)+(7	a)+(7b)+(7c) =	Г	20		÷ (5) =	0.08	(8)
If a pressurisation test has be					ontinue fro	-		. (0) –	0.08	
Number of storeys in the	e dwelling (ns)								0	(9)
Additional infiltration							[(9)	-1]x0.1 =	0	(10)
Structural infiltration: 0.2 if both types of wall are pre deducting areas of opening	sent, use the value corr					uction			0	(11)
If suspended wooden flo	oor, enter 0.2 (unse	aled) or 0.	1 (seale	d), else	enter 0				0	(12)
If no draught lobby, ente	er 0.05, else enter 0)							0	(13)
Percentage of windows	and doors draught	stripped							0	(14)
Window infiltration				0.25 - [0.2		-			0	(15)
Infiltration rate				(8) + (10) ·					0	(16)
Air permeability value, o			•		•	etre of e	nvelope	area	4	(17)
If based on air permeabilit Air permeability value applies						ia haina ur	ad		0.28	(18)
Number of sides sheltered		as been uun	e or a deg	nee an per	Πεαρπιτγ Ι	is being us	seu		2	(19)
Shelter factor				(20) = 1 - [0.075 x (1	9)] =			0.85	(20)
Infiltration rate incorporatir	ng shelter factor			(21) = (18)	x (20) =				0.23	(21)
Infiltration rate modified fo	r monthly wind spe	ed						ļ		
Jan Feb M	Mar Apr Mag	/ Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Table 7								_	
(22)m= 5.1 5 4	.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22))m ÷ 4									
(22a)m= 1.27 1.25 1	23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjust	ed infiltr	ation rat	e (allowi	ng for sh	elter an	d wind s	peed) =	(21a) x	(22a)m			_			
~	0.3	0.29	0.29	0.26	0.25	0.22	0.22	0.22	0.23	0.25	0.26	0.28			
		al ventila	-	rate for t	he appli	cable ca	se								(23a)
				endix N, (2	3b) = (23a	i) × Fmv (e	equation (N5)) . othei	rwise (23b) = (23a)			((23a)
				iency in %) (200)			(-	(23c)
			-	-	-					2b)m + (23b) x [1 – (23c)		<u> </u>	
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0]		(24a)
	balance	d mech	ı anical ve	entilation	without	heat rec	L Coverv (N	I /IV) (24b))m = (22	1 2b)m + ()	1 23b)	1	1		
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0]		(24b)
c) If	whole h	ouse ex	tract ver	tilation c	or positiv	ve input v	ventilatio	n from c	utside			1	1		
,				hen (24a	•	•				.5 × (23b))				
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0			(24c)
,				ole hous m = (22t		•				0.5]		-	-		
(24d)m=	0.54	0.54	0.54	0.53	0.53	0.52	0.52	0.52	0.53	0.53	0.53	0.54			(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in box	(25)	•	•	•	•		
(25)m=	0.54	0.54	0.54	0.53	0.53	0.52	0.52	0.52	0.53	0.53	0.53	0.54]		(25)
3. He	at losse	s and he	eat loss p	paramete	er:								-		
ELEN		Gros	SS	Openin		Net Ar	ea	U-valu		ΑXU		k-value		A X	
_		area	(m²)	m	2	A ,r	n²	W/m2	K .	(W/I	K)	kJ/m²₊l	K	kJ/ł	<
Doors						2	×	1.4	=	2.8					(26)
	ws Type					0.92	x1,	/[1/(1.2)+	0.04] =	1.05					(27)
Windo	ws Type	2				16.36	3 x1	/[1/(1.2)+	0.04] =	18.73					(27)
Windo	ws Type	93				12.82	2 x1	/[1/(1.2)+	0.04] =	14.68					(27)
Windo	ws Type	e 4				4.89	x1.	/[1/(1.2)+	0.04] =	5.6					(27)
Floor						79.49) X	0.13	=	10.333	7				(28)
Walls		118.	12	36.99	9	81.13	3 X	0.2	=	16.23					(29)
Roof		84.4	4	0		84.44	x x	0.15	=	12.67					(30)
Total a	rea of e	lements	, m²			282.0	5								(31)
				effective wil nternal wall			ated using	formula 1,	/[(1/U-valu	ıe)+0.04] a	as given in	n paragraph	n 3.2		
Fabric	heat los	s, W/K :	= S (A x	U)				(26)(30)	+ (32) =				82.	09	(33)
Heat c	apacity	Cm = S((Axk)						((28)	(30) + (32	2) + (32a)	(32e) =	1437	1.66	(34)
Therm	al mass	parame	ter (TMF	• = Cm ÷	- TFA) ir	n kJ/m²K			Indica	tive Value	: Low		10	0	(35)
	-		ere the de tailed calci	tails of the ulation.	constructi	ion are not	t known pr	ecisely the	e indicative	e values of	TMP in T	able 1f			_
Therm	al bridge	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						9.6	31	(36)
			are not kn	own (36) =	= 0.15 x (3	1)			(00)	(0.0)					
	abric he			1						(36) =	(05) (5	、	91	.7	(37)
ventila				monthly			1.1	A	r , ,	$= 0.33 \times ($		1	1		
(38)m=	Jan 47.43	Feb 47.28	Mar 47.14	Apr 46.44	May 46.31	Jun 45.7	Jul 45.7	Aug 45.59	Sep 45.94	Oct 46.31	Nov 46.57	Dec 46.85			(38)
					-0.01			-0.00				1 -10.00	J		()
(39)m=	139.13	oefficier 138.98	138.83	138.14	138.01	137.4	137.4	137.29	137.64	= (37) + (3 138.01	138.27	138.55	1		
				(SAP 9.92)						Average =			138	. Plage 2	,] (<u>39</u>)
Jasma	201		·	(27.1 0.02)						Ŭ				. ugo z	_ ,,

Heat Ic	oss para	ameter (I	HLP), W	/m²K					(40)m	= (39)m ÷	- (4)			
(40)m=	1.75	1.75	1.75	1.74	1.74	1.73	1.73	1.73	1.73	1.74	1.74	1.74		
Numbe	er of day	/s in mo	nth (Tab	le 1a)	•		•	•		Average =	Sum(40)1.	12 /12=	1.74	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
		1		1				l					1	
4. Wa	iter hea	ting ene	rgy requ	irement:								kWh/ye	ear:	
if TF	A > 13.	upancy, 9, N = 1 9, N = 1		: [1 - exp	(-0.0003	849 x (TF	FA -13.9	9)2)] + 0.0	0013 x (⁻	TFA -13		45]	(42)
Reduce	the annua	al average	hot water	usage by		lwelling is	designed	(25 x N) to achieve		se target o		.46]	(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage i	n litres pe	r day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	: (43)						
(44)m=	101.71	98.01	94.31	90.61	86.91	83.22	83.22	86.91	90.61	94.31	98.01	101.71		
Energy	content of	hot water	used - cal	culated m	onthly — 4	190 v Vd r	n v nm v I	DTm / 3600			m(44) ₁₁₂ =		1109.54	(44)
	150.83	131.92	136.13	118.68	113.87	98.26	91.06	104.49	105.74	123.23	134.51	146.07	1	
(45)m=	150.65	131.92	130.13	110.00	113.07	90.20	91.00	104.49			m(45) ₁₁₂ =		1454.78	(45)
lf instant	taneous v	vater heati	ng at point	t of use (no	o hot water	r storage),	enter 0 in	boxes (46			m(40)112 -		1404.70	
(46)m=	22.62	19.79	20.42	17.8	17.08	14.74	13.66	15.67	15.86	18.48	20.18	21.91		(46)
	storage			•							·		1	
-				• •			-	within sa	ame ves	sel		0		(47)
	•	-			/elling, e cludes i			n (47) ombi boil	ers) ente	er '0' in <i>(</i>	(47)			
	storage		not hat	51 (uno n		notantai					,			
a) If m	anufact	urer's d	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature f	actor fro	m Table	2b								0		(49)
0,			r storage					(48) x (49)) =			0		(50)
				•	loss fact le 2 (kW							0		(51)
		-	see secti			.,						0	l	(0.)
		from Ta										0		(52)
			m Table									0		(53)
			r storage	e, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
	. ,	(54) in (8	•	for agab	month			((EC)m - (EE) ~ (11)	~		0		(55)
1	-		culated					((56)m = (· · ·				1	
(56)m=	0 er contain	0 s dedicate	0 d solar sto	0	0 = (56)m	$0 \times [(50) - ($	0 H11)] ∸ (5	0 50), else (5	0 = (56)	0 m where (0 H11) is fro	0 m Append	lix H	(56)
-					· · ·			1	· · ·]	(57)
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
	•	•	nnual) fro									0		(58)
								65 × (41) ng and a		r thermo	stat)			
(1100 (59)m=					0							0]	(59)
	-						I					-	I	

Combi	loss ca	lculated	for eac	ch	month ((61)m =	(60	D) ÷ 36	65 × (41))m						
(61)m=	21.08	19.01	20.98		20.24	20.86	2	20.12	20.76	20.82	20.19	20.93	20.34	21.06		(61)
Total h	eat req	uired for	water	he	ating ca	alculated	d fo	or eacl	h month	(62)m	= 0.85 ×	(45)m ·	+ (46)m +	(57)m +	(59)m + (61)m	1
(62)m=	171.91	150.93	157.1 <i>′</i>	1	138.91	134.73	1	18.39	111.81	125.3	1 125.92	144.10	6 154.85	167.13]	(62)
Solar DH	HW input	calculated	using A	ope	ndix G or	Appendi	×Н	(negati	ve quantity	/) (enter	'0' if no sol	ar contrib	ution to wat	er heating)		
(add a	dditiona	l lines if	FGHR	Sa	and/or V	WWHR	S ap	oplies	, see Ap	pendix	G)				_	
(63)m=	0	0	0		0	0		0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter													
(64)m=	171.91	150.93	157.1 ⁷	1	138.91	134.73	1	18.39	111.81	125.3	1 125.92	144.10	6 154.85	167.13		
										0	utput from v	vater hea	ter (annual)	112	1701.17	(64)
Heat g	ains fro	m water	heatin	g,	kWh/mo	onth 0.2	5 ´	[0.85	× (45)m	+ (61	m] + 0.8	x [(46)r	n + (57)m	n + (59)m	n]	
(65)m=	55.42	48.61	50.51		44.52	43.08		37.7	35.47	39.95	40.2	46.21	49.81	53.83]	(65)
inclu	de (57)	n in calo	ulatior	יי ח ס	f (65)m	only if a	cylii	nder i	s in the o	dwellin	g or hot v	vater is	from corr	nmunity h	neating	
5. Int	ernal g	ains (see	e Table	5	and 5a):	-				0			-		
		ns (Table														
Melabi	Jan Jan	Feb	Mai		Apr	May	Γ	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	
(66)m=	147.19	147.19	147.19	+	147.19	147.19	1	47.19	147.19	147.1		147.19	_	147.19		(66)
											e Table 5			-	J	. ,
(67)m=	48.67	43.23	35.16	<u> </u>	26.61	19.9	1	16.8	18.15	23.59		40.2	46.92	50.02	1	(67)
													40.02	50.02	J	(0.)
		<u>,</u>		_			T			<u> </u>	so see Ta	_		044.55	1	(69)
(68)m=	325.93	329.31	320.79	_	302.64	279.74	_	58.21	243.83	240.4		267.12	2 290.02	311.55		(68)
		<u> </u>		-i-			-		· · · · · ·	· · · · ·	see Tabl			1	1	(00)
(69)m=	52.17	52.17	52.17		52.17	52.17	5	52.17	52.17	52.17	52.17	52.17	52.17	52.17	J	(69)
Pumps	and fa	ns gains	(Table	÷ 5a	a)										1	
(70)m=	3	3	3		3	3		3	3	3	3	3	3	3		(70)
Losses	s e.g. ev	/aporatic	on (neg	ati	ve valu	es) (Tal	ole	5)	-		_	-		-	-	
(71)m=	-98.12	-98.12	-98.12	2	-98.12	-98.12	-!	98.12	-98.12	-98.12	-98.12	-98.12	-98.12	-98.12		(71)
Water	heating	gains (T	able 5)					-	-				_	_	
(72)m=	74.49	72.34	67.89		61.83	57.9	5	52.37	47.67	53.69	55.84	62.1	69.18	72.36		(72)
Total i	nterna	gains =	:					(66)	m + (67)m	n + (68)r	n + (69)m +	(70)m +	(71)m + (72	:) m		
(73)m=	553.32	549.12	528.06	3	495.32	461.77	4	31.61	413.88	421.9	7 440.71	473.66	5 510.36	538.16]	(73)
6. Sol	lar gain	s:										•				
Solar g	ains are	calculated	using sc	lar	flux from	Table 6a	and	lassoci	iated equa	tions to	convert to t	he applic	able orienta	tion.		
Orienta		Access F			Area			Flu					FF		Gains	
	-	Table 6d			m²			Tat	ole 6a		Table 6b)	Table 6c		(W)	
Northea	ast <mark>0.9x</mark>	0.77		x	4.8	9	x	1	1.28	x	0.5	x	0.7	=	13.38	(75)
Northea	ast <mark>0.9</mark> x	0.77		x	4.8	9	x	2	2.97	x	0.5	x	0.7	=	27.24	(75)
Northea	ast <mark>0.9x</mark>	0.77		x	4.8	39	x	4	1.38	x	0.5	x	0.7	=	49.08	(75)
Northea	ast <mark>0.9x</mark>	0.77		x	4.8	39	x	6	57.96	×	0.5	x	0.7	=	80.6	(75)
Northea	ast <mark>0.9x</mark>	0.77		x	4.8	9	x	9	1.35	×	0.5	x	0.7	=	108.34	(75)

Northeast 0.9x	0.77) x	4.89	×	97.38	×	0.5	x	0.7	=	115.5	(75)
Northeast 0.9x	0.77	x	4.89	×	91.1	×	0.5	x	0.7	=	108.05	(75)
Northeast 0.9x	0.77	x	4.89	×	72.63	×	0.5	x	0.7	=	86.14	(75)
Northeast 0.9x	0.77	x	4.89	×	50.42	×	0.5	x	0.7	=	59.8	(75)
Northeast 0.9x	0.77	x	4.89	×	28.07	×	0.5	x	0.7	=	33.29	(75)
Northeast 0.9x	0.77	x	4.89	×	14.2	×	0.5	x	0.7	=	16.84	(75)
Northeast 0.9x	0.77	x	4.89	×	9.21	×	0.5	x	0.7	=	10.93	(75)
Southeast 0.9x	0.77	x	0.92	×	36.79	×	0.5	x	0.7	=	8.21	(77)
Southeast 0.9x	0.77	x	0.92	×	62.67	×	0.5	x	0.7	=	13.99	(77)
Southeast 0.9x	0.77	x	0.92	×	85.75	×	0.5	x	0.7	=	19.14	(77)
Southeast 0.9x	0.77	x	0.92	×	106.25	×	0.5	x	0.7	=	23.71	(77)
Southeast 0.9x	0.77	x	0.92	x	119.01	x	0.5	x	0.7	=	26.56	(77)
Southeast 0.9x	0.77	x	0.92	×	118.15	x	0.5	x	0.7	=	26.36	(77)
Southeast 0.9x	0.77	x	0.92	×	113.91	x	0.5	x	0.7	=	25.42	(77)
Southeast 0.9x	0.77	x	0.92	×	104.39	×	0.5	x	0.7	=	23.29	(77)
Southeast 0.9x	0.77	x	0.92	×	92.85	×	0.5	x	0.7	=	20.72	(77)
Southeast 0.9x	0.77	x	0.92	×	69.27	×	0.5	x	0.7	=	15.46	(77)
Southeast 0.9x	0.77	x	0.92	×	44.07	×	0.5	x	0.7	=	9.83	(77)
Southeast 0.9x	0.77	x	0.92	×	31.49	×	0.5	x	0.7	=	7.03	(77)
Southwest _{0.9x}	0.77	x	12.82	×	36.79		0.5	x	0.7	=	114.41	(79)
Southwest _{0.9x}	0.77	x	12.82	×	62.67		0.5	x	0.7	=	194.88	(79)
Southwest _{0.9x}	0.77	x	12.82	×	85.75		0.5	x	0.7	=	266.65	(79)
Southwest _{0.9x}	0.77	x	12.82	×	106.25		0.5	x	0.7	=	330.39	(79)
Southwest _{0.9x}	0.77	x	12.82	×	119.01		0.5	x	0.7	=	370.06	(79)
Southwest _{0.9x}	0.77	x	12.82	×	118.15		0.5	x	0.7	=	367.39	(79)
Southwest _{0.9x}	0.77	x	12.82	×	113.91		0.5	x	0.7	=	354.2	(79)
Southwest _{0.9x}	0.77	x	12.82	×	104.39		0.5	x	0.7	=	324.6	(79)
Southwest _{0.9x}	0.77	x	12.82	×	92.85		0.5	x	0.7	=	288.72	(79)
Southwest _{0.9x}	0.77	x	12.82	×	69.27		0.5	x	0.7	=	215.39	(79)
Southwest0.9x	0.77	x	12.82	×	44.07		0.5	x	0.7	=	137.04	(79)
Southwest _{0.9x}	0.77	x	12.82	×	31.49		0.5	x	0.7	=	97.91	(79)
Northwest 0.9x	0.77	x	16.36	×	11.28	×	0.5	x	0.7	=	44.77	(81)
Northwest 0.9x	0.77	x	16.36	×	22.97	×	0.5	x	0.7	=	91.13	(81)
Northwest 0.9x	0.77	x	16.36	×	41.38	×	0.5	x	0.7	=	164.2	(81)
Northwest 0.9x	0.77	×	16.36	×	67.96	×	0.5	x	0.7	=	269.66	(81)
Northwest 0.9x	0.77	×	16.36	×	91.35	×	0.5	x	0.7	=	362.47	(81)
Northwest 0.9x	0.77	×	16.36	×	97.38	×	0.5	x	0.7	=	386.43	(81)
Northwest 0.9x	0.77	×	16.36	×	91.1	×	0.5	x	0.7	=	361.5	(81)
Northwest 0.9x	0.77	×	16.36	×	72.63	×	0.5	x	0.7	=	288.19	(81)
Northwest 0.9x	0.77	×	16.36	×	50.42	×	0.5	x	0.7	=	200.08	(81)
Northwest 0.9x	0.77	×	16.36	×	28.07	×	0.5	×	0.7	=	111.37	(81)

Northw	est 0.9x	0.77	×	16.	36	x		14.2	x	0.5	Тx	0.7	=	56.33	(81)
Northw	est 0.9x	0.77	×	16.	36	x		9.21	x	0.5	×	0.7		36.56	(81)
	o.ox	0.11	^	10.		^	· · ·	0.21		0.0	^	0.7		00.00	
Solar	noine in	watta a		for ooo	h manth				(02)~~ 0	um (7 4) m	(00)~~				
(83)m=	180.77	watts, ca 327.24	499.06	704.36	867.43	1	95.69	849.17	722.23	um(74)m . 569.32	375.5		152.43	1	(83)
		nternal a							122.25	309.32	575.5	1 220.04	102.45	J	(00)
-	r	1		· · ·	· ,	r Ì	,			1010.00			000.50	1	(0.4)
(84)m=	734.1	876.36	1027.12	1199.68	1329.2	1	327.3	1263.06	1144.2	1010.03	849.1	7 730.4	690.59	J	(84)
7. Me	an inter	nal temp	perature	(heating	season)									
Temp	erature	during h	neating p	eriods ir	n the livi	ng	area	from Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	ation fac	ctor for g	ains for	living are	ea, h1,m	ı (se	ee Ta	ble 9a)							
	Jan	Feb	Mar	Apr	May	<u>r`</u>	Jun	Jul	Aug	Sep	Oct	t Nov	Dec]	
(86)m=	0.93	0.91	0.86	0.78	0.66		0.53	0.42	0.47	0.65	0.83		0.94		(86)
		ļ				I								1	
	r	i	1	<u> </u>	· ·	-		ps 3 to 7		,				1	()
(87)m=	17.95	18.31	18.9	19.62	20.25	2	20.67	20.86	20.82	20.46	19.63	8 18.66	17.87	J	(87)
Temp	erature	during h	neating p	eriods ir	n rest of	dw	elling	from Ta	ble 9, Tl	h2 (°C)					
(88)m=	19.5	19.51	19.51	19.51	19.52	1	9.52	19.52	19.52	19.52	19.52	2 19.51	19.51		(88)
Litilio		tor for a	aine for	roct of d	wolling	<u> </u>	m (cc	e Table	00)			<u>₽</u>	ļ	1	
(89)m=	0.92	0.89	0.84	0.74	0.6	-).44		9a) 0.34	0.57	0.79	0.89	0.93	1	(89)
(09)11=	0.92	0.09	0.84	0.74	0.0		J.44	0.5	0.34	0.57	0.79	0.09	0.95]	(00)
Mean	interna	l temper	ature in	the rest	of dwell	ing	T2 (f	ollow ste	ps 3 to 7	7 in Tabl	e 9c)			-	
(90)m=	17.78	18	18.37	18.81	19.18	1	9.41	19.49	19.48	19.31	18.84	18.23	17.73		(90)
										f	LA = Li	ving area ÷ (4) =	0.22	(91)
Mean	interna	l temper	ature (fo	r the wh	ole dwe	llin	a) – fl	LA × T1	⊥ (1 _ fl	Δ) v T2					
(92)m=	17.81	18.07	18.48	18.99	19.41	1	9.68	19.79	19.77	19.56	19.01	18.32	17.76	1	(92)
								m Table						1	(/
(93)m=	17.81	18.07	18.48	18.99	19.41	1	9.68	19.79	40, WHO 19.77	19.56	19.01	1	17.76	1	(93)
		1	I	I	19.41	<u> </u>	9.00	19.79	19.11	19.50	13.0	10.52	17.70		(00)
		ting requ					-1 -1				4 T:	(70)		lata	
		mean int factor fo				iea	at ste	epitor	Table 9	o, so tha	t II,m	=(76)m an	id re-cald	sulate	
	Jan	Feb	Mar	Apr	May		Jun	Jul	Aug	Sep	Oct	t Nov	Dec	1	
l Itilie:		tor for g			Iviay		Jun	Jui	Aug	Oep			Dec	1	
(94)m=	0.91	0.87	0.82	0.72	0.6		0.45	0.32	0.37	0.57	0.77	0.88	0.92	1	(94)
		hmGm					5.40	0.02	0.07	0.07	0.11	0.00	0.02	1	()
(95)m=	665.65	764.36	, VV = (94 838.51	867.16	793.23	50	96.89	405.01	417.8	576.78	655.4	1 639.83	632.44	1	(95)
								405.01	417.0	570.78	055.4	1 039.03	032.44]	(00)
	<u> </u>	age exte	r	r <u> </u>		-		40.0	40.4	444	40.0	74	4.0	1	(06)
(96)m=	4.3	4.9	6.5	8.9	11.7		14.6	16.6	16.4	14.1	10.6	7.1	4.2	J	(96)
		i	i	· · · ·		-		=[(39)m >	- ,	· , ,			<u> </u>	1	(07)
(97)m=		1830.55	1663.68				98.64	438.25	462.84	751.86	1160.9		1878.71	l	(97)
•	r	ř.				Wh		th = 0.02	_ , ,		ŕ	<u> </u>		1	
(98)m=	903.71	716.48	613.93	379.27	201.78		0	0	0	0	376.0	9 656.65	927.22		_
									Tota	l per year	(kWh/ye	ear) = Sum(9	98)15,912 =	4775.13	(98)
Space	e heatin	g require	ement in	kWh/m²	/year									60.07	(99)
		• •			•	vet	omei	ncluding	micro C	'HD)					
	e heatii			mauarii	earing s	ySt	enisi	Heldung		/////////////////////////////////////					
-		n g: bace hea	at from s	econdar	y/supple	eme	entary	system						0	(201)

Fracti	ion of sp	ace hea	at from n	nain syst	em(s)			(202) = 1 ·	- (201) =				1	(202)
Fracti	ion of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of I	main spa	ace heat	ting syste	em 1								93	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heating	g systen	า, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Space	e heatin	g requir	• · · ·	calculate	· · · · · · · · · · · · · · · · · · ·)		1	1	1			-	
	903.71	716.48	613.93	379.27	201.78	0	0	0	0	376.09	656.65	927.22		
(211)m	n = {[(98)m x (20	04)] } x 1	100 ÷ (20	<u> </u>								,	(211)
	971.73	770.41	660.14	407.82	216.96	0	0	0	0	404.4	706.07	997.02		-
= {[(98)m x (20	01)]}x1	00 ÷ (20	r í					I (kWh/yea		ľ		5134.54	(211)
(215)m=	0	0	0	0	0	0	0	0 Tota	0 II (kWh/yea	0	0	0	0	(215)
Output	171.91	ater hea 150.93	157.11	ulated a 138.91	bove) 134.73	118.39	111.81	125.31	125.92	144.16	154.85	167.13]	
	-	ater hea	1				1				1		86.7	(216)
(217)m=		89.41	89.31	89.09	88.65	86.7	86.7	86.7	86.7	89.06	89.35	89.48		(217)
		-	, kWh/m) ÷ (217)											
(219)m=		168.81	175.92	155.92	151.98	136.55	128.97	144.54	145.24	161.87	173.31	186.78]	
			•	•			•	Tota	I = Sum(2	19a) ₁₁₂ =	•		1922.05	(219)
	al totals									k	Wh/yea	r	kWh/year	-
Space	heating	fuel use	ed, main	system	1								5134.54	
Water	heating	fuel use	ed										1922.05	
Electri	city for p	oumps, f	ans and	electric	keep-ho	t								
centra	al heatir	ig pump	:									30]	(230c)
boiler	with a f	an-assis	sted flue									45		(230e)
Total e	electricity	y for the	above,	kWh/yea	ır			sum	of (230a).	(230g) =			75	(231)
Electri	city for li	ighting											343.81	(232)
Electri	city gen	erated b	y PVs										-1276.19	(233)
10a. I	Fuel cos	sts - indiv	vidual he	eating sy	stems:									
						Fu kW	el /h/year			Fuel P (Table			Fuel Cost £/year	
Space	heating	- main s	system ?	1		(21	1) x			3.4	18	x 0.01 =	178.68	(240)
Space	heating	- main s	system 2	2		(21:	3) x			0)	x 0.01 =	0	(241)
Space	heating	- secon	dary			(21	5) x			13.	19	x 0.01 =	0	(242)
Water	heating	cost (ot	her fuel)			(219	9)			3.4	18	x 0.01 =	66.89	(247)
Pumps	s, fans a	nd elect	ric keep	-hot		(23	1)			13.	19	x 0.01 =	9.89	(249)

(if off-peak tariff, list each of (230a) to (2 Energy for lighting	30g) separately (232)	as applicable and	d apply fuel price a	according to $\times 0.01 =$	Table 12a 45.35	(250)
Additional standing charges (Table 12)					120	(251)
	one o	f (233) to (235) x)	13.19	x 0.01 =	-168.33	(252)
Appendix Q items: repeat lines (253) an	d (254) as neede	ed				-
Total energy cost	(245)(247) + (250))(254) =			252.48	(255)
11a. SAP rating - individual heating sys	stems					
Energy cost deflator (Table 12)					0.42	(256)
Energy cost factor (ECF)	[(255) x (256)] ÷ [(4)) + 45.0] =			0.85	(257)
SAP rating (Section 12)					88.12	(258)
12a. CO2 emissions – Individual heatir	ig systems incluc	ding micro-CHP				
	Ene kWh	r gy n/year	Emissio r kg CO2/k		Emissions kg CO2/yea	
Space heating (main system 1)	(211)	x	0.216	=	1109.06	(261)
Space heating (secondary)	(215)	x	0.519	=	0	(263)
Water heating	(219)	x	0.216	=	415.16	(264)
Space and water heating	(261)	+ (262) + (263) + (26	64) =		1524.23	(265)
Electricity for pumps, fans and electric k	eep-hot (231)	x	0.519	=	38.93	(267)
Electricity for lighting	(232)	x	0.519	=	178.44	(268)
Energy saving/generation technologies Item 1			0.519	=	-662.34	(269)
Total CO2, kg/year			sum of (265)(271)	=	1079.24	(272)
CO2 emissions per m ²			(272) ÷ (4) =		13.58	(273)
El rating (section 14)					88	(274)
13a. Primary Energy						
	Ene kWh	r gy n/year	Primary factor		P. Energy kWh/year	
Space heating (main system 1)	(211)	x	1.22	=	6264.14	(261)
Space heating (secondary)	(215)	x	3.07	=	0	(263)
Energy for water heating	(219)	x	1.22	=	2344.91	(264)
Space and water heating	(261)	+ (262) + (263) + (26	64) =		8609.05	(265)
Electricity for pumps, fans and electric k	eep-hot (231)	x	3.07	=	230.25	(267)
Electricity for lighting	(232)	x	0	=	1055.5	(268)
Energy saving/generation technologies Item 1			3.07	=	-3917.91	(269)
'Total Primary Energy			sum of (265)(271)	=	5976.89	(272)
Primary energy kWh/m²/year			(272) ÷ (4) =		75.19	(273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 01 February 2016

Property Details: 01-16-55567 Plot 1 PL1

Dwelling type: Located in: Region: Cross ventilation possible: Number of storeys: Front of dwelling faces: Overshading: Overhangs: Thermal mass parameter: Night ventilation: Blinds, curtains, shutters: Ventilation rate during hot weat Overheating Details:	ather (ac	h):	None Indicative False Dark-colou	alley			
Summer ventilation heat loss Transmission heat loss coeffi		nt:	261.27				(P1)
Summer heat loss coefficient:			91.7 352.97				(P2)
Overhangs:							
Orientation:Ratio:South East (SE Elevation)North West (NW Elevatio0)South West (SW Elevatio0)North East (NE Elevation)Solar shading:		Z_overhangs: 1 1 1 1					
Orientation: Z blind	s:	Solar access:	Ove	rhangs:	Z summer:		
South East (SE Elevation)0.85 North West (NW Elevatio6)85).9).9	1 1		0.76 0.76		(P8) (P8)
South West (SW Elevation)85).9	1 1		0.76 0.76		(P8) (P8)
North East (NE Elevation)0.85 Solar gains:	().9	1		0.76		(ГО)
	A	F 1				0	
Orientation South East (SE Elevation)0.9 x North West (NW Elevatio 0)9 x South West (SW Elevatio 0)9 x North East (NE Elevation)0.9 x	Area 0.92 16.36 12.82 4.89	Flux 119.92 98.85 119.92 98.85	g_ 0.5 0.5 0.5 0.5	FF 0.7 0.7 0.7 0.7	Shading 0.76 0.76 0.76 0.76 Total	Gains 26.59 389.68 370.48 116.48 903.22	(P3/P4)
Internal gains:						703.22	(, ,, ,, ,)
Internal gains Total summer gains Summer gain/loss ratio Mean summer external tempera Thermal mass temperature incre Threshold temperature Likelihood of high internal tem	ement		42 13 3. 16 1. 21		July 410.88 1314.11 3.72 17.9 1.3 22.92 Medium	August 418.97 1203.48 3.41 17.8 1.3 22.51 Medium	(P5) (P6) (P7)

SAP 2012 Overheating Assessment

Assessment of likelihood of high internal temperature: Medium