



Ensphere Group Ltd 10 Greycoat Place, London, SW1P 1SB +44 (0) 20 7960 6126 www.enspheregroup.com



# Sandycombe Road, Richmond

### **Energy Statement**

| Client Name:        | Goldcrest   |
|---------------------|-------------|
| Document Reference: | 15-E075-004 |
| Project Number:     | 15-E075     |

### **Quality Assurance Approval Status**

This document has been prepared and checked in accordance with Ensphere Group Ltd's Quality Management System.

| Issue: | Version: | Prepared by: | Reviewed by: | Date:         |
|--------|----------|--------------|--------------|---------------|
| Final  | V1       | Pete Jeavons | Pete Jeavons | November 2016 |

|  | Sustainability | Energy | Climate Change | Socio-Economic |
|--|----------------|--------|----------------|----------------|
|--|----------------|--------|----------------|----------------|



## Contents

| 1.    | Executive Summary                        | 1  |
|-------|------------------------------------------|----|
| 2.    | Introduction                             | 2  |
| 3.    | Assessment Methodology                   | 3  |
| 4.    | Planning Policy Context                  | 4  |
| 5.    | Other Policy & Regulatory Considerations | 13 |
| 6.    | Site Context Appraisal                   | 14 |
| 7.    | Passive Design & Energy Efficiency       | 17 |
| 8.    | District Energy Appraisal                | 22 |
| 9.    | Low Carbon Technologies Appraisal        | 23 |
| 10.   | Renewable Technology Appraisal           | 24 |
| 11.   | Summary                                  | 32 |
| Apper | ndix A Site Plans                        | 35 |
| Apper | ndix B Energy Modelling Outputs          | 37 |
| Apper | ndix C General Notes                     | 46 |



## 1. Executive Summary

- 1.1 This Energy Statement presents the energy strategy for a proposed scheme at Sandycombe Road, Richmond.
- 1.2 The proposed scheme includes the redevelopment of the site to provide residential flats with commercial space at ground and part of the first floor.
- 1.3 Consideration has primarily been given to the planning policy context and other requirements prior to establishing a strategy based upon the Energy Hierarchy; with a priority given to energy reduction and efficiency. Renewable and low carbon technologies have also been considered in the context of their technical feasibility and financial viability.
- 1.4 The following is therefore proposed:
  - High performance building fabric and energy efficient lighting, services and equipment;
  - Passive design measures to reduce energy demand for heating, cooling, ventilation and lighting;
  - Combined Heat and Power (CHP) to provide the majority of hot water and space heating for the residential apartments.
  - Air Source Heat Pump to provide heating to the commercial unit.
- 1.5 In line with Policy 5.2 of the London Plan and the Council's Sustainable Construction Checklist, an on-site carbon saving of ≥ 35% has been targeted for the entire development relative to Part L 2013 (equivalent to a 40% carbon saving relative to the 2010 version of Part L). The residential component will achieve "zero carbon" through an "Allowable Solution" contribution.
- 1.6 Overall, the proposed energy strategy is considered consistent with the National Planning Policy Framework and the policies of the GLA and local authority and, when implemented, will provide an efficient and low carbon building.



#### Introduction 2.

2.1 Ensphere Group Ltd was commissioned by Goldcrest to produce an Energy Statement for a proposed development at Sandycombe Road, Richmond.

#### Site & Surroundings

Site

2.2 The site is located in the north east of Richmond. It is of an approximately triangular shape, roughly level topography and comprises almost entirely of a single building and hardstanding.

**Surroundings** 

- 2.3 Access to the site is via Sandycombe Road, to the immediate west. A railway line flanks the eastern boundary and a two-storey commercial unit with Planning permission for a mixed use residential/commercial development is located to the immediate north. Lower Richmond Road (A316) is located to the immediate south.
- 2.4 The majority of the surrounding land uses are residential; however, commercial uses are evident to the southwest, south and southeast of the site. Recreation spaces can be found to the northeast and west.

#### **Proposed Development**

2.5 Development proposals include the redevelopment of the site to residential flats with commercial space at ground and part of the first floor.

#### **Report Objective**

2.6 The objective of the Energy Statement is to outline how energy efficiency, low carbon and renewable technologies have been considered as part of the energy strategy.



### 3. Assessment Methodology

### Analysis Methodology

- 3.1 There is a broad consensus that the preferred approach to minimising carbon emissions from buildings is to firstly focus on reducing the demand for energy before reviewing efficient and renewable technology options.
- 3.2 However, priorities and performance targets can vary at a local level and the report therefore commences with a review of the planning policy and other considerations.
- 3.3 A site context appraisal is then undertaken to establish the site specific parameters for climatic conditions and available energy infrastructure. The subsequent sections follow the Energy Hierarchy (discussed below) and review the design proposals in relation to passive design and energy efficiency as well as the potential to incorporate low carbon and renewable technology.

#### **Energy Hierarchy**

3.4 The tiers of the Energy Hierarchy are:

#### **Energy Hierarchy**

- 1. Be Lean Reduce Energy Demand
- 2. Be Clean Use Energy More Efficiently
- 3. Be Green Use Renewable Energy
- 3.5 The first principle of the Hierarchy is to reduce demand and the need for energy in the first place. Where opportunities to improve the efficiency of the design have been maximised, consideration is then given to the second principle whereby priority is given to the efficient use of energy. This is on the basis that low carbon technologies can be cost-effective and provide significant carbon savings when compared to conventional technologies.
- 3.6 The third principle of the hierarchy promotes the use of renewable technologies. Whilst these technologies can be relatively expensive to install, they do offer the potential to significantly reduce carbon emissions.
- 3.7 The summary section of the report presents an overview of the findings and the strategy.



## 4. Planning Policy Context

4.1 National and local planning policy relevant to sustainable development is considered in detail below:

#### **National Planning Policy Framework**

- 4.2 The Department for Communities and Local Government determines national policies on different aspects of planning and the rules that govern the operation of the system.
- 4.3 The transition to a low carbon economy is promoted in paragraphs 17, 93 through to 97 of the NPPF.

#### London Planning Policy Framework

#### The London Plan as Altered (March 2016)

4.4 The London Plan as Altered is the overall strategic plan for London. Chapter five details *London's Response to Climate Change* and include a number of policies that set the overarching principles for reducing carbon emissions in the built environment, predominant of which is Policy 5.2 which sets specific targets for development as follows:

#### Policy 5.2 – Minimising Carbon Dioxide Emissions

**Planning Decisions** 

- A) Development proposals should make the fullest contribution to minimising carbon dioxide emissions in accordance with the following energy hierarchy:
  - 1) Be lean: use less energy;
  - 2) Be clean: supply energy efficiently;
  - 3) Be green: use renewable energy.
- B) The Mayor will work with boroughs and developers to ensure that major developments meet the following targets for carbon dioxide emissions reduction in buildings. These targets are expressed as minimum improvements over the Target Emission Rate (TER) outlined in the national Building Regulations leading to zero carbon residential buildings from 2016 and zero carbon non-domestic buildings from 2019.

#### Residential Buildings:

| Year      | Improvement in 2010 Building Regs |
|-----------|-----------------------------------|
| 2010-2013 | 25% (Code Level 4)                |



| 2013-2016 | 40%         |
|-----------|-------------|
| 2016-2031 | Zero Carbon |

#### Non-Residential Buildings:

| Year      | Improvement in 2010 Building Regs        |
|-----------|------------------------------------------|
| 2010-2013 | 25%                                      |
| 2013-2016 | 40%                                      |
| 2016-2019 | As per building regulations requirements |
| 2019-2031 | Zero Carbon                              |

- C) Major development proposals should include a detailed energy assessment to demonstrate how the targets for carbon dioxide emission reduction outlined above are to be met within the framework of the energy hierarchy.
- D) As a minimum, energy assessments should include the following details:
  - a) Calculations of the energy demand and carbon dioxide emissions covered by the Building Regulations and, separately, the energy demand and carbon dioxide emissions from any other part of the development, including plant or equipment, that are not covered by the Building Regulations (see paragraph 5.22) at each stage of the hierarchy;
  - Proposals to reduce carbon dioxide emissions through the energy efficient design of the site, buildings and services;
  - c) Proposals to reduce carbon dioxide emissions through the use of decentralised energy where feasible, such as district heating and cooling and combined heat and power (CHP);
  - d) Proposals to further reduce carbon dioxide emissions through the use of on-site renewable energy technologies.
- E) The carbon dioxide reduction targets should be met on-site. Where it is clearly demonstrated that the specific targets cannot be fully achieved on-site, any shortfall may be provided off-site or through a cash in lieu contribution to the relevant borough to be ring fenced to secure delivery of carbon dioxide savings elsewhere.

#### Policy 5.3 – Sustainable Design & Construction

**Strategic** 



A) The highest standards of sustainable design and construction should be achieved in London to improve the environmental performance of new developments and to adapt to the effects of climate change over their lifetime.

**Planning Decisions** 

- B) Development proposals should demonstrate that sustainable design standards are integral to the proposals, including its construction and operation, and ensure that they are considered at the beginning of the design process.
- C) Major development proposals should meet the minimum standards outlined in the Mayor's supplementary planning guidance and this should be clearly demonstrated within a design and access statement. The standards include measures to achieve other policies in this Plan and the following sustainable design principles apply:
  - a) Minimising carbon dioxide emissions across the site, including the building and services (such as heating and cooling systems);
  - b) Avoiding internal overheating and contributing to the urban heat island effect;
  - c) Efficient use of natural resources (including water), including making the most of natural systems both within and around buildings;
  - d) Minimising pollution (including noise, air and urban run-off);
  - e) Minimising the generation of waste and maximising reuse or recycling;
  - f) Avoiding impacts from natural hazards (including flooding);
  - g) Ensuring developments are comfortable and secure for users, including avoiding the creation of adverse local climatic conditions;
  - h) Securing sustainable procurement of materials, using local supplies where feasible; and
  - i) Promoting and protecting biodiversity and green infrastructure.
- D) Within LDFs boroughs should consider the need to develop more detailed policies and proposals based on the sustainable design principles outlined above and those which are outlined in the Mayor's supplementary planning guidance that are specific to their local circumstances.

Policy 5.5 – Decentralised Energy Networks

Strategic

Chapter: Planning Policy Context



A) The Mayor expects 25 per cent of the heat and power used in London to be generated through the use of localised decentralised energy systems by 2025. In order to achieve this target, the Mayor prioritises the development of decentralised heating and cooling networks at the development and area wide levels, including larger scale heat transmission networks.

**LDF** Preparation

- B) Within LDFs boroughs should develop policies and proposals to identify and establish decentralised energy network opportunities. Boroughs may choose to develop this as a supplementary planning document and work jointly with neighbouring boroughs to realise wider decentralised energy network opportunities. As a minimum, boroughs should:
  - Identify and safeguard existing heating and cooling networks; a)
  - b) Identify opportunities for expanding existing networks and establishing new networks. Boroughs should use the London Heat Map tool and consider any new developments, planned major infrastructure works and energy supply opportunities which may arise;
  - c) Develop energy master plans for specific decentralised energy opportunities which identify;
    - Major heat loads (including anchor heat loads, with particular reference to sites such as universities, hospitals and social housing);
    - Major heat supply plant;
    - Possible opportunities to utilise energy from waste;
    - Possible heating and cooling network routes;
    - Implementation options for delivering feasible projects, considering issues of procurement, finding and risk in the role of the public sector.
  - d) Require developers to prioritise connection to existing or planned decentralised energy networks where feasible.

#### Policy 5.6 – Decentralised Energy in Development Proposals

#### **Planning Decisions**

A) Development proposals should evaluate the feasibility of Combined Heat and Power (CHP) systems, and where a new CHP system is appropriate also examine opportunities to extend the system beyond the site boundary to adjacent sites.

Chapter: Planning Policy Context



- B) Major development proposals should select energy systems in accordance with the following hierarchy:
  - 1) Connection to existing heating or cooling networks;
  - 2) Site wide CHP network;
  - 3) Communal heating and cooling.
- C) Potential opportunities to meet the first priority in this hierarchy are outlined in the London Heat Map tool. Where future network opportunities are identified, proposals should be designed to connect to these networks.

#### Policy 5.7 – Renewable Energy

Strategic

A) The Mayor seeks to increase the proportion of energy generated from renewable sources, and expects that the projections for installed renewable energy capacity outlined in the Climate Change Mitigation and Energy Strategy and in supplementary planning guidance will be achieved in London.

**Planning Decisions** 

B) Within the framework of the energy hierarchy (see Policy 5.2), major development proposals should provide a reduction in expected carbon dioxide through the use of onsite renewable energy generation, where feasible.

**LDF** Preparation

- C) Within LDFs boroughs should, and other agencies may wish to develop more detailed policies and proposals to support the development of renewable energy in London – in particular, to identify broad areas where specific renewable energy technologies, including large scale systems and the large scale deployment of small scale systems, are appropriate. The identification of areas should be consistent with any guidelines and criteria outlined by the Mayor.
- D) All renewable energy systems should be located and designed to minimise any potential adverse impacts on biodiversity, the natural environment and historical assets, and to avoid any adverse impacts on air quality.

#### Policy 5.9 – Overheating and Cooling

Strategic

A) The Mayor seeks to reduce the impact of the urban heat island effect in London and



encourages the design of places and spaces to avoid overheating and excessive heat generation, and to reduce overheating due to the impacts of climate change and the urban heat island effect on an area wide basis.

**Planning Decisions** 

- B) Major development proposals should reduce potential overheating and reliance on air conditioning systems and demonstrate this is in accordance with the following cooling hierarchy:
  - 1) Minimise internal heat generation through energy efficient design;
  - 2) Reduce the amount of heat entering a building in summer through orientation, shading, albedo, fenestration, insulation and green roofs and walls;
  - Manage the heat within the building through exposed internal thermal mass and high ceilings;
  - 4) Passive ventilation;
  - 5) Mechanical ventilation;
  - 6) Active cooling.
- C) Major development proposals should demonstrate how the design, materials, construction and operation of the development would minimise overheating and also meet its cooling needs. New development in London should also be designed to avoid the need for energy intensive air conditioning systems as much as possible. Further details and guidance regarding overheating and cooling are outlined in the London Climate Change Adaptation Strategy.

**LDF Preparations** 

D) Within LDFs boroughs should develop more detailed policies and proposals to support the avoidance of overheating and to support the cooling hierarchy.

#### Local Planning Policy Framework

4.5 The relevant planning authority is London Borough of Richmond upon Thames and planning policy for the area is detailed in a number of statutory documents.

#### Core Strategy (April 2009)

4.6 The London Borough of Richmond upon Thames Core Strategy is the key planning policy document of the local plan and was adopted in April 2009. The Core Strategy sets out the Council's vision and its guiding principles for planning in Richmond.



#### **Policy CP2 Reducing Carbon Emissions**

2.A The Borough will reduce its carbon dioxide emissions by requiring measures that minimise energy consumption in new development and promoting these measures in existing development, particularly in its own buildings.

2.B The Council will require the evaluation, development and use of decentralised energy in appropriate development.

2.C The Council will increase the use of renewable energy by requiring all new development to achieve a reduction in carbon dioxide emissions of 20% from on-site renewable energy generation unless it can be demonstrated that such provision is not feasible, and by promoting its use in existing development.

### Policy CP3 Climate Change – Adapting to the Effects [extract]

3.A Development will need to be designed to take account of the impacts of climate change over its lifetime, including:

[...]

• The need for summer cooling;

[...]

4.7 It is noted that the text beneath Policy CP2 and under the heading "Justification", regular reference is made to Combined Heat and Power (CHP), implying that the 20% target incorporates both low and zero carbon technologies.

**Development Management Plan (November 2011)** 

- 4.8 The Development Management Plan (DMP) takes forward the Core Strategy's three interrelated themes of "A Sustainable Future", "Protecting Local Character" and "Meeting People's Needs" with more detailed policies for the control of development.
- 4.9 Policies considered pertinent to this report include:

#### Policy DM SD1 Sustainable Construction [extract]

All development in terms of materials, landscaping, standard of construction and operation should include measures capable of mitigating and adapting to climate change to meet future needs.

ensphere

[...]

They also must achieve a minimum 25 per cent reduction in carbon dioxide emissions over Building Regulations (2010) in line with best practice from 2010 to 2013, 40 per cent improvement from 2013 to 2016, and "zero carbon" standards from 2016. It is expected that efficiency measures will be prioritised as a means towards meeting these targets. These requirements may be adjusted in future years to take into account the then prevailing standards and any other national guidance to ensure the standards are met or exceeded.

[...]

#### Policy DM SD2 Renewable Energy and Decentralised Energy Networks

New development will be required to conform with the Sustainable Construction Checklist SPD and:

- a) Maximise opportunities for the micro-generation of renewable energy. Some form of low carbon renewable and / or decentralised energy will be expected in all new development; and
- b) Developments of 1 dwelling unit or more, or 100sqm of non-residential floor space or more will be required to reduce their total carbon dioxide emissions by following a hierarchy that first requires an efficient design to minimise the amount of energy used, secondly by using low carbon technologies and finally, where feasible and viable, including a contribution from renewable sources.
- c) Local opportunities to contribute towards decentralised energy supply from renewable and low-carbon technologies will be encouraged where there is no over-riding adverse local impact.
- d) All new development will be required to connect to existing or planned decentralised energy networks where one exists. In all major developments and large Proposals Sites identified in the (forthcoming) Site Allocations DPD, provision should be made for future connection to a local energy network should one become available.

#### Policy DM SD4 Adapting to Higher Temperatures and Need for Cooling

All new developments, in their layout, design, construction, materials, landscaping and operation, are required to take into account and adapt to higher temperatures, avoid and



mitigate overheating and excessive heat generation to counteract the urban heat island effect, and meet the need for cooling.

All new development proposals should reduce reliance on air conditioning systems and demonstrate this in accordance with the following cooling hierarchy:

- 1. Minimise internal heat generation through energy efficient design;
- 2. Reduce the amount of heat entering a building in summer through shading, reducing solar reflectance, fenestration, insulation and green roofs and walls;
- Manage the heat within the building through exposed internal thermal mass and high ceilings;
- 4. Passive ventilation;
- 5. Mechanical ventilation;
- 6. Active cooling systems (ensuring they are the lowest carbon options).

Opportunities to adapt existing buildings, places and spaces to manage higher temperatures should be maximised and will be supported.



## 5. Other Policy & Regulatory Considerations

5.1 This section comprises an overview of other considerations relevant to the Energy Statement.

#### **Building Regulations**

Update 2013 (Part L Conservation of Fuel & Power)

5.2 The Department for Communities and Local Government announced on 30 July 2013 that the update to Part L would include a further 6% carbon reduction for residential from 6 April 2014 and a further 9% reduction for non-residential.

#### **National Planning Practice Guidance**

#### **Climate Change**

5.3 Advises how planning can identify suitable mitigation and adaption measures in plan-making and the application process to address the potential for climate change.

#### **Renewable and Low Carbon Energy**

5.4 The guidance is intended to assist local councils in developing policies for renewable energy in local plans, and identifies the planning considerations for a range of renewable sources.

#### **London Planning Practice Guidance**

Sustainable Design and Construction Supplementary Planning Guidance (April 2014)

5.5 The Mayor has published supplementary planning guidance on Sustainable Design and Construction. The document provides guidance on the implementation of London Plan policy 5.3 as well as a range of policies, primarily in Chapters 5 and 7 that deal with matters relating to environmental sustainability.

#### **Energy Planning Guidance (March 2016)**

5.6 Policy 5.2 of the London Plan requires each major development proposal to submit a detailed energy assessment. The GLA provides guidance to developers and their advisors on preparing energy assessments to accompany strategic planning applications. With regards to the carbon reduction targets detailed in policy 5.2 of the London Plan, the mayor will apply a 35 per cent target beyond Part L 2013 of the Building Regulations. This is deemed to be broadly equivalent to the 40 per cent target beyond Part L 2010.

#### **Local Planning Practice Guidance**

Sustainable Construction Checklist Guidance Document (August 2011)

5.7 The Sustainable Construction Checklist SPD forms part of the assessment for planning applications for new build, conversion and retrofit properties within the London Borough of Richmond upon Thames. The Checklist includes consideration of Energy Use & Pollution.



### 6. Site Context Appraisal

6.1 Local climatic conditions, natural resources and energy infrastructure are addressed within this section.

#### **Local Climate**

6.2 An assessment of the local climate and natural resources has been compiled from Met Office, Department of Energy and Climate Change and British Geological Survey data. Consideration has been given to the data for Kew Gardens as the nearest climate station to the site.

| Month     | Max temp<br>(°C) | Min temp<br>(°C) | Days of air<br>frost<br>(days) | Sunshine<br>(hours) | Rainfall<br>(mm) | Days of<br>rainfall<br>≥1mm<br>(days) | Monthly<br>mean wind<br>speed at<br>10m<br>(knots) |
|-----------|------------------|------------------|--------------------------------|---------------------|------------------|---------------------------------------|----------------------------------------------------|
| January   | 8.2              | 1.8              | 9.7                            | 59.8                | 57.2             | 11.6                                  | 6.3                                                |
| February  | 8.7              | 1.7              | 10                             | 79.9                | 41.9             | 9                                     | 6.3                                                |
| March     | 11.6             | 3.4              | 5.2                            | 118.2               | 42.8             | 10                                    | 6.1                                                |
| April     | 14.4             | 4.7              | 2.5                            | 173.3               | 45.3             | 9.1                                   | 6.1                                                |
| May       | 18               | 7.9              | 0.3                            | 205.3               | 48.8             | 9                                     | 5.5                                                |
| June      | 21               | 10.8             | 0                              | 203.6               | 49.3             | 8.5                                   | 5.3                                                |
| July      | 23.5             | 13               | 0                              | 218.4               | 46.8             | 7.7                                   | 6                                                  |
| August    | 23.2             | 12.7             | 0                              | 211.1               | 51.2             | 8.1                                   | 4.6                                                |
| September | 20               | 10.3             | 0.1                            | 146.4               | 52.2             | 8.5                                   | 4.4                                                |
| October   | 15.8             | 7.4              | 1.2                            | 117.2               | 69.7             | 10.7                                  | 4.5                                                |
| November  | 11.3             | 4.1              | 5.6                            | 70.6                | 60.6             | 11.1                                  | 4.9                                                |
| December  | 8.5              | 2.1              | 10.1                           | 49.6                | 56.6             | 10.6                                  | 5.2                                                |
| Annual    | 15.4             | 6.7              | 44.8                           | 1653.3              | 622.5            | 113.7                                 | 5.4                                                |

 Table 6.1
 Averages Table (Climate Period 1981-2010)

#### Microclimate

6.3 The term "microclimate" refers to the climatic conditions at a certain area, which may differ from the surroundings. In the context of sustainability in urban developments, the interest lies at the microclimate within the development site and immediate surroundings as this will have



an impact on the actual energy performance of the buildings, the potential for renewables exploitation, indoor/outdoor comfort and safety conditions for occupants and the public.

- 6.4 Given the complex interrelationship between building configuration and microclimatic variables (e.g. air temperature, humidity, wind speed/direction, solar radiation), the microclimatic analysis requires advanced modelling techniques and computational simulations which fall out of the scope of the standard approach towards the formulation of an overarching energy strategy.
- 6.5 As a general trend, it can be expected that the air temperatures will be higher than assumed for the standard energy performance calculations (in line with National Calculation Methodology), as a result of the Urban Heat Island (UHI) effect; and solar radiation intensity (W/m<sup>2</sup>) will present variations depending on elevation orientation. The wind profile will be substantially variant and altered within the dense urban context, with characteristically higher turbulence.

#### District Network Opportunities: The National & London Heat Maps

The National Heat Map

6.6 The National Heat Map has been reviewed to identify opportunities for connection to an existing district energy network. The purpose of the National Heat Map, which was commissioned by the Department of Energy and Climate Change and created by CSE, is to support the planning and deployment of local low-carbon energy projects in England.

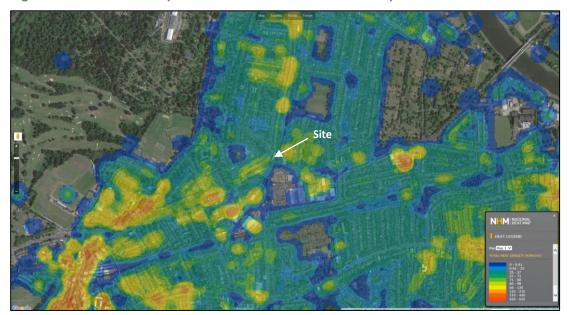



Figure 6.2 The Site as Represented on The National Heat Map

6.7 The above extract from The National Heat Map shows the site located in an area of relatively modest heat density.

Chapter: Site Context Appraisal



#### London Heat Map

- 6.8 The London Heat Map is a tool provided by the Mayor of London to identify opportunities for decentralised energy projects in London. It builds on the 2005 London Community Heating Development Study.
- 6.9 The image below illustrates the London Heat Map in the vicinity of the application site. It shows that the proposed scheme is located in an area with a higher heat density; although not within an opportunity area (opportunity area designated in purple).

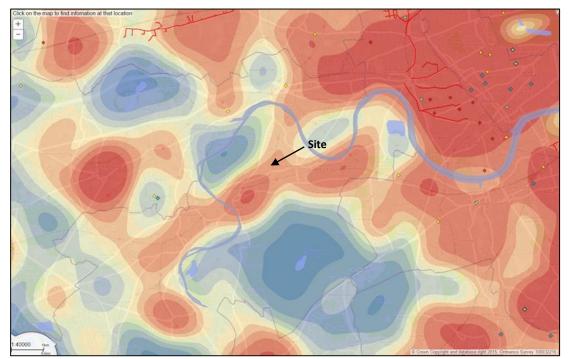



Figure 6.3 Extract from the London Heat Map

6.10 The above extract from The London Heat Map shows the site located in an area identified as having an annual heating fuel use of between 87kWh/yr and 115kWh/yr. No major energy supply plant, existing district energy networks or proposed energy works are identified in the vicinity of the site.



## 7. Passive Design & Energy Efficiency

7.1 This section considers features of the proposed design relevant to passive energy savings and energy efficiencies.

#### **Passive Design**

#### Solar Gains & Daylight

- 7.2 The site is located in a relatively dense urban environment. In this context and the associated limitations imposed on the shape and layout of the buildings due to site constraints, the benefits from passive design measures can be limited. However, it is intended to incorporate good practice measures where feasible.
- 7.3 The design of the glazed areas shall seek to offer good access to natural daylight to reduce consumption of energy for artificial lighting. Overall, a balance shall be sought between achieving daylighting levels and winter solar gains, whilst minimising summer heat gains and cooling loads.

#### **Energy Efficiency**

7.4 Much of the fabric design will be undertaken at the detailed design stage; however, the following provides an indication as to the anticipated approach.

#### **Heat Transfer Coefficients**

- 7.5 Heat Transfer Coefficients, otherwise referred to as U-Values, are a measure of the rate of heat transfer through a building element over a given area, under standardised conditions (i.e. the rate at which heat is lost or gained through a fabric).
- 7.6 It is intended that the performance of the building fabric will incorporate relatively low U-Values to reduce the rate at which the buildings lose heat, preserving the heat within the space and reducing the requirement for mechanical heating.
- 7.7 The following U-values are provided as a guide for the basic building elements:
  - External Walls ≤0.18W/m<sup>2</sup>K;
  - Roof ≤0.14W/m<sup>2</sup>K;
  - Ground Floor ≤0.18W/m<sup>2</sup>K;
  - Windows ≤1.30W/m<sup>2</sup>K.



#### Air Leakage

7.8 A high level of air tightness is proposed and a level below 5m<sup>3</sup>/h/m<sup>2</sup> is targeted, meaning that air infiltration between the internal and the external environment will be largely controlled and space heating demand further reduced.

#### Thermal Mass

- 7.9 Thermal mass is the ability of the fabric of a building to absorb heat, store it, and at a later time release it. Similar to the Heat Transfer Coefficients, this is a detail that will be considered more fully as the design progresses.
- 7.10 Nevertheless, it is recognised that thermal mass has the potential to capture and release energy and help regulate requirements throughout the day. Typically, a higher thermal mass helps reduce the cooling requirements for buildings in the UK during summer months.
- 7.11 To maximise the benefits, consideration will be given to the specific climate and daytime occupation; particularly during winter months where the addition of thermal mass can increase winter heating. Furthermore, the removal of heat during summer months (e.g. night-time ventilation) is key to gains by having mass and the approach is not necessarily suited to buildings with 24 hour occupancy.
- 7.12 As a rule of thumb, the best place for thermal mass is inside the insulated building envelope and a better insulated envelope will mean more effective thermal mass. Furthermore, thermal mass should be left exposed internally to allow it to interact with the house interior.

### Thermal Bridging

- 7.13 Thermal bridging is the penetration of the insulation layer by a highly conductive noninsulating material allowing rapid heat transfer from an interior to exterior environment (and vice versa). In well insulated buildings, as much as 30% of heat loss can occur through thermal bridges.
- 7.14 The building fabric shall be constructed so that there are no reasonably avoidable thermal bridges in the insulation layers caused by gaps within the various elements and it is proposed that construction joint details are calculated by a person with suitable expertise and experience. For the purposes of the proposed scheme, Y-values better than 0.08 W/m<sup>2</sup>K shall be targeted where feasible.

### Service Energy Efficiency

#### **Building Services Equipment**

7.15 The specific fan power of the centralised air supply systems shall be highly efficient and local extract fans shall have a specific fan power below 0.3W/l/s.

# ensphere

7.16 The air-conditioning system components shall have seasonal efficiencies within the upper spectrum of the range currently available on the market; heat recovery shall be employed in conjunction with centralised fresh air supply systems.

Metering

7.17 The major energy uses shall me monitored via separate energy meters and a Building Energy Management System (BEMS) will be installed, which will allow for optimum operational control and performance of complex building services in the development.

Lighting

- 7.18 At this stage, detailed lighting design calculations have not yet been undertaken, but lighting design is intended to be highly efficient and in excess of Building Standards requirements. In the domestic components it is intended that lighting efficacy shall be in excess of 60lumens/circuit Watt; in the non-domestic building parts a lighting efficacy above 70lumens/circuit Watt shall be targeted.
- 7.19 Lighting controls (e.g. PIR occupancy sensors) shall be employed throughout the nonresidential components and zoned to suit the different space uses; the lighting control strategy shall work in conjunction with daylighting sensors in spaces with substantial glazing, to further reduce the energy consumption for artificial lighting.
- 7.20 External lighting shall be highly efficient and employ controls to avoid energy wastage from unnecessary operation during daytime.

**Space Heating Control Systems** 

7.21 Advanced individual space heating controls shall be employed as appropriate for each space. The charging system will be linked to use; providing incentives to the occupants to efficiently manage consumption.

#### **Domestic Appliances**

7.22 Within the residential apartments, domestic appliances such as fridges, freezers and domestic dishwashers shall be specified in consideration of their energy performance; the EU energy label of these appliances shall be A+ or greater.

#### **Overheating Mitigation**

- 7.23 The issue of overheating will need detailed and considered assessment at a later stage of design on the basis that, as buildings become progressively better sealed and insulated, the potential for overheating increases.
- 7.24 Overheating can be caused by:
  - External Heat Gains e.g. sun shining through the windows;



- Internal Heat Gains e.g. occupant activity, building services, inadequate ventilation, lighting and appliances;
- Construction Type & Layout e.g. increased gains with lighter weight construction.
- Site Location e.g. the ventilation strategy may be inhibited by other factors; such as reliance on openable windows in areas with noise / security concerns;
- Landscaping e.g. if external surroundings are predominantly hard surfaces, the air available for ventilation may already be warm before it enters the property;
- Urban Heat Island e.g. increased external temperatures due to thermal mass releasing heat during the night and the widespread use of refrigeration / cooling equipment.
- Orientation e.g. certain orientations, especially west-facing homes, are difficult to protect against solar gain.

#### **Limiting Summer External Gains**

- 7.25 Solar control glazing shall be installed to the elevations most affected; the precise specification of glazing types for windows and glazed curtain walling is to be based upon further analysis at later stages so that the appropriate balance is found between limiting summer heat gains without compromising daylight harvesting and winter solar gains.
- 7.26 Thermal mass (discussed above) and internal occupant-controlled shading elements will be considered at the more detailed design stage along with heat reflective finishes of the external building surfaces.
- 7.27 The above shall be considered in conjunction and interrelationship with the ventilation strategy, to ensure thermal comfort for occupants and energy savings.

#### **Limiting Internal Heat Gains**

- 7.28 Heat losses from the Hot Water and Low Temperature Hot Water (LTHW) distribution network are considered to be a significant source of potential overheating in well insulated buildings. This issue can be a significant factor affecting comfort and will therefore need full consideration during the detailed design of the mechanical systems.
- 7.29 However, it is expected that attention will be given to:
  - The positioning of the distribution network and its potential impact on surrounding spaces;
  - The (mechanical) ventilation of spaces where heating pipework is distributed (e.g. corridors);
  - The implementation of combined passive/active ventilation systems for air exhaust of spaces into corridors and to the outside;



- Maximising the natural ventilation potential of spaces;
- The performance of the insulation, with calculations undertaken assessing heat losses from the pipework relative to the heat losses from the spaces.



### 8. District Energy Appraisal

#### **District Energy**

- 8.1 District energy refers to the distribution of heat (normally as steam or hot water) and/or chilled water from a central energy centre to individual buildings to be used for space heating, domestic hot water and air conditioning. Energy is distributed via a network of pre-insulated pipework and the end-users connect to it via heat exchangers; networks can supply only heat ("district heating"), cool water ("district cooling") or both ("district heating and cooling").
- 8.2 The term "district energy" applies to the energy distribution network, rather than the origins of the energy, which is normally either:
  - 1. Waste heat from power generation plants or other industrial processes;
  - 2. Waste heat from CHP plants;
  - 3. Conventional centralised systems (boilers).
- 8.3 The extent of any carbon savings will be largely determined by the energy source.

| Table 8.1 | District | Energy  | Appraisal    |
|-----------|----------|---------|--------------|
|           | DIOLITOL | Livi gy | / uppi uioui |

| Criteria      |                                                                                                                                                                                           |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opportunities | <ul> <li>A sufficient heating demand exists, which could be<br/>satisfied by a district energy system;</li> </ul>                                                                         |
| Limitations   | <ul> <li>No district heating network is currently operational in the<br/>vicinity of the site;</li> </ul>                                                                                 |
| Appraisal     | <ul> <li>Whilst technically feasible, the absence of district heating<br/>networks in the immediate vicinity of the site renders this<br/>option unfeasible in the short term;</li> </ul> |



### 9. Low Carbon Technologies Appraisal

9.1 Low carbon technologies are energy generation systems which offer the capability to make more efficient and effective use of primary energy resources, emitting significantly lower levels of carbon dioxide than conventional energy generation methods.

#### **Combined Heat & Power (CHP)**

- 9.2 Combined Heat & Power (CHP) systems generate electrical energy and provide the waste heat from the process to be used on site. They are typically gas-powered but can be run off alternative fuel sources. CHP is a highly efficient means to supply heat in developments, providing significant carbon savings and wider environmental benefits (the power generation is much less resource intensive and carbon emitting compared to grid electricity from the average UK power station).
- 9.3 Good practice CHP system design follows that engines are best sized to meet the base heating demand of a development. System sizing in response to the base load allows the CHP engine to run for the whole year without significant modulation, preventing engine wear, reduced life expectancy and efficiency drop.

| Criteria      |                                                                                                                                                                                                      |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opportunities | <ul> <li>A sufficient heating demand exists on site which the CHP system could supply;</li> <li>A base load exists for hot water generation for the residential elements of the proposal.</li> </ul> |
| Limitations   | • The space heating demand presents a variable daily, weekly and seasonal trend; this potentially introduces design complexity and viability implications for the technology;                        |
| Appraisal     | • CHP is considered a potentially feasible and viable technology for the site; particularly if applied to the residential part and used in combination with backup gas-fired conventional boilers.   |

#### Table 9.1 CHP Appraisal



### **10. Renewable Technology Appraisal**

10.1 Renewable technologies are those which take their energy from sources which are considered to be inexhaustible (e.g. sunlight, wind etc.). Emissions associated with renewables are generally considered to be negligible and the technologies are frequently referred to as "zero carbon".

### **Biomass Systems**

Outeute

10.2 Biomass systems are heating systems that use agricultural, forest, urban and industrial residues and waste to produce heat and (depending on the system) electricity. At the building scale, biomass boilers using wood pellets or woodchips are the norm. Biomass should be sourced locally to limit "embodied carbon" associated with transport and ideally be derived from waste wood products to limit the take-up of agricultural land for fuel crops.

| Criteria      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opportunities | A sufficient heating demand exists, which the biomass system could supply;                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Limitations   | <ul> <li>The site is located in an urban environment and away from a readily available and diverse supply of biomass;</li> <li>Transport, storage and maintenance requirements, would increase the managerial requirements of operation; and</li> <li>Carbon emissions associated with cultivation, processing and transport of biomass are not normally considered in the context of planning or Building Regulations meaning that total carbon emissions are likely to be significantly higher than estimated.</li> </ul> |
| Appraisal     | <ul> <li>Whilst technically feasible, the absence of a readily available and diverse local fuel source creates risk associated with security of fuel supply. This has implications for operational viability;</li> <li>Biomass is therefore not a preferred technology for the scheme.</li> </ul>                                                                                                                                                                                                                           |

Chapter: Passive Design & Energy Efficiency



#### **Heat Pumps**

- 10.3 Heat pumps draw thermal energy from the air, water or ground ("source") and upgrade it to be used as useful heat at another location ("sink"). Heat pumps require electricity to operate (or gas in the case of Gas Absorption Heat Pumps) as mechanical input is required to convert harvested energy to useful heat and complete its transport to the "sink".
- 10.4 Heat pumps are generally considered as renewable (despite an electrical or gas requirement) because the source of the heat is the ambient temperature in the exterior environment, which is ultimately heated via the sun.
- 10.5 Reversible systems can provide air conditioning comfort cooling; however, when in cooling mode, the system is not considered renewable as it is not taking advantage of a renewable source of energy.

| Criteria      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opportunities | A sufficient heating demand exists, which ASHPs could accommodate;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Limitations   | <ul> <li>The performance of ASHPs typically varies more than other heat pump options due to greater fluctuations in air temperatures, relative to other heat sources;</li> <li>Performance reduces when systems are required to achieve higher temperatures. Heat pumps are therefore normally better applied to space heating rather than hot water and specifically to low supply temperature systems (e.g. underfloor heating);</li> <li>All heat pumps generate noise associated with the movement of refrigerant and (any) fans;</li> <li>Whilst less expensive than other heat pump systems, relative to other technologies, capital and maintenance costs are high;</li> </ul> |

 Table 10.2
 Air Source Heat Pump Appraisal



### Appraisal



Air source heat pumps are considered a suitable • technology for certain non-residential spaces, but will only be applied in a limited capacity.

#### Table 10.3 **Ground Source Heat Pump Appraisal**

| Criteria      |                                                                                                                                                                                                                                                       |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opportunities | <ul> <li>A sufficient heating demand exists, which GSHPs could accommodate;</li> </ul>                                                                                                                                                                |
| Limitations   | • Site constraints and shading render a horizontal configuration non-feasible;                                                                                                                                                                        |
|               | • Capital costs for vertical installations are typically greater than for horizontal systems due to drilling costs;                                                                                                                                   |
|               | • Thermal properties of the ground will depend upon a number of factors including geology and depth. Desktop information suggests that thermal properties are below average and therefore deeper boreholes would likely be required;                  |
|               | • Performance reduces when systems are required to achieve higher temperatures. Heat pumps are therefore normally better applied to space heating rather than hot water and specifically to low supply temperature systems (e.g. underfloor heating); |
| Appraisal     | • Installed vertically, a GSHP system would be technically feasible for supplying heat to part of the development;                                                                                                                                    |
|               | <ul> <li>However, uncertainties exist with regards to the thermal properties of the ground and performance;</li> </ul>                                                                                                                                |
|               | • GSHPs are not proposed; principally for financial viability reasons and on the basis that it would represent a relatively expensive means of reducing carbon.                                                                                       |

Chapter: Passive Design & Energy Efficiency



| Table 10.4 | Water | Source | Heat | Pump | Appraisal |
|------------|-------|--------|------|------|-----------|
|------------|-------|--------|------|------|-----------|

| Criteria      |                                                                                                                                                                       |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opportunities | <ul> <li>A sufficient heating demand exists, which WSHPs could accommodate;</li> </ul>                                                                                |
| Limitations   | • There is no suitable surface water body available in the vicinity of the site and site constraints render the development of appropriate water basins non feasible; |
| Appraisal     | <ul> <li>WSHP is not considered an option for the site; primarily<br/>for technical feasibility considerations.</li> </ul>                                            |

### Micro Hydro Power

10.6 Micro hydro power systems harnesses energy from flowing water by using height differences (called "head"); the minimum allowable head is 1.5m and ideally not lower than 10m.

| Table 10.5 | Micro Hyd | ro Power | Appraisal |
|------------|-----------|----------|-----------|
|------------|-----------|----------|-----------|

| Criteria      |                                                                                                                            |
|---------------|----------------------------------------------------------------------------------------------------------------------------|
| Opportunities | • A sufficient electricity demand exists, which micro hydro power could address.                                           |
| Limitations   | • No suitable water body is found in the vicinity of the site.                                                             |
| Appraisal     | <ul> <li>Micro hydro is therefore not considered an option for the<br/>site, for technical feasibility reasons.</li> </ul> |



Oultoute

### Micro Wind Power

10.7 Wind turbines are used to generate electricity; with power production determined by the rotation of the blades and being proportionate to the speed of their rotation. The technology is most efficient for constant, low turbulence wind profiles.

| Table 10.6 | Micro | Wind | Power | Appraisal |
|------------|-------|------|-------|-----------|
|------------|-------|------|-------|-----------|

| Criteria      |                                                                                                                                                                                                               |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opportunities | <ul> <li>A sufficient electricity demand exists, which micro wind<br/>power could contribute towards;</li> </ul>                                                                                              |
| Limitations   | <ul> <li>Due to the urban environment, the wind profile is expected<br/>to be highly turbulent, reducing the efficiency of the<br/>system;</li> </ul>                                                         |
|               | • The average wind speed is low and falls within the lower range for a viability case;                                                                                                                        |
|               | <ul> <li>Roof mounted turbines would add height to the buildings<br/>with associated aesthetic and planning considerations;<br/>and</li> </ul>                                                                |
|               | • Moving plant on the roof potentially creates noise and vibration, with associated nuisance and structural considerations.                                                                                   |
| Appraisal     | • Whilst wind turbines are considered technically feasible in a limited capacity, wind speeds are relatively low and subject to turbulence. The technology is therefore likely to underperform;               |
|               | • On-site & real-time wind speed measurements for at least<br>a year would be required prior to establishing a case for<br>this technology (recommended should the end users wish<br>to investigate further); |
|               | • Given the uncertainty over performance, the fact that any contribution will likely be quite minor, micro wind turbines are not proposed for the development.                                                |



#### **Solar Systems**

- 10.8 Both solar thermal and photovoltaic (PV) systems convert energy from the sun into a form which can be applied within the building. Solar thermal generates energy for heating (usually for hot water) and PV generates electricity. Hybrid photovoltaic / solar thermal collectors are also available and co-generate heat and power.
- 10.9 To maximise the performance from the technology, the solar collectors should be pointed towards the sun; which in the UK is maximised when orientated to the south and at an angle of 30°.

| Criteria      |                                                                                                                                                                                         |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opportunities | <ul> <li>A sufficient electricity demand exists; which PV could partially address;</li> </ul>                                                                                           |
|               | <ul> <li>An extent of roof space exists on the site, which is not<br/>subject to significant overshading.</li> </ul>                                                                    |
| Limitations   | <ul> <li>The area of roof space will limit the potential application of<br/>the technology;</li> </ul>                                                                                  |
|               | • The technology tends to have a high capital cost per unit of carbon saved.                                                                                                            |
| Appraisal     | <ul> <li>The high capital costs compared to anticipated savings render this option financially unviable;</li> <li>The limited availability of suitable roof space would mean</li> </ul> |
|               | that PV would not be able to satisfy the carbon reduction<br>target in isolation and would need to be combined with<br>other LZC technologies.                                          |
|               | • PV panels are therefore not a preferred option for the energy strategy                                                                                                                |

Table 10.7 PV Panels Appraisal

Table 10.8PV-T Panels Appraisal

| Criteria      |                                                             |
|---------------|-------------------------------------------------------------|
| Opportunities | • A sufficient electricity and heating demand exists; which |



|             | DV/T could portially address:                                                                                                                                                                           |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | PV-T could partially address;                                                                                                                                                                           |
|             | • An extent of roof space exists on the site, which is flat and                                                                                                                                         |
|             | not subject to significant overshading.                                                                                                                                                                 |
| Limitations | • The technology tends to have a high capital cost per unit of carbon saved;                                                                                                                            |
|             | • Potential carbon savings are jeopardised by auxiliary power needed to move the heat around the development;                                                                                           |
|             | • Heating energy generation presents high seasonal variance and has therefore limited scope in efficiently supplying the base heating load (hot water);                                                 |
|             | • The system would be conflicting with the preferred technology                                                                                                                                         |
| Appraisal   | • Whilst technically feasible in a limited capacity, the potential maximum application of the technology is unlikely to provide significant carbon dioxide reductions for the development;              |
|             | This technology would conflict with other preferred LZC technologies;                                                                                                                                   |
|             | • The high capital costs compared to anticipated savings render this option financially unviable;                                                                                                       |
|             | • The limited availability of suitable roof space would mean that PV-T would not be able to satisfy the carbon reduction target in isolation and would need to be combined with other LZC technologies. |
|             | • PV-T panels are therefore not a preferred option for the energy strategy.                                                                                                                             |

Table 10.9 **Solar Thermal Panels Appraisal** 

| Criteria      |                                                                                                      |
|---------------|------------------------------------------------------------------------------------------------------|
| Opportunities | <ul> <li>A sufficient heating demand exists; which Solar Thermal could partially address;</li> </ul> |



|             | <ul> <li>An extent of roof space exists on the site, which is flat and<br/>not subject to significant overshading.</li> </ul>                                                              |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Limitations | • The technology tends to have a high capital cost per unit of carbon saved;                                                                                                               |
|             | • Potential carbon savings are jeopardised by auxiliary power needed to move the heat around the development;                                                                              |
|             | • Heating energy generation presents high seasonal variance and has therefore limited scope in efficiently supplying the base heating load (hot water);                                    |
|             | • The system would be conflicting with the preferred technology.                                                                                                                           |
| Appraisal   | • Whilst technically feasible in a limited capacity, the potential maximum application of the technology is unlikely to provide significant carbon dioxide reductions for the development; |
|             | This technology would conflict with other preferred LZC technologies;                                                                                                                      |
|             | • The high capital costs compared to anticipated savings render this option financially unviable;                                                                                          |
|             | Solar Thermal panels are therefore not a preferred option                                                                                                                                  |



### 11. Summary

- 11.1 This Energy Statement provides an overview of the energy strategy in consideration of the site context, anticipated energy requirements and local priorities and initiatives.
- 11.2 A review of the London Borough of Richmond upon Thames' planning policy has identified a number of requirements relating to energy. Of these, Core Strategy policies CP2 (*Reducing Carbon Emissions*) and CP3 (*Climate Change Adapting to the Effects*) are considered of greatest pertinence along with Development Management Plan policies DM SD1 (*Sustainable Construction*), DM SD2 (*Renewable Energy and Decentralised Energy Networks*) and DM SD4 (*Adapting to Higher Temperatures and Need for Cooling*). Consideration has also been given to national and London policies as well as Richmond's Sustainable Construction Checklist.
- 11.3 The approach follows the Energy Hierarchy, with priority given to efficient design on the basis that it is preferable to reduce carbon emissions by reducing energy demand.
- 11.4 Section 7 highlights some of the proposed energy efficiency measures; and the feasibility study detailed in Sections 8, 9 and 10 identified Combined Heat and Power (CHP) as the preferred low carbon technology option.
- 11.5 The CHP central plant shall be used to supply the majority of the base hot water load and a similar proportion of the space heating requirement in the residential part. The system would be centralised and operate in parallel with an efficient and conventional back-up gas-fired boiler(s). This system is compatible with any future district energy network.
- 11.6 A reversible ASHP technology shall be used in a limited capacity and in spaces where mechanical cooling would be expected (e.g. commercial units).

#### **Carbon Savings**

- 11.7 Energy modelling has been undertaken and a sample of five residential units has been modelled using SAP; the commercial space has been modelled using SBEM. It is proposed to reduce carbon emissions <u>on site</u> by >35% relative to Part L 2013. The residential component of the development will satisfy the London Plan Policy 5.2 "zero carbon" requirement through the use of "Allowable Solutions".
- 11.8 The following tables present the key findings:



#### Table 11.1 **Indicative SAP & SBEM Results**

| Unit       | Location      | Area   | TER                                  | DER/BER                              | Reduction |
|------------|---------------|--------|--------------------------------------|--------------------------------------|-----------|
|            |               | (m²)   | (kgCO <sub>2</sub> /m <sup>2</sup> ) | (kgCO <sub>2</sub> /m <sup>2</sup> ) | (%)       |
| 1          | Mid-floor/end | 77.75  | 16.93                                | 10.45                                | 38.28%    |
| 7          | Mid-floor/mid | 67.98  | 15.90                                | 9.50                                 | 40.25%    |
| 11         | Mid-floor/end | 73.97  | 15.89                                | 9.57                                 | 39.77%    |
| 16         | Mid-floor/mid | 50.35  | 18.86                                | 11.68                                | 38.07%    |
| 17         | Top-floor/end | 63.42  | 18.08                                | 11.61                                | 35.79%    |
| Commercial | Ground/First  | 534.32 | 21.00                                | 13.50                                | 35.71%    |

#### Table 11.2 **Residential Carbon Emissions**

| Parameter                                             | Value                                      |
|-------------------------------------------------------|--------------------------------------------|
| Area Weighted Residential TER (based on sample of 5)  | 17.00kgCO <sub>2</sub> /m <sup>2</sup> /yr |
| Area Weighted target DER (including 35% reduction)    | 11.05kgCO <sub>2</sub> /m <sup>2</sup> /yr |
| Total Residential Area                                | 1,253.40m <sup>2</sup>                     |
| Total Residential Emissions (including 35% reduction) | 13,850kgCO <sub>2</sub> /yr                |

#### **Commercial Carbon Emissions** Table 11.3

| Parameter                                            | Value                                      |
|------------------------------------------------------|--------------------------------------------|
| Commercial TER                                       | 21.00kgCO <sub>2</sub> /m <sup>2</sup> /yr |
| Target BER (including 35% reduction)                 | 13.65kgCO <sub>2</sub> /m <sup>2</sup> /yr |
| Total Residential Area                               | 534.32m <sup>2</sup>                       |
| Total Commercial Emissions (including 35% reduction) | 7,293kgCO <sub>2</sub> /yr                 |

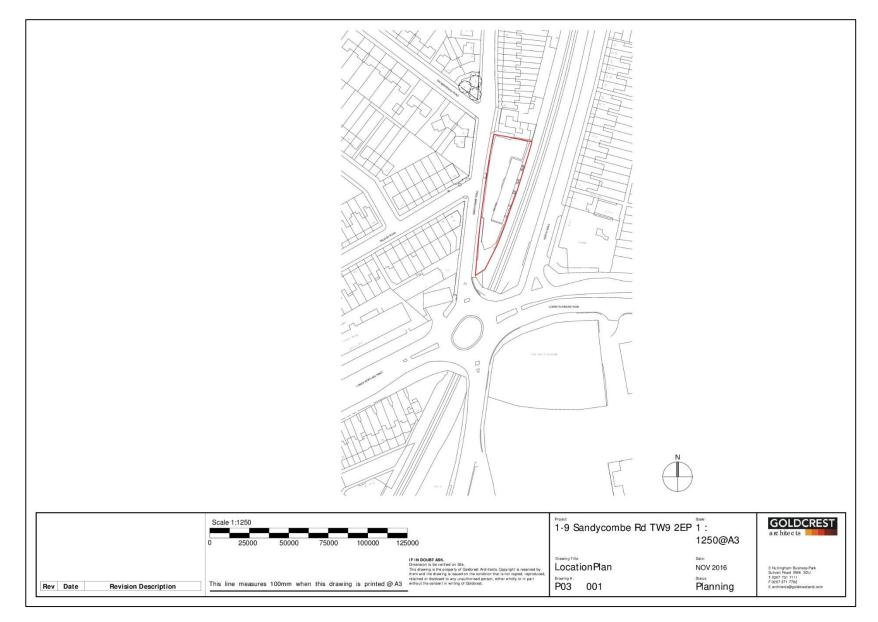
#### Allowable Solutions

11.9 In line with London Plan Policy 5.2 and supporting GLA guidance, Allowable Solutions apply to the residential component only and are calculated on the basis of £60/tonne over a 30-year period.

#### Allowable Solutions Calculation

13.85 tonnes x £60 x 30 years = £24,930

11.10 Therefore, and subject to viability, a contribution of £24,930 may be required in response to the policy targets.




11.11 Overall, the proposed energy strategy is considered consistent with the National Planning Policy Framework and policies of the GLA and Council and, when implemented, will provide an efficient and low carbon development.



# Appendix A Site Plans







Appendix B Energy Modelling Outputs



|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | User                  | Details:         |                                      |               |                        |     |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|--------------------------------------|---------------|------------------------|-----|
| Assessor Name:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  | Number:                              |               |                        |     |
| Software Name:                                              | Stroma FSAP 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                    | Softwar          | e Version:                           | Versio        | n: 1.0.3.15            |     |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second | / Address: L     | Jnit 1                               |               |                        |     |
| Address :<br>1. Overall dwelling dimer                      | 1-9 Sandycombe F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Road, Richmond        | , London         |                                      |               |                        |     |
| 1. Overall dwelling dimer                                   | ISIONS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ar                    | ea(m²)           | Av. Heid                             | uht(m)        | Volume(m <sup>a</sup>  | 3)  |
| Ground floor                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 77.75 (1         | a) x 3                               | (2a) =        | 233.25                 | (3  |
| Total floor area TFA = (1a                                  | a)+(1b)+(1c)+(1d)+(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e)+(1n)               | 77.75 (4         | )                                    |               |                        |     |
| Dwelling volume                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | (:               | 3a)+(3b)+(3c)+(3d)+                  | +(3e)+(3n) =  | 233.25                 | (5  |
| 2. Ventilation rate:                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  |                                      | l             |                        | _   |
| 2. Vennation rate.                                          | main s<br>heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | secondary             | other            | total                                |               | m <sup>3</sup> per hou | ır  |
| Number of chimneys                                          | 0 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | heating +             | 0                | = 0                                  | x 40 =        | 0                      | (6  |
| Number of open flues                                        | 0 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 +                   | 0                | = 0                                  | x 20 =        | 0                      | (6  |
| Number of intermittent far                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                  | 3                                    | x 10 =        | 30                     | (7  |
| Number of passive vents                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  | 0                                    | x 10 =        | 0                      | (7  |
| Number of flueless gas fir                                  | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                  | 0                                    | × 40 =        | 0                      | (7  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  |                                      |               |                        | 10  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  |                                      | Air ch        | anges per ho           | our |
| Infiltration due to chimney                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  | 30                                   | ÷ (5) =       | 0.13                   | (8  |
| If a pressurisation test has be<br>Number of storeys in th  | A CONTRACTOR OF A CONTRACTOR O | led, proceed to (17)  | , otherwise cor  | ntinue from (9) to (1)               | 6)<br>Г       | 0                      | (9  |
| Additional infiltration                                     | e dwelling (lia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                  |                                      | [(9)-1]x0.1 = | 0                      | (1  |
| Structural infiltration: 0.3                                | 25 for steel or timber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r frame or 0.35 f     | or masonry       | construction                         |               | 0                      | (1  |
| if both types of wall are pre<br>deducting areas of opening |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sponding to the gre   | ater wall area ( | after                                |               |                        |     |
| If suspended wooden fl                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aled) or 0.1 (sea     | led), else er    | nter 0                               | [             | 0                      | (1  |
| If no draught lobby, ente                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  |                                      | ĺ             | 0                      | (1  |
| Percentage of windows                                       | and doors draught s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | stripped              |                  | (14) 1001                            | ĺ             | 0                      | (1  |
| Window infiltration<br>Infiltration rate                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  | (14) ÷ 100] =<br>11) + (12) + (13) + | (15) -        | 0                      | (1  |
| Air permeability value, o                                   | 50. expressed in cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ubic metres per h     |                  |                                      |               | 5                      | (1  |
| If based on air permeabili                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  |                                      |               | 0.38                   | (1  |
| Air permeability value applies                              | Second and a constraint and a second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | as been done or a d   | egree air perm   | eability is being use                | d             |                        | _   |
| Number of sides sheltered<br>Shelter factor                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | (20) = 1 - [0.   | 075 x (19)] =                        |               | 1                      | (1  |
| Infiltration rate incorporati                               | ng shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | (21) = (18) x    |                                      | l             | 0.92                   | (2  |
| Infiltration rate modified fo                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bd                    |                  |                                      | L             | _100                   |     |
|                                                             | Mar Apr May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | / Jun Jul             | Aug              | Sep Oct                              | Nov Dec       |                        |     |
| Jan Feb I                                                   | and from Table 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | 24 333           |                                      |               |                        |     |
| Jan Feb I<br>Monthly average wind spe                       | sed nonn rable /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                  |                                      |               |                        |     |
| Monthly average wind spe                                    | 4.9 4.4 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.8 3.8               | 3.7              | 4 4.3                                | 4.5 4.7       |                        |     |
| Monthly average wind spe                                    | 4.9 4.4 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.8 3.8               | 3.7              | 4 4.3                                | 4.5 4.7       |                        |     |

| Adjust                      | od infilt    | ation rat             | o (allowi  | na for a        | oltor on    | d wind a            | nood) -     | (21a) x                              | (22a)m              |                     |                |                      |              |                      |
|-----------------------------|--------------|-----------------------|------------|-----------------|-------------|---------------------|-------------|--------------------------------------|---------------------|---------------------|----------------|----------------------|--------------|----------------------|
| Aujuan                      | 0.45         | 0.44                  | 0.43       | 0.39            | 0.38        | 0.33                | 0.33        | 0.32                                 | 0.35                | 0.38                | 0.39           | 0.41                 |              |                      |
|                             |              | ctive air             |            | rate for i      | he appli    | cable ca            | se          |                                      |                     |                     |                | 1                    |              |                      |
|                             |              | al ventila            |            |                 |             |                     |             |                                      |                     |                     |                |                      | 0            | (23a                 |
|                             |              |                       |            |                 |             |                     |             | N5)), other                          |                     | ) = (23a)           |                |                      | 0            | (23b                 |
|                             |              |                       |            |                 |             |                     |             | Table 4h                             |                     |                     |                | (00.)                | 0            | (230                 |
| a) If<br>(24a)m=            | Dalanci      |                       | anical ve  | o               |             | at recov            | ery (IMIV   | HR) (248                             | t)m = (22           | ) + m(a<br>0        | 23b) × [1<br>0 | - (23C)              | ÷100j        | (24a                 |
|                             |              |                       |            |                 |             |                     |             | VV) (24b                             |                     |                     |                | 0                    |              | (240                 |
| (24b)m=                     | 0 0          |                       | anicai ve  | o               | o           |                     | overy (i    | 0 0                                  | 0 0                 | 0 + m               | 230)           | 0                    | I            | (24t                 |
|                             |              |                       |            |                 |             |                     | 00.00       | on from c                            | 2. A                | 0                   |                | 0                    |              |                      |
|                             |              |                       |            |                 |             |                     |             | c) = (22t                            |                     | 5 × (23t            | ))             |                      |              |                      |
| (24c)m=                     |              | 0                     | 0          | 0               | 0           | 0                   | 0           | 0                                    | 0                   | 0                   | 0              | 0                    |              | (240                 |
| d) If                       | natural      | ventilatio            | on or wh   | ole hous        | e positiv   | ve input            | ventilati   | on from I                            | oft                 |                     |                |                      |              |                      |
| I                           | if (22b)r    | n = 1, th             | en (24d)   | m = (22         | o)m othe    | erwise (2           | 4d)m =      | 0.5 + [(2                            | 2b)m <sup>2</sup> x |                     |                |                      |              |                      |
| (24d)m=                     |              | 0.6                   | 0.59       | 0.57            | 0.57        | 0.56                | 0.56        | 0.55                                 | 0.56                | 0.57                | 0.58           | 0.58                 |              | (240                 |
|                             |              | -                     | 1          |                 |             |                     |             | d) in boy                            |                     |                     |                |                      |              |                      |
| (25)m=                      | 0.6          | 0.6                   | 0.59       | 0.57            | 0.57        | 0.56                | 0.56        | 0.55                                 | 0.56                | 0.57                | 0.58           | 0.58                 |              | (25)                 |
| 3. He                       | at losse     | s and he              | eat loss   | oaram <b>et</b> | ər:         |                     |             |                                      | 1                   |                     |                |                      |              | I COLUMN T           |
| CORE OF                     | ws Typ       | 100                   | (m²)       | m               |             | A ,r<br>3.25<br>6.5 | ×1          | W/m2<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+ | 0.04] = [           | (W/<br>4.02<br>8.03 | K)             | kJ/m <sup>2</sup> ·ł | < l          | kJ/K<br>(27)<br>(27) |
| Windo                       | ws Typ       | e 3                   |            |                 |             | 2.4                 | ×1          | /[1/( 1.3 )+                         | 0.04] =             | 2.97                |                |                      |              | (27)                 |
| Windo                       | ws Typ       | e 4                   |            |                 |             | 3.37                | x1          | /[1/( 1.3 )+                         | 0.04] =             | 4.16                |                |                      |              | (27)                 |
| Windo                       | ws Type      | ə 5                   |            |                 |             | 3.37                | x1          | /[1/( 1.3 )+                         | 0.04] =             | 4.16                |                |                      |              | (27)                 |
| Walls                       |              | 87.9                  | 99         | 25.6            | 3           | 62.36               | s x         | 0.18                                 | =                   | 11.22               |                |                      |              | (29)                 |
| Total a                     | rea of e     | elements              | , m²       |                 |             | 87.99               | Э           |                                      |                     |                     |                |                      |              | (31)                 |
|                             |              |                       |            |                 |             |                     | lated using | formula 1.                           | /[(1/U-valu         | e)+0.04] a          | as given in    | paragraph            | 3.2          |                      |
|                             |              | as on both            |            |                 | is and par  | titions             |             | (26)(30)                             | + (32) -            |                     |                | 1                    | 10.0         | (22)                 |
|                             |              | ss, W/K :<br>Cm = S(  | 10 B 10    | 0)              |             |                     |             | (=0)(00)                             | 17.17               | (30) + (3)          | 2) + (32a).    | (32e) -              | 42.9<br>9354 | (33)                 |
|                             |              | parame                |            | P = Cm -        | TEA) ir     | n k. l/m²k          |             |                                      |                     | tive Value          |                | (020) -              | 9354<br>250  | (34)                 |
|                             |              | - S                   |            |                 |             |                     |             | ecisely the                          |                     |                     | TMP in Ta      | able 1f              | 250          | (35)                 |
|                             |              | ad of a de            |            |                 |             |                     |             |                                      |                     |                     |                |                      |              |                      |
|                             | <del>-</del> | es : S (L             |            |                 |             |                     | к           |                                      |                     |                     |                | ]                    | 7.04         | (36)                 |
|                             |              | al bridging           | are not kn | own (36) :      | = 0.15 x (3 | 1)                  |             |                                      | (22)                | (26) -              |                |                      |              |                      |
|                             | abric he     | at loss<br>at loss ca | alculator  | month           |             |                     |             |                                      | (33) +<br>(38)m     |                     | 25)m x (5)     |                      | 49.94        | (37)                 |
| venuia                      | Jan          | Feb                   | Mar        | Apr             | Mav         | Jun                 | Jul         | Aug                                  | (38)m               | = 0.33 × (          | Nov            | Dec                  | r -          |                      |
| (38)m=                      | 46.16        | 45.86                 | 45.57      | 44.2            | 43.94       | 42.75               | 42.75       | 42.53                                | 43.21               | 43.94               | 44.46          | 45                   |              | (38)                 |
|                             |              |                       |            |                 | 10101       |                     |             | 12100                                | 200000000           | Contract av         |                |                      |              |                      |
|                             |              | COETTICIEN            | iii, VV/K  | _               |             |                     |             |                                      |                     | = (37) + (          |                |                      | i            |                      |
| (38)m=<br>Heat tr<br>(39)m= | 96.1         | 95.8                  | 95.51      | 94.13           | 93.88       | 92.68               | 92.68       | 92.46                                | 93.14               | 93.88               | 94.4           | 94.94                |              |                      |



| icat it                                                  | oss para                         | meter (H              | HLP), W              | /m²K                 |                        |                  |                   |                       | (40)m      | = (39)m ÷   | (4)         |             |         |    |
|----------------------------------------------------------|----------------------------------|-----------------------|----------------------|----------------------|------------------------|------------------|-------------------|-----------------------|------------|-------------|-------------|-------------|---------|----|
| 40)m=                                                    | 1.24                             | 1.23                  | 1.23                 | 1.21                 | 1.21                   | 1.19             | 1.19              | 1.19                  | 1.2        | 1.21        | 1.21        | 1.22        |         |    |
|                                                          |                                  |                       | - 41- (T - 1-        | -                    |                        |                  |                   |                       | -          | Average =   | Sum(40)     | 12/12=      | 1.21    | (4 |
| Numbe                                                    | Jan                              | Feb                   | nth (Tab<br>Mar      | Apr                  | May                    | Jun              | Jul               | Aug                   | Sep        | Oct         | Nov         | Dec         |         |    |
| 41)m=                                                    | 31                               | 28                    | 31                   | 30                   | 31                     | 30               | 31                | 31                    | 30         | 31          | 30          | 31          |         | (4 |
|                                                          |                                  |                       |                      |                      |                        |                  |                   |                       |            |             |             |             |         |    |
| 4. Wa                                                    | ater hea                         | ting ener             | rgy requ             | irement:             |                        |                  |                   |                       |            |             |             | kWh/yea     | ar:     |    |
| leeum                                                    | ad occi                          | pancy,                | N                    |                      |                        |                  |                   |                       |            |             |             | .42         |         | (4 |
| if TF                                                    | A > 13.                          | 9, N = 1              |                      | [1 - exp             | (-0.0003               | 849 x (TR        | A -13.9           | )2)] + 0.0            | 0013 x (   | FA -13.     |             | .42         |         | (4 |
|                                                          | A £ 13.                          |                       | atorusa              | no in litre          | e nor de               | w Vd av          | orado -           | (25 x N)              | 1 36       |             |             | 1.65        |         | (4 |
| Reduce                                                   | the annua                        | al average            | hot water            | usage by             | 5% if the o            | fwelling is      | designed i        | to achieve            |            | e target of | 9           | 1.65        |         | (* |
| not mon                                                  | -                                |                       |                      |                      | vater use, l           |                  | <u> </u>          |                       |            |             | -           |             |         |    |
| lot wat                                                  | Jan                              | Feb                   | Mar<br>day for e     | Apr<br>ach month     | May<br>Vd.m = fa       | Jun<br>ctor from | Jul<br>Table 1c x | Aug                   | Sep        | Oct         | Nov         | Dec         |         |    |
| 44)m=                                                    | 100.81                           | 97.14                 | 93.48                | 89.81                | 86.15                  | 82.48            | 82.48             | 86.15                 | 89.81      | 93.48       | 97.14       | 100.81      |         |    |
|                                                          | 100.01                           | 37.14                 | 30.40                | 03.01                | 00.15                  | 02.40            | 02.40             | 00.10                 | 10000      | Fotal = Sur | 860193110   | =           | 1099.75 | (4 |
| Energy                                                   | content of                       | hot water             | used - cal           | culated m            | onthly = 4.            | 190 x Vd,r       | n x nm x D        | 0Tm / 3600            | kWh/mor    | th (see Ta  | bles 1b, 1  | 1c, 1d)     |         | _  |
| 45)m=                                                    | 149.5                            | 130.75                | 134.93               | 117.63               | 112.87                 | 97.4             | 90.25             | 103.57                | 104.8      | 122.14      | 133.32      | 144.78      |         |    |
| instan                                                   | taneous v                        | ater heati            | na at noini          | t of use Inc         | hot water              | storage)         | enter 0 in        | boxes (46             |            | Fotal = Sur | n(45)1_12   | - L         | 1441.95 | (  |
| 1.1                                                      | 22.42                            | 19.61                 | 20.24                | 17.64                | 16.93                  | 14.61            | 13.54             | 15.54                 | 15.72      | 18.32       | 20          | 21.72       |         | (  |
|                                                          | storage                          |                       |                      | 11.04                | 10.00                  | 11.01            | 10.04             | 10.01                 | 10072      | 10.02       | 20          | 21.72       |         | `  |
| Storag                                                   | e volum                          | e (litres)            | includir             | ng any s             | olar or <mark>N</mark> | /WHRS            | storage           | within sa             | ame ves    | sel         |             | 0           |         | (* |
|                                                          |                                  |                       |                      |                      | velling, e             |                  |                   |                       |            | n 101 in (  | 47)         |             |         |    |
|                                                          | storage                          |                       | not wate             | er (this ir          | iciudes i              | nstantar         | leous co          | mbi boil              | ers) ente  | er u in (4  | +7)         |             |         |    |
|                                                          |                                  |                       | eclared I            | oss fact             | or is kno              | wn (kWl          | n/day):           |                       |            |             |             | 0           |         | (  |
| Tempe                                                    | erature f                        | actor fro             | m Table              | 2b                   |                        |                  |                   |                       |            |             |             | 0           |         | (• |
|                                                          |                                  |                       |                      | , kWh/y              |                        |                  |                   | (48) x (49)           | -          |             | 1           | 10          |         | (5 |
|                                                          |                                  |                       |                      |                      | loss fact<br>le 2 (kW  |                  |                   |                       |            |             | 0           | .02         |         | (  |
|                                                          |                                  |                       | ee secti             |                      | (                      |                  | -37               |                       |            |             |             | .02         |         |    |
|                                                          |                                  | from Ta               |                      |                      |                        |                  |                   |                       |            |             |             | .03         |         | (  |
| empe                                                     |                                  |                       | m Table              |                      |                        |                  |                   |                       |            |             |             | 0.6         |         | (: |
|                                                          |                                  | m water<br>(54) in (5 | 0                    | e, kwn/y             | ear                    |                  |                   | (47) x (51)           | x (52) x ( | 53) =       |             | .03         |         | (! |
| 0.                                                       | 5 6 9                            |                       |                      | for each             | month                  |                  |                   | ((56)m = (            | 55) × (41) | n           |             | .05         |         |    |
| Enter                                                    | -                                | 28.92                 | 32.01                | 30.98                | 32.01                  | 30.98            | 32.01             | 32.01                 | 30.98      | 32.01       | 30.98       | 32.01       |         | (  |
| Enter<br>Vater                                           | 32.01                            | s dedicate            | d solar sto          | rage, (57)           | m = (56)m              | x [(50) - (      | H11)] ÷ (5        |                       | 7)m = (56) | m where (I  | H11) is fro | om Appendix | н       |    |
| Enter<br>Vater<br>56)m=                                  |                                  |                       |                      | 30.98                | 32.01                  | 30.98            | 32.01             | 32.01                 | 30.98      | 32.01       | 30.98       | 32.01       |         | (  |
| Enter<br>Vater<br>56)m=<br>cylinde                       |                                  | 28.92                 | 32.01                |                      |                        |                  |                   |                       |            | -           | -           | 0           |         |    |
| Enter<br>Vater<br>56)m=<br>cylinde<br>57)m=              | er contain<br>32.01              |                       |                      |                      | 3                      |                  |                   |                       |            |             |             | 0           |         | (  |
| Enter<br>Vater<br>56)m=<br>f cylinde<br>57)m=<br>Primar  | ar contain<br>32.01<br>y circuit | loss (ar              | nual) fro            | om Table             |                        | 59)m =           | (58) ÷ 36         | 65 × (41)             | m          |             |             | 0           |         | (  |
| Vater<br>56)m=<br>( cylinde<br>57)m=<br>Primar<br>Primar | 32.01<br>y circuit               | loss (ar<br>loss cal  | nual) fro<br>culated | om Table<br>for each | month (                |                  |                   | 65 × (41)<br>ng and a |            | r thermo:   | stat)       | 0           |         | (  |

| Combi<br>61)m= |                                        | lculated     | for each       | month (   | 61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (60) ÷    | - 365 × (41                    | )m<br>o  |          | 0        | 0          | 0           | 0                 | 1             | (61) |
|----------------|----------------------------------------|--------------|----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------|----------|----------|----------|------------|-------------|-------------------|---------------|------|
| ante and       | 0                                      |              |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200       | 0                              |          | -        |          | (F)        |             |                   | ]             | (01) |
|                | 204.78                                 | 180.68       | 190.2          | 171.12    | 168.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150.0     |                                | (62)r    |          | 58.3     | 45)m +     |             |                   | (59)m + (61)m | (62) |
| 0.000          |                                        |              |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000      |                                | 0.000    |          | 1000     |            | 186.82      | 200.06            | J             | (62) |
|                |                                        |              |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | gative quantity<br>ies, see Ap |          |          | o sola   | rcontribut | ion to wate | er neating)       |               |      |
| 63)m=          |                                        | 0            | 0              | 0         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | appi<br>0 | 0                              |          |          | 0        | 0          | 0           | 0                 | 1             | (63) |
|                | fromw                                  | ater hea     |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                |          |          |          |            |             |                   | ]             |      |
| 64)m=          | 204.78                                 | 180.68       | 190.2          | 171.12    | 168.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150.0     | 39 145.53                      | 158.     | 84 1     | 58.3     | 177.42     | 186.82      | 200.06            | 1             |      |
| 011/11-        | Romo                                   | 100100       | TOOLE          |           | 100/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1001      | 110100                         |          |          |          |            | (annual)    | Contract Contract | 2092.79       | (64) |
| n teal         | aine fro                               | m water      | heating        | kWh/m     | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 ' [0    | 85 × (45)m                     |          |          |          |            |             |                   | 1             |      |
| 65)m=          | 93.93                                  | 83.42        | 89.08          | 81.91     | 81.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75.1      |                                | 78.6     |          | 7.64     | 84.83      | 87.13       | 92.36             | ]             | (65) |
|                |                                        |              |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | er is in the                   |          |          | 1.111    |            |             | Carlor Control    |               |      |
| 1000000        |                                        | ains (see    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ymiac     |                                | awein    | ing or i |          |            | onreon      | arroanty i        | louing        |      |
|                |                                        |              |                |           | PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                |          |          |          |            |             |                   |               |      |
| Netabl         | Jan                                    | rable<br>Feb | 5), Wat<br>Mar | Apr       | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ju        | n Jul                          | Au       | 10       | Sep      | Oct        | Nov         | Dec               | 1             |      |
| 66)m=          | 120.94                                 | 120.94       | 120.94         | 120.94    | 120.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.9     |                                | 120.     | -        | 0.94     | 120.94     | 120.94      | 120.94            |               | (66) |
|                |                                        |              |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _         | ) or L9a), a                   |          |          |          |            |             |                   | 1             |      |
| 67)m=          | 19.14                                  | 17           | 13.82          | 10.47     | 7.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.6       |                                | 9.2      | -        | 2.45     | 15.81      | 18.45       | 19.67             | 1             | (67) |
|                |                                        |              |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1 L13 or L1                    |          | F 1.1    |          | 100000     | 10/10       |                   | J.            | 10.1 |
| 68)m=          | -                                      | 216.9        | 211.29         | 199.34    | 184.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 170.0     |                                | 158.     |          | 3.99     | 175.94     | 191.02      | 205.2             | 1             | (68) |
|                | _                                      |              | -              | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _         | 15 or L15a                     |          |          |          | _          |             | LOUIN             | J             | 1    |
| 69)m=          | 00                                     | 35.09        | 35.09          | 35.09     | 35.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.0      | -                              | 35.0     | -        | 5.09     | 35.09      | 35.09       | 35.09             | 1             | (69) |
| -              | Concernance -                          | ns gains     |                |           | 00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00.0      | 00.00                          | 00.0     |          | 5100     | 00100      | 00.00       | 00.00             |               | (22) |
| 70)m=          | 0                                      | 0            | 0              | 0         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0         | 0                              | 0        |          | 0        | 0          | 0           | 0                 | 1             | (70) |
|                |                                        | aporatio     | 0              | 2         | CONCERCION OF CONCERCIONO OFICIONO OFICON OFICIONO OFICICONO OFICIONO OFICIONO OF |           |                                |          |          | а<br>-   |            |             | 1.5               | ]             |      |
| 71)m=          | -96.75                                 | -96.75       | -96.75         | -96.75    | -96.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -96.7     | -96.75                         | -96.     | 75 -9    | 6.75     | -96.75     | -96.75      | -96.75            | 1             | (71) |
|                | 10000000000000000000000000000000000000 | gains (T     |                | 00110     | 00110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0011      | 00110                          | 001      |          | 0110     | 00.110     | 00110       | 00110             | 1             | 1    |
| 72)m=          | 126.25                                 | 124.13       | 119.74         | 113.76    | 109.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104.4     | 42 99.77                       | 105.     | 72 10    | 7.84     | 114.02     | 121.01      | 124.14            | 1             | (72) |
|                |                                        | gains =      |                | 113.70    | 103.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | (66)m + (67)n                  |          |          |          |            |             | -                 | 1             | (    |
| 73)m=          | 419.34                                 | 417.31       | 404.13         | 382.84    | 361.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 340.      |                                | 332.     |          | 3.56     | 365.05     | 389.76      | 408.3             | 1             | (73) |
| -              | ar gain                                | 417.51       | 404.15         | 502.04    | 501.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 040.      | 320.73                         | 002.     | .05 54   | 5.50     | 505.05     | 308.70      | 400.5             |               | (10) |
|                |                                        | calculated   | using solar    | flux from | Table 6a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and as    | sociated equa                  | ations t | o conve  | rt to th | e applicab | le orienta  | tion.             |               |      |
| 1000           |                                        | Access F     | - 17 ·         | Area      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Flux                           |          | g        |          |            | FF          |                   | Gains         |      |
|                |                                        | Table 6d     |                | m²        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Table 6a                       |          | Tabl     | e 6b     | Т          | able 6c     |                   | (W)           |      |
| lorth          | 0.9x                                   | 0.54         | x              | 3.2       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x         | 10.63                          | ] × [    | 0.       | 6        | x          | 0.9         | -                 | 9.07          | (74) |
| lorth          | 0.9x                                   | 0.54         | ×              | 3.2       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×         | 20.32                          | i x i    | 0.       | 6        | ×          | 0.9         | -                 | 17.33         | (74) |
| North          | 0.9x                                   | 0.54         | ×              | 3.2       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×         | 34.53                          | x        | 0.       |          | x          | 0.9         | -                 | 29.45         | (74) |
| North          | 0.9x                                   | 0.54         | x              | 3.2       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×         | 55.46                          | x        | 0.       |          | x          | 0.9         | -                 | 47.31         | (74) |
| North          | 0.9x                                   | 0.54         | ×              | 3.2       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×         | 74.72                          | x        | 0.       |          | ×          | 0.9         | -                 | 63.73         | (74) |
|                | and the second                         | 0.04         |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                | J        | 0.       | 1<br>1   |            | 010         |                   |               | 1    |

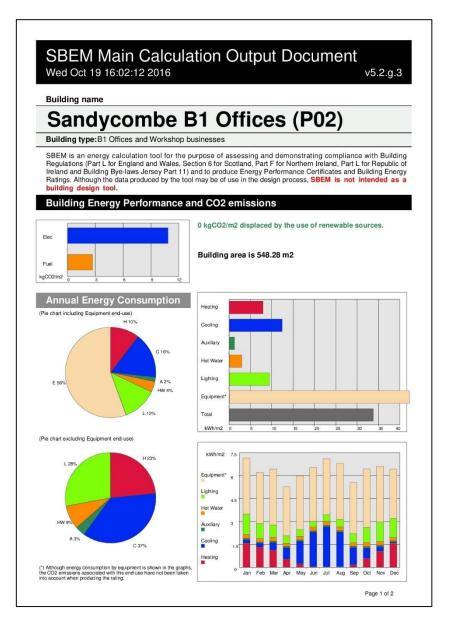


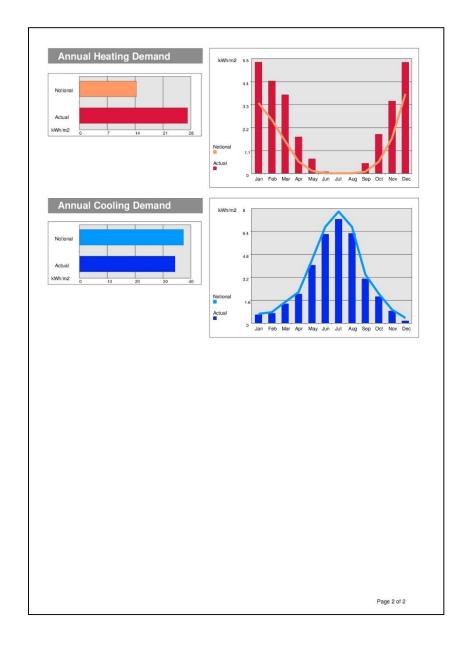
### DER WorkSheet: New dwelling design stage


|         | 0.9x         | 0.54 | x | 3.25 | x   | 79.99  | x   | 0.6 | x | 0.9 | =     | 68.22  | (74  |
|---------|--------------|------|---|------|-----|--------|-----|-----|---|-----|-------|--------|------|
| North   | 0.9x         | 0.54 | x | 3.25 | ×   | 74.68  | x   | 0.6 | x | 0.9 | =     | 63.69  | (74  |
| North   | 0.9x         | 0.54 | x | 3.25 | ×   | 59.25  | ×   | 0.6 | x | 0.9 | -     | 50.53  | (74  |
| North   | 0.9x         | 0.54 | x | 3.25 | ×   | 41.52  | x   | 0.6 | x | 0.9 | =     | 35.41  | (74  |
| North   | 0.9x         | 0.54 | × | 3.25 | ×   | 24.19  | ×   | 0.6 | x | 0.9 | =     | 20.63  | (74  |
| North   | 0.9x         | 0.54 | x | 3.25 | ×   | 13.12  | ×   | 0.6 | x | 0.9 | =     | 11.19  | (74  |
| North   | 0.9x         | 0.54 | x | 3.25 | ×   | 8.86   | ×   | 0.6 | x | 0.9 | - [   | 7.56   | (74  |
| East    | 0.9x         | 3    | x | 3.37 | ×   | 19.64  | ×   | 0.6 | × | 0.9 | -     | 52.11  | (76  |
| East    | 0.9x         | 3    | x | 3.37 | x   | 38.42  | x   | 0.6 | х | 0.9 | -     | 101.94 | (76  |
| East    | 0.9x         | 3    | x | 3.37 | ×   | 63.27  | x   | 0.6 | x | 0.9 | =     | 167.88 | (76  |
| East    | 0.9x         | 3    | x | 3.37 | x   | 92.28  | x   | 0.6 | x | 0.9 | -     | 244.84 | (76  |
| East    | 0.9x         | 3    | x | 3.37 | ×   | 113.09 | x   | 0.6 | x | 0.9 | =     | 300.07 | (76  |
| East    | 0.9x         | 3    | x | 3.37 | x   | 115.77 | ×   | 0.6 | x | 0.9 | -     | 307.17 | (76  |
| East    | 0.9x         | 3    | x | 3.37 | x   | 110.22 | x   | 0.6 | x | 0.9 | =     | 292.44 | (76  |
| East    | 0.9x         | 3    | × | 3.37 | ×   | 94.68  | ×   | 0.6 | x | 0.9 | =     | 251.2  | (76  |
| East    | 0.9x         | 3    | x | 3.37 | ×   | 73.59  | ×   | 0.6 | x | 0.9 | =     | 195.25 | (76  |
| East    | 0.9x         | 3    | х | 3.37 | ×   | 45.59  | x   | 0.6 | x | 0.9 | =     | 120.96 | (76  |
| East    | 0.9x         | 3    | × | 3.37 | X   | 24.49  | ×   | 0.6 | × | 0.9 | ]-[   | 64.98  | (76  |
| East    | 0.9x         | 3    | × | 3.37 | ×   | 16.15  | ) × | 0.6 | × | 0.9 | ] - [ | 42.85  | (76  |
| Southwe | esto.9x      | 0.54 | × | 2.4  | ×   | 36.79  |     | 0.6 | x | 0.9 | -     | 23.17  | (79  |
| Southwe | esto.9x      | 0.54 | × | 3.37 | ] × | 36.79  | ]/  | 0.6 | x | 0.9 | -     | 32.54  | (79  |
| Southwe | esto.9x      | 0.54 | x | 2.4  | ×   | 62.67  | ]   | 0.6 | x | 0.9 | -     | 39.48  | (79  |
| Southwe | esto.9x      | 0.54 | x | 3.37 | x   | 62,67  |     | 0.6 | х | 0.9 | =     | 55.43  | (79  |
| Southwe | esto.9x      | 0.54 | x | 2.4  | ×   | 85.75  | ]   | 0.6 | x | 0.9 | =     | 54.01  | (79  |
| Southwe |              | 0.54 | × | 3.37 | ×   | 85.75  | ]   | 0.6 | x | 0.9 | -     | 75.84  | (79  |
| Southwe | esto.9x      | 0.54 | × | 2.4  | ×   | 106.25 |     | 0.6 | x | 0.9 | =     | 66.92  | (79  |
| Southwe | esto.9x      | 0.54 | x | 3.37 | ×   | 106.25 | ]   | 0.6 | х | 0.9 | =     | 93.97  | (79  |
| Southwe | and a second | 0.54 | × | 2.4  | ×   | 119.01 | ]   | 0.6 | x | 0.9 | -     | 74.96  | (79  |
| Southwe | esto.9x      | 0.54 | x | 3.37 | ×   | 119.01 | ]   | 0.6 | x | 0.9 | -     | 105.26 | (79) |
| Southwe |              | 0.54 | х | 2.4  | x   | 118.15 |     | 0.6 | х | 0.9 | -     | 74.42  | (79  |
| Southwe | esto.9x      | 0.54 | x | 3.37 | x   | 118.15 | ]   | 0.6 | × | 0.9 | -     | 104.49 | (79  |
| Southwe | _            | 0.54 | x | 2.4  | ×   | 113.91 | ]   | 0.6 | x | 0.9 | -     | 71.75  | (79  |
| Southwe |              | 0.54 | x | 3.37 | ×   | 113.91 |     | 0.6 | x | 0.9 | -     | 100.74 | (79  |
| Southwe |              | 0.54 | x | 2.4  | ×   | 104.39 |     | 0.6 | x | 0.9 | =     | 65.75  | (79  |
| Southwe |              | 0.54 | x | 3.37 | ×   | 104.39 |     | 0.6 | x | 0.9 | =     | 92.33  | (79  |
| Southwe |              | 0.54 | x | 2.4  | ×   | 92.85  | ]   | 0.6 | x | 0.9 | =     | 58.48  | (79  |
| Southwe |              | 0.54 | × | 3.37 | ×   | 92.85  |     | 0.6 | x | 0.9 | . = . | 82.12  | (79  |
| Southwe |              | 0.54 | × | 2.4  | ×   | 69.27  |     | 0.6 | x | 0.9 | =     | 43.63  | (79  |
| Southwe |              | 0.54 | × | 3.37 | ×   | 69.27  |     | 0.6 | × | 0.9 | =     | 61.26  | (79  |
| Southwe |              | 0.54 | x | 2.4  | ×   | 44.07  |     | 0.6 | x | 0.9 | -     | 27.76  | (79  |
| Southwe | esto.9x      | 0.54 | x | 3.37 | ×   | 44.07  |     | 0.6 | x | 0.9 | =     | 38.98  | (79  |

### DER WorkSheet: New dwelling design stage

|                                                                                                                                                                                                  | esto.9x                                                                                                                                                                                                                       | 0.54                                                                                                                                                                                   | x                                                                                                                                                                                             | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                        | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.49                                                                                                                                                                                                                                                      | ] [                                                                                                                                                                                                                                                                                                                                     | 0.6                                                                                                                                                                                                                                                             | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9                                                                                          | =                                                                                   | 19.83           | (79                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------|
| Southwe                                                                                                                                                                                          | esto.9x                                                                                                                                                                                                                       | 0.54                                                                                                                                                                                   | x                                                                                                                                                                                             | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37                                                                                                                                                                       | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.49                                                                                                                                                                                                                                                      | i r                                                                                                                                                                                                                                                                                                                                     | 0.6                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9                                                                                          | =                                                                                   | 27.85           | (79                                                           |
| West                                                                                                                                                                                             | 0.9x                                                                                                                                                                                                                          | 0.77                                                                                                                                                                                   | x                                                                                                                                                                                             | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                        | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.64                                                                                                                                                                                                                                                      | i × i                                                                                                                                                                                                                                                                                                                                   | 0.6                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9                                                                                          | -                                                                                   | 47.77           | (80                                                           |
| West                                                                                                                                                                                             | 0.9x                                                                                                                                                                                                                          | 0.77                                                                                                                                                                                   | x                                                                                                                                                                                             | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                        | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38.42                                                                                                                                                                                                                                                      | 1 × 1                                                                                                                                                                                                                                                                                                                                   | 0.6                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9                                                                                          | =                                                                                   | 93.46           | (80                                                           |
| West                                                                                                                                                                                             | 0.9x                                                                                                                                                                                                                          | 0.77                                                                                                                                                                                   | x                                                                                                                                                                                             | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                        | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63.27                                                                                                                                                                                                                                                      | ×                                                                                                                                                                                                                                                                                                                                       | 0.6                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9                                                                                          | -                                                                                   | 153.91          | (80                                                           |
| West                                                                                                                                                                                             | 0.9x                                                                                                                                                                                                                          | 0.77                                                                                                                                                                                   | x                                                                                                                                                                                             | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                        | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92.28                                                                                                                                                                                                                                                      | 1 × 1                                                                                                                                                                                                                                                                                                                                   | 0.6                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9                                                                                          | -                                                                                   | 224.46          | (80                                                           |
| West                                                                                                                                                                                             | 0.9x                                                                                                                                                                                                                          | 0.77                                                                                                                                                                                   | x                                                                                                                                                                                             | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                        | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 113.09                                                                                                                                                                                                                                                     | i × ľ                                                                                                                                                                                                                                                                                                                                   | 0.6                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9                                                                                          | -                                                                                   | 275.09          | (80                                                           |
| West                                                                                                                                                                                             | 0.9x                                                                                                                                                                                                                          | 0.77                                                                                                                                                                                   | ×                                                                                                                                                                                             | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 115.77                                                                                                                                                                                                                                                     | i × i                                                                                                                                                                                                                                                                                                                                   | 0.6                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9                                                                                          | -                                                                                   | 281.6           | (80                                                           |
| West                                                                                                                                                                                             | 0.9x                                                                                                                                                                                                                          | 0.77                                                                                                                                                                                   | x                                                                                                                                                                                             | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110.22                                                                                                                                                                                                                                                     | 1 × ľ                                                                                                                                                                                                                                                                                                                                   | 0.6                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9                                                                                          | -                                                                                   | 268.1           | (80                                                           |
| West                                                                                                                                                                                             | 0.9x                                                                                                                                                                                                                          | 0.77                                                                                                                                                                                   | ×                                                                                                                                                                                             | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                        | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94.68                                                                                                                                                                                                                                                      | i . F                                                                                                                                                                                                                                                                                                                                   | 0.6                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9                                                                                          | _                                                                                   | 230.29          |                                                               |
| West                                                                                                                                                                                             | 0.9x                                                                                                                                                                                                                          | 0.77                                                                                                                                                                                   | ×                                                                                                                                                                                             | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                          | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73.59                                                                                                                                                                                                                                                      | i × ľ                                                                                                                                                                                                                                                                                                                                   | 0.6                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9                                                                                          | -                                                                                   | 179             | (80                                                           |
| West                                                                                                                                                                                             | 0.9x                                                                                                                                                                                                                          | 0.77                                                                                                                                                                                   | ×                                                                                                                                                                                             | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                        | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.59                                                                                                                                                                                                                                                      | 1 × 1                                                                                                                                                                                                                                                                                                                                   | 0.6                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9                                                                                          | -                                                                                   | 110.89          |                                                               |
| West                                                                                                                                                                                             | 0.9x                                                                                                                                                                                                                          | 0.77                                                                                                                                                                                   | x                                                                                                                                                                                             | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                          | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.49                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                         | 0.6                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9                                                                                          | =                                                                                   | 59.57           | (80                                                           |
| West                                                                                                                                                                                             | 0.9x                                                                                                                                                                                                                          | 0.77                                                                                                                                                                                   | ×                                                                                                                                                                                             | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                          | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.15                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                         | 0.6                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9                                                                                          | = ]                                                                                 | 39.29           | (80                                                           |
|                                                                                                                                                                                                  | U.U.A                                                                                                                                                                                                                         | 0.77                                                                                                                                                                                   |                                                                                                                                                                                               | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.15                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                                                                          |                                                                                     | 33.23           | (00                                                           |
| Solar g                                                                                                                                                                                          | ains in                                                                                                                                                                                                                       | watts, ca                                                                                                                                                                              | alculated                                                                                                                                                                                     | for eac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | h month                                                                                                                                                                  | ۱ <u>ـــــــــــ</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                            | (83)m                                                                                                                                                                                                                                                                                                                                   | - Sum(74)m                                                                                                                                                                                                                                                      | (82)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                              |                                                                                     |                 |                                                               |
| =m(88)                                                                                                                                                                                           | 164.67                                                                                                                                                                                                                        | 307.63                                                                                                                                                                                 | 481.09                                                                                                                                                                                        | 677.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 819.1                                                                                                                                                                    | 835.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 796.72                                                                                                                                                                                                                                                     | 690.                                                                                                                                                                                                                                                                                                                                    | 1 550.27                                                                                                                                                                                                                                                        | 357.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 202.47                                                                                       | 137.38                                                                              |                 | (83                                                           |
| Total g                                                                                                                                                                                          | ains – i                                                                                                                                                                                                                      | nternal a                                                                                                                                                                              | ind solar                                                                                                                                                                                     | (84)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = (73)m                                                                                                                                                                  | + (83)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n, watts                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                     |                 |                                                               |
| (84)m=                                                                                                                                                                                           | 584.01                                                                                                                                                                                                                        | 724.95                                                                                                                                                                                 | 885.22                                                                                                                                                                                        | 1060.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1180.33                                                                                                                                                                  | 1176.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 1123.51                                                                                                                                                                                                                                                  | 1022.                                                                                                                                                                                                                                                                                                                                   | 76 893.82                                                                                                                                                                                                                                                       | 722.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 592.23                                                                                       | 545.68                                                                              |                 | (84                                                           |
| 7. Me                                                                                                                                                                                            | an inter                                                                                                                                                                                                                      | nal temp                                                                                                                                                                               | erature                                                                                                                                                                                       | (heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | seasor                                                                                                                                                                   | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                            | À                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                     |                 |                                                               |
| Temp                                                                                                                                                                                             | erature                                                                                                                                                                                                                       | during h                                                                                                                                                                               | eating p                                                                                                                                                                                      | eriods i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n the livi                                                                                                                                                               | ing area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | from Tal                                                                                                                                                                                                                                                   | ble 9,                                                                                                                                                                                                                                                                                                                                  | Th1 (°C)                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                     | 21              | (85                                                           |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                               | tor for g                                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                            | 4                                                                                   |                 | 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (                       |
|                                                                                                                                                                                                  | 100/78                                                                                                                                                                                                                        |                                                                                                                                                                                        |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                     |                 |                                                               |
| [                                                                                                                                                                                                | Jan                                                                                                                                                                                                                           | Feb                                                                                                                                                                                    | Mar                                                                                                                                                                                           | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May                                                                                                                                                                      | Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jul                                                                                                                                                                                                                                                        | Au                                                                                                                                                                                                                                                                                                                                      | g Sep                                                                                                                                                                                                                                                           | Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nov                                                                                          | Dec                                                                                 | 1               |                                                               |
| (86)m=                                                                                                                                                                                           | Jan<br>0.99                                                                                                                                                                                                                   | Feb<br>0.99                                                                                                                                                                            | Mar<br>0.95                                                                                                                                                                                   | Apr<br>0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                            | Au<br>0.41                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 | Oct<br>0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nov<br>0.99                                                                                  | Dec<br>1                                                                            |                 | (86                                                           |
|                                                                                                                                                                                                  | 0.99                                                                                                                                                                                                                          | 0.99                                                                                                                                                                                   | 0.95                                                                                                                                                                                          | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | May<br>0.69                                                                                                                                                              | Jun<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jul<br>0.36                                                                                                                                                                                                                                                | 0.41                                                                                                                                                                                                                                                                                                                                    | 0.67                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                              |                                                                                     | ]               | (86                                                           |
| Mean                                                                                                                                                                                             | 0.99                                                                                                                                                                                                                          | 0.99                                                                                                                                                                                   | 0.95                                                                                                                                                                                          | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | May<br>0.69                                                                                                                                                              | Jun<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jul                                                                                                                                                                                                                                                        | 0.41                                                                                                                                                                                                                                                                                                                                    | 0.67                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                              |                                                                                     | ]               |                                                               |
| Mean<br>(87)m= [                                                                                                                                                                                 | 0.99<br>interna<br>19.78                                                                                                                                                                                                      | 0.99<br>I temper<br>20.01                                                                                                                                                              | 0.95<br>ature in<br>20.36                                                                                                                                                                     | 0.86<br>living ar<br>20.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | May<br>0.69<br>ea T1 (f<br>20.92                                                                                                                                         | Jun<br>0.5<br>ollow st<br>20.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jul<br>0.36<br>eps 3 to 7<br>21                                                                                                                                                                                                                            | 0.41<br>7 in Ta<br>21                                                                                                                                                                                                                                                                                                                   | 0.67<br>able 9c)<br>20.95                                                                                                                                                                                                                                       | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.99                                                                                         | 1                                                                                   | ]               |                                                               |
| Mean<br><sup>(87)m=</sup>                                                                                                                                                                        | 0.99<br>interna<br>19.78<br>erature                                                                                                                                                                                           | 0.99<br>I temper<br>20.01<br>during h                                                                                                                                                  | 0.95<br>ature in<br>20.36<br>leating p                                                                                                                                                        | 0.86<br>living ar<br>20.72<br>eriods in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | May<br>0.69<br>ea T1 (f<br>20.92                                                                                                                                         | Jun<br>0.5<br>ollow st<br>20.99<br>dwellin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jul<br>0.36<br>eps 3 to 7<br>21<br>g from Ta                                                                                                                                                                                                               | 0.41<br>7 in Ta<br>21<br>able 9,                                                                                                                                                                                                                                                                                                        | 0.67<br>able 9c)<br>20.95<br>Th2 (°C)                                                                                                                                                                                                                           | 0 <mark>.93</mark><br>20.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.99                                                                                         | 1<br>19.75                                                                          | ]               | (87                                                           |
| Mean<br>(87)m= [<br>Tempo<br>(88)m= [                                                                                                                                                            | 0.99<br>interna<br>19.78<br>erature<br>19.89                                                                                                                                                                                  | 0.99<br>I temper<br>20.01<br>during h<br>19.89                                                                                                                                         | 0.95<br>ature in<br>20.36<br>eating p<br>19.9                                                                                                                                                 | 0.86<br>living ar<br>20.72<br>eriods in<br>19.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | May<br>0.69<br>ea T1 (f<br>20.92<br>n rest of<br>19.91                                                                                                                   | Jun<br>0.5<br>ollow st<br>20.99<br>dwellin<br>19.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jul           0.36           eps 3 to 7           21           g from Ta           19.93                                                                                                                                                                   | 0.41<br>7 in Ta<br>21<br>able 9,<br>19.9                                                                                                                                                                                                                                                                                                | 0.67<br>able 9c)<br>20.95<br>Th2 (°C)                                                                                                                                                                                                                           | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.99                                                                                         | 1                                                                                   | ]               | (87                                                           |
| Mean<br>(87)m= [<br>Temp<br>(88)m= [<br>Utilisa                                                                                                                                                  | 0.99<br>interna<br>19.78<br>erature<br>19.89<br>ation fac                                                                                                                                                                     | 0.99<br>I temper<br>20.01<br>during h<br>19.89<br>ctor for g                                                                                                                           | 0.95<br>ature in<br>20.36<br>leating p<br>19.9<br>ains for r                                                                                                                                  | 0.86<br>living ar<br>20.72<br>eriods in<br>19.91<br>rest of d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | May<br>0.69<br>ea T1 (f<br>20.92<br>n rest of<br>19.91<br>welling,                                                                                                       | Jun<br>0.5<br>ollow st<br>20.99<br>dwellin<br>19.93<br>h2,m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jul<br>0.36<br>eps 3 to 7<br>21<br>g from Ta<br>19.93<br>see Table                                                                                                                                                                                         | 0.41<br>7 in Ta<br>21<br>able 9,<br>19.9                                                                                                                                                                                                                                                                                                | 0.67<br>able 9c)<br>20.95<br>Th2 (°C)<br>3 19.92                                                                                                                                                                                                                | 0 <mark>.93</mark><br>20.63<br>19.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.99<br>20.13<br>19.91                                                                       | 1<br>19.75<br>19.9                                                                  |                 | (87                                                           |
| Mean<br>(87)m= [<br>Temp<br>(88)m= [<br>Utilisa                                                                                                                                                  | 0.99<br>interna<br>19.78<br>erature<br>19.89                                                                                                                                                                                  | 0.99<br>I temper<br>20.01<br>during h<br>19.89                                                                                                                                         | 0.95<br>ature in<br>20.36<br>eating p<br>19.9                                                                                                                                                 | 0.86<br>living ar<br>20.72<br>eriods in<br>19.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | May<br>0.69<br>ea T1 (f<br>20.92<br>n rest of<br>19.91                                                                                                                   | Jun<br>0.5<br>ollow st<br>20.99<br>dwellin<br>19.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jul           0.36           eps 3 to 7           21           g from Ta           19.93                                                                                                                                                                   | 0.41<br>7 in Ta<br>21<br>able 9,<br>19.9                                                                                                                                                                                                                                                                                                | 0.67<br>able 9c)<br>20.95<br>Th2 (°C)<br>3 19.92                                                                                                                                                                                                                | 0 <mark>.93</mark><br>20.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.99                                                                                         | 1<br>19.75                                                                          | ]               | (87                                                           |
| Mean<br>(87)m= [<br>Tempo<br>(88)m= [<br>Utilisa<br>(89)m= [                                                                                                                                     | 0.99<br>interna<br>19.78<br>erature<br>19.89<br>ation fac<br>0.99                                                                                                                                                             | 0.99<br>l temper<br>20.01<br>during h<br>19.89<br>ctor for g<br>0.98                                                                                                                   | 0.95<br>ature in<br>20.36<br>leating p<br>19.9<br>ains for r<br>0.94                                                                                                                          | 0.86<br>living ar<br>20.72<br>eriods in<br>19.91<br>rest of d<br>0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | May<br>0.69<br>ea T1 (f<br>20.92<br>n rest of<br>19.91<br>welling,<br>0.62                                                                                               | Jun<br>0.5<br>ollow st<br>20.99<br>dwellin<br>19.93<br>h2,m (s<br>0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jul           0.36           eps 3 to 7           21           g from Ta           19.93           see Table           0.27                                                                                                                                | 0.41<br>7 in Ta<br>21<br>able 9,<br>19.9<br>9a)<br>0.32                                                                                                                                                                                                                                                                                 | 0.67<br>able 9c)<br>20.95<br>Th2 (°C)<br>3 19.92                                                                                                                                                                                                                | 0 <mark>.93</mark><br>20.63<br>19.91<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.99<br>20.13<br>19.91                                                                       | 1<br>19.75<br>19.9                                                                  |                 | (87<br>(88<br>(89                                             |
| Mean<br>(87)m= [<br>(88)m= [<br>Utilisa<br>(89)m= [<br>Mean                                                                                                                                      | 0.99<br>interna<br>19.78<br>erature<br>19.89<br>ation fac<br>0.99                                                                                                                                                             | 0.99<br>l temper<br>20.01<br>during h<br>19.89<br>ctor for g<br>0.98                                                                                                                   | 0.95<br>ature in<br>20.36<br>leating p<br>19.9<br>ains for r<br>0.94                                                                                                                          | 0.86<br>living ar<br>20.72<br>eriods in<br>19.91<br>rest of d<br>0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | May<br>0.69<br>ea T1 (f<br>20.92<br>n rest of<br>19.91<br>welling,<br>0.62                                                                                               | Jun<br>0.5<br>ollow st<br>20.99<br>dwellin<br>19.93<br>h2,m (s<br>0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jul           0.36           eps 3 to 7           21           g from Ta           19.93           see Table           0.27                                                                                                                                | 0.41<br>7 in Ta<br>21<br>able 9,<br>19.9<br>9a)<br>0.32                                                                                                                                                                                                                                                                                 | 0.67<br>bble 9c)<br>20.95<br>Th2 (°C)<br>3 19.92<br>0.58<br>0 7 in Tabl<br>3 19.89                                                                                                                                                                              | 0.93<br>20.63<br>19.91<br>0.9<br>le 9c)<br>19.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.99<br>20.13<br>19.91<br>0.98<br>18.81                                                      | 1<br>19.75<br>19.9<br>0.99<br>18.25                                                 |                 | (87<br>(88<br>(89                                             |
| Mean<br>(87)m= [<br>Temp<br>(88)m= [<br>Utilisa<br>(89)m= [<br>Mean                                                                                                                              | 0.99<br>interna<br>19.78<br>erature<br>19.89<br>ttion fac<br>0.99<br>interna                                                                                                                                                  | 0.99<br>I temper<br>20.01<br>during h<br>19.89<br>ctor for g<br>0.98<br>I temper                                                                                                       | 0.95<br>ature in<br>20.36<br>eating p<br>19.9<br>ains for r<br>0.94<br>ature in                                                                                                               | 0.86<br>living an<br>20.72<br>eriods in<br>19.91<br>rest of d<br>0.82<br>the rest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | May<br>0.69<br>ea T1 (f<br>20.92<br>n rest of<br>19.91<br>welling,<br>0.62<br>of dwell                                                                                   | Jun<br>0.5<br>ollow st<br>20.99<br>dwellin<br>19.93<br>h2,m (s<br>0.42<br>ing T2 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jul         0.36           eps 3 to 7         21           g from Ta         19.93           see Table         0.27           (follow stee)         0.27                                                                                                   | 0.41<br>7 in Ta<br>21<br>able 9,<br>19.9<br>9 a)<br>0.32<br>eps 3 1                                                                                                                                                                                                                                                                     | 0.67<br>bble 9c)<br>20.95<br>Th2 (°C)<br>3 19.92<br>0.58<br>0 7 in Tabl<br>3 19.89                                                                                                                                                                              | 0.93<br>20.63<br>19.91<br>0.9<br>le 9c)<br>19.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.99<br>20.13<br>19.91<br>0.98                                                               | 1<br>19.75<br>19.9<br>0.99<br>18.25                                                 | ]               | (87<br>(88<br>(89<br>(90                                      |
| Mean<br>(87)m= [<br>Temp<br>(88)m= [<br>Utilisa<br>(89)m= [<br>Mean<br>(90)m= [                                                                                                                  | 0.99<br>interna<br>19.78<br>erature<br>19.89<br>ttion fac<br>0.99<br>interna<br>18.29                                                                                                                                         | 0.99<br>I temper<br>20.01<br>during h<br>19.89<br>ctor for g<br>0.98<br>I temper<br>18.63                                                                                              | 0.95<br>ature in<br>20.36<br>teating p<br>19.9<br>ains for<br>0.94<br>ature in<br>19.12                                                                                                       | 0.86<br>living an<br>20.72<br>eriods in<br>19.91<br>rest of d<br>0.82<br>the rest<br>19.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | May<br>0.69<br>ea T1 (f<br>20.92<br>n rest of<br>19.91<br>welling,<br>0.62<br>of dwell<br>19.85                                                                          | Jun<br>0.5<br>ollow st<br>20.99<br>dwellin<br>19.93<br>h2,m (s<br>0.42<br>ing T2<br>19.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jul         0.36           eps 3 to 7         21           g from Ta         19.93           see Table         0.27           (follow stee)         19.93                                                                                                  | 0.41<br>7 in Ta<br>21<br>able 9,<br>19.9<br>9a)<br>0.32<br>eps 31<br>19.9                                                                                                                                                                                                                                                               | 0.67<br>bble 9c)<br>20.95<br>Th2 (°C)<br>3 19.92<br>0.58<br>0 7 in Tabl<br>3 19.89                                                                                                                                                                              | 0.93<br>20.63<br>19.91<br>0.9<br>le 9c)<br>19.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.99<br>20.13<br>19.91<br>0.98<br>18.81                                                      | 1<br>19.75<br>19.9<br>0.99<br>18.25                                                 | 0.34            | (87<br>(88<br>(89<br>(90                                      |
| Mean<br>(87)m= [<br>Temp<br>(88)m= [<br>Utilisa<br>(89)m= [<br>Mean<br>(90)m= [                                                                                                                  | 0.99<br>interna<br>19.78<br>erature<br>19.89<br>ttion fac<br>0.99<br>interna<br>18.29                                                                                                                                         | 0.99<br>I temper<br>20.01<br>during h<br>19.89<br>ctor for g<br>0.98<br>I temper<br>18.63                                                                                              | 0.95<br>ature in<br>20.36<br>teating p<br>19.9<br>ains for<br>0.94<br>ature in<br>19.12                                                                                                       | 0.86<br>living an<br>20.72<br>eriods in<br>19.91<br>rest of d<br>0.82<br>the rest<br>19.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | May<br>0.69<br>ea T1 (f<br>20.92<br>n rest of<br>19.91<br>welling,<br>0.62<br>of dwell<br>19.85                                                                          | Jun<br>0.5<br>ollow st<br>20.99<br>dwellin<br>19.93<br>h2,m (s<br>0.42<br>ing T2<br>19.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jul         0.36           eps 3 to 7         21           g from Ta         19.93           see Table         0.27           (follow stee)         19.93                                                                                                  | 0.41<br>7 in Ta<br>21<br>able 9,<br>19.9<br>9a)<br>0.32<br>eps 31<br>19.9                                                                                                                                                                                                                                                               | 0.67<br>ble 9c)<br>20.95<br>Th2 (°C)<br>3 19.92<br>0.58<br>0 7 in Tabl<br>3 19.89<br>1<br>fLA) × T2                                                                                                                                                             | 0.93<br>20.63<br>19.91<br>0.9<br>le 9c)<br>19.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.99<br>20.13<br>19.91<br>0.98<br>18.81                                                      | 1<br>19.75<br>19.9<br>0.99<br>18.25                                                 | ]<br>]<br>      | (87<br>(88<br>(89<br>(90<br>(91                               |
| Mean<br>(87)m= [<br>(88)m= [<br>Utilisa<br>(89)m= [<br>Mean<br>(90)m= [<br>Mean<br>(92)m= [                                                                                                      | 0.99<br>interna<br>19.78<br>erature<br>19.89<br>ition fac<br>0.99<br>interna<br>18.29<br>interna<br>18.81                                                                                                                     | 0.99<br>1 temper<br>20.01<br>during h<br>19.89<br>ctor for g<br>0.98<br>1 temper<br>18.63<br>1 temper<br>19.11                                                                         | 0.95<br>ature in<br>20.36<br>eating p<br>19.9<br>ains for<br>0.94<br>ature in<br>19.12<br>ature (fo<br>19.54                                                                                  | 0.86<br>living ar<br>20.72<br>eriods in<br>19.91<br>rest of d<br>0.82<br>the rest<br>19.62<br>r the wh<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | May<br>0.69<br>ea T1 (f<br>20.92<br>n rest of<br>19.91<br>welling,<br>0.62<br>of dwell<br>19.85<br>ole dwe<br>20.22                                                      | Jun<br>0.5<br>ollow st<br>20.99<br>dwellin<br>19.93<br>h2,m (s<br>0.42<br>ing T2 (<br>19.92<br>ling) =<br>20.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jul         0.36           eps 3 to 7         21           g from Ta         19.93           see Table         0.27           (follow steeted)         19.93           fLA × T1         20.3                                                               | 0.41<br>7 in Ta<br>21<br>able 9,<br>19.9<br>9a)<br>0.32<br>eps 3 1<br>19.9<br>+ (1 -<br>20.3                                                                                                                                                                                                                                            | 0.67<br>ble 9c)<br>20.95<br>Th2 (°C)<br>3 19.92<br>0.58<br>0 7 in Tabl<br>3 19.89<br>1<br>fLA) × T2                                                                                                                                                             | 0.93<br>20.63<br>19.91<br>0.9<br>19.52<br>fLA = Livi<br>19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.99<br>20.13<br>19.91<br>0.98<br>18.81<br>ng area + (4                                      | 1<br>19.75<br>19.9<br>0.99<br>18.25<br>4) =                                         | 0.34            | (87<br>(88<br>(89<br>(90<br>(91                               |
| Mean<br>(87)m= [<br>Temp<br>(88)m= [<br>Utilisa<br>(89)m= [<br>Mean<br>(90)m= [<br>Mean<br>(92)m= [<br>Apply                                                                                     | 0.99<br>interna<br>19.78<br>erature<br>19.89<br>ition fac<br>0.99<br>interna<br>18.29<br>interna<br>18.81                                                                                                                     | 0.99<br>1 temper<br>20.01<br>during h<br>19.89<br>ctor for g<br>0.98<br>1 temper<br>18.63<br>1 temper<br>19.11                                                                         | 0.95<br>ature in<br>20.36<br>eating p<br>19.9<br>ains for<br>0.94<br>ature in<br>19.12<br>ature (fo<br>19.54                                                                                  | 0.86<br>living ar<br>20.72<br>eriods in<br>19.91<br>rest of d<br>0.82<br>the rest<br>19.62<br>r the wh<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | May<br>0.69<br>ea T1 (f<br>20.92<br>n rest of<br>19.91<br>welling,<br>0.62<br>of dwell<br>19.85<br>ole dwe<br>20.22                                                      | Jun<br>0.5<br>ollow st<br>20.99<br>dwellin<br>19.93<br>h2,m (s<br>0.42<br>ing T2 (<br>19.92<br>ling) =<br>20.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jul         0.36           eps 3 to 7         21           g from Ta         19.93           see Table         0.27           (follow steeted)         19.93           fLA × T1         20.3                                                               | 0.41<br>7 in Ta<br>21<br>able 9,<br>19.9<br>9a)<br>0.32<br>eps 3 1<br>19.9<br>+ (1 -<br>20.3                                                                                                                                                                                                                                            | 0.67<br>bble 9c)<br>20.95<br>Th2 (°C)<br>3 19.92<br>0.58<br>0 7 in Tabl<br>3 19.89<br>fLA) × T2<br>20.25<br>there approx                                                                                                                                        | 0.93<br>20.63<br>19.91<br>0.9<br>19.52<br>fLA = Livi<br>19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.99<br>20.13<br>19.91<br>0.98<br>18.81<br>ng area + (4                                      | 1<br>19.75<br>19.9<br>0.99<br>18.25<br>4) =                                         | ]<br>]<br>]<br> | (86<br>(87<br>(88<br>(89<br>(90<br>(91)<br>(91)<br>(92<br>(93 |
| Mean<br>(87)m= [<br>Temp<br>(88)m= [<br>Utilisa<br>(89)m= [<br>Mean<br>(90)m= [<br>Mean<br>(92)m= [<br>Apply<br>(93)m= [                                                                         | 0.99<br>interna<br>19.78<br>erature<br>19.89<br>ition fac<br>0.99<br>interna<br>18.29<br>interna<br>18.81<br>adjustr<br>18.81                                                                                                 | 0.99<br>1 temper<br>20.01<br>during h<br>19.89<br>1 temper<br>18.63<br>1 temper<br>19.11<br>ment to t                                                                                  | 0.95<br>ature in<br>20.36<br>eating p<br>19.9<br>ains for r<br>0.94<br>ature in<br>19.12<br>ature (fo<br>19.54<br>he mean<br>19.54                                                            | 0.86<br>living ar<br>20.72<br>eriods in<br>19.91<br>rest of d<br>0.82<br>the rest<br>19.62<br>r the wh<br>20<br>i interna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | May<br>0.69<br>ea T1 (f<br>20.92<br>n rest of<br>19.91<br>welling,<br>0.62<br>of dwell<br>19.85<br>ole dwe<br>20.22<br>I temper                                          | Jun           0.5           ollow st           20.99           dwellin           19.93           h2,m (s           0.42           ing T2 (           19.92           elling) =           20.29           rature fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jul         0.36           eps 3 to 7         21           g from Ta         19.93           see Table         0.27           (follow steet)         19.93           fLA × T1         20.3           om Table         0.27                                 | 0.41<br>7 in Ta<br>21<br>able 9,<br>19.9<br>9a)<br>0.32<br>eps 31<br>19.9<br>+ (1 -<br>20.3<br>2 4e, w                                                                                                                                                                                                                                  | 0.67<br>bble 9c)<br>20.95<br>Th2 (°C)<br>3 19.92<br>0.58<br>0 7 in Tabl<br>3 19.89<br>fLA) × T2<br>20.25<br>there approx                                                                                                                                        | 0.93<br>20.63<br>19.91<br>0.9<br>19.52<br>fLA = Livi<br>19.9<br>opriate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.99<br>20.13<br>19.91<br>0.98<br>18.81<br>ng area ÷ (4<br>19.27                             | 1<br>19.75<br>19.9<br>0.99<br>18.25<br>i) =<br>18.76                                | ]<br>]<br>]<br> | (87<br>(88<br>(89<br>(90<br>(91<br>(92                        |
| Mean<br>(87)m= [<br>Temp<br>(88)m= [<br>Utilisa<br>(89)m= [<br>Mean<br>(90)m= [<br>Mean<br>(92)m= [<br>Apply<br>(93)m= [<br>8. Spa<br>Set Ti                                                     | 0.99<br>interna<br>19.78<br>erature<br>19.89<br>ition fac<br>0.99<br>interna<br>18.29<br>interna<br>18.81<br>adjustr<br>18.81<br>acc hea<br>i to the i                                                                        | 0.99<br>I temper<br>20.01<br>during h<br>19.89<br>ctor for g<br>0.98<br>I temper<br>18.63<br>I temper<br>19.11<br>ment to tt<br>19.11<br>ting required                                 | 0.95<br>ature in<br>20.36<br>eating p<br>19.9<br>ains for r<br>0.94<br>ature in<br>19.12<br>ature (fo<br>19.54<br>he mean<br>19.54<br>Jirement<br>ernal ter                                   | 0.86<br>living an<br>20.72<br>eriods in<br>19.91<br>rest of d<br>0.82<br>the rest<br>19.62<br>r the wh<br>20<br>i interna<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | May<br>0.69<br>ea T1 (f<br>20.92<br>n rest of<br>19.91<br>welling,<br>0.62<br>of dwell<br>19.85<br>ole dwel<br>20.22<br>temper<br>20.22<br>re obtain                     | Jun           0.5           ollow st           20.99           dwellin           19.93           h2,m (s           0.42           ing T2 (           19.92           elling) =           20.29           rature fr           20.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jul         0.36           eps 3 to 7         21           g from Ta         19.93           see Table         0.27           (follow sterned)         19.93           fLA × T1         20.3           com Table         20.3                              | 0.41<br>7 in Ta<br>21<br>able 9,<br>19.9<br>9 9a)<br>0.32<br>eps 3 1<br>19.9<br>+ (1 –<br>20.3<br>e 4e, w<br>20.3                                                                                                                                                                                                                       | 0.67<br>bble 9c)<br>20.95<br>Th2 (°C)<br>3 19.92<br>0.58<br>0 7 in Tabl<br>3 19.89<br>fLA) × T2<br>20.25<br>there approx                                                                                                                                        | 0.93<br>20.63<br>19.91<br>0.9<br>le 9c)<br>19.52<br>ILA = Livi<br>19.9<br>opriate<br>19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.99<br>20.13<br>19.91<br>0.98<br>18.81<br>ng area + (4<br>19.27                             | 1<br>19.75<br>19.9<br>0.99<br>18.25<br>5) =<br>18.76<br>18.76                       | ]               | (87<br>(88<br>(89<br>(90<br>(91<br>(92                        |
| Mean<br>(87)m= [<br>Temp<br>(88)m= [<br>Utilisa<br>(89)m= [<br>Mean<br>(90)m= [<br>Mean<br>(92)m= [<br>Apply<br>(93)m= [<br>8. Spa<br>Set Ti                                                     | 0.99<br>interna<br>19.78<br>erature<br>19.89<br>ittion fac<br>0.99<br>interna<br>18.29<br>interna<br>18.81<br>adjustr<br>18.81<br>adjustr<br>18.81<br>ito the i<br>illisation                                                 | 0.99<br>I temper<br>20.01<br>during h<br>19.89<br>ctor for g<br>0.98<br>I temper<br>18.63<br>I temper<br>19.11<br>nent to ti<br>19.11<br>19.11<br>ting requ<br>mean int<br>factor fc   | 0.95<br>ature in<br>20.36<br>eating p<br>19.9<br>ains for r<br>0.94<br>ature in<br>19.12<br>ature (fo<br>19.54<br>he mean<br>19.54<br>Jirement<br>ernal ter<br>or gains i                     | 0.86<br>living an<br>20.72<br>eriods in<br>19.91<br>rest of d<br>0.82<br>the rest<br>19.62<br>r the wh<br>20<br>interna<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | May<br>0.69<br>20.92<br>n rest of<br>19.91<br>0.62<br>of dwell<br>19.85<br>20.22<br>20.22<br>1 temper<br>20.22<br>20.22<br>20.22<br>20.22<br>20.22                       | Jun 0.5<br>ollow st 20.99<br>dwellin 19.93<br>h2,m (s<br>0.42<br>19.92<br>19.92<br>20.29<br>20.29<br>20.29<br>ned at s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jul         0.36           eps 3 to 7         21           g from Ta         19.93           see Table         0.27           (follow steet         19.93           fLA × T1         20.3           om Table         20.3           ittep 11 of         1  | 0.41<br>7 in Ta<br>21<br>able 9,<br>19.9<br>9a)<br>0.32<br>eps 3 1<br>19.9<br>+ (1 -<br>20.3.3<br>2<br>20.3<br>2<br>+ (2 -<br>20.3<br>2<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                       | 0.67           able 9c)           20.95           Th2 (°C)           3           19.92           0.58           o 7 in Tabl           3           19.89           fLA) × T2           20.25           where approximation           20.25           9b, so that | 0.93<br>20.63<br>19.91<br>0.9<br>19.52<br>19.52<br>19.9<br>19.9<br>0priate<br>19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.99<br>20.13<br>19.91<br>0.98<br>18.81<br>ng area ÷ (4<br>19.27<br>19.27<br>(76)m and       | 1<br>19.75<br>19.9<br>0.99<br>18.25<br>5) =<br>18.76<br>18.76<br>18.76<br>d re-cald | ]               | (87<br>(88<br>(89<br>(90<br>(91<br>(92                        |
| (87)m= [<br>Temp<br>(88)m= [<br>Utilisa<br>(89)m= [<br>Mean<br>(90)m= [<br>Mean<br>(92)m= [<br>Apply<br>(93)m= [<br>8. Spa<br>Set Ti<br>the uti                                                  | 0.99<br>interna<br>19.78<br>erature<br>19.89<br>interna<br>18.29<br>interna<br>18.81<br>adjustr<br>18.81<br>18.81<br>18.81<br>adjustr<br>18.81<br>adjustr<br>18.81<br>adjustr<br>18.81<br>Jan                                 | 0.99<br>I temper<br>20.01<br>during h<br>19.89<br>itor for g<br>0.98<br>I temper<br>18.63<br>I temper<br>19.11<br>nent to ti<br>19.11<br>ting requ<br>mean int<br>factor fo<br>Feb     | 0.95<br>ature in<br>20.36<br>eating p<br>19.9<br>ains for<br>0.94<br>ature in<br>19.12<br>ature (fo<br>19.54<br>jirement<br>ernal ter<br>or gains of<br>Mar                                   | 0.88<br>living ar<br>20.72<br>eriods in<br>19.91<br>rest of d<br>0.82<br>the rest<br>19.62<br>or the wh<br>20<br>interna<br>20<br>mperatu<br>using Ta<br>Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | May<br>0.69<br>ea T1 (f<br>20.92<br>n rest of<br>19.91<br>welling,<br>0.62<br>of dwell<br>19.85<br>ole dwel<br>20.22<br>temper<br>20.22<br>re obtain                     | Jun           0.5           ollow st           20.99           dwellin           19.93           h2,m (s           0.42           ing T2 (           19.92           elling) =           20.29           rature fr           20.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jul         0.36           eps 3 to 7         21           g from Ta         19.93           see Table         0.27           (follow sterned)         19.93           fLA × T1         20.3           com Table         20.3                              | 0.41<br>7 in Ta<br>21<br>able 9,<br>19.9<br>9 9a)<br>0.32<br>eps 3 1<br>19.9<br>+ (1 –<br>20.3<br>e 4e, w<br>20.3                                                                                                                                                                                                                       | 0.67           able 9c)           20.95           Th2 (°C)           3           19.92           0.58           o 7 in Tabl           3           19.89           fLA) × T2           20.25           where appression           20.25           9b, so that    | 0.93<br>20.63<br>19.91<br>0.9<br>le 9c)<br>19.52<br>ILA = Livi<br>19.9<br>opriate<br>19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.99<br>20.13<br>19.91<br>0.98<br>18.81<br>ng area + (4<br>19.27                             | 1<br>19.75<br>19.9<br>0.99<br>18.25<br>5) =<br>18.76<br>18.76                       | ]               | (87<br>(88<br>(89<br>(90<br>(91<br>(92                        |
| 4 Mean<br>(87)m= [<br>(88)m= [<br>Utilisa<br>(89)m= [<br>Mean<br>(90)m= [<br>Mean<br>(90)m= [<br>Apply<br>(93)m= [<br><b>8. Spa</b><br><b>8. Spa</b><br><b>5. Set</b> Ti<br>the util<br>(Utilisa | 0.99<br>interna<br>19.78<br>erature<br>19.89<br>interna<br>18.29<br>interna<br>18.29<br>interna<br>18.21<br>adjustr<br>18.81<br>adjustr<br>18.81<br>to he fe<br>to the fe<br>to the te<br>to the fe<br>to the fe<br>to the fe | 0.99<br>I temper<br>20.01<br>during h<br>19.89<br>tor for g<br>0.98<br>I temper<br>18.63<br>I temper<br>19.11<br>19.11<br>ting requ<br>mean int<br>factor fo<br>Feb<br>tor for g       | 0.95<br>ature in<br>20.36<br>ieating p<br>19.9<br>ains for r<br>0.94<br>ature in<br>19.12<br>ature (fo<br>19.54<br>he mean<br>19.54<br>iirement<br>ernal ter<br>or gains o<br>Mar<br>ains, hm | 0.86<br>10.87<br>20.72<br>20.72<br>20.72<br>19.91<br>19.91<br>19.91<br>19.91<br>19.62<br>r the wh<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20 | May<br>0.69<br>ea T1 (f<br>20.92<br>n rest of<br>19.91<br>welling,<br>0.62<br>of dwell<br>19.85<br>lole dwe<br>20.22<br>l temper<br>20.22<br>re obtain<br>bble 9a<br>May | Jun<br>0.5<br>20.99<br>dwellin<br>19.93<br>h2,m (s<br>0.42<br>19.92<br>19.92<br>19.92<br>19.92<br>19.92<br>19.92<br>20.29<br>20.29<br>20.29<br>20.29<br>20.29<br>20.29<br>20.29<br>20.29<br>20.29<br>20.29<br>20.29<br>20.90<br>19.93<br>20.90<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.92<br>20.99<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.92<br>20.91<br>19.92<br>20.91<br>19.92<br>20.91<br>19.92<br>20.91<br>19.92<br>20.91<br>20.92<br>20.91<br>20.92<br>20.91<br>20.92<br>20.91<br>20.92<br>20.92<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>2 | Jul         0.36           eps 3 to 7         21           g from Ta         19.93           see Table         0.27           (follow stet         19.93           fLA × T11         20.3           om Table         20.3           step 11 of         Jul | 0.41           7 in Ta           21           able 9,           19.9           9a)           0.32           eps 31           19.9           + (1 -           20.32           e 4e, w           20.3           e 4e, w           20.3           e 4e, w           20.3           e 4e, w           20.3           e 4e, w           20.3 | 0.67           ble 9c)           20.95           Th2 (°C)           3           19.92           0.58           0 7 in Tabl           3           19.89           fLA) × T2           20.25           9b, so that           g           Sep                      | 0.93<br>20.63<br>19.91<br>0.9<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.53<br>19.51<br>19.51<br>19.52<br>19.53<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19. | 0.99<br>20.13<br>19.91<br>0.98<br>18.81<br>ng area ÷ (²<br>19.27<br>19.27<br>(76)m an<br>Nov | 1<br>19.75<br>19.9<br>0.99<br>18.25<br>18.76<br>18.76<br>18.76<br>d re-cale         | ]               | (87<br>(88<br>(89<br>(90<br>(91<br>(91<br>(92<br>(93          |
| Mean<br>(87)m= [<br>Tempp<br>(88)m= [<br>Utilisa<br>(89)m= [<br>Mean<br>(90)m= [<br>Mean<br>(92)m= [<br>Apply<br>(93)m= [<br>8. Spa<br>Set Ti<br>the util                                        | 0.99<br>interna<br>19.78<br>erature<br>19.89<br>interna<br>18.29<br>interna<br>18.81<br>adjustr<br>18.81<br>18.81<br>18.81<br>adjustr<br>18.81<br>adjustr<br>18.81<br>adjustr<br>18.81<br>Jan                                 | 0.99<br>I temper<br>20.01<br>during h<br>19.89<br>itor for g<br>0.98<br>I temper<br>18.63<br>I temper<br>19.11<br>inent to ti<br>19.11<br>iting requ<br>mean inth<br>factor for<br>Feb | 0.95<br>ature in<br>20.36<br>eating p<br>19.9<br>ains for<br>0.94<br>ature in<br>19.12<br>ature (fo<br>19.54<br>jirement<br>ernal ter<br>or gains of<br>Mar                                   | 0.88<br>living ar<br>20.72<br>eriods in<br>19.91<br>rest of d<br>0.82<br>the rest<br>19.62<br>or the wh<br>20<br>interna<br>20<br>mperatu<br>using Ta<br>Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | May<br>0.69<br>20.92<br>n rest of<br>19.91<br>0.62<br>of dwell<br>19.85<br>20.22<br>20.22<br>1 temper<br>20.22<br>20.22<br>20.22<br>20.22<br>20.22                       | Jun 0.5<br>ollow st 20.99<br>dwellin 19.93<br>h2,m (s<br>0.42<br>19.92<br>19.92<br>20.29<br>elling) = 20.29<br>20.29<br>ned at s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jul         0.36           eps 3 to 7         21           g from Ta         19.93           see Table         0.27           (follow steet         19.93           fLA × T1         20.3           om Table         20.3           ittep 11 of         1  | 0.41<br>7 in Ta<br>21<br>able 9,<br>19.9<br>9a)<br>0.32<br>eps 3 1<br>19.9<br>+ (1 -<br>20.3.3<br>2<br>20.3<br>2<br>+ (2 -<br>20.3<br>2<br>+ (2 -<br>20.3<br>2<br>+ (2 -<br>20.3<br>2<br>+ (2 -<br>20.3)<br>2<br>-<br>2<br>-<br>2<br>-<br>2<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                 | 0.67           ble 9c)           20.95           Th2 (°C)           3           19.92           0.58           0 7 in Tabl           3           19.89           fLA) × T2           20.25           9b, so that           g           Sep                      | 0.93<br>20.63<br>19.91<br>0.9<br>19.52<br>19.52<br>19.9<br>19.9<br>0priate<br>19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.99<br>20.13<br>19.91<br>0.98<br>18.81<br>ng area ÷ (4<br>19.27<br>19.27<br>(76)m and       | 1<br>19.75<br>19.9<br>0.99<br>18.25<br>5) =<br>18.76<br>18.76<br>18.76<br>d re-cald | ]               | (87<br>(88<br>(89<br>(90<br>(91<br>(91<br>(92<br>(93          |
| Mean<br>(87)m= [<br>Tempp<br>(88)m= [<br>Utilisa<br>(89)m= [<br>Mean<br>(90)m= [<br>Apply<br>(93)m= [<br>8. Spa<br>Set Ti<br>the uti<br>[<br>Utilisa                                             | 0.99<br>interna<br>19.78<br>erature<br>19.89<br>interna<br>18.29<br>interna<br>18.29<br>interna<br>18.21<br>adjustr<br>18.81<br>adjustr<br>18.81<br>to he fe<br>to the fe<br>to the fe<br>to the fe<br>to the fe              | 0.99<br>I temper<br>20.01<br>during h<br>19.89<br>tor for g<br>0.98<br>I temper<br>18.63<br>I temper<br>19.11<br>19.11<br>ting requ<br>mean int<br>factor fo<br>Feb<br>tor for g       | 0.95<br>ature in<br>20.36<br>ieating p<br>19.9<br>ains for r<br>0.94<br>ature in<br>19.12<br>ature (fo<br>19.54<br>he mean<br>19.54<br>iirement<br>ernal ter<br>or gains o<br>Mar<br>ains, hm | 0.86<br>10.87<br>20.72<br>20.72<br>20.72<br>19.91<br>19.91<br>19.91<br>19.91<br>19.62<br>r the wh<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20<br>interna<br>20 | May<br>0.69<br>ea T1 (f<br>20.92<br>n rest of<br>19.91<br>welling,<br>0.62<br>of dwell<br>19.85<br>lole dwe<br>20.22<br>l temper<br>20.22<br>re obtain<br>bble 9a        | Jun<br>0.5<br>20.99<br>dwellin<br>19.93<br>h2,m (s<br>0.42<br>19.92<br>19.92<br>19.92<br>19.92<br>19.92<br>19.92<br>20.29<br>20.29<br>20.29<br>20.29<br>20.29<br>20.29<br>20.29<br>20.29<br>20.29<br>20.29<br>20.29<br>20.90<br>19.93<br>20.90<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.92<br>20.99<br>20.91<br>19.93<br>20.91<br>19.93<br>20.91<br>19.92<br>20.91<br>19.92<br>20.91<br>19.92<br>20.91<br>19.92<br>20.91<br>19.92<br>20.91<br>20.92<br>20.91<br>20.92<br>20.91<br>20.92<br>20.91<br>20.92<br>20.92<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>20.93<br>2 | Jul         0.36           eps 3 to 7         21           g from Ta         19.93           see Table         0.27           (follow stet         19.93           fLA × T11         20.3           om Table         20.3           step 11 of         Jul | 0.41           7 in Ta           21           able 9,           19.9           9a)           0.32           eps 31           19.9           + (1 -           20.32           e 4e, w           20.3           e 4e, w           20.3           e 4e, w           20.3           e 4e, w           20.3           e 4e, w           20.3 | 0.67           ble 9c)           20.95           Th2 (°C)           3           19.92           0.58           0 7 in Tabl           3           19.89           fLA) × T2           20.25           9b, so that           g           Sep                      | 0.93<br>20.63<br>19.91<br>0.9<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.52<br>19.53<br>19.51<br>19.51<br>19.52<br>19.53<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19.55<br>19. | 0.99<br>20.13<br>19.91<br>0.98<br>18.81<br>ng area ÷ (²<br>19.27<br>19.27<br>(76)m an<br>Nov | 1<br>19.75<br>19.9<br>0.99<br>18.25<br>18.76<br>18.76<br>18.76<br>d re-cale         | ]               | (87<br>(88<br>(89<br>(90<br>(91<br>(92                        |





#### DER WorkSheet: New dwelling design stage



| pump for solar water heating                                             |                                                    | 0 (330                      |
|--------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|
| Total electricity for the above, kWh/year                                | =(330a) + (330b) + (330g) =                        | 0 (331                      |
| Energy for lighting (calculated in Appendix L)                           |                                                    | 337.99 (332                 |
| 12b. CO2 Emissions - Community heating scheme                            |                                                    |                             |
| Electrical efficiency of CHP unit                                        |                                                    | 31.25 (361                  |
| Heat efficiency of CHP unit                                              |                                                    | 53.13 (362                  |
|                                                                          | Energy Emission fact<br>kWh/year kg CO2/kWh        | or Emissions<br>kg CO2/year |
| Space heating from CHP) (307a) × 100 ÷ (362) =                           | 4564.4 × 0.22                                      | 985.91 (363                 |
| ess credit emissions for electricity $-(307a) \times (361) + (362) =$    | 1426.37 × 0.52                                     | -740.29 (364                |
| Water heated by CHP (310a) × 100 ÷ (362) =                               | 3515.56 × 0.22                                     | 759.36 (365                 |
| ess credit emissions for electricity $-(310a) \times (361) \div (362) =$ | 1098.61 × 0.52                                     | -570.18 (366                |
| Efficiency of heat source 2 (%) If there is CHP us                       | ing two fuels repeat (363) to (366) for the second | fuel 93 (367                |
| CO2 associated with heat source 2 [(307b                                 | )+(310b)] x 100 ÷ (367b) x 0.22                    | = 175.95 (368               |
| Electrical energy for heat distribution                                  | [(313) x 0.52                                      | = 26.21 (372                |
| Total CO2 associated with community systems                              | (363)(366) + (368)(372)                            | = 636.97 (373               |
| CO2 associated with space heating (secondary)                            | (309) × 0                                          | = 0 (374                    |
| CO2 associated with water from immersion heater or instanta              | neous heater (312) x 0.22                          | = 0 (375                    |
| Total CO2 associated with space and water heating                        | (373) + (374) + (375) =                            | 636.97 (376                 |
| CO2 associated with electricity for pumps and fans within dwe            | elling (331)) x 0.52                               | = 0 (378                    |
| CO2 associated with electricity for lighting                             | (332))) x 0.52                                     | = 175.42 (379               |
| Total CO2, kg/year sum of (376)(382) =                                   |                                                    | 812.38 (383                 |
| Dwelling CO2 Emission Rate (383) + (4) =                                 |                                                    | 10.45 (384                  |
| El rating (section 14)                                                   |                                                    | 91.13 (385                  |
|                                                                          |                                                    |                             |
| Stroma FSAP 2012 Version: 1.0.3.15 (SAP 9.92) - http://www.stroma.com    |                                                    | Page 8 of 8                 |







| Project name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                              | Shell and Cor                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sandycombe B1 Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (P0                                                                                                                                              | 2)                                                                                                                                                                                                       |                                                                                                                                              | As built                                                                                                                                                                                                                                                                                                                                                     |
| Date: Wed Oct 19 16:02:12 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              |
| Administrative information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              |
| Building Details<br>Address: 1-9 Sandycombe Road, Richmond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | London,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                                                                                                                                                | wner D<br>lame:                                                                                                                                                                                          | etails<br>e number:                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                              |
| Certification tool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                  | ddress:                                                                                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              |
| Calculation engine: SBEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              |
| Calculation engine version: v5.2.g.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ce                                                                                                                                               | ertifier                                                                                                                                                                                                 | details                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                              |
| Interface to calculation engine: Virtual Env                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ronment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                  | lame:                                                                                                                                                                                                    |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              |
| Interface to calculation engine version: v7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  | elephon<br>ddress:                                                                                                                                                                                       | e number:                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| BRUKL compliance check version: v5.2.g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A                                                                                                                                                | aaress:                                                                                                                                                                                                  | ,,                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                              |
| Building CO <sub>2</sub> emission rate (BER), kgCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                  | -                                                                                                                                                                                                        |                                                                                                                                              | 13.5                                                                                                                                                                                                                                                                                                                                                         |
| Are emissions from the building less than<br>Are as built details the same as used in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                              | BER =< TER<br>Separate submission                                                                                                                                                                                                                                                                                                                            |
| Are as built details the same as used in t<br>Criterion 2: The performance of the same as used in the same set of | he BER c<br>ne build<br>ards of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | alculatio<br>ing fal<br>energy                                                                                                                   | bric ar                                                                                                                                                                                                  | ency                                                                                                                                         | Separate submission                                                                                                                                                                                                                                                                                                                                          |
| Are as built details the same as used in t<br>Criterion 2: The performance of the<br>achieve reasonable overall stands<br>use not achieving standards in the Non-Do<br>Building fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | he BER c<br>ne build<br>ards of<br>omestic Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ing fal<br>energ<br>uilding S                                                                                                                    | bric ar<br>y effici<br>Services                                                                                                                                                                          | ency<br>Complian                                                                                                                             | Separate submission<br>uilding services should<br>ce Guide and Part L are displayed in r                                                                                                                                                                                                                                                                     |
| Are as built details the same as used in t<br>Criterion 2: The performance of the chieve reasonable overall stand-<br>ues not achieving standards in the Non-Do<br>Building fabric<br>Element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | he BER c<br>ne build<br>ards of<br>omestic Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ing fal<br>energy<br>uilding S<br>Us-cale                                                                                                        | bric ar<br>y effici<br>Services<br>U⊧calc                                                                                                                                                                | ency<br>Complian<br>Surface                                                                                                                  | Separate submission<br>Uilding services should<br>ce Guide and Part L are displayed in r<br>where the maximum value occurs*                                                                                                                                                                                                                                  |
| Are as built details the same as used in t<br>Criterion 2: The performance of the<br>Inchieve reasonable overall stands<br>use not achieving standards in the Non-Do<br>Building fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | he BER c<br>ne build<br>ards of<br>omestic Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ing fal<br>energ<br>uilding S                                                                                                                    | bric ar<br>y effici<br>Services                                                                                                                                                                          | ency<br>Complian                                                                                                                             | Separate submission<br>uilding services should<br>ce Guide and Part L are displayed in r<br>where the maximum value occurs*<br>00_W1                                                                                                                                                                                                                         |
| Are as built details the same as used in t<br>Criterion 2: The performance of th<br>tchieve reasonable overall stand<br>ues not achieving standards in the Non-Do<br>Building fabric<br>Element<br>Wall**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | he BER c<br>ne build<br>ards of<br>mestic Bu<br>Ue-Limit<br>0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ing fa<br>energy<br>uilding S<br>Un-calc<br>0.2                                                                                                  | bric ar<br>y effici<br>Services<br>Ui-calc<br>0.2                                                                                                                                                        | Complian<br>Surface<br>B10000<br>B10000                                                                                                      | Separate submission<br>uilding services should<br>ce Guide and Part L are displayed in r<br>where the maximum value occurs*<br>00_W1                                                                                                                                                                                                                         |
| Are as built details the same as used in t<br>Criterion 2: The performance of the<br>techieve reasonable overall stand-<br>ues not achieving standards in the Non-Do<br>Building fabric<br>Element<br>Wall**<br>Floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | he BER c<br>ne build<br>ards of<br>prestic Bu<br>U <sub>e-Limit</sub><br>0.35<br>0.25<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alculation<br>ing fai<br>energy<br>uilding S<br>Ua-cale<br>0.2<br>0.18                                                                           | bric ar<br>y effici<br>Services<br>Ui-calc<br>0.2<br>0.18                                                                                                                                                | ency<br>Complian<br>Surface<br>B10000<br>B10000<br>"No hea                                                                                   | Separate submission<br>uilding services should<br>ce Guide and Part L are displayed in r<br>where the maximum value occurs*<br>00_W1<br>00_F                                                                                                                                                                                                                 |
| Are as built details the same as used in t<br>Criterion 2: The performance of the<br>Inchieve reasonable overall stands<br>uses not achieving standards in the Non-Do<br>Building fabric<br>Element<br>Wall**<br>Floor<br>Roof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | he BER c<br>ne build<br>ards of<br>prestic Bu<br>U <sub>e-Limit</sub><br>0.35<br>0.25<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ing fa<br>energy<br>uilding S<br>Ua-cate<br>0.2<br>0.18<br>-                                                                                     | bric ar<br>y effici<br>Services<br>UFCale<br>0.2<br>0.18<br>-                                                                                                                                            | ency<br>Complian<br>Surface<br>B100000<br>B100000<br>"No hea<br>B100000                                                                      | Separate submission<br>tilding services should<br>ce Guide and Part L are displayed in n<br>where the maximum value occurs*<br>00_W1<br>00_F<br>t loss roofs"                                                                                                                                                                                                |
| Are as built details the same as used in t<br>Criterion 2: The performance of the<br>chieve reasonable overall stands<br>uses not achieving standards in the Non-Do<br>Building fabric<br>Element<br>Wall**<br>Floor<br>Roof<br>Windows***, roof windows, and rooflights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | he BER c<br>he build<br>ards of<br>omestic Bu<br>0.35<br>0.25<br>0.25<br>5 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ing fai<br>energy<br>uilding S<br>0.2<br>0.18<br>-<br>1.4                                                                                        | bric ar           y effici           Services           Ui-calc           0.2           0.18           -           1.4                                                                                   | Ency<br>Complian<br>Surface<br>B10000<br>"No hea<br>B10000<br>"No exte                                                                       | Separate submission<br>Uilding services should<br>ce Guide and Part L are displayed in r<br>where the maximum value occurs*<br>10_W1<br>10_F<br>10_Sr roots"<br>10_W1_O0                                                                                                                                                                                     |
| Are as built details the same as used in t<br>Criterion 2: The performance of the<br>chieve reasonable overall stands<br>uses not achieving standards in the Non-Do<br>Building fabric<br>Element<br>Wall**<br>Floor<br>Roof<br>Windows***, roof windows, and rooflights<br>Personnel doors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | he BER c<br>ne build<br>ards of<br>mestic Bu<br>0.35<br>0.25<br>0.25<br>0.25<br>2.2<br>2.2<br>1.5<br>3.5<br>W/(m <sup>+</sup> K)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ing fa<br>energy<br>uilding S<br>0.2<br>0.18<br>-<br>1.4<br>-                                                                                    | bric ar<br>y effici<br>Services<br>UI-Cale<br>0.2<br>0.18<br>-<br>1.4<br>-<br>-<br>-                                                                                                                     | Ency<br>Complian<br>Surface<br>B100000<br>"No hea<br>B100000<br>"No exte<br>"No exte<br>"No exte                                             | Separate submission<br>Lilding services should<br>ce Guide and Part L are displayed in r<br>where the maximum value occurs*<br>10_W1<br>10_F<br>t loss roofs"<br>10_W1_O0<br>rnal personnel doors"                                                                                                                                                           |
| Are as built details the same as used in the context of the same as t    | he BER c<br>he build<br>ards of<br>omestic Bu<br>Use-Limit<br>0.35<br>0.25<br>0.25<br>0.25<br>0.25<br>2.2<br>2.2<br>1.5<br>3.5<br>W/(mTK))<br>s (W/(mTK))<br>s (W/(mTK) | Ing fal<br>energy<br>uilding S<br>0.2<br>0.18<br>-<br>1.4<br>-<br>-<br>-<br>value oc<br>n walls wh<br>U-value oc                                 | Dric ar           y effici           Services           U+cate           0.2           0.18           -           1.4           -           U+cate           Curs.           ose limitin           neck. | Ency<br>Complian<br>B100000<br>"No hea<br>B100000<br>"No exte<br>"No exte<br>"No exte<br>aculated m<br>g standard                            | Separate submission<br>Uilding services should<br>ce Guide and Part L are displayed in r<br>where the maximum value occurs*<br>100_W1<br>100_F<br>100_W1<br>100_O<br>rnal personnel doors"<br>rrnal vehicle access doors"<br>rrnal high usage entrance doors"<br>aximum individual element U-values [W/(m <sup>2</sup> K)]<br>s similar to that for windows. |
| Are as built details the same as used in the context of the same as used in the same as used    | he BER c<br>he build<br>ards of<br>omestic Bu<br>Use-Limit<br>0.35<br>0.25<br>0.25<br>0.25<br>0.25<br>2.2<br>2.2<br>1.5<br>3.5<br>W/(mTK))<br>s (W/(mTK))<br>s (W/(mTK) | Ing falences<br>ing falences<br>uilding S<br>Ue-cale<br>0.2<br>0.18<br>-<br>1.4<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | bric ar<br>y effici<br>Services<br>U+cale<br>0.2<br>0.18<br>-<br>1.4<br>-<br>U+cale = C<br>curs.<br>to se limitir<br>heck.<br>ts ar mod                                                                  | Ency<br>Complian<br>Surface<br>B100000<br>"No hea<br>B100000<br>"No exte<br>"No exte<br>"No exte<br>aculated m<br>g standard<br>elled or che | Separate submission<br>Uilding services should<br>ce Guide and Part L are displayed in r<br>where the maximum value occurs*<br>100_W1<br>100_F<br>100_W1<br>100_O<br>rnal personnel doors"<br>rrnal vehicle access doors"<br>rrnal high usage entrance doors"<br>aximum individual element U-values [W/(m <sup>2</sup> K)]<br>s similar to that for windows. |

#### **Building services**

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

| Whole building lighting automatic monitoring & targeting with alarms for out-of-range values | YES   |
|----------------------------------------------------------------------------------------------|-------|
| Whole building electric power factor achieved by power factor correction                     | >0.95 |

#### 1- Main system

|                                               | Heating efficiency    | Cooling efficiency         | Radiant efficiency         | SFP [W/(I/s)]     | HR efficiency        |
|-----------------------------------------------|-----------------------|----------------------------|----------------------------|-------------------|----------------------|
| This system                                   | 3.5                   | 4                          | -                          | -                 | - <b>-</b> -         |
| Standard value                                | 2.5*                  | 1                          | N/A                        |                   |                      |
| Automatic moni                                | itoring & targeting w | ith alarms for out-of      | -range values for th       | s HVAC system     | n YES                |
| * Standard shown is<br>for limiting standards |                       | , except absorption and ga | s engine heat pumps. For t | ypes <=12 kW outp | ut, refer to EN 1482 |

#### 1- SYST0000-DHW

|                | Water heating efficiency | Storage loss factor [kWh/litre per day] |
|----------------|--------------------------|-----------------------------------------|
| This building  | 1                        |                                         |
| Standard value | 1                        | N/A                                     |

#### Local mechanical ventilation, exhaust, and terminal units

| ID | System type in Non-domestic Building Services Compliance Guide                                          |
|----|---------------------------------------------------------------------------------------------------------|
| Α  | Local supply or extract ventilation units serving a single area                                         |
| в  | Zonal supply system where the fan is remote from the zone                                               |
| С  | Zonal extract system where the fan is remote from the zone                                              |
| D  | Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery |
| Е  | Local supply and extract ventilation system serving a single area with heating and heat recovery        |
| F  | Other local ventilation units                                                                           |
| G  | Fan-assisted terminal VAV unit                                                                          |
| н  | Fan coil units                                                                                          |
| 1  | Zonal extract system where the fan is remote from the zone with grease filter                           |
|    |                                                                                                         |
|    | SED [W////o]]                                                                                           |

| Zone name         |     | SFP [W/(I/s)] |      |     |     |     |     |     | HR efficiency |      |          |
|-------------------|-----|---------------|------|-----|-----|-----|-----|-----|---------------|------|----------|
| ID of system type | A   | в             | С    | D   | E   | F   | G   | н   | 1             | нке  | mciency  |
| Standard value    | 0.3 | 1.1           | 0.5  | 1.9 | 1.6 | 0.5 | 1.1 | 0.5 | 1             | Zone | Standard |
| B1 Office         | -   | 0.3           | -    | -   | -   | -   | -   | -   | -             | -    | N/A      |
| B1 Office         | -   | 0.3           | 14.1 | -   | (m) | -   | -   | -   | -             |      | N/A      |
| B1 Office         | (A) | 0.3           | × .  | -   | 100 | -   |     | -   |               |      | N/A      |

#### Shell and core configuration

| Zone      | Excluded from calculation? |
|-----------|----------------------------|
| B1 Office | NO                         |
| B1 Office | NO                         |
| B1 Office | NO                         |

#### General lighting and display lighting Luminous efficacy [Im/W]

| Zone name |                | Luminaire | Lamp | Display lamp | General lighting [W] |
|-----------|----------------|-----------|------|--------------|----------------------|
|           | Standard value | 60        | 60   | 22           |                      |
| B1 Office |                | 70        |      | -            | 2861                 |
| B1 Office |                | 70        | *    | -            | 615                  |

Page 2 of 6



| General lighting and display lighting | Luminous efficacy [lm/W] |      |              |                      |
|---------------------------------------|--------------------------|------|--------------|----------------------|
| Zone name                             | Luminaire                | Lamp | Display lamp | General lighting [W] |
| Standard value                        | 60                       | 60   | 22           |                      |
| B1 Office                             | 70                       | -    | -            | 1376                 |

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

| Zone      | Solar gain limit exceeded? (%) | Internal blinds used? |
|-----------|--------------------------------|-----------------------|
| B1 Office | YES (+23.9%)                   | YES                   |
| B1 Office | NO (-44.8%)                    | YES                   |
| B1 Office | NO (-60.2%)                    | YES                   |

## Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

## Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

#### EPBD (Recast): Consideration of alternative energy systems

| Were alternative energy systems considered and analysed as part of the design process? | YES |
|----------------------------------------------------------------------------------------|-----|
| Is evidence of such assessment available as a separate submission?                     | YES |
| Are any such measures included in the proposed design?                                 | YES |

### Technical Data Sheet (Actual vs. Notional Building)

| Building Global Par                              | rameters              |                               | Buildi | ing Use                      |
|--------------------------------------------------|-----------------------|-------------------------------|--------|------------------------------|
|                                                  | Actual                | Notional                      | % Area | Building 1                   |
| Area [m²]                                        | 548.3                 | 548.3                         |        | A1/A2 Retail/                |
| External area [m <sup>2</sup> ]                  | 956.9                 | 956.9                         |        | A3/A4/A5 Re                  |
| Weather                                          | LON                   | LON                           | 100    | B1 Offices a<br>B2 to B7 Ger |
| Infiltration [m³/hm²@ 50Pa]                      | 7                     | 3                             |        | B2 to B7 Ger<br>B8 Storage o |
| Average conductance [W/K]                        | 441.69                | 472.76                        |        | C1 Hotels                    |
| Average U-value [W/m <sup>2</sup> K]             | 0.46                  | 0.49                          |        | C2 Residenti                 |
| Alpha value* [%]                                 | 19.57                 | 15.02                         |        | C2 Residenti<br>C2 Residenti |
| * Percentage of the building's average heat tran | nsfer coefficient whi | ch is due to thermal bridging |        | C2A Secure                   |

| % Area | Building Type                                               |
|--------|-------------------------------------------------------------|
|        | A1/A2 Retail/Financial and Professional services            |
|        | A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways      |
| 100    | B1 Offices and Workshop businesses                          |
|        | B2 to B7 General Industrial and Special Industrial Groups   |
|        | B8 Storage or Distribution                                  |
|        | C1 Hotels                                                   |
|        | C2 Residential Inst.: Hospitals and Care Homes              |
|        | C2 Residential Inst.: Residential schools                   |
|        | C2 Residential Inst.: Universities and colleges             |
|        | C2A Secure Residential Inst.                                |
|        | Residential spaces                                          |
|        | D1 Non-residential Inst.: Community/Day Centre              |
|        | D1 Non-residential Inst.: Libraries, Museums, and Galleries |
|        | D1 Non-residential Inst.: Education                         |
|        | D1 Non-residential Inst.: Primary Health Care Building      |
|        | D1 Non-residential Inst.: Crown and County Courts           |
|        | D2 General Assembly and Leisure, Night Clubs and Theatres   |
|        | Others: Passenger terminals                                 |
|        | Others: Emergency services                                  |
|        | Others: Miscellaneous 24hr activities                       |
|        | Others: Car Parks 24 hrs                                    |
|        | Others - Stand alone utility block                          |

| Energy Consumption by End Use [kWh/m <sup>2</sup> ] |        |          |  |
|-----------------------------------------------------|--------|----------|--|
|                                                     | Actual | Notional |  |
| Heating                                             | 7.89   | 5.86     |  |
| Cooling                                             | 12.37  | 10.34    |  |
| Auxiliary                                           | 1.18   | 2.7      |  |
| Lighting                                            | 9.38   | 20.49    |  |
| Hot water                                           | 2.89   | 3.34     |  |
| Equipment*                                          | 42.19  | 42.19    |  |

33.71

\* Energy used by equipment does not count towards the total for calculating emissions. \*\* Total is net of any electrical energy displaced by CHP generators, if applicable.

TOTAL\*\*

| Energy Production by | Technology [kWh/m <sup>2</sup> ] |  |
|----------------------|----------------------------------|--|
|----------------------|----------------------------------|--|

42.73

|                       | Actual | Notional |
|-----------------------|--------|----------|
| Photovoltaic systems  | 0      | 0        |
| Wind turbines         | 0      | 0        |
| CHP generators        | 0      | 0        |
| Solar thermal systems | 0      | 0        |

| Energy & CO <sub>2</sub> Emissions Summary    |        |          |  |  |
|-----------------------------------------------|--------|----------|--|--|
|                                               | Actual | Notional |  |  |
| Heating + cooling demand [MJ/m <sup>2</sup> ] | 220.66 | 185.3    |  |  |
| Primary energy* [kWh/m2]                      | 78.97  | 121.57   |  |  |
| Total emissions [kg/m <sup>2</sup> ]          | 13.5   | 21       |  |  |

Page 4 of 6



|                               | Solit or mi            | Heat dem<br>MJ/m2            | Cool dem<br>MJ/m2                            | Heat con<br>kWh/m2                   | Cool con<br>kWh/m2 | Aux con<br>kWh/m2 | Heat<br>SSEEF  | Cool<br>SSEER    | Heat gen<br>SEFF | Cool gen<br>SEER |
|-------------------------------|------------------------|------------------------------|----------------------------------------------|--------------------------------------|--------------------|-------------------|----------------|------------------|------------------|------------------|
| 1                             | opin or mu             | ulti-split sy                | stem, [HS]                                   | Heat pump                            | (electric): a      | air source,       | HFT] Electr    | icity, [CFT]     | Natural Ga       | IS               |
|                               | Actual                 | 97.5                         | 123.1                                        | 7.9                                  | 12.4               | 1.2               | 3.43           | 2.77             | 3.5              | 3.7              |
| 1                             | Notional               | 51.3                         | 134                                          | 5.9                                  | 10.3               | 2.7               | 2.43           | 3.6              |                  |                  |
| Heat of<br>Cool of<br>Heat of |                        | = Cooling e<br>= Heating e   | nergy demanc<br>nergy demand<br>nergy consum | ption                                |                    |                   |                |                  |                  |                  |
| Heat of Cool of               | con [kWh/m2]           | = Heating e<br>= Cooling e   |                                              | ption<br>ption                       |                    |                   |                |                  |                  |                  |
| Heat S                        | SSEFF<br>SSEER         | = Heating s<br>= Cooling s   | ystem seasona                                | al efficiency (fe<br>al energy effic | iency ratio        | lding, value de   | pends on activ | vity glazing cla | ss)              |                  |
|                               | gen SSEFF<br>gen SSEER |                              | enerator sease<br>enerator sease             |                                      |                    |                   |                |                  |                  |                  |
| HS<br>HFT                     |                        | = Heat sour                  |                                              |                                      |                    |                   |                |                  |                  |                  |
| CFT                           |                        | = Heating fu<br>= Cooling fu |                                              |                                      |                    |                   |                |                  |                  |                  |
|                               |                        |                              |                                              |                                      |                    |                   |                |                  |                  |                  |
|                               |                        |                              |                                              |                                      |                    |                   |                |                  |                  |                  |
|                               |                        |                              |                                              |                                      |                    |                   |                |                  |                  |                  |
|                               |                        |                              |                                              |                                      |                    |                   |                |                  |                  |                  |
|                               |                        |                              |                                              |                                      |                    |                   |                |                  |                  |                  |
|                               |                        |                              |                                              |                                      |                    |                   |                |                  |                  |                  |
|                               |                        |                              |                                              |                                      |                    |                   |                |                  |                  |                  |

Key Features

# The BCO can give particular attention to items with specifications that are better than typically expected. Building fabric

| Element                                                           | Ui-Typ | <b>U</b> i-Min | Surface where the minimum value occurs                            |
|-------------------------------------------------------------------|--------|----------------|-------------------------------------------------------------------|
| Wall                                                              | 0.23   | 0.2            | B1000000_W1                                                       |
| Floor                                                             | 0.2    | 0.18           | B1000000_F                                                        |
| Roof                                                              | 0.15   | -              | "No heat loss roofs"                                              |
| Windows, roof windows, and rooflights                             | 1.5    | 1.4            | B1000000_W1_O0                                                    |
| Personnel doors                                                   | 1.5    | -              | "No external personnel doors"                                     |
| Vehicle access & similar large doors                              | 1.5    |                | "No external vehicle access doors"                                |
| High usage entrance doors                                         | 1.5    | -              | "No external high usage entrance doors"                           |
| Ui-Typ = Typical individual element U-values [W/(m <sup>2</sup> ) | <)]    |                | U+Mn = Minimum individual element U-values [W/(m <sup>2</sup> K)] |

\* There might be more than one surface where the minimum U-value occurs.

| Air Permeability                             | Typical value | This building |  |
|----------------------------------------------|---------------|---------------|--|
| m <sup>3</sup> /(h.m <sup>2</sup> ) at 50 Pa | 5             | 7             |  |

Page 5 of 6

Page 6 of 6



# Appendix C General Notes



The report is based on information available at the time of the writing and discussions with the client during any project meetings. Where any data supplied by the client or from other sources have been used it has been assumed that the information is correct. No responsibility can be accepted by Ensphere Group Ltd for inaccuracies in the data supplied by any other party.

The review of planning policy and other requirements does not constitute a detailed review. Its purpose is as a guide to provide the context for the development and to determine the likely requirements of the Local Authority.

No site visits have been carried out, unless otherwise specified.

This report is prepared and written in the context of an agreed scope of work and should not be used in a different context. Furthermore, new information, improved practices and changes in guidance may necessitate a re-interpretation of the report in whole or in part after its original submission.

The copyright in the written materials shall remain the property of Ensphere Group Ltd but with a royalty-free perpetual licence to the client deemed to be granted on payment in full to Ensphere Group Ltd by the client of the outstanding amounts.

The report is provided for sole use by the Client and is confidential to them and their professional advisors. No responsibility whatsoever for the contents of the report will be accepted to any person other than the client, unless otherwise agreed.

These terms apply in addition to the Ensphere Group Ltd "Standard Terms of Business" (or in addition to another written contract which may be in place instead thereof) unless specifically agreed in writing. (In the event of a conflict between these terms and the said Standard Terms of Business the said Standard Terms of Business shall prevail.). In the absence of such a written contract the Standard Terms of Business will apply.



Ensphere Group Ltd 10 Greycoat Place, London, SW1P 1SB +44 (0) 20 7960 6126 www.enspheregroup.com