Chalk'. In the absence of a standardised correlation between SPT "N" values and chalk grade for the most recent chalk classification (CIRIA C574) a broad indication of the insitu chalk grade can be assessed using a paper by T.R.M. Wakeling from a site in Mundford, Norfolk, which compares SPT "N" values to the old Spink & Norbury chalk classification. From the Spink & Norbury classification it is possible to infer a basic CIRIA Grade (structureless or structured), as outlined in Table B.1.3.

SPT "N" Value Range	Spink & Norbury Grade	Inferred CIRIA Grade
<8	VI	Structureless (Dm)
8 – 15	V	Structureless (Dc)
15 – 20	IV	Structured chalk (C5 – AI)
20 - 25	III	Structured chalk (C5 – AI)
25 - 35	II	Structured chalk (C5 – AI)
>35	1	Structured chalk (C5 – AI)

Table B.I.3 Interpretation of SPT "N" Blow Counts in Chalk

Classification of DCP results to CBR:

The DCP consists of a cone fixed to the bottom of a 575mm vertical rod. An 8kg weight is repeatedly lifted and dropped onto an anvil at the mid-height of the rod to deliver a 'blow'. A vertical scale alongside the rod is used to measure the depth of penetration of the cone. These measurements are then converted to CBR values using the following equation derived from the DTP Interim Advice Note 73/06 – Design Guidance for Road Pavement Foundations:

 $Log_{10}(CBR) = 2.48 - 1.057 \times Log_{10}(mm/blow)$

Appendix B.2 Interpretation

TGF	4 – 16	Loose to medium dense
1.10 – 1.30		
Clayey GRAVEL		
TGF	49 – >50	Dense to very dense
1.30 – 1.80		
GRAVEL		
TGF	41 ->50	Dense to very dense
1.00 – 1.50		
GRAVEL		
TGF	41 ->50	Dense to very dense
0.70 – 1.20		
Clayey GRAVEL		
	I.10 – I.30 Clayey GRAVEL TGF I.30 – I.80 GRAVEL TGF I.00 – I.50 GRAVEL TGF 0.70 – I.20 Clayey GRAVEL	I.10 - I.30 Clayey GRAVEL TGF $49 - >50$ I.30 - I.80 GRAVEL TGF $41 - >50$ I.00 - I.50 GRAVEL TGF $41 - >50$ 0.70 - I.20 Clayey GRAVEL

Table B.2.1 Interpretation of DPSH Blow Counts

Table B.2.2 Interpretation of Atterberg Limit Tests

Stratum	Moisture Content	Plasticity Index	Passing 425μm	Modified Plasticity	Soil Classification	Volume Change Potential	
	(%)	(%)	Sieve (%)	Index (%)		BRE	NHBC
TGF	4 – 7	17 – 21	80 - 88	14 – 18	CL - Cl	Low	Low

Note:BRE Volume Change Potential refers to BRE Digest 240 (based on Atterberg results)
NHBC Volume Change Potential refers to NHBC Standards Chapter 4.2
Soils Classification based on British Soil Classification System
The most common use of the term clay is to describe a soil that contains enough clay-sized material or clay minerals to exhibit
cohesive properties. The fraction of clay-sized material required varies, but can be as low as 15%. Unless stated otherwise, this is the
sense used in Digest 240. The term can be used to denote the clay minerals. These are specific, naturally occurring chemical
compounds, predominately silicates. The term is often used as a particle size descriptor. Soil particles that have a nominal diameter
of less than 2 μm are normally considered to be of clay size, but they are not necessarily clay minerals. Some clay minerals are larger
than 2 μm and some particles, 'rock flour' for example, can be finer than 2 μm but are not clay minerals.
(The Atterberg Limit Tests were undertaken in accordance with BS 1377:Part 2:1990 Clauses 3.2, 4.3 and 5)

Table B.2.3 Interpretation of PSD Tests

Location	Depth (m bgl)	Soil Description		me Change ntial	Passing 63µm Sieve (%)	
			BRE	NHBC	_	
WSI	0.75	Brown clayey silty fine to coarse sandy fine to coarse	No	No	11	
WSI	1.00	Brown slightly clayey/silty fine to coarse, sandy fine to coarse GRAVEL.	No	No	8	

Locatio	n Depth (m bgl)	Soil Description		me Change ntial	Passing 63µm Sieve (%)	
			BRE	NHBC	_	
WS2	1.50	Brown slightly clayey/silty fine to coarse sandy fine to coarse GRAVEL.	No	No	5	
WS3	0.80	Brown silty clayey fine to coarse sandy fine to coarse GRAVEL.	No	No	14	
Note:	BRE 240 states that combined fraction passing the 63µm passing the 63µm	at a soil has a volume change potential when th are determined by sieving therefore the volu sieve. NHBC Standards Chapter 4.2 states tha sieve is greater than 35% and the Plasticity Ind	he clay fra me change at a soil is lex is grea	ction exceeds 15 potential is estimation shrinkable if the potential that the potential of the potential states that 10%.	%. Only the silt and clay ated from the percentage ercentage of silt and clay	

(The Particle Size Distribution Tests were undertaken in accordance with BS 1377: Part 2: 1990 Clause 9)

Appendix B.3 Geotechnical In-Situ and Laboratory Results

						_		Bo	rehole No.
L I M Geotechnical 8		D ttal		P	robe	e Log)P2A
Consultants			Pro	iect No				Sh H	eet 1 of 1
Project N	ame:	Newhouse School,	159	937	Co-ords:	-			DP
Location:		Hanworth Road, Hampton, TW1	2 3LT		Level:				Scale 1:50
Client:		London Borough of Richmond up	oon T	hames	Dates:	05-12-2016 - 0	05-12-2016	Lo	gged By
Depth (m)		10	:	Blows/100mm	ו 30	4	0		Torque (Nm)
									50
- 10 Romarka		I		· · · · · · · · · · · · · · · · · · ·	1				
Remarks			Fa	all Height		Cone Base Dia	ameter		
			H	ammer Wt		Final Depth	1.80		AGS
			Pi	robe Type		Log Scale	1:50		

				_		Borehole No.
L I M I T Geotechnical & Envir		P	robe	e Log		DP2B
Consultants		Project No.		-		Sheet 1 of 1
Project Nam	e: Newhouse School,	15937	Co-ords:	-		DP
Location:	Hanworth Road, Hampton, TW12	2 3LT	Level:			Scale 1:50
Client:	London Borough of Richmond up	on Thames	Dates:	05-12-2016 - 0	5-12-2016	Logged By
Depth (m)	10	Blows/100mn	י 30	4	0	Torque (Nm)
			7			5
9						
- 10		-1	I	I	1	
Remarks		Fall Height		Cone Base Dia	ameter	
		Hammer Wt		Final Depth	1.50	AGS
		Probe Type		Log Scale	1:50	

					_		Borehole No.
Signature L I M I Geotechnical & En	T E D vironmental		F	Probe	e Log		DP3
Project Nar	me: Newhouse Sch	ool,	Project No.	Co-ords:	_		Hole Type
l ocation [.]	Hanworth Road	Hampton TW12	15937 3I T	l evel:			DP Scale
Olivet				Dataas	05 40 0040	5 40 0040	1:50 Logged By
	London Boroug	in of Richmond upc		Dates:	05-12-2016 - 0	15-12-2016	
Depth (m)	1	10 	Blows/100)mm 30	4	0	Torque (Nm)
	1 4 5						
1		10	19				15
				<u></u> 29			
- 2 -							
-							
- 3 -							
-							
-							
- 4 -							
-							
-							
- 5 -							
-							
-							
6 –							
-							
-							
- 7 -							
-							
- 8 -							
-							
<u>-</u> 9 -							
- 10					1		
Remarks			Fall Height		Cone Base Dia	ameter	
			Hammer Wt Probe Type		Final Depth	1.20	AGS
L			, , , = =		_		

Tom Rees-Blanchard Soils Ltd Thomas Telford House - Unit 11 Sun Valley Business Park Winnall Close Winchester SO23 0LB

QTS Environmental Ltd

Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN **t:** 01622 850410 russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 16-52802

Site Reference:	Newhouse School
Project / Job Ref:	15937
Order No:	15937
Sample Receipt Date:	13/12/2016
Sample Scheduled Date:	13/12/2016
Report Issue Number:	1
Reporting Date:	19/12/2016

Authorised by:

KO CR

Kevin Old Associate Director of Laboratory

Authorised by:

Elyniae - yole

Ela Mysiara Inorganics & ICP Section Head

Soil Analysis Certificate								
QTS Environmental Report No: 16-52802	Date Sampled	09/12/16	09/12/16					
Soils Ltd	Time Sampled	None Supplied	None Supplied					
Site Reference: Newhouse School	TP / BH No	WS1	WS2					
Project / Job Ref: 15937	Additional Refs	None Supplied	None Supplied					
Order No: 15937	Depth (m)	0.40	1.10					
Reporting Date: 19/12/2016	QTSE Sample No	242840	242841					

Determinand	Unit	RL	Accreditation				
pH	pH Units	N/a	MCERTS	6.9	7.0		
Total Sulphate as SO ₄	mg/kg	< 200	NONE	444	< 200		
Total Sulphate as SO ₄	%	< 0.02	NONE	0.04	< 0.02		
W/S Sulphate as SO_4 (2:1)	mg/l	< 10	MCERTS	21	< 10		
W/S Sulphate as SO_4 (2:1)	g/l	< 0.01	MCERTS	0.02	< 0.01		
Total Sulphur	%	< 0.02	NONE	< 0.02	< 0.02		
Ammonium as NH ₄	mg/kg	< 0.5	NONE	< 0.5	1.1		
Ammonium as NH ₄	mg/l	< 0.05	NONE	< 0.05	0.11		
W/S Chloride (2:1)	mg/kg	< 1	MCERTS	29	7		
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS	14.5	3.4		
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS	15	< 3		
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS	7.3	< 1.5		
W/S Magnesium	mg/l	< 0.1	NONE	1.2	0.7		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30° C

Analysis carried out on the dried sample is corrected for the stone content

Subcontracted analysis ^(S)

Soil Analysis Certificate - Sample Descriptions	
QTS Environmental Report No: 16-52802	
Soils Ltd	
Site Reference: Newhouse School	
Project / Job Ref: 15937	
Order No: 15937	
Reporting Date: 19/12/2016	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
242840	WS1	None Supplied	0.40	14.5	Brown sandy clay with stones
242841	WS2	None Supplied	1.10	6.3	Light brown gravelly clay with stones

Moisture content is part of procedure E003 & is not an accredited test

Insufficient Sample^{I/S} Unsuitable Sample^{U/S}

Soil Analysis Certificate - Methodology & Miscellaneous Information
QTS Environmental Report No: 16-52802
Soils Ltd
Site Reference: Newhouse School
Project / Job Ref: 15937
Order No: 15937
Reporting Date: 19/12/2016

Matrix	Analysed	Determinand	Brief Method Description	
Soil		Boron Water Soluble	Determination of water coluble boren in coil by 2:1 bet water extract followed by ICD OES	E012
Soil			Determination of Water Soluble boron in Soli by 2.1 not water extract rollowed by ICP-OES	E012
Soil		DIEA	Determination of break by neauspace GC-MS Determination of cations in soil by agua regia digestion followed by ICD OES	E001
Soil		Chlorida Water Soluble (2:1)	Determination of caloris in soil by aqua-regia digestion followed by ICP-OES	E002
5011	D		Determination of chionae by extraction with water & analysed by for chromatography	E009
Soil	AR	Chromium - Hexavalent	1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
C 'I	4.5	EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	5004
Soli	AR	C12-C16, C16-C21, C21-C40)	headspace GC-MS	E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) suppate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content: determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR	Sulphide	Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC- MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10 C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12- C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Coil			Determination of volatile organic compounds by neadspace GC-MS & C2 C10 by CC ETD	E001
3011	AK	VPN (LO-LÕ & LÕ-LIU)	עבוברוזווזמנוטון טו דוענוטכמושטווג כטיכס אי וופמטגאמכפ טכיויג ע כסיכנט אי טכידנע	LUUI

D Dried AR As Received

Contract Number: 33577

Client's Reference: 15937

Laboratory Report

Report Date: 03-01-2017

Client Soils Limited Thomas Telford House Unit 11 Sun Valley Business Park Winnall Close Winchester SO23 0LB

Contract Title: Newhouse School For the attention of: Tom Rees-Blanchard

Date Received: 19-12-2016 Date Commenced: 19-12-2016 Date Completed: 03-01-2017

Test Description

4 Point Liquid & Plastic Limit (LL/PL) 1377 : 1990 Part 2 : 4.3 & 5.3 - * UKAS

Moisture Content 1377 : 1990 Part 2 : 3.2 - * UKAS

PSD Wet Sieve method 1377 : 1990 Part 2 : 9.2 - * UKAS

Disposal of Samples on Project

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

Alex Wynn (Associate Director) - Benjamin Sharp (Contracts Manager) - Emma Sharp (Office Manager) Paul Evans (Quality/Technical Manager) - Vaughan Edwards (Managing Director) Qty

2

2

4

Client ref:	15937
Location:	Newhouse School
Contract Number:	33577

Hole Number	Sample Number	Туре	Depth (m)	Description of Sample*
WS1		D	0.50	Brown fine gravelly fine to medium sandy silty CLAY.
WS2		D	0.80	Brown fine to medium gravelly fine to medium sandy silty CLAY.

Note: Results on this table are in summary format and may not meet the requirements of the relevant standards, additional information is held by the laboratory

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager) **Date:** 3.1.1

Test Report: Method of the Determination of the plastic limit and plasticity index BS 1377 : Part 2 : 1990 Method 5

Client ref:	15937
Location:	Newhouse School
Contract Number:	33577

Hole/			Moisture	Liquid	Plastic	Plasticity	%						
Sample	Sample	Depth	Content	Limit	Limit	Index	Passing	Remarks					
Number	Туре	m	%	%	%	%	.425mm						
			Cl. 3.2	Cl. 4.3/4.4	Cl. 5.	Cl. 6.							
WS1	D	0.50	17	40	19	21	88	CI Intermediate Plasticity					
WS2	D	0.80	14	33	16	17	80	CL Low Plasticity					
Symbols:		NP : Non Plas	tic # : Li	quid Limit aı	nd Plastic Lii	nit Wet Siev	red						
		PL	ASTICITY C	HART FOR C	CASAGRAND	E CLASSIFIC	ATION.						
				BS 5930:	1999+A2:20	10							
90 -					90								

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager) Date: 3.1.17

Particle Size Distribution Test BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Remarks: #- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Particle Size Distribution Test BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref:	15937	Sample Number:	
Contract Number:	33577	Depth from (m):	1.00
Hole Number:	WS1	Depth to (m):	
		Sample Type:	D
Location:	Newhouse School		
Description:	Brown slightly clayey/silty fine to	coarse sandy fine to coarse GR	AVEL.

Remarks: #- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Particle Size Distribution Test BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref:	15937	Sample Number:	
Contract Number:	33577	Depth from (m):	1.50
Hole Number:	WS2	Depth to (m):	
		Sample Type:	D
Location:	Newhouse School		
Description:	Brown slightly clayey/silty fine to	coarse sandy fine to coarse GR	AVEL.

Remarks: #- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Particle Size Distribution Test BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Remarks: #- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Appendix C Chemical Laboratory Testing

Appendix C.I Chemical Laboratory Results

Tom Rees-Blanchard Soils Ltd Thomas Telford House - Unit 11 Sun Valley Business Park Winnall Close Winchester SO23 0LB

QTS Environmental Ltd

Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN **t:** 01622 850410 russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 16-52801

Site Reference:	Newhouse School
Project / Job Ref:	15937
Order No:	15937
Sample Receipt Date:	13/12/2016
Sample Scheduled Date:	13/12/2016
Report Issue Number:	1
Reporting Date:	19/12/2016

Authorised by:

KO CR

Kevin Old Associate Director of Laboratory

Authorised by:

Elyniae - yole

Ela Mysiara Inorganics & ICP Section Head

Soil Analysis Certificate						
QTS Environmental Report No: 16-52801	Date Sampled	09/12/16	09/12/16	09/12/16	09/12/16	
Soils Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Newhouse School	TP / BH No	WS1	WS1	WS2	WS3	
Project / Job Ref: 15937	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	
Order No: 15937	Depth (m)	0.20	0.80	0.80	0.20	
Reporting Date: 19/12/2016	QTSE Sample No	242836	242837	242838	242839	

Determinand	Unit	RL	Accreditation					
Asbestos Screen ^(S)	N/a	N/a	ISO17025	Not Detected	Not Detected	Not Detected	Not Detected	
pН	pH Units	N/a	MCERTS	6.3	6.5	6.3	6.5	
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	
W/S Sulphate as SO_4 (2:1)	mg/l	< 10	MCERTS	31	38	12	24	
W/S Sulphate as SO_4 (2:1)	g/l	< 0.01	MCERTS	0.03	0.04	0.01	0.02	
Sulphide	mg/kg	< 5	NONE	103	< 5	< 5	< 5	
Organic Matter	%	< 0.1	MCERTS	2.5	0.4	0.8	2.5	
Total Organic Carbon (TOC)	%	< 0.1	MCERTS	1.5	0.2	0.5	1.5	
Antimony (Sb)	mg/kg	< 1	NONE	2.5	1.2	1.4	2.7	
Arsenic (As)	mg/kg	< 2	MCERTS	14	7	9	17	
Beryllium (Be)	mg/kg	< 0.5	NONE	0.6	0.5	0.5	0.8	
W/S Boron	mg/kg	< 1	NONE	2.6	< 1	< 1	< 1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	0.2	
Chromium (Cr)	mg/kg	< 2	MCERTS	16	12	19	19	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	34	10	19	36	
Lead (Pb)	mg/kg	< 3	MCERTS	211	21	29	319	
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	10	4	7	13	
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	< 3	
Vanadium (V)	mg/kg	< 2	NONE	31	18	30	36	
Zinc (Zn)	mg/kg	< 3	MCERTS	103	21	28	120	
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC

Analysis carried out on the dried sample is corrected for the stone content

Subcontracted analysis (S)

Soil Analysis Certificate - Speciated PAHs										
QTS Environmental Report No: 16-52801	Date Sampled	09/12/16	09/12/16	09/12/16	09/12/16					
Soils Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied					
Site Reference: Newhouse School	TP / BH No	WS1	WS1	WS2	WS3					
Project / Job Ref: 15937	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied					
Order No: 15937	Depth (m)	0.20	0.80	0.80	0.20					
Reporting Date: 19/12/2016	QTSE Sample No	242836	242837	242838	242839					

Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Phenanthrene	mg/kg	< 0.1	MCERTS	0.19	< 0.1	< 0.1	0.60	
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.12	
Fluoranthene	mg/kg	< 0.1	MCERTS	0.51	< 0.1	< 0.1	1.85	
Pyrene	mg/kg	< 0.1	MCERTS	0.43	< 0.1	< 0.1	1.58	
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.16	< 0.1	< 0.1	0.80	
Chrysene	mg/kg	< 0.1	MCERTS	0.26	< 0.1	< 0.1	0.92	
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.35	< 0.1	< 0.1	1.15	
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.12	< 0.1	< 0.1	0.43	
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	0.19	< 0.1	< 0.1	0.81	
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.46	
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.39	
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	2.2	< 1.6	< 1.6	9.1	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - Sample Descriptions	
QTS Environmental Report No: 16-52801	
Soils Ltd	
Site Reference: Newhouse School	
Project / Job Ref: 15937	
Order No: 15937	
Reporting Date: 19/12/2016	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
242836	WS1	None Supplied	0.20	16.9	Brown loamy clay
242837	WS1	None Supplied	0.80	8.1	Brown gravelly clay with stones
242838	WS2	None Supplied	0.80	13.2	Light brown clayey sand
242839	WS3	None Supplied	0.20	10.6	Brown gravelly sand with stones

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm I/S}$ Unsuitable Sample $^{\rm U/S}$

Soil Analysis Certificate - Methodology & Miscellaneous Information
QTS Environmental Report No: 16-52801
Soils Ltd
Site Reference: Newhouse School
Project / Job Ref: 15937
Order No: 15937
Reporting Date: 19/12/2016

Matrix	Analysed	Determinand	Brief Method Description								
Soil		Baran Water Soluble	Determination of water coluble boren in coil by 2:1 bet water extract followed by ICD OES	E012							
Soil			Determination of Water Soluble boron in Soli by 2.1 not water extract rollowed by ICP-OES	E012							
Soil		DIEA	Determination of officers in soil by agua regia digestion followed by ICD OES	E001							
Soil	D	Chloride - Water Soluble (2:1)	Determination of caloris in soil by aqua-regia digestion followed by ICF-OLS Determination of chloride by extraction with water & analysed by ion chromatography	E002							
3011	D		Determination of childred by extraction with water & analysed by for childred approximation addition of Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	L009							
Soil	AR	Chromium - Hexavalent	1,5 diphenylcarbazide followed by colorimetry	E016							
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015							
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015							
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015							
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011							
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004							
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022							
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023							
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020							
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004							
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004							
Soil	۸D	EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	E004							
301	AN	C12-C16, C16-C21, C21-C40)	headspace GC-MS	LUUH							
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009							
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010							
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019							
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025							
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002							
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004							
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003							
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009							
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010							
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005							
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008							
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011							
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007							
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021							
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009							
Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013							
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009							
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014							
Soil	AR	Sulphide	Determination of sulphide by distillation followed by colorimetry	E018							
501	D	Sulphur - Total	Determination of total support by extraction with aqua-regia followed by ICP-OES	E024							
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC- MS	E006							
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017							
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011							
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010							
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004							
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10 C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12- C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004							
Soll	AK	VUCs	Determination of volatile organic compounds by neadspace GC-MS	E001							
Soil	AK	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-F1D	E001							

D Dried AR As Received

Appendix C.2 General Assessment Criteria

HUMAN HEALTH RISK ASSESSMENT

I.I Introduction

Human Health Generic Quantitative Risk Assessment (GQRA) involves the comparison of contaminant concentrations measured in soil at the site with Generic Assessment Criteria (GAC).

GAC are conservative values adopted to ensure that they are applicable to the majority of possible contaminated site. These values may be published Contaminated Land Exposure Assessment Model (CLEA) derived GAC derived by a third party or the Environment Agency/ DEFRA. It is imperative to the risk assessor to understand the uncertainties and limitations associated with these GAC to ensure that they are used appropriately. Where the adoption of a GAC is not appropriate, for instance when the intended land-use is at variance the CLEA standard land-uses, then a Detailed Quantitative Risk Assessment (DQRA) may be undertaken to develop site specific values for relevant soil contaminants based on the site specific conditions.

I.2 General Assessment Criteria

The Contaminated Land Regime reflects the UK Government's stated objectives of achieving sustainable development through the 'suitable for use approach'.

I.2.1 Contaminated Land Exposure Assessment Model (CLEA)

Current United Kingdom risk assessment practice is based on the Contaminated Land Exposure Assessment Model (CLEA).

The CLEA	Guidance com	prises the fo	llowing docur	nents:

- EA Science Report SC050021/SR2: Human health toxicological assessment of contaminants in soil.
- EA Science Report SC050021/SR3: Updated technical background to the CLEA model.
- EA CLEA Bulletin (2009).
- CLEA software version 1.04 (2009)
- Toxicological reports and SGV technical notes.

The CLEA guidance and tools:

- 1. do not cover other types of risk to humans, such as fire, suffocation or explosion, or short-term and acute exposures.
- 2. do not cover risks to the environment, such as groundwater, ecosystems or buildings.
- 3. do not provide a definitive test for telling when human health risks are significant.
- 4. are not a legal requirement in assessing land contamination risks. They are not part of the legal regime for Part 2A of the Environmental Protection Act 1990.

I.3 Soil Guideline Values (2009)

The EA are publishing a series of SGV reports for a selection of common contaminants relevant to the assessment of land contamination.

SGV's are generic assessment criteria based on CLEA standard land-uses and can be used to simplify the assessment of human health risks from long-term exposure to

chemical contamination in soil. They do not cover short-term exposure (i.e. construction and maintenance workers), acute exposure or other risks such as fire, suffocation or explosion, as might arise from an accumulation of gases such as methane and carbon dioxide, or either odour or aesthetic issues.

SGV's represent 'trigger values', indicators that soil concentrations above the SGV level may pose a possibility of *significant harm* to human health. The converse, where soil concentrations are less that the SGV, is that the long-term human health risks are considered to be tolerable or minimal.

The CLEA guidance derives soil concentrations of contaminants above which (in the opinion of the EA) there may be a concern that warrants further investigation. It does not provide a definitive test for establishing that the risk is significant.

I.4 Ongoing development of CLEA based guidance

The EA is involved in a programme of publishing SGV's and related toxicity data (the TOX reports). As at July 2009 ten SGV's and matching TOX reports had been published. Soil Assessment Criteria (SAC's) may be derived using toxicity data from the updated TOX reports, where these are published, or from the original TOX reports. SGV reports also take account of recent updates for plant uptake and other factors.

- GAC's developed by CLEA guidance and given in this report will need to be assessed against updated TOX reports and SGV's when these are published.
- SGV reports may give values that differ from the GAC's used in this report.
- These variations may materially alter the remediation requirement for the site, requiring either an increase or decrease in the extent, type and cost of remediation.

I.5 Phytotoxicity

CLEA guidance only addresses human health toxicity; assessment of plant toxicity (phytotoxicity) is based on threshold trigger values obtained from the following source:

ICRCL 70/90: Notes on the restoration and aftercare of metalliferous mining sites for pasture and grazing.

I.6 Other Generic Assessment Criteria

If an SGV is not available for a substance identified in the soil then the range of Generic Assessment Criteria published from a collaborative research by Land Quality Management Limited (LQM) and the Chartered Institute of Environmental Health (CIEH) are used for example. In the case of Lead, Category 4 screening levels (C4SLs) have replaced the AtRisk Soil SSV.

I.6.I EIC/AGS/CL: AIRE

The report represents the collaborative effort of risk assessors from 26 EIC and AGS member companies to produce generic assessment criteria (GAC) for soils for human health risk assessment. The project involved the collation and review of physico-chemical data, toxicological data and information on background

exposure for 44 contaminants sometimes encountered on land affected by contamination in the UK and the derivation of GAC for 351 of these using the CLEA model (v1.06). The GAC are intended to complement soil guideline values (SGV) produced by the Environment Agency of England and Wales and the 2nd edition GAC produced by LQM and CIEH (Nathanail et al, 2009). All three sets of assessment criteria have been derived in general accordance with the Environment Agency of England and Wales Contaminated Land Exposure Assessment (CLEA) guidance and thus the combined efforts of these three groups have resulted in a useful set of screening criteria for the assessment of risks to human health from soil contamination for more than 120 potentially contaminative substances.

1.6.2 CL: AIRE Category 4 screening levels (C4SLs) (2014)

A new statutory DEFRA guidance recently (i.e. August 2014) published some GACs with a more pragmatic (but still strongly precautionary) approach in their derivation called the Category 4 screening levels (C4SLs). These values provide a higher simple test for deciding that land is suitable for use and definitely not contaminated land. They are intended as generic screening values, (ii) they describe a level of risk that whilst above 'minimal' is still 'low' and (iii) they provide a 'higher simple test' for deciding that land is suitable for use and definitely not contaminated. These values were derived for four generic land uses: residential, commercial, allotments, and public open space.

1.6.3 LQM/CIEH Suitable 4 Use Level (S4UL) (2015)

The new S4UL's ((Nathanail *et al*, 2015), was developed for around 85 substances and are intended to enable a screening assessment of the risks posed by soil quality on development sites. The updated LQM/CIEH GAC publication was developed to accommodate recent developments in the understanding of chemical, toxicological and routine exposure to soil-based contaminants. The S4ULs were:

- based on Health Criteria Values, updated to reflect changes since 2009
- derived for the standard CLEA land uses and the two public open space scenarios developed by Defra SP1010
- developed for ca 85 substances (those previously covered by the LQM/CIEH GAC and the SGV substances);
- Compliant with SR2 and the long standing principle of 'suitable for use' and reflecting changes to exposure parameters produced by Defra SP1010.

For derivation of these Generic Assessment Criteria reference must be made to: Nathanial, P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A., Ogden, R., Scott, D. *The LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment (3nd edition)*. Land Quality Press. 2015.

I.7 Standard Land-use Scenarios

The standard land-use scenarios used to develop conceptual exposure models are presented in the following sections:

I.7.I Residential

Generic scenario assumes a typical two-storey house built on a ground bearing slab with a private garden having a lawn, flowerbeds and a small fruit and vegetable patch.

٠	Critical receptor is a young female child (zero to six years old)
٠	Exposure duration is six years.
٠	Exposure pathways include direct soil and indoor dust ingestion, consumption of home-
	grown produce and any adhering soil, skin contact with soils and indoor dust and
	inhalation of indoor and outdoor dust and vapours.
٠	Building type is a two-storey small terraced house.

A sub-set of this land-use is residential apartments with communal landscaped gardens where the consumption of home grown vegetables will not occur.

I.7.2 Allotments

Provision of open space (about 250sq.m) commonly made available to tenants by the local authority to grow fruit and vegetable for their own consumption. Typically, there are a number of plots to a site which may have a total area of up to 1 hectare. The tenants are assumed to be adults and that young children make occasional accompanied visits.

Although some allotment holders may choose to keep animals including rabbits, hens, and ducks, potential exposure to contaminated meat and eggs is not considered.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and inhalation of outdoor dust and vapours.
- There is no building.

I.7.3 Commercial/Industrial

The generic scenario assumes a typical commercial or light industrial property comprising a three-storey building at which employees spend most time indoors and are involved in office-based or relatively light physical work.

Critical receptor is a working female adult (aged 16 to 65 years old).
• Exposure duration is a working lifetime of 49 years.
• Exposure pathways include direct soil and indoor dust ingestion, skin contact with soils and
dusts and inhalation of dust and vapours.
 Building type is a three-storey office (pre 1970).

1.7.4 Public Open Space within Residential Area

The generic scenario refers to any grassed area 0.05 ha and that is close to Housing.

٠	Grassed area of up to 0.05 ha and a considerable proportion of this (up to 50%) may be bare soil
•	Predominantly used by children for playing and may be used for activities such as a football kick about
•	Sufficiently close proximity to home for tracking back of soil to occur, thus indoor exposure pathways apply
•	older children as the critical receptor on basis that they will use site most frequently (Age class 4-9)
٠	ingestion rate 75 mg.day ⁻¹

1.7.5 Public Open Space Park

This generic scenario refers to any public park that is more than 0.5ha in area:

- Public park (>0.5 ha), predominantly grassed and may also contain children's play equipment and border areas of soil containing flowers or shrubs (75% cover)
- Female child age classes 1-6
- Soil ingestion rate of 50 mg.day⁻¹
- Occupancy period outdoors = 2 hours.day⁻¹
- Exposure frequency of 170 days.year-1 for age classes 2-18 and 85
- days.year⁻¹ for age class I
- Outdoor exposure pathways only (no tracking back).

I.8 Detailed Quantitative Risk Assessments (DQRA)

Where the adoption of an SGV/GAC is not appropriate, for instance when the intended land-use is at variance the CLEA standard land-uses, then a DQRA may be undertaking to develop site specific values for relevant soil contaminants.

•	Establishing the plausibility that generic exposure pathways exist in practice by measurement and
	observation.
•	Developing more accurate parameters using site data.

I.9 Current Criteria

Table 1 presents the current Generic Assessment Criteria and reference should be made to the original publications if needed.

I.10 Statistical Tests

DEFRA R&D Publication CLR 7 (DOE 1994) and CL: AIRE Category 4 screening levels (C4SLs) (2014) addressed the statistical treatment of test results and their comparison to Soil Guideline Values.

Consideration must be given to the appropriate area of land to be considered termed the critical averaging area.

For a communal open space or commercial land-use, the critical averaging area will depend on the proposed layout. For a residential use with private gardens the averaging area is the individual plot.

It may be appropriate to compare the upper 95th percentile concentration with the Soil Guideline Value, subject to applying a statistical test to establish that the range of concentrations are reasonably consistent and belonging to the same underlying distribution of data.

The DEFRA discussion paper Assessing risks from land contamination – a proportionate approach ('the way forward') (CLAN06/2006) aimed to increase understanding of the role that statistics can play in quantifying the uncertainty attached to the estimates of the mean concentration of contaminants in soil. In direct response CLAIRE/CIEH published a joint report, *Guidance in comparing soil contamination data with a critical concentration* (CLAIRE/CIEH 2008). A software implementation of the statistical techniques given in the report was published by ESI International (2008).

Treatment of Hot-Spots

- A statistical test is applied to establish whether the data is a part of a single set, or whether data outliers are present.
- Provided that the data is based on random sampling and no distinct contamination source was present at the sampling location, the hot-spot(s) may be excluded and the mean of the remaining data assessed.

Land Use		Residential			tial With o	With or Without Plant Uptake											Public Open Space (POS)							
					With		homo	Without		Allotme	nts		Commer	cial		Residen	tial		Park				ity	
			SOM	1 0	e-grown pr 2 5	oduce 6	nome 1	-grown pi 2 5	roduce 6	1	2.5	6	1	2.5	6	1	25	6	1	25	6	e	<u>p</u>	Ø
Туре	Contaminants	Species	Year		2.0	•		2.0	•		2.0		•	2.0			2.0	•		2.0	v	Nan	Aut	Date
	Antimony		2010						550						7500							EIC/AGS/	EIC/AGS/	2010
	Arsenic		2014			37			40			49			640			79			168	C4SI	DEERA	2014
	Alsenie		2015			37			40			40			640			79			170	S4UI		2015
1	Beryllium		2015			1.7			1.7			35			12			2.2			63	S4UL		2015
1	Boron		2015			290			11000			45			240000			21000			46000	S4UL	LOM/CIEH	2015
I	Cadmium		2015			11			85			1.9			190			120			532	S4UL	LOM/CIEH	2015
			2014			26			149			4.9			410			220			880	C4SL	DEFRA	2014
•	Chromium	<i>III</i>	2015			910			910			18000			8600			1500			33000	S4UL	LQM/CIEH	2015
		IV	2014			21			21			170			49			23			250	C4SL	DEFRA	2014
•		IV	2015			6			6			1.8			33			7.7			220	S4UL	LQM/CIEH	2015
	Copper		2015			2400			7100			520			68000			12000			44000	S4UL	LQM/CIEH	2015
	Lead					200			310			80			2330			630			1300	C4SL	DEFRA	2014
leta	Mercury	Elemental	2012			1.0			1.0			26			26							SGV	DEFRA	2012
Σ			2015			1.2			1.2			21			58			16			30	S4UL	LQM/CIEH	2015
		Inorganic	2012			170			170			80			36000							SGV	DEFRA	2012
			2015			40			56			19			1100			120			240	S4UL	LQM/CIEH	2015
		Methyl	2012			11			11			8			410							SGV	DEFRA	2012
			2015			11			15			6			320			40			68	S4UL	LQM/CIEH	2015
	Nickel		2012			130			130			230			1800							SGV	DEFRA	2012
1			2015			130			180			53			980			230			800	S4UL	LQM/CIEH	2015
	Selenium		2012			350			350			120			13000							SGV	DEFRA	2012
1			2015			250			430			88			12000			1100			1800	S4UL	LQM/CIEH	2015
	Vanadium		2015			410			1200			91			9000			2000			5000	S4UL	LQM/CIEH	2015
r			2013			3700			40000			620			730000			81000			170000	SHUL		2015
I	Benzene		2012			0.33			0.33			0.07			75			140			220	SGV	DEFRA	2012
1			2015	0.007	0.17	0.07	0.20	0.7	3.3	0.017	0.024	0.10	27	47	90	72	72	72	90	100	230	C4SL S4U		2014
I	Teluene		2010	0.067	0.17	610	0.38	0.7	1.4	0.017	0.034	0.075	27	4/	90	12	12	73	90	100	110	S40L		2013
Lω	Toluene		2015	120	200	610	000	1900	2000	22	51	120	45000	110000	190000	E (000	E (000	E 4 0 0 0	07000	05000	100000	Sd V		2012
1 2	Ethylhonzono		2012	130	270	250	000	1900	3700	22	51	00	03000	110000	2900	36000	38000	38000	87000	73000	100000	SCV		2013
Σ	Ethyibelizelle		2015	47	110	240	02	190	440	14	20	90	4700	12000	27000	24000	24000	25000	17000	22000	27000	SALI		2012
I 🟅	Yylonos	o vulono	2012	77	110	260	63	190	250	10	37	71	4700	13000	27000	24000	24000	23000	17000	22000	27000	SCV		2013
	Aylenes	0-xylene	2015	60	140	330	88	210	490	28	67	160	6600	15000	33000	41000	42000	43000	17000	24000	33000	S41 II		2012
		m-vylene	2012	00	110	240	00	210	240	20	07	180	0000	15000	3500	1000	42000	43000	17000	24000	55000	SCV	DEERA	2013
1		III-xylene	2015	59	140	320	82	190	450	31	74	170	6200	14000	31000	41000	42000	43000	17000	24000	32000	S4LII		2012
I		n-xvlene	2012	57	110	230	02	170	230	51	/1	160	0200	11000	3200	11000	12000	15000	17000	21000	52000	SGV	DEERA	2013
		p xylene	2015	56	130	310	79	180	310	29	69	160	5900	14000	30000	41000	42000	43000	17000	23000	31000	S4UI	LOM/CIEH	2015
	Aliphatic >C5 -	C6	2015	47	78	160	47	78	160	730	1700	3900	3200	5900	12000	570000	590000	600000	95000	130000	180000	\$4UI		2015
8	Aliphatic >C6 -	C8	2015	100	230	530	100	230	530	2300	5600	13000	7800	17000	40000	600000	610000	620000	150000	220000	320000	S4UL		2015
ioi	Aliphatic >C8 -	C10	2015	27	65	150	27	65	150	320	770	1700	2000	4800	11000	13000	13000	13000	14000	18000	21000	S4UL		2015
act	Aliphatic >C10	- C12	2015	130	330	760	130	330	770	2200	4400	7300	9700	23000	47000	13000	13000	13000	21000	23000	24000	S4UL	LOM/CIEH	2015
л Т	Aliphatic >C12	- C16	2015	1100	2400	4300	1100	2400	4400	11000	13000	13000	59000	82000	90000	13000	13000	13000	25000	25000	26000	S4UL	LQM/CIEH	2015
l log	Aliphatic >C16	- C35	2015	65000	92000	110000	65000	92000	110000	260000	270000	270000	1600000	1700000	1800000	250000	250000	250000	450000	480000	490000	S4UL	LQM/CIEH	2015
carl	Aliphatic >C35	- C44	2015	65000	92000	140000	65000	92000	110000	260000	270000	270000	1600000	1700000	1800000	250000	250000	250000	450000	480000	490000	S4UL	LQM/CIEH	2015
2																								
Ť	Aromatic >C5 -	C7	2015	70	I 40	300	370	690	1400	13	27	57	26000	46000	86000	56000	56000	56000	76000	84000	92000	S4UL	LQM/CIEH	2015
Ę	Aromatic >C7 -	C8	2015	130	290	660	860	1800	3900	22	51	120	56000	110000	180000	56000	56000	56000	87000	95000	100000	S4UL	LQM/CIEH	2015
	Aromatic >C8 -	C10	2015	34	83	190	47	110	270	8.6	21	51	3500	8100	17000	5000	5000	5000	7200	8500	9300	S4UL	LQM/CIEH	2015
etr	Aromatic >C10	- C12	2015	74	180	380	250	590	1200	13	31	74	16000	28000	34000	5000	5000	5000	9200	9700	10000	S4UL	LQM/CIEH	2015
	Aromatic >C12	- C16	2015	I 40	330	660	1800	2300	2500	23	57	130	36000	37000	38000	5100	5100	5000	10000	10000	10000	S4UL	LQM/CIEH	2015
	Aromatic >C16	- C21	2015	260	540	930	1900	1900	1900	46	110	260	28000	28000	28000	3800	3800	3800	7600	7700	7800	S4UL	LQM/CIEH	2015

August 2015 – Human Health Risk Assessment

			Resident	ial With or	Without	Plant Upta	ake								Public O	pen Space	e (POS)						
Land Use			With		Without		- Allotments		Commercial			Posidential Park						~					
			home	-grown pro	oduce	home	-grown p	roduce							Kesiden						–	orit	
Trees	Contenninente - Seccios	SOM	1.0	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6		nth (ate
Туре	Aromatic 2021 - C35	2015	1100	1500	1700	1900	1900	1900	370	820	1600	28000	28000	28000	3800	3800	3800	7800	7800	7900	<u>Z</u>		2015
1	$\frac{\text{Aromatic > C21 - C33}}{\text{Aromatic > C34 - C44}}$	2015	1100	1500	1700	1900	1900	1900	370	820	1600	28000	28000	28000	3800	3800	3800	7800	7800	7900	540L		2015
1	Aromade / Corr Crr	2013	1100	1500	1700	1700	1700	1700	570	020	1000	20000	20000	20000	5000	3000	3000	7000	7000	7700	5102		2013
	Aliphatic + Aromatic >C44 - C70		1600	1800	1900	1900	1900	1900	1200	2100	3000	28000	28000	28000	3800	3800	3800	7800	7800	7900	S4UL	LQM/CIEH	2015
_	Acenaphthene	2015	210	510	1100	3000	4700	6000	34	85	200	84000	97000	100000	15000	15000	15000	29000	30000	30000	S4UL	LQM/CIEH	2015
	Acenaphthylene	2015	170	420	920	2900	4600	6000	28	69	160	83000	97000	100000	15000	15000	15000	29000	30000	30000	S4UL	LQM/CIEH	2015
	Anthracene	2015	2400	5400	11000	31000	35000	37000	380	950	2200	520000	54000	540000	74000	74000	74000	150000	150000	150000	S4UL	LQM/CIEH	2015
2	Benzo(a)anthracene	2015	7.2	11	13	11	14	15	2.9	6.5	13	170	170	180	29	29	29	49	56	62	S4UL	LQM/CIEH	2015
- ê	Benzo(a)pyrene	2014			5			5.3			5.7			76			10			21	C4SL	DEFRA	2014
Gai		2015	2.2	2.7	3	3.2	3.2	3.2	0.97	2	3.5	35	35	36	5.7	5.7	5.7	11	12	13	S4UL	LQM/CIEH	2015
, ⊉ ®	Benzo(b)fluoranthene	2015	2.6	3.3	3.7	3.9	4.0	4.0	0.99	2.1	3.9	44	44	45	7.1	7.2	7.2	13	15	16	S4UL	LQM/CIEH	2015
H I	Benzo(ghi)perylene	2015	320	340	250	360	360	360	290	470	640	3900	4000	4000	640	640	640	1400	1500	1600	S4UL	LQM/CIEH	2015
) (n	Benzo(k)fluoranthene	2015	77	93	100	110	110	110	37	75	130	1200	1200	1200	190	190	190	370	410	440	S4UL	LQM/CIEH	2015
l e H	Chrysene	2015	15	22	27	30	31	32	4.1	9.4	19	350	350	350	57	57	57	93	110	120	S4UL	LQM/CIEH	2015
PA T	Dibenz(a,h)anthracene	2015	0.24	0.28	0.3	0.31	0.32	0.32	0.14	0.27	0.43	3.5	3.6	3.6	0.57	0.57	0.58	1.1	1.3	1.4	S4UL	LQM/CIEH	2015
l ö	Fluoranthene	2015	280	560	890	1500	1600	1600	52	130	290	23000	23000	23000	3100	3100	3100	6300	6300	6400	S4UL	LQM/CIEH	2015
		2015	27	400	860	2800	3800	4500	2/	0/	160	63000	68000	71000	9900	9900	9900	20000	20000	20000	S4UL		2015
8	Indeno(1,2,3-cd)pyrene	2015	27	50	41	45	40	40	9.5 4 I	21	39	500	510	510	4000	4000	4000	130	170	2000	54UL		2015
T	Phenanthrane	2015	2.3	220	440	1200	5.0	1500	4.1	38	24 00	22000	22000	23000	3100	3100	3100	6200	6200	6300	S4UL		2015
1	Pyrene	2015	620	1200	2000	3700	3800	3800	110	270	620	54000	54000	54000	7400	7400	4700	15000	15000	15000	540L \$4111		2015
1	Coal Tar(Ban as surrogate matter)	2015	0.79	0.98	11	12	1.2	1.2	0.32	0.67	12	15	15	15	22	2.2	22	4.4	4 7	4.8	540L S4UI		2015
	1.2 Dichloroethane	2015	0.0071	0.011	0.019	0.0092	0.013	0.023	0.0046	0.0083	0.016	0.67	0.97	1.7	2.2	2.2	2.2	21	24	28	S4UI		2015
1		2015	8.8	18	39	9	18	40	48	110	240	660	1300	3000	140000	140000	140000	57000	76000	100000	S4UL		2015
۰ ه	1.1.2.2 Tetrachloroethane	2015	1.6	3.4	7.5	3.9	8	17	0.41	0.89	2	270	550	1100	1400	1400	1400	1800	2100	2300	S4UL	LOM/CIEH	2015
e e	1,1,1,2 Tetrachloroethane	2015	1.2	2.8	6.4	1.5	3.5	8.2	0.79	1.9	4.4	110	250	560	1400	1400	1400	1500	1800	2100	S4UL	LQM/CIEH	2015
kan nes	Tetrachloroethene	2015	0.18	0.39	0.9	0.18	0.4	0.92	0.65	1.5	3.6	19	42	95	1400	1400	1400	810	1100	1500	S4UL	LQM/CIEH	2015
alke	Tetrachloromethane (Carbon Tetrachloride)	2015	0.026	0.056	0.13	0.026	0.056	0.13	0.45	I	2.4	2.9	6.3	14	890	920	950	190	270	400	S4UL	LQM/CIEH	2015
ΰ	Trichloroethene	2015	0.016	0.034	0.075	0.017	0.036	0.08	0.041	0.091	0.21	1.2	2.6	5.7	120	120	120	70	91	120	S4UL	LQM/CIEH	2015
	Trichloromethane	2015	0.91	1.7	3.4	1.2	2.1	4.2	0.42	0.83	1.7	99	170	350	2500	2500	2500	2600	2800	3100	S4UL	LQM/CIEH	2015
	Vinyl Chloride (cloroethene)	2015	0.00064	0.00087	0.0014	0.00077	0.001	0.0015	0.00055	0.001	0.0018	0.059	0.077	0.12	3.5	3.5	3.5	4.8	5	5.4	S4UL	LQM/CIEH	2015
s	2,4,6 Trinitrotoluene	2015	1.6	3.7	8. I	65	66	66	0.24	0.58	1.4	1000	1000	1000	130	130	130	260	270	270	S4UL	LQM/CIEH	2015
sive	RDX (Hexogen/Cyclonite/1,3,5-trinitro-	2015	120	250	540	13000	13000	13000	17	38	85	210000	210000	210000	26000	26000	27000	49000	51000	53000	S4UL	LQM/CIEH	2015
Explo	1,3,5-triazacyclohexane) HMX (Octogen/1,3,5,7-tetrenitro-	2015	5.7	13	26	6700	6700	6700	0.86	1.9	3.9	110000	110000	110000	13000	13000	13000	23000	23000	24000	S4UL	LQM/CIEH	2015
	1,3,5,7-tetrazacyclo-octane)																						
1	Aldrin	2015	5.7	6.6	7.1	7.3	7.4	7.5	3.2	6.1	9.6	170	170	170	18	18	18	30	31	31	S4UL	LQM/CIEH	2015
1	Dieldrin	2015	0.97	2	3.5	7	7.3	7.4	0.17	0.41	0.96	170	170	170	18	18	18	30	30	31	S4UL	LQM/CIEH	2015
1 8	Atrazine	2015	3.3	7.6	17.4	610	620	620	0.5	1.2	2.7	9300	9400	9400	1200	1200	1200	2300	2400	2400	S4UL	LQM/CIEH	2015
l 🛱	Dichlorvos	2015	0.032	0.066	0.14	6.4	6.5	6.6	0.0049	0.01	0.022	140	140	140	16	16	16	26	26	27	S4UL	LQM/CIEH	2015
esti	Alpha - Endosulfan	2015	7.4	18	41	160	280	410	1.2	2.9	0.8	5600	7400	8400	1200	1200	1200	2400	2400	2500	S4UL		2015
Pe	Alpha Havashlarasyalahavanas	2015	/	0.55	39	190	320	440	1.1	2.7	0.4	0300	100	8/00	24	24	24	47	2400	2500	54UL		2015
1	Rota Hexachlorocyclohexanes	2015	0.23	0.35	0.46	0.7	7.2	7.0	0.035	0.007	0.21	45	45	45	24	24	24	4/	40	40	54UL		2015
1	Gamma Hexachlorocyclohexanes	2015	0.005	0.14	0.40	29	3.0	3.0	0.013	0.032	0.077	67	69	70	8.7	8.7	8.7	13	15	15	54UL 64111		2015
	Chlorobenzene	2015	0.46	1	7.4	0.46	J.J	2.5 7.4	5.9	14	37	56	130	290	11000	13000	14000	1300	2000	2900	S4111		2015
es	L2-Dichlorohenzene	2015	23	55	130	74	57	130	94	230	540	2000	4800	11000	90000	95000	98000	24000	36000	51000	S4111		2015
zen	1.3-Dichlorobenzene	2015	0.4	1	2.3	0.44	1.1	2.5	0.25	0.6	1.5	30	73	170	300	300	300	390	440	470	S4UI		2015
Den	I.4-Dichlorobenzene	2015	61		350	61	150	350	15	37	88	4400	10000	25000	17000	17000	1700	36000	36000	36000	S4UI		2015
prot	1.2.3Trichlorobenzene	2015	1.5	3.6	8.6	1.5	3.7	8.8	4.7	12	28	102	250	590	1800	1800	1800	770	1100	1600	S4UI		2015
' ¥	1.2.4Trichlorobenzene	2015	2.6	6.4	15	2.6	6.4	15	55	40	320	220	530	1300	15000	17000	19000	1700	2600	4000	S4UL	LOM/CIEH	2015
I	1,3,5,-Trichlorobenzene	2015	0.33	0.81	1.9	0.33	0.81	1.9	4.7	12	28	23	55	130	1700	1700	1800	380	580	860	S4UL	LQM/CIEH	2015
1				-							-											•	

Soils Limited

		Residen	tial With o	or Withou	it Plant Up	otake								Public (Open Spac	e (POS)							
Land Use			With home-grown produce		Without home-grown produce		- Allotments		Commercial						- .			—					
														Residential		Park				rit,			
		SOM	1.0	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6		tho	g
Туре	Contaminants Species	Year																			Na	Au	Da
_	I,2,3,4,-Tetrachlorobenzene	2015	15	36	78	24	56	120	4.4	11	26	1700	3080	4400	830	830	830	1500	1600	1600	S4UL	LQM/CIEH	2015
	1,2,3,5,- Tetrachlobenzene	2015	0.66	1.6	3.7	0.75	1.9	4.3	0.38	0.9	2.2	49	120	240	78	79	79	110	120	130	S4UL	LQM/CIEH	2015
-	I,2,4, 5,- Tetrachlobenzene	2015	0.33	0.77	1.6	0.73	1.7	3.5	0.06	0.16	0.37	42	72	96	13	13	13	25	26	26	S4UL	LQM/CIEH	2015
	Pentachlrobenzene	2015	5.8	12	22	19	30	38	1.2	3.1	7	640	770	830	100	100	100	190	190	190	S4UL	LQM/CIEH	2015
_	Hexachlorobenzene	2015	1.8	3.3	4.9	4.1	5.7	6.7	0.47	1.1	2.5	110	120	120	16	16	16	30	30	30	S4UL	LQM/CIEH	2015
slo																							
enc &	Phenols 201 201 201				420			420			280			3200							SGV	DEFRA	2012
lon de			120	200	380	440	690	1200	23	42	83	440	690	1300	440	690	1300	440	690	1300	S4UL	LQM/CIEH	2015
- he	Chlorophenols (4 Congeners)	2015	0.87	2	4.5	94	150	210	0.13	0.3	0.7	3500	4000	4300	620	620	620	1100	1100	1100	S4UL	LQM/CIEH	2015
- 5	Pentachlorophenols 2015		0.22	0.52	1.2	27	29	31	0.03	0.08	0.19	400	400	400	60	60	60	110	120	120	S4UL	LQM/CIEH	2015
1																							
S	Carbon Disulphide	2015	0.14	0.29	0.62	0.14	0.29	0.62	4.8	10	23		22	47	11000	11000	12000	1300	1900	2700	S4UL	LQM/CIEH	2015
_ <u></u>	Hexachloro-I,3-Butadiene	2015	0.29	0.7	1.6	0.32	0.78	1.8	0.25	0.61	1.4	31	66	120	25	25	25	48	50	51	S4UL	LQM/CIEH	2015
0	Sum of PCDDs, PCDFs and dioxin-like	2012			8			8			8			240							SGV	DEFRA	2012
	PCB's.																						
	NOTE																						
_	Priority Guideline (mg kg ⁻¹)																						
	1 Site Specific Assess	ment Crite	ria (SSAC)) (Soils Lin	nited)																		
	2 2014: Category 4 Scr	eening Lev	vel (C4SL)	(Contami	nated Lan	d: Applica	tion in Re	al Enviro	nment (CL	:ARE), 201	4)												
	3 2012: Soil Guideline	Value (SG)	/) (Enviror	nment Age	ency, 2009)																	

4 2015: Suitable 4 Use Level (S4UL) (Nathanail *et al*, 2015) For Generic Risk Assessment, the values in Bold have priority

August 2015 – Human Health Risk Assessment

Appendix C.3 Determination of Hazardous Waste Classification

Software such as the HazWasteOnline produced Hazardous Waste Classification Tool, enables soils 'total' chemical testing data to be used to identify the classification of waste soils in accordance with Environment Agency guidance. The HazWasteOnline Hazardous Waste Classification Tool was designed primarily for the classification of soil wastes as identified by the European Waste Catalogue (EWC) Chapter 17 - Construction and demolition wastes (including contaminated soils).

The classification of waste as either hazardous or non-hazardous must be conducted in accordance with the 2003 Environment Agency publication Interpretation of the Definition and Classification of Hazardous Waste (Technical Guidance WM2). This establishes the regulatory framework and allows classification of wastes based on their various risk phrases. Additional guidance provided by the 2007 Environment Agency publication 'How to Find Out if Waste Oil and Wastes that Contain Oil Are Hazardous' (HWR08) provides further clarification on the classification methodology for hydrocarbon contamination.

As part of the Hazardous Waste Classification process, contaminant compounds are selected based on historical and contemporary land-use. The inclusion of such data on the input form enables the correct waste classification to be determined. For example, in cases of land associated with former gasworks, the classification of coal-tar contaminated soils can be partially determined using total PAH concentrations as opposed to TPH concentrations as coal-tar may be deemed a "substance". Hazardous (HWR08) provides further clarification on the classification methodology for hydrocarbon contamination.

Appendix D Information Provided by the Client

Project No. Drawing No. Stage. 5455 1000 F	Drawn By SP Date 17.05.2016 Project Manager Scale 1:500	Drawing Existing Site Plan	Project Clarendon at Newhouse Hanworth Road Hampton TW12 3LT	243 Brooklands Road Weybridge Surrey KT13 ORH T 01932 850100 W www.dhpuk.co.uk	Rev Date Description	Scale 1:500	NOTES Do not scale dimensions from this drawing except for Local Authority planning purposes. The contractor is responsible for checking dimensions, tolerances and references. Any discrepancies to be werified with the Project Manager before proceeding with the works. This drawing is copyright to DHP and may not be reproduced in any form without prior written consent. All current drawings and specifications for the project must be read in conjunction with the designers hazard and environment assessment record.	
e/Rev							Ĺ	٨

Preparation & Brief (Feasibili				41m ²
Drawn By SP Date 17.05.2016 Project Manager Scale 1:200 Project No. Drawing No. Stage, 5455 1010 F	Project Clarendon at Newhouse Hampton TW12 3LT Drawing Existing Ground Floor Plan	Image: constraint of the second se	Scale 1:200	Original Paper Size Paper Size NOTES Do not scale dimensions from this drawing except for Local Authority planning purposes. The contractor is responsible for checking dimensions, tolerances and references. Any discrepancies to be verified with the Project Manager before proceeding with the works. This drawing is copyright to DHP and may not be reproduced in any form without prior written consent. All current drawings and specifications for the project must be read in conjunction with the designers hazard and environment assessment record.

Soils Limited Geotechnical & Environmental Consultants

Newton House Cross Road, Tadworth Surrey KT20 5SR

T 01737 814221W soilslimited.co.uk