(332)

(338)

otal delivered energy for all uses	(307) + (309) + (310) + (312) + (315) + (331) + (332)(337b) =	7294.72

		Fuel kWh/year		Fuel price		Fuel cost £/year	
Space heating from boilers		4173.88	×	4.24	x 0.01 = [176.97	(340a
Water heating from boilers		2403.18	×	4.24	x 0.01 =	101.89	(342a
Pumps and fans		266.25	×	13.19	x 0.01 =	35.12	(349)
Electricity for lighting		451.41	x	13.19	x 0.01 =	59.54	(350)
Additional standing charges					[120.00	(351)
Total energy cost	79	127.		(340a)(342e) +	(345)(354) = [493.53	(355)
11b. SAP rating - community heat	ting scheme		50.00		100 100		
Energy cost deflator (Table 12)						0.42	(356)
Energy cost factor (ECF)						1.25	(357)
SAP value					T [82.60	
SAP rating (section 13)					[83	(358)
SAP band						В	2.7 AX

12b. CO ₂ emissions - community heating scheme						100
	Energy kWh/year		Emission factor		Emissions (kg/year)	
Emissions from other sources (space heating)						
Efficiency of boilers	89.50					(367a)
CO2 emissions from boilers [(307a)+(310a)] x 100 \div (367a) =	7348.67	×	0.216	w is [1587.31	(367)
Electrical energy for community heat distribution	65.77	×	0.519	. [34.13	(372)
Total CO2 associated with community systems				[1621.45	(373)
Total CO2 associated with space and water heating					1621.45	(376)
Pumps and fans	266.25	×	0.519	2	138.18	(378)
Electricity for lighting	451.41	×	0.519	(8)	234.28	(379)
Total CO ₂ , kg/year				(376)(382) =	1993.92	(383)
Dwelling CO ₂ emission rate				(383) ÷ (4) =	16.46	(384)
El value					83.92	
El rating (section 14)					84	(385)
El band					В	

	Energy kWh/year		Primary factor		Primary energ (kWh/year)	sy.
Primary energy from other sources (space heating)						
Efficiency of boilers	89.50					(367a)
Primary energy from boilers $[(307a)+(310a)] \times 100 \div (367a) \equiv [$	7348.67	×	1.22	=	8965.37	(367)
Electrical energy for community heat distribution	65.77	×	3.07	(#)	201.92	(372)
Total primary energy associated with community systems					9167.29	(373)
Total primary energy associated with space and water heating					9167.29	(376)
Pumps and fans	266.25	x	3.07	=	817.39	(378)
Electricity for lighting	451.41	×	3.07	=	1385.84	(379)
Primary energy kWh/year					11370.52	(383)

TER Worksheet

Design - Draft

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor name	Mr AECOM Planner	Assessor number	101
Client	Default Client	Last modified	30/08/2018
Address	5.8 redYellow 42, London		

Client	Default	Client					l	.ast modifie	d	30/	08/2018	
Address	5.8 red	Yellow 42, L	ondon									
1. Overall dwelling dim	ensions					100			8 21		J.	
				A	Area (m²)			erage store neight (m)	/	,	Volume (m³)
Lowest occupied					121.16	(1a) x		2.62	(2a) =		317.44	(3a
Total floor area	(1a	a) + (1b) + (1	lc) + (1d)	(1n) =	121.16	(4)						
Dwelling volume							(3a	a) + (3b) + (3	Bc) + (3d)	(3n) =	317.44	(5)
2. Ventilation rate	150		1 11		vir q "	5 4						
										1	m³ per hour	Rf
Number of chimneys	34							0	x 40	= [0	(6a
Number of open flues								0	x 20	- [. 0	(6k
Number of intermittent f	ans					9		4	x 10	-	40	(7a
lumber of passive vents								0	× 10	2	0	(71
lumber of flueless gas fi	es							0	× 40		0	(70
										Ai	r changes p	er
											hour	_
nfiltration due to chimne		,				a) + (7b) + (40	÷ (5)	=	0.13	(8)
f a pressurisation test ha								to (16)		-		_
ir permeability value, q5	20			D		110.00	e area			-	5.00	(17
f based on air permeabili				3), otherwi	se (18) = (1	6)					0.38	(18
lumber of sides on which	the dwellin	g is sheltere	ed								2	(19
helter factor								1 -	[0.075 x (1		0.85	(20
nfiltration rate incorpora									(18) x (20) =	0.32	(21
nfiltration rate modified :	13061			150		29						
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Ionthly average wind spo		100	1.10								_	-
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	(22
/ind factor (22)m ÷ 4								,				-
1.28	1.25	1.23	1.10	1.08	0.95	0.95	0.93	1.00	1.08	1.13	1.18	(22
djusted infiltration rate (-	THE ST	-									-
0.41	0.40	0.39	0.35	0.34	0.30	0.30	0.30	0.32	0.34	0.36	0.38	(22
Ilculate effective air cha												7
If mechanical ventilation			A STATE OF THE STA			-0					N/A	(23
If balanced with heat re	covery offi	ciancy in %	allowing for	rin usa fa	star fram T	- L t - A L					N/A	(23

0.58

0.58

Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in (25) 0.58

0.58

0.58

0.56

0.56

0.56

0.56

0.57

0.57

(24d)

(25)

0.55

0.55

0.55

0.55

0.54

0.54

0.55

0.55

0.56

0.56

0.56

0.56

lement			i	Gross area, m²	Openings m ²		area m²	U-value W/m²K	A x U W,	/K κ-valu kJ/m²		
Vindow						30	.29 x	1.33	= 40.16			(2
xternal wall						46	.95 x	0.18	= 8.45			(2
arty wall						75	.31 x	0.00	= 0.00			(3
oof						12:	l.16 x	0.13	= 15.75			(3
otal area of exte	ernal elem	ents ∑A, m	2			198	3.40		1			(3
abric heat loss,									(26	5)(30) + (32) :	= 64.36	(3
eat capacity Cm	7.0							(28)	.(30) + (32) +	- (32a)(32e) :	= N/A	(3
hermal mass pa			m²K								250.00	(3
nermal bridges:				ndix K		15					9.92	(3
otal fabric heat		urcalatea a	SIIIB / APPCI	IGIA IX						(33) + (36) :	= 74.28	(3
otal labilic licat	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep		Nov Dec	
entilation heat				0.000	(110)	3411	30.		306			
entilation near	(7.11)			-	1 50.5C 1	57.21	57.21	56.96	57.73	58.56	59.15 59.76	(3
	61.08	60.74	60.41	58.85	58.56	37.41	37.21	30.90	37.73	30.30	75.10	(3
eat transfer coe		-	107	1 400	1225	404.60	104.15	1 424 22	122.04	122.04	33.43 134.04	
	135.35	135.02	134.69	133.13	132.84	131.49	131.49	131.23	132.01			-
									Average = ∑	(39)112/12	= 133.13	(:
eat loss parame	eter (HLP),	W/m²K (3	9)m ÷ (4)									-
	. 1.12	1.11	1.11	1.10	1.10	1.09	1.09	1.08	1.09	1.10	1.10 1.11	
									Average = ∑	(40)112/12	= 1.10	(4
umber of days i	in month (Table 1a)										
	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00 31.00	(4
I. Water heatin	ig energy r	equiremer	nt				31.00	31.00	30.00	31.00	2.87	(4
ssumed occupa	ng energy r ncy, N not water u	equiremer	n t res per day	Vd,average	e = (25 x N) +	36					2.87	(4
sumed occupa	ng energy r ncy, N not water u Jan	equiremer usage in litr Feb	es per day Mar	Vd,average Apr	e = (25 x N) + May	36 Jun	Jul	31.00	30.00 Sep		2.87	(4
ssumed occupa	g energy r ncy, N not water u Jan in litres pe	equiremer usage in litr Feb er day for e	res per day Mar ach month	Vd,average Apr Vd,m = fac	e = (25 x N) + May tor from Tab	36 Jun le 1c x (43	Jul	Aug	Sep	Oct	2.87 102.31 Nov Dec	(4
sumed occupa	ng energy r ncy, N not water u Jan	equiremer usage in litr Feb	es per day Mar	Vd,average Apr	e = (25 x N) + May	36 Jun	Jul			Oct 104.35 1	2.87 102.31 Nov Dec	(4
ssumed occupa nnual average h ot water usage	ncy, N ncy, N not water u Jan in litres pe	requirements usage in litr Feb er day for e 108.45	res per day Mar ach month	Vd,average Apr Vd,m = fact 100.26	e = (25 x N) + May tor from Tab 96.17	36 Jun le 1c x (43 92.08	Jul) 92.08	Aug 96.17	Sep	Oct	2.87 102.31 Nov Dec	(4
ssumed occupa nnual average h ot water usage	ncy, N ncy, N not water u Jan in litres pe	requirements usage in litr Feb er day for e 108.45	res per day Mar ach month	Vd,average Apr Vd,m = fact 100.26	e = (25 x N) + May tor from Tab 96.17	36 Jun le 1c x (43 92.08	Jul) 92.08 Tables 1b	Aug 96.17	Sep	Oct 104.35 1 Σ(44)112	2.87 102.31 Nov Dec 08.45 112.54 = 1227.69	
ssumed occupa nnual average h ot water usage	ncy, N ncy, N not water u Jan in litres pe	equirements usage in litres Feb er day for e 108.45	res per day Mar ach month	Vd,average Apr Vd,m = fact 100.26	e = (25 x N) + May tor from Tab 96.17	36 Jun le 1c x (43 92.08	Jul) 92.08	Aug 96.17	Sep	Oct 104.35 1 Σ(44)112	2.87 102.31 Nov Dec	
sumed occupa nnual average h ot water usage	ncy, N not water to Jan in litres pe 112.54	requiremer usage in litr Feb er day for e 108.45	mes per day Mar ach month 104.35	Vd,average	e = (25 x N) + May tor from Tab 96.17	36 Jun le 1c x (43 92.08 onth (see	Jul) 92.08 Tables 1b	Aug 96.17	Sep 100.26	Oct 104.35 1 Σ(44)112	2.87 102.31 Nov Dec 08.45 112.54 = 1227.69	(4
ssumed occupa nnual average h ot water usage hergy content o	ncy, N not water to Jan in litres per 112.54 of hot wate 166.89	requiremer usage in litr Feb er day for e 108.45 er used = 4.	mes per day Mar ach month 104.35	Vd,average	e = (25 x N) + May tor from Tab 96.17	36 Jun le 1c x (43 92.08 onth (see	Jul) 92.08 Tables 1b	Aug 96.17	Sep 100.26	Oct 104.35	2.87 102.31 Nov Dec 08.45 112.54 = 1227.69	(4
ssumed occupa nnual average h ot water usage hergy content o	ncy, N not water to Jan in litres per 112.54 of hot wate 166.89	requiremer usage in litr Feb er day for e 108.45 er used = 4.	mes per day Mar ach month 104.35	Vd,average	e = (25 x N) + May tor from Tab 96.17	36 Jun le 1c x (43 92.08 onth (see	Jul) 92.08 Tables 1b	Aug 96.17	Sep 100.26	Oct 104.35	2.87 102.31 Nov Dec 08.45 112.54 = 1227.69	(4)
sumed occupa nnual average h ot water usage nergy content o	ncy, N not water to Jan in litres per 112.54 of hot water 166.89 0.15 x (45)	requiremer usage in litr Feb er day for e 108.45 er used = 4. 145.96)m 21.89	mes per day Mar ach month 104.35 18 x Vd,m = 150.62	Vd,average	e = (25 x N) + May tor from Tab 96.17 3600 kWh/m 126.00	36 Jun le 1c x (43 92.08 onth (see 108.73	Jul) 92.08 Tables 1b 100.75	Aug 96.17 , 1c 1d) 115.62	Sep 100.26 1 117.00	Oct 104.35	2.87 102.31 Nov Dec 08.45 112.54 = 1227.69 48.83 161.63 = 1609.70	
ssumed occupa nnual average h ot water usage hergy content o stribution loss orage volume (ncy, N not water u Jan in litres pe 112.54 of hot wate 166.89 0.15 x (45 25.03	requiremer usage in litr Feb er day for e 108.45 er used = 4. 145.96)m 21.89	mes per day Mar ach month 104.35 18 x Vd,m = 150.62	Vd,average	e = (25 x N) + May tor from Tab 96.17 3600 kWh/m 126.00	36 Jun le 1c x (43 92.08 onth (see 108.73	Jul) 92.08 Tables 1b 100.75	Aug 96.17 , 1c 1d) 115.62	Sep 100.26 1 117.00	Oct 104.35	2.87 102.31 Nov Dec 08.45 112.54 = 1227.69 48.83 161.63 = 1609.70	
ssumed occupa nual average h ot water usage hergy content o stribution loss orage volume (ater storage lo	ncy, N not water to Jan in litres per 112.54 of hot water 166.89 0.15 x (45 25.03 litres) incluses:	requirements usage in litres Feb er day for e 108.45 er used = 4. 145.96 er used = 10.00 mm 21.89 er used any s	res per day Mar ach month 104.35 18 x Vd,m : 150.62	Vd,average	e = (25 x N) + May tor from Tab 96.17 3600 kWh/m 126.00 18.90 ge within sam	36 Jun le 1c x (43 92.08 onth (see 108.73	Jul) 92.08 Tables 1b 100.75	Aug 96.17 , 1c 1d) 115.62	Sep 100.26 1 117.00	Oct 104.35	2.87 102.31 Nov Dec 08.45 112.54 = 1227.69 48.83 161.63 = 1609.70	
isumed occupa innual average h of water usage hergy content of stribution loss orage volume (ater storage lo	ncy, N not water u Jan in litres pe 112.54 of hot wate 166.89 0.15 x (45 25.03 (litres) incluses:	requirements usage in litres Feb er day for e 108.45 er used = 4. 145.96 er used suding any seed loss factors and seed loss factors are used suding any seed loss factors.	res per day Mar ach month 104.35 18 x Vd,m = 150.62 22.59 colar or WV	Vd,average	e = (25 x N) + May tor from Tab 96.17 3600 kWh/m 126.00 18.90 ge within sam	36 Jun le 1c x (43 92.08 onth (see 108.73	Jul) 92.08 Tables 1b 100.75	Aug 96.17 , 1c 1d) 115.62	Sep 100.26 1 117.00	Oct 104.35	2.87 102.31 Nov Dec 08.45 112.54 = 1227.69 48.83 161.63 = 1609.70 22.33 24.24 180.00	
ssumed occupa nnual average h ot water usage nergy content of stribution loss orage volume (ater storage lo If manufacture Temperature	ncy, N not water to Jan in litres per 112.54 of hot water 166.89 0.15 x (45 25.03 litres) incluses: er's declared	requirements usage in litres Feb er day for e 108.45 er used = 4. 145.96 er used subject of the	res per day Mar ach month 104.35 18 x Vd,m : 150.62 22.59 solar or WV	Vd,average	e = (25 x N) + May tor from Tab 96.17 3600 kWh/m 126.00 18.90 ge within sam	36 Jun le 1c x (43 92.08 onth (see 108.73	Jul) 92.08 Tables 1b 100.75	Aug 96.17 , 1c 1d) 115.62	Sep 100.26 1 117.00	Oct 104.35	2.87 102.31 Nov Dec 08.45 112.54 = 1227.69 48.83 161.63 = 1609.70 22.33 24.24 180.00	
ssumed occupa nnual average h ot water usage hergy content of stribution loss orage volume ('ater storage lo If manufacture Temperature Energy lost fro	ncy, N not water u Jan in litres pe 112.54 of hot wate 166.89 0.15 x (45 25.03 (litres) incluses: er's declared factor from water s	requirements usage in litres Feb er day for e 108.45 er used = 4. 145.96 er used subject of the	res per day Mar ach month 104.35 18 x Vd,m : 150.62 22.59 solar or WV	Vd,average	e = (25 x N) + May tor from Tab 96.17 3600 kWh/m 126.00 18.90 ge within sam	36 Jun le 1c x (43 92.08 onth (see 108.73	Jul) 92.08 Tables 1b 100.75	Aug 96.17 , 1c 1d) 115.62	Sep 100.26 1 117.00	Oct 104.35	2.87 102.31 Nov Dec 08.45	
nnual average h ot water usage hergy content of stribution loss orage volume (ater storage lo If manufacture Temperature Energy lost fronter (50) or (54)	ncy, N not water u Jan in litres pe 112.54 of hot wate 166.89 0.15 x (45 25.03 ditres) incluses: er's declared factor from water s in (55)	requirements asage in litres Feb er day for e 108.45 er used = 4. 145.96 er used = 4. 145.96 er used loss factor as	res per day Mar ach month 104.35 18 x Vd,m = 150.62 22.59 colar or WV vh/day) (4	Vd,average	e = (25 x N) + May tor from Tab 96.17 3600 kWh/m 126.00 18.90 ge within sam	36 Jun le 1c x (43 92.08 onth (see 108.73	Jul) 92.08 Tables 1b 100.75	Aug 96.17 , 1c 1d) 115.62	Sep 100.26 1 117.00	Oct 104.35	2.87 102.31 Nov Dec 08.45 112.54 = 1227.69 48.83 161.63 = 1609.70 22.33 24.24 180.00 1.55 0.54	
ossumed occupa nnual average h ot water usage hergy content of sistribution loss orage volume ('ater storage lo If manufacture Temperature	ncy, N not water u Jan in litres pe 112.54 of hot wate 166.89 0.15 x (45 25.03 (litres) incluses: er's declared factor from water so in (55) ss calculate	requirements usage in litres Feb er day for e 108.45 er used = 4. 145.96 er used storage (kV) ed loss factor Table 2b storage (kV) ed for each	res per day Mar ach month 104.35 18 x Vd,m 150.62 22.59 colar or WV or is known Vh/day) (4	Vd,average Apr Vd,m = fact 100.26 x nm x Tm/3 131.32 19.70 VHRS storage n (kWh/day) 8) x (49) 5) x (41)m	e = (25 x N) + May tor from Tab 96.17 3600 kWh/m 126.00 18.90 ge within sam	36 Jun le 1c x (43 92.08 onth (see 108.73 16.31 ne vessel	Jul) 92.08 Tables 1b 100.75	Aug 96.17 , 1c 1d) 115.62	Sep 100.26 117.00	Oct 104.35 1 Σ(44)112 136.35 1 Σ(45)112 20.45 2	2.87 102.31 Nov Dec 08.45	
ssumed occupa nnual average h ot water usage hergy content of stribution loss orage volume ('ater storage lo If manufacture Temperature Energy lost fronter (50) or (54) 'ater storage lo	ncy, N not water u Jan in litres pe 112.54 of hot wate 166.89 0.15 x (45 25.03 litres) incluses: er's declared factor from water s) in (55) ss calculate 25.98	requirements asage in litres Feb er day for e 108.45 er used = 4. 145.96 er used storage (kW ed for each 23.47	res per day Mar ach month 104.35 18 x Vd,m : 150.62 22.59 colar or WV or is known Vh/day) (4	Vd,average Apr Vd,m = fact 100.26 x nm x Tm/3 131.32 19.70 VHRS storage n (kWh/day) 8) x (49) 5) x (41)m 25.14	e = (25 x N) + May tor from Tab 96.17 3600 kWh/m 126.00 18.90 ge within sam)	36 Jun le 1c x (43 92.08 onth (see 108.73 16.31 ne vessel	Jul) 92.08 Tables 1b 100.75	Aug 96.17 , 1c 1d) 115.62	Sep 100.26 1 117.00	Oct 104.35 1 Σ(44)112 136.35 1 Σ(45)112 20.45 2	2.87 102.31 Nov Dec 08.45	
nnual average h ot water usage hergy content of stribution loss orage volume (ater storage lo If manufacture Temperature Energy lost fronter (50) or (54)	ncy, N not water u Jan in litres pe 112.54 of hot wate 166.89 0.15 x (45 25.03 litres) incluses: er's declared factor from water s) in (55) ss calculate 25.98	requirements asage in litres Feb er day for e 108.45 er used = 4. 145.96 er used storage (kW ed for each 23.47	res per day Mar ach month 104.35 18 x Vd,m : 150.62 22.59 colar or WV or is known Vh/day) (4	Vd,average Apr Vd,m = fact 100.26 x nm x Tm/3 131.32 19.70 VHRS storage n (kWh/day) 8) x (49) 5) x (41)m 25.14	e = (25 x N) + May tor from Tab 96.17 3600 kWh/m 126.00 18.90 ge within sam)	36 Jun le 1c x (43 92.08 onth (see 108.73 16.31 ne vessel	Jul) 92.08 Tables 1b 100.75	Aug 96.17 , 1c 1d) 115.62	Sep 100.26 117.00	Oct 104.35 1 Σ(44)112 136.35 1 Σ(45)112 20.45 2 25.98 2	2.87 102.31 Nov Dec 08.45	

	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59
Combi loss for					23.20	22.51	23.20	23.20	22.51	23.20	22.31	23.20	(33
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(61
otal heat req					-		-			0.00	0.00	0.00	101
otal neat req	216.13	190.44	199.86	178.97	175.24			-14		185.59	196.49	210.87	(62
Solar DHW ing				-11	013	150.50	3 130.00	104.80	104.03	105.55	130.43	210.67	(02
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(63
Output from v		1	175.777		177755		1 0.00	0.00	0.00	0.00	0.00	0.00	(05
	216.13	190.44	199.86	178.97	175.24	156.38	150.00	164.86	164.65	185.59	196.49	210.87	
	210.13	1 150.44	1 133.00	170.57	175.24	130.30	150.00	104.00	1 104.05	Σ(64)1.	* -	2189.49	(64
leat gains fro	m water heat	ting (kWh/r	nonth) 0.25	× [0.85 ×	(45)m + (6	51)ml + 0.8	3 × [(46)m +	(57)m + (5	9)m1	2101/2.		2103.10	
	94.89	84.11	89.48	81.79	81.29	74.28	72.89	77.84	77.02	84.73	87.61	93.13	(65
				- Carre	- Ostras	1 7 7 1 2 0	1	1 13.00	1	1 54.75	07.02	33.13	
5. Internal ga	ins	W I											ß,
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabolic gair	ns (Table 5)												
	143.38	143.38	143.38	143.38	143.38	143.38	143.38	143.38	143.38	143.38	143.38	143.38	(66
ighting gains	(calculated in	Appendix	L, equation	L9 or L9a),	also see 1	Table 5							
	25.56	22.70	18.46	13.98	10.45	8.82	9.53	12.39	16.63	21.11	24.64	26.27	(67
ppliance gain	s (calculated	in Appendi	x L, equation	n L13 or Li	13a), also :	see Table S	5						
	286.72	289.69	282.19	266.23	246.08	227.15	214.50	211.52	219.02	234.98	255.13	274.07	(68
ooking gains	(calculated in	Appendix	L, equation	L15 or L15	a), also se	e Table 5							
	37.34	37.34	37.34	37.34	37.34	37.34	37.34	37.34	37.34	37.34	37.34	37.34	(69
ump and fan	gains (Table 9	5a)								110			
	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	(70
osses e.g. eva	poration (Tab	ole 5)											
	-114.71	-114.71	-114.71	-114.71	-114.71	-114.71	-114.71	-114.71	-114.71	-114.71	-114.71	-114.71	(71)
Vater heating	gains (Table	5)									31.3	Ö	
	127.53	125.17	120.26	113.59	109.26	103.16	97.98	104.62	106.98	113.88	121.68	125.18	(72)
otal internal g	gains (66)m +	(67)m + (6	8)m + (69)m	+ (70)m +	+ (71)m + ((72)m			-				-
	508.83	506.58	489.94	462.82	434.81	408.15	391.02	397.55	411.64	438.99	470.47	494.53	(73)
			4										=2.
6. Solar gains				70									
			Access fa Table 6	1.0	Area m²		olar flux W/m²	cno	g cific data	FF specific (data	Gains W	
			Table	,u	•••		vv/1111		Table 6b	or Table		w	
outh			0.77	×	24.43	×	46.75	(0.9 x	0.63 x	0.70	= [349.06	(78)
Vest			0.77		5.86	7 -		(0.9 x	0.63 x			35.17	(80)
olar gains in w	vatts Σ(74)m	(82)m	0.77	^ L	3.00	^	13.04	(0.5 X	0.03 X	0.70		33.17	(00)
olai Ballio III II	384.23	640.47	841.52	988.29	1060.18	1032.70	1003.82	952.71	892.48	698.24	457.61	330.54	(83)
otal gains - int				300.23	1000.10	1032.70	1003.02	332.71	032.40	030,24	437.01	330.34	_ (05)
otal Ballio 111	893.06	1147.05		1451.10	1494.99	1440.84	1394.84	1350.26	1304.12	1137.23	928.08	825.07	7 (84)
	855.00	1147.05	1331.43	1431.10	1434.33	1440.84	1334.64	1330.20	1304.12	1137.23	320.00	023.07	_ (04)
7. Mean inter	nal temperat	ure (heatin	ig season)				32"		7			TO F	
emperature d	uring heating	periods in	the living ar	ea from Ta	able 9, Th	1(°C)					10	21.00	(85)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	FATT.
	2011												
Itilisation facto		or living are	a n1,m (see	Table 9a)									
Jtilisation facto		or living are	a n1,m (see	Table 9a) 0.88	0.75	0.57	0.41	0.44	0.66	0.91	0.99	1.00	(86)

544													
	19.93	20.18	20.46	20.74	20.91	20.98	21.00	21.00	20.96	20.73	20.27	19.88	(87)
Temperature dur	ing heating	g periods in	the rest o	f dwelling	from Table 9	ə, Th2(°C)	n =	H-7	1.0				and the
	19.99	19.99	19.99	20.00	20.00	20.01	20.01	20.01	20.01	20.00	20.00	20.00	(88)
Utilisation factor	for gains fo	or rest of d	welling n2,	m									
Ī	0.99	0.98	0.94	0.85	0.69	0.49	0.32	0.35	0.58	0.88	0.98	1.00	(89)
Mean internal ter	mperature	in the rest	of dwelling	g T2 (follov	v steps 3 to	7 in Table 9	9c)						
ſ	18.57	18.94	19.34	19.72	19.92	20.00	20.01	20.01	19.98	19.71	19.07	18.51	(90)
Living area fractio	on			0			71-			iving area ÷	(4) =	0.53	(91)
Mean internal ter		for the wh	ole dwellin	ng fLA x T1	+(1 - fLA) x 1	Γ2				J			
ſ	19.29	19.60	19.93	20.26	20.45	20.52	20.53	20.53	20.50	20.25	19.70	19.24	(92)
۔ Apply adjustment				-	-		-						100
[19.29	19.60	19.93	20.26	20.45	20.52	20.53	20.53	20.50	20.25	19.70	19.24	(93)
L	15.25	15.00	15.55	1 20.20	20.43	20.52	20.55	20.55	20.50	20.20	1 25.76	13.2.1	(33)
8. Space heating	requirem	ent											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation factor	for gains, r	ηm											
ſ	0.99	0.97	0.94	0.86	0.72	0.53	0.37	0.40	0.62	0.89	0.98	0.99	(94)
Useful gains, ηmo	im, W (94)m x (84)m											
= 1	885.67	1117.33	1246.48	1241.78	1074.10	764.19	515.32	539.67	812.36	1006.49	908.72	820.31	(95)
Monthly average	external te	3	from Tabl							12	114		
Γ	4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20	(96)
L leat loss rate for							1 22,20	1 20	1 23120	1	7.4.65	1	
Teat 1033 Tate 101	2029.06	1984.36	1809.38			778.48	517.07	542.32	845:03	1281.80	1681.45	2015.52	(97)
L		1364.30	1005.56	1311.02	1101.71	770.40	317.07	342.32	045.05	1201.00	1001.43	2015.52	_ (37)
Chaco hosting roo	uiromont	W/h/mon	th 0 024 v	[(07\m /0	E\m1 v /41\	m							
Space heating req									0.00	1 201.01	T 555.07	1 000 04	
Space heating req	850.68	582.64	th 0.024 x 418.79	[(97)m - (9 194.43	95)m] x (41)r 65.18	0.00	0.00	0.00	0.00	204.84	556.37	•	
[850.68	582.64	418.79				0.00	0.00		8)15, 10	.12 =	3762.17	7
Space heating req	850.68	582.64	418.79				0.00	0.00		8)15, 10		-	7
Space heating req	850.68	582.64 kWh/m²/ye	418.79 ear	194.43	65.18	0.00	0.00	0.00		8)15, 10	.12 =	3762.17	7
Space heating req	850.68	582.64 kWh/m²/ye	418.79 ear	194.43	65.18	0.00	0.00	0.00		8)15, 10	.12 =	3762.17	7
Space heating requi 9a. Energy requi	850.68 quirement	582.64 kWh/m²/ye individual	418.79 ear heating sy.	194.43	65.18	0.00	0.00	0.00		8)15, 10	.12 =	3762.17 31.05	(99)
Space heating requisions of space heating Fraction of space	850.68 quirement rements -	582.64 kWh/m²/ye individual secondary,	418.79 ear heating sy.	194.43	65.18	0.00	0.00	0.00		(98)	.12 = ÷ (4)	3762.17 31.05	(99)
Space heating requisions of space heating fraction of space fraction of space	850.68 quirement rements - heat from heat from	582.64 kWh/m²/ye individual secondary, main syste	418.79 heating system /suppleme m(s)	194.43	65.18	0.00	0.00	0.00		8)15, 10	.12 = ÷ (4)	3762.17 31.05 0.00 1.00	(202
Space heating requisions of space heating fraction of space	850.68 quirement rements - heat from heat from heat from	582.64 kWh/m²/ye individual secondary, main syste main syste	418.79 heating sy. /suppleme m(s) m 2	194.43	65.18	0.00	0.00	0.00	Σ(a	(98) (98) 1 - (2	12 = ÷ (4)	3762.17 31.05 0.00 1.00 0.00	(201 . (202 . (202
Space heating requisions of space heating fraction of space fraction of total	850.68 quirement rements - heat from heat from heat from pace heat	582.64 kWh/m²/ye individual secondary, main syste main syste from main	heating system 1	194.43	65.18	0.00	0.00	0.00	Σ(a	1 - (2 02) x [1- (20	12 = ÷ (4) 01) = 03)] =	3762.17 31.05 0.00 1.00 0.00	(201 . (202 . (202 . (204
Space heating requisions of space heating fraction of space	850.68 quirement rements - heat from heat from heat from pace heat	582.64 kWh/m²/ye individual secondary, main syste main syste from main	heating system 1	194.43	65.18	0.00	0.00	0.00	Σ(a	(98) (98) 1 - (2	12 = ÷ (4) 01) = 03)] =	3762.17 31.05 0.00 1.00 0.00 1.00 0.00	(98) (99) (201 (202 (202 (204
Space heating requisions of space heating fraction of space fraction of total	850.68 quirement rements - heat from heat from heat from pace heat	582.64 kWh/m²/ye individual secondary, main syste main syste from main	heating system 1	194.43	65.18	0.00	0.00	0.00	Σ(a	1 - (2 02) x [1- (20	12 = ÷ (4) 01) = 03)] =	3762.17 31.05 0.00 1.00 0.00	(201 . (202 . (202 . (204 . (205
Space heating requisions of space heating fraction of space fraction of space fraction of space fraction of space fraction of total services of total servic	850.68 quirement rements - heat from heat from heat from pace heat	582.64 kWh/m²/ye individual secondary, main syste main syste from main	heating system 1	194.43	65.18	0.00	0.00 Jul	0.00	Σ(a	1 - (2 02) x [1- (20	12 = ÷ (4) 01) = 03)] =	3762.17 31.05 0.00 1.00 0.00 1.00 0.00	(201 . (202 . (202 . (204
Space heating requisions of space heating fraction of space fraction of space fraction of space fraction of space fraction of total services of total servic	850.68 quirement rements - heat from heat from heat from pace heat pace heat system 1 Jan	kWh/m²/ye individual secondary, main syste main syste from main from main (%) Feb	418.79 heating sy. /suppleme m(s) m 2 system 1 system 2 Mar	stems incluntary syste	ding micro	0.00 -CHP			Σ(9	1 - (2 02) x [1- (20 (202) x (2	01) = 03)] = 03) = 03)	3762.17 31.05 0.00 1.00 0.00 1.00 0.00 93.50	(201 . (202 . (202 . (204 . (205
Space heating requisions of space heating fraction of space fraction of space fraction of space fraction of total sericition of total sericities of main sericities and sericities of the	850.68 quirement rements - heat from heat from heat from pace heat pace heat system 1 Jan	kWh/m²/ye individual secondary, main syste main syste from main from main (%) Feb	418.79 heating sy. /suppleme m(s) m 2 system 1 system 2 Mar	stems incluntary syste	ding micro	0.00 -CHP			Σ(9	1 - (2 02) x [1- (20 (202) x (2	01) = 03)] = 03) = 03)	3762.17 31.05 0.00 1.00 0.00 1.00 0.00 93.50 Dec	(201 . (202 . (202 . (204 . (205
Space heating requisions of space heating fraction of space fraction of space fraction of space fraction of total sericition of total sericities of main sericities and sericities of the	850.68 quirement rements - heat from heat from pace heat pace heat system 1 Jan I (main sys	kWh/m²/ye individual secondary, main syste main syste from main from main (%) Feb stem 1), kW	heating sy. /suppleme m(s) m 2 system 1 system 2 Mar /h/month	stems incluntary syste	ding micro m (table 11	-CHP	Jul	Aug	Σ(9 (2: Sep	1 - (2 02) x [1- (20 (202) x (2	12 =	3762.17 31.05 0.00 1.00 0.00 1.00 0.00 93.50 Dec	(202 (202 (202 (204 (205 (206
Space heating requisions of space heating fraction of space fraction of space fraction of total sericition of total sericitions of total sericities of total	850.68 quirement rements - heat from heat from pace heat pace heat system 1 Jan I (main sys	kWh/m²/ye individual secondary, main syste main syste from main from main (%) Feb stem 1), kW	heating sy. /suppleme m(s) m 2 system 1 system 2 Mar /h/month	stems incluntary syste	ding micro m (table 11	-CHP	Jul	Aug	Σ(9 (2: Sep	1 - (2 02) x [1- (20 (202) x (2 Oct	12 =	3762.17 31.05 0.00 1.00 0.00 1.00 0.00 93.50 Dec	(201 . (202 . (202 . (204 . (205 . (206
Space heating red 9a. Energy requi Space heating Fraction of space Fraction of space Fraction of total serion of total se	850.68 quirement rements - heat from heat from pace heat pace heat system 1 Jan I (main sys	kWh/m²/ye individual secondary, main syste main syste from main from main (%) Feb stem 1), kW	heating sy. /suppleme m(s) m 2 system 1 system 2 Mar /h/month	stems incluntary syste	ding micro m (table 11	-CHP	Jul	Aug	Σ(9 (2: Sep	1 - (2 02) x [1- (20 (202) x (2 Oct	12 =	3762.17 31.05 0.00 1.00 0.00 1.00 0.00 93.50 Dec	(202 (202 (202 (204 (205 (206
Space heating requisions are space heating fraction of space fraction of space fraction of total struction o	850.68 quirement rements - heat from heat from pace heat pace heat system 1 Jan I (main sys	kWh/m²/ye individual secondary, main syste main syste from main from main (%) Feb stem 1), kW 623.15	418.79 heating sy. /suppleme m(s) m 2 system 1 system 2 Mar /h/month 447.91	Apr 207.95	ding micro m (table 11	0.00 -CHP)	Jul	Aug 0.00	Σ(9 (2: Sep	1 - (2 02) x [1- (20 (202) x (2 Oct	12 =	3762.17 31.05 0.00 1.00 0.00 1.00 0.00 93.50 Dec	(202 (202 (202 (204 (206 (206
Space heating requisions of space heating fraction of space fraction of space fraction of total section of t	850.68 quirement rements - heat from heat from pace heat pace heat system 1 Jan I (main sys 909.82 r heater 88.11	kWh/m²/ye individual secondary, main syste main syste from main from main from main (%) Feb stem 1), kW 623.15	heating sy. /suppleme m(s) m 2 system 1 system 2 Mar /h/month	stems incluntary syste	ding micro m (table 11 May 69.71	-CHP	Jul 0.00	Aug	Σ(9 Sep 0.00 Σ(21	1 - (2 02) x (1- (20 (202) x (2 Oct 219.08 1)15, 10	12 =	3762.17 31.05 0.00 1.00 0.00 1.00 0.00 93.50 Dec 951.06	(201 (202 (202 (204 (206 (206
Space heating red 9a. Energy requi Space heating Fraction of space Fraction of space Fraction of total serion of total se	850.68 quirement rements - heat from heat from heat from pace heat system 1 Jan I (main sys 909.82 r heater 88.11	secondary, main syste main syste from main (%) Feb stem 1), kW 623.15	418.79 heating sy. /suppleme m(s) m 2 system 1 system 2 Mar /h/month 447.91	Apr 207.95	ding micro m (table 11 May 69.71	0.00 -CHP Jun 0.00	Jul 0.00	Aug 0.00	Σ(9 Sep 0.00 Σ(21 79.80	1 - (2 02) x [1- (20 (202) x (2 Oct 219.08 1)15, 10	12 =	3762.17 31.05 0.00 1.00 0.00 1.00 0.00 93.50 Dec 951.06 4023.71	(201 . (202 . (202 . (204 . (205
Space heating requisions of space heating fraction of space fraction of space fraction of total section of t	850.68 quirement rements - heat from heat from pace heat pace heat system 1 Jan I (main sys 909.82 r heater 88.11	kWh/m²/ye individual secondary, main syste main syste from main from main from main (%) Feb stem 1), kW 623.15	418.79 heating sy. /suppleme m(s) m 2 system 1 system 2 Mar /h/month 447.91	Apr 207.95	ding micro m (table 11 May 69.71	0.00 -CHP)	Jul 0.00	Aug 0.00	Σ(9 Sep 0.00 Σ(21	1 - (2 02) x [1- (20 (202) x (2 Oct 219.08 1)15, 10	12 =	3762.17 31.05 0.00 1.00 0.00 1.00 0.00 93.50 Dec 951.06 4023.71	(201) (202) (202) (204) (206) (206)
Space heating requisions of space heating fraction of space fraction of space fraction of total section of t	850.68 quirement rements - heat from heat from heat from pace heat system 1 Jan I (main sys 909.82 r heater 88.11	secondary, main syste main syste from main (%) Feb stem 1), kW 623.15	418.79 heating sy. /suppleme m(s) m 2 system 1 system 2 Mar /h/month 447.91	Apr 207.95	ding micro m (table 11 May 69.71	0.00 -CHP Jun 0.00	Jul 0.00	Aug 0.00	Σ(9 Sep 0.00 Σ(21 79.80	1 - (2 02) x [1- (20 (202) x (2 Oct 219.08 1)15, 10	12 =	3762.17 31.05 0.00 1.00 0.00 1.00 0.00 93.50 Dec 951.06 4023.71	(201 (202 (202 (204 (206 (206
Space heating requisions of space heating fraction of space fraction of space fraction of total section of t	850.68 quirement rements - heat from heat from heat from pace heat system 1 (Jan I (main sys 909.82 r heater 88.11 el, kWh/mc 245.31	kWh/m²/ye individual secondary, main syste main syste from main from main from main (%) Feb stem 1), kW 623.15 87.61 onth 217.38	418.79 heating sy. /suppleme m(s) m 2 system 1 system 2 Mar /h/month 447.91	Apr 207.95	ding micro m (table 11 May 69.71	0.00 -CHP Jun 0.00	Jul 0.00	Aug 0.00	Σ(9 Sep 0.00 Σ(21 79.80	1 - (2 02) x [1- (20 (202) x (2 Oct 219.08 1)15, 10	12 =	3762.17 31.05 0.00 1.00 0.00 1.00 0.00 93.50 Dec 951.06 4023.71	(202 (202 (202 (204 (206 (206 (217

	2594.83	
30.00		(230c)
45.00		(230e)
	75.00	(231)
	451.41	(232)
(211)(221) + (231) + (232)(237b) =	7144.96	(238)
	45.00	30.00 45.00 75.00 451.41

	Fuel kWh/year		Fuel price		Fuel cost £/year	
Space heating - main system 1	4023.71	×	3.48	x 0.01 =	140.03	(240)
Water heating	2594.83	×	3.48	x 0.01 =	90.30	(247)
Pumps and fans	75.00	×	13.19	x 0.01 =	9.89	(249)
Electricity for lighting	451.41	×	13.19	x 0.01 =	59.54	(250)
Additional standing charges					120.00	(251)
Total energy cost			(240)(242) +	(245)(254) =	419.76	(255)

	-
0.42	256)
1.06	257)
85.20	
85 (2	258)
В	
	1.06 85.20

	Energy kWh/year		Emission factor kg CO₂/kWh	Emissions kg CO ₂ /year		
Space heating - main system 1	4023.71	×	0.216] = [869.12	(261
Water heating	2594.83	х	0.216	= [560.48	(264
Space and water heating			(261) + (262) +	- (263) + (264) = [1429.61	(265
Pumps and fans	75.00	- ×	0.519] = [38.93	(267
Electricity for lighting	451.41	x	0.519	= [234.28	(268
Total CO₂, kg/year				(265)(271) = [1702.82	(272
Owelling CO ₂ emission rate				(272) ÷ (4) = [14.05	(273
El value				30	86.27	
I rating (section 14)				[86	(274
El band				ſ	В	1

	Energy kWh/year		Primary factor		Primary Energ kWh/year	У
Space heating - main system 1	4023.71	×	1.22	=	4908.93	(261)
Water heating	2594.83	×	1.22	: E	3165.70	(264)
Space and water heating			(261) + (262) + (26	53) + (264) =	8074.63	(265)
Pumps and fans	75.00	×	3.07	=	230.25	(267)
Electricity for lighting	451.41	×	3.07		1385.84	(268)
Primary energy kWh/year					9690.72	(272)
Owelling primary energy rate kWh/m2/year	N N				79.98	(273)

Appendix D Non-Domestic Energy Calculations

Page 216 AECOM

BRUKL Output Document

Compliance with England Building Regulations Part L 2013

Project name

Untitled

As designed

Date: Tue Aug 28 16:46:24 2018

Administrative information

Building Details

Address: Address 1, City, Postcode

Certification tool

Calculation engine: Apache

Calculation engine version: 7.0.9

Interface to calculation engine: IES Virtual Environment

Interface to calculation engine version: 7.0.9

BRUKL compliance check version: v5.4.a.1

Owner Details

Name: Name

Telephone number: Phone

Address: Street Address, City, Postcode

Certifier details

Name: Name

Telephone number: Phone

Address: Street Address, City, Postcode

Criterion 1: The calculated CO₂ emission rate for the building must not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	26
Target CO ₂ emission rate (TER), kgCO ₂ /m².annum	26
Building CO₂ emission rate (BER), kgCO₂/m².annum	18.8
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	Ua-Limit	Ua-Calc	Ui-Calc	Surface where the maximum value occurs*
Wall**	0.35	0.18	0.18	F0000000:Surf[2]
Floor	0.25	0.12	0.12	F0000000:Surf[0]
Roof	0.25	0.13	0.13	F0000000:Surf[1]
Windows***, roof windows, and rooflights	2.2	1.4	1.4	F0000001:Surf[2]
Personnel doors	2.2	2.2	2.2	F0000005:Surf[3]
Vehicle access & similar large doors	1.5	8	9	No Vehicle access doors in building
High usage entrance doors	3.5	-	5	No High usage entrance doors in building

U_{a-Limit} = Limiting area-weighted average U-values [W/(m²K)]

Us-cate = Calculated area-weighted average U-values [W/(m2K)]

Urcate = Calculated maximum individual element U-values [W/(m²K)]

*** Display windows and similar glazing are excluded from the U-value check.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m³/(h.m²) at 50 Pa	10	5

^{*} There might be more than one surface where the maximum U-value occurs.

^{**} Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values					
Whole building electric power factor achieved by power factor correction	>0.95				

1- rads_HP

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency	
This system	2.73		0.2	0	-	
Standard value	2.5*	N/A	N/A	N/A	N/A	
Automatic moni	toring & targeting w	ith alarms for out-of	-range values for th	is HVAC syster	n YES	

2- FCU 1p5_HP

Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency
2.73	3.13	0	1.5	0.75
2.5*	2.55	N/A	1.6^	0.5
	2.73	2.73 3.13	2.73 3.13 0	

^{*} Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825 for limiting standards.

3- FCU HP

Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency
2.73	3.13	0	1.7	0.75
2.5*	2.55	N/A	1.6^	0.5
	2.73	2.73 3.13	2.73 3.13 0	

^{*} Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825 for limiting standards.

4- CV HP

Heating efficiency	Cooling efficiency Radiant efficiency S		SFP [W/(I/s)]	HR efficiency	
2.73	3.13	0	1.7	0.75	
Standard value 2.5*		2.55 N/A		N/A	
	2.73	2.73 3.13	2.73 3.13 0		

^{*} Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825 for limiting standards.

[^] Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.

[^] Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.

[^] Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.

[&]quot;No HWS in project, or hot water is provided by HVAC system"

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
Α	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
E	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
Н	Fan coil units
I	Zonal extract system where the fan is remote from the zone with grease filter

Zone name		SFP [W/(I/s)]							HR efficiency		
ID of system type	Α	В	С	D	E	F	G	Н	1	nk e	miciency
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
F00 Cinema/Activity	*	-		+	+	(m)	*.	0.3	-	-	N/A
F00 ElectricalCB/DistBoard			0.5	-	2	227			-		N/A
F00 Generator	-		0.5		•	*	×	*	-	+	N/A
F00 HairSalon		-	(-6)	-2	+		18	0.3	-	-	N/A
F00 ICT		-	+	10	±:	*	*	0.3	-	-	N/A
F00 Kitchen	2	2	0.5	12		4			-		N/A
F00 LibraryLounge		+	*	i i	+	: - :	*	0.3	-		N/A
F00 LibraryLoungePer	(2)	2	-			-	-	0.3	-		N/A
F00 Medicalcentre01		+		*	*		-	0.3	-	-	N/A
F00 Medicalcentre01Perimeter	-	2	-		-			0.3	-		N/A
F00 MedicalConsultingRoom01		*	*:	*			•	0.3	-	-	N/A
F00 MedicalConsultingRoom02	¥1.	4	-	-	-		-	0.3			N/A
F00 MedicalNursesRoom			(*E			-		0.3	-	(+)	N/A
F00 MSR	24A	¥ .	0.5	-			-				N/A
F00 Office01		*	i+3	-		-		0.3		· .	N/A
F00 Office02	1	-		12			-	0.3			N/A
F00 Plant01			0.5	*		-	-		-		N/A
F00 Plant02	V <u>E</u>	<u>1</u> 0 I	0.5	2			-	-			N/A
F00 Plant03	i t	-:	0.5		*:	-			-		N/A
F00 Rehab+Exercise	72	12	29	2		5	-	0.3	27	4	N/A
F00 RestaurantCafe				-		-	-	0.3	-	-	N/A
F00 RestaurantCafePerimeter	2	2	-	2	-	2		0.3	-	-	N/A
F00 ShowersFemale		-		-		+		0.3	-	-	N/A
F00 ShowersMale	-	15	2	2	046		-	0.3	-		N/A
F00 Staff	*			*	·*:	*	+	0.3	-		N/A
F00 StaffChange(Dry)	2	3	-	2	(2)	-		0.3	-	-	N/A
F00 StaffWC	æ		0.5	*		*	*	-	-	-	N/A
F00 Therapy01	1	1/20	12	-	41			0.3		-	N/A
F00 Therapy02	*	+		•	•		-	0.3	-	-	N/A
F00 Therapy03	4	-	32					0.3			N/A
F00 Therapy04		+	*					0.3		-	N/A

Zone name ID of system type		SFP [W/(I/s)]					IID officioness				
	Α	В	С	D	E	F	G	Н	1	HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
F00 WC	15.	-	0.5					-	-	2	N/A
F00 WC02			0.5	-	-	-		-	+		N/A
F00 WC03			0.5	-	-20		-	-	-		N/A
F00 WC04	+		0.5	-		-	100	-	-		N/A
F00 WC05		4	0.5		40	-	-	2	-		N/A
F00 WC06		+;	0.5			*	ir e s	-	*		N/A
F00 WCCycle		*	0.5		<u></u>	i i	124	14	-	i.	N/A
F00 WCsF	-		0.5	+	*	*		1.5	-	15	N/A
F00 WCsM		+	0.5			-	0.27	2	-		N/A

General lighting and display lighting	Lumino	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
F00 BinCollection	90		1512	118
F00 ChefOffice	14	90	60	129
F00 Cinema/Activity		90		374
F00 Circ		90	407	76
F00 Circ01	£ .	90	20	167
F00 Circ02	-	90	48	187
F00 CL	90	-	as a	34
F00 ColdRoom	90	an N	(48)	37
F00 Cyclestorage	90	-	176	73
F00 DryChange	90	-	45	29
F00 DryStore	90		(T)	35
F00 ElectricalCB/DistBoard	90	-	48	44
F00 Freezer	90		5 2	27
F00 Generator	90	-	4 0	183
F00 HairSalon		90	60	278
F00 HeatingPlant	90	-	¥.	287
F00 ICT	90	150	-	51
F00 Kitchen	-	90		394
F00 LibraryLounge	-	90	60	471
F00 LibraryLoungePer	-	90	60	586
F00 LinenStore	90	10T	:: 1 · 1	55
F00 LoadingZone	90	-	3 0	267
F00 Mail	90	1.57		52
F00 Medicalcentre01	90	-	*	100
F00 Medicalcentre01Perimeter	90		170 H	333
F00 MedicalConsultingRoom01	90	-		102
F00 MedicalConsultingRoom02	90	555	1755	193
F00 MedicalNursesRoom	90	-	(4)	102
F00 MedicalStore	90	-		25
F00 MSR	90	-		111

General lighting and display lighting			cacy [lm/W]	
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
F00 Office01	90	-	-	160
F00 Office02	90	-	•	100
F00 Plant01	90	•	-	49
F00 Plant02	90	-	-	244
F00 Plant03	90		-	94
F00 Pool	-	90	-	299
F00 Poolside	-	90	-	393
F00 Poolside	12	90		283
F00 Reception/Lobby	+	90	60	754
F00 ReceptionEntrance01	AL SI	90	60	176
F00 ReceptionEntrance02	-	90	60	181
F00 Refuse/IncomingService	90	-	-	33
F00 Rehab+Exercise	-	90	2	141
F00 RestaurantCafe	_	90	-	189
F00 RestaurantCafePerimeter		90		286
F00 Scooterstorage	90		-	121
F00 ShowersFemale	-	90	_	20
F00 ShowersMale	(E)	90	-	20
F00 Staff	90	-		466
F00 StaffChange(Dry)	90	-	. 7	123
F00 StaffWC	-	90		40
-00 Stairs01		90		55
-00 Stairs02	*	90		51
F00 Store	90	-		25
F00 Store	90			13
F00 Store	90	-		49
F00 Store	90			
00 Store	90			40
00 Store	90			32
00 Store	90			34
00 Therapy01	-			53
00 Therapy02		00		137
00 Therapy03				38
00 Therapy04		00		37
00 Transformer	00			16
2011 (2)	00			37
00 WC		90 -		17
00 M/C02				35
00 M(003		90 -		66
00 ///004		90 -		.9
OU MCOE		90 -		6
OU MICUS		90 -		5
On WCCvole		90 -		9
		90 -	2	6

General lighting and display lighting	Lumino	ous effic	acy [lm/W]	
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
F00 WCsF		90	見列	68
F00 WCsM	-	90		68
F01 Corridor	[2]	90	4	170
F01 Corridor	-	90	2	178
F01 Corridor	2	90	-	227
F02 Corridor		90	-	170
F02 Corridor	_	90	-	227
F02 Corridor	-	90	-	178
F03 Corridor	0	90	-	185
F03 Corridor		90		238
F03 Corridor	2	90	-	177
F04 Corridor	-	90		168
F04 Corridor01		90	-	240
F04 Corridor02		90	- 1	151
F05 Corridor	1	90	-	216
F05 Corridor		90		133

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?	
F00 ChefOffice	NO (-62.6%)	NO	
F00 Cinema/Activity	110 (00 70()		
F00 HairSalon	NO (-32.3%)	NO	
F00 ICT	NO (-100%)	NO	
F00 LibraryLounge	NO (-76.4%)	NO:	
F00 LibraryLoungePer	NO (-65.9%)	NO	
F00 Medicalcentre01	YES (+9.8%)	NO	
F00 Medicalcentre01Perimeter	YES (+6.6%)	NO	
F00 MedicalConsultingRoom01	NO (-51.9%)	NO	
F00 MedicalConsultingRoom02	NO (-68.9%)	NO	
F00 MedicalNursesRoom	NO (-11.2%)	NO	
F00 Office01	YES (+5.4%)	NO	
F00 Office02	NO (-2%)	NO	
F00 Pool	N/A	N/A	
F00 Poolside	YES (+69.4%)	NO	
F00 Poolside	NO (-59%)	NO	
F00 Reception/Lobby	NO (-92.7%)	NO	
F00 ReceptionEntrance01	YES (+33.3%)	NO	
F00 ReceptionEntrance02	YES (+16.3%)	NO	
F00 Rehab+Exercise	NO (-26.7%)	NO	
F00 RestaurantCafe NO (-35.3%)		NO	
F00 RestaurantCafePerimeter	NO (-32.1%)	NO	
F00 ShowersFemale	N/A	N/A	
F00 ShowersMale	N/A	N/A	

Zone	Solar gain limit exceeded? (%)	Internal blinds used?	
F00 Staff	NO (-49.3%)	NO	
F00 StaffChange(Dry)	N/A	N/A	
F00 Therapy01	NO (-42.9%)	NO	
F00 Therapy02	N/A	N/A	
F00 Therapy03	N/A	N/A	
F00 Therapy04	YES (+1.6%)	NO	

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?	YES
Is evidence of such assessment available as a separate submission?	YES
Are any such measures included in the proposed design?	YES

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

	Actual	Notional
Area [m²]	3421.8	3421.8
External area [m²]	3811.5	3811.5
Weather	LON	LON
Infiltration [m³/hm²@ 50Pa]	5	3
Average conductance [W/K]	1116.75	1386.91
Average U-value [W/m²K]	0.29	0.36
Alpha value* [%]	10.05	10

^{*} Percentage of the building's average heat transfer coefficient which is due to thermal bridging

Building Use

% Area	Building Type
1	A1/A2 Retail/Financial and Professional services
	A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways
	B1 Offices and Workshop businesses
	B2 to B7 General Industrial and Special Industrial Groups
	B8 Storage or Distribution
	C1 Hotels
94	C2 Residential Institutions: Hospitals and Care Homes
	C2 Residential Institutions: Residential schools
	C2 Residential Institutions: Universities and colleges
	C2A Secure Residential Institutions
	Residential spaces
	D1 Non-residential Institutions: Community/Day Centre
	D1 Non-residential Institutions: Libraries, Museums, and Galleries

D1 Non-residential Institutions: Primary Health Care Building D1 Non-residential Institutions: Crown and County Courts

D2 General Assembly and Leisure, Night Clubs, and Theatres Others: Passenger terminals Others: Emergency services

D1 Non-residential Institutions: Education

Others: Miscellaneous 24hr activities

Others: Car Parks 24 hrs Others: Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	4.12	4.83
Cooling	6.89	5.95
Auxiliary	17.8	12.79
Lighting	15.96	23.79
Hot water	5.12	4.09
Equipment*	128.71	128.71
TOTAL**	49.9	51.46

Energy used by equipment does not count towards the total for consumption or calculating emissions.
 Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	12.45	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m²]	140.11	125.63
Primary energy* [kWh/m²]	177.02	180.73
Total emissions [kg/m²]	18.8	26

^{*} Primary energy is net of any electrical energy displaced by CHP generators, if applicable,

System Type	Heat dem MJ/m2	Cool dem MJ/m2	Heat con kWh/m2	Cool con kWh/m2	Aux con kWh/m2	Heat SSEEF	Cool	Heat gen SEFF	Cool gen
[ST] Fan coil s	systems, [H	S] Heat pun	np (electric)	ground o	r water sou	rce, [HFT]	Electricity,	[CFT] Electi	
Actual	1.9	638.2	0.2	43.2	52.8	2.59	4.1	2.73	4.6
Notional	0	0	0	0	0	0	0		
[ST] Single-du	ct VAV, [HS] Heat pum	p (electric):	ground or	water sou	rce, [HFT]	Electricity,	[CFT] Electr	icity
Actual	128.8	81.1	13.8	5.5	47	2.59	4.1	2.73	4.6
Notional	4.6	512.1	0.5	37.5	39.6	2.56	3.79		
[ST] Central h	eating using	water: rad	iators, [HS]	Heat pump	(electric):	ground or	r water soul	ce, [HFT] El	ectricity, [(
Actual	50.8	0	5.4	0	7.7	2.59	0	2.73	0
Notional	164.2	58.9	17.9	4.3	17.9	2.56	3.79		
ST] Fan coil s	ystems, [HS] Heat pum	p (electric)	ground or	water sou	rce, [HFT]	Electricity,	[CFT] Electr	icity
Actual	9.1	167	1	11.3	42.9	2.59	4.1	2.73	4.6
Notional	57.1	0	6.2	0	6	2.56	0		_
ST] No Heatin	g or Cooling								
Actual	0	0	0	0	0	0	0	0	0
Notional	11.8	132.4	1.3	9.7	32.8	2.56	3.79		

Key to terms

Heat dem [MJ/m2] = Heating energy demand
Cool dem [MJ/m2] = Cooling energy demand
Heat con [kWh/m2] = Heating energy consumption
Cool con [kWh/m2] = Cooling energy consumption
Aux con [kWh/m2] = Auxiliary energy consumption

Heat SSEFF = Heating system seasonal efficiency (for notional building, value depends on activity glazing class)

Cool SSEER = Cooling system seasonal energy efficiency ratio
Heat gen SSEFF = Heating generator seasonal efficiency

Cool gen SSEER = Cooling generator seasonal energy efficiency ratio

ST = System type
HS = Heat source
HFT = Heating fuel type
CFT = Cooling fuel type

Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

Element	U _{I-Тур}	Ul-Min	Surface where the minimum value occurs'
Wall	0.23	0.18	F0000000:Surf[2]
Floor	0.2	0.12	F0000000:Surf[0]
Roof	0.15	0.13	F0000000:Surf[1]
Windows, roof windows, and rooflights	1.5	1.4	F0000001:Surf[2]
Personnel doors	1.5	2.2	F0000005:Surf[3]
Vehicle access & similar large doors	1.5	te .	No Vehicle access doors in building
High usage entrance doors	1.5	-	No High usage entrance doors in building
U _{I-Typ} = Typical individual element U-values [W/(m²	<)]		U _{I-Min} = Minimum individual element U-values [W/(m²K)]
* There might be more than one surface where the	minimum (J-value oc	curs.

Air Permeability	Typical value	This building	
m3/(h.m2) at 50 Pa	5	5	

BRUKL Output Document

Compliance with England Building Regulations Part L 2013

Project name

Untitled

As designed

Date: Tue Aug 28 16:30:28 2018

Administrative information

Building Details

Address: Address 1, City, Postcode

Certification tool

Calculation engine: Apache

Calculation engine version: 7.0.9

Interface to calculation engine: IES Virtual Environment

Interface to calculation engine version: 7.0.9

BRUKL compliance check version: v5.4.a.1

Owner Details

Name: Name

Telephone number: Phone

Address: Street Address, City, Postcode

Certifier details

Name: Name

Telephone number: Phone

Address: Street Address, City, Postcode

Criterion 1: The calculated CO₂ emission rate for the building must not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m².annum	27.2
Target CO₂ emission rate (TER), kgCO₂/m².annum	27.2
Building CO₂ emission rate (BER), kgCO₂/m².annum	25.7
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	Ua-Limit	Ua-Calc	UI-Calc	Surface where the maximum value occurs
Wall**	0.35	0.18	0.18	F0000000:Surf[2]
Floor	0.25	0.12	0.12	F0000000:Surf[0]
Roof	0.25	0.13	0.13	F0000000:Surf[1]
Windows***, roof windows, and rooflights	2.2	1.4	1.4	F0000001:Surf[2]
Personnel doors	2.2	2.2	2.2	F0000005:Surf[3]
Vehicle access & similar large doors	1.5		*	No Vehicle access doors in building
High usage entrance doors	3.5	=	-	No High usage entrance doors in building

Ua-Limit = Limiting area-weighted average U-values [W/(m2K)]

U_{a-Calc} = Calculated area-weighted average U-values [W/(m²K)]

Ul-calc = Calculated maximum individual element U-values [W/(m²K)]

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m³/(h.m²) at 50 Pa	10	5

^{*} There might be more than one surface where the maximum U-value occurs.

^{**} Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

^{***} Display windows and similar glazing are excluded from the U-value check.

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	NO
Whole building electric power factor achieved by power factor correction	>0.95

1- rads

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency
This system	0.96	•	0.2	0	-
Standard value	0.91*	N/A	N/A	N/A	N/A
Automatic moni	toring & targeting w	ith alarms for out-of	-range values for th	is HVAC syste	m YES
* Standard shown is efficiency is 0.86. For	for gas single boller system any individual boller in a n	ns <=2 MW output. For sing	le boiler systems >2 MW o efficiency is 0.82.	r multi-boiler syster	ns, (overall) limiting

2- FCU_1p5

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency
This system	0.96	3.13	0	1.5	0.75
Standard value	0.91*	2.55	N/A	1.6^	0.5

^{*} Standard shown is for gas single boiler systems <= 2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

3-FCU

Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency
0.96	3.13	0	1.7	0.75
0.91*	2.55	N/A	1.6^	0.5
	0.96	0.96 3.13	0.96 3.13 0	3.00

^{*} Standard shown is for gas single boiler systems <= 2 MW output. For single boiler systems > 2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

4- CV

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency
This system	0.96	3.13	0	1.7	0.75
Standard value	0.91*	2.55	N/A	1.6^	N/A
Automatic moni	toring & targeting w	ith alarms for out-of	-range values for th	is HVAC syster	n YES

^{*} Standard shown is for gas single boiler systems <= 2 MW output. For single boiler systems > 2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

[^] Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.

[^] Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.

[^] Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.

[&]quot;No HWS in project, or hot water is provided by HVAC system"

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
Α	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
E	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
Н	Fan coil units
1	Zonal extract system where the fan is remote from the zone with grease filter

Zone name	SFP [W/(I/s)]						UD officiency				
ID of system type	Α	В	С	D	E	F	G	Н	1	HR	efficiency
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
F00 Cinema/Activity	-			-	-	-	-	0.3	-		N/A
F00 ElectricalCB/DistBoard		14	0.5	-	+	-	-		-	-	N/A
F00 Generator		-	0.5	.7	574	-	-	-	-		N/A
F00 HairSalon	*	*		-	-		-	0.3	-	(4)	N/A
F00 ICT	•		-	-	-	-	-	0.3	-		N/A
F00 Kitchen	*	-	0.5	4	-		×	-	-	-	N/A
F00 LibraryLounge		7	-	5		-	-	0.3	-		N/A
F00 LibraryLoungePer	*	-	-	-	-	4	4.0	0.3	-	-	N/A
F00 Medicalcentre01	-	-	-	-	-	/	5	0.3	-		N/A
F00 Medicalcentre01Perimeter	(*)	+	-	-		4	-	0.3	-		N/A
F00 MedicalConsultingRoom01	170	+	(5)		-	-	•	0.3	-	- "	N/A
F00 MedicalConsultingRoom02	(41)		-	-		-	-	0.3	-	-	N/A
F00 MedicalNursesRoom	57.0	-	050	-		-2		0.3	5		N/A
F00 MSR	40	-	0.5	- "	-		+		-		N/A
F00 Office01	870	-	150	-	-	-		0.3	-		N/A
F00 Office02	4	-		-	-			0.3	-	*	N/A
F00 Plant01		75	0,5	-	Ļ.	-	-	-10	-	-	N/A
F00 Plant02	4	-	0.5	*		-		-	-	-	N/A
F00 Plant03	-	76	0.5	-	-		-	2.7	-	120	N/A
F00 Rehab+Exercise	14	•		4	4	*		0.3	-		N/A
F00 RestaurantCafe	ē	-	7.	-	-	-5	-	0.3	-		N/A
F00 RestaurantCafePerimeter	(d		43			+		0.3	+	-	N/A
F00 ShowersFemale	÷	2	-	-	.75	-	550	0.3		-	N/A
F00 ShowersMale		+:		=	·*)	-		0.3	-	-	N/A
F00 Staff	9	-	-	-	058			0.3	-	45	N/A
F00 StaffChange(Dry)	*		-	¥	·*!	+		0.3	-	-	N/A
F00 StaffWC			0.5	35	539	-	.01				N/A
F00 Therapy01	ju j	-	:-					0.3	-	9411	N/A
F00 Therapy02	7		55	-	17.1	-		0.3		. =	N/A
F00 Therapy03	¥		4					0.3		-	N/A
F00 Therapy04	177	-	.5	-		-		0.3		1.7	N/A

Zone name		SFP [W/(I/s)]						IID officiency				
ID of system type	Α	В	C	D	E	F	G	Н	1	nke	HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard	
F00 WC	4	-	0.5		4	•		-		-	N/A	
F00 WC02			0.5		-7	7	-	2	-		N/A	
F00 WC03		-	0.5	-	*	-	-		-	9	N/A	
F00 WC04	-		0.5			ļ.,	-	-	-	-	N/A	
F00 WC05	-	(-)	0.5	-		4:		-	-	-	N/A	
F00 WC06			0.5	-	-					-	N/A	
F00 WCCycle			0.5			-		-	-	-	N/A	
F00 WCsF		-	0.5	-	-					-	N/A	
F00 WCsM			0.5	-		a	-	-	-	-	N/A	

General lighting and display lighting	Lumine	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W
Standard value	60	60	22	
F00 BinCollection	90	2	(2)	118
F00 ChefOffice	3 2 00 1	90	60	129
F00 Cinema/Activity	4	90	40	374
F00 Circ		90	100	76
F00 Circ01	\$	90	2	167
F00 Circ02		90	[#N	187
F00 CL	90	-	20	34
F00 ColdRoom	90		1:01	37
F00 Cyclestorage	90	1	2//	73
F00 DryChange	90		1911	29
F00 DryStore	90	-	(2)	35
F00 ElectricalCB/DistBoard	90	-	(20)	44
F00 Freezer	90	-	3 0	27
F00 Generator	90	- 1	5 2 12	183
F00 HairSalon	= =	90	60	278
F00 HeatingPlant	90	-	: :	287
F00 ICT	90	21		51
F00 Kitchen	·=	90	(#N	394
F00 LibraryLounge		90	60	471
F00 LibraryLoungePer	10 0	90	60 -	586
F00 LinenStore	90	-	-	55
F00 LoadingZone	90	-		267
F00 Mail	90	-		52
F00 Medicalcentre01	90	•	(e)	100
F00 Medicalcentre01Perimeter	90	-	-1	333
F00 MedicalConsultingRoom01	90	-	•	102
F00 MedicalConsultingRoom02	90	-	·	193
F00 MedicalNursesRoom	90	85	90	102
F00 MedicalStore	90	-	•	25
F00 MSR	90	2		111

General lighting and display lighting	Lumin	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W
Standard value	60	60	22	
F00 Office01	90			160
F00 Office02	90	-	-	100
F00 Plant01	90	(*)	(30)	49
F00 Plant02	90		la L	244
F00 Plant03	90	20.00		94
F00 Pool	i i	90	120	299
F00 Poolside	8	90	*	393
F00 Poolside	-	90		283
F00 Reception/Lobby		90	60	754
F00 ReceptionEntrance01	-	90	60	176
F00 ReceptionEntrance02		90	60	181
F00 Refuse/IncomingService	90	_		33
F00 Rehab+Exercise	-	90		141
F00 RestaurantCafe		90	(a)	189
F00 RestaurantCafePerimeter	-	90	-	286
F00 Scooterstorage	90	_		121
F00 ShowersFemale	-	90	-	20
F00 ShowersMale		90	The state of the s	20
F00 Staff	90	-		466
F00 StaffChange(Dry)	90	-		123
F00 StaffWC	-	90		40
F00 Stairs01		90		
F00 Stairs02		90		55
F00 Store	90	-		51
=00 Store	90			25
F00 Store	90			13
F00 Store	90	-		49
F00 Store	90			40
F00 Store	90	-		32
F00 Store	90	-		34
F00 Therapy01		-		53
700 Therapy02	1.5	00		137
F00 Therapy03	-			38
O0 Therapy04	7			37
00 Transformer	-			46
00 VentPlant	90			37
00 WC	90			117
00 WC02	3			35
	-			56
00 WC03	*	_		19
00 WC04	-			26
00 WC05				15
00 WC06		90		29
00 WCCycle	* 1	90	2	26

General lighting and display lighting	Lumino	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
F00 WCsF	*	90	8	68
F00 WCsM	2 4	90	=	68
F01 Corridor	-	90	-	170
F01 Corridor	-	90	4	178
F01 Corridor	-	90	155	227
F02 Corridor	4	90	*	170
F02 Corridor	-	90	3	227
F02 Corridor	<u> </u>	90	2	178
F03 Corridor		90	15	185
F03 Corridor	lu lu	90	4	238
F03 Corridor		90	-	177
F04 Corridor	Q T	90	- 1	168
F04 Corridor01		90	-	240
F04 Corridor02	2 11	90	4	151
F05 Corridor		90		216
F05 Corridor		90		133

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
F00 ChefOffice	NO (-62.6%)	NO
F00 Cinema/Activity	vity NO (-23.7%)	
F00 HairSalon	NO (-32.3%)	NO
F00 ICT	NO (-100%)	NO
F00 LibraryLounge	NO (-76.4%)	NO
F00 LibraryLoungePer	NO (-65.9%)	NO
F00 Medicalcentre01	YES (+9.8%)	NO
F00 Medicalcentre01Perimeter	YES (+6.6%)	NO
F00 MedicalConsultingRoom01	NO (-51.9%)	NO
F00 MedicalConsultingRoom02	NO (-68.9%)	NO
F00 MedicalNursesRoom	NO (-11.2%)	NO
F00 Office01	YES (+5.4%)	NO
F00 Office02	NO (-2%)	NO
F00 Pool	N/A	N/A
F00 Poolside	YES (+69.4%)	NO
F00 Poolside	NO (-59%)	NO
F00 Reception/Lobby	NO (-92.7%)	NO
F00 ReceptionEntrance01	YES (+33.3%)	NO
F00 ReceptionEntrance02	YES (+16.3%)	NO
F00 Rehab+Exercise	NO (-26.7%)	NO
F00 RestaurantCafe	NO (-35.3%)	NO
F00 RestaurantCafePerimeter	NO (-32.1%)	NO
F00 ShowersFemale	N/A	N/A
F00 ShowersMale	N/A	N/A

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
F00 Staff	NO (-49.3%)	NO
F00 StaffChange(Dry)	N/A	N/A
F00 Therapy01	NO (-42.9%)	NO
F00 Therapy02	N/A	N/A
F00 Therapy03	N/A	N/A
F00 Therapy04	YES (+1.6%)	NO

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?	YES
Is evidence of such assessment available as a separate submission?	YES
Are any such measures included in the proposed design?	YES

Technical Data Sheet (Actual vs. Notional Building)

10

Building Global Parameters

Alpha value* [%]

Actual **Notional** 3421.8 3421.8 Area [m²] 3811.5 3811.5 External area [m²] LON LON Weather 3 Infiltration [m³/hm²@ 50Pa] 1386.91 Average conductance [W/K] 1116.75 0.36 0.29 Average U-value [W/m2K]

10.05

Building Use

% Are	ea Building Type
1	A1/A2 Retail/Financial and Professional services
	A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways
	B1 Offices and Workshop businesses
	B2 to B7 General Industrial and Special Industrial Groups
	B8 Storage or Distribution
	C1 Hotels
94	C2 Residential Institutions: Hospitals and Care Homes

C2 Residential Institutions: Residential schools

C2 Residential Institutions: Universities and colleges

C2A Secure Residential Institutions Residential spaces

D1 Non-residential Institutions: Community/Day Centre

D1 Non-residential Institutions: Libraries, Museums, and Galleries

D1 Non-residential Institutions: Education

D1 Non-residential Institutions: Primary Health Care Building

D1 Non-residential Institutions: Crown and County Courts

D2 General Assembly and Leisure, Night Clubs, and Theatres Others: Passenger terminals Others: Emergency services

Others: Miscellaneous 24hr activities

Others: Car Parks 24 hrs

Others: Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	11.72	14.32
Cooling	6.89	5.95
Auxiliary	17.8	12.79
Lighting	15.96	23.79
Hot water	12.14	12.14
Equipment*	128.71	128.71
TOTAL**	64.52	69

Energy used by equipment does not count towards the total for consumption or calculating emissions.
 Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m²]	140.11	125.63
Primary energy* [kWh/m²]	150.8	159.61
Total emissions [kg/m²]	25.7	27.2

Primary energy is net of any electrical energy displaced by CHP generators, if applicable,

^{*} Percentage of the building's average heat transfer coefficient which is due to thermal bridging

System Type	Heat dem MJ/m2	Cool dem MJ/m2	Heat con kWh/m2	Cool con kWh/m2	Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool ger SEER
[ST] Central I	neating using	y water: rad	iators, [HS] LTHW boi	ler, [HFT] N	latural Gas	, [CFT] Ele	ctricity	
Actual	50.8	0	15.5	0	7.7	0.91	0	0.96	0
Notional	0	0	0	0	0	0	0		
[ST] Fan coil	systems, [H	S] LTHW bo	iler, [HFT]	Natural Gas	, [CFT] Ele	ctricity			
Actual	1.9	638.2	0.6	43.2	52.8	0.91	4.1	0.96	4.6
Notional	57.1	0	18.4	0	6.	0.86	0		
[ST] Single-d	uct VAV, [HS] LTHW boi	ler, [HFT] N	latural Gas	[CFT] Elec	ctricity			
Actual	128.8	81.1	39.4	5.5	47	0.91	4.1	0.96	4.6
Notional	4.6	512.1	1.5	37.5	39.6	0.86	3.79		
[ST] Fan coil	systems, [HS] LTHW bo	iler, [HFT] I	Natural Gas	, [CFT] Ele	ctricity			
Actual	9.1	167	2.8	11.3	42.9	0.91	4.1	0.96	4.6
Notional	164.2	58.9	53	4.3	17.9	0.86	3.79		
[ST] No Heati	ng or Coolin	g					11.33		
Actual	0	0	0	0	0	0	0	0	0
Notional	11.8	132.4	3.8	9.7	32.8	0.86	3.79		Service 11

Key to terms

Heat dem [MJ/m2] Cool dem [MJ/m2] Heat con [kWh/m2]

= Heating energy demand = Cooling energy demand = Heating energy consumption

Cool con [kWh/m2] Aux con [kWh/m2] Heat SSEFF

Cooling energy consumptionAuxiliary energy consumption

= Heating system seasonal efficiency (for notional building, value depends on activity glazing class)= Cooling system seasonal energy efficiency ratio

Cool SSEER

Heat gen SSEFF

= Heating generator seasonal efficiency

= Cooling generator seasonal energy efficiency ratio

Cool gen SSEER ST = System type HS = Heat source HFT = Heating fuel type **CFT** = Cooling fuel type

Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

F0000000:Surf[2] F0000000:Surf[0] F0000000:Surf[1]
F0000000:Surf[1]
E0000004-0#01
F0000001:Surf[2]
F0000005:Surf[3]
No Vehicle access doors in building
No High usage entrance doors in building

Air Permeability	Typical value	This building	
m³/(h.m²) at 50 Pa	5	5	

Appendix E Overheating Calculation

Table of Contents

1.	Execu	tive Summary	239
2.	Introd	uction	241
3.	Model	Geometry	245
	3.1	Model image	246
4.	Key in	put data	246
	4.1	Building Fabric	246
	4.2	Thermal templates	
	4.2.1	Room conditions	
	4.2.2	Internal gains and mechanical ventilation	
	4.3	Infiltration rate	
	4.4	Internal shading device	
	4.5	Openings	
	4.6	Weather file	
	4.7	Summer elevated air speed	
	4.8	Corridors and circulation spaces	
5.		eating Results and Mitigation	
-		usion and Recommendations	
6.		M59 Results	
		WIDS RESUITS	254
	ures	and a unite on 2 nd the art to represent the development	242
		mple units on 2 nd floor to represent the development	
		mple units on 5 th floor to represent the development	
-		uth view of the model after Option F	
-		uth view of the model with yellow circles around the overhangs included in option F	
Tab	les		
Table	0-1 CO	2 Emissions after Each Stage of the Energy Hierarchy	7
		imated Regulated CO ₂ Savings from Each Stage of the Energy Hierarchy	
Table	0-3 CO	2 Emissions after Each Stage of the Energy Hierarchy	8
		imated Regulated CO_2 Savings from Each Stage of the Energy Hierarchy	
		2 Emissions after Each Stage of the Energy Hierarchy	
		imated Regulated CO ₂ Savings from Each Stage of the Energy Hierarchy	
		/elopment Schedule Summary imated Baseline CO₂ Emissions	
		rrently Adopted Passive Design Measures	
		rrent Fabric Specification for the Proposed Development	
		rrently Adopted Energy Efficiency Measures	
		n-domestic Cooling Demand	
Table	4-5: Es	timated Regulated CO ₂ Emissions	22
		timated Regulated CO ₂ emissions	
		timated Baseline, Be Lean, Be Clean and Be Green Regulated CO ₂ Emissions	
		P 10 / SAP 13 Carbon Factors	
		P 10 / SAP 13 Baseline P 10 / SAP 13 "Be Green"	
		P 10 / SAP 13 Be GreenP 10 / SAP 13 Savings	
		₂ Emissions after Each Stage of the Energy Hierarchy	
		imated Regulated CO ₂ Savings from Each Stage of the Energy Hierarchy	
		₂ Emissions after Each Stage of the Energy Hierarchy	

Table 8-4 Estimated Regulated CO ₂ Savings from Each Stage of the Energy Hierarchy	31
Table 8-5 CO ₂ Emissions after Each Stage of the Energy Hierarchy	31
Table 8-6 Estimated Regulated CO ₂ Savings from Each Stage of the Energy Hierarchy	32
Table 7. Summary of results for Base case and each option	239
Table 8. Drawings used to build the model	245
Table 9. Opaque fabric elements used in model	246
Table 10. Glazed fabric elements used in model	247
Table 11. Bedroom (double) internal gains and mechanical ventilation	247
Table 12. Bedroom (double) internal gains and mechanical ventilation	248
Table 13. Living/Kitchen internal gains mechanical ventilation	248
Table 14. Living/Kitchen internal gains mechanical ventilation	248
Table 15. Living/Kitchen internal gains mechanical ventilation	248
Table 16. Openings in model	249
Table 17. Summary of results for Base case and each option	250
Table 18. Criterion A Option C	
Table 19. Criterion B Option C	254
Table 20. Criterion A Option D	255
Table 21. Criterion B Option D	255
Table 22. Criterion A Option E	256
Table 23. Criterion B Option E	256
Table 24. Criterion A Option F	
Table 25. Criterion B Option F	257

1. Executive Summary

For London domestic developments the GLA requires the use of CIBSE TM59 to mitigate the risk of overheating. 9 out of 89 units have been selected from the development as sample units for the overheating assessment for the Kew Red and Yellow project. Six (A-F) options have been tested to demonstrate the improvements made to mitigate the risk of overheating within the sample units.

Table 1 summarises the results for the Base case and the remaining options undertaken to mitigate the risk of overheating.

Table 7. Summary of results for Base case and each option

Ro	oom name	Base case (Opt A)	Opt B	Opt C	Opt D	Opt E	Opt F
		Base case	Curtains applied to closed glazing	Reasonable openings	Reduce g-value	Mechanical ventilation	External Overhang
	F04 01Livingroom	X	x	x	✓	✓	✓
F2 01	F02 01Bed01	X	x	✓	1	✓	✓
	F02 01Bed02	X	X	✓	1	✓	✓
	F02 05Livingroom	x	x	✓	✓	✓	✓
F2 05	F02 05Bed01	X	X	✓	1	✓	✓
	F02 05Bed02	X	X	✓	✓	✓	✓
	F02 09Livingroom	X	x	✓	✓	✓	✓
F2 09	F02 09Bed01	X	x	✓	✓	✓	✓
	F02 09Bed02	X	x	✓	✓	✓	✓
	F02 13Livingroom	x	x	✓	✓	✓	✓
F2 13	F02 13Bed01	X	x	✓	✓	✓	✓
	F02 13Bed02	X	x	✓	✓	✓	✓
, F2	F02 15Livingroom	x	x	X	✓	✓	✓
15	F02 15Bed01	X	x	X	✓	✓	✓
	F02 15Bed02	X	x	✓	✓	✓	✓
F2	F02 19Livingroom	x	x	X	X	x	✓
19	F02 19Bed01	X	X	X	1	✓	✓
	F04 01Livingroom	x	X	x	x	X	✓
F4 01	F04 01Bed01	X	X	✓	✓	✓	√
	F04 01Bed02	X	X	✓	✓	✓	✓
	F05 03	X	X	X	✓	✓	✓
F5 03	-	X	X	✓	1	✓	✓
	-	X	X	✓	1	✓	✓
	F05 08	X	X	X	X	X	✓
F5 08	-	X	X	✓	✓	✓	✓
	-	X	X	✓	✓	✓	✓
Rooms passed		0/27	0/27	19/27	24/27	24/27	0/27

Page 239 AECOM

Units passed 0/9 0/9 3/9 6/9 6/	0/9
---------------------------------	-----

Overall, to mitigate the risk of overheating according to TM 59,

- External windows have been reduced from a g-value of 0.55 to 0.45;
- Cream Holland linen curtains have been applied to the glazing locations; these have been applied to glazing locations that do not open and in such a way that they do not block the openable glazing areas;
- The sample assessment has shown that some units benefit from the increased air changes provided by the MVHR;
- and that overhanging local shades area beneficial on some critical south facing rooms.

Page 240 AECOM

2. Introduction

For London domestic developments the GLA requires an analysis using CIBSE TM59 to mitigate the risk of overheating. CIBSE TM59 uses the following design comfort criteria:

- CIBSE TM52: Limits of thermal comfort: avoiding overheating in European buildings (2013) provides the principles of thermal comfort and should be the main reference for any additional detail. TM52 is based on the concept of adaptive thermal comfort. Instead of there being an absolute summertime limit, the limiting threshold is a dynamic number varying according to external weighted mean temperatures. This recognises that occupant comfort varies with external conditions.
- CIBSE Guide A: Environmental design (2015a) includes advice regarding sleep quality (that may be compromise at temperatures above 24°C), and recommends peak bedroom temperatures should not exceed an absolute threshold of 26°C.

CIBSE TM59 states two criteria to assess if a predominantly naturally ventilated flat is overheating:

- A. For living rooms, kitchen and bedrooms: the number of hours during which the temperature difference between the temperature threshold and the internal operative temperature is greater than or equal to one degree (K) during the period May to September inclusive shall not be more than 3 percent of occupied hours. (CIBSE TM52 Criterion 1: Hours of exceedance).
- B. For bedrooms only: during the sleeping hours the operative temperature in the bedroom from 10 pm to 7 am shall not exceed 26 °C for more than 1% of annual sleeping hours.

Criteria 2 and 3 of CIBSE TM52 may fail to be met, but both (A) and (B) above must be passed for all relevant rooms.

The bedrooms and living/kitchen rooms were assessed under 'category I' which is required for young and infirm occupants.

9 out of 89 units have been selected from the development as sample units for the overheating assessment. Figure 2, 2 and 3 shows the sample units highlighted in red for this assessment. These have been selected to be appropriate to represent the development.

IES software version 2017.4.0.0 has been used to carry out the overheating analysis.

Page 241 AECOM

Page 242 AECOM

Page 243 AECOM

Page 244 AECOM

3. Model Geometry

The drawings below were used to build the geometry.

Table 8. Drawings used to build the model

Drawing type	File Name	Date	Revision	Description
Floor plans	17093 - KEW_ARC-Plano - PA2-01 - OVERVIEW PLAN LEVEL GROUND.dwg	2018-08-06	G	Overview Plan Ground
	17093 - KEW_ARC-Plano - PA2-02 - OVERVIEW PLAN TYPICAL LEVEL 1 - 3.dwg	2018-08-06	G	Overview Level 1 - 3
	17093 - KEW_ARC-Plano - PA2-03 - OVERVIEW PLAN LEVEL 4.dwg	2018-08-06	G	Overview Level 1 - 3
	17093 - KEW_ARC-Plano - PA2-04 - OVERVIEW PLAN LEVEL 5.dwg	2018-08-06	G	Overview Level 1 - 3
	17093 - KEW_ARC-Plano - PA2-05 - OVERVIEW PLAN LEVEL ROOF.dwg	2018-08-06	F	Overview Level Roof
	17093 - KEW_ARC-Plano - PA2-10 - GENERAL ARRANGEMENT- LEVEL GROUND NORTH.dwg	2018-08-06	D	North half of Ground Floor
	17093 - KEW_ARC-Plano - PA2-11 - GENERAL ARRANGEMENT- LEVEL GROUND SOUTH.dwg	2018-08-06	D	South half of Ground Floor
	17093 - KEW_ARC-Plano - PA2-12 - GENERAL ARRANGEMENT- LEVEL 1 NORTH.dwg	2018-08-06	С	North half of Level 1
	17093 - KEW_ARC-Plano - PA2-13 - GENERAL ARRANGEMENT- LEVEL 2-3 NORTH.dwg	2018-08-06	D	North half of Level 2-3
	17093 - KEW_ARC-Plano - PA2-14 - GENERAL ARRANGEMENT- LEVEL 2-3 SOUTH.dwg	2018-08-06	D	South half of Level 2-3
	17093 - KEW_ARC-Plano - PA2-15 - GENERAL ARRANGEMENT - LEVEL 4 NORTH.dwg	2018-08-06	D	North half of Level 4
	17093 - KEW_ARC-Plano - PA2-16 - GENERAL ARRANGEMENT- LEVEL 4 SOUTH.dwg	2018-08-06	D	South half of Level 4
	17093 - KEW_ARC-Plano - PA2-17 - GENERAL ARRANGEMENT- LEVEL 5 NORTH.dwg	2018-08-06	D	North half of Level 5
	17093 - KEW_ARC-Plano - PA2-18 - GENERAL ARRANGEMENT- LEVEL 5 SOUTH.dwg	2018-08-06	D	South half of Level 5
Elevations	17093 - KEW_ARC-Plano - PA3-03 - PROPOSE ELEVATIONS - MELLIS AVE (WEST).dwg	2018-08-06	D	West Elevation
	17093 - KEW_ARC-Plano - PA3-04 - PROPOSE ELEVATIONS - SOUTH.dwg	2018-08-06	D	South Elevation
	17093 - KEW_ARC-Plano - PA3-05 - PROPOSE ELEVATIONS - RIVER THAMES (EAST).dwg	2018-08-06	В	East Elevation

Page 245 AECOM

	17093 - KEW_ARC-Plano - PA3-06 - PROPOSE ELEVATIONS - NORTH.dw	2018-08-06	В	North Elevation
Sections	17093 - KEW_ARC-Plano - PA4-02 - PROPOSE SECTION - A+ B.dwg	2018-08-06	D	Sections
Summary	180806 KEW DRAWINGS.pdf	NA	NA	Summary document with plans, elevations and sections in pdf.
Site Plan	17093 - KEW_ARC-Plano - PA1-04 - SITE PLAN.dwg	NA	NA	Site Plan

3.1 Model image

Figure 5, is a screenshot taken from the IES thermal model of Option F.

4. Key input data

4.1 **Building Fabric**

The thermal performance and the build-up of the building fabric are summarised in Table 9.

Table 9. Opaque fabric elements used in model

Element	Description	Average overall U-value including thermal bridging (W/m²K)	
Ground Floor	Ground and exposed floors	0.12	
Internal floor/ceiling	Uninsulated concrete floor slab	1.06	
Internal partitions	Timber with air cavity and plasterboard	1.78	
Roof	Used in samples exposed to the roof	0.13	

Page 246 AECOM

		Average overall	
Element	Description	U-value including	
		thermal bridging (W/m²K)	
External Wall	Used for all walls that face the external	0.18	

Table 10. Glazed fabric elements used in model

Glazing type	U-value including frame (W/m²K)	g-value (EN 410)	Light transmittance	Frame factor (%)
External window (double glazed)	1.4	0.45 (0.55*)	0.60	20

*Note:

0.55 was used in the base case run (option A) and Options B and C,

0.45 was used in Option D, Option E and Option F.

4.2 Thermal templates

4.2.1 Room conditions

As recommended in CIBSE TM 52, the sample dwellings are assessed as "free-running"; therefore, there are no heating or cooling set points in the model.

4.2.2 Internal gains and mechanical ventilation

Internal gains were input based on the guidance provided by CIBSE TM 59; this provides a set of profiles that represent reasonable usage patterns for a dwelling suitable for evaluating overheating risk.

The mechanical ventilation rate of 0.6 L/s/m² is based on the boost ventilation provision provided by the MVHR units proposed in the specification.

The table below describes the model inputs used for the rooms types tested in this overheating assessment.

Bedroom (single)

Table 11. Bedroom (double) internal gains and mechanical ventilation

Input/Gain	Model input	Weekly profile
Lighting	2 W/m²	100% on 1800-2300 off on other times
Occupancy	1 person @ 75 W/person sensible/ 55 W/person latent	70% on 2300-0800 100% on 0800-0900 and 2200-2300 50% on 0900-2200
Equipment	80 W	100% on 0800-2300 12.5% on 2300-0800 (background gain)
Mechanical ventilation	0.6 l/s/m²	On continuously

Bedroom (double)

Page 247 AECOM

Table 12. Bedroom (double) internal gains and mechanical ventilation

Input/Gain	Model input	Weekly profile
Lighting	2 W/m²	100% on 1800-2300 off on other times
Occupancy	2 people @ 75 W/person sensible/ 55 W/person latent	70% on 2300-0800 100% on 0800-0900 and 2200-2300 50% on 0900-2200
Equipment	80 W	100% on 0800-2300 12.5% on 2300-0800 (background gain)
Mechanical ventilation	0.6 l/s/m²	On continuously

Living/Kitchen (1 bedroom)

Table 13. Living/Kitchen internal gains mechanical ventilation

Input/Gain	Model input	Weekly profile
Lighting	2 W/m²	100% on 1800-2200 off on other times
Occupancy	1 person @ 75 W/person sensible/ 55 W/person latent	100% on 0900-2200 off on other times
Equipment	450 W	100% on 1800-2000 44% on 2000-2200 24% on 0900-1800 and 2200-2400 19% on 0000-0900
Mechanical ventilation	0.6 l/s/m²	On continuously

Living/Kitchen (2 bedrooms)

Table 14. Living/Kitchen internal gains mechanical ventilation

Input/Gain	Model input	Weekly profile
Lighting	2 W/m²	100% on 1800-2200 off on other times
Occupancy	2 people @ 75 W/person sensible/ 55 W/person latent	100% on 0900-2200 off on other times
Equipment	450 W	100% on 1800-2000 44% on 2000-2200 24% on 0900-1800 and 2200-2400 19% on 0000-0900
Mechanical ventilation	0.6 l/s/m²	On continuously

Living/Kitchen (3 bedrooms)

Table 15. Living/Kitchen internal gains mechanical ventilation

Input/Gain	Model input	Weekly profile
Lighting	2 W/m²	100% on 1800-2200 off on other times
Occupancy	3 people @ 75 W/person sensible/ 55 W/person latent	100% on 0900-2200 off on other times

Page 248 AECOM

Input/Gain	Model input	Weekly profile
		100% on 1800-2000 44% on 2000-2200
Equipment	450 W	24% on 0900-1800 and 2200-2400 19% on 0000-0900
Mechanical ventilation	0.6 l/s/m²	On continuously

<u>Unoccupied areas (Apartment hall, bathroom, riser/void and store)</u>

There are no internal gains or mechanical ventilation applied in the unoccupied areas as these rooms are not assessed for their comfort performance but included within the thermal model in order to provide suitable adjacent conditions for the assessed rooms.

4.3 Infiltration rate

The infiltration rate of 0.034 Ac/hr was converted from the design air permeability of 3 m³/hr/m² using the TM 23 method. The infiltration rate is applied to all zones.

4.4 Internal shading device

No internal shading device has been applied in the base case model. Cream Holland linen curtains were introduced in Option B. These curtains have a shading coefficient of 0.4 and short-wave radiant fraction of 0.3 and are modelled as drawn across the closed area of windows. The open area of the windows is left without curtains to allow air to freely circulate between the room and the outside environment.

4.5 Openings

Natural ventilation is accounted for using MacroFlo and openable windows. MacroFlo analyses the infiltration and natural ventilation in buildings by using a zonal airflow model to calculate bulk air movement in and through the building driven by wind and buoyancy induced pressures. MacroFlo simulates air flow driven by wind pressure, and buoyancy forces. It models large air volumes and can simulate air flow through building elements based on the opening size, type and location.

Internal doors in the living/kitchen rooms are open when occupied while the bedroom internal doors are only open when the occupants are awake. It is assumed that the internal bathroom doors are opened when the living/kitchen rooms are occupied.

The opening strategy for living rooms and bedrooms are different. For the Living rooms, the opening strategy is based on a 25% vertical strip of window that can slide or tilt open. The remaining 75% has the aforementioned blind behind the window.

Table 16 summarises the openings in the model.

Table 16. Openings in model

Opening type	Opening category	Openable area of window in model (%)	Max angle of openable pane (°)	Application
Opening bedroom full height window	Side hung	90%	90	Full height windows found in the bedrooms

Page 249 AECOM

Opening type	Opening category	Openable area of window in model (%)	Max angle of openable pane (°)	Application
Opening living room full height window	Side hung	25%	90	Full height windows found in the living rooms that are defined as openable.
Remaining openings	Closed openings	0%	0	Sealed openings (e.g. bathroom windows, windows in corridors, windows not openable in the living room, etc.)

4.6 Weather file

The weather file "London_LWC_DSY1_2020High50.epw" has been used in accordance with CIBSE TM59 methodology. The following wording found in TM 49 decided the use of the London LWC weather file, "The relative sparsity of temperature observations stations in the London area makes precise definitions of these boundaries difficult and where there is any doubt conservative choices should be made, i.e. to use the next warmest more central weather station."

4.7 Summer elevated air speed

CIBSE TM59 states that the summer elevated air speed must be set to 0.1 m/s unless there is a ceiling fan or other means of reliable generating air movement. This overheating assessment assumed 0.1 m/s air speed.

4.8 Corridors and circulation spaces

Corridors have not been modelled because of the proposed system for the development is a heat pump. The heat pump uses an ambient temperature loop; the heat transfer medium is then compressed to the relevant higher temperature within the dwelling.

5. Overheating Results and Mitigation

Table 17 summarises the results for the Base case and the remaining options undertaken to mitigate the risk of overheating.

Table 17. Summary of results for Base case and each option

	Room	n name	Base case (Opt A)	Opt B	Opt C	Opt D	Opt E	Opt F
			Base case	Curtains applied to closed glazing	Reasonabl e openings	Reduce g- value	Mechanical ventilation	External Overhang
		F04 01Livingroom	x	x	x	✓	✓	✓
	F2 01	F02 01Bed01	x	x	✓	√	1	√
		F02 01Bed02	x	x	✓	1	1	1
F2 05		F02 05Livingroom	X	X	✓	✓	√	✓
	F2 05	F02 05Bed01	x	x	✓	√	1	✓
'		F02 05Bed02	x	x	✓	√	1	√
		F02 09Livingroom	x	x	✓	✓	✓	✓
F2 09	F2 09	F02 09Bed01	x	x	✓	1	1	1
	F02 09Bed02	х	x	✓	√	1	✓	
	F2 13	F02 13Livingroom	x	X	✓	✓	√	✓

Page 250 AECOM

		1					
	F02 13Bed01	x	x	✓	✓	✓	✓
	F02 13Bed02	x	x	✓	✓	✓	✓
	F02 15Livingroom	X	X	X	✓	✓	✓
F2	15 F _{02 15Bed01}	x	x	X	✓	√	✓
	F02 15Bed02	X	x	✓	✓	√	✓
F2	F02 19Livingroom	X	X	X	x	X	✓
	F02 19Bed01	x	x	X	✓	✓	✓
	F04 01Livingroom	X	X	X	x	X	✓
F4	O1 F04 01Bed01	x	x	✓	✓	✓	✓
	F04 01Bed02	X	x	\checkmark	√	√	✓
	F05 03	x	x	X	✓	✓	✓
F5	03 _	x	x	✓	✓	√	✓
	-	x	x	√	1	1	✓
	F05 08	x	x	X	X	X	✓
F5	. 08	x	x	✓	1	√	✓
	-	x	x	√	√	√	✓
F	Rooms passed	0/27	0/27	19/27	24/27	24/27	0/27
	Units passed	0/9	0/9	3/9	6/9	6/9	0/9

Detailed results can be found in Appendix F.

9 units out of 89 units in the development have been selected as sample units for the overheating assessment. A unit is considered at risk of overheating if it fails in any of the TM59 criteria. Six (A-F) options have been tested to demonstrate the improvements made to mitigate the risk of overheating within the sample units.

Following the methodology laid out in CIBSE TM59 and using the drawings provided with the key inputs listed in the previous sections, a specification was developed for the base case option. The base case has a higher g-value than stated in the previous section. The Base case assumes that in each living room, 25% of each window's glazing area is openable. The Base case (Option A) and Option B show that all flats fail the assessment. Options C improve the development and many more of the rooms pass the assessment but only a third of the units pass overall. Option D shows that mechanical ventilation almost passes all the assessed rooms and units, and Appendix F shows that the assessment gets closer to passing when using increased mechanical ventilation in Option E. Finally, external shades are required to pass all the assessed rooms and units.

Descriptions of the different solutions that have been tested to mitigate the overheating are as follows:

Option B applies the internal Cream Holland linen curtains to all the closed glazing areas in all the sample assessments. The internal Cream Holland linen curtains should be applied on all the glazing locations; it must be applied to glazing locations that do not open and in such a way that they do not block the openable glazing areas. For living rooms it assumes that the remaining 75% that is not openable is covered by the curtains. The curtains have a shading coefficient of 0.4 and short-wave radiant fraction of 0.3 and are

Page 251 AECOM

assumed to be down or "on" all the time in the model. This option is built upon the model developed for the base case (Option A).

- Option C makes reasonable assumptions on further openings on the façade to all the sample assessments, for this option, the bedroom windows have been made fully openable. In Option B, all bedroom windows were closed with curtains on them. In this option, all the bedroom windows are only closed with curtains on them between 08:00-19:00. Outside these hours there are no curtains and the windows are fully openable. It is assumed they open inwards or slide and that there is a Juliette balcony for safety. This option includes all the improvements made in Option B.
- Option D reduces the g-value of the glazed elements from 0.55 to 0.45. This
 option includes all the improvements made in Option C.
- Option E introduces an extract of 0.6l/s/m² to all the occupied spaces on all the sample assessments. This represents a MVHR boost bypass system that should meet this flowrate requirement. This option includes all the improvements made in Option D.

All the tested solutions were not sufficient to mitigate the risk of overheating for the sample units and further solutions had to be explored.

The below solution has been further explored to try to mitigate the risk of overheating:

Option F, to pass the final few rooms failing the assessment. A overhang was applied strategically as shown below in Figure 5, on the samples still failing the assessment. The overhang must protrude 1.6 meters from the glass pane to ensure a pass. These overhangs were required to pass the final failing rooms against the TM 59 criteria. Alternative solar shading options that provide an equivalent amount of shading can be reviewed at later stages to provide similar protection from adverse solar gains.

Page 252 AECOM

Figure 6. South view of the model with yellow circles around the overhangs included in option F.

6. Conclusion and Recommendations

To mitigate the risk of overheating according to TM 59, the glass used on the thermal line of the building has been reduced from a g-value of 0.55 to 0.45; the internal Cream Holland linen curtains should be applied on all the glazing locations, it must be applied to glazing locations that do not open and in such a way that they do not block the openable glazing areas. The sample assessment has shown that some units benefit from the increased air changes provided by the MVHR and that overhanging local shades need to be applied to some critical south facing rooms.

Appendix F shows that with all the mitigation options presented above Option F will ensure that the modelled development will pass the TM 59 assessment. It should be highlighted that Option F includes all the improvements from the previous options. Juliette balconies are assumed in the bedrooms that allows for the floor to ceiling height windows to be fully openable. Furthermore, Cream Holland linen curtains are assumed in this model to stop the solar gains during daylight hours. Finally the overhang that has been proposed must be 1.6m from the glass pane on the façade. This must be in place especially at the south facing facade to ensure the final sample rooms pass the TM 59 assessment.

Page 253 AECOM

Appendix F TM59 Results

Option C

Table 18. Criterion A Option C

Room Name	Criteria 1 (%Hrs Top- Tmax>=1K)	Criteria 2 (Max. Daily Deg.Hrs)	Criteria 3 (Max. DeltaT)	Criteria failing	TM 59 Pass/ Fail
F02 05Livingroom	2.6	30	4	2	Pass
F02 09Livingroom	2.7	22	3	2	Pass
F02 13Livingroom	2.6	24	3	2	Pass
F04 01Livingroom	5.4	30	4	1 & 2	Fail
F05 03	3.4	34	4	1 & 2	Fail
F05 08	5.9	43	5	1 & 2 & 3	Fail
F02 15Livingroom	3	28	4	1 & 2	Fail
F02 19Livingroom	4.4	28	4	1 & 2	Fail
F02 01Livingroom	3.1	27	4	1 & 2	Fail

Table 19. Criterion B Option C

Room name	Total hours over 26°C	Criteria 1 (%Hrs Top-Tmax>=1K)	Pass/fail
F02 01Bed01	14	1	Pass
F02 01Bed02	27	1.7	Pass
F02 05Bed01	28	1	Pass
F02 05Bed02	28	1.4	Pass
F02 09Bed01	26	1	Pass
F02 09Bed02	31	2	Pass
F02 13Bed01	32	1.1	Pass
F02 13Bed02	32	1.7	Pass
F02 15Bed01	16	4.1	Fail
F02 15Bed02	27	2.9	Pass
F04 01Bed01	17	2.6	Pass
F04 01Bed02	32	1.6	Pass
F02 19Bed01	34	1.7	Fail

Page 254 AECOM

Option D

Table 20. Criterion A Option D

Room Name	Criteria 1 (%Hrs Top- Tmax>=1K)	Criteria 2 (Max. Daily Deg.Hrs)	Criteria 3 (Max. DeltaT)	Criteria failing	TM 59 Pass/ Fail
F02 05Livingroom	2.3	28	4	2	Pass
F02 09Livingroom	2.2	20	3	2	Pass
F02 13Livingroom	2.4	24	3	2	Pass
F04 01Livingroom	3.9	27	4	1 & 2	Fail
F05 03	2.8	33	4	2	Pass
F05 08	4.7	37	4	1 & 2	Fail
F02 15Livingroom	2.7	26	3	2	Pass
F02 19Livingroom	3.2	27	4	1 & 2	Fail
F02 01Livingroom	2.9	25	3	2	Pass

Table 21. Criterion B Option D

Room name	Total hours over 26°C	Criteria 1 (%Hrs Top-Tmax>=1K)	Pass/fail
F02 01Bed01	13	0.8	Pass
F02 01Bed02	26	1.5	Pass
F02 05Bed01	28	0.9	Pass
F02 05Bed02	28	1.2	Pass
F02 09Bed01	26	0.9	Pass
F02 09Bed02	30	1.7	Pass
F02 13Bed01	32	1	Pass
F02 13Bed02	32	1.4	Pass
F02 15Bed01	16	2.9	Pass
F02 15Bed02	26	1.9	Pass
F04 01Bed01	16	1.7	Pass
F04 01Bed02	31	1.1	Pass
F02 19Bed01	33	1.3	Fail

Page 255

Option E

Table 22. Criterion A Option E

Room Name	Criteria 1 (%Hrs Top- Tmax>=1K)	Criteria 2 (Max. Daily Deg.Hrs)	Criteria 3 (Max. DeltaT)	Criteria failing	TM 59 Pass/ Fail
F02 05Livingroom	2.2	26	4	2	Pass
F02 09Livingroom	1.9	20	3	2	Pass
F02 13Livingroom	2.3	24	3	2	Pass
F04 01Livingroom	3.6	27	4	1 & 2	Fail
F05 03	2.7	32	4	2	Pass
F05 08	4.4	37	4	1 & 2	Fail
F02 15Livingroom	2.6	25	3	2	Pass
F02 19Livingroom	3	25	4	1 & 2	Fail
F02 01Livingroom	2.7	25	3	2	Pass

Table 23. Criterion B Option E

Room name	Total hours over 26°C	Criteria 1 (%Hrs Top-Tmax>=1K)	Pass/fail
F02 01Bed01	13	0.8	Pass
F02 01Bed02	26	1.4	Pass
F02 05Bed01	27	0.9	Pass
F02 05Bed02	28	1.2	Pass
F02 09Bed01	23	0.8	Pass
F02 09Bed02	30	1.3	Pass
F02 13Bed01	32	0.9	Pass
F02 13Bed02	30	1.4	Pass
F02 15Bed01	16	2.5	Pass
F02 15Bed02	23	1.7	Pass
F04 01Bed01	15	1.6	Pass
F04 01Bed02	30	1.1	Pass
F02 19Bed01	32	1.1	Pass

Page 256 AECOM

Option F

Table 24. Criterion A Option F

Room Name	Criteria 1 (%Hrs Top- Tmax>=1K)	Criteria 2 (Max. Daily Deg.Hrs)	Criteria 3 (Max. DeltaT)	Criteria failing	TM 59 Pass/ Fail
F02 05Livingroom	2.2	26	4	2	Pass
F02 09Livingroom	1.9	19	3	2	Pass
F02 13Livingroom	2.3	24	3	2	Pass
F04 01Livingroom	2.5	22	4	2	Pass
F05 03	2.5	32	4	2	Pass
F05 08	2.7	31	4	2	Pass
F02 15Livingroom	2.6	25	3	2	Pass
F02 19Livingroom	2.9	24	4	2	Pass
F02 01Livingroom	2.6	25	3	2	Pass

Table 25. Criterion B Option F

Room name	Total hours over 26°C	Criteria 1 (%Hrs Top-Tmax>=1K)	Pass/fail
F02 01Bed01	13	0.8	Pass
F02 01Bed02	26	1.4	Pass
F02 05Bed01	27	0.9	Pass
F02 05Bed02	28	1.2	Pass
F02 09Bed01	23	0.7	Pass
F02 09Bed02	30	1.3	Pass
F02 13Bed01	32	0.9	Pass
F02 13Bed02	30	1.4	Pass
F02 15Bed01	16	2.4	Pass
F02 15Bed02	23	1.7	Pass
F04 01Bed01	14	1	Pass
F04 01Bed02	29	0.9	Pass
F02 19Bed01	32	1.1	Pass

Page 257 AECOM

invest & change