

# Sustainability & Energy Statement

Arlington Works, 23 Arlington Road, Twickenham (With Amendments Highlighted in Yellow)

Prepared by Ivan Ball

Bluesky Unlimited 39 Marsh Baldon Oxfordshire OX44 9LP

www.blueskyunlimited.co.uk

1<sup>st</sup> November 2018





# Table of Contents

| Execut                               | ive Sum                              | mary                                                                                                                                                                                                  | 3  |
|--------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.0                                  | Introdu                              | uction                                                                                                                                                                                                | 5  |
| 2.0                                  | Planni                               | ng policies                                                                                                                                                                                           | 6  |
| 3.0                                  | Asses                                | sment methodology                                                                                                                                                                                     | 11 |
| 4.0                                  | Propos                               | sal                                                                                                                                                                                                   | 12 |
| 5.0                                  | Energy                               | / Efficiency                                                                                                                                                                                          | 13 |
| 5.1                                  | Deman                                | A definition (Be Lean)     Passive design measures     Active design measures                                                                                                                         | 13 |
| 5.2                                  | Establi                              | <ul> <li>Active design measures</li> <li>ishing Energy Demand and Emissions</li> <li>SAP calculations</li> <li>SBEM calculations</li> </ul>                                                           | 16 |
| 5.3                                  | Overhe                               | eating Assessment                                                                                                                                                                                     | 19 |
| 5.4                                  | Low-C                                | arbon and Renewable Technologies (Be Clean and Be Green)                                                                                                                                              | 21 |
| 5.5                                  | Summ<br>Techno                       | ary of Calculations and Proposals for Low-carbon and Renewable<br>ologies                                                                                                                             | 25 |
| 6.0                                  | Climat                               | <ul> <li>Change Adaption and Water Resources</li> <li>Sustainable drainage systems (SuDs)</li> <li>Water efficiency measures</li> </ul>                                                               | 26 |
| 7.0                                  | Materia                              | als                                                                                                                                                                                                   | 28 |
| Append<br>Append<br>Append<br>Append | dix 1:<br>dix 2:<br>dix 3:<br>dix 4: | BREEAM Pre-Assessment Estimator<br>London Borough of Richmond Sustainable Construction Checklist<br>Roof Plan showing Indicative Photovoltaic Panel Locations<br>Sample BRUKL Calculations – baseline |    |

- Appendix 5: Sample SAP Calculations baseline
- Appendix 6: Details of an Air Source Heat Pump



#### Executive Summary

This revision to the Sustainability and Energy Statement has been amended in response to queries raised by Climate Integrated Solutions acting for LBRuT. The Statement has been prepared in support of a planning application to provide five commercial units totalling 610 m<sup>2</sup> and 24, 1, 2 and 3-bedroom apartments at the Arlington Works, 23 Arlington Road, Twickenham. It includes an energy demand assessment showing how selected energy efficiency, low carbon and renewable energy measures have been incorporated into the development design.

Working drawings have yet to been produced but SAP calculations have been prepared for a sample of the apartments based upon an agreed construction specification and the detailed planning drawings and a SBEM calculation for a similar unit built to a similar specification has been used for the commercial accommodation. When aggregated across all development these calculations provide an estimate of the total baseline emissions. The calculations used are attached as Appendices 4 & 5.

It is proposed to enhance the fabric insulation standards of the buildings and the energy modelling has assumed the installation of an air source heat pump into each of the five commercial units. The specific unit will be selected at the construction stage but details of an appropriate unit have been attached as Appendix 6. These systems will provide space heating and cooling if required. The apartments will be provided with individual gas condensing boilers. In addition it is proposed to install a photovoltaic array totalling 19.8 kW. This will be comprised of 66 x 300W panels and a Roof Layout is attached as Appendix 3 showing the possible location of the panels. The layout is indicative but demonstrates the quantity of panels can be accommodated. A sketch is also attached in Appendix 3 showing the spacing required between rows to avoid overshadowing.

There is currently no district heating network serving the site and we understand none is planned in the foreseeable future. The site does not have sufficient baseload to efficiency sustain a communal heating system either with or without a combined heat and power unit and therefore neither is proposed.

The combined reduction as a result of the energy efficiency measures (Be Clean) and the use renewable technologies (Be Green) can be summarised as follows;

|                                                       | Total<br>Emissions          | %<br>Reduction                  |
|-------------------------------------------------------|-----------------------------|---------------------------------|
|                                                       | kg CO <sub>2</sub> per year |                                 |
| Baseline (Building Regulations TER) - Commercial      | <mark>12,139</mark>         | •                               |
| Baseline (Building Regulations TER) - Residential     | <mark>27,182</mark>         |                                 |
| Baseline (Building Regulations TER) - Total           | <mark>39,321</mark>         |                                 |
| Be Lean - after energy efficiency (BER) - Commercial  | <mark>9,882</mark>          | <mark>18.59%</mark>             |
| Be Lean - after energy efficiency (DER) - Residential | <mark>25,182</mark>         | <mark>7.36%</mark>              |
| Be Lean - after energy efficiency (BER/DER) - Total   | <mark>35,064</mark>         | <u>10.83%</u>                   |
| Be Green - after efficiency and renewable energy      | <mark>25,494</mark>         | <mark>35.16%</mark><br>(of TER) |



The residual carbon dioxide emissions are **25.494 tonnes** and therefore the carbon offset payment required by the London Plan is **£44,089**. The Council's Consultant has asked for confirmation of the residual emissions from just the residential element. The photovoltaic array is proposed to be installed on the roof of both residential buildings and therefore the residual emissions are calculated as **15.612 tonnes**. The carbon offset for the residential element is therefore calculated as **£28,102**.

The commercial accommodation will achieve BREEAM, 'Excellent' and a Pre-Assessment Estimator is included as Appendix 1.

The London Borough of Richmond Sustainable Construction Checklist is attached as Appendix 2.

The summer overheating risk to the most vulnerable apartments is assessed as 'Medium'. This meets the requirements of the Building Regulations for overheating criteria.



# 1.0 Introduction

This report has been commissioned by Sharpe Refinery Service (Hydro-Carbons) Ltd and provides a Sustainability and Energy Statement for the construction of five commercial units totalling 610 m<sup>2</sup> in floor space and 24, 1, 2 & 3-bedroom apartments on land at Arlington Works, 23 Arlington Road, Twickenham.

The report describes the methodology used in assessing the development and the initiatives proposed.

The buildings have been designed and will be constructed to reduce energy demand and carbon dioxide emissions. The objective is to reduce the energy demand to an economic minimum by making investment in the parts of the buildings that have the greatest impact on energy demand and are the most difficult and costly to change in the future, namely the building fabric. Once cost effective structures have been designed, low-carbon and renewable technologies will be considered for installation to provide heat and/or electricity.

The following hierarchy will be followed:

- Lean reduce demand and consumption
- Clean increase energy efficiency
- Green provide low carbon renewable energy sources

The report has been prepared by Ivan Ball of Bluesky Unlimited who are sustainability consultants.



# 2.0 Planning Policy Context

#### **National Policy**

The UK Government published its sustainable development strategy in 1999 entitled "A better quality of life: A strategy for sustainable development in the UK". This sets out four main objectives for sustainable development in the UK:

- Social progress that recognises the needs of everyone.
- Effective protection of the environment.
- Prudent use of natural resources.
- Maintenance of high stable levels of economic growth and employment.

Sustainable Communities: Building for the Future, known colloquially as the Communities Plan was published in 2003. The Plan sets out a long-term programme of action for delivering sustainable communities in both urban and rural areas. It aims to tackle housing supply issues in parts of the country, low demand in other parts and the quality of our public spaces. The Communities Plan describes sustainable communities as: Active, inclusive and safe, well run, environmentally sensitive, well designed and built, well connected, thriving, well served and fair for everyone.

The most relevant national planning policy guidance on sustainability is set out in:

• National Planning Policy Framework - 2018

Paragraph 148 states;

"The planning system should support the transition to a low carbon future in a changing climate, taking full account of flood risk and coastal change. It should help to: shape places in ways that contribute to radical reductions in greenhouse gas emissions, minimise vulnerability and improve resilience; encourage the reuse of existing resources, including the conversion of existing buildings; and support renewable and low carbon energy and associated infrastructure."



# Regional and Local Policies

The Development Plan comprises the London Plan (2016) and the London Borough of Richmond Local Plan (2018).

London Plan, published March 2016 – the following policies are relevant to the application:

# Policy 5.2 – Minimising carbon dioxide emissions

- A Development proposals should make the fullest contribution to minimising carbon dioxide emissions in accordance with the following energy hierarchy:
  - 1 Be lean: use less energy
  - 2 Be clean: supply energy efficiently
  - 3 Be green: use renewable energy

B The Mayor will work with boroughs and developers to ensure that major developments meet the following targets for carbon dioxide emissions reduction in buildings. These targets are expressed as minimum improvements over the Target Emission Rate (TER) outlined in the national Building Regulations leading to zero carbon residential buildings from 2016 and zero carbon non-domestic buildings from 2019.

Residential and Non-residential buildings:

YearImprovement on 2013 Building Regulations2013 - 201635 per cent

- C Major development proposals should include a detailed energy assessment to demonstrate how the targets for carbon dioxide emissions reduction outlined above are to be met within the framework of the energy hierarchy.
- D As a minimum, energy assessments should include the following details:
  - a calculation of the energy demand and carbon dioxide emissions covered by the Building Regulations and, separately, the energy demand and carbon dioxide emissions from any other part of the development, including plant or equipment, that are not covered by the Building Regulations (see paragraph 5.22) at each stage of the energy hierarchy
  - *b* proposals to reduce carbon dioxide emissions through the energy efficient design of the site, buildings and services
  - c proposals to further reduce carbon dioxide emissions through the use of decentralised energy where feasible, such as district heating and cooling and combined heat and power (CHP)
  - d proposals to further reduce carbon dioxide emissions through the use of on-site renewable energy technologies.



*E* The carbon dioxide reduction targets should be met on-site. Where it is clearly demonstrated that the specific targets cannot be fully achieved on-site, any shortfall may be provided off-site or through a cash in lieu contribution to the relevant borough to be ring fenced to secure delivery of carbon dioxide savings elsewhere.

# Policy 5.3 – Sustainable design and construction

- A The highest standards of sustainable design and construction should be achieved in London to improve the environmental performance of new developments and to adapt to the effects of climate change over their lifetime.
- B Development proposals should demonstrate that sustainable design standards are integral to the proposal, including its construction and operation, and ensure that they are considered at the beginning of the design process.
- C Major development proposals should meet the minimum standards outlined in the Mayor's supplementary planning guidance and this should be clearly demonstrated within a design and access statement. The standards include measures to achieve other policies in this Plan and the following sustainable design principles:
  - a. minimising carbon dioxide emissions across the site, including the building and services (such as heating and cooling systems)
  - b. avoiding internal overheating and contributing to the urban heat island effect
  - c. efficient use of natural resources (including water), including making the most of natural systems both within and around buildings
  - d. minimising pollution (including noise, air and urban runoff)
  - e. minimising the generation of waste and maximising reuse or recycling
  - f. avoiding impacts from natural hazards (including flooding)
  - g. ensuring developments are comfortable and secure for users, including avoiding the creation of adverse local climatic conditions
  - h. securing sustainable procurement of materials, using local supplies where feasible, and
  - *i.* promoting and protecting biodiversity and green infrastructure.

#### Policy 5.6 – Decentralised energy in development proposals

- A Development proposals should evaluate the feasibility of Combined Heat and Power (CHP) systems.
- *B* Major development proposals should select energy systems in accordance with the following hierarchy:
  - 1 Connection to existing heating or cooling networks
  - 2 Site wide CHP network
  - 3 Communal heating and cooling.
- C Potential opportunities to meet the first priority in this hierarchy are outlined in the London Heat Map tool. Where future network opportunities are identified, proposals should be designed to connect to these networks.



# Policy 5.7 – Renewable Energy

*B* Within the framework of the energy hierarchy (Policy 5.2), major development proposals should provide a reduction in expected carbon dioxide emissions through the use of on-site renewable energy generation, where feasible.

# Policy 5.15 – Water Use and Supplies

- *B* Development should minimise the use of mains water by:
  - a incorporating water saving measures and equipment
  - *b designing residential development so that mains water consumption would meet a target* of 105 litres or less per head per day

# Sustainable Design and Construction SPG – April 2014

The SPG provides Guidance on how schemes should comply with the London Plan and this Sustainability Statement has been prepared in accordance with the Guidance provided.

# London Borough of Richmond

The London Borough of Richmond adopted its new Local Plan on the 3<sup>rd</sup> July 2018 and this supersedes the Core Strategy (2009) and the Development Management Plan (2011).

The following policy is of particular relevance to the topic area of this Statement and has been edited for clarity and relevance to the application in question.

#### Local Plan (2018)

# Policy LP 22 - Sustainable Design and Construction

A. Developments will be required to achieve the highest standards of sustainable design and construction to mitigate the likely effects of climate change. Applicants will be required to complete the following:

- Development of 1 dwelling unit or more, or 100sqm or more of non-residential floor space (including extensions) will be required to complete the Sustainable Construction Checklist SPD. A completed Checklist has to be submitted as part of the planning application.
- 2. Development that results in a new residential dwelling, including conversions, change of use, and extensions that result in a new dwelling unit, will be required to incorporate water conservation measures to achieve maximum water consumption of 110 litres per person per day for homes (including an allowance of 5 litres or less per person per day for external water consumption).
- 3. New non-residential buildings over 100sqm will be required to meet BREEAM 'Excellent' standard.



# Reducing Carbon Dioxide Emissions

B. Developers are required to incorporate measures to improve energy conservation and efficiency as well as contributions to renewable and low carbon energy generation. Proposed developments are required to meet the following minimum reductions in carbon dioxide emissions:

- 1. All new major residential developments (10 units or more) should achieve zero carbon standards in line with London Plan policy.
- 2. All other new residential buildings should achieve a 35% reduction.
- 3. All non-residential buildings over 100sqm should achieve a 35% reduction. From 2019 all major non-residential buildings should achieve zero carbon standards in line with London Plan policy.

Targets are expressed as a percentage improvement over the target emission rate (TER) based on Part L of the 2013 Building Regulations.

- C. This should be achieved by following the Energy Hierarchy:
- 1. Be lean: use less energy
- 2. Be clean: supply energy efficiently
- 3. Be green: use renewable energy

# Decentralised Energy Networks

D. The Council requires developments to contribute towards the Mayor of London target of 25% of heat and power to be generated through localised decentralised energy (DE) systems by 2025. The following will be required:

1. All new development will be required to connect to existing DE networks where feasible. This also applies where a DE network is planned and expected to be operational within 5 years of the development being completed.

Applicants are required to consider the installation of low, or preferably ultra-low, NOx boilers to reduce the amount of NOx emitted in the borough.

Local opportunities to contribute towards decentralised energy supply from renewable and low-carbon technologies will be encouraged where appropriate.



#### 3.0 Assessment Methodology

The baseline energy demand and carbon dioxide emissions for the development have been established using agreed building specifications and the detailed planning drawings.

A number of calculations have been prepared for a representative number of units.

A SBEM calculation prepared for one of the commercial units and the results have been aggregated across all commercial accommodation to provide a total emissions figure.

A range of SAP calculations have been prepared for the representative range of the residential units including a 1-Bedroom apartment of 50.6  $m^2$ , which has been modelled as a ground-floor and mid-floor unit (there are no top-floor 1-Bedroom apartments) and for a 3-Bedroom apartment of 76.1  $m^2$  modelled as a ground, mid and top-floor unit. It is assumed the two duplex apartments will have the same emissions as a top-floor 3-Bedroom unit.

The results from the SAP calculations have been aggregated across units of a similar floor area to deduce the total site emissions.

#### **Emission Factors**

The  $CO_2$  emission factors, where applicable, used throughout this report have been taken from the Building Regulation Approved Document L - 2013.

|                           | kg CO₂/kWh |
|---------------------------|------------|
| Natural Gas               | 0.216      |
| Grid supplied electricity | 0.519      |
| Displaced electricity     | 0.519      |

In assessing this proposal we have also been informed by the following guidance:

# London Sustainability Checklist

# BRE Green Guide to Specification

The Building Research Establishment Green Guide to Specification lists building materials and components, and ranks their potential life cycle environmental impact.



# 4.0 Proposal

The proposal is for the erection of five, commercial units and 24, 1, 2 & 3-bedroom apartments.

The accommodation schedule is;

| Unit Type                  | No. | Area  | Totals  |
|----------------------------|-----|-------|---------|
|                            |     | m²    | m²      |
| Commercial                 |     |       |         |
| Unit 5                     | 1   | 75.2  | 75.2    |
| Unit 3                     | 1   | 133.0 | 133.0   |
| Unit 1                     | 1   | 133.2 | 133.2   |
| Unit 2                     | 1   | 133.8 | 133.8   |
| Unit 4                     | 1   | 134.8 | 134.8   |
| Sub-Total                  | 5   |       | 610.0   |
| Residential                |     |       |         |
| 1-Bedroom apartment        | 5   | 50.6  | 253.0   |
| 2-Bedroom apartment        | 2   | 62.0  | 124.0   |
| 2-Bedroom apartment        | 2   | 62.4  | 124.8   |
| 2-Bedroom apartment        | 1   | 71.5  | 71.5    |
| 2-Bedroom apartment        | 1   | 72.1  | 72.1    |
| 2-Bedroom apartment        | 1   | 74.1  | 74.1    |
| 3-Bedroom apartment        | 4   | 75.7  | 302.8   |
| 3-Bedroom apartment        | 3   | 76.1  | 228.3   |
| 3-Bedroom apartment        | 2   | 76.4  | 152.8   |
| 2-Bedroom apartment        | 1   | 78.0  | 78.0    |
| 3-Bedroom duplex apartment | 1   | 101.0 | 101.0   |
| 3-Bedroom duplex apartment | 1   | 101.1 | 101.1   |
| Sub-Total                  | 24  |       | 1,683.5 |
| Total                      |     |       | 2,293.5 |



# 5.0 Energy Efficiency

#### 5.1 Demand Reduction (Be Lean)

#### Design

The energy performance of a building is affected by its design, construction and use and whilst occupant behaviour is beyond the remit of this statement, better design and construction methods can significantly reduce the life cycle emissions of a building and assist the occupant to reduce consumption.

Sustainable design is not just about incorporating renewable technologies; buildings should be designed at the outset to provide suitable environmental conditions for the occupants whilst also consuming as little energy as practical. It is possible to exceed Building Regulations requirements (Part L - 2013) through demand reduction measures alone, which typically include a combination of passive design measures (e.g. building design and efficient building fabric) and active design measures (e.g. variable speed motors).

#### **Passive Design Measures**

The passive design measures proposed include;

#### Passive Solar Gain

Passive measures include allowing for natural ventilation and exposed thermal mass coupled with high levels of insulation, air tightness and the control of solar gain.

The layout of the buildings are in the context of the shape of the site and surrounding development but broadly the commercial units and homes are arranged to provide all units with either a north-west and south-east or south-west and north-east orientation. There are six single aspect units (1-Bedroom apartments) which benefit from a south-east orientation.

There are no units with a solely northerly aspect and therefore all have access to sunshine at some point throughout the day.

#### **Natural Daylighting**

The orientation and the size of the windows have been optimised to maximise the amount of natural daylight and therefore reduce the demand for artificial lighting.



# Efficient Building Fabric

#### Building Envelope

U-values of the building envelope must meet Building Regulations Part L standards and further improvements to U-values will reduce the building's heating requirements.

There is a commitment to exceed the minimum U-values required by the Building Regulations

Whilst the construction type has not been fixed both the residential and commercial units would suit the use of load bearing walls with either timber I beam or concrete intermediate floors.

The following U-values have been based upon the use of a 300mm load bearing cavity wall with 100mm cavity fully filled with XtraTherm CavityTherm or similar. Ground floors will be insulated with 150mm PIR insulation and flat roofs will be insulated with PIR insulation on top of the roof decking.

Windows are proposed as double glazed with Low 'e' soft coat and argon filled.

It is proposed to set maximum limits for the elemental U-values as follows:

| Element        | Part L<br>Limiting<br>U-values | Proposed<br>U-values | Proposed<br>Improvement |
|----------------|--------------------------------|----------------------|-------------------------|
|                | W/m <sup>2</sup> K             | W/m <sup>2</sup> K   |                         |
| External Walls | 0.30                           | 0.17                 | 43%                     |
| Flat Roofs     | 0.20                           | 0.16                 | 20%                     |
| Ground Floors  | 0.20                           | 0.11                 | 40%                     |
| Windows        | 2.00                           | 1.40                 | 30%                     |

#### Air Leakage

Large amounts of heat are lost in winter through air leakage from a building (also referred to as infiltration or air permeability) often through poor sealing of joints and openings in the building

The Building Regulations set a minimum standard for air permeability of 10 m<sup>3</sup> of air per hour per m<sup>2</sup> of envelope area, at 50Pa. The air tightness standards at this site will target a 60% improvement over the Regulations and will seek to achieve a permeability of less than  $4m^3/hr/m^2$ .

# Thermal Bridging

The significance of Thermal Bridging, as a potentially major source of fabric heat losses, is increasingly understood. Improving the U-values for the main building fabric without accurately addressing the Thermal Bridging is no longer an option and will not achieve the fabric energy efficiency and energy and CO<sub>2</sub> reduction targets set out in this strategy.



Accredited Construction Details (ACD's) have been developed to provide the performance standards required to achieve the higher energy efficiency requirements of the Building Regulations. The bridging losses have been calculated using SAP Appendix K Table 1.

#### Ventilation

As a result of increasing thermal efficiency and air tightness, Building Regulations Approved Document F18 was also revised in 2006 to address the possibility of overheating and poor air quality. It has been assumed that individual mechanical extract ventilation units will be provided to all WCs, bathrooms and shower rooms and that the apartments on the south-eastern side of the main building will benefit from natural ventilation and for those rooms on the north-western side of the main building acoustically damped ventilation units will be installed and ventilation systems will be used to allow windows adjacent to the railway to remain closed when required.

Active Design Measures will include;

#### **Efficient Lighting and Controls**

Throughout the scheme natural lighting will be optimised.

Approved Document L1A requires three in four light fittings (75%) to be dedicated low energy fittings. The development will exceed this and all light fittings will be of a dedicated energy efficient type.

External lighting will be fitted with time controls and light sensors to ensure illumination is restricted to required times. External lighting will be limited to a maximum fitting output of 150w.

#### Heating

Space heating and hot water demand will be provided to the apartments by natural gas fired combination boilers.

The SAP calculations have been modelled on the use of an Alpha Intec combination boiler, which has NOx emissions of 27 mg/kWh and therefore complies with the policy requirements governing boiler emissions.

The space heating to the commercial units is proposed to be provided by air source heat pumps, which could also provide cooling if required. The requirement for cooling will depend on the end use of the unit in question but the BRUKL used to calculate the carbon emissions has assumed cooling is provided to all units and therefore assumes the worse case scenario. The specific unit to be used will be determined at the detailed working drawing stage but an appropriate unit is attached as Appendix 6 showing an example of the type of installation proposed.



# 5.2 Establishing Carbon Dioxide Emissions

#### **Commercial Accommodation**

The baseline emissions for the non-residential space has been established by using a SBEM calculation from similar accommodation built to a similar specification. The calculation used is attached as Appendix 4. Also attached is an alternative BRUKL calculation for another similar unit.

The specification has been assumed as follows and includes an installation of an air source heat pump to provide space heating and cooling:

| Element      | Specification                   |
|--------------|---------------------------------|
| Ventilation  | VRF with mechanical ventilation |
| SFP (W/I/s)  | 1.6                             |
| HR %         | 70                              |
| Heating      | Electric Heat Pump              |
| Efficiency % | 450                             |
| Cooling      | Electric                        |
| Efficiency % | 4.5                             |
| Hot Water    | Electric                        |
| Efficiency % | 100%                            |

The emissions are calculated as follows:

| B1 Accommodation     | TER<br>CO₂<br>Emissions | BER<br>CO <sub>2</sub><br>Emissions |
|----------------------|-------------------------|-------------------------------------|
|                      | kg CO₂ /yr              | kg CO <sub>2</sub> /yr              |
| B1 accommodation     | 19.9                    | 16.2                                |
| Emissions (per year) | 19.9                    | 16.2                                |

#### Residential

SAP calculations have been prepared for a 1-Bedroom Ground-floor and Mid-floor apartment at 50.6  $m^2$ , which are presented as representative of the five 1-Bedroom apartments. A SAP calculation has been prepared for a 3-Bedroom Ground, Mid and Top-floor apartment at 76.1  $m^2$ , which are presented as representative of all 2 and 3-Bedroom apartments.

It is assumed the two, 3-Bedroom Duplex apartments will have similar emissions to the Top-floor 3-Bedroom apartments.



The modelling has been based on the use of a gas combination boiler to provide space and hot water heating. The Building Regulation Compliance Report, TER and DER Worksheets are attached as Appendix 5 but the results can be summarised as follows:

| 1-Bed Ground-floor apartment<br>50.6 m <sup>2</sup> | CO₂<br>TER | CO₂<br>DER |
|-----------------------------------------------------|------------|------------|
|                                                     | kg/m²/yr   | kg/m²/yr   |
| Space heating                                       | 5.92       | 5.79       |
| Water heating                                       | 8.30       | 7.06       |
| Electricity for pumps and fans                      | 0.77       | 0.77       |
| Electricity for lighting                            | 2.43       | 2.43       |
| Total                                               | 17.42      | 16.05      |

| 1-Bed Mid-floor apartment<br>50.6 m <sup>2</sup> | CO₂<br>TER | CO₂<br>DER |
|--------------------------------------------------|------------|------------|
|                                                  | kg/m²/yr   | kg/m²/yr   |
| Space heating                                    | 3.70       | 4.17       |
| Water heating                                    | 8.39       | 7.07       |
| Electricity for pumps and fans                   | 0.77       | 0.77       |
| Electricity for lighting                         | 2.43       | 2.43       |
| Total                                            | 15.29      | 14.44      |

| 3-Bed Ground-floor apartment<br>76.1 m <sup>2</sup> | CO₂<br>TER | CO₂<br>DER |
|-----------------------------------------------------|------------|------------|
|                                                     | kg/m²/yr   | kg/m²/yr   |
| Space heating                                       | 7.82       | 7.27       |
| Water heating                                       | 6.64       | 5.50       |
| Electricity for pumps and fans                      | 0.51       | 0.51       |
| Electricity for lighting                            | 2.28       | 2.28       |
| Total                                               | 17.25      | 15.56      |

| 3-Bed Mid-floor apartment<br>76.1 m <sup>2</sup> | CO₂<br>TER | CO₂<br>DER |
|--------------------------------------------------|------------|------------|
|                                                  | kg/m²/yr   | kg/m²/yr   |
| Space heating                                    | 5.55       | 5.49       |
| Water heating                                    | 6.69       | 5.51       |
| Electricity for pumps and fans                   | 0.51       | 0.51       |
| Electricity for lighting                         | 2.28       | 2.28       |
| Total                                            | 15.03      | 13.79      |



| 3-Bed Top-floor apartment<br>76.1 m <sup>2</sup> | CO₂<br>TER | CO <sub>2</sub><br>DER |
|--------------------------------------------------|------------|------------------------|
|                                                  | kg/m²/yr   | kg/m²/yr               |
| Space heating                                    | 7.23       | 7.53                   |
| Water heating                                    | 6.65       | 5.50                   |
| Electricity for pumps and fans                   | 0.51       | 0.51                   |
| Electricity for lighting                         | 2.28       | 2.28                   |
| Total                                            | 16.67      | 15.82                  |

# **Total Emissions**

Using the above information the total carbon emissions from the site following the energy efficiency measures detailed can be calculated as follows:

|                                                | Area   | TER<br>CO2 | DER/BER<br>CO <sub>2</sub> |
|------------------------------------------------|--------|------------|----------------------------|
|                                                | m²     | kg/year    | kg/year                    |
| Commercial                                     |        |            |                            |
| B1 Office Accommodation                        | 610.0  | 12,139     | 9,882                      |
| Sub-total                                      | 610.0  | 12,139     | 9,882                      |
| Residential                                    |        |            |                            |
| 1-Bed ground-floor apartments                  | 50.6   | 881        | 812                        |
| 1-Bed mid-floor apartments                     | 202.4  | 3,095      | 2,923                      |
| 2 & 3-Bed ground-floor apartments              | 399.0  | 6,883      | 6,208                      |
| 2 & 3-Bed mid-floor apartments                 | 531.7  | 7,991      | 7,332                      |
| 2 & 3-Bed top-floor apartments (inc. duplexes) | 499.8  | 8,332      | 7,907                      |
| Sub-total                                      | 1683.5 | 27,182     | 25,182                     |
| Totals                                         |        | 39,321     | 35,064                     |

The total emissions based upon the TER for the units is assessed as:

• 39,321 kg CO<sub>2</sub> per year

The total emissions based upon the DER and BER for the units is assessed as:

• 35,064 kg CO<sub>2</sub> per year

The reduction in site CO<sub>2</sub> emissions as a result of the energy efficiency measures incorporated in the building is assessed as;

4,257 kg CO<sub>2</sub> per year, which equates to a reduction of 10.83%



# 5.3 Overheating Assessment

#### **Commercial**

Commercial units 3 and 4 only have openings on the north-west elevation and therefore do not have any risk of overheating.

Commercial units 1, 2 and 5 do have existing openings orientated towards the south-east.

|                     | Floor Area (FA)   | Window Area (WA)  | % (FA/WA)           |
|---------------------|-------------------|-------------------|---------------------|
|                     | m²                | m²                |                     |
| Unit 1 Ground-floor | <mark>66.6</mark> | <mark>1.94</mark> | <mark>2.91%</mark>  |
| Unit 1 First-floor  | <mark>66.6</mark> | <mark>3.38</mark> | <mark>5.08%</mark>  |
| Unit 2 Ground-floor | <mark>66.9</mark> | <mark>1.94</mark> | <mark>2.90%</mark>  |
| Unit 2 First-floor  | <mark>66.9</mark> | <mark>6.69</mark> | <mark>10.00%</mark> |
| Unit 5 Ground-floor | <mark>37.6</mark> | <mark>0.88</mark> | <mark>2.34%</mark>  |
| Unit 5 First-floor  | <mark>37.6</mark> | <mark>5.06</mark> | <mark>13.46%</mark> |

As can be seen the percentages of window opening to floor area is low for each unit. Therefore, it is suggested a full TM59 overheating assessment is not required and the risk of overheating to the commercial units is low.

#### Residential

As a consequence of the proximity of railway line to the north-west of the site a number of apartments will require noise attenuation measures. The apartments, which have a façade facing the railway line are all at least dual aspect and therefore the rooms to the south-west, south-east or north-east elevation can benefit from opening windows. In addition the rooms, which are orientated towards the railway line are north-west facing and therefore are not likely to suffer from excessive solar gain. The SAP modelling has assumed windows on the south-west (or north-east) and south-east elevations will be opening and that windows on the north-west elevation will be designed to be closed with ventilation to specific room provided by acoustically damped ventilation units.

The increased thermal mass provided by traditional construction will assist in stabilising summer nighttime temperatures.

In addition, the 'g' value of the glazing has been reduced to 0.63 to reduce solar gain. This glazing has been selected as providing the best balance between winter solar gain to provide passive heating within the apartments and limiting summer solar gain to reduce passive overheating.



# The Overheating Assessment for each of the modelled apartments can be summarised as follows;

|                    | Likelihood | Assessment |        |        |
|--------------------|------------|------------|--------|--------|
|                    | June       | July       | August |        |
| 1-Bed Ground-floor | Slight     | Medium     | Medium | Medium |
| 1-Bed Mid-floor    | Slight     | Medium     | Medium | Medium |
| 3-Bed Ground-floor | Slight     | Medium     | Medium | Medium |
| 3-Bed Mid-floor    | Slight     | Medium     | Medium | Medium |
| 3-Bed Top-floor    | Slight     | Medium     | Medium | Medium |

These results demonstrate the apartments all pass Building Regulations with regards to the overheating criteria.



# 5.4 Low-Carbon and Renewable Technologies (Be Clean and Be Green)

The energy demand established above has been used to test the viability of various low-carbon and renewable technologies as follows.

This section determines the appropriateness of each renewable technology and considers the ability of each technology to comply with the planning requirements as set out above in Section 2.0.

The Government's Renewable Obligation defines renewable energy in the UK. The identified technologies are;

- Small hydro-electric
- Landfill and sewage gas
- Onshore and offshore wind
- Biomass
- Tidal and wave power
- Geothermal power
- Solar

The use of landfill or sewage gas, offshore wind or any form of hydroelectric power is not suitable for the site due to its location. The remaining technologies are considered below;

#### Wind

Wind turbines are available in various sizes from large rotors able to supply whole communities to small roof or wall-mounted units for individual dwellings.

The Government wind speed database predicts local wind speeds at Arlington Road to be 4.6 m/s at 10m above ground level and 5.4 m/s at 25m above ground level. This is below the level generally required for commercial investment in large wind turbines and in addition the land take, potential for noise and signal interference make a large wind turbine unsuitable for this development.

Roof mounted turbines could be used at the development to generate small but valuable amounts of renewable electricity but the small output and contribution to total emissions means any investment would be small and purely tokenism. In addition the use of wind turbines will have a detrimental aesthetic impact on the development.

#### **Combined Heat and Power and Community Heating**

Combined heat and power (CHP) also called co-generation is a de-centralised method of producing electricity from a fuel and 'capturing' the heat generated for use in buildings. The plant is essentially a small-scale electrical power station.



The production and transportation of electricity via the National Grid is very inefficient with over 65% of the energy produced at the power station being lost to the atmosphere and through transportation. Consequently CHP can demonstrate significant  $CO_2$  savings and although not necessary classed as renewable energy (depending on the fuel used) the technology is low carbon.

For a CHP plant to be economic it needs to operate for as much of the time as possible (usually deemed to be in excess of 14 hours per day) and therefore the size of the unit are usually based upon the hot water load of the buildings with additional boilers meeting the peak space heating demand.

In order to optimise a combined heat and power or communal heating system, whether fuelled by biomass or a fossil fuel the site needs to be relatively dense with buildings close together and preferable multi storey in order to minimise infrastructure pipe work.

The total hot water load from the residential units is 44,726 kWh per year. Mirco CHP units are available with outputs from around 12.5 kW<sub>th</sub> and 5.5. kW<sub>e</sub>, and with the anticipated baseload the unit would run for 9.80 hours per day, which is not economic. CHP is not proposed.

#### **Ground Source Heat Pumps**

Sub soil temperatures are reasonably constant and predictable in the UK, providing a store of the sun's energy throughout the year. Below London the groundwater in the lower London aquifer is at a fairly constant temperature of 12° C. Ground source heat pumps (GSHP) extract this low-grade heat and convert it to usable heat for space heating.

GSHP operates on a similar principle to refrigerators, transferring heat from a cool place to a warmer place. They operate most efficiently when providing space heating at a low temperature, typically via under floor heating or with low temperature radiators.

Theoretically, ground source heat pumps could be used subject to satisfactory ground investigation to establish whether the sub strata is appropriate.

However, there is insufficient ground area to accommodate a horizontal 'slinky' collector system for the homes and bore-hole systems would be necessary and the installation of ground source heat pumps into apartment buildings is very complex.

GSHP systems are not proposed.

#### Solar

#### (i) Solar Water Heating

Solar hot water panels use the suns energy to directly heat water circulating through panels or pipes and the technology is simple and easily understood by purchasers.



Solar hot water heating panels are based generally around two types, which are available being 'flat plate collectors' and 'evacuated tubes'. Flat plate collectors can achieve an output of up to 1,124 kWh/annum (Schuco) and evacuated tubes can achieve outputs up to 1,365 kWh/annum (Riomay).

Panels are traditionally roof mounted and for highest efficiencies should be mounted plus or minus 30 degrees of due south. Evacuated tubes can be laid horizontally on flat roofs but flat plate collectors are recommended for installation at an incline of 30 degrees

Solar hot water panels are considered appropriate and evacuated tube panels could be installed horizontally on the flat roof of the apartment building.

However, servicing units on lower floors can be problematic and therefore it is only really practical to service Plots 17-20 and Plots 23 & 24. These units have currently been modelled with a combination gas boiler and the use of solar hot water panels would require a switch to a conventional boiler with accompanying hot water cylinder. This could detrimentally impact on internal space planning. The total hot water load from these six units is 12,725 kWh per year. Assuming panels could reduce energy demand by 50%, this equates to a reduction in demand of 6,363 kWh per year with an associated reduction in  $CO_2$  emissions of 1,374 kg  $CO_2$  per year.

When combined with the energy efficiency measures this equates to a total reduction in emissions of **5,631 kg CO<sub>2</sub> per year** or **14.32%** of total (TER) emissions.

Solar hot water panels are not proposed.

# (ii) Photovoltaics

Photovoltaic panels (PV) provide clean silent electricity. They generate electricity during most daylight conditions although they are most efficient when exposed to direct sunlight or are orientated to face plus or minus 30 degrees of due south.

PV panels can be integrated into many different aspects of a development including roofs, walls, shading devices or architectural panels. The panels typically have an electrical warranty of 20-25 years and an expected system lifespan of 25-40 years.

Photovoltaic panels could be used and could be installed on the flat roof of all buildings.

In order to achieve the requirements of the planning policy (and accounting for the reduction from energy efficiency measures of 4,257 kg CO<sub>2</sub> per year) a total of 66 x 300W photovoltaic panels would be required.

These could be accommodated on the roofs of the buildings and an indicative Roof Layout is attached as Appendix 3. This quantity of panels would reduce emissions by **9,570 kg CO<sub>2</sub> per year**, which when combined with the reductions from energy efficiency measures equates to a reduction of **35.16%** of TER emissions.



In addition the reduction in emissions from renewable technologies would equate to 27.29% of the DER emissions.

Photovoltaic panels are a viable method of achieving the policy requirement and there is sufficient roof area to accommodate the required quantity. The panels will be installed on frames, inclined at circa 15 degrees and orientated towards south-west. The electricity generated by each array will be connected to the landlords meter within each building with any surplus generated sold back to the Grid. A sketch is included within Appendix 3 showing how the panels could be arranged.

# Air Source Heat Pumps (ASHP)

Air sourced heat pumps operate using the same reverse refrigeration cycle as ground source heat pumps, however the initial heat energy is extracted from the external air rather than the ground. These heat pumps can be reversed to provide cooling to an area although this reduces the coefficient of performance of the pumps.

ASHPs are an appropriate technology for the commercial units where there is a low hot water demand but care will need to be taken to ensure the location of the outside unit does not create a noise nuisance either to the residential neighbours or to other occupants of the commercial accommodation.

The Statement assumes the use of air source heat pumps to each commercial unit and the BRUKL modelling assumes cooling may be required. However, this will be determined by the end use of the unit in question but by assuming cooling is provided to all assumes the worse case scenario.

The specific unit to be used will be determined at the detailed working drawing stage but an appropriate unit is attached as Appendix 6 showing an example of the type of installation proposed.



# 5.5 Summary of Calculations and Proposals for Low-carbon and Renewable Technologies

The total site CO<sub>2</sub> emissions are calculated as **39,321 kg CO<sub>2</sub> per year** (TER) and **35,064 kg CO<sub>2</sub> per year** (DER/BER).

To meet the requirements of the planning policy, a reduction of 35% of the total (TER) emissions need to be achieved and the DER emissions need to be reduced by 20% through the use of renewable technologies.

Various technologies are considered above and whilst wind turbines, combined heat and power, ground or air source heat pumps (for the residential units) and solar hot water heating panels are not considered appropriate the use of photovoltaic panels and air source heat pumps for the commercial units are considered feasible and appropriate.

#### Be Lean

The construction standards proposed include U-values, which demonstrate good practice and improve upon those required by the Building Regulations. Air tightness standards are targeted at a 60% improvement upon the minimum required by the Building Regulations.

The DER/BER is reduced from the TER by **4,257 kg CO<sub>2</sub> per year** or **10.83%** as a result of the energy efficiency measures incorporated into the design.

#### Be Green

It is proposed to install a total of 66 x 300W photovoltaic panels. The reduction in emissions as a result of the PV panels is  $9,570 \text{ kg CO}_2$  per year.

The total reduction in emissions following the energy efficiency measures (Be Lean) and the photovoltaic panels (Be Green) is 13,827 kg  $CO_2$  per year, which equates to a reduction of <u>35.16%</u> of the TER emissions.

The reduction in (DER) emissions from renewable technologies is 27.29%



# 6.0 Climate change adaption and Water resources

# Sustainable Drainage Systems (SUDS)

The site lies within Flood Zone 1 and is classified as being of low risk.

# Surface Water Management

Rainwater harvesting butts will be provided for landscaping maintenance.

Consideration has been given to the use of grey water recycling. However, customer's resistance to the appearance of the recycled water and the cost of the systems does not currently make them a viable option. They have therefore not been included in the proposals.

#### Water efficiency measures

In excess of 20% of the UK's water is used domestically with over 50% of this used for flushing WCs and washing (source: Environment Agency). The majority of this comes from drinking quality standard or potable water.

The water efficiency measures included will ensure that the apartments achieve a water use target of 105 litres per person per day.

Water efficient devices will be fully evaluated, and installed, wherever possible. The specification of such devices will be considered at detailed design stage and each will be subject to an evaluation based on technical performance, cost and market appeal, together with compliance with the water use regulations.

The following devices will be incorporated within the apartments:

- Water efficient taps.
- Water efficient toilets.
- Low output showers.
- Flow restrictors to manage water pressures to achieve optimum levels.
- Water meters with guidance on water consumption and savings.

Water consumption calculations have been carried out using the Water Efficiency Calculator provided by the BRE. Although not perfect this calculator gives a good indication of the probable water use in a dwelling.



# Below is a typical specification, which would achieve the 105 Litres per person per day target.

| Schedule of Appliance Water Consumption |                         |              |
|-----------------------------------------|-------------------------|--------------|
| Appliance                               | Flow rate or capacity   | Total Litres |
| WC                                      | 4/2.6 litres dual flush | 14.72        |
| Basin                                   | 1.7 litres/min.         | 5.98         |
| Shower                                  | 8 litres/min            | 24.00        |
| Bath                                    | 160 litres              | 25.60        |
| Sink                                    | 4 litres/min            | 14.13        |
| Washing Machine                         | Default used            | 16.66        |
| Dishwasher                              | Default used            | 3.90         |
|                                         |                         | 104.99       |



# 7.0 Materials

The BRE Green Guide to Specification is a simple guide for design professionals. The guide provides environmental impact, cost and replacement interval information for a wide range of commonly used building specifications over a notional 60-year building life. The construction specification will prioritise materials within ratings A+, A or B.

Preference will be given to the use of local materials & suppliers where viable to reduce the transport distances and to support the local economy. A full evaluation of these suppliers will be undertaken at the next stage of design.

In addition, timber would be sourced, where practical, certified by PEFC or an equivalent approved certification body and all site timber used within the construction process would be recycled.

All insulation materials to will have a zero ozone depleting potential

#### **Construction waste**

Targets will be set to promote resource efficiency in accordance with guidance from WRAP, Envirowise, BRE and DEFRA.

The overarching principle of waste management is that waste should be treated or disposed of within the region where it is produced.

Construction operations generate waste materials as a result of general handling losses and surpluses. These wastes can be reduced through appropriate selection of the construction method, good site management practices and spotting opportunities to avoid creating unnecessary waste.

The Construction Strategy will explore these issues, some of which are set out below:

- Proper handling and storage of all materials to avoid damage.
- Efficient purchasing arrangements to minimise over ordering.
- Segregation of construction waste to maximise potential for reuse/recycling.
- Suppliers who collect and reuse/recycle packaging materials



Appendix 1 – BREEAM Pre-Assessment Estimator



**BREEAM**<sup>®</sup> UK

BREEAM UK New Construction 2014 Pre-Assessment Estimator: Assessment Issue Scoring

| Building name Arlington Works                                    |            |                   |                         |       |
|------------------------------------------------------------------|------------|-------------------|-------------------------|-------|
| Building score (%) 71.85%                                        |            |                   |                         |       |
| Building rating Excellent                                        |            |                   |                         |       |
| Minimum standards level achieved Excellent level                 |            |                   |                         |       |
|                                                                  |            |                   |                         |       |
| MANAGEMENT                                                       |            |                   |                         |       |
| Man 01 Project brief and design                                  |            |                   |                         |       |
| No. of BREEAM credits available 4                                |            | Available contri  | bution to overall score | 3.33% |
| No. of BREEAM innovation credits available                       |            | Minimur           | n standards applicable  | Νο    |
|                                                                  |            |                   |                         |       |
|                                                                  |            |                   |                         |       |
| Assessment Criteria                                              | Compliant? | Credits available | Credits achieved        |       |
| Will stakeholder consultation (project delivery) take place      | ? Yes      | 1                 | 1                       |       |
| Will stakeholder consultation (third party) take place           | ? No       | 1                 | 0                       |       |
| Will a sustainability champion (design) be assigned              | ? Yes      | 1                 | 1                       |       |
| Will a sustainability champion (monitoring progress) be assigned | ? Yes      | 1                 | 1                       |       |
|                                                                  |            |                   |                         |       |
| Total BREEAM credits achieved 3                                  |            |                   |                         |       |
| Total contribution to overall building score2.50%                |            |                   |                         |       |
| Total BREEAM innovation credits achieved 0                       |            |                   |                         |       |
| Minimum standard(s) level N/A                                    |            |                   |                         |       |
|                                                                  |            |                   |                         |       |
| Comments/notes:                                                  |            |                   |                         |       |
|                                                                  |            |                   |                         |       |
|                                                                  |            |                   |                         |       |
|                                                                  |            |                   |                         |       |
|                                                                  |            |                   |                         |       |
|                                                                  |            |                   |                         |       |
|                                                                  |            |                   |                         |       |
|                                                                  |            |                   |                         |       |
|                                                                  |            |                   |                         |       |

# Man 02 Life cycle cost and service life planning

| No. of BREEAM credits available            | 4 | Available contribution to overall score | 3.33% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

| Assessment Criteria                               |                   | Compliant? | Credits available | Credits achieved |
|---------------------------------------------------|-------------------|------------|-------------------|------------------|
| Will an elemental life cycle cost (LCC)analyses b | e carried out?    | No         | 2                 | 0                |
| Will a component level LCC plan b                 | be developed?     | No         | 1                 | 0                |
| Will the predicted capital cost                   | t be reported?    | No         | 1                 | 0                |
| Expected capital cost of the project              | ct (if available) |            | £/m²              |                  |
|                                                   |                   |            |                   |                  |
| Total BREEAM credits achieved                     | 0                 |            |                   |                  |
| Total contribution to overall building score      | 0.00%             |            |                   |                  |
| Total BREEAM innovation credits achieved          | N/A               |            |                   |                  |
| Minimum standard(s) level N/A                     |                   |            |                   |                  |



# Man 03 Responsible construction practices

| No. of BREEAM credits available            | 6 | Available contribution to overall score | 5.00% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 1 | Minimum standards applicable            | Yes   |

| Assessment Criteria                                                                                                                                                                      | Compliant? | Credits available | Credits achieved |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|------------------|
| Is all site timber used in the project 'legally harvested and traded timber'?                                                                                                            | Yes        |                   |                  |
| Will/does the principal contractor operate a compliant Environmental Management System?                                                                                                  | Yes        | 1                 | 1                |
| Will a construction stage sustainability champion be assigned?                                                                                                                           | Yes        | 1                 | 1                |
| Will a considerate construction scheme be used by the principal contractor? (One credit where 'compliance' has been achieved. Two credits where 'compliance' is significantly exceeded.) | 1          | 2                 | 1                |
| Will construction site impacts be metered/monitored?                                                                                                                                     | Yes        |                   |                  |
| Will site utility consumption be metered/monitored?                                                                                                                                      | Yes        | 1                 | 1                |
| Will transport of construction materials and waste be metered/monitored?                                                                                                                 | No         | 1                 | 0                |
| Will exemplary level criteria be met?                                                                                                                                                    |            |                   |                  |
|                                                                                                                                                                                          |            |                   |                  |
| Total BREEAM credits achieved 4                                                                                                                                                          |            |                   |                  |
| Total contribution to overall building score 3.33%                                                                                                                                       |            |                   |                  |
| Total BREEAM innovation credits achieved 0                                                                                                                                               |            |                   |                  |
| Minimum standard(s) level Excellent level                                                                                                                                                |            |                   |                  |
|                                                                                                                                                                                          |            |                   |                  |



Man 04 Commisioning and handover

| No. of BREEAM credits available            | 1 | Available contribution to overall score | 0.83% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | Yes   |

| Assessment Criteria                                                            | Compliant? | Credits available | Credits achieved |
|--------------------------------------------------------------------------------|------------|-------------------|------------------|
| Will commissioning schedule and responsibilities be developed & accounted for? |            |                   |                  |
| Will a commissioning manager be appointed?                                     |            |                   |                  |
| Will the building fabric be commissioned?                                      | Yes        | 1                 | 1                |
| Will a training schedule for building occupiers/managers at Handover?          |            |                   |                  |
| Will a building user guide be developed prior to handover?                     |            |                   |                  |
|                                                                                |            |                   |                  |
| Total BREEAM credits achieved 1                                                |            |                   |                  |
| Total contribution to overall building score 0.83%                             |            |                   |                  |
| Total BREEAM innovation credits achieved N/A                                   |            |                   |                  |
| Minimum standard(s) level N/A                                                  |            |                   |                  |

Comments/notes:

Man 05 Aftercare

# Assessment issue not applicable

| N/A | Available contribution to overall score | N/A | No. of BREEAM credits available            |
|-----|-----------------------------------------|-----|--------------------------------------------|
| N/A | Minimum standards applicable            | N/A | No. of BREEAM innovation credits available |

| Assessment Criteria                                                          | Compliant? | Credits available | Credits achieved |
|------------------------------------------------------------------------------|------------|-------------------|------------------|
| Will aftercare support be provided to building occupiers?                    |            |                   |                  |
| Will seasonal commissioning occur over 12months once substantially occupied? |            |                   |                  |
| Will a post occupancy evaluation be carried out 1 year after occupation?     |            |                   |                  |
| Will exemplary level criteria be met?                                        |            |                   |                  |
|                                                                              |            |                   |                  |
| Total BREEAM credits achieved N/A                                            |            |                   |                  |

| Total contribution to overall building score | N/A |
|----------------------------------------------|-----|
| Total BREEAM innovation credits achieved     | N/A |
| Minimum standard(s) level                    | N/A |



# HEALTH & WELLBEING

Hea 01 Visual Comfort

| No. of BREEAM credits available            | 4 | Available contribution to overall score | 4.44% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 1 | Minimum standards applicable            | No    |

| Assessment Criteria                                                                                                                      | Compliant? | Credits available | Credits achieved |
|------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|------------------|
| Will the design provide adequate glare control for building users?                                                                       | Yes        | 1                 | 1                |
| Will relevant building areas be designed to achieve appropriate daylight factor(s)?                                                      | 1          | 1                 | 1                |
| Will the design provide adequate view out for building users?                                                                            | Yes        | 1                 | 1                |
| Will internal/external lighting levels, zoning and controls be specified in accordance with the relevant CIBSE Guides/British Standards? | Yes        | 1                 | 1                |
| Will exemplary level criteria be met?                                                                                                    | Yes        | 1                 | 1                |

| Total BREEAM credits achieved                | 4     |
|----------------------------------------------|-------|
| Total contribution to overall building score | 4.44% |
| Total BREEAM innovation credits achieved     | 1     |
| Minimum standard(s) level                    | N/A   |

Comments/notes:

Hea 02 Indoor Air Quality

| No. of BREEAM credits available            | 1   | Available contribution to overall score | 1.11% |
|--------------------------------------------|-----|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | N/A | Minimum standards applicable            | No    |

| Assessment Criteria                                                                                      | Compliant? | Credits available | Credits achieved |
|----------------------------------------------------------------------------------------------------------|------------|-------------------|------------------|
| Will an air quality plan be produced and building designed to minimise air pollution?                    |            |                   |                  |
| Will building be designed to minimise the concentration and recirculation of pollutants in the building? |            |                   |                  |
| Will the relevant products be specified to meet the VOC testing and emission levels required?            |            |                   |                  |
| Will formaldehyde and total VOC levels be measured post construction?                                    |            |                   |                  |
| Will the building be designed to, or have the potential to provide, natural ventilation?                 | Yes        | 1                 | 1                |
| Will exemplary level VOCs (products)criteria be met?                                                     |            |                   |                  |

| Total BREEAM credits achieved                | 1     |
|----------------------------------------------|-------|
| Total contribution to overall building score | 1.11% |
| Total BREEAM innovation credits achieved     | N/A   |
| Minimum standard(s) level                    | N/A   |



Assessment issue not applicable

# Hea 03 Safe containment in laboratories

| No. of BREEAM credits available            | N/A | Available contribution to overall score | N/A |
|--------------------------------------------|-----|-----------------------------------------|-----|
| No. of BREEAM innovation credits available | N/A | Minimum standards applicable            | N/A |

| Assessment Criteria                                                                                         | Compliant? | Credits available | Credits achieved |
|-------------------------------------------------------------------------------------------------------------|------------|-------------------|------------------|
| Will an objective risk assessment of proposed laboratory facilities' design be completed?                   |            |                   |                  |
| Will the manufacture & installation of fume cupboards and containment devices meet best practice standards? |            |                   |                  |
| Will containment level 2 & 3 labs meet best practice safety & performance criteria?                         |            |                   |                  |

| N/A | Total BREEAM credits achieved                |
|-----|----------------------------------------------|
| N/A | Total contribution to overall building score |
| N/A | Total BREEAM innovation credits achieved     |
| N/A | Minimum standard(s) level                    |

Comments/notes:

# Hea 04 Thermal comfort

| No. of BREEAM credits available            | 1 | Available contribution to overall score | 1.11% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

| Assessment Criteria                                  | Compliant? | Credits available | Credits achieved |
|------------------------------------------------------|------------|-------------------|------------------|
| Will thermal modelling of the design be carried out? | Yes        | 1                 | 1                |

| Total BREEAM credits achieved                | 1     |
|----------------------------------------------|-------|
| Total contribution to overall building score | 1.11% |
| Total BREEAM innovation credits achieved     | N/A   |
| Minimum standard(s) level                    | N/A   |



Hea 05 Acoustic Performance

| No. of BREEAM credits available            | 1 | Available contribution to overall score | 1.11% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

| Assessment Criteria                                                                                         |                                                                                                | Credits | Credits available | Credits achieved |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------|-------------------|------------------|
| Will the building meet the appropriate acoustic performance standards and ter<br>a<br>b. Indoor a<br>c. Rev | sting requirements<br>for:<br>a. Sound insulation<br>Imbient noise level<br>verberation times? | 1       | 1                 | 1                |
|                                                                                                             |                                                                                                |         |                   |                  |
| Total BREEAM credits achieved                                                                               | 1                                                                                              |         |                   |                  |
| Total contribution to overall building score                                                                | 1.11%                                                                                          |         |                   |                  |
| Total BREEAM innovation credits achieved                                                                    | N/A                                                                                            |         |                   |                  |
| Minimum standard(s) level                                                                                   | N/A                                                                                            |         |                   |                  |

Comments/notes:

Hea 06 Safety and Security

| No. of BREEAM credits available            | 2 | Available contribution to overall score | 2.22% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

| Assessment Criteria                                                                                   |       | Compliant? | Credits available | Credits achieved |
|-------------------------------------------------------------------------------------------------------|-------|------------|-------------------|------------------|
| Where external site areas are present, will safe access be designed for pedestrians and cyclists?     |       | Yes        | 1                 | 1                |
| Will a suitably qualified security consultant be appointed and security considerations accounted for? |       | Yes        | 1                 | 1                |
| Total BREEAM credits achieved                                                                         | 2     |            |                   |                  |
| Total contribution to overall building score                                                          | 2.22% |            |                   |                  |
| Total BREEAM innovation credits achieved                                                              | N/A   |            |                   |                  |
| Minimum standard(s) level                                                                             | N/A   |            |                   |                  |



# ENERGY

# Ene 01 Reduction of energy use and carbon emissions

| No. of BREEAM credits available                              | 12                   | Available contribution to overall score           | 10.88% |
|--------------------------------------------------------------|----------------------|---------------------------------------------------|--------|
| No. of BREEAM innovation credits available                   | 5                    | Minimum standards applicable                      | Yes    |
|                                                              |                      |                                                   |        |
| How do you wish to assess the number of BREEAM credits achie | eved for this issue? | Define a target number of BREEAM credits achieved |        |
| Select the target number of BREEAM credits for               | or the Ene01 issue:  | 8                                                 |        |

Ene 01 Calculator

| Country of the UK where the building is located |  | Confirm building regulation and version to be used: |  |
|-------------------------------------------------|--|-----------------------------------------------------|--|
|-------------------------------------------------|--|-----------------------------------------------------|--|

| New Construction (shell only)                                          |            |
|------------------------------------------------------------------------|------------|
| Building floor area                                                    | m2         |
| Notional building heating and cooling energy demand                    | MJ/m2yr    |
| Actual building heating and cooling energy demand                      | MJ/m2yr    |
| Notional building primary energy consumption                           | kWh/m2yr   |
| Actual building primary energy consumption                             | kWh/m2yr   |
| Target emission rate (TER)                                             | kgCO2/m2yr |
| Building emission rate (BER)                                           | kgCO2/m2yr |
| Building emission rate improvement over TER                            |            |
| Heating & cooling demand energy performance ratio (EPR <sub>ED</sub> ) |            |
| Primary consumption energy performance ratio (EPR <sub>PC</sub> )      |            |
| CO <sub>2</sub> Energy performance ratio (EPR <sub>co2</sub> )         |            |
| Overall building energy performance ratio (EPR <sub>NC</sub> )         |            |

| Where specified, please confirm the energy production from onsite or near site energy generation technologies                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Equivalent % of the building's 'regulated' energy consumption generated by carbon neutral sources and used to meet energy demand from 'unregulated' building |  |
| systems or processes?                                                                                                                                        |  |
| Is the building designed to be 'carbon negative' ?                                                                                                           |  |
| If the building is defined as 'carbon negative' what is the total (modelled) renewable/carbon neutral energy generated and exported?                         |  |

| Total BREEAM credits achieved                | 8                 |
|----------------------------------------------|-------------------|
| Total contribution to overall building score | 7.25%             |
| Total BREEAM innovation credits achieved     | N/A               |
| Minimum standard(s) level                    | Outstanding level |


# Ene 02 Energy monitoring

| No. of BREEAM credits available            | N/A | Available contribution to overall score | N/A |
|--------------------------------------------|-----|-----------------------------------------|-----|
| No. of BREEAM innovation credits available | 0   | Minimum standards applicable            | Yes |

| Assessment criteria                                                                |                  | Compliant? | Credits available | Credits achieved |
|------------------------------------------------------------------------------------|------------------|------------|-------------------|------------------|
| Will a BMS or sub-meters be specified to monitor energy use from major building se | ervices systems? |            |                   |                  |
| Will a BMS or sub-meters be specified to monitor energy use by tenant/building     | function areas?  |            |                   |                  |
| Total BREEAM credits achieved                                                      | N/A              |            |                   |                  |
| Total contribution to overall building score                                       | N/A              |            |                   |                  |
| Total BREEAM innovation credits achieved                                           | N/A              |            |                   |                  |
| Minimum standard(s) level N/                                                       | Ά                |            |                   |                  |

# Comments/notes:

# Ene 03 External lighting

| No. of BREEAM credits available            | 1 | Available contribution to overall score | 0.91% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

| Assessment criteria                                                                            | Compliant? | Credits available | Credits achieved |
|------------------------------------------------------------------------------------------------|------------|-------------------|------------------|
| Will external light fittings and controls be specified in accordance with the BREEAM criteria? |            | 1                 | 1                |
|                                                                                                | <b>1</b>   |                   |                  |
| Total BREEAM credits achieved 1                                                                |            |                   |                  |
| Total contribution to overall building score 0.91%                                             |            |                   |                  |
| Total BREEAM innovation credits achieved N/A                                                   |            |                   |                  |
| Minimum standard(s) level N/A                                                                  |            |                   |                  |



Ene 04 Low carbon design

| No. of BREEAM credits available            | 3 | Available contribution to overall score | 2.72% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

| Assessment criteria                                                                                                                                            | Compliant? | Credits available | Credits achieved |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|------------------|
| Will passive design measures be used in line with an analysis be carried out during concept design stage (RIBA stage 2 or equivalent)?                         | Yes        | 1                 | 1                |
| Will free cooling measures be implemented in the whole building in line with the passive design analysis?                                                      | No         | 1                 | 0                |
| Will a LZC technology be specified in line with a feasibility study carried out by the completion of the<br>Concept Design stage (RIBA Stage 2 or equivalent)? | Yes        | 1                 | 1                |

| Total BREEAM credits achieved                | 2     |
|----------------------------------------------|-------|
| Total contribution to overall building score | 1.81% |
| Total BREEAM innovation credits achieved     | N/A   |
| Minimum standard(s) level                    | N/A   |

Comments/notes:

Assessment issue not applicable

# Ene 05 Energy efficient cold storage

| N/A | Available contribution to overall score | N/A | No. of BREEAM credits available            |
|-----|-----------------------------------------|-----|--------------------------------------------|
| N/A | Minimum standards applicable            | N/A | No. of BREEAM innovation credits available |

| Assessment criteria                                                            |                    | Compliant? | Credits available | Credits achieved |
|--------------------------------------------------------------------------------|--------------------|------------|-------------------|------------------|
| Will the refrigeration system be designed, installed & commissioned in accroda | ance with BREEAM   |            |                   |                  |
|                                                                                | criteria?          |            |                   |                  |
| Will the refrigeration system demonstrate a saving in indirect greenhou        | use gas emissions? |            |                   |                  |
|                                                                                |                    |            |                   |                  |
| Total BREEAM credits achieved                                                  | N/A                |            |                   |                  |
| Total contribution to overall building score                                   | N/A                |            |                   |                  |
| Total BREEAM innovation credits achieved                                       | N/A                |            |                   |                  |
| Minimum standard(s) level                                                      | N/A                |            |                   |                  |
|                                                                                |                    |            |                   |                  |



# Ene 06 Energy efficient transportation systems

| No. of BREEAM credits available            | N/A | Available contribution to overall score | N/A |
|--------------------------------------------|-----|-----------------------------------------|-----|
| No. of BREEAM innovation credits available | N/A | Minimum standards applicable            | N/A |

| Assessment criteria                                                                                                   |                                        | Compliant? | Credits available | Credits achieved |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------|-------------------|------------------|
| Will a transportation system analysis be carried out to determine and specify the size and type of lifts that is most | optimum number,<br>t energy efficient? |            |                   |                  |
| Will the relevant energy-efficient feature                                                                            | es criteria be met?                    |            |                   |                  |
|                                                                                                                       |                                        |            |                   |                  |
| Total BREEAM credits achieved                                                                                         | N/A                                    |            |                   |                  |
| Total contribution to overall building score                                                                          | N/A                                    |            |                   |                  |
| Total BREEAM innovation credits achieved                                                                              | N/A                                    |            |                   |                  |
| Minimum standard(s) level                                                                                             | N/A                                    |            |                   |                  |

# Comments/notes:

Ene 07 Energy efficient laboratory systems

# Assessment issue not applicable

| No. of BREEAM credits available            | N/A | Available contribution to overall score | N/A |
|--------------------------------------------|-----|-----------------------------------------|-----|
| No. of BREEAM innovation credits available | N/A | Minimum standards applicable            | N/A |

| Assessment criteria                                                                                                                                             | Compliant? | Credits available | Credits achieved |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|------------------|
| Pre-requisite: Criterion 1 of Hea 03 - risk assessment of laboratory faciliti                                                                                   | es         | ]                 |                  |
| Have the occupants' laboratory requirements & performance criteria been confirmed during t<br>preparation of the initial project brief to minimise energy deman | he<br>d?   |                   |                  |
|                                                                                                                                                                 |            |                   |                  |
| Best Practice Energy Practices in Laboratories (table 2                                                                                                         | .7)        |                   |                  |
| Will the laboratory meet criteria item b) Fan powe                                                                                                              | er?        |                   |                  |
| Will the laboratory criteria item c) Fume cupboard volume flow rate                                                                                             | es?        |                   |                  |
| Will the lab meet item d) Grouping / isolation of high filtration/ventilation activitie                                                                         | s?         |                   |                  |
| Will the laboratory meet criteria item e) Energy recovery - hea                                                                                                 | it?        |                   |                  |
| Will the laboratory meet criteria item f) Energy recovery - coolin                                                                                              | g?         |                   |                  |
| Will the laboratory meet criteria item g) Grouping of cooling load                                                                                              | -2         |                   |                  |
| Will the laboratory meet criteria item n) Free coolin                                                                                                           | g?         |                   |                  |
| Will the laboratory meet criteria item i) Load responsivenes                                                                                                    | .S?        | -                 |                  |
| Will the laboratory meet criteria item () Creditorin<br>Will the laboratory meet criteria item () Diversit                                                      | v2         |                   |                  |
| Will the laboratory meet criteria item I) Room air-change rate                                                                                                  | y:<br>     |                   |                  |
|                                                                                                                                                                 |            | 1                 |                  |
| Total BREEAM credits achieved N/A                                                                                                                               |            |                   |                  |
| Total contribution to overall building score N/A                                                                                                                |            |                   |                  |
| Total BREEAM innovation credits achieved N/A                                                                                                                    |            |                   |                  |
| Minimum standard(s) level N/A                                                                                                                                   |            |                   |                  |



# Ene 08 Energy efficient equipment

| No. of BREEAM credits available            | N/A | Available contribution to overall score | N/A |
|--------------------------------------------|-----|-----------------------------------------|-----|
| No. of BREEAM innovation credits available | N/A | Minimum standards applicable            | N/A |

#### Assessment criteria

| Which of the following will be present and likely to be a/the major contributor to 'unregulated'<br>energy use? | Present | Major impact |
|-----------------------------------------------------------------------------------------------------------------|---------|--------------|
| Ref A Small power and plug in equipment?                                                                        |         |              |
| Ref B Swimming pool?                                                                                            |         |              |
| Ref C Communal laundry?                                                                                         |         |              |
| Ref D Data centre?                                                                                              |         |              |
| Ref E IT-intensive operation areas?                                                                             |         |              |
| Ref F Residential areas?                                                                                        |         |              |
| Ref G Healthcare?                                                                                               |         |              |
| Ref H Kitchen and catering facilities?                                                                          |         |              |

 Compliant
 Credits available
 Credits achieved

 Will the significant majority contributor(s) to 'unregulated' energy use above meet the BREEAM criteria?
 Image: Credits achieved
 Image: Credits achieved

| N/A | Total BREEAM credits achieved                |
|-----|----------------------------------------------|
| N/A | Total contribution to overall building score |
| N/A | Total BREEAM innovation credits achieved     |
| N/A | Minimum standard(s) level                    |

Comments/notes:

Ene 09 Drying space

Assessment issue not applicable

| No. of BREEAM credits available            | N/A | Available contribution to overall score | N/A |
|--------------------------------------------|-----|-----------------------------------------|-----|
| No. of BREEAM innovation credits available | N/A | Minimum standards applicable            | N/A |

| Assessment criteria                          |                   | Compliant? | Credits available | Credits achieved |
|----------------------------------------------|-------------------|------------|-------------------|------------------|
| Will internal/external drying space and fix  | ings be provided? |            |                   |                  |
|                                              |                   |            |                   |                  |
| Total BREEAM credits achieved                | N/A               |            |                   |                  |
| Total contribution to overall building score | N/A               |            |                   |                  |
| Total BREEAM innovation credits achieved     | N/A               |            |                   |                  |
| Minimum standard(s) level                    | N/A               |            |                   |                  |



# TRANSPORT

# Tra 01 Public Transport Accessibility

| No. of BREEAM credits available            | 3 | Available contribution to overall score | 3.83% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

# Building type category (for purpose of Tra01 issue assessment) Business (office/industrial)

| Assessment Criter | ia                                                        | Compliant | Credits available | Credits achieved |
|-------------------|-----------------------------------------------------------|-----------|-------------------|------------------|
|                   | Indicative public transport accessibility index (AI):     | 10.00     | 3                 | 3                |
|                   | Will the building have a dedicated bus service?           |           | 5                 | N/A              |
|                   |                                                           |           |                   |                  |
| AI                | Indicative Accessibility Index for pre-assessment         |           |                   |                  |
|                   |                                                           |           |                   |                  |
| 0                 | Poor or no public transport provision                     |           |                   |                  |
| 1                 | A single BREEAM compliant public transport node available |           |                   |                  |

| =  |                                                                                    |
|----|------------------------------------------------------------------------------------|
| 2  | Some BREEAM compliant public transport nodes/services available                    |
| 4  | A selection of BREEAM compliant public transport nodes/services available          |
| 8  | Good provision of public transport i.e. small urban centre / suburban area         |
| 10 | Very Good provision of public transport i.e. small/medium urban centre             |
| 12 | Excellent provision of public transport, i.e. medium urban centre                  |
| 18 | Excellent provision of public transport, i.e. large urban/metropolitan city centre |

| Total BREEAM credits achieved                | 3     |
|----------------------------------------------|-------|
| Total contribution to overall building score | 3.83% |
| Total BREEAM innovation credits achieved     | N/A   |
| Minimum standard(s) level                    | N/A   |

| Comments/notes: |  |  |
|-----------------|--|--|
|                 |  |  |
|                 |  |  |
|                 |  |  |
|                 |  |  |
|                 |  |  |
|                 |  |  |
|                 |  |  |
|                 |  |  |
|                 |  |  |
|                 |  |  |
|                 |  |  |
|                 |  |  |
|                 |  |  |

Tra 02 Proximity to Amenities

| No. of BREEAM credits available            | 1 | Available contribution to overall score | 1.28% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

| Will the building be in close proximity of and accessible to applicable amenities?       Yes       1       1         Total BREEAM credits achieved       1       1       1       1         Total contribution to overall building score       1.28%       1       1       1         Total BREEAM innovation credits achieved       N/A       N/A       1       1 | Assessment Criteria                                              |                    | Compliant? | Credits available | Credits achieved |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------|------------|-------------------|------------------|
| Total BREEAM credits achieved1Total contribution to overall building score1.28%Total BREEAM innovation credits achievedN/A                                                                                                                                                                                                                                       | Will the building be in close proximity of and accessible to app | licable amenities? | Yes        | 1                 | 1                |
| Total contribution to overall building score     1.28%       Total BREEAM innovation credits achieved     N/A                                                                                                                                                                                                                                                    | Total RREEAM credits achieved                                    | 1                  |            |                   |                  |
| Total BREEAM innovation credits achieved     N/A                                                                                                                                                                                                                                                                                                                 | Total contribution to overall building score                     | 1 28%              |            |                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                  | Total BREEAM innovation credits achieved                         | N/A                |            |                   |                  |
| Minimum standard(s) level N/A                                                                                                                                                                                                                                                                                                                                    | Minimum standard(s) level                                        | N/A                |            |                   |                  |



Tra 03 Cyclist facilities

| No. of BREEAM credits available            | 2 | Available contribution to overall score | 2.56% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

| Building type category (for purpose of Tra03 issue assessment) | Business - (office/I | ndustrial) |
|----------------------------------------------------------------|----------------------|------------|
| How many compliant cycle storage spaces will be provided?      | 14                   |            |
| What cyclist facilities will be provided?                      | No compliant facili  | ties       |

| Assessment Criteria                          |                    | Compliant? | Credits available | Credits achieved |
|----------------------------------------------|--------------------|------------|-------------------|------------------|
| Cy                                           | cle storage spaces | Yes        | 2                 | 1                |
|                                              | Cyclist facilities |            |                   | T                |
|                                              |                    |            |                   |                  |
| Total BREEAM credits achieved                | 1                  |            |                   |                  |
| Total contribution to overall building score | 1.28%              |            |                   |                  |
| Total BREEAM innovation credits achieved     | N/A                |            |                   |                  |
| Minimum standard(s) level                    | N/A                |            |                   |                  |

Comments/notes:

Tra 04 Maximum Car Parking Capacity

| No. of BREEAM credits available            | 2 | Available contribution to overall score | 2.56% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

| Building type category (for purpose of Tra04 issue)                  | Business - (office/Ir | ndustrial) |
|----------------------------------------------------------------------|-----------------------|------------|
| Building's indicative Accessibility Index (sourced from issue Tra01) | 10                    |            |

|                                                                                                   | Compliant?                                  | Credits available                                        | Credits achieved                                                                                                 |
|---------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Will BREEAM's maximum parking capacity criteria for the building type/Accessibility Index be met? |                                             | 2                                                        | 2                                                                                                                |
| 2                                                                                                 |                                             |                                                          |                                                                                                                  |
| 2.56%                                                                                             |                                             |                                                          |                                                                                                                  |
| N/A                                                                                               |                                             |                                                          |                                                                                                                  |
| N/A                                                                                               |                                             |                                                          |                                                                                                                  |
|                                                                                                   | y Index be met?<br>2<br>2.56%<br>N/A<br>N/A | Compliant?<br>y Index be met? Yes<br>2.56%<br>N/A<br>N/A | Compliant?     Credits available       y Index be met?     Yes     2       2     2.56%     N/A       N/A     N/A |



Tra 05 Travel Plan

| 1.28% | Available contribution to overall score | 1 | No. of BREEAM credits available            |
|-------|-----------------------------------------|---|--------------------------------------------|
| No    | Minimum standards applicable            | 0 | No. of BREEAM innovation credits available |

| Assessment Criteria                                                 |                   | Compliant? | Credits available | Credits achieved |
|---------------------------------------------------------------------|-------------------|------------|-------------------|------------------|
| Will a transport plan based on site specific travel survey/assessme | ent be developed? | Yes        | 1                 | 1                |
|                                                                     |                   |            |                   |                  |
| Total BREEAM credits achieved                                       | 1                 |            |                   |                  |
| Total contribution to overall building score                        | 1.28%             |            |                   |                  |
| Total BREEAM innovation credits achieved                            | N/A               |            |                   |                  |
| Minimum standard(s) level                                           | N/A               |            |                   |                  |
|                                                                     |                   |            |                   |                  |

# Comments/notes:

| I |  |
|---|--|
| I |  |
| I |  |
| I |  |
| I |  |
| I |  |
| I |  |
| I |  |
| I |  |
| I |  |
| I |  |
| I |  |
| I |  |
| I |  |
| I |  |
| I |  |

# WATER

| Wat 01 Water Consumption |                                            |     | Assessment iss                          | ue not applicable |
|--------------------------|--------------------------------------------|-----|-----------------------------------------|-------------------|
|                          | No. of BREEAM credits available            | N/A | Available contribution to overall score | N/A               |
|                          | No. of BREEAM innovation credits available | N/A | Minimum standards applicable            | N/A               |
|                          |                                            |     |                                         |                   |

How do you wish to assess the number of BREEAM credits to be achieved for this issue?

Please select the calculation procedure used

Standard approach data

| Water Consumption from building micro-components |  |
|--------------------------------------------------|--|
| Water demand met via greywater/rainwater sources |  |
| Total net water consumption                      |  |
| Improvement on baseline performance              |  |

Key Performance Indicator - use of freshwater resource

| Total net Water Consumption |  |
|-----------------------------|--|
| Default building occupancy  |  |
|                             |  |

Alternative approach data

|                | Overall microcomponent performance level achieved |     |  |  |  |
|----------------|---------------------------------------------------|-----|--|--|--|
| Please select: |                                                   |     |  |  |  |
|                |                                                   |     |  |  |  |
|                | Total BREEAM credits achieved                     | N/A |  |  |  |
|                | Total contribution to overall building score      | N/A |  |  |  |
|                | Total BREEAM innovation credits achieved          | N/A |  |  |  |
|                | Minimum standard(s) level                         | N/A |  |  |  |



I

Wat 02 Water Monitoring

| No. of BREEAM credits available            | 1 | Available contribution to overall score | 2.00% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | Yes   |

| Assessment Criteria                                                                      |                 | Compliant? | Credits available | Credits achieved |
|------------------------------------------------------------------------------------------|-----------------|------------|-------------------|------------------|
| Will there be a water meter on the mains water supply to t                               | he building(s)? | Yes        | 1                 | 1                |
| Will metering/monitoring equipment be specified on the water supply to                   | to any relevant |            |                   |                  |
| Will all specified water meters have a p                                                 | pulsed output?  | Yes        |                   |                  |
| If the site/building has an existing BMS connection, will all pulsed meters be connected | ed to the BMS?  | N/A        |                   |                  |
|                                                                                          |                 |            |                   |                  |
| Total BREEAM credits achieved                                                            | 1               |            |                   |                  |
| Total contribution to overall building score                                             | 2.00%           |            |                   |                  |
| Total BREEAM innovation credits achieved                                                 | N/A             |            |                   |                  |
| Minimum standard(s) level Out                                                            | standing level  |            |                   |                  |

Comments/notes:

# Wat 03 Water Leak Detection and Prevention

| No. of BREEAM credits available            | 1 | Available contribution to overall score | 2.00% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

| Assessment Criteria                                                                         | _                   | Compliant? | Credits available | Credits achieved |
|---------------------------------------------------------------------------------------------|---------------------|------------|-------------------|------------------|
| Will a mains water leak detection system be installed on the building's mains water supply? |                     | Yes        | 1                 | 1                |
| Will flow control devices be installed in each sani                                         | tary area/facility? |            |                   |                  |
|                                                                                             |                     |            |                   |                  |
| Total BREEAM credits achieved                                                               | 1                   |            |                   |                  |
| Total contribution to overall building score                                                | 2.00%               |            |                   |                  |
| Total BREEAM innovation credits achieved                                                    | N/A                 |            |                   |                  |
| Minimum standard(s) level                                                                   | N/A                 |            |                   |                  |
|                                                                                             |                     |            |                   |                  |



# Wat 04 Water Efficient Equipment

| No. of BREEAM credits available            | N/A | Available contribution to overall score | N/A |
|--------------------------------------------|-----|-----------------------------------------|-----|
| No. of BREEAM innovation credits available | N/A | Minimum standards applicable            | N/A |

| Assessment Criteria                                                   |                                              |     | Compliant? | Credits available | Credits achieved |
|-----------------------------------------------------------------------|----------------------------------------------|-----|------------|-------------------|------------------|
| Has a meaningful reduction in unregulated water demand been achieved? |                                              |     |            |                   |                  |
|                                                                       | Total BREEAM credits achieved                | N/A |            |                   |                  |
|                                                                       | Total contribution to overall building score | N/A |            |                   |                  |
|                                                                       | Total BREEAM innovation credits achieved     | N/A |            |                   |                  |
|                                                                       | Minimum standard(s) level                    | N/A |            |                   |                  |

# Comments/notes:

| - |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

# MATERIALS

# Mat 01 Life Cycle Impacts

| No. of BREEAM credits available                                           | 5                   |                   | Available contribution to overall score | 6.73% |
|---------------------------------------------------------------------------|---------------------|-------------------|-----------------------------------------|-------|
| No. of BREEAM innovation credits available                                | 3                   |                   | Minimum standards applicable            | No    |
|                                                                           |                     |                   |                                         |       |
| How do you wish to assess the number of BREEAM credits to be achieved for | or this issue?      | Define the number | r of Mat 01 credits achieved            |       |
| Assessment Criteria                                                       |                     |                   |                                         |       |
| Predicted total Mat                                                       | 01 credits achieved | 3                 | ]                                       |       |
|                                                                           |                     |                   |                                         |       |
| Number of building                                                        | elements assessed   |                   | _                                       |       |
| Green Guide exempla                                                       | ry level compliant? | No                |                                         |       |
| Has IMPACT compliant sc                                                   | oftware been used?  | No                |                                         |       |
|                                                                           |                     |                   | 1                                       |       |
| Total BREEAM credits achieved                                             | 3                   |                   |                                         |       |
| Total contribution to overall building score                              | 4.04%               |                   |                                         |       |
| Total BREEAM innovation credits achieved                                  | 0                   |                   |                                         |       |
| Minimum standard(s) level                                                 | N/A                 |                   |                                         |       |
|                                                                           |                     |                   |                                         |       |
| Comments/notes:                                                           |                     |                   |                                         |       |
|                                                                           |                     |                   |                                         |       |



# Mat 02 Hard Landscaping and Boundary Protection

| No. of BREEAM credits available            | 1 | Available contribution to overall score | 1.35% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

|                                                                                                             | Compliant?                                             | Credits available                                                       | Credits achieved                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Will ≥80% of all external hard landscaping and boundary protection achieve a Green Guide A or A+<br>rating? |                                                        | 1                                                                       | 0                                                                                                                                  |
| 0                                                                                                           |                                                        |                                                                         |                                                                                                                                    |
| 0.00%                                                                                                       |                                                        |                                                                         |                                                                                                                                    |
| N/A                                                                                                         |                                                        |                                                                         |                                                                                                                                    |
| N/A                                                                                                         |                                                        |                                                                         |                                                                                                                                    |
|                                                                                                             | n Guide A or A+<br>rating?<br>0<br>0.00%<br>N/A<br>N/A | Compliant?<br>n Guide A or A+<br>rating? No<br>0<br>0.00%<br>N/A<br>N/A | Compliant?     Credits available       n Guide A or A+<br>rating?     No     1       0     0       0.00%     N/A       N/A     N/A |

# Comments/notes:

# Mat 03 Responsible Sourcing

| No. of BREEAM credits available            | 4 | Available contribution to overall score | 5.38% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 1 | Minimum standards applicable            | Yes   |

| Assessment Criteria                                                       |                    | Compliant           | Credits available      | Credits achieved |
|---------------------------------------------------------------------------|--------------------|---------------------|------------------------|------------------|
| All timber and timber based products are 'Legally harvested               | and trader timber' | Yes                 |                        |                  |
| Is there a documented sustainable p                                       | procurement plan?  | Yes                 | 1                      | 1                |
| Percentage of available responsible sourcing of materials points achieved |                    | 36.00%              | 3                      | 2                |
|                                                                           |                    |                     |                        |                  |
| Please confirm the route use                                              | ed to assess Mat03 | Route 2: Proportion | n of materials respons | sibly sourced    |
|                                                                           |                    |                     |                        |                  |
| Total BREEAM credits achieved                                             | 3                  |                     |                        |                  |
| Total contribution to overall building score                              | 4.04%              |                     |                        |                  |
| Total BREEAM innovation credits achieved                                  | 0                  |                     |                        |                  |
| Minimum standard(s) level                                                 | Outstanding level  |                     |                        |                  |



Mat 04 Insulation

| No. of BREEAM credits available            | 1 | Available contribution to overall score | 1.35% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

| What is the building's targeted insulating index?2.5011Note: An |            |
|-----------------------------------------------------------------|------------|
|                                                                 | insulation |
|                                                                 |            |
| Total BREEAM credits achieved 1                                 |            |
| Total contribution to overall building score 1.35%              |            |
| Total BREEAM innovation credits achieved N/A                    |            |
| Minimum standard(s) level N/A                                   |            |

# Comments/notes:

# Mat 05 Designing for durability and resilience

| No. of BREEAM credits available            | 1 | Available contribution to overall score | 1.35% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | N/A   |

N/A

| Assessment Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | Compliant? | Credits available | Credits achieved |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------|-------------------|------------------|
| Will suitable durability/protection measures be specified and installed to vulne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | erable areas of the<br>building? | N/A        | 1                 | 1                |
| Will suitable durability/protection measures be specified and installed to expecified and installed to expect the second se | posed parts of the<br>building?  | Yes        | 1                 | 1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |            |                   |                  |
| Total BREEAM credits achieved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                |            |                   |                  |
| Total contribution to overall building score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.35%                            |            |                   |                  |
| Total BREEAM innovation credits achieved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                              |            |                   |                  |

Minimum standard(s) level

# Comments/notes:

### Mat 06 Material efficiency

| No. of BREEAM credits available            | 1 | Available contribution to overall score | 1.35% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

| Assessment Criteria                                                                   | Compliant? | Credits available | Credits achieved |
|---------------------------------------------------------------------------------------|------------|-------------------|------------------|
| Will material efficiency measures be identified & implemented during all RIBA stages? |            | 1                 | 0                |
|                                                                                       |            |                   |                  |
| Total BREEAM credits achieved 0                                                       |            |                   |                  |
| Total contribution to overall building score 0.00%                                    |            |                   |                  |

Total BREEAM innovation credits achieved

Minimum standard(s) level

N/A

N/A



# WASTE

Wst 01 Construction Waste Management

| No. of BREEAM credits available                                                     | 1        | Available contribution to overall score  | 5.50% |
|-------------------------------------------------------------------------------------|----------|------------------------------------------|-------|
| No. of BREEAM innovation credits available                                          | L        | Minimum standards applicable             | Yes   |
| How do you wish to assess the number of BREEAM credits to be achieved for this issu | ıe?      | Define a target number of BREEAM credits |       |
| Select the number of BREEAM credits being targeted for issu                         | e Wst 01 | BREEAM Wst01 Innovation credits:         | 0     |

| Assessment Criteria                                              | Compliant? |
|------------------------------------------------------------------|------------|
| Construction resource management plan                            |            |
| Compliant Pre-demolition audit                                   |            |
| Does the excavation waste meet the exemplary level requirements? |            |
| Key Performance Indicators - Construction Waste                  |            |

| Non-hazardous construction waste (excluding demolition/excavation    | )   |
|----------------------------------------------------------------------|-----|
| Total non-hazardous construction waste generate                      | bl  |
| Non-hazardous non-demolition const. waste diverted from landfi       | 1   |
| Total non-hazardous non-demolition const. waste diverted from landfi | 1   |
| Total non-hazardous demolition waste generate                        | b l |
| Non-hazardous demolition waste diverted from landfi                  | 1   |
| Total non-hazardous demolition waste to dispose                      | 1   |
| Material for reus                                                    | 2   |
| Material for recyclin                                                | B   |
| Material for energy recover                                          | /   |
| Hazardous waste to disposa                                           | 1   |

Note: At the pre-assessment stage this fig Note: At this stage this will be a target ber Note: At the pre-assessment stage this fig Note: At this stage this will be a target ber Note: At this stage this will be a target ber Note: At the pre-assessment stage this fig Note: At the stage this will be a target ber Note: At this stage this will be a target ber Note: At this stage this will be a target ber Note: At this stage this will be a target ber Note: At this stage this will be a target ber Note: At this stage this will be a target ber Note: At this stage this will be a target ber

| Total BREEAM credits achieved                | 2                 |
|----------------------------------------------|-------------------|
| Total contribution to overall building score | 2.75%             |
| Total BREEAM innovation credits achieved     | 0                 |
| Minimum standard(s) level                    | Outstanding level |



# Wst 02 Recycled Aggregates

| No. of BREEAM credits available            | 1 | Available contribution to overall score | 1.38% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 1 | Minimum standards applicable            | No    |

| Assessment Criteria                                                                           | Total |
|-----------------------------------------------------------------------------------------------|-------|
| What is the target total % of high-grade aggregate that will be recycled/secondary aggregate? | 0%    |

# % of high-grade aggregate that is recycled/secondary aggregate - by application

| ne | Structural frame                                             |
|----|--------------------------------------------------------------|
| es | Bitumen/hydraulically bound base, binder and surface courses |
| hs | Building foundations                                         |
| es | Concrete road surfaces                                       |
| ng | Pipe bedding                                                 |
| ng | Granular fill and capping                                    |
|    |                                                              |

| Total BREEAM credits achieved                | 0     |
|----------------------------------------------|-------|
| Total contribution to overall building score | 0.00% |
| Total BREEAM innovation credits achieved     | 0     |
| Minimum standard(s) level                    | N/A   |

# Comments/notes:

| Wst 03 | Operational | Waste |
|--------|-------------|-------|
|--------|-------------|-------|

| No. of BREEAM credits available            | 1 | Available contribution to overall score | 1.38% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | Yes   |

| Assessment Criteria                                                       | Compliant? | Credits available | Credits achieved |
|---------------------------------------------------------------------------|------------|-------------------|------------------|
| Will operational recyclable waste volumes be segregated and stored        | Yes        | 1                 | 1                |
| Will static waste compactor(s) or baler(s) be specified where appropriate | N/A        |                   |                  |
| Will vessel(s) for composting suitable organic waste where appropriate    | N/A        |                   |                  |

| Total BREEAM credits achieved                | 1                 |
|----------------------------------------------|-------------------|
| Total contribution to overall building score | 1.38%             |
| Total BREEAM innovation credits achieved     | N/A               |
| Minimum standard(s) level                    | Outstanding level |



# Wst 04 Speculative Floor and Ceiling Finishes

|                     | No. of BREEAM credits available              | N/A | Available contribution to overall score |                   |                  | N/A |
|---------------------|----------------------------------------------|-----|-----------------------------------------|-------------------|------------------|-----|
|                     | No. of BREEAM innovation credits available   | N/A | Minimum standards applicable            |                   |                  | N/A |
|                     |                                              |     |                                         |                   |                  |     |
| Assessment Criteria |                                              |     | Compliant?                              | Credits available | Credits achieved |     |
|                     |                                              |     |                                         |                   |                  |     |
|                     |                                              |     |                                         |                   |                  |     |
|                     | Total BREEAM credits achieved                | N/A |                                         |                   |                  |     |
|                     | Total contribution to overall building score | N/A |                                         |                   |                  |     |
|                     | Total BREEAM innovation credits achieved     | N/A |                                         |                   |                  |     |
|                     | Minimum standard(s) level                    | N/A |                                         |                   |                  |     |
|                     |                                              |     |                                         |                   |                  |     |

# Comments/notes:

# Wst 05 Adaption to climate change

| No. of BREEAM credits available            | 1   | Available contribution to overall score | 1.38% |
|--------------------------------------------|-----|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | N/A | Minimum standards applicable            | N/A   |

| Assessment Criteria                                                                                                                                                 |                | Compliant? | Credits available | Credits achieved |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|-------------------|------------------|
| Will a climate change adaptation strategy appraisal for structural and fabric resilience be conducted<br>by the end of Concept Design (RIBA Stage 2 or equivalent)? |                | No         | 1                 | 0                |
| Will emexplary level criteria – Responding to adaptation to climate                                                                                                 | change be met? |            |                   |                  |
| Total BREEAM credits achieved                                                                                                                                       | 0              |            |                   |                  |
| Total contribution to overall building score                                                                                                                        | 0.00%          |            |                   |                  |
| Total BREEAM innovation credits achieved                                                                                                                            | N/A            |            |                   |                  |
| Minimum standard(s) level                                                                                                                                           | N/A            |            |                   |                  |

#### Comments/notes:

# Wst 06 Functional adaptability

| No. of BREEAM credits available            | 1 | Available contribution to overall score | 1.38% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | N/A   |

| Assessment Criteria                                                                                                                                                                      | Compliant? | Credits available | Credits achieved |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|------------------|
| Will a building specific functional adaptation strategy appraisal be conducted by Concept Design<br>(RIBA Stage 2 or equivalent) and will functional adaptation measures be implemented? | No         | 1                 | 0                |

| Total BREEAM credits achieved                | 0     |
|----------------------------------------------|-------|
| Total contribution to overall building score | 0.00% |
| Total BREEAM innovation credits achieved     | N/A   |
| Minimum standard(s) level                    | N/A   |

# BREEAM®

# LAND USE & ECOLOGY

LE 01 Site Selection

| No. of BREEAM credits available            | 2 | Available contribution to overall score | 2.60% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |
|                                            |   |                                         |       |

| Assessment Criteria                                                                               | Compliant? | Credits available | Credits achieved |  |
|---------------------------------------------------------------------------------------------------|------------|-------------------|------------------|--|
| Will at least 75% of the proposed development's footprint be located on previously occupied land? | Yes        | 1                 | 1                |  |
| Is the site deemed to be significantly contaminated?                                              | Yes        | 1                 | 1                |  |
|                                                                                                   |            |                   |                  |  |

| Total BREEAM credits achieved                | 2     |
|----------------------------------------------|-------|
| Total contribution to overall building score | 2.60% |
| Total BREEAM innovation credits achieved     | N/A   |
| Minimum standard(s) level                    | N/A   |



LE 02 Ecological Value of Site and Protection of Ecological Features

| No. of BREEAM credits available            | 2 | Available contribution to overall score | 2.60% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

| Assessment Criteria                                                                                 | Compliant? | Credits available | Credits achieved |
|-----------------------------------------------------------------------------------------------------|------------|-------------------|------------------|
| Can the land within the construction zone be defined as 'land of low ecological value'?             | Yes        | 1                 | 1                |
| Will all features of ecological value surrounding the construction zone/site boundary be protected? | Yes        | 1                 | 1                |
| Total BREEAM credits achieved 2                                                                     |            |                   |                  |

| 2     | Total Breezeward a chieved                   |
|-------|----------------------------------------------|
| 2.60% | Total contribution to overall building score |
| N/A   | Total BREEAM innovation credits achieved     |
| N/A   | Minimum standard(s) level                    |

Comments/notes:

# LE 03 Mitigating Ecological Impact

| No. of BREEAM credits available            | 2 | Available contribution to overall score | 2.60% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | Yes   |

Assessment Criteria

| What is the likely change in ecological value as a result of the | sites development? | ≥0 species (i.e. no negative change) | Plant species richne |
|------------------------------------------------------------------|--------------------|--------------------------------------|----------------------|
|                                                                  |                    |                                      |                      |
| Total BREEAM credits achieved                                    | 2                  |                                      |                      |
| Total contribution to overall building score                     | 2.60%              |                                      |                      |
| Total BREEAM innovation credits achieved                         | N/A                |                                      |                      |
| Minimum standard(s) level                                        | Outstanding level  |                                      |                      |

| •••••••• |  |  |  |
|----------|--|--|--|
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |



LE 04 Enhancing Site Ecology

| No. of BREEAM credits available            | 2 | Available contribution to overall score | 2.60% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

| Assessment Criteria                                                                                  | Compliant?          | Credits available | Credits achieved |                      |
|------------------------------------------------------------------------------------------------------|---------------------|-------------------|------------------|----------------------|
| Will a suitably qualified ecologist be appointed to report on enhancing and protecting site ecology? | Yes                 | 2                 | 1                |                      |
| Will the suitably qualified ecologist's general recommendations be implemented?                      | Yes                 |                   |                  | 1                    |
| What is the targeted/intended improvement in ecological value as a result of enhancement actions?    | <6 species (small p | ositive change)   |                  | Plant species richne |
|                                                                                                      |                     |                   |                  | -                    |
| Total BREEAM credits achieved 1                                                                      |                     |                   |                  |                      |
| Total contribution to overall building score 1.30%                                                   |                     |                   |                  |                      |
| Total BREEAM innovation credits achieved N/A                                                         |                     |                   |                  |                      |
| Minimum standard(s) level N/A                                                                        |                     |                   |                  |                      |
| Comments/notes:                                                                                      |                     |                   |                  |                      |

# LE 05 Long Term Impact on Biodiversity

| No. of BREEAM credits available            | 2 | Available contribution to overall score | 2.60% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

| Assessment Criteria                                                                                                                                               |                                  | Compliant? | Credits available | Credits achieved |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------|-------------------|------------------|
| Will a Suitably Qualified Ecologist be appointed to monitor/minimise impacts of s                                                                                 | site activities on biodiversity? | Yes        | 2                 | 0                |
| Will a landscape and habitat management plan be produced covering at least the first five years<br>after project completion in accordance with British Standards? |                                  | No         |                   |                  |
| Number of applicable measures to improve biodiversity cor                                                                                                         | nfirmed by SQE:                  | 0          |                   |                  |
| Number of applicable measure                                                                                                                                      | s implemented:                   | 0          |                   |                  |
|                                                                                                                                                                   |                                  |            |                   |                  |
| Total BREEAM credits achieved                                                                                                                                     | 0                                |            |                   |                  |
| Total contribution to overall building score                                                                                                                      | 0.00%                            |            |                   |                  |
| Total BREEAM innovation credits achieved                                                                                                                          | N/A                              |            |                   |                  |
| Minimum standard(s) level                                                                                                                                         | N/A                              |            |                   |                  |
|                                                                                                                                                                   |                                  |            |                   |                  |



Pol 01 Impact of Refrigerants

| No. of BREEAM credits available            | N/A | Available contribution to overall score | N/A |
|--------------------------------------------|-----|-----------------------------------------|-----|
| No. of BREEAM innovation credits available | N/A | Minimum standards applicable            | N/A |

| Assessment Criteria                                                              |                      | Credits available | Credits achieved |
|----------------------------------------------------------------------------------|----------------------|-------------------|------------------|
| Refrigerant containing systems installed in the                                  | assessed building?   |                   |                  |
| Do all systems (with electric compressors) comply with the requirements of BS EN | 378:2008 (parts 2    |                   |                  |
| & 3) & where refrigeration systems containing ammonia are installed              | , the IoR Ammonia    |                   |                  |
| Refrigeration Systems                                                            | Code of Practice?    |                   |                  |
| Global Warming Potential of the specified refrige                                | erant(s) 10 or less? |                   |                  |
| What is the target range Direct Effect Life Cycle CO2eq. emissio                 | ns for the system?   |                   |                  |
| Cooling/Heating capa                                                             | acity of the system  |                   |                  |
| Will a refrigerant leak detection and containment system be s                    | pecified/installed?  |                   |                  |
|                                                                                  | NI / A               |                   |                  |
| Total BREEAW credits achieved                                                    | N/A                  |                   |                  |
| Total contribution to overall building score                                     | N/A                  |                   |                  |
| Total BREEAM innovation credits achieved                                         | N/A                  |                   |                  |

Minimum standard(s) level

Comments/notes:

#### Assessment issue not applicable

Pol 02 NO<sub>x</sub> Emissions

| core N/A | Available contribution to overall score | N/A | No. of BREEAM credits available            |
|----------|-----------------------------------------|-----|--------------------------------------------|
| able N/A | Minimum standards applicable            | N/A | No. of BREEAM innovation credits available |

N/A

#### Assessment Criteria

| NO <sub>x</sub> emission level - space heating                              |                               |  |  |  |  |
|-----------------------------------------------------------------------------|-------------------------------|--|--|--|--|
| evel - water heating                                                        | NOx emission le               |  |  |  |  |
| Does this building meet BREEAM's definition of a highly insulated building? |                               |  |  |  |  |
| Energy consumption: heating and hot water                                   |                               |  |  |  |  |
|                                                                             |                               |  |  |  |  |
| N/A                                                                         | Total BREEAM credits achieved |  |  |  |  |
|                                                                             |                               |  |  |  |  |

| Total contribution to overall building score | N/A |
|----------------------------------------------|-----|
| Total BREEAM innovation credits achieved     | N/A |
| Minimum standard(s) level                    | N/A |



#### Pol 03 Surface Water Run off

| No. of BREEAM credits available            | 5 | Available contribution to overall score | 5.00% |
|--------------------------------------------|---|-----------------------------------------|-------|
| No. of BREEAM innovation credits available | 0 | Minimum standards applicable            | No    |

| Assessment Criteria                                                             |                              | Compliant? | Credits available | Credits achieved |
|---------------------------------------------------------------------------------|------------------------------|------------|-------------------|------------------|
| What is the actual/likely annual probability of flooding for the a              | ssessed site?                | Low        | 2                 | 2                |
| Will a Flood Risk Assessment be                                                 | undertaken?                  | Yes        | 2                 | 2                |
| Will the site meet the BREEAM criteria for peak rate surface w                  | ater run off?                | Yes        | 1                 | 1                |
| Will the site meet the criteria for surface water run off volume, attenuation a | nd/or limiting<br>discharge? | Yes        | 1                 | 1                |
| Will the site be designed to minimise watercourse pollution in accordance with  | the BREEAM criteria?         | Yes        | 1                 | 1                |
|                                                                                 |                              |            |                   |                  |
| Total BREEAM credits achieved                                                   | 5                            |            |                   |                  |
| Total contribution to overall building score                                    | 5.00%                        |            |                   |                  |
| Total BREEAM innovation credits achieved                                        | N/A                          |            |                   |                  |

Minimum standard(s) level

# Comments/notes:

N/A

# Pol 04 Reduction of Night Time Light Pollution

| 1.00% | Available contribution to overall score | 1 | No. of BREEAM credits available            |
|-------|-----------------------------------------|---|--------------------------------------------|
| No    | Minimum standards applicable            | 0 | No. of BREEAM innovation credits available |

| Assessment Criteria |                                                               |                     | Compliant? | Credits available | Credits achieved |
|---------------------|---------------------------------------------------------------|---------------------|------------|-------------------|------------------|
| ١                   | Will the external lighting specification be designed to reduc | ce light pollution? | Yes        | 1                 | 1                |
|                     |                                                               |                     |            |                   |                  |
|                     | Total BREEAM credits achieved                                 | 1                   |            |                   |                  |
|                     | Total contribution to overall building score                  | 1.00%               |            |                   |                  |
|                     | Total BREEAM innovation credits achieved                      | N/A                 |            |                   |                  |
|                     | Minimum standard(s) level                                     | N/A                 |            |                   |                  |



#### **Pol 05 Noise Attenuation**

| No. of BREEAM credits available            | N/A | Available contribution to overall score | N/A |
|--------------------------------------------|-----|-----------------------------------------|-----|
| No. of BREEAM innovation credits available | N/A | Minimum standards applicable            | N/A |

| Assessment Criteria                                                                                                                                   |                                                   | Compliant | Credits available | Credits achieved |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------|-------------------|------------------|
| Will there be noise-sensitive areas/buildings within 800m radius of t<br>Will a noise impact assessment be carried out and, if applicable, noise atte | he development?<br>nuation measures<br>specified? |           |                   |                  |
|                                                                                                                                                       |                                                   |           |                   |                  |
| Total BREEAM credits achieved                                                                                                                         | N/A                                               |           |                   |                  |
| Total contribution to overall building score                                                                                                          | N/A                                               |           |                   |                  |
| Total BREEAM innovation credits achieved                                                                                                              | N/A                                               |           |                   |                  |
| Minimum standard(s) level                                                                                                                             | N/A                                               |           |                   |                  |

#### Comments/notes:

# INNOVATION

Inn 01 Innovation

|                     | No. of BREEAM innovation credits available | 10                 |            | Available contril | oution to overall score | 10.00% |
|---------------------|--------------------------------------------|--------------------|------------|-------------------|-------------------------|--------|
|                     |                                            |                    |            | Minimun           | n standards applicable  | No     |
|                     |                                            |                    |            |                   |                         |        |
|                     |                                            |                    |            |                   |                         |        |
| Assessment Criteria |                                            |                    | Compliant? | Credits available | Credits achieved        |        |
|                     | Man 03 Responsible cons                    | truction practices | No         | 1                 | 0                       |        |

| Wall 05 Responsible construction practices          | INO | -   | 0   |
|-----------------------------------------------------|-----|-----|-----|
| Man 05 Aftercare                                    | N/A | N/A | N/A |
| Hea 01 Visual Comfort                               | Yes | 1   | 1   |
| Hea 02 Indoor Air Quality                           | N/A | N/A | N/A |
| Ene 01 Reduction of energy use and carbon emissions | No  | 5   | N/A |
| Wat 01 Water Consumption                            | N/A | N/A | N/A |
| Mat01 Life Cycle Impacts                            | No  | 3   | 0   |
| Mat03 Responsible Sourcing of Materials             | No  | 1   | 0   |
| Wst01 Construction Waste Management                 | No  | 1   | 0   |
| Wst02 Recycled Aggregates                           | No  | 1   | 0   |
| Wst 05 Adaption to climate change                   | N/A | N/A | N/A |

|                                              | Number of "approved" innovation credits achieved? |  |
|----------------------------------------------|---------------------------------------------------|--|
|                                              |                                                   |  |
| Total BREEAM innovation credits achieved     | 1                                                 |  |
| Total contribution to overall building score | 1 00%                                             |  |

| Total contribution to overall building score | 1.00% |
|----------------------------------------------|-------|
| Minimum standard(s) level                    | N/A   |

Comments/notes:

0



Appendix 2 – London Borough of Richmond Sustainable Construction Checklist

# LBRUT Sustainable Construction Checklist - January 2016

This document forms part of the Sustainable Construction Checklist SPD. This document **must** be filled out as part of the planning application for the following developments: all residential development providing **one or more new residential units (including conversions leading to one or more new units)**, and all other forms of development providing **100sqm or more of non-residential floor space**. Developments including new non-residential development of less than 100sqm floor space, extensions less than 100sqm, and other conversions are strongly encouraged to comply with this checklist. Where further information is requested, please either fill in the relevant section, or refer to the document where this information may be found in detail, e.g. Flood Risk Assessment or similar. **Further guidance** on completing the Checklist may be found in the Justification and Guidance section of this SPD.

| Property Name (if relevant):                                   | Arlington Works, 23 Arlington Road, Twickenham                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Application No. (if known):                         |            |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------|
| Address (include. postcode)                                    | Arlington Works, 23 Arlington Road, Twickenham                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |            |
| Completed by:                                                  | Ivan Ball                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |            |
| For Non-Residential                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | For Residential                                     |            |
| Size of development (m2)                                       | 610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Number of dwellings 24                              |            |
| 1 MINIMUM COMPLIAN                                             | NCE (RESIDENTIAL AND NON-RESIDENTIAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |            |
| Energy Assessment                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·               | Vec        |
| Has an energy assess<br>renewable energy mea                   | ment been submitted that demonstrates the expected energy and carbon dioxide errassing a submitted that demonstrates the expected energy and carbon dioxide errassing a submitted that demonstrates the expected energy and carbon dioxide errassing a submitted that demonstrates the expected energy and carbon dioxide errassing a submitted that demonstrates the expected energy and carbon dioxide errassing a submitted that demonstrates the expected energy and carbon dioxide errassing a submitted that demonstrates the expected energy and carbon dioxide errassing a submitted that demonstrates the expected energy and carbon dioxide errassing a submitted that demonstrates the expected energy and carbon dioxide err | s, please tick.                                     | Yes        |
| Carbon Dioxide emissions re                                    | duction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |            |
| What is the carbon did                                         | oxide emissions reduction against a Building Regulations Part L (2013) baseline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ilding Regulations 2013                             | 35.16      |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iung Negulations 2013.                              |            |
| Percentage of total sin                                        | te CO2 emissions saved through renewable energy installation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | 27.29      |
| 1A MINIMUM POLICY C                                            | OMPLIANCE (NON-RESIDENTIAL AND DOMESTIC REFURBISHMENT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |            |
|                                                                | Please check the Guidance Section of this SPD for the p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | olicy requirements                                  |            |
| Environmental Rating of deve<br>Non-Residential new-build (100 | elopment:<br>Osam or more)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |            |
| BREEAM Level                                                   | Excellent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Have you attached a pre-assessment to support this? | Ţ          |
| BREEAM Domestic R                                              | efurbishment Please Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Have you attached a pre-assessment to support this? |            |
| Extensions and conversions fo<br>BREEAM Level                  | r non-residential buildings Please Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Have you attached a pre-assessment to support this? |            |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |            |
| Score awarded for En                                           | vironmental Rating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     | Subtotal 8 |
| BKEEAM:                                                        | $Good = 0$ , very $Good = 4$ , Excellent = $\delta$ , Outstanding = $70$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |            |
| 1B MINIMUM POLICY C                                            | OMPLIANCE (RESIDENTIAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |            |
| Water Usage                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |            |

Internal water usage limited to 105 litres person per day. (Excluding an allowance 5 litres per person per day for external water consumption). Calculations using the water efficiency calculator for new dwellings have been submitted.

J 1

Subtotal

| 2. EN | NERGY USE AND POLLUTION                                                                                                                                                                                                  |            |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 2.1   | Need for Cooling                                                                                                                                                                                                         | Score      |
| a.    | How does the development incorporate cooling measures? Tick all that apply:                                                                                                                                              |            |
|       | Energy efficient design incorporating specific heat demand to less than or equal to 15 kWh/sqm                                                                                                                           | 6          |
|       | Reduce heat entering a building through providng/improving insulation and living roofs and walls                                                                                                                         | 2          |
|       | Reduce heat entering a building through shading                                                                                                                                                                          | ✓ <u>3</u> |
|       | Exposed thermal mass and high ceilings                                                                                                                                                                                   | ✓ 4        |
|       | Passive ventilation                                                                                                                                                                                                      | <u>√</u> 3 |
|       | Mechanical ventilation with heat recovery                                                                                                                                                                                |            |
|       | Active cooling systems, i.e. Air Conditioning Unit                                                                                                                                                                       | □ 0        |
| 2.2 H | leat Generation                                                                                                                                                                                                          |            |
| b.    | How have the heating and cooling systems, with preference to the heating system hierarchy, been selected (defined in London Plan policy 5.6)? Tick all heating and cooling systems that will be used in the development: |            |
|       | Connection to existing heating or cooling networks powered by renewable energy                                                                                                                                           |            |
|       | Connection to existing heating or cooling networks powered by renewable energy                                                                                                                                           |            |
|       | Site wide CHP network powered by renewable energy                                                                                                                                                                        | $\Box 4$   |
|       | Site wide CHP network powered by gas                                                                                                                                                                                     |            |
|       | Communal heating and cooling powered by renewable energy                                                                                                                                                                 | 2          |
|       | Communal heating and cooling powered by gas or electricity                                                                                                                                                               | 1          |
|       | Individual heating and cooling                                                                                                                                                                                           | ✓ <u>0</u> |
| 2.3 P | Pollution: Air, Noise and Light                                                                                                                                                                                          | _          |
| a.    | Does the development plan to implement reduction strategies for dust emissions from construction sites?                                                                                                                  | <b>√</b> 2 |
| b.    | Does the development plan include a biomass boiler?                                                                                                                                                                      | □ -        |
|       | If yes, please refer to the biomass guidelines for the Borough of Richmond, please see guidance for supplementary                                                                                                        | —          |
|       | information. If the proposed boiler is of a qualifying size, you may need to completed the information request form found                                                                                                |            |
|       | on the Richmond website.                                                                                                                                                                                                 | -          |
| C.    | Please tick only one option below                                                                                                                                                                                        | _          |
|       | Has the development taken measures to reduce existing noise and enhance the existing soundscape of the site?                                                                                                             | <b>√</b> 3 |
|       | Has the development taken care to not create any new noise generation/transmission issues in its intended operation?                                                                                                     |            |
| d.    | Has the development taken measures to reduce light pollution impacts on character, residential amenity and biodiversity?                                                                                                 | J 3        |
| e.    | Have you attached a Lighting Pollution Report?                                                                                                                                                                           | - []       |
|       |                                                                                                                                                                                                                          | Subtotal 1 |
| Pleas | se give any additional relevant comments to the Energy Use and Pollution Section below                                                                                                                                   |            |
| A Co  | nstruction Plan will be prepared, which will seek to reduce dust, noise and other disturbances to immediate neighbours.                                                                                                  |            |

# 3. TRANSPORT

3.1 Provision for the safe efficient and sustainable movement of people and goods

a. Does your development provide opportunities for occupants to use innovative travel technologies?

| J             |
|---------------|
|               |
| ע<br>בי<br>בי |
|               |
| Subtot        |
|               |
|               |
|               |

| 4                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                         |                           |                                                                                   |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|---------------------------|-----------------------------------------------------------------------------------|
| 4<br>/ 1 M                               | DIODIVERSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                         |                           |                                                                                   |
| 44.1 WI<br>a                             | Does your development involve the loss of an ecological feature or babitat including a loss of o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | narden or other ar                                                    | een space? (Indicate if ves)            |                           | □-2                                                                               |
| u.                                       | If so, please state how much in som?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | garaon or other gro                                                   |                                         |                           | Isan                                                                              |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                         |                           |                                                                                   |
| э.                                       | Does your development involve the removal of any tree(s)? (Indicate if yes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                         |                           | -                                                                                 |
|                                          | If so, has a tree report been provided in support of your application? (Ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ndicate if yes)                                                       |                                         |                           |                                                                                   |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                         |                           |                                                                                   |
| ).                                       | Does your development plan to add (and not remove) any tree(s) on site? (Indicate if yes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                         |                           |                                                                                   |
| 4                                        | Please indicate which features and/or babitats that your development will incorporate to improv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e on site hiodivers                                                   | sity:                                   |                           |                                                                                   |
|                                          | Pond reedbed or extensive native planting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Area provided:                          |                           | sa                                                                                |
|                                          | An extensive green roof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 🗆                                                                   | Area provided:                          |                           | sq.                                                                               |
|                                          | An intensive green roof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       | Area provided:                          |                           | sq                                                                                |
|                                          | Garden space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 J                                                                   | Area provided:                          |                           | sa                                                                                |
|                                          | Additional native and/or wildlife friendly planting to peripheral areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 🗆                                                                   | Area provided:                          |                           | sa                                                                                |
|                                          | Additional planting to peripheral areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 []                                                                  | Area provided:                          |                           | sq                                                                                |
|                                          | A living wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 []                                                                  | Area provided:                          |                           | sq                                                                                |
|                                          | Bat boxes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>0.5</u> 기                                                          |                                         |                           |                                                                                   |
|                                          | Bird boxes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>0.5</u> 고                                                          |                                         |                           |                                                                                   |
|                                          | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5                                                                   |                                         |                           |                                                                                   |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                         | Sub                       | ototal                                                                            |
| Pleas                                    | arive any additional relevant comments to the Biodiversity Section below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                         |                           |                                                                                   |
| Privat                                   | e terraces are provided to ground floor apartments and private communal space is available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                         |                           |                                                                                   |
| Privat                                   | ELOODING AND DRAINAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                         |                           |                                                                                   |
| Privat<br>5<br>Mitiga                    | FLOODING AND DRAINAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                         |                           |                                                                                   |
| Privat<br>5<br>Mitiga<br>a.              | FLOODING AND DRAINAGE<br>ting the risks of flooding and other impacts of climate change in the borough<br>Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       |                                         |                           | □-2                                                                               |
| Privat<br>Aitiga                         | FLOODING AND DRAINAGE<br>ting the risks of flooding and other impacts of climate change in the borough<br>Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes)<br>Have you submitted a Flood Risk Assessment? (Indicate if yes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                         |                           | □-2<br>□ -2                                                                       |
| Privat<br>litiga                         | FLOODING AND DRAINAGE<br>ting the risks of flooding and other impacts of climate change in the borough<br>Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes)<br>Have you submitted a Flood Risk Assessment? (Indicate if yes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                         |                           | □-2<br>□ -                                                                        |
| Aitiga<br>                               | FLOODING AND DRAINAGE         ting the risks of flooding and other impacts of climate change in the borough         Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes)         Have you submitted a Flood Risk Assessment? (Indicate if yes)         Which of the following measures of the drainage hierarchy are incorporated onto your site? (tick)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < all that apply)                                                     |                                         |                           | □-2<br>□ -                                                                        |
| Aitiga                                   | FLOODING AND DRAINAGE         ting the risks of flooding and other impacts of climate change in the borough         Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes)         Have you submitted a Flood Risk Assessment? (Indicate if yes)         Which of the following measures of the drainage hierarchy are incorporated onto your site? (tick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < all that apply)                                                     |                                         |                           | □-2<br>□ -<br>☑ -                                                                 |
| Aitiga                                   | FLOODING AND DRAINAGE         ting the risks of flooding and other impacts of climate change in the borough         Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes)         Have you submitted a Flood Risk Assessment? (Indicate if yes)         Which of the following measures of the drainage hierarchy are incorporated onto your site? (tick         Store rainwater for later use         Use of infiltration techniques such as porous surfacing materials to alloc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < all that apply)                                                     | e                                       |                           | □-2<br>□ -<br>☑ 5<br>☑ 3                                                          |
| Privat<br>Aitiga<br>                     | FLOODING AND DRAINAGE         ting the risks of flooding and other impacts of climate change in the borough         Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes)         Have you submitted a Flood Risk Assessment? (Indicate if yes)         Which of the following measures of the drainage hierarchy are incorporated onto your site? (tick         Store rainwater for later use         Use of infiltration techniques such as porous surfacing materials to allow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k all that apply)<br>ow drainage on-site                              | e                                       |                           | □-2<br>□ -<br>✓ 5<br>✓ 3<br>□ 4                                                   |
| Privat<br>Aitiga<br>I.                   | FLOODING AND DRAINAGE         ting the risks of flooding and other impacts of climate change in the borough         Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes)         Have you submitted a Flood Risk Assessment? (Indicate if yes)         Which of the following measures of the drainage hierarchy are incorporated onto your site? (tick         Store rainwater for later use         Use of infiltration techniques such as porous surfacing materials to allow         Attenuate rainwater in ponds or open water features         Store rainwater in tanks for gradual release to a watercourse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < all that apply)<br>ow drainage on-site                              | e                                       |                           | □-2<br>□ -<br>✓ 5<br>✓ 3<br>□ 4<br>□ 3                                            |
| Aitiga                                   | FLOODING AND DRAINAGE         ting the risks of flooding and other impacts of climate change in the borough         Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes)         Have you submitted a Flood Risk Assessment? (Indicate if yes)         Which of the following measures of the drainage hierarchy are incorporated onto your site? (tick         Store rainwater for later use         Use of infiltration techniques such as porous surfacing materials to allow         Attenuate rainwater in ponds or open water features         Store rainwater in tanks for gradual release to a watercourse         Discharge rainwater directly to watercourse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < all that apply)<br>ow drainage on-site                              | e                                       |                           | □-2<br>□ -<br>✓ 5<br>✓ 3<br>□ 4<br>□ 3<br>□ 2                                     |
| i<br>i<br>i<br>i.                        | FLOODING AND DRAINAGE         ting the risks of flooding and other impacts of climate change in the borough         Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes)         Have you submitted a Flood Risk Assessment? (Indicate if yes)         Which of the following measures of the drainage hierarchy are incorporated onto your site? (tick         Store rainwater for later use         Use of infiltration techniques such as porous surfacing materials to allow         Attenuate rainwater in ponds or open water features         Store rainwater for later use         Discharge rainwater to surface water drain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < all that apply)                                                     | e                                       |                           | □-2<br>□ -<br>✓ 5<br>✓ 3<br>□ 4<br>□ 3<br>□ 2<br>□ 1                              |
| Privat<br>Aitiga<br>I.                   | Frequencies       FLOODING AND DRAINAGE         ting the risks of flooding and other impacts of climate change in the borough         Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes)         Have you submitted a Flood Risk Assessment? (Indicate if yes)         Which of the following measures of the drainage hierarchy are incorporated onto your site? (tick         Store rainwater for later use         Use of infiltration techniques such as porous surfacing materials to allow         Attenuate rainwater in ponds or open water features         Store rainwater to surface water directly to watercourse         Discharge rainwater to surface water drain         Discharge rainwater to combined sewer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < all that apply)                                                     | e                                       |                           | □-2<br>□ -<br>✓ 5<br>✓ 3<br>□ 4<br>□ 3<br>□ 2<br>□ 1<br>✓ 0                       |
| Privat<br>Aitiga<br>I.                   | FLOODING AND DRAINAGE         ting the risks of flooding and other impacts of climate change in the borough         Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes)         Have you submitted a Flood Risk Assessment? (Indicate if yes)         Which of the following measures of the drainage hierarchy are incorporated onto your site? (tick         Store rainwater for later use         Use of infiltration techniques such as porous surfacing materials to allow         Attenuate rainwater in ponds or open water features         Store rainwater of ure try to watercourse         Discharge rainwater to surface water drain         Discharge rainwater to combined sewer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | k all that apply)<br>ow drainage on-site                              | e                                       |                           | □-2<br>□-<br>✓ 5<br>✓ 3<br>□ 4<br>□ 3<br>□ 2<br>□ 1<br>✓ 0                        |
| Privat<br>5<br>Mitiga<br>a.<br>b.        | FLOODING AND DRAINAGE         ting the risks of flooding and other impacts of climate change in the borough         Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes)         Have you submitted a Flood Risk Assessment? (Indicate if yes)         Which of the following measures of the drainage hierarchy are incorporated onto your site? (tick         Store rainwater for later use         Use of infiltration techniques such as porous surfacing materials to allow         Attenuate rainwater in ponds or open water features         Store rainwater to surface water drain         Discharge rainwater to surface water drain         Discharge rainwater to combined sewer         Please give the change in area of permeable surfacing which will result from your development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | k all that apply)<br>ow drainage on-site<br>proposal:                 | e<br>se represent a loss in permeable a | rea as a negative number  | □ -2<br>□ -<br>✓ 5<br>✓ 3<br>□ 4<br>□ 3<br>□ 2<br>□ 1<br>✓ 0<br>sq                |
| Privat<br>Mitiga<br>a.                   | <b>FLOODING AND DRAINAGE FLOODING AND DRAINAGE ting the risks of flooding and other impacts of climate change in the borough</b> Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes) Have you submitted a Flood Risk Assessment? (Indicate if yes) Which of the following measures of the drainage hierarchy are incorporated onto your site? (tick Store rainwater for later use Use of infiltration techniques such as porous surfacing materials to allo Attenuate rainwater in ponds or open water features Store rainwater to surface water ourse Discharge rainwater to surface water drain Discharge rainwater to combined sewer Please give the change in area of permeable surfacing which will result from your development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | k all that apply)<br>bw drainage on-site<br>proposal:<br><i>pleas</i> | e<br>se represent a loss in permeable a | nrea as a negative number | □ -2<br>□ -<br>□ 5<br>□ 3<br>□ 4<br>□ 3<br>□ 2<br>□ 1<br>□ 0<br>sqr               |
| Privat<br>Aitiga<br>                     | <b>FLOODING AND DRAINAGE The set of the boot of the boot</b> | k all that apply)<br>ow drainage on-site<br>proposal:<br><i>pleas</i> | e<br>se represent a loss in permeable a | irea as a negative number | □ -2<br>□ -<br>□ -<br>□ 3<br>□ 4<br>□ 3<br>□ 2<br>□ 1<br>□ 2<br>□ 1<br>□ 0<br>squ |
| Privat<br>Aitiga<br>I.<br>Pleas<br>Rainw | <b>FLOODING AND DRAINAGE The terraces are provided to ground floor apartments and private communal space is available. FLOODING AND DRAINAGE ting the risks of flooding and other impacts of climate change in the borough</b> Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes) Have you submitted a Flood Risk Assessment? (Indicate if yes) Which of the following measures of the drainage hierarchy are incorporated onto your site? (tick Store rainwater for later use Use of infiltration techniques such as porous surfacing materials to allo Attenuate rainwater in ponds or open water features Store rainwater in tanks for gradual release to a watercourse Discharge rainwater to surface water drain Discharge rainwater to combined sewer Please give the change in area of permeable surfacing which will result from your development Please provide details of the permeable surfacing and Drainage Section below atter butts will be provided for landscape maintenance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k all that apply)<br>bw drainage on-site<br>proposal:<br><i>pleas</i> | e<br>se represent a loss in permeable a | nrea as a negative number | □ -2<br>□ -<br>✓ 5<br>✓ 3<br>□ 4<br>□ 3<br>□ 2<br>□ 1<br>☑ 0<br>squ<br>ototal     |
| litiga                                   | <b>FLOODING AND DRAINAGE</b> ting the risks of flooding and other impacts of climate change in the borough Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes) Have you submitted a Flood Risk Assessment? (Indicate if yes) Which of the following measures of the drainage hierarchy are incorporated onto your site? (tick Store rainwater for later use Use of infiltration techniques such as porous surfacing materials to allo Attenuate rainwater in tanks for gradual release to a watercourse Discharge rainwater to surface water drain Discharge rainwater to surface materials to allo attenuate and private to surface water drain Discharge rainwater of surface water drain Discharge rainwater to surface materials drain Discharge rainwater to surface water drain Discharge rainwater to surface materials for your development Please give the change in area of permeable surfacing which will result from your development Please provide details of the permeable surfacing below e give any additional relevant comments to the Flooding and Drainage Section below ater butts will be provided for landscape maintenance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < all that apply)<br>ow drainage on-site<br>proposal:<br><i>pleas</i> | e<br>se represent a loss in permeable a | nrea as a negative number | □-2<br>□-2<br>□-<br>95<br>3<br>14<br>3<br>2<br>1<br>2<br>1<br>7<br>0<br>sq        |
| rivat<br>Aitiga                          | <b>FLOODING AND DRAINAGE The set of the set of the broad of the broad of the broad of the brough</b> Is your site located in a high flood risk zone (Zone 3)? (Indicate if yes) Have you submitted a Flood Risk Assessment? (Indicate if yes) Which of the following measures of the drainage hierarchy are incorporated onto your site? (tick Store rainwater for later use Use of infiltration techniques such as porous surfacing materials to allo Attenuater rainwater in ponds or open water features Store rainwater of users or open water features Discharge rainwater to surface water drain Discharge rainwater to combined sewer Please give the change in area of permeable surfacing which will result from your development Please provide details of the permeable surfacing below give any additional relevant comments to the Flooding and Drainage Section below ater butts will be provided for landscape maintenance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | k all that apply)<br>ow drainage on-site<br>proposal:<br><i>pleas</i> | e<br>se represent a loss in permeable a | irea as a negative number | □-2<br>□-<br>2<br>0<br>-<br>3<br>0<br>4<br>3<br>0<br>2<br>1<br>0<br>0<br>sq       |

| MPROVING RESOURCE EFFICIENCY      G.1 Reduce waste generated and amount disposed of by landfill though increasing level of re-use and recycling     a. Will demolition be required on your site prior to construction? [Points will only be awarded if 10% or greater of demolition waste is reused/recycled]     I      If so, what percentage of demolition waste will be reused in the new development?     What percentage of demolition waste will be recycled?     What percentage of demolition assessment of the site contamination?     Have you submitted an assessment of the site contamination?     Are plans in place to remediate the contamination?     Are plans in place to include composting on site?  6.2 Reducing levels of water waste a. Will the following measures of water conservation be incorporated into the development? (Please tick all that apply):     Fitting of water efficient taps, shower heads etc     Use of water efficient A or B rated appliances     Rainwater harvesting for internal use     Greywater systems     Fit a water meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                                                   |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 IMP         | ROVING RESOURCE EFFICIENCY                                                                                                                        |                  |
| a. Will demolition be required on your site prior to construction? [Points will only be awarded if 10% or greater of demolition waste is reused/recycled]  If so, what percentage of demolition waste will be reused in the new development?  What percentage of demolition waste will be recycled?  What percentage of demolition waste will be recycled?  Must percentage of the site contamination?  Have you submitted an assessment of the site contamination?  Have you submitted a remediation plan?  Are plans in place to include composting on site?  6.2 Reducing levels of water waste  a. Will the following measures of water conservation be incorporated into the development? (Please tick all that apply):  Fitting of water efficient taps, shower heads etc Use of water efficient taps, shower heads etc Greywater harvesting for internal use Greywater systems Fit a water meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.1 Reduce v  | waste generated and amount disposed of by landfill though increasing level of re-use and recycling                                                |                  |
| If so, what percentage of demolition waste will be reused in the new development?  What percentage of demolition waste will be recycled?  What percentage of demolition waste will be recycled?  Maxe your site have any contaminated land? Have you submitted an assessment of the site contamination? Are plans in place to remediate the contamination? Are plans in place to remediate the contamination? Are plans in place to include composting on site?  6.2 Reducing levels of water waste a.  Will the following measures of water conservation be incorporated into the development? (Please tick all that apply):  Are plans in place to remedia to the development? (Please tick all that apply):  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are plans in place to include compositing on site?  Are pl | a. Will       | demolition be required on your site prior to construction? [Points will only be awarded if 10% or greater of demolition waste is reused/recycled] | J 1              |
| If so, what percentage of demolition waste will be reused in the new development?       20       %         What percentage of demolition waste will be recycled?       80       %         b.       Does your site have any contaminated land?       1         Have you submitted an assessment of the site contamination?       2         Are plans in place to remediate the contamination?       2         Have you submitted a remediation plan?       2         Are plans in place to include composting on site?       1         6.2 Reducing levels of water waste       1         a.       Will the following measures of water conservation be incorporated into the development? (Please tick all that apply):       1         Fitting of water efficient taps, shower heads etc       1       1         Use of water efficient taps, shower heads etc       1       1         Use of water efficient taps, shower heads etc       1       1         Greywater systems       1       4       4         Greywater systems       1       4       4         Tit a water meter       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                                                                                                                                   |                  |
| What percentage of demolition waste will be recycled?       80 %         b.       Does your site have any contaminated land?       1         Have you submitted an assessment of the site contamination?       2         Are plans in place to remediate the contamination?       2         Have you submitted a remediation plan?       1         Are plans in place to include composing on site?       1         6.2 Reducing levels of water waste       1         a.       Will the following measures of water conservation be incorporated into the development? (Please tick all that apply):       1         Fitting of water efficient taps, shower heads etc       1         Use of water efficient A or B rated appliances       1         Greywater systems       1         Fit a water meter       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | If so, what percentage of demolition waste will be reused in the new development?                                                                 | 20 %             |
| What percentage of demolition waste will be recycled?       80 %         b.       Does your site have any contaminated land?       1         Have you submitted an assessment of the site contamination?       2         Are plans in place to remediate the contamination?       2         Have you submitted a remediation plan?       2         Are plans in place to include composting on site?       1         6.2 Reducing levels of water waste       1         a.       Will the following measures of water conservation be incorporated into the development? (Please tick all that apply):       1         Fitting of water efficient taps, shower heads etc       1         Use of water efficient A or B rated appliances       1         Rainwater harvesting for internal use       1         Greywater systems       1         Fit a water meter       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                                                                                                                                   |                  |
| <ul> <li>b. Does your site have any contaminated land?</li> <li>Have you submitted an assessment of the site contamination?</li> <li>Are plans in place to remediate the contamination?</li> <li>Have you submitted a remediation plan?</li> <li>Are plans in place to include composting on site?</li> </ul> 6.2 Reducing levels of water waste <ul> <li>a. Will the following measures of water conservation be incorporated into the development? (Please tick all that apply):</li> <li>Fitting of water efficient taps, shower heads etc</li> <li>Use of water efficient taps, shower heads etc</li> <li>Greywater systems</li> <li>Fit a water meter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | What percentage of demolition waste will be recycled?                                                                                             | 80 %             |
| <ul> <li>b. Does your site have any contaminated land?</li> <li>Have you submitted an assessment of the site contamination?</li> <li>Are plans in place to remediate the contamination?</li> <li>Have you submitted a remediation plan?</li> <li>Have you submitted a remediation plan?</li> <li>Are plans in place to include composting on site?</li> </ul> 6.2 Reducing levels of water waste <ul> <li>a. Will the following measures of water conservation be incorporated into the development? (Please tick all that apply):</li> <li>Fitting of water efficient taps, shower heads etc</li> <li>Use of water inficient A or B rated appliances</li> <li>Greywater systems</li> <li>Fit a water meter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                   |                  |
| Have you submitted an assessment of the site contamination?       2         Are plans in place to remediate the contamination?       2         Have you submitted a remediation plan?       1         Are plans in place to include composting on site?       1         6.2 Reducing levels of water waste       1         a.       Will the following measures of water conservation be incorporated into the development? (Please tick all that apply):         Fitting of water efficient taps, shower heads etc       1         Use of water efficient A or B rated appliances       1         Rainwater harvesting for internal use       4         Greywater systems       4         Fit a water meter       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b. Doe        | s your site have any contaminated land?                                                                                                           |                  |
| Are plans in place to remediate the contamination?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | Have you submitted an assessment of the site contamination?                                                                                       | ✓ 2              |
| Have you submitted a remediation plan?       I         Are plans in place to include composting on site?       I         6.2 Reducing levels of water waste       I         a.       Will the following measures of water conservation be incorporated into the development? (Please tick all that apply):       I         Fitting of water efficient taps, shower heads etc       I       I         Use of water efficient A or B rated appliances       I       I         Rainwater harvesting for internal use       I       I         Greywater systems       I       I         Fit a water meter       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | Are plans in place to remediate the contamination?                                                                                                | <b>√</b> 2       |
| Are plans in place to include composting on site?   6.2 Reducing levels of water waste   a.   Will the following measures of water conservation be incorporated into the development? (Please tick all that apply):   Fitting of water efficient taps, shower heads etc   Use of water efficient A or B rated appliances   Rainwater harvesting for internal use   Greywater systems   Fit a water meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | Have you submitted a remediation plan?                                                                                                            | <br>고 1          |
| 6.2 Reducing levels of water waste<br>a. Will the following measures of water conservation be incorporated into the development? (Please tick all that apply):<br>Fitting of water efficient taps, shower heads etc<br>Use of water efficient A or B rated appliances<br>Rainwater harvesting for internal use<br>Greywater systems<br>Fit a water meter<br>Subtered □ 1<br>4<br>Compared 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | Are plans in place to include composting on site?                                                                                                 | $\Box$           |
| 6.2 Reducing levels of water waste         a.       Will the following measures of water conservation be incorporated into the development? (Please tick all that apply):         Fitting of water efficient taps, shower heads etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                                                                                                                   |                  |
| a.       Will the following measures of water conservation be incorporated into the development? (Please tick all that apply):         Fitting of water efficient taps, shower heads etc       ✓ 1         Use of water efficient A or B rated appliances       ✓ 1         Rainwater harvesting for internal use       ✓ 4         Greywater systems       ✓ 4         Fit a water meter       ✓ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.2 Reducing  | g levels of water waste                                                                                                                           |                  |
| Fitting of water efficient taps, shower heads etc       I         Use of water efficient A or B rated appliances       I         Rainwater harvesting for internal use       I         Greywater systems       I         Fit a water meter       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a. Will       | the following measures of water conservation be incorporated into the development? (Please tick all that apply):                                  |                  |
| Use of water efficient A or B rated appliances<br>Rainwater harvesting for internal use<br>Greywater systems<br>Fit a water meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Fitting of water efficient taps, shower heads etc                                                                                                 | J 1              |
| Rainwater harvesting for internal use<br>Greywater systems<br>Fit a water meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Use of water efficient A or B rated appliances                                                                                                    | —<br>「<br>」<br>1 |
| Greywater systems<br>☐ 4<br>Fit a water meter<br>☑ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | Rainwater harvesting for internal use                                                                                                             |                  |
| Fit a water meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Grevwater systems                                                                                                                                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Fit a water meter                                                                                                                                 | <br>रा 1         |
| Subtestel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                                                                                                                                   |                  |
| Subtotal 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                                                                                                                                   | Subtotal 8       |
| Please give any additional relevant comments to the Improving Resource Efficiency Section below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Please give a | any additional relevant comments to the Improving Resource Efficiency Section below                                                               |                  |

| 7      |                                                                                                                                            |            |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 7.1    | Ensure flexible adaptable and long-term use of structures                                                                                  |            |
| a.     | If the development is residential, will it meet the requirements of the nationally described space standard for internal space and layout? | J 1        |
|        | If the standards are not met, in the space below, please provide details of the functionality of the internal space and layout             |            |
|        | The standards of the SPD will be met.                                                                                                      |            |
|        |                                                                                                                                            |            |
|        |                                                                                                                                            |            |
|        |                                                                                                                                            |            |
| AND    |                                                                                                                                            |            |
| b.     | If the development is residential, will it meet Building Regulation Requirement M4 (2) 'accessible and adaptable dwellings'?               | ✓ 2        |
|        | If this is not met, in the space below, please provide details of any accessibility measures included in the development.                  |            |
|        |                                                                                                                                            |            |
|        |                                                                                                                                            |            |
|        |                                                                                                                                            |            |
|        |                                                                                                                                            |            |
|        |                                                                                                                                            |            |
|        | For major residential developments, are 10% or more of the units in the development to Building Regulation Requirement                     | □ 1        |
|        | M4 (3) 'wheelchair user dwellings'?                                                                                                        |            |
| OR     |                                                                                                                                            |            |
| C.     | If the development is non-residential, does it comply with requirements included in Richmond's Design for Maximum Access SPG               | ✓ 2        |
|        | Please provide details of the accessibility measures specified in the Maximum Access SPG that will be included in the                      |            |
|        | development                                                                                                                                |            |
|        |                                                                                                                                            |            |
|        |                                                                                                                                            |            |
|        |                                                                                                                                            |            |
|        |                                                                                                                                            |            |
|        |                                                                                                                                            |            |
|        |                                                                                                                                            | Subtotal 5 |
| Please | give any additional relevant comments to the Design Standards and Accessibility Section below                                              |            |
|        |                                                                                                                                            |            |
|        |                                                                                                                                            |            |
|        |                                                                                                                                            |            |
|        |                                                                                                                                            |            |
|        |                                                                                                                                            |            |
|        |                                                                                                                                            |            |

# LBRUT Sustainable Construction Checklist- Scoring Matrix for New Construction

#### (Non-Residential and domestic refurb) Score Rating Significance Project strives to achieve highest standard in energy efficient sustainable development 80 or more A+ Makes a major contribution towards achieving sustainable development in Richmond 71-79 Α 51-70 Helps to significantly improve the Borough's stock of sustainable developments В 36-50 С Minimal effort to increase sustainability beyond general compliance 35 or less FAIL Does not comply with SPD Policy

# LBRUT Sustainable Construction Checklist- Scoring Matrix for New Construction

# **Residential new-build**

|            |        | -                                                                                       |  |
|------------|--------|-----------------------------------------------------------------------------------------|--|
| Score      | Rating | Significance                                                                            |  |
| 81 or more | A++    | Project strives to achieve highest standard in energy efficient sustainable development |  |
| 64-80      | A+     | Project strives to achieve highest standard in energy efficient sustainable development |  |
| 55-63      | А      | Makes a major contribution towards achieving sustainable development in Richmond        |  |
| 35-54      | В      | lelps to significantly improve the Borough's stock of sustainable developments          |  |
| 20-34      | С      | Minimal effort to increase sustainability beyond general compliance                     |  |
| 19 or less | FAIL   | Does not comply with SPD Policy                                                         |  |

60

TOTAL

#### Authorisation:

I herewith declare that I have filled in this form to the best of my knowledge

Signature

Date



Appendix 3 – Roof Plan showing Indicative Photovoltaic Panel Locations



Inclination of Sun at 21st June - 62 degrees Inclination of Sun at 21st December - 15 degrees 62° 15° 150

2

Photovoltaic Panel - 1.6m x 1.05m inclined at 15 degrees



Appendix 4 – Sample BRUKL Calculations – baseline

# BRUKL Output Document

HM Government

Compliance with England Building Regulations Part L 2013

# **Project name**

# **Commercial Unit**

Date: Fri Jun 22 17:39:12 2018

# Administrative information

# **Building Details**

Address:

#### **Certification tool**

Calculation engine: SBEM

Calculation engine version: v5.4.b.0

Interface to calculation engine: iSBEM

Interface to calculation engine version: v5.4.b

BRUKL compliance check version: v5.4.b.0

#### **Owner Details**

Name: Information not provided by the user

Telephone number: Information not provided by the user

Address: Information not provided by the user, Information not provided by the user, Information not provided by the user

**Certifier details** 

Name:

**Telephone number:** 

Address:

# Criterion 1: The calculated CO<sub>2</sub> emission rate for the building should not exceed the target

| 1.1 | CO2 emission rate from the notional building, kgCO2/m2.annum                           | 19.9                |
|-----|----------------------------------------------------------------------------------------|---------------------|
| 1.2 | Target CO <sub>2</sub> emission rate (TER), kgCO <sub>2</sub> /m <sup>2</sup> .annum   | 19.9                |
| 1.3 | Building CO <sub>2</sub> emission rate (BER), kgCO <sub>2</sub> /m <sup>2</sup> .annum | 16.2                |
| 1.4 | Are emissions from the building less than or equal to the target?                      | BER =< TER          |
| 1.5 | Are as built details the same as used in the BER calculations?                         | Separate submission |

# Criterion 2: The performance of the building fabric and the building services should achieve reasonable overall standards of energy efficiency

#### 2.a Building fabric

| Element                                                                                                                                                    | Ua-Limit | Ua-Calc | Ui-Calc | Surface where the maximum value occurs* |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|-----------------------------------------|--|--|
| Wall**                                                                                                                                                     | 0.35     | 0.18    | 0.18    | External Wall                           |  |  |
| Floor                                                                                                                                                      | 0.25     | -       | -       | No floors in project                    |  |  |
| Roof                                                                                                                                                       | 0.25     | 0.12    | 0.12    | Roof                                    |  |  |
| Windows***, roof windows, and rooflights                                                                                                                   | 2.2      | 1.42    | 1.42    | 1.5m*FH                                 |  |  |
| Personnel doors                                                                                                                                            | 2.2      | 2.18    | 2.18    | Door 0.9m*2m                            |  |  |
| Vehicle access & similar large doors                                                                                                                       | 1.5      | -       | -       | No vehicle doors in project             |  |  |
| High usage entrance doors                                                                                                                                  | 3.5      | -       | -       | No high usage entrance doors in project |  |  |
| Ua-Limit = Limiting area-weighted average U-values [W/(m <sup>2</sup> K)]                                                                                  |          |         |         |                                         |  |  |
| Ua-Calc = Calculated area-weighted average U-values [W/(m <sup>2</sup> K)] Ui-Calc = Calculated maximum individual element U-values [W/(m <sup>2</sup> K)] |          |         |         |                                         |  |  |

P

\* There might be more than one surface where the maximum U-value occurs.

\*\* Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

\*\*\* Display windows and similar glazing are excluded from the U-value check.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

| Air Permeability   | Worst acceptable standard | This building |
|--------------------|---------------------------|---------------|
| m³/(h.m²) at 50 Pa | 10 •                      | 5             |

# As designed

#### 2.b Building services

The building services parameters listed below are expected to be checked by the BCO against guidance. No automatic checking is performed by the tool.

| Whole building lighting automatic monitoring & targeting with alarms for out-of-range values | NO          |
|----------------------------------------------------------------------------------------------|-------------|
| Whole building electric power factor achieved by power factor correction                     | 0.9 to 0.95 |

1- Mech Extract - Toilet (3 Zones)

| Heating seasonal efficiency  | <b>Cooling nominal efficiency</b> | SFP [W/(l/s)]        | HR seasonal e | efficiency |
|------------------------------|-----------------------------------|----------------------|---------------|------------|
| 4                            | -                                 | 0.8                  | -             |            |
| Automatic monitoring & targe | ting with alarms for out-of-ran   | ge values for this H | IVAC system   | YES        |

2- Nat Vent - Circulation

| Heating seasonal efficiency  | Cooling nominal efficiency      | SFP [W/(l/s)]        | HR seasonal e | efficiency |
|------------------------------|---------------------------------|----------------------|---------------|------------|
| 4                            | -                               | -                    | -             |            |
| Automatic monitoring & targe | ting with alarms for out-of-ran | ge values for this H | IVAC system   | YES        |

3- VRF with Mech Vent - Office (11 Zones)

| Heating seasonal efficiency  | Cooling nominal efficiency       | SFP [W/(l/s)]        | HR seasonal e | efficiency |
|------------------------------|----------------------------------|----------------------|---------------|------------|
| 0.9                          | 3.5                              | 1.5                  | 0.7           |            |
| Automatic monitoring & targe | eting with alarms for out-of-ran | ge values for this H | IVAC system   | YES        |

1- Gas 90%

| Heating seasonal efficiency | Hot water storage loss factor [kWh/litre per day] |
|-----------------------------|---------------------------------------------------|
| 0.9                         | 0.29                                              |

#### Local mechanical ventilation and exhaust

| Zone         | Supply/extract SFP [W/(l/s)] | HR seasonal efficiency | Exhaust SFP [W/(I/s)] |
|--------------|------------------------------|------------------------|-----------------------|
| B1_Office 20 | 1.5                          | -                      | -                     |
| B1_Office 22 | 1.5                          | -                      | -                     |
| B1_Office 23 | 1.5                          | -                      | -                     |
| B1_Toilet 10 | -                            | -                      | 0.8                   |
| B1_Toilet 11 | -                            | -                      | 0.8                   |
| B1_Toilet 12 | -                            | -                      | 0.8                   |
| B1_Office 54 | 1.5                          | -                      | -                     |
| B1_Office 55 | 1.5                          | -                      | - *                   |
| B1_Office 56 | 1.5                          | -                      | -                     |
| B1_Office 57 | 1.5                          | -                      | -                     |
| B1_Office 58 | 1.5                          | P_\                    | -                     |
| B1_Office 59 | 1.5                          | -                      | -                     |
| B1_Office 60 | 1.5                          | -                      | -                     |
| B1_Office 61 | 1.5                          | - 1                    | -                     |

# General lighting and display lighting

| Zone              | General lighting [W] | Display lamps efficacy [Im/W] |
|-------------------|----------------------|-------------------------------|
| B1_Circulation 10 | 70                   | -                             |
| B1_Circulation 11 | 120                  | -                             |
| B1_Circulation 13 | 30                   | -                             |
| B1_Office 20      | 500                  | -                             |
| B1_Office 22      | 550                  | -                             |
| B1_Office 23      | 290                  | -                             |
| B1_Toilet 10      | 60                   | -                             |

#### General lighting and display lighting

| Zone         | General lighting [W] | Display lamps efficacy [lm/W] |
|--------------|----------------------|-------------------------------|
| B1_Toilet 11 | 90                   | -                             |
| B1_Toilet 12 | 90                   | -                             |
| B1_Office 54 | 30                   | -                             |
| B1_Office 55 | 190                  | -                             |
| B1_Office 56 | 10                   | -                             |
| B1_Office 57 | 60                   | -                             |
| B1_Office 58 | 10                   | -                             |
| B1_Office 59 | 10                   | -                             |
| B1_Office 60 | 10                   | -                             |
| B1_Office 61 | 20                   | -                             |

# Criterion 3: The spaces in the building should have propriate passive control measures to limit solar gains

| Zone         | Solar gain limit exceeded? (%) | Internal blinds used? |
|--------------|--------------------------------|-----------------------|
| B1_Office 20 | NO (-55%)                      | YES                   |
| B1_Office 22 | NO (-49%)                      | YES                   |
| B1_Office 23 | NO (-77%)                      | NO                    |
| B1_Office 54 | NO (-46%)                      | NO                    |
| B1_Office 55 | NO (-1%)                       | YES                   |
| B1_Office 56 | NO (-58%)                      | NO                    |
| B1_Office 57 | NO (-63%)                      | NO                    |
| B1_Office 58 | NO (-39%)                      | NO                    |
| B1_Office 59 | NO (-52%)                      | NO                    |
| B1_Office 60 | NO (-50%)                      | NO                    |
| B1_Office 61 | NO (-41%)                      | NO                    |

# Criterion 4: The performance of the building, as built, should be consistent with the BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

# Technical Data Sheet (Actual vs. Notional Building)

# **Building Global Parameters**

|                                      | Actual | Notional | %   |
|--------------------------------------|--------|----------|-----|
| Area [m <sup>2</sup> ]               | 520    | 520      |     |
| External area [m <sup>2</sup> ]      | 488    | 488      | -   |
| Weather                              | LON    | LON      | 100 |
| Infiltration [m³/hm²@ 50Pa]          | 5      | 5        |     |
| Average conductance [W/K]            | 283    | 295      |     |
| Average U-value [W/m <sup>2</sup> K] | 0.58   | 0.61     |     |
| Alpha value* [%]                     | 5.92   | 5.92     |     |
|                                      |        |          |     |

\* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

# **Building Use**

22

1

# % Area Building Type

| A1/A2 Retail/Financial and Professional services            |
|-------------------------------------------------------------|
| A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways      |
| B1 Offices and Workshop businesses                          |
| B2 to B7 General Industrial and Special Industrial Groups   |
| B8 Storage or Distribution                                  |
| C1 Hotels                                                   |
| C2 Residential Inst.: Hospitals and Care Homes              |
| C2 Residential Inst.: Residential schools                   |
| C2 Residential Inst.: Universities and colleges             |
| C2A Secure Residential Inst.                                |
| Residential spaces                                          |
| D1 Non-residential Inst.: Community/Day Centre              |
| D1 Non-residential Inst.: Libraries, Museums, and Galleries |
| D1 Non-residential Inst.: Education                         |
| D1 Non-residential Inst .: Primary Health Care Building     |
| D1 Non-residential Inst.: Crown and County Courts           |
| D2 General Assembly and Leisure, Night Clubs and Theatres   |
| Others: Passenger terminals                                 |
| Others: Emergency services                                  |
| Others: Telephone exchanges                                 |
| Others: Miscellaneous 24hr activities                       |
| Others: Car Parks 24 hrs                                    |
| Others - Stand alone utility block                          |

# Energy Consumption by End Use [kWh/m<sup>2</sup>]

|            | Actual | Notional |
|------------|--------|----------|
| Heating    | 8.95   | 7.93     |
| Cooling    | 7.91   | 7.66     |
| Auxiliary  | 7.1    | 5.96     |
| Lighting   | 12.34  | 22.7     |
| Hot water  | 4.24   | 2.84     |
| Equipment* | 35.63  | 35.63    |
| TOTAL      | 40.54  | 47.09    |

\* Energy used by equipment does not count towards the total for calculating emissions.

# Energy Production by Technology [kWh/m<sup>2</sup>]

|                       | Actual | Notional |
|-----------------------|--------|----------|
| Photovoltaic systems  | 0      | 0        |
| Wind turbines         | 0      | 0        |
| CHP generators        | 0      | 0        |
| Solar thermal systems | 0      | 0        |

# Energy & CO<sub>2</sub> Emissions Summary

|                                               | Actual | Indicative Target |
|-----------------------------------------------|--------|-------------------|
| Heating + cooling demand [MJ/m <sup>2</sup> ] | 130.97 | 132.08            |
| Total consumption [kWh/m <sup>2</sup> ]       | 40.54  | 47.09             |
| Total emissions [kg/m <sup>2</sup> ]          | 16.2   | 19.9              |

| ŀ                                                                                                   | IVAC Sys     | stems Per         | formanc           | e                  |                    |                   |                |               |                  |                  |
|-----------------------------------------------------------------------------------------------------|--------------|-------------------|-------------------|--------------------|--------------------|-------------------|----------------|---------------|------------------|------------------|
| Sys                                                                                                 | stem Type    | Heat dem<br>MJ/m2 | Cool dem<br>MJ/m2 | Heat con<br>kWh/m2 | Cool con<br>kWh/m2 | Aux con<br>kWh/m2 | Heat<br>SSEEF  | Cool<br>SSEER | Heat gen<br>SEFF | Cool gen<br>SEER |
| [ST] Central heating using water: radiators, [HS] LTHW boiler, [HFT] Electricity, [CFT] Electricity |              |                   |                   |                    |                    |                   |                |               |                  |                  |
|                                                                                                     | Actual       | 31.7              | 0                 | 2.2                | 0                  | 32.1              | 4              | 0             | 4                | 0                |
|                                                                                                     | Notional     | 88                | 0                 | 10.1               | 0                  | 16.2              | 2.43           | 0             |                  |                  |
| [51                                                                                                 | ] Central he | eating using      | y water: rad      | iators, [HS]       | LTHW boi           | ler, [HFT] E      | lectricity, [( | CFT] Electri  | city             |                  |
|                                                                                                     | Actual       | 34.9              | 0                 | 2.4                | 0                  | 1.8               | 4              | 0             | 4                | 0                |
|                                                                                                     | Notional     | 73.3              | 0                 | 8.4                | 0                  | 1.1               | 2.43           | 0             |                  |                  |
| [\$1                                                                                                | ] Split or m | ulti-split sy     | stem, [HS]        | LTHW boile         | er, [HFT] Na       | tural Gas, [      | CFT] Electi    | ricity        |                  |                  |
|                                                                                                     | Actual       | 30.7              | 123.6             | 10.5               | 9.8                | 5.9               | 0.81           | 3.5           | 0                | 3.5              |
|                                                                                                     | Notional     | 21.9              | 123.1             | 7.7                | 9.5                | 9.1               | 0.79           | 3.6           |                  |                  |

#### Key to terms

Aux con [kWh/m2]

Heat gen SSEFF

Heat SSEFF

Cool SSEER

ST

HS

HFT

CFT

= Heating energy demand Heat dem [MJ/m2]

Cool dem [MJ/m2] = Cooling energy demand

Heat con [kWh/m2] = Heating energy consumption

Cool con [kWh/m2] = Cooling energy consumption

= Auxiliary energy consumption

= Heating system seasonal efficiency (for notional building, value depends on activity glazing class)

2

= Cooling system seasonal energy efficiency ratio

= Heating generator seasonal efficiency

- = Cooling generator seasonal energy efficiency ratio
- Cool gen SSEER
- = System type = Heat source

- = Heating fuel type
  - = Cooling fuel type

# **Key Features**

# The BCO can give particular attention to items with specifications that are better than typically expected.

# **Building fabric**

| Element                                                                                                                                 | <b>U</b> і-тур                                                     | Ui-Min | Surface where the minimum value occurs* |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------|-----------------------------------------|--|--|
| Wall                                                                                                                                    | 0.23                                                               | 0.18   | External Wall                           |  |  |
| Floor                                                                                                                                   | 0.2                                                                | -      | No floors in project                    |  |  |
| Roof                                                                                                                                    | 0.15                                                               | 0.12   | Roof                                    |  |  |
| Windows, roof windows, and rooflights                                                                                                   | 1.5                                                                | 1.42   | 1.5m*FH                                 |  |  |
| Personnel doors                                                                                                                         | 1.5                                                                | 2.18   | Door 1.5m*2m                            |  |  |
| Vehicle access & similar large doors                                                                                                    | 1.5                                                                | -      | No vehicle doors in project             |  |  |
| High usage entrance doors                                                                                                               | usage entrance doors 1.5 - No high usage entrance doors in project |        |                                         |  |  |
| Ui-Typ = Typical individual element U-values [W/(m <sup>2</sup> K)] Ui-Min = Minimum individual element U-values [W/(m <sup>2</sup> K)] |                                                                    |        |                                         |  |  |
| * There might be more than one surface where the minimum U-value occurs.                                                                |                                                                    |        |                                         |  |  |

| Air Permeability   | Typical value | This building |
|--------------------|---------------|---------------|
| m³/(h.m²) at 50 Pa | 5             | 5             |

20

# **BRUKL** Output Document

HM Government

Compliance with England Building Regulations Part L 2013

# **Project name**

# Shell and Core

As designed

Date: Fri Dec 18 18:08:23 2015

# Administrative information

# Building Details

Address: Address 1, City, Postcode

# **Certification tool**

Calculation engine: Apache Calculation engine version: 7.0.4

Interface to calculation engine: IES Virtual Environment

Interface to calculation engine version: 7.0.4

BRUKL compliance check version: v5.2.d.2

# Owner Details

Name: Name Telephone number: Phone Address: Street Address, City, Postcode

Certifier details Name: Telephone number: Phone Address: Street Address, London, Postcode

# Criterion 1: The calculated CO<sub>2</sub> emission rate for the building should not exceed the target

| CO <sub>2</sub> emission rate from the notional building, kgCO <sub>2</sub> /m <sup>2</sup> .annum | 18.1                |   |
|----------------------------------------------------------------------------------------------------|---------------------|---|
| Target CO <sub>2</sub> emission rate (TER), kgCO <sub>2</sub> /m <sup>2</sup> .annum               | 18.1                | - |
| Building CO <sub>2</sub> emission rate (BER), kgCO <sub>2</sub> /m <sup>2</sup> .annum             | 16.1                |   |
| Are emissions from the building less than or equal to the target?                                  | BER =< TER          | _ |
| Are as built details the same as used in the BER calculations?                                     | Separate submission |   |

# Criterion 2: The performance of the building fabric and the building services should achieve reasonable overall standards of energy efficiency

Values not achieving standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

#### **Building fabric**

| Element                                  | Ua-Limit | Ua-Calc | Ui-Calc | Surface where the maximum value occurs*  |
|------------------------------------------|----------|---------|---------|------------------------------------------|
| Wall**                                   | 0.35     | 0.13    | 0.13    | 5_000000:Surf[2]                         |
| Floor                                    | 0.25     | 0.12    | 0.12    | 5_000000:Surf[0]                         |
| Roof                                     | 0.25     | 0.12    | 0.12    | 5_000004:Surf[2]                         |
| Windows***, roof windows, and rooflights | 2.2      | 1.4     | 1.4     | 5_000000:Surf[1]                         |
| Personnel doors                          | 2.2      | -       |         | No Personnel doors in building           |
| Vehicle access & similar large doors     | 1.5      | •       | -       | No Vehicle access doors in building      |
| High usage entrance doors                | 3.5      | 4       | -       | No High usage entrance doors in building |
| High usage entrance doors                | 3.5      | 4       | -       | No High usage entrance doors in b        |

Ua-Limit = Limiting area-weighted average U-values [W/(m<sup>-</sup>K)] Ua-Calc = Calculated area-weighted average U-values [W/(m<sup>2</sup>K)]

Ui-calc = Calculated maximum individual element U-values [W/(m<sup>2</sup>K)]

\* There might be more than one surface where the maximum U-value occurs.

\*\* Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

\*\*\* Display windows and similar glazing are excluded from the U-value check.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

| Air Permeability   | Worst acceptable standard | This building |  |
|--------------------|---------------------------|---------------|--|
| m³/(h.m²) at 50 Pa | 10                        | 5             |  |
#### **Building services**

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

| Whole building lighting automatic monitoring & targeting with alarms for out-of-range values | YES   |
|----------------------------------------------------------------------------------------------|-------|
| Whole building electric power factor achieved by power factor correction                     | >0.95 |

1- VRF heating and cooling (offices)

|                | Heating efficiency   | <b>Cooling efficiency</b> | Radiant efficiency    | SFP [W/(I/s)]  | HR efficiency |
|----------------|----------------------|---------------------------|-----------------------|----------------|---------------|
| This system    | 4.2                  | 3.8                       | 0                     | 0              | 0.8           |
| Standard value | 2.5*                 | 3.2                       | N/A                   | N/A            | 0.5           |
| Automatic moni | toring & targeting w | ith alarms for out-of     | -range values for thi | is HVAC system | n YES         |

\* Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825 for limiting standards.

#### 2- VRF heating (toilets)

|                | Heating efficiency   | <b>Cooling efficiency</b> | Radiant efficiency    | SFP [W/(I/s)] | HR efficiency |
|----------------|----------------------|---------------------------|-----------------------|---------------|---------------|
| This system    | 4.2                  | 80                        | 0                     | 0             | 0.8           |
| Standard value | 2.5*                 | 3.2                       | N/A                   | N/A           | 0.5           |
| Automatic moni | toring & targeting w | ith alarms for out-of     | -range values for thi | s HVAC system | n YES         |

\* Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825 for limiting standards.

#### 1- Point of use electric heater

|                | Water heating efficiency | Storage loss factor [kWh/litre per day] |
|----------------|--------------------------|-----------------------------------------|
| This building  | 1                        |                                         |
| Standard value | 1                        | N/A                                     |

"No zones in project where local mechanical ventilation, exhaust, or terminal unit is applicable"

#### Shell and core configuration

| Zone             | Assumed shell? |
|------------------|----------------|
| GL-offices       | YES            |
| GL- staircase    | YES            |
| GL-Elevator      | YES            |
| L01- offices     | YES            |
| L01- circulation | YES            |
| L01- toilet      | YES            |
| GL- toilet       | YES            |
| GL- toilet       | YES            |
| GL- toilet       | YES            |
| GL- toilet       | YES            |
| GL- circulation  | YES            |
| GL- circulation  | YES            |

| General lighting and display lighting | Lumino    | ous effic | acy [lm/W]   |                      |
|---------------------------------------|-----------|-----------|--------------|----------------------|
| Zone name                             | Luminaire | Lamp      | Display lamp | General lighting [W] |
| Standard value                        | 60        | 60        | 22           |                      |
| GL-offices                            | 75        | -         | -            | 1853                 |

| General lighting and display lighting | Lumino    | ous effic | acy [lm/W]                              |                      |
|---------------------------------------|-----------|-----------|-----------------------------------------|----------------------|
| Zone name                             | Luminaire | Lamp      | Display lamp                            | General lighting [W] |
| Standard value                        | 60        | 60        | 22                                      |                      |
| GL- staircase                         | -         | 75        | -                                       | 117                  |
| GL-Elevator                           | -         | 75        | -                                       | 53                   |
| L01- offices                          | 75        | -         |                                         | 2063                 |
| L01- circulation                      | -         | 75        | -                                       | 81                   |
| L01- toilet                           | -         | 75        | -                                       | 63                   |
| L01- toilet                           | -         | 75        | -                                       | 57                   |
| L01- toilet                           | -         | 75        | -                                       | 53                   |
| L01- toilet                           | ÷         | 75        | (** · · · · · · · · · · · · · · · · · · | 63                   |
| GL- toilet                            |           | 75        | ( <del>.</del>                          | 67                   |
| GL- toilet                            |           | 75        | 3                                       | 53                   |
| GL- toilet                            |           | 75        | -                                       | 55                   |
| GL- toilet                            | 8         | 75        |                                         | 55                   |
| GL- circulation                       | -         | 75        |                                         | 162                  |
| GL- circulation                       |           | 75        | 96° i 1                                 | 31                   |

# Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

| Zone             | Solar gain limit exceeded? (%) | Internal blinds used? |
|------------------|--------------------------------|-----------------------|
| GL-offices       | NO (-47.9%)                    | NO                    |
| L01- offices     | NO (-32.1%)                    | NO                    |
| L01- circulation | N/A                            | N/A                   |
| GL- toilet       | N/A                            | N/A                   |
| GL- circulation  | NO (-34.2%)                    | NO                    |

# Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

# Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

#### EPBD (Recast): Consideration of alternative energy systems

| Were alternative energy systems considered and analysed as part of the design process? | NO |
|----------------------------------------------------------------------------------------|----|
| Is evidence of such assessment available as a separate submission?                     | NO |
| Are any such measures included in the proposed design?                                 | NO |

### Technical Data Sheet (Actual vs. Notional Building)

#### **Building Global Parameters**

|                                                       | Actual | Notional | %   |
|-------------------------------------------------------|--------|----------|-----|
| Area [m <sup>2</sup> ]                                | 498    | 498      |     |
| External area [m <sup>2</sup> ]                       | 1212   | 1212     |     |
| Weather                                               | LON    | LON      | 100 |
| Infiltration [m <sup>3</sup> /hm <sup>2</sup> @ 50Pa] | 5      | 3        |     |
| Average conductance [W/K]                             | 384.8  | 572.38   |     |
| Average U-value [W/m <sup>2</sup> K]                  | 0.32   | 0.47     |     |
| Alpha value* [%]                                      | 10.05  | 10       |     |

\* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

#### Energy Consumption by End Use [kWh/m<sup>2</sup>]

|            | Actual | Notional |
|------------|--------|----------|
| Heating    | 3.76   | 11.43    |
| Cooling    | 9.04   | 5.5      |
| Auxiliary  | 3.66   | 2.21     |
| Lighting   | 13.07  | 15.15    |
| Hot water  | 2.28   | 2.45     |
| Equipment* | 34.62  | 34.62    |
| TOTAL**    | 31.81  | 36.74    |

\* Energy used by equipment does not count towards the total for calculating emissions. \*\* Total is net of any electrical energy displaced by CHP generators, if applicable.

#### Energy Production by Technology [kWh/m<sup>2</sup>]

|                       | Actual | Notional |
|-----------------------|--------|----------|
| Photovoltaic systems  | 0      | 0        |
| Wind turbines         | 0      | 0        |
| CHP generators        | 0      | 0        |
| Solar thermal systems | 0      | 0        |

#### Energy & CO<sub>2</sub> Emissions Summary

|                                               | Actual | Notional |
|-----------------------------------------------|--------|----------|
| Heating + cooling demand [MJ/m <sup>2</sup> ] | 138.11 | 180.33   |
| Primary energy* [kWh/m <sup>2</sup> ]         | 106.47 | 139.55   |
| Total emissions [kg/m <sup>2</sup> ]          | 16.1   | 18.1     |

\* Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

#### **Building Use**

#### % Area Building Type

| A1/A2 Retail/Financial and Professional services            |
|-------------------------------------------------------------|
| A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways      |
| B1 Offices and Workshop businesses                          |
| B2 to B7 General Industrial and Special Industrial Groups   |
| B8 Storage or Distribution                                  |
| C1 Hotels                                                   |
| C2 Residential Inst.: Hospitals and Care Homes              |
| C2 Residential Inst.: Residential schools                   |
| C2 Residential Inst.: Universities and colleges             |
| C2A Secure Residential Inst.                                |
| Residential spaces                                          |
| D1 Non-residential Inst.: Community/Day Centre              |
| D1 Non-residential Inst.: Libraries, Museums, and Galleries |
| D1 Non-residential Inst.: Education                         |
| D1 Non-residential Inst .: Primary Health Care Building     |
| D1 Non-residential Inst.: Crown and County Courts           |
| D2 General Assembly and Leisure, Night Clubs and Theatres   |
| Others: Passenger terminals                                 |
| Others: Emergency services                                  |
| Others: Miscellaneous 24hr activities                       |
| Others: Car Parks 24 hrs                                    |
| Others - Stand alone utility block                          |

|             | IVAC Sys      | stems Per         | rformanc          | е                  |                    |                   |               |               |                  |                  |
|-------------|---------------|-------------------|-------------------|--------------------|--------------------|-------------------|---------------|---------------|------------------|------------------|
| System Type |               | Heat dem<br>MJ/m2 | Cool dem<br>MJ/m2 | Heat con<br>kWh/m2 | Cool con<br>kWh/m2 | Aux con<br>kWh/m2 | Heat<br>SSEEF | Cool<br>SSEER | Heat gen<br>SEFF | Cool gen<br>SEER |
| [S          | [] Split or m | ulti-split sy     | stem, [HS]        | Heat pump          | (electric):        | air source,       | [HFT] Elect   | ricity, [CFT] | Electricity      |                  |
|             | Actual        | 100.8             | 77.3              | 6.8                | 0.4                | 2.4               | 4.12          | 59.79         | 4.2              | 80               |
|             | Notional      | 177.6             | 84.8              | 19.3               | 6.2                | 2.8               | 2.56          | 3.79          |                  |                  |
| [S          | [] Split or m | ulti-split sy     | stem, [HS]        | Heat pump          | (electric): a      | air source,       | [HFT] Elect   | ricity, [CFT] | Electricity      |                  |
|             | Actual        | 55.7              | 93.9              | 3.8                | 11.6               | 3.9               | 4.12          | 2.24          | 4.2              | 3                |
| £           | Notional      | 107.2             | 83.3              | 11.6               | 6.1                | 2.1               | 2.56          | 3.79          |                  |                  |

#### Key to terms

CFT

| Heat dem [MJ/m2]  | = Heating energy demand                                                                               |
|-------------------|-------------------------------------------------------------------------------------------------------|
| Cool dem [MJ/m2]  | = Cooling energy demand                                                                               |
| Heat con [kWh/m2] | = Heating energy consumption                                                                          |
| Cool con [kWh/m2] | = Cooling energy consumption                                                                          |
| Aux con [kWh/m2]  | = Auxiliary energy consumption                                                                        |
| Heat SSEFF        | = Heating system seasonal efficiency (for notional building, value depends on activity glazing class) |
| Cool SSEER        | = Cooling system seasonal energy efficiency ratio                                                     |
| Heat gen SSEFF    | = Heating generator seasonal efficiency                                                               |
| Cool gen SSEER    | = Cooling generator seasonal energy efficiency ratio                                                  |
| ST                | = System type                                                                                         |
| HS                | = Heat source                                                                                         |
| HET               | = Heating fuel type                                                                                   |

- = Heating fuel type = Cooling fuel type

## Key Features

#### The BCO can give particular attention to items with specifications that are better than typically expected.

#### **Building fabric**

| Element                                              | <b>U</b> і-Тур | Ui-Min     | Surface where the minimum value occurs*                             |
|------------------------------------------------------|----------------|------------|---------------------------------------------------------------------|
| Wall                                                 | 0.23           | 0.11       | 5_000004:Surf[6]                                                    |
| Floor                                                | 0.2            | 0.12       | 5_000000:Surf[0]                                                    |
| Roof                                                 | 0.15           | 0.12       | 5_000004:Surf[2]                                                    |
| Windows, roof windows, and rooflights                | 1.5            | 1.4        | 5_000000:Surf[1]                                                    |
| Personnel doors                                      | 1.5            | -          | No Personnel doors in building                                      |
| Vehicle access & similar large doors                 | 1.5            |            | No Vehicle access doors in building                                 |
| High usage entrance doors                            | 1.5            |            | No High usage entrance doors in building                            |
| UI-Typ = Typical individual element U-values [W/(m2) | <)]            |            | Ui-Min = Minimum individual element U-values [W/(m <sup>2</sup> K)] |
| * There might be more than one surface where the     | minimum L      | J-value oc | curs.                                                               |

| Air Permeability   | Typical value | This building |  |
|--------------------|---------------|---------------|--|
| m³/(h.m²) at 50 Pa | 5             | 5             |  |



Appendix 5 – Sample SAP Calculations – baseline

# **Regulations Compliance Report**

| Approved Document L1A, 2013 Edition<br>Printed on 22 June 2018 at 10:46:59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n, England assessed by S                                                                                                                                              | Stroma FSAP 2012 program, Version: 1.0.3                                     | 3.11           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------|
| Project Information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                       |                                                                              |                |
| Assossed By: ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       | Building Type: Elet                                                          |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       | Building Type. Flat                                                          |                |
| Dwelling Details:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                              |                |
| NEW DWELLING DESIGN STAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tuislasshaas                                                                                                                                                          | I otal Floor Area: 50.6m <sup>2</sup>                                        |                |
| Site Reference : Anington Works,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Iwickennam                                                                                                                                                            | Plot Reference: Ariington                                                    | 1 1 Bed GND 51 |
| Address :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |                                                                              |                |
| Client Details:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       |                                                                              |                |
| Name: Sharpes Refinery<br>Address :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ' Service                                                                                                                                                             |                                                                              |                |
| This report covers items included with the second sec | vithin the SAP calculatio<br>itions compliance.                                                                                                                       | ins.                                                                         |                |
| 1a TER and DER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                       |                                                                              |                |
| Fuel for main heating system: Mains g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | jas                                                                                                                                                                   |                                                                              |                |
| Fuel factor: 1.00 (mains gas)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                       | 17 12 kg/m2                                                                  |                |
| Dwelling Carbon Dioxide Emission Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ate (DER)                                                                                                                                                             | 16.05 kg/m <sup>2</sup>                                                      | ОК             |
| 1b TFEE and DFEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                       |                                                                              |                |
| Target Fabric Energy Efficiency (TFE<br>Dwelling Fabric Energy Efficiency (DF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E)<br>·EE)                                                                                                                                                            | 36.6 kWh/m²<br>32.2 kWh/m²                                                   |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       |                                                                              | ОК             |
| 2 Fabric U-values<br>Element<br>External wall<br>Party wall<br>Floor<br>Roof<br>Openings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average<br>0.17 (max. 0.30)<br>0.00 (max. 0.20)<br>0.11 (max. 0.25)<br>(no roof)<br>1.43 (max. 2.00)                                                                  | Highest<br>0.17 (max. 0.70)<br>-<br>0.11 (max. 0.70)<br>1.60 (max. 3.30)     | ок<br>ок<br>ок |
| 2a Thermal bridging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |                                                                              |                |
| Thermal bridging calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | from linear thermal transm                                                                                                                                            | nittances for each junction                                                  |                |
| 3 Air permeability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                       |                                                                              |                |
| Air permeability at 50 pascals<br>Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | 4.00 (design value)<br>10.0                                                  | ок             |
| 4 Heating efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                       |                                                                              |                |
| Main Heating system:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Database: (rev 397, pro<br>Boiler systems with rac<br>Brand name: Alpha<br>Model: InTec 34C<br>Model qualifier:<br>(Combi)<br>Efficiency 88.8 % SED<br>Minimum 88.0 % | oduct index 016661):<br>Jiators or underfloor heating - mains gas<br>BUK2009 | ОК             |
| Secondary heating system:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None                                                                                                                                                                  |                                                                              |                |

# **Regulations Compliance Report**

| 5 Cylinder insulation                 |                                   |                               |     |
|---------------------------------------|-----------------------------------|-------------------------------|-----|
| Hot water Storage:                    | No cylinder                       |                               |     |
| 6 Controls                            |                                   |                               |     |
|                                       |                                   |                               |     |
| Space heating controls                | Time and temperature zone control | ol by device in database      | ОК  |
| Hot water controls:                   | No cylinder                       |                               | 01/ |
| Boller Interlock:                     | Yes                               |                               | UK  |
| T Low energy lights                   |                                   | 100.0%                        |     |
| Minimum                               | w-energy mangs                    | 75.0%                         | OK  |
| 8 Machanical ventilation              |                                   | 73.078                        | OK  |
| Net emplicable                        |                                   |                               |     |
|                                       |                                   |                               |     |
| 9 Summertime temperature              |                                   |                               |     |
| Overheating risk (Thames valley)      | ):                                | Medium                        | OK  |
| Based on:                             |                                   |                               |     |
| Overshading:                          |                                   | Average or unknown            |     |
| Windows facing: South East            |                                   | 4.41m <sup>2</sup>            |     |
| Windows facing: South East            |                                   | 4.41m <sup>2</sup>            |     |
| Windows facing: South East            |                                   | 1.08m <sup>2</sup>            |     |
| Ventilation rate:                     |                                   | 3.00                          |     |
| Blinds/curtains:                      |                                   | None                          |     |
|                                       |                                   | Closed 100% of daylight hours |     |
| 10 Key features                       |                                   |                               |     |
| Party Walls U-value<br>Floors U-value |                                   | 0 W/m²K<br>0.11 W/m²K         |     |

|                                  |                                                                                               |             | User D       | etails:          |                     |                  |          |           |                        |               |  |  |  |  |  |
|----------------------------------|-----------------------------------------------------------------------------------------------|-------------|--------------|------------------|---------------------|------------------|----------|-----------|------------------------|---------------|--|--|--|--|--|
| Assessor Name:<br>Software Name: | Stroma FSAP 201                                                                               | 2           |              | Stroma<br>Softwa | a Num<br>Ire Ver    | ber:<br>sion:    |          | Versio    | n: 1.0.3.11            |               |  |  |  |  |  |
|                                  |                                                                                               | Pr          | operty A     | Address:         | Arlingto            | on 1 Bec         | GND 5    | 1         |                        |               |  |  |  |  |  |
| Address :                        |                                                                                               |             |              |                  |                     |                  |          |           |                        |               |  |  |  |  |  |
| 1. Overall dwelling dime         | 1. Overall dwelling dimensions:<br>Area(m <sup>2</sup> ) Av Height(m) Volume(m <sup>3</sup> ) |             |              |                  |                     |                  |          |           |                        |               |  |  |  |  |  |
|                                  |                                                                                               |             | Area         | a(m²)            |                     | Av. He           | ight(m)  |           | Volume(m <sup>3</sup>  | )             |  |  |  |  |  |
| Ground floor                     | 116.38                                                                                        | (3a)        |              |                  |                     |                  |          |           |                        |               |  |  |  |  |  |
| Total floor area TFA = (1        |                                                                                               |             |              |                  |                     |                  |          |           |                        |               |  |  |  |  |  |
| Dwelling volume                  | 116.38                                                                                        | (5)         |              |                  |                     |                  |          |           |                        |               |  |  |  |  |  |
| 2. Ventilation rate:             |                                                                                               |             |              |                  |                     |                  |          |           |                        | _             |  |  |  |  |  |
|                                  | main se                                                                                       | econdary    | /            | other            |                     | total            |          |           | m <sup>3</sup> per hou | r             |  |  |  |  |  |
| Number of chimneys               |                                                                                               |             | ] + [        | 0                | ] = [               | 0                | x 4      | 40 =      | 0                      | (6a)          |  |  |  |  |  |
| Number of open flues             |                                                                                               | 0           | 」<br>  +   - | 0                | 」 <u>「</u><br>] = 「 | 0                | x        | 20 =      | 0                      |               |  |  |  |  |  |
| Number of intermittent fa        | uns                                                                                           | •           |              | •                |                     | 2                | x /      | 10 =      | 20                     | ()<br>(7a)    |  |  |  |  |  |
| Number of passive vents          |                                                                                               |             |              |                  |                     |                  | x /      | 10 =      | 0                      | $\frac{1}{7}$ |  |  |  |  |  |
| Number of flueloss gas fi        | iroc                                                                                          |             |              |                  |                     | 0                | X        | 40 –      | 0                      |               |  |  |  |  |  |
| Number of fideless gas in        | changes per hour                                                                              |             |              |                  |                     |                  |          |           |                        |               |  |  |  |  |  |
| Infiltration due to chimne       | ys, flues and fans = (6                                                                       | a)+(6b)+(7a | a)+(7b)+(7   | 7c) =            | Г                   | 20               |          | ÷ (5) =   | 0.17                   | (8)           |  |  |  |  |  |
| If a pressurisation test has b   | een carried out or is intende                                                                 | ed, proceed | to (17), o   | otherwise c      | ontinue fro         | om (9) to (      | (16)     |           |                        | _             |  |  |  |  |  |
| Number of storeys in the         | he dwelling (ns)                                                                              |             |              |                  |                     |                  |          | 11.0.4    | 0                      | (9)           |  |  |  |  |  |
| Structural infiltration: 0       | 25 for steel or timber                                                                        | frame or    | 0 35 for     | maconr           | v constr            | uction           | [(9)     | -1]XU.1 = | 0                      | (10)          |  |  |  |  |  |
| if both types of wall are p      | resent, use the value corres                                                                  | sponding to | the greate   | er wall area     | a (after            | uction           |          |           | 0                      |               |  |  |  |  |  |
| deducting areas of openii        | ngs); if equal user 0.35<br>floor_optor 0.2 (upooo)                                           | lad) ar 0 ( | 1 (00010     | d) alaa          | ontor O             |                  |          |           |                        |               |  |  |  |  |  |
| If no draught lobby on           | tor $0.05$ else enter $0.2$                                                                   | ieu) 01 0.  | i (Seale     | u), eise         |                     |                  |          |           | 0                      | (12)          |  |  |  |  |  |
| Percentage of window             | s and doors draught st                                                                        | trinned     |              |                  |                     |                  |          |           | 0                      | -(13)         |  |  |  |  |  |
| Window infiltration              | s and doors dradgin si                                                                        | inpped      |              | 0.25 - [0.2      | x (14) ÷ 1          | 00] =            |          |           | 0                      | -(14)         |  |  |  |  |  |
| Infiltration rate                |                                                                                               |             |              | (8) + (10) -     | + (11) + (1         | -<br>2) + (13) - | + (15) = |           | 0                      |               |  |  |  |  |  |
| Air permeability value.          | a50. expressed in cut                                                                         | oic metres  | s per ho     | ur per so        | uare m              | etre of e        | envelope | area      | 4                      | -(17)         |  |  |  |  |  |
| If based on air permeabil        | lity value, then $(18) = [(1)]$                                                               | 7) ÷ 20]+(8 | ), otherwis  | se (18) = (      | 16)                 |                  |          |           | 0.37                   | (18)          |  |  |  |  |  |
| Air permeability value applie    | s if a pressurisation test ha                                                                 | s been done | e or a deg   | ıree air per     | meability           | is being u       | sed      | I         |                        |               |  |  |  |  |  |
| Number of sides sheltere         | }d                                                                                            |             |              |                  |                     |                  |          |           | 2                      | (19)          |  |  |  |  |  |
| Shelter factor                   |                                                                                               |             |              | (20) = 1 - [     | 0.075 x (1          | 9)] =            |          |           | 0.85                   | (20)          |  |  |  |  |  |
| Infiltration rate incorporat     | ting shelter factor                                                                           |             |              | (21) = (18)      | x (20) =            |                  |          |           | 0.32                   | (21)          |  |  |  |  |  |
| Infiltration rate modified f     | or monthly wind speed                                                                         | 1<br>       |              |                  |                     |                  |          |           |                        |               |  |  |  |  |  |
| Jan Feb                          | Mar Apr May                                                                                   | Jun         | Jul          | Aug              | Sep                 | Oct              | Nov      | Dec       |                        |               |  |  |  |  |  |
| Monthly average wind sp          | eed from Table 7                                                                              |             |              |                  |                     |                  |          |           |                        |               |  |  |  |  |  |
| (22)m= 5.1 5                     | 4.9 4.4 4.3                                                                                   | 3.8         | 3.8          | 3.7              | 4                   | 4.3              | 4.5      | 4.7       |                        |               |  |  |  |  |  |
| Wind Factor $(22a)m = (2)$       | 2)m ÷ 4                                                                                       |             |              |                  |                     |                  |          |           |                        |               |  |  |  |  |  |
| (22a)m= 1.27 1.25                | 1.23 1.1 1.08                                                                                 | 0.95        | 0.95         | 0.92             | 1                   | 1.08             | 1.12     | 1.18      |                        |               |  |  |  |  |  |
|                                  | <b>I</b>                                                                                      | · · · · ·   |              |                  |                     |                  |          |           | I                      |               |  |  |  |  |  |

| Adjust               | ed infiltr               | ation rat               | e (allowi                 | ing for sh               | nelter an   | d wind s     | peed) =         | (21a) x      | (22a)m            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                  |                                         |
|----------------------|--------------------------|-------------------------|---------------------------|--------------------------|-------------|--------------|-----------------|--------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|------------------|-----------------------------------------|
|                      | 0.4                      | 0.4                     | 0.39                      | 0.35                     | 0.34        | 0.3          | 0.3             | 0.29         | 0.32              | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.36                  | 0.37                 |                  |                                         |
| Calcul               | ate effe                 | ctive air               | change                    | rate for t               | he appli    | cable ca     | se              |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                  |                                         |
| II IIIt              | echanica                 |                         | ILION.<br>Using Ann       | andix N (2               | 3h) - (23a  | a) v Emv (e  | auation (N      | (5)) other   | wise (23h         | ) - (23a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                      | 0                | (23a)                                   |
| If hal               | anced with               | heat reco               | overv: effic              | iency in %               | allowing f  | or in-use f  | actor (from     | n Table 4h   | ) –               | ) = (20u)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                      | 0                | (230)                                   |
| a) If                |                          | d moob                  |                           |                          | with ho     |              |                 |              | $a_{\rm n} = (2)$ | 2h)m i (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 226) v [/             | 1 (220)              | 0                | (230)                                   |
| a) II                |                          |                         |                           |                          |             |              |                 | TR) (248     | 0m = (22)         | 20)m + (1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 230) × [ <sup>*</sup> | 1 - (23C)            | ÷ 100]           | (24a)                                   |
| (24a)III-            |                          |                         |                           |                          | without     | boot roo     |                 |              | )m ()(            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )<br>22h)             | 0                    |                  | (210)                                   |
| 0) II                |                          |                         |                           |                          | without     |              |                 | //v/) (240   | 0) m = (22        | $\frac{1}{2} \frac{1}{2} \frac{1}$ | 230)                  | 0                    |                  | (24b)                                   |
| (240)III-            |                          |                         | tractiver                 |                          | or no oitiu |              |                 |              |                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                     | 0                    |                  | (210)                                   |
| C) II                | if (22b)r                | 005eex<br>n < 0.5 x     | (23b). 1                  | then (24c                | c) = (23b)  | ): otherv    | ventilatic      | c) = (22b    | ) m + 0.          | .5 x (23b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ))                    |                      |                  |                                         |
| (24c)m=              | 0                        | 0                       | 0                         | 0                        | 0           | 0            | 0               | 0            | 0                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                     | 0                    |                  | (24c)                                   |
| d) If                | natural                  | ı<br>ventilatio         | n or wh                   | ole hous                 | e positiv   | /e input v   | ı<br>ventilatio | on from l    | oft               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                  |                                         |
|                      | if (22b)r                | n = 1, the              | en (24d)                  | m = (22k                 | o)m othe    | erwise (2    | 4d)m =          | 0.5 + [(2    | 2b)m² x           | 0.5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                      |                  |                                         |
| (24d)m=              | 0.58                     | 0.58                    | 0.57                      | 0.56                     | 0.56        | 0.55         | 0.55            | 0.54         | 0.55              | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.56                  | 0.57                 |                  | (24d)                                   |
| Effe                 | ctive air                | change                  | rate - er                 | nter (24a                | ) or (24b   | o) or (240   | c) or (24       | d) in box    | (25)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                  |                                         |
| (25)m=               | 0.58                     | 0.58                    | 0.57                      | 0.56                     | 0.56        | 0.55         | 0.55            | 0.54         | 0.55              | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.56                  | 0.57                 |                  | (25)                                    |
| 3 He                 | at losse                 | s and he                | at loss i                 | naramete                 | ər.         |              |                 |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                  | _                                       |
|                      |                          | Gros                    | ss                        | Openin                   | as          | Net Ar       | ea              | U-valu       | Je                | AXU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | k-value              |                  | A X k                                   |
|                      |                          | area                    | (m²)                      | m                        | 2           | A ,r         | n²              | W/m2         | K                 | (W/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K)                    | kJ/m <sup>2</sup> ·k | <                | kJ/K                                    |
| Doors                |                          |                         |                           |                          |             | 1.89         | x               | 1.6          | =                 | 3.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                      |                  | (26)                                    |
| Windo                | <mark>ws</mark> Type     | e 1                     |                           |                          |             | 4.41         | x1,             | /[1/( 1.4 )+ | 0.04] =           | 5.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                      |                  | (27)                                    |
| Windo                | ws Type                  | 2                       |                           |                          |             | 4.41         | x1,             | /[1/( 1.4 )+ | 0.04] =           | 5.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                      |                  | (27)                                    |
| Windo                | ws Type                  | e 3                     |                           |                          |             | 1.08         | x1,             | /[1/( 1.4 )+ | 0.04] =           | 1.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                     |                      |                  | (27)                                    |
| Floor                |                          |                         |                           |                          |             | 50.6         | x               | 0.11         |                   | 5.566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ξ r                   |                      |                  | (28)                                    |
| Walls                |                          | 23.1                    | 3                         | 11.79                    | Э           | 11.34        | L X             | 0.17         | = [               | 1.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                      | = -              | (29)                                    |
| Total a              | area of e                | lements                 | , m²                      |                          |             | 73.73        | 3               |              | I                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                  | (31)                                    |
| Party v              | wall                     |                         |                           |                          |             | 18.76        |                 | 0            | = [               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                      |                  | (32)                                    |
| Party o              | ceilina                  |                         |                           |                          |             | 50.6         |                 |              | I                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                     |                      | $\dashv$         | (32b)                                   |
| * for win            | ndows and                | roof wind               | ows, use e                | effective wi             | ndow U-va   | alue calcula | <br>ated using  | ı formula 1, | /[(1/U-valu       | ıe)+0.04] a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L<br>as given in      | paragraph            | <br>3.2          | (020)                                   |
| ** inclua            | le the area              | as on both              | sides of ir               | nternal wal              | ls and part | titions      | 0               |              |                   | , <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                     | , , ,                |                  |                                         |
| Fabric               | heat los                 | ss, W/K :               | = S (A x                  | U)                       |             |              |                 | (26)(30)     | + (32) =          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      | 23.64            | (33)                                    |
| Heat c               | apacity                  | Cm = S(                 | (Axk)                     |                          |             |              |                 |              | ((28)             | (30) + (32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2) + (32a).           | (32e) =              | 7821.48          | (34)                                    |
| Therm                | al mass                  | parame                  | ter (TMI                  | <sup>-</sup> = Cm ÷      | - TFA) ir   | n kJ/m²K     |                 |              | Indica            | tive Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : Medium              |                      | 250              | (35)                                    |
| For desi<br>can be u | ign asses:<br>used inste | sments wh<br>ad of a de | ere the de<br>tailed calc | tails of the<br>ulation. | constructi  | ion are not  | t known pr      | ecisely the  | indicative        | e values of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TMP in Ta             | able 1f              |                  |                                         |
| Therm                | al bridg                 | es : S (L               | x Y) cal                  | culated u                | using Ap    | pendix ł     | <               |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      | 4.57             | (36)                                    |
| if details           | of therma                | al bridging             | are not kr                | nown (36) =              | = 0.15 x (3 | 1)           |                 |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | i                    |                  |                                         |
| Total fa             | abric he                 | at loss                 |                           |                          |             |              |                 |              | (33) +            | (36) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                      | 28.22            | (37)                                    |
| Ventila              | ation hea                | at loss ca              | alculated                 | d monthly                | /           |              |                 |              | (38)m             | = 0.33 × (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25)m x (5)            |                      | l                |                                         |
|                      | Jan                      | Feb                     | Mar                       | Apr                      | May         | Jun          | Jul             | Aug          | Sep               | Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nov                   | Dec                  |                  | (00)                                    |
| (38)m=               | 22.32                    | 22.2                    | 22.08                     | 21.52                    | 21.42       | 20.93        | 20.93           | 20.84        | 21.12             | 21.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.63                 | 21.85                |                  | (38)                                    |
| Heat tr              | ransfer o                | coefficier              | nt, W/K                   | ,                        |             |              |                 |              | (39)m             | = (37) + (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38)m                  |                      | l                |                                         |
| (39)m=               | 50.54                    | 50.42                   | 50.3                      | 49.74                    | 49.64       | 49.15        | 49.15           | 49.06        | 49.34             | 49.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49.85                 | 50.07                |                  | <b></b>                                 |
| Stroma               | FSAP 201                 | 2 Version:              | 1.0.3.11                  | (SAP 9.92)               | - http://ww | ww.stroma    | .com            |              |                   | Average =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sum(39)1              | 12 /12=              | 49.7 <b>∳</b> ao | <u>ge 2 o<sup>f</sup><sup>39)</sup></u> |

| Heat lo                 | ss para                                                                                                                                                                                                                                                                       | meter (H     | HLP), W      | /m²K         |                |             |            |                    | (40)m         | = (39)m ÷           | · (4)                  |          |         |              |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|----------------|-------------|------------|--------------------|---------------|---------------------|------------------------|----------|---------|--------------|--|
| (40)m=                  | 1                                                                                                                                                                                                                                                                             | 1            | 0.99         | 0.98         | 0.98           | 0.97        | 0.97       | 0.97               | 0.98          | 0.98                | 0.99                   | 0.99     |         |              |  |
| Numbe                   | r of day                                                                                                                                                                                                                                                                      | s in mo      | nth (Tab     | le 1a)       |                |             |            |                    | /             | Average =           | Sum(40) <sub>1.</sub>  | 12 /12=  | 0.98    | (40)         |  |
|                         | Jan                                                                                                                                                                                                                                                                           | Feb          | Mar          | Apr          | May            | Jun         | Jul        | Aug                | Sep           | Oct                 | Nov                    | Dec      |         |              |  |
| (41)m=                  | 31                                                                                                                                                                                                                                                                            | 28           | 31           | 30           | 31             | 30          | 31         | 31                 | 30            | 31                  | 30                     | 31       |         | (41)         |  |
| `´ I                    |                                                                                                                                                                                                                                                                               |              |              |              |                |             |            |                    |               |                     |                        |          |         |              |  |
| 4. Wa                   | ter heat                                                                                                                                                                                                                                                                      | ting ene     | rgy requ     | irement:     |                |             |            |                    |               |                     |                        | kWh/ye   | ear:    |              |  |
| Assum<br>if TF<br>if TF | if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)<br>if TFA £ 13.9, N = 1                                                                                                                                                              |              |              |              |                |             |            |                    |               |                     |                        |          |         |              |  |
| Annual<br>Reduce        | Annual average hot water usage in litres per day Vd,average = (25 x N) + 36<br>Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of<br>not more that 125 litres per person per day (all water use, hot and cold) (43) |              |              |              |                |             |            |                    |               |                     |                        |          |         |              |  |
| [                       | Jan                                                                                                                                                                                                                                                                           | Feb          | Mar          | Apr          | May            | Jun         | Jul        | Aug                | Sep           | Oct                 | Nov                    | Dec      |         |              |  |
| Hot wate                | r usage ii                                                                                                                                                                                                                                                                    | n litres per | r day for ea | ach month    | Vd,m = fa      | ctor from   | Table 1c x | (43)               |               |                     |                        |          |         |              |  |
| (44)m=                  | 82.24                                                                                                                                                                                                                                                                         | 79.25        | 76.25        | 73.26        | 70.27          | 67.28       | 67.28      | 70.27              | 73.26         | 76.25               | 79.25                  | 82.24    |         |              |  |
|                         |                                                                                                                                                                                                                                                                               |              |              | •            |                |             |            |                    | -             | Total = Su          | m(44) <sub>112</sub> = |          | 897.12  | (44)         |  |
| Energy o                | ontent of                                                                                                                                                                                                                                                                     | hot water    | used - ca    | culated m    | onthly $= 4$ . | 190 x Vd,r  | m x nm x L | OTm / 3600         | ) kWh/mor     | oth (see Ta         | ables 1b, 1            | c, 1d)   |         |              |  |
| (45)m=                  | 121.95                                                                                                                                                                                                                                                                        | 106.66       | 110.06       | 95.96        | 92.07          | 79.45       | 73.62      | 84.48              | 85.49         | <mark>9</mark> 9.63 | 108.76                 | 118.11   |         | _            |  |
| lf instant              | aneous w                                                                                                                                                                                                                                                                      | ater heati   | ng at point  | t of use (no | o hot water    | r storage), | enter 0 in | boxes (46          | ) to (61)     | Total = Su          | m(45) <sub>112</sub> = |          | 1176.26 | (45)         |  |
| (46)m=                  | 1 <mark>8.29</mark>                                                                                                                                                                                                                                                           | 16           | 16.51        | 14.39        | 13.81          | 11.92       | 11.04      | 12.67              | 12.82         | 14.95               | 16.31                  | 17.72    |         | (46)         |  |
| Water                   | storage                                                                                                                                                                                                                                                                       | loss:        |              | <u> </u>     |                |             |            | <u> </u>           |               | <u> </u>            |                        |          |         |              |  |
| Storage                 | e volum                                                                                                                                                                                                                                                                       | e (litres)   | includir     | ng any s     | olar or N      | /WHRS       | storage    | within sa          | ame ves       | sel                 |                        | 0        |         | (47)         |  |
| If com                  | nunity h                                                                                                                                                                                                                                                                      | eating a     | and no ta    | ank in dw    | /elling, e     | nter 110    | litres in  | i (47)             |               | (0) : (             | ( )                    |          |         |              |  |
| Otherw<br>Water         | ISE IT NO                                                                                                                                                                                                                                                                     | o stored     | hot wate     | er (this ir  | ICLUDES I      | nstantar    | neous co   |                    | ers) ente     | er '0' in (         | 47)                    |          |         |              |  |
| a) If m                 | anufact                                                                                                                                                                                                                                                                       | urer's de    | eclared I    | oss fact     | or is kno      | wn (kWł     | n/dav):    |                    |               |                     |                        | 0        |         | (48)         |  |
| Tempe                   | rature f                                                                                                                                                                                                                                                                      | actor fro    | m Table      | 2b           |                | ,           | ,          |                    |               |                     |                        | 0        |         | (49)         |  |
| Enerav                  | lost fro                                                                                                                                                                                                                                                                      | m water      | storage      | . kWh/v      | ear            |             |            | (48) x (49)        | ) =           |                     |                        | 0        |         | (50)         |  |
| b) If m                 | anufact                                                                                                                                                                                                                                                                       | urer's de    | eclared of   | cylinder     | loss fact      | or is not   | known:     |                    |               |                     |                        | 0        |         | (00)         |  |
| Hot wa                  | ter stora                                                                                                                                                                                                                                                                     | age loss     | factor fi    | rom Tab      | le 2 (kW       | h/litre/da  | ay)        |                    |               |                     |                        | 0        |         | (51)         |  |
| If comn                 | nunity h                                                                                                                                                                                                                                                                      | from To      | ee secti     | on 4.3       |                |             |            |                    |               |                     |                        | -        | l       | (50)         |  |
| Tempe                   | rature f                                                                                                                                                                                                                                                                      | actor fro    | m Table      | 2h           |                |             |            |                    |               |                     |                        | 0        |         | (52)<br>(53) |  |
| Energy                  | lost fro                                                                                                                                                                                                                                                                      | m water      | storage      | ~ _S         | oor            |             |            | $(47) \times (51)$ | ) y (52) y (  | 53) -               |                        | 0        |         | (54)         |  |
| Enter                   | (50) or (                                                                                                                                                                                                                                                                     | (54) in (5   | 55)          | , KVVII/ yv  | Jai            |             |            | (47) X (31)        | / ( ( ) ~ ( ) | 00) -               |                        | 0        |         | (54)         |  |
| Water                   | storage                                                                                                                                                                                                                                                                       | loss cal     | culated      | for each     | month          |             |            | ((56)m = (         | 55) × (41)ı   | m                   |                        |          |         | ()           |  |
| (56)m=                  | 0                                                                                                                                                                                                                                                                             | 0            | 0            | 0            | 0              | 0           | 0          | 0                  | 0             | 0                   | 0                      | 0        |         | (56)         |  |
| If cylinde              | r contains                                                                                                                                                                                                                                                                    | s dedicate   | d solar sto  | orage, (57)  | m = (56)m      | x [(50) – ( | H11)] ÷ (5 | 50), else (5       | 7)m = (56)    | m where (           | H11) is fro            | m Append | ix H    | ()           |  |
| (57)m=                  | 0                                                                                                                                                                                                                                                                             | 0            | 0            | 0            | 0              | 0           | 0          | 0                  | 0             | 0                   | 0                      | 0        |         | (57)         |  |
| Primary                 | / circuit                                                                                                                                                                                                                                                                     | loss (ar     | nual) fro    | om Table     | e 3            |             |            |                    |               |                     |                        | 0        |         | (58)         |  |
| Primar                  | / circuit                                                                                                                                                                                                                                                                     | loss cal     | culated      | for each     | month (        | 59)m = (    | (58) ÷ 36  | 65 × (41)          | m             |                     | L                      |          | I       |              |  |
| (moc                    | lified by                                                                                                                                                                                                                                                                     | factor f     | rom Tab      | le H5 if t   | here is s      | solar wat   | ter heati  | ng and a           | cylinde       | r thermo            | stat)                  |          |         |              |  |
| (59)m=                  | 0                                                                                                                                                                                                                                                                             | 0            | 0            | 0            | 0              | 0           | 0          | 0                  | 0             | 0                   | 0                      | 0        |         | (59)         |  |

| Combi                 | loss ca               | lculated                | for eac            | ch i | month (                 | 61)m =     | (60  | ) ÷ 36  | 65 × (41)                | m          |                        |                     |               |             |                      |      |
|-----------------------|-----------------------|-------------------------|--------------------|------|-------------------------|------------|------|---------|--------------------------|------------|------------------------|---------------------|---------------|-------------|----------------------|------|
| (61)m=                | 23.7                  | 21.39                   | 23.65              |      | 22.85                   | 23.59      | 2    | 2.81    | 23.55                    | 23.58      | 22.83                  | 23.63               | 22.9          | 23.69       |                      | (61) |
| Total h               | eat req               | uired for               | water              | he   | ating ca                | lculated   | fo   | r each  | n month                  | (62)m      | = 0.85 ×               | (45)m ·             | + (46)m +     | (57)m +     | -<br>· (59)m + (61)m |      |
| (62)m=                | 145.65                | 128.05                  | 133.7              | 1    | 118.81                  | 115.67     | 10   | )2.26   | 97.17                    | 108.06     | 108.33                 | 123.26              | 3 131.66      | 141.79      | ]                    | (62) |
| Solar DH              | HW input              | calculated              | using A            | ppe  | ndix G or               | Appendix   | Н (  | negativ | ve quantity              | ) (enter ' | 0' if no sola          | r contrib           | ution to wate | er heating) | -                    |      |
| (add a                | dditiona              | al lines if             | FGHR               | Sa   | and/or V                | VWHRS      | ар   | plies,  | , see Ap                 | pendix     | G)                     | -                   |               |             | _                    |      |
| (63)m=                | 0                     | 0                       | 0                  |      | 0                       | 0          |      | 0       | 0                        | 0          | 0                      | 0                   | 0             | 0           |                      | (63) |
| Output                | from w                | ater hea                | ter                |      |                         |            |      |         |                          |            |                        | -                   |               | -           | _                    |      |
| (64)m=                | 145.65                | 128.05                  | 133.7 <sup>-</sup> | 1    | 118.81                  | 115.67     | 10   | 02.26   | 97.17                    | 108.06     | 108.33                 | 123.26              | 5 131.66      | 141.79      |                      | _    |
|                       |                       |                         |                    |      |                         |            |      |         |                          | Ou         | tput from w            | ater hea            | ter (annual)  | 112         | 1454.42              | (64) |
| Heat g                | ains fro              | m water                 | heatin             | g, l | kWh/mo                  | onth 0.2   | 5 í  | [0.85   | × (45)m                  | + (61)     | m] + 0.8 x             | x [(46)r            | n + (57)m     | + (59)m     | ]                    |      |
| (65)m=                | 46.47                 | 40.81                   | 42.51              |      | 37.62                   | 36.51      | 3    | 2.12    | 30.37                    | 33.99      | 34.13                  | 39.04               | 41.89         | 45.19       |                      | (65) |
| inclu                 | de (57)               | m in calo               | culation           | n of | f (65)m                 | only if c  | ylir | nder is | s in the c               | dwelling   | g or hot w             | ater is             | from com      | munity h    | neating              |      |
| 5. Int                | ernal g               | ains (see               | e Table            | 5    | and 5a)                 | :          |      |         |                          |            |                        |                     |               |             |                      |      |
| Metab                 | olic gair             | ns (Table               | e 5), W            | atts | S                       |            |      |         |                          |            |                        |                     |               |             |                      |      |
|                       | Jan                   | Feb                     | Ma                 | r    | Apr                     | May        |      | Jun     | Jul                      | Aug        | Sep                    | Oct                 | Nov           | Dec         | ]                    |      |
| (66)m=                | 85.39                 | 85.39                   | 85.39              |      | 85.39                   | 85.39      | 8    | 5.39    | 85.39                    | 85.39      | 85.39                  | 8 <mark>5.39</mark> | 85.39         | 85.39       |                      | (66) |
| Ligh <mark>tin</mark> | g gains               | (calcula                | ted in <i>l</i>    | App  | o <mark>en</mark> dix l | _, equati  | ion  | L9 or   | <sup>r</sup> L9a), a     | lso see    | Table 5                |                     |               |             |                      |      |
| (67)m=                | 13.39                 | 11.89                   | 9.67               |      | 7.32                    | 5.47       | 4    | .62     | 4.99                     | 6.49       | 8.71                   | 11.06               | 12.91         | 13.76       |                      | (67) |
| App <mark>lia</mark>  | nces ga               | ins (ca <mark>lc</mark> | ulated             | in . | Append                  | lix L, eq  | uat  | ion L'  | 13 o <mark>r L</mark> 1: | 3a), als   | <mark>o se</mark> e Ta | ble 5               |               |             | -                    |      |
| (68)m=                | 148.79                | 150.34                  | 146.4              | 5    | <mark>138</mark> .16    | 127.71     | 11   | 17.88   | 111.31                   | 109.77     | 113.66                 | 121.94              | 132.4         | 142.23      |                      | (68) |
| Cookir                | g gains               | s (calcula              | ited in            | Ap   | pendix                  | L, equat   | ion  | L15     | or L15a)                 | , also s   | ee Table               | 9 5                 |               |             | -                    |      |
| (69)m=                | 31.54                 | 31.54                   | 31.54              |      | <mark>31.</mark> 54     | 31.54      | 3    | 1.54    | 31.54                    | 31.54      | 31.54                  | 31.54               | 31.54         | 31.54       |                      | (69) |
| Pumps                 | and fa                | ns gains                | (Table             | e 5a | a)                      |            |      |         |                          |            |                        |                     |               |             | ·                    |      |
| (70)m=                | 3                     | 3                       | 3                  |      | 3                       | 3          |      | 3       | 3                        | 3          | 3                      | 3                   | 3             | 3           | ]                    | (70) |
| Losses                | s e.g. e              | ,<br>vaporatio          | n (neg             | jati | ve valu                 | es) (Tab   | le : | 5)      |                          |            | 1                      |                     | •             | <b>!</b>    | -                    |      |
| (71)m=                | -68.31                | -68.31                  | -68.31             | 1    | -68.31                  | -68.31     | -6   | 8.31    | -68.31                   | -68.31     | -68.31                 | -68.31              | -68.31        | -68.31      | ]                    | (71) |
| Water                 | heating               | ,<br>gains (T           | able 5             | 5)   |                         |            |      |         |                          |            | •                      |                     |               | <u>.</u>    | -                    |      |
| (72)m=                | 62.46                 | 60.73                   | 57.14              |      | 52.25                   | 49.08      | 4    | 4.61    | 40.82                    | 45.68      | 47.41                  | 52.47               | 58.18         | 60.74       | ]                    | (72) |
| Total i               | nterna                | l gains =               |                    |      |                         |            |      | (66)    | m + (67)m                | + (68)m    | + (69)m +              | (70)m +             | (71)m + (72)  | )m          | -                    |      |
| (73)m=                | 276.26                | 274.58                  | 264.8              | 7    | 249.35                  | 233.87     | 21   | 18.73   | 208.74                   | 213.56     | 221.4                  | 237.09              | 255.1         | 268.35      | ]                    | (73) |
| 6. So                 | lar gain              | s:                      |                    |      |                         |            |      |         |                          |            |                        |                     |               |             | 2                    |      |
| Solar g               | ains are              | calculated              | using sc           | olar | flux from               | Table 6a a | and  | associ  | ated equa                | tions to c | onvert to th           | ne applic           | able orientat | tion.       |                      |      |
| Orienta               | ation:                | Access F                | actor              |      | Area                    |            |      | Flu     | x                        |            | g                      |                     | FF            |             | Gains                |      |
|                       |                       | Table 6d                |                    |      | m²                      |            |      | Tat     | ble 6a                   |            | Table 6b               |                     | Table 6c      |             | (VV)                 |      |
| Southe                | ast <mark>0.9x</mark> | 0.77                    |                    | x    | 4.4                     | 1          | ×    | 3       | 6.79                     | x          | 0.63                   | x                   | 0.7           | =           | 49.59                | (77) |
| Southe                | ast <mark>0.9x</mark> | 0.77                    |                    | x    | 4.4                     | 1          | x    | 3       | 6.79                     | x          | 0.63                   | x                   | 0.7           | =           | 49.59                | (77) |
| Southe                | ast <mark>0.9x</mark> | 0.77                    |                    | x    | 1.0                     | 8          | x    | 3       | 6.79                     | x          | 0.63                   | x                   | 0.7           | =           | 12.14                | (77) |
| Southe                | ast <mark>0.9x</mark> | 0.77                    |                    | x    | 4.4                     | 1          | x    | 6       | 2.67                     | x          | 0.63                   | x                   | 0.7           | =           | 84.47                | (77) |
| Southe                | ast <mark>0.9x</mark> | 0.77                    |                    | x    | 4.4                     | 1          | x    | 6       | 2.67                     | x          | 0.63                   | x                   | 0.7           | =           | 84.47                | (77) |

| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 1.0               | 8                | x             | 6       | 62.67      | x        |            | 0.63           | x      | 0.7      | -     | - [        | 20.69  | (77)       |
|----------|-----------------------|-----------|--------|----------------------|-------------------|------------------|---------------|---------|------------|----------|------------|----------------|--------|----------|-------|------------|--------|------------|
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | 1                | x             | 1       | 35.75      | ] ×      |            | 0.63           | ×      | 0.7      |       | - [        | 115.57 | ]<br>(77)  |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | 1                | x             | 1       | 35.75      | x        |            | 0.63           | ×      | 0.7      |       | - [        | 115.57 | ]<br>(77)  |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 1.0               | 8                | x             | 1       | 35.75      | x        |            | 0.63           | ×      | 0.7      |       | - [        | 28.3   | ]<br>(77)  |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | 1                | x             | 1       | 06.25      | x        |            | 0.63           | ×      | 0.7      |       | - [        | 143.2  | ]<br>(77)  |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | 1                | x             | 1       | 06.25      | x        |            | 0.63           | ×      | 0.7      |       | - [        | 143.2  | ]<br>(77)  |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 1.0               | 8                | x             | 1       | 06.25      | x        |            | 0.63           | x      | 0.7      | =     | - [        | 35.07  | -<br>(77)  |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | 1                | x             | 1       | 19.01      | x        |            | 0.63           | x      | 0.7      | -     | - [        | 160.4  | -<br> (77) |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | 1                | x             | 1       | 19.01      | x        |            | 0.63           | x      | 0.7      | -     | - [        | 160.4  | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 1.0               | 8                | x             | 1       | 19.01      | x        |            | 0.63           | x      | 0.7      |       | - [        | 39.28  | -<br>(77)  |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | 1                | x             | 1       | 18.15      | <b>x</b> |            | 0.63           | x      | 0.7      | =     | = [        | 159.24 | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | 1                | x             | 1       | 18.15      | x        |            | 0.63           | x      | 0.7      | =     | = [        | 159.24 | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 1.0               | 8                | x             | 1       | 18.15      | x        |            | 0.63           | ×      | 0.7      | =     | - [        | 39     | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | -1               | x             | 1       | 13.91      | x        |            | 0.63           | x      | 0.7      | =     | - [        | 153.52 | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | 1                | x             | 1       | 13.91      | x        |            | 0.63           | x      | 0.7      | =     | - [        | 153.52 | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 1.0               | 8                | x             | 1       | 13.91      | x        |            | 0.63           | x      | 0.7      | =     | - [        | 37.6   | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | 1                | x             | 1       | 04.39      | x        |            | 0.63           | x      | 0.7      | =     | = [        | 140.69 | (77)       |
| Souther  | ast 0.9x              | 0.77      |        | x                    | 4.4               | 1                | x             | 1       | 04.39      | x        |            | 0.63           | ×      | 0.7      | =     | - [        | 140.69 | (77)       |
| Souther  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 1.0               | 8                | х             | 1       | 04.39      | ] x      |            | 0.63           | ×      | 0.7      | =     | - [        | 34.46  | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | .1               | х             | 9       | 92.85      | ] ×      |            | 0.63           | x      | 0.7      | =     | = [        | 125.14 | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | 1                | x             | <u></u> | 92.85      | <b>x</b> |            | 0.63           | x      | 0.7      | =     | = [        | 125.14 | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 1.0               | 8                | x             | 9       | 92.85      | x        |            | 0.63           | x      | 0.7      | =     | - [        | 30.65  | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | .1               | x             | e       | 69.27      | x        |            | 0.63           | x      | 0.7      | =     | = [        | 93.36  | (77)       |
| Southea  | ast 0.9x              | 0.77      |        | x                    | 4.4               | 1                | x             | E       | 9.27       | x        |            | 0.63           | x      | 0.7      | =     | = [        | 93.36  | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 1.0               | 8                | x             | 6       | 69.27      | x        |            | 0.63           | x      | 0.7      | =     | - [        | 22.86  | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | 1                | x             | 4       | 14.07      | x        |            | 0.63           | x      | 0.7      | =     | = [        | 59.4   | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | 1                | x             |         | 14.07      | x        |            | 0.63           | ×      | 0.7      | =     | = [        | 59.4   | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 1.0               | 8                | x             | 4       | 14.07      | x        |            | 0.63           | ×      | 0.7      | =     | = [        | 14.55  | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | -1               | x             | 3       | 31.49      | x        |            | 0.63           | ×      | 0.7      | =     | = [        | 42.44  | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 4.4               | 1                | x             | 3       | 31.49      | ×        |            | 0.63           | ×      | 0.7      | =     | = [        | 42.44  | (77)       |
| Southea  | ast <mark>0.9x</mark> | 0.77      |        | x                    | 1.0               | 8                | x             | 3       | 31.49      | x        |            | 0.63           | ×      | 0.7      | =     | = [        | 10.39  | (77)       |
|          |                       |           |        |                      |                   |                  |               |         |            |          |            |                |        |          |       |            |        |            |
| Solar g  | ains in               | watts, ca | alcula | ted                  | for eac           | n mont           | h<br>7 a      | 057 47  | 244.64     | (83)m    | n = Si     | um(74)m        | (82)m  | 7 400.04 | 05.07 | , ]        |        | (83)       |
| (83)m=   | ains – i              | nternal a | 259.4  | <sup>io</sup><br>Iar | 321.47<br>(84)m - | 360.07           | $\frac{1}{1}$ | 83)m    | watts      | 315      | 0.84       | 280.93         | 209.57 | 133.34   | 95.27 | ,<br>      |        | (03)       |
| (84)m=   | 387 59                | 464.2     | 524 3  | 32                   | 570.82            | 593.95           |               | 576.2   | 553.38     | 529      | 94         | 502 33         | 446 66 | 3 388 44 | 363.6 | 2          |        | (84)       |
|          | 001.00                |           | 02110  | -                    |                   | 000.00           |               | 01 0.L  | 000.00     | 020      | <u>, i</u> | 002.00         | 110.00 |          | 000.0 |            |        | (- )       |
| 7. Me    | an inter              | nal temp  | peratu | re (<br>a p          | neating           | seasc<br>the liv | n)<br>vina    | oroo    | from Tol   |          | Th         | 1 (°C)         |        |          |       | 1          | 04     |            |
| Litilioc | erature               | tor for a |        | y pe<br>ar li        |                   |                  | /ilig<br>m (c |         |            | ole a    | , 111      | I ( C)         |        |          |       | l          | 21     | (65)       |
| Juiise   | ,lan                  | Feh       | Ma     | $\frac{1}{1}$        | Anr               | a, 111,<br>Mav   | / [           | Jun     |            | Δ        | un I       | Sen            | Oct    | Nov      | Der   |            |        |            |
| (86)m=   | 0.99                  | 0.98      | 0.95   | ;                    | 0.87              | 0.73             | <u></u>       | 0.54    | 0.39       | 0.4      | 42         | 0.65           | 0.91   | 0.98     | 1     | _          |        | (86)       |
| NA       | interre-              |           |        | <br>i                | hdin n            |                  |               |         |            | 7 : 7    |            |                |        |          | I     |            |        | . ,        |
| (87)m-   | 111terna              |           | ature  | in I<br>6            | 20 8              | 20 04            |               |         | 21 ps 3 to |          |            | = 9C)<br>20 98 | 20 70  | 20.41    | 20.08 | <u>,</u> ] |        | (87)       |
| (07)11-  | 20.12                 | 20.02     | 20.5   | ~                    | 20.0              | 20.94            |               | _0.00   |            |          | '          | 20.00          | 20.19  | 20.41    | 20.00 | · _        |        | (0)        |

| Temp               | perature                | during h            | neating p  | eriods ir              | n rest of               | dwelling       | from Ta                  | ble 9, Tl   | h2 (°C)                 |                       |                         |                               |       |        |         |
|--------------------|-------------------------|---------------------|------------|------------------------|-------------------------|----------------|--------------------------|-------------|-------------------------|-----------------------|-------------------------|-------------------------------|-------|--------|---------|
| (88)m=             | 20.08                   | 20.09               | 20.09      | 20.1                   | 20.1                    | 20.11          | 20.11                    | 20.11       | 20.1                    | 20.1                  | 20.1                    | 20.09                         |       |        | (88)    |
| Utilisa            | ation fac               | tor for g           | ains for   | rest of d              | welling, I              | h2,m (se       | e Table                  | 9a)         |                         |                       |                         |                               |       |        |         |
| (89)m=             | 0.99                    | 0.98                | 0.94       | 0.84                   | 0.67                    | 0.47           | 0.31                     | 0.34        | 0.58                    | 0.87                  | 0.98                    | 0.99                          |       |        | (89)    |
| Mean               | n interna               | l temper            | ature in   | the rest               | of dwelli               | ng T2 (fo      | ollow ste                | eps 3 to 7  | 7 in Tabl               | e 9c)                 |                         |                               |       |        |         |
| (90)m=             | 18.93                   | 19.21               | 19.55      | 19.88                  | 20.05                   | 20.1           | 20.11                    | 20.11       | 20.09                   | 19.87                 | 19.34                   | 18.88                         |       |        | (90)    |
|                    |                         |                     |            |                        |                         |                |                          |             | f                       | LA = Livin            | g area ÷ (4             | •) =                          | 0.4   | 19     | (91)    |
| Mean               | n interna               | l temper            | ature (fo  | or the wh              | ole dwe                 | llina) = fl    | LA x T1                  | + (1 – fL   | A) × T2                 |                       |                         |                               |       |        | -       |
| (92)m=             | 19.52                   | 19.76               | 20.05      | 20.34                  | 20.49                   | 20.54          | 20.55                    | 20.55       | ,<br>20.53              | 20.32                 | 19.87                   | 19.47                         |       |        | (92)    |
| Apply              | adjustr                 | nent to t           | he mear    | interna                | temper                  | ature fro      | m Table                  | 4e, whe     | ere appro               | opriate               |                         |                               |       |        |         |
| (93)m=             | 19.52                   | 19.76               | 20.05      | 20.34                  | 20.49                   | 20.54          | 20.55                    | 20.55       | 20.53                   | 20.32                 | 19.87                   | 19.47                         |       |        | (93)    |
| 8. Sp              | ace hea                 | ting req            | uirement   |                        |                         |                |                          |             |                         |                       |                         |                               |       |        |         |
| Set T              | i to the i              | mean int            | ternal ter | mperatu                | re obtain               | ed at ste      | ep 11 of                 | Table 9     | o, so tha               | t Ti,m=(              | 76)m and                | d re-calc                     | ulate |        |         |
| the ut             | lilisation              |                     | or gains   |                        | able 9a                 | lun            | lul.                     | Aug         | Sen                     | Oct                   | Nev                     | Dee                           |       |        |         |
| l Itilis:          | Jan<br>ation fac        | tor for a           | ains hm    | Apr<br>                | iviay                   | Jun            | Jui                      | Aug         | Sep                     | Oci                   | INOV                    | Dec                           |       |        |         |
| (94)m=             | 0.99                    | 0.97                | 0.94       | 0.85                   | 0.7                     | 0.5            | 0.35                     | 0.38        | 0.61                    | 0.88                  | 0.98                    | 0.99                          |       |        | (94)    |
| Usefu              | L<br>JI gains,          | hmGm                | . W = (94  | 1<br>4)m x (84         | L<br>4)m                |                |                          |             |                         |                       |                         |                               |       |        |         |
| (95)m=             | 3 <mark>83.5</mark>     | 451.85              | 491.08     | 484.89                 | 413.62                  | 289.14         | 193.73                   | 202.99      | 308.36                  | 39 <mark>3.97</mark>  | 379.02                  | 360.8                         |       |        | (95)    |
| Montl              | hly aver                | age exte            | ernal tem  | perature               | e from Ta               | able 8         |                          | 7-          |                         |                       |                         |                               |       |        |         |
| (96)m=             | 4.3                     | 4.9                 | 6.5        | 8.9                    | 11.7                    | 14.6           | 16.6                     | 16.4        | 14.1                    | 10.6                  | 7.1                     | 4.2                           |       |        | (96)    |
| He <mark>at</mark> | los <mark>s rate</mark> | e for me            | an intern  | al tempe               | erature,                | Lm , W =       | =[(39)m :                | x [(93)m    | <mark>– (96</mark> )m   | ]                     |                         |                               |       |        |         |
| (97)m=             | 769.13                  | 749.15              | 681.49     | 568.81                 | 436.32                  | <b>2</b> 92.03 | 194.02                   | 203.49      | 317.05                  | 482.6                 | 636.47                  | 764.65                        |       |        | (97)    |
| Space              | e heatin                | g requir            | ement fo   | <mark>r eac</mark> h n | nonth, <mark>k</mark> l | Nh/mont        | t <mark>h = 0</mark> .02 | 24 x [(97)  | ) <mark>m – (9</mark> 5 | )m] <mark>x (4</mark> | 1)m                     |                               |       |        |         |
| (98)m=             | 286.91                  | 199.79              | 141.67     | 60.42                  | 16.89                   | 0              | 0                        | 0           | 0                       | 65.94                 | 185.36                  | 300.47                        |       |        | _       |
|                    |                         |                     |            |                        |                         |                |                          | Tota        | l per year              | (kWh/year             | ') = Sum(98             | <b>3)</b> <sub>15,912</sub> = | 125   | ′.44   | (98)    |
| Spac               | e heatin                | g require           | ement in   | kWh/m²                 | ²/year                  |                |                          |             |                         |                       |                         |                               | 24.   | 85     | (99)    |
| 9a. En             | ergy rec                | quiremer            | nts – Indi | ividual h              | eating sy               | ystems i       | ncluding                 | micro-C     | CHP)                    |                       |                         |                               |       |        | -       |
| Spac               | e heatii                | ng:                 |            |                        |                         |                |                          |             |                         |                       |                         |                               |       |        | _       |
| Fract              | ion of sp               | bace hea            | at from s  | econdar                | y/supple                | mentary        | system                   |             |                         |                       |                         |                               | C     | )      | (201)   |
| Fracti             | ion of sp               | bace hea            | at from m  | nain syst              | em(s)                   |                |                          | (202) = 1 - | - (201) =               |                       |                         |                               | 1     |        | (202)   |
| Fract              | ion of to               | tal heati           | ng from    | main sys               | stem 1                  |                |                          | (204) = (2  | 02) × [1 – (            | (203)] =              |                         |                               | 1     |        | (204)   |
| Efficie            | ency of                 | main spa            | ace heat   | ing syste              | em 1                    |                |                          |             |                         |                       |                         |                               | 92    | .7     | (206)   |
| Efficie            | ency of a               | seconda             | ry/suppl   | ementar                | y heating               | g system       | n, %                     |             |                         |                       |                         | ĺ                             | C     | )      | (208)   |
|                    | Jan                     | Feb                 | Mar        | Apr                    | Mav                     | Jun            | Jul                      | Aua         | Sep                     | Oct                   | Nov                     | Dec                           | k     | Wh/vea | ⊐<br>ar |
| Space              | e heatin                | g require           | ement (c   | alculate               | d above)                | )              |                          | - 5         | 1                       |                       |                         |                               |       | .,     |         |
| -                  | 286.91                  | 199.79              | 141.67     | 60.42                  | 16.89                   | 0              | 0                        | 0           | 0                       | 65.94                 | 185.36                  | 300.47                        |       |        |         |
| (211)m             | n = {[(98               | )m x (20            | )4)] } x 1 | 00 ÷ (20               | )6)                     |                |                          |             |                         |                       |                         |                               |       |        | (211)   |
| ( )                | 309.5                   | 215.52              | 152.82     | 65.18                  | ,<br>18.22              | 0              | 0                        | 0           | 0                       | 71.13                 | 199.96                  | 324.13                        |       |        |         |
|                    |                         |                     | •          |                        |                         |                |                          | Tota        | l (kWh/yea              | ar) =Sum(2            | 211) <sub>15,1012</sub> | =                             | 1356  | 5.46   | (211)   |
| Space              | e heatin                | g fuel (s           | econdar    | y), kWh/               | month                   |                |                          |             |                         |                       |                         | L                             |       |        | -       |
| = {[(98            | )m x (20                | )1)]}x <sup>1</sup> | 00 ÷ (20   | 8)                     |                         |                |                          |             |                         |                       |                         |                               |       |        |         |
| (215)m=            | 0                       | 0                   | 0          | 0                      | 0                       | 0              | 0                        | 0           | 0                       | 0                     | 0                       | 0                             |       |        | _       |
|                    |                         |                     |            |                        |                         |                |                          | Tota        | l (kWh/yea              | ar) = Sum(2)          | 215) <sub>15,1012</sub> | = [                           | C     | )      | (215)   |

#### Water heating

| Output              | from w     | ater hea             | ter (calc           | ulated al                                                                                                                                      | oove)    |                    | -                       | •           | -          |                |                         |        | •                                          |                |
|---------------------|------------|----------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|-------------------------|-------------|------------|----------------|-------------------------|--------|--------------------------------------------|----------------|
|                     | 145.65     | 128.05               | 133.71              | 118.81                                                                                                                                         | 115.67   | 102.26             | 97.17                   | 108.06      | 108.33     | 123.26         | 131.66                  | 141.79 |                                            |                |
| Efficier            | ncy of w   | ater hea             | ter                 |                                                                                                                                                |          |                    |                         | _           |            | -              | -                       | -      | 87                                         | (216)          |
| (217)m=             | 88.77      | 88.63                | 88.37               | 87.89                                                                                                                                          | 87.33    | 87                 | 87                      | 87          | 87         | 87.92          | 88.56                   | 88.82  |                                            | (217)          |
| Fuel fo             | r water    | heating,             | kWh/mo              | onth                                                                                                                                           |          |                    |                         |             |            |                |                         |        |                                            |                |
| (219)m =            | 1 = (64)   | <u>m x 100</u>       | ) ÷ (217)<br>151.31 | m<br>135.18                                                                                                                                    | 132 44   | 117 54             | 111 69                  | 124 21      | 124 51     | 140 19         | 148 67                  | 159.65 | 1                                          |                |
| (210)               | 101.01     |                      | 101.01              | 100.10                                                                                                                                         | 102.11   | 111.01             | 111.00                  | Tota        | I = Sum(2  | 19a), ,, =     | 110.07                  | 100.00 | 1653.95                                    | (219)          |
| Annua               | l totals   |                      |                     |                                                                                                                                                |          |                    |                         |             |            | k              | Wh/vear                 |        | kWh/vea                                    | (_:o)<br>r     |
| Space               | heating    | fuel use             | ed, main            | system                                                                                                                                         | 1        |                    |                         |             |            | Ň              | , you                   |        | 1356.46                                    | ]              |
| Water               | heating    | fuel use             | d                   |                                                                                                                                                |          |                    |                         |             |            |                |                         |        | 1653.95                                    |                |
| Electric            | city for p | oumps, f             | ans and             | electric l                                                                                                                                     | keep-ho  | t                  |                         |             |            |                |                         |        |                                            | _              |
| centra              | al heatir  | ng pump              | :                   |                                                                                                                                                |          |                    |                         |             |            |                |                         | 30     | ]                                          | (230c)         |
| boiler              | with a f   | an-assis             | sted flue           |                                                                                                                                                |          |                    |                         |             |            |                |                         | 45     | ]                                          | (230e)         |
| Total e             | lectricity | y for the            | above, ł            | <wh td="" yea<=""><td>r</td><td></td><td></td><td>sum</td><td>of (230a).</td><td>(230g) =</td><td></td><td></td><td>75</td><td>(231)</td></wh> | r        |                    |                         | sum         | of (230a). | (230g) =       |                         |        | 75                                         | (231)          |
| Electric            | city for I | ighting              |                     |                                                                                                                                                |          |                    |                         |             |            |                |                         |        | 236.49                                     | (232)          |
| 12a. (              | CO2 em     | issions -            | – Individ           | ual heati                                                                                                                                      | ng syste | ems inclu          | uding mi                | cro-CHF     | )          |                |                         |        |                                            |                |
|                     | Г          |                      |                     | E                                                                                                                                              |          | En<br>kW           | e <b>rgy</b><br>/h/year |             |            | Emiss<br>kg CO | <b>ion fac</b><br>2/kWh | tor    | <b>Em<mark>issio</mark>ns</b><br>kg CO2/ye | <b>s</b><br>ar |
| Spa <mark>ce</mark> | heating    | (main <mark>s</mark> | ystem 1)            | )                                                                                                                                              |          | (21                | 1) x                    |             |            | 0.2            | 16                      | =      | 293                                        | (261)          |
| Spa <mark>ce</mark> | heating    | (second              | dary)               |                                                                                                                                                |          | (21                | 5) x                    |             |            | 0.5            | 19                      | =      | 0                                          | (263)          |
| Wat <mark>er</mark> | heating    |                      |                     |                                                                                                                                                |          | (219               | 9) x                    |             |            | 0.2            | 16                      | =      | 357.25                                     | (264)          |
| Space               | and wa     | ter heati            | ng                  |                                                                                                                                                |          | (26                | 1) + (262)              | + (263) + ( | (264) =    |                |                         |        | 650.25                                     | (265)          |
| Electric            | city for p | oumps, f             | ans and             | electric l                                                                                                                                     | keep-ho  | t (23 <sup>-</sup> | 1) x                    |             |            | 0.5            | 19                      | =      | 38.93                                      | (267)          |
| Electric            | city for l | ighting              |                     |                                                                                                                                                |          | (232               | 2) x                    |             |            | 0.5            | 19                      | =      | 122.74                                     | (268)          |
| Total C             | :02, kg/   | /year                |                     |                                                                                                                                                |          |                    |                         |             | sum o      | f (265)(2      | 271) =                  |        | 811.91                                     | (272)          |
| Dwelli              | ng CO2     | Emissi               | on Rate             |                                                                                                                                                |          |                    |                         |             | (272)      | ÷ (4) =        |                         |        | 16.05                                      | (273)          |
| EI ratin            | ig (secti  | ion 14)              |                     |                                                                                                                                                |          |                    |                         |             |            |                |                         |        | 89                                         | (274)          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | ι                  | Jser De   | etails:          |                   |               |          |           |                        |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------|-----------|------------------|-------------------|---------------|----------|-----------|------------------------|-----------------------|
| Assessor Name:<br>Software Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stroma FSAP 201                | 2                  | ļ         | Stroma<br>Softwa | a Numi<br>ire Ver | ber:<br>sion: |          | Versio    | n: 1.0.3.11            |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Pro                | perty A   | Address:         | Arlingto          | n 1 Bed       | GND 5    | 1         |                        |                       |
| Address :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                    |           |                  |                   |               |          |           |                        |                       |
| 1. Overall dwelling dime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsions:                        |                    |           | ( 0)             |                   |               |          |           |                        |                       |
| Ground floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                    | Area      | (m²)             | (10) ×            | Av. Hei       | ight(m)  | ](20)     | Volume(m <sup>3</sup>  | $\frac{1}{2}$         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · //· · // · · // · · //       | · · · · ·          | 5         | 0.6              | (1a) x            | 2             | 2.3      | (2a) =    | 116.38                 | (3a)                  |
| Total floor area TFA = (1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a)+(1b)+(1c)+(1d)+(1e)         | )+(1n)             | 5         | 0.6              | (4)               |               |          |           |                        |                       |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |           |                  | (3a)+(3b)         | +(3c)+(3d     | )+(3e)+  | .(3n) =   | 116.38                 | (5)                   |
| 2. Ventilation rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                    |           |                  |                   |               |          |           |                        |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | main se<br>heating h           | econdary<br>eating | (         | other            |                   | total         |          |           | m <sup>3</sup> per hou | *                     |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | 0                  | +         | 0                | ] = [             | 0             | x 4      | 40 =      | 0                      | (6a)                  |
| Number of open flues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 +                            | 0                  | +         | 0                | i = Г             | 0             | x 2      | 20 =      | 0                      | (6b)                  |
| Number of intermittent far                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | าร                             | ı                  |           |                  | ' L               | 2             | x 1      | 10 =      | 20                     | <br>](7a)             |
| Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                    |           |                  |                   | 0             | x 1      | 10 =      | 0                      | _<br>](7b)            |
| Number of flueless gas fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | res                            |                    |           |                  | Ē                 | 0             | x 4      | 40 =      | 0                      | (7c)                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |           |                  | L                 |               |          | Air ch    | anges per ho           | ur                    |
| Infiltration due to chimney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rs, flues and fans = (6a       | a)+(6b)+(7a)       | +(7b)+(7  | (c) =            |                   | 20            | -        | ÷ (5) =   | 0.17                   | (8)                   |
| If a pressurisation test has be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | en carried out or is intende   | d, proceed t       | 0 (17), 0 | therwise c       | ontinue fro       | om (9) to (   | 16)      | I         |                        |                       |
| Additional infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e dwennig (ns)                 |                    |           |                  |                   |               | [(9)-    | -11x0.1 = | 0                      | -(3)                  |
| Structural infiltration: 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25 for steel or timber f       | rame or 0          | .35 for   | masonr           | y constru         | uction        | 1(-)     |           | 0                      |                       |
| if both types of wall are pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | esent, use the value corresp   | conding to th      | ne greate | er wall area     | ,<br>a (after     |               |          | I         | _                      |                       |
| deducting areas of openin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gs); if equal user 0.35        | ed) or 0 1         | (socio    | d) olso          | ontor O           |               |          | I         | 0                      |                       |
| If no draught lobby, ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rer 0.05 else enter 0          |                    | (Sealer   | u), eise (       |                   |               |          |           | 0                      | (12)                  |
| Percentage of windows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and doors draught str          | ripped             |           |                  |                   |               |          |           | 0                      | $= \frac{(10)}{(14)}$ |
| Window infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gg                             |                    | (         | 0.25 - [0.2      | x (14) ÷ 1        | = [00         |          |           | 0                      |                       |
| Infiltration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                    | (         | (8) + (10) -     | + (11) + (1       | 2) + (13) +   | + (15) = |           | 0                      | (16)                  |
| Air permeability value,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | q50, expressed in cub          | ic metres          | per ho    | ur per so        | uare me           | etre of e     | nvelope  | area      | 5                      | (17)                  |
| If based on air permeabili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ty value, then (18) = [(17     | 7) ÷ 20]+(8),      | otherwis  | se (18) = (      | 16)               |               |          |           | 0.42                   | (18)                  |
| Air permeability value applies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s if a pressurisation test has | been done          | or a deg  | ree air per      | meability i       | is being us   | sed      |           |                        | _                     |
| Number of sides sheltered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d                              |                    | (         | (20) – 1 - [     | 0 075 x (1        | 9)1 –         |          |           | 2                      | (19)                  |
| Infiltration rate incorporati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ing shalter factor             |                    |           | (20) - (18)      | x (20) -          | 0)] –         |          | l         | 0.85                   | (20)                  |
| Infiltration rate modified for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rig sheller factor             |                    |           | (21) = (10)      | x (20) -          |               |          | l         | 0.36                   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mar Apr May                    | Jun                | Jul       | Aug              | Sen               | Oct           | Nov      | Dec       |                        |                       |
| Monthly average wind sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eed from Table 7               | oun                |           | , .ug            | 000               | 000           | 1107     |           |                        |                       |
| (22)m= 5.1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9 4.4 4.3                    | 3.8                | 3.8       | 3.7              | 4                 | 4.3           | 4.5      | 4.7       |                        |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | I                  |           |                  |                   |               | 1        |           |                        |                       |
| Wind Factor $(22a)m = (22a)m $ | 2)m ÷ 4                        |                    |           |                  | <u> </u>          |               |          |           |                        |                       |
| (22a)m= 1.27 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.23 1.1 1.08                  | 0.95               | 0.95      | 0.92             | 1                 | 1.08          | 1.12     | 1.18      |                        |                       |

| Adjuste              | ed infiltr              | ation rat                | e (allow                  | ing for sh               | nelter an   | d wind s     | peed) =        | (21a) x       | (22a)m       | -                               |                  | _                    |                 |                        |
|----------------------|-------------------------|--------------------------|---------------------------|--------------------------|-------------|--------------|----------------|---------------|--------------|---------------------------------|------------------|----------------------|-----------------|------------------------|
| <b>.</b>             | 0.46                    | 0.45                     | 0.44                      | 0.39                     | 0.39        | 0.34         | 0.34           | 0.33          | 0.36         | 0.39                            | 0.4              | 0.42                 |                 |                        |
| Calcula              | ate effe                | ctive air                | change                    | rate for t               | he appli    | cable ca     | se             |               |              |                                 |                  |                      |                 | (22.5)                 |
| lf exh               | aust air h              | eat pump i               | using App                 | endix N (2               | 3b) = (23a  | i) x Fmv (e  | equation (N    | (5)) other    | wise (23h    | ) = (23a)                       |                  |                      | 0               | (238)                  |
| lf bala              | anced with              | n heat reco              | overv: effic              | iencv in %               | allowing f  | or in-use fa | actor (from    | Table 4h      | ) =          | ) = (204)                       |                  |                      | 0               | (230)                  |
| a) If                | halance                 | d moch                   | anical ve                 | ntilation                | with bo     | at recove    | any (M)/F      | - Pable III)  | ()m - (2)    | 2h)m ⊥ (                        | 23h) v [         | 1 - (23c)            | · 1001          | (230)                  |
| (24a)m=              |                         |                          |                           |                          |             |              |                | 0             | 0            |                                 |                  | 1 - (230)            | ÷ 100]          | (24a)                  |
| ()<br>b) If          | halance                 |                          | anical ve                 |                          | without     | heat rec     |                | <br>/\/) (2/b | m = (22)     | $\int_{0}^{\infty} h(m + \ell)$ | 23h)             | ů                    |                 |                        |
| (24b)m=              | 0                       |                          |                           |                          | 0           |              |                | 0             | 0            |                                 | 0                | 0                    |                 | (24b)                  |
| () If                | whole h                 |                          | tract ver                 |                          |             |              | ventilatio     | n from c      |              | ů                               | <u> </u>         | <u> </u>             |                 |                        |
| i c)                 | if (22b)n               | $n < 0.5 \times$         | (23b), 1                  | then (24c                | c) = (23b   | ); otherv    | vise (24       | c) = (22b     | ) m + 0.     | .5 × (23b                       | ))               |                      |                 |                        |
| (24c)m=              | 0                       | 0                        | 0                         | 0                        | 0           | 0            | 0              | 0             | 0            | 0                               | 0                | 0                    |                 | (24c)                  |
| d) If                | natural                 | ventilatio               | on or wh                  | ole hous                 | e positiv   | /e input v   | ventilatio     | on from l     | oft          | Į                               | Į                |                      |                 |                        |
| í                    | if (22b)n               | n = 1, the               | en (24d)                  | m = (22t                 | o)m othe    | rwise (2     | 4d)m =         | 0.5 + [(2     | 2b)m² x      | 0.5]                            |                  |                      |                 |                        |
| (24d)m=              | 0.6                     | 0.6                      | 0.6                       | 0.58                     | 0.57        | 0.56         | 0.56           | 0.56          | 0.56         | 0.57                            | 0.58             | 0.59                 |                 | (24d)                  |
| Effe                 | ctive air               | change                   | rate - er                 | nter (24a                | ) or (24b   | o) or (24    | c) or (24      | d) in box     | (25)         |                                 | -                |                      |                 |                        |
| (25)m=               | 0.6                     | 0.6                      | 0.6                       | 0.58                     | 0.57        | 0.56         | 0.56           | 0.56          | 0.56         | 0.57                            | 0.58             | 0.59                 |                 | (25)                   |
| 3 He                 | at losse                | s and he                 | at loss                   | naramete                 | ər.         |              |                |               |              |                                 |                  | _                    |                 |                        |
|                      |                         | Gros                     | ss                        | Openin                   | as          | Net Ar       | ea             | U-valu        | Je           | AXU                             |                  | k-value              | 9               | AXk                    |
|                      |                         | area                     | (m²)                      | m                        | 2           | A ,r         | n²             | W/m2          | K            | (W/I                            | K)               | kJ/m <sup>2</sup> ·l | <               | kJ/K                   |
| Doo <mark>rs</mark>  |                         |                          |                           |                          |             | 1.89         | x              | 1             | = [          | 1.89                            |                  |                      |                 | (26)                   |
| Windo                | ws Type                 | e 1                      |                           |                          |             | 4.41         | x1,            | /[1/( 1.4 )+  | 0.04] =      | 5.85                            |                  |                      |                 | (27)                   |
| Windo                | ws Type                 | 92                       |                           |                          |             | 4.41         | x1,            | /[1/( 1.4 )+  | 0.04] =      | 5.85                            |                  |                      |                 | (27)                   |
| Windo                | ws Type                 | e 3                      |                           |                          |             | 1.08         | x1,            | /[1/( 1.4 )+  | 0.04] =      | 1.43                            | 5                |                      |                 | (27)                   |
| Floor                |                         |                          |                           |                          |             | 50.6         | x              | 0.13          | ] = [        | 6.578                           |                  |                      |                 | (28)                   |
| Walls                |                         | 23.1                     | 3                         | 11.79                    | Э           | 11.34        | × ×            | 0.18          |              | 2.04                            | i F              |                      | i –             | (29)                   |
| Total a              | rea of e                | lements                  | , m²                      |                          |             | 73.73        | 3              |               | เ            |                                 | L                |                      |                 | (31)                   |
| Partv v              | vall                    |                          |                           |                          |             | 18.76        |                | 0             |              | 0                               |                  |                      |                 | (32)                   |
| Party c              | eilina                  |                          |                           |                          |             | 50.6         |                |               | [            |                                 | L<br>[           |                      | $\dashv$        | (32h)                  |
| * for win            | dows and                | roof wind                | ows. use e                | effective wi             | ndow U-va   | alue calcula | <br>ated usino | formula 1     | /ī(1/U-valu  | ıe)+0.041 a                     | L<br>as aiven in | paragraph            |                 | (020)                  |
| ** includ            | le the area             | as on both               | sides of in               | nternal wall             | ls and part | titions      |                |               |              | , <b>,</b> .                    | 9                | 1                    |                 |                        |
| Fabric               | heat los                | ss, W/K =                | = S (A x                  | U)                       |             |              |                | (26)(30)      | + (32) =     |                                 |                  |                      | 23.63           | (33)                   |
| Heat c               | apacity                 | Cm = S(                  | (Axk)                     |                          |             |              |                |               | ((28)        | (30) + (32                      | 2) + (32a).      | (32e) =              | 7821.48         | (34)                   |
| Therm                | al mass                 | parame                   | ter (TMI                  | <sup>-</sup> = Cm ÷      | - TFA) in   | ∩ kJ/m²K     |                |               | Indica       | tive Value                      | : Medium         |                      | 250             | (35)                   |
| For desi<br>can be u | gn assess<br>ised inste | sments wh<br>ad of a dei | ere the de<br>tailed calc | tails of the<br>ulation. | constructi  | ion are not  | t known pr     | ecisely the   | e indicative | e values of                     | TMP in T         | able 1f              |                 |                        |
| Therm                | al bridg                | es : S (L                | x Y) cal                  | culated u                | using Ap    | pendix ł     | <              |               |              |                                 |                  |                      | 4.85            | (36)                   |
| if details           | of therma               | al bridging              | are not kr                | nown (36) =              | = 0.15 x (3 | 1)           |                |               |              |                                 |                  |                      |                 |                        |
| Total fa             | abric he                | at loss                  |                           |                          |             |              |                |               | (33) +       | (36) =                          |                  |                      | 28.48           | (37)                   |
| Ventila              | tion hea                | at loss ca               | alculated                 | d monthly                | /           |              |                |               | (38)m        | = 0.33 × (                      | 25)m x (5        | )                    |                 |                        |
|                      | Jan                     | Feb                      | Mar                       | Apr                      | May         | Jun          | Jul            | Aug           | Sep          | Oct                             | Nov              | Dec                  |                 |                        |
| (38)m=               | 23.22                   | 23.06                    | 22.91                     | 22.19                    | 22.06       | 21.43        | 21.43          | 21.32         | 21.67        | 22.06                           | 22.33            | 22.61                |                 | (38)                   |
| Heat tr              | ansfer o                | coefficier               | nt, W/K                   |                          |             |              |                |               | (39)m        | = (37) + (                      | 38)m             |                      |                 |                        |
| (39)m=               | 51.7                    | 51.55                    | 51.39                     | 50.67                    | 50.54       | 49.92        | 49.92          | 49.8          | 50.16        | 50.54                           | 50.81            | 51.1                 |                 |                        |
| Stroma I             | FSAP 201                | 2 Version:               | 1.0.3.11                  | (SAP 9.92)               | - http://ww | ww.stroma    | .com           |               | /            | Average =                       | Sum(39)1         | 12 /12=              | 50.6 <b>≱</b> a | ge 2 o <sup>(39)</sup> |

| Heat lo            | oss para                | meter (H                 | HLP), W/                | /m²K                     |                             |                           |                  |                          | (40)m                     | = (39)m ÷   | - (4)                  |               |            |              |
|--------------------|-------------------------|--------------------------|-------------------------|--------------------------|-----------------------------|---------------------------|------------------|--------------------------|---------------------------|-------------|------------------------|---------------|------------|--------------|
| (40)m=             | 1.02                    | 1.02                     | 1.02                    | 1                        | 1                           | 0.99                      | 0.99             | 0.98                     | 0.99                      | 1           | 1                      | 1.01          |            |              |
| Numbe              | or of day               |                          | nth (Tab                |                          |                             |                           |                  | <b>!</b>                 | ,                         | Average =   | Sum(40)1.              | .12 /12=      | 1          | (40)         |
| Numbe              | lan                     | Feb                      | Mar                     |                          | May                         | lun                       | 6.0              | Δυα                      | Sen                       | Oct         | Nov                    | Dec           |            |              |
| (41)m=             | 31                      | 28                       | 31                      | 30                       | 31                          | 30                        | 31               | 31<br>31                 | 30                        | 31          | 30                     | 31            |            | (41)         |
| ()                 |                         |                          | 01                      |                          |                             |                           |                  |                          |                           |             |                        | 01            |            |              |
| 4. Wa              | iter heat               | ting ene                 | rgy requi               | irement:                 |                             |                           |                  |                          |                           |             |                        | kWh/ye        | ear:       |              |
| Assum              | ed occi                 | inancy                   | N                       |                          |                             |                           |                  |                          |                           |             |                        | 74            | 1          | (42)         |
| if TF              | A > 13.9<br>A £ 13.9    | 9, N = 1<br>9. N = 1     | + 1.76 x                | [1 - exp                 | (-0.0003                    | 849 x (TF                 | FA -13.9         | )2)] + 0.0               | 0013 x ( <sup>-</sup>     | ΓFA -13.    | .9)                    | / 1           |            | (42)         |
| Annual             | laverag                 | e hot wa                 | ater usag               | ge in litre              | es per da                   | ay Vd,av                  | erage =          | (25 x N)                 | + 36                      |             | 74                     | .76           |            | (43)         |
| Reduce<br>not more | the annua<br>e that 125 | al average<br>litres per | hot water<br>person per | usage by<br>r day (all w | 5% if the a<br>vater use, l | lwelling is<br>hot and co | designed<br>ld)  | to achieve               | a water us                | se target o | f                      |               |            |              |
|                    | Jan                     | Feb                      | Mar                     | Apr                      | May                         | Jun                       | Jul              | Aug                      | Sep                       | Oct         | Nov                    | Dec           |            |              |
| Hot wate           | er usage i              | n litres per             | day for ea              | ach month                | Vd,m = fa                   | ctor from                 | Table 1c x       | (43)                     |                           |             |                        |               |            |              |
| (44)m=             | 82.24                   | 79.25                    | 76.25                   | 73.26                    | 70.27                       | 67.28                     | 67.28            | 70.27                    | 73.26                     | 76.25       | 79.25                  | 82.24         |            | _            |
| <b>Enorm</b>       | contant of              | hatwater                 | upped and               | aulated m                | anthly A                    | 100 v Vd -                |                  | Tm / 2600                | -                         | Total = Su  | m(44) <sub>112</sub> = |               | 897.12     | (44)         |
| Energy of          | content or              | not water                | usea - cai              |                          | Sontniy = 4.                | 190 x va,r                |                  | 1                        |                           | ith (see Ta |                        | <i>c, 1a)</i> |            |              |
| (45)m=             | 121.95                  | 106.66                   | 110.06                  | 95.96                    | 92.07                       | 79.45                     | 73.62            | 84.48                    | 85.49                     | 99.63       | 108.76                 | 118.11        | 4470.00    | (45)         |
| lf instant         | aneous w                | ater heati               | ng at point             | of use (no               | o hot water                 | r storage),               | enter 0 in       | boxes (46                | ) to (61)                 | l otal = Su | m(45) <sub>112</sub> = |               | 1176.26    | (45)         |
| (46)m=             | 18.29                   | 16                       | 16.51                   | 14. <mark>39</mark>      | 13.81                       | 11.92                     | 11.04            | 12.67                    | 12.82                     | 14.95       | 16.31                  | 17.72         |            | (46)         |
| Water              | storage                 | loss:                    |                         |                          |                             |                           |                  |                          |                           |             |                        |               |            |              |
| Storag             | e volum                 | e (litres)               | includir                | ng any se                | olar or N                   | /WHRS                     | storage          | within sa                | ame ves                   | sel         | (                      | 0             |            | (47)         |
| If comr            | nunity h                | leating a                | ind no ta               | ink in dw                | /elling, e                  | nter 110                  | ) litres in      | (47)<br>http://www.ikaii |                           |             | 47)                    |               |            |              |
| Water              | /ise ii no              | loss.                    | not wate                | er (this ir              | iciudes i                   | nstantar                  | ieous co         | ווסם ומחזכ               | ers) ente                 | er u in (   | 47)                    |               |            |              |
| a) If m            | anufact                 | urer's de                | eclared I               | oss facto                | or is kno                   | wn (kWł                   | n/day):          |                          |                           |             |                        | )             |            | (48)         |
| Tempe              | rature f                | actor fro                | m Table                 | 2b                       |                             | ,                         | .,               |                          |                           |             |                        | )             |            | (49)         |
| Energy             | v lost fro              | m water                  | storage                 | , kWh/ye                 | ear                         |                           |                  | (48) x (49)              | ) =                       |             |                        | )             |            | (50)         |
| b) If m            | anufact                 | urer's de                | eclared of              | cylinder                 | loss fact                   | or is not                 | known:           |                          |                           |             |                        |               |            | ()           |
| Hot wa             | ter stor                | age loss                 | factor fr               | om Tabl                  | le 2 (kW                    | h/litre/da                | ay)              |                          |                           |             | (                      | 0             |            | (51)         |
| If comr            | nunity h                | from To                  | ee secti                | on 4.3                   |                             |                           |                  |                          |                           |             |                        |               | I          | (50)         |
| Tempe              | erature f               | actor fro                | m Table                 | 2b                       |                             |                           |                  |                          |                           |             |                        | )<br>)        | r          | (52)<br>(53) |
| Energy             | lost fro                | m water                  | storage                 | _~~                      | aar                         |                           |                  | (47) x (51)              | ) x (52) x ( <sup>1</sup> | 53) -       |                        |               |            | (54)         |
| Enter              | (50) or (               | (54) in (5               | 55)                     | ,, y                     | Jai                         |                           |                  | (11) x (01)              | , x (0 <u></u> , x (      |             |                        | )             |            | (54)         |
| Water              | storage                 | loss cal                 | culated f               | for each                 | month                       |                           |                  | ((56)m = (               | 55) × (41)ı               | m           |                        | -             |            |              |
| (56)m=             | 0                       | 0                        | 0                       | 0                        | 0                           | 0                         | 0                | 0                        | 0                         | 0           | 0                      | 0             |            | (56)         |
| If cylinde         | er contains             | s dedicate               | d solar sto             | rage, (57)               | <b>I</b><br>m = (56)m       | x [(50) – (               | I<br>[H11)] ÷ (5 | 0), else (5              | <b>1</b><br>7)m = (56)    | m where (   | H11) is fro            | m Append      | l<br>lix H |              |
| (57)m=             | 0                       | 0                        | 0                       | 0                        | 0                           | 0                         | 0                | 0                        | 0                         | 0           | 0                      | 0             |            | (57)         |
| Primar             | y circuit               | loss (ar                 | nual) fro               | om Table                 | e 3                         |                           |                  |                          |                           |             | (                      | )<br>)        |            | (58)         |
| Primar             | y circuit               | loss cal                 | culated                 | for each                 | month (                     | 59)m = (                  | (58) ÷ 36        | 65 × (41)                | m                         |             |                        |               |            |              |
| (moc               | dified by               | factor f                 | rom Tab                 | le H5 if t               | here is s                   | solar wat                 | ter heati        | ng and a                 | cylinde                   | r thermo    | stat)                  |               |            |              |
| (59)m=             | 0                       | 0                        | 0                       | 0                        | 0                           | 0                         | 0                | 0                        | 0                         | 0           | 0                      | 0             |            | (59)         |

| Combi    | loss ca               | alculated                | for ea         | ich  | month (             | 61)m =    | (60   | )) ÷ 36  | 65 × (41)   | )m           |                |                      |                |             |               |      |
|----------|-----------------------|--------------------------|----------------|------|---------------------|-----------|-------|----------|-------------|--------------|----------------|----------------------|----------------|-------------|---------------|------|
| (61)m=   | 41.91                 | 36.47                    | 38.8           | 6    | 36.13               | 35.81     | 3     | 33.18    | 34.29       | 35.81        | 36.13          | 38.86                | 39.08          | 41.91       | ]             | (61) |
| Total h  | neat rec              | uired for                | wate           | r he | ating ca            | lculated  | d fo  | r eacl   | n month     | (62)m =      | = 0.85 ×       | (45)m                | + (46)m +      | (57)m +     | (59)m + (61)m |      |
| (62)m=   | 163.86                | 143.14                   | 148.9          | 92   | 132.09              | 127.88    | 1     | 12.63    | 107.91      | 120.3        | 121.62         | 138.4                | 9 147.84       | 160.01      |               | (62) |
| Solar DI | -IW input             | calculated               | using A        | Appe | ndix G or           | Appendi   | хH    | (negativ | ve quantity | /) (enter '( | )' if no sola  | r contrib            | oution to wate | er heating) | -             |      |
| (add a   | dditiona              | al lines if              | FGHF           | RS a | and/or V            | VWHRS     | S ap  | oplies   | , see Ap    | pendix       | G)             |                      | -              |             | •             |      |
| (63)m=   | 0                     | 0                        | 0              |      | 0                   | 0         |       | 0        | 0           | 0            | 0              | 0                    | 0              | 0           | J             | (63) |
| Output   | t from w              | vater hea                | ter            |      |                     |           |       |          |             |              |                |                      |                |             | 1             |      |
| (64)m=   | 163.86                | 143.14                   | 148.9          | 92   | 132.09              | 127.88    | 1     | 12.63    | 107.91      | 120.3        | 121.62         | 138.4                | 9 147.84       | 160.01      |               | ٦    |
|          |                       |                          |                |      |                     |           |       |          |             | Out          | put from w     | ater hea             | ter (annual)   | 112         | 1624.7        | (64) |
| Heat g   | ains fro              | om water                 | heatii         | ng,  | kWh/mo              | onth 0.2  | 25 ´  | [0.85    | × (45)m     | + (61)r      | n] + 0.8 x     | x [(46)ı<br>T        | m + (57)m      | + (59)m     | ·]<br>1       | ()   |
| (65)m=   | 51.03                 | 44.58                    | 46.3           | 1    | 40.94               | 39.57     | 3     | 84.71    | 33.05       | 37.04        | 37.46          | 42.84                | 45.93          | 49.75       | J             | (65) |
| inclu    | ıde (57)              | )m in calo               | culatio        | on o | f (65)m             | only if a | cylii | nder is  | s in the o  | dwelling     | or hot w       | ater is              | from com       | munity ł    | neating       |      |
| 5. Int   | ternal g              | ains (see                | e Tabl         | e 5  | and 5a)             | 1         |       |          |             |              |                |                      |                |             |               |      |
| Metab    | olic gai              | ns (Table                | <u>e 5), V</u> | /att | s                   |           | -     |          |             |              | 1              | 1                    | -1             |             | 1             |      |
| _        | Jan                   | Feb                      | Ma             | ar   | Apr                 | May       |       | Jun      | Jul         | Aug          | Sep            | Oct                  | : Nov          | Dec         | -             | (    |
| (66)m=   | 85.39                 | 85.39                    | 85.3           | 9    | 85.39               | 85.39     | 8     | 35.39    | 85.39       | 85.39        | 85.39          | 85.39                | 85.39          | 85.39       | l i           | (66) |
| Lightin  | g gains               | s (calcula               | ted in         | Ap   | pendix I            | _, equa   | tion  | L9 oi    | r L9a), a   | lso see      | Table 5        | _                    |                |             | ,             |      |
| (67)m=   | 13.39                 | 11.89                    | 9.67           |      | 7.32                | 5.47      | Ŀ     | 4.62     | 4.99        | 6.49         | 8.71           | 11.06                | 12.91          | 13.76       |               | (67) |
| Applia   | nces ga               | ains (ca <mark>lc</mark> | ulated         | d in | Append              | lix L, ec | luat  | tion L'  | 13 or L1    | 3a), also    | o see Ta       | ble <mark>5</mark>   | _              |             | ,             |      |
| (68)m=   | 148.79                | 150.34                   | 146.4          | 15   | 138.16              | 127.71    | 1     | 17.88    | 111.31      | 109.77       | 113.66         | 121.9                | 4 132.4        | 142.23      | J             | (68) |
| Cookir   | ng gains              | s (calcula               | ated in        | ı Ap | pendix              | L, equa   | tion  | ו L15    | or L15a)    | , also s     | ee Table       | 5                    |                |             |               |      |
| (69)m=   | 31.54                 | 31.54                    | 31.5           | 4    | <mark>31.</mark> 54 | 31.54     | 3     | 31.54    | 31.54       | 31.54        | 31.54          | 3 <mark>1.5</mark> 4 | 31.54          | 31.54       |               | (69) |
| Pumps    | and fa                | ins gains                | (Tabl          | e 5  | a)                  |           |       |          |             |              |                |                      |                |             | -             |      |
| (70)m=   | 3                     | 3                        | 3              |      | 3                   | 3         |       | 3        | 3           | 3            | 3              | 3                    | 3              | 3           |               | (70) |
| Losses   | s e.g. e              | vaporatic                | on (ne         | gati | ve valu             | es) (Tal  | ole   | 5)       |             |              |                |                      | -              |             | -             |      |
| (71)m=   | -68.31                | -68.31                   | -68.3          | 31   | -68.31              | -68.31    | -(    | 58.31    | -68.31      | -68.31       | -68.31         | -68.3                | 1 -68.31       | -68.31      |               | (71) |
| Water    | heating               | g gains (T               | able           | 5)   |                     |           |       |          |             |              |                |                      |                | -           | -             |      |
| (72)m=   | 68.58                 | 66.34                    | 62.2           | 5    | 56.86               | 53.18     | 4     | 8.21     | 44.42       | 49.79        | 52.03          | 57.58                | 63.79          | 66.86       |               | (72) |
| Total i  | nterna                | l gains =                | :              |      |                     |           |       | (66)     | m + (67)m   | ı + (68)m    | + (69)m +      | (70)m +              | (71)m + (72    | )m<br>      | -             |      |
| (73)m=   | 282.38                | 280.19                   | 269.9          | 98   | 253.96              | 237.98    | 2     | 22.33    | 212.35      | 217.67       | 226.02         | 242.2                | 1 260.72       | 274.47      | ]             | (73) |
| 6. So    | lar gain              | IS:                      |                |      |                     |           |       |          |             |              |                |                      |                |             |               |      |
| Solar g  | ains are              | calculated               | using s        | olar | flux from           | Table 6a  | and   | associ   | ated equa   | tions to c   | onvert to th   | ne applic            | able orienta   | tion.       | Oping         |      |
| Orienta  | ation:                | Access F<br>Table 6d     | actor          |      | Area<br>m²          |           |       | Tab      | x<br>ole 6a | 7            | g_<br>Table 6b |                      | Table 6c       |             | Gains<br>(W)  |      |
| Southe   | ast <mark>0.9x</mark> | 0.77                     |                | x    | 4.4                 | 1         | x     | 3        | 6.79        | x            | 0.63           | x                    | 0.7            | =           | 49.59         | (77) |
| Southe   | ast <mark>0.9x</mark> | 0.77                     |                | x    | 4.4                 | 1         | x     | 3        | 6.79        | x            | 0.63           | x                    | 0.7            | =           | 49.59         | (77) |
| Southe   | ast <mark>0.9x</mark> | 0.77                     |                | x    | 1.0                 | 8         | x     | 3        | 6.79        | x            | 0.63           | x                    | 0.7            | =           | 12.14         | (77) |
| Southe   | ast <mark>0.9x</mark> | 0.77                     |                | x    | 4.4                 | 1         | x     | 6        | 2.67        | x            | 0.63           | x                    | 0.7            | =           | 84.47         | (77) |
| Southe   | ast <mark>0.9x</mark> | 0.77                     |                | x    | 4.4                 | 1         | x     | 6        | 2.67        | x            | 0.63           | x                    | 0.7            | =           | 84.47         | (77) |

| Southeast   | 0.9x             | 0.77               |                  | x                    | 1.0                  | 8                 | ×               | 6             | 2.67       | x        |         | 0.63         | <b>x</b>   | 0.7    | =          | - [      | 20.69  | (77)      |
|-------------|------------------|--------------------|------------------|----------------------|----------------------|-------------------|-----------------|---------------|------------|----------|---------|--------------|------------|--------|------------|----------|--------|-----------|
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | ×               | 8             | 5.75       | ] ×      |         | 0.63         |            | 0.7    | = =        | - Г      | 115.57 | _<br>(77) |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | ×               | 8             | 5.75       | ] ×      |         | 0.63         |            | 0.7    | = =        | Ē        | 115.57 | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 1.0                  | 8                 | ×               | 8             | 5.75       | ] ×      |         | 0.63         | -<br>  × [ | 0.7    | =          | Ē        | 28.3   | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | ×               | 10            | 06.25      | ] ×      |         | 0.63         |            | 0.7    | =          | Ē        | 143.2  | -<br>(77) |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | ×               | 1             | 06.25      | x        |         | 0.63         |            | 0.7    | =          | Ē        | 143.2  | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 1.0                  | 8                 | x               | 10            | 06.25      | ] ×      |         | 0.63         |            | 0.7    | <b>-</b> - | -        | 35.07  | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | ×               | 1             | 19.01      | _<br>  x |         | 0.63         |            | 0.7    | = -        | - Г      | 160.4  | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | ×               | 1             | 19.01      | x        |         | 0.63         | × [        | 0.7    | =          | Ē        | 160.4  | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 1.0                  | 8                 | ×               | 1             | 19.01      | x        |         | 0.63         | ] × [      | 0.7    | = =        | Ē        | 39.28  | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | ×               | 1             | 18.15      | <b>x</b> |         | 0.63         | ] × [      | 0.7    | =          | Ē        | 159.24 | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | -1                | ×               | 1             | 18.15      | x        |         | 0.63         | ] × [      | 0.7    | =          | - [      | 159.24 | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 1.0                  | 8                 | ×               | 1             | 18.15      | x        |         | 0.63         | <b>x</b>   | 0.7    | =          | -        | 39     | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | ×               | 1             | 13.91      | x        |         | 0.63         | <b>x</b>   | 0.7    | =          | ۰Ľ       | 153.52 | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | ×               | 1             | 13.91      | x        |         | 0.63         | ×          | 0.7    | =          | - [      | 153.52 | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 1.0                  | 8                 | ×               | 1             | 13.91      | x        |         | 0.63         | _ x [      | 0.7    | =          | -        | 37.6   | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | ×               | 10            | 04.39      | x        |         | 0.63         | <b>x</b>   | 0.7    | =          | -        | 140.69 | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | ×               | 10            | 04.39      | x        |         | 0.63         | x          | 0.7    | =          |          | 140.69 | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 1.0                  | 8                 | x               | 1             | 04.39      | ] x      |         | 0.63         | ×          | 0.7    | =          |          | 34.46  | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | .1                | x               | 9             | 2.85       | ] ×      |         | 0.63         | x          | 0.7    | =          | -        | 125.14 | (77)      |
| Southeast   | 0.9x             | 0.7 <mark>7</mark> |                  | x                    | 4.4                  | 1                 | x               | 9             | 2.85       | <b>x</b> |         | 0.63         | x          | 0.7    | =          | -        | 125.14 | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 1.0                  | 8                 | ×               | 9             | 2.85       | x        |         | 0.63         | ×          | 0.7    | =          | -        | 30.65  | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | x               | 6             | 9.27       | x        |         | 0.63         | ×          | 0.7    | =          | -        | 93.36  | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | ×               | 6             | 9.27       | x        |         | 0.63         | x          | 0.7    | =          |          | 93.36  | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 1.0                  | 8                 | ×               | 6             | 9.27       | x        |         | 0.63         | ×          | 0.7    | =          | -        | 22.86  | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | ×               | 4             | 4.07       | x        |         | 0.63         | x          | 0.7    | =          | -        | 59.4   | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | ×               | 4             | 4.07       | x        |         | 0.63         | _ × [      | 0.7    | =          |          | 59.4   | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 1.0                  | 8                 | ×               | 4             | 4.07       | x        |         | 0.63         | ×          | 0.7    | =          |          | 14.55  | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | ×               | 3             | 1.49       | x        |         | 0.63         | _ × [      | 0.7    | =          |          | 42.44  | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 4.4                  | 1                 | ×               | 3             | 1.49       | x        |         | 0.63         | ×          | 0.7    | =          | -        | 42.44  | (77)      |
| Southeast   | 0.9x             | 0.77               |                  | x                    | 1.0                  | 8                 | ×               | 3             | 1.49       | x        |         | 0.63         | ×          | 0.7    | =          |          | 10.39  | (77)      |
|             |                  |                    |                  |                      |                      |                   |                 |               |            |          |         |              |            |        |            |          |        |           |
| Solar gair  | ns in            | watts, ca          | alcula           | ted                  | for each             | n mont            | th              | EZ 47         | 244.64     | (83)m    | n = Sun | n(74)m       | .(82)m     | 122.24 | 05.07      |          |        | (83)      |
| Total gain  | 11.32<br>15 — İl | nternal a          | 259.4            | <sup>45</sup><br>Jar | 321.47<br>(84)m –    | 360.07<br>(73)m   | $\frac{1}{0+1}$ | 57.47<br>83)m | watts      | 315      | 0.84    | 280.93       | 209.57     | 133.34 | 95.27      |          |        | (03)      |
| (84)m= 39   | 93 71            | 469.81             | 529              | 43                   | 575 43               | 598.0             | 5 4             | 579.8         | 556.99     | 533      | 51      | 506 95       | 451 78     | 394.06 | 369 74     | 1        |        | (84)      |
|             |                  | 100.01             | 020.             | 10                   |                      | 000.00            |                 | 51 0.0        | 000.00     | 1 000    |         | 000.00       | 101110     |        | 000.11     | <u> </u> |        | (- )      |
| 7. Mean     | Inter            | nal temp           | peratu           | ire (<br>a p         | neating<br>priode in | seaso             | on)<br>vina     | aroa          | from Tol   |          | Th1     | (°C)         |            |        |            | Г        | 04     |           |
| Litilisatio | aiure<br>m foo   | tor for a          | icalli<br>aine f | y pe<br>or li        | ving or              | 1 110 IN<br>23 h1 | m (c            |               |            | 216 9    | , 1111  |              |            |        |            | L        | 21     |           |
|             | lan              | Feh                | M                | $\frac{1}{2}$        | Anr                  | a, III,<br>Mav    |                 | Jun           | , lul      | Δ        |         | Sen          | Oct        | Nov    | Dec        | ,        |        |           |
| (86)m= (    | ).99             | 0.98               | 0.9              | 5                    | 0.87                 | 0.73              | ,               | 0.54          | 0.39       | 0.4      | 43      | 0.66         | 0.91       | 0.98   | 0.99       | ή        |        | (86)      |
|             |                  |                    |                  |                      |                      |                   |                 |               |            | 7 : 7    |         | 00           |            | 1      |            |          |        | . ,       |
| $(87)_{m-}$ |                  | 1 temper           | ature            | in I                 | $\frac{1}{20.70}$    | 20 04             |                 | ow ste        | 21 ps 3 to |          |         | 90)<br>20 97 | 20.78      | 20 30  | 20.07      | ٦        |        | (87)      |
|             | -0.1             | 20.0               | 20.0             | · •                  | 20.19                | 20.94             |                 | _0.00         |            |          | ·       | 20.01        | 20.10      | 20.00  | 20.07      |          |        | (0.)      |

| Temp                | erature                 | during h  | eating p   | eriods ir                             | n rest of               | dwelling    | from Ta                  | ble 9, Tl   | h2 (°C)                  |                       |                                 |            |         |       |
|---------------------|-------------------------|-----------|------------|---------------------------------------|-------------------------|-------------|--------------------------|-------------|--------------------------|-----------------------|---------------------------------|------------|---------|-------|
| (88)m=              | 20.07                   | 20.07     | 20.07      | 20.08                                 | 20.08                   | 20.09       | 20.09                    | 20.1        | 20.09                    | 20.08                 | 20.08                           | 20.08      |         | (88)  |
| Utilisa             | ation fac               | tor for g | ains for   | rest of d                             | welling, I              | h2,m (se    | e Table                  | 9a)         |                          |                       |                                 |            |         |       |
| (89)m=              | 0.99                    | 0.98      | 0.94       | 0.84                                  | 0.68                    | 0.47        | 0.31                     | 0.34        | 0.58                     | 0.87                  | 0.98                            | 0.99       |         | (89)  |
| Mean                | interna                 | l temper  | ature in   | the rest                              | of dwelli               | ing T2 (fo  | ollow ste                | eps 3 to 7  | 7 in Tabl                | e 9c)                 |                                 |            |         |       |
| (90)m=              | 18.88                   | 19.17     | 19.51      | 19.85                                 | 20.03                   | 20.09       | 20.09                    | 20.1        | 20.07                    | 19.85                 | 19.31                           | 18.84      |         | (90)  |
|                     |                         |           |            |                                       |                         |             |                          |             | f                        | LA = Livin            | g area ÷ (4                     | 4) =       | 0.49    | (91)  |
| Mean                | interna                 | l temper  | ature (fo  | r the wh                              | ole dwel                | lling) = fl | _A × T1                  | + (1 – fL   | .A) × T2                 |                       |                                 | -          |         |       |
| (92)m=              | 19.48                   | 19.73     | 20.02      | 20.32                                 | 20.48                   | 20.53       | 20.54                    | 20.54       | 20.52                    | 20.31                 | 19.85                           | 19.44      |         | (92)  |
| Apply               | adjustn                 | nent to t | he mear    | interna                               | temper                  | ature fro   | m Table                  | 4e, whe     | ere appro                | opriate               |                                 |            |         |       |
| (93)m=              | 19.48                   | 19.73     | 20.02      | 20.32                                 | 20.48                   | 20.53       | 20.54                    | 20.54       | 20.52                    | 20.31                 | 19.85                           | 19.44      |         | (93)  |
| 8. Spa              | ace hea                 | ting requ | uirement   |                                       |                         |             |                          |             |                          |                       |                                 |            |         |       |
| Set Ti              | i to the r              | mean int  | ernal ter  | nperatui                              | re obtain               | ned at ste  | ep 11 of                 | Table 9     | o, so tha                | t Ti,m=(              | 76)m an                         | d re-calc  | ulate   |       |
| the ut              | liisation               | Feb       | Mar        |                                       | Ible 9a                 | lun         | lul                      | Διια        | San                      | Oct                   | Nov                             | Dec        |         |       |
| Utilisa             | ation fac               | tor for a | ains hm    |                                       | iviay                   | Jun         | Jui                      | Aug         | Seb                      | 001                   | INUV                            | Dec        |         |       |
| (94)m=              | 0.99                    | 0.97      | 0.94       | 0.85                                  | 0.7                     | 0.51        | 0.35                     | 0.39        | 0.62                     | 0.88                  | 0.97                            | 0.99       |         | (94)  |
| Us <mark>efu</mark> | l gains,                | hmGm      | , W = (94  | ـــــــــــــــــــــــــــــــــــــ | 4)m                     |             |                          |             |                          |                       |                                 |            |         |       |
| (95)m=              | 389.34                  | 457.09    | 495.99     | 489.85                                | 418.96                  | 293.02      | 196.38                   | 205.69      | 312.5                    | 398.45                | 384.19                          | 366.69     |         | (95)  |
| Month               | nly avera               | age exte  | ernal tem  | perature                              | e from Ta               | able 8      |                          | 7           |                          |                       |                                 |            |         |       |
| (96)m=              | 4.3                     | 4.9       | 6.5        | 8.9                                   | 11.7                    | 14.6        | 16.6                     | 16.4        | 14.1                     | 10.6                  | 7.1                             | 4.2        |         | (96)  |
| Heat                | los <mark>s rate</mark> | e for mea | an intern  | al tempe                              | erature,                | Lm , W =    | =[( <mark>3</mark> 9)m : | x [(93)m    | – (96)m                  | ]                     |                                 |            |         |       |
| (97)m=              | 785.07                  | 764.2     | 694.79     | 578.52                                | 443. <mark>6</mark> 6   | 296.22      | 196.72                   | 206.25      | 321.89                   | 490.59                | 647.65                          | 778.9      |         | (97)  |
| Sp <mark>ace</mark> | e heatin                | g require | ement fo   | <mark>r eac</mark> h n                | honth, <mark>k</mark> l | Wh/mont     | t <mark>h = 0</mark> .02 | 24 x [(97]  | ) <mark>m – (9</mark> 5) | )m] x (4 <sup>-</sup> | 1)m                             |            |         |       |
| (98)m=              | 294.42                  | 206.37    | 147.91     | 63.84                                 | 18.37                   | 0           | 0                        | 0           | 0                        | 68.55                 | 189.69                          | 306.69     |         |       |
|                     |                         |           |            |                                       |                         |             |                          | Tota        | l per year (             | (kWh/year             | ) = Sum(98                      | 8)15,912 = | 1295.85 | (98)  |
| Space               | e heatin                | g require | ement in   | kWh/m <sup>2</sup>                    | /year                   |             |                          |             |                          |                       |                                 |            | 25.61   | (99)  |
| 9a. En              | ergy rec                | luiremer  | nts – Indi | vidual h                              | eating sy               | ystems i    | ncluding                 | micro-C     | CHP)                     |                       |                                 |            |         |       |
| Space               | e heatir                | ng:       |            |                                       |                         |             |                          |             |                          |                       |                                 | ,          |         |       |
| Fracti              | on of sp                | ace hea   | at from s  | econdar                               | y/supple                | mentary     | system                   |             |                          |                       |                                 |            | 0       | (201) |
| Fracti              | on of sp                | ace hea   | at from m  | nain syst                             | em(s)                   |             |                          | (202) = 1 - | - (201) =                |                       |                                 |            | 1       | (202) |
| Fracti              | on of to                | tal heati | ng from    | main sys                              | stem 1                  |             |                          | (204) = (2  | 02) × [1 – (             | (203)] =              |                                 |            | 1       | (204) |
| Efficie             | ency of r               | main spa  | ace heat   | ing syste                             | em 1                    |             |                          |             |                          |                       |                                 |            | 93.4    | (206) |
| Efficie             | ency of s               | seconda   | ry/suppl   | ementar                               | y heating               | g system    | n, %                     |             |                          |                       |                                 |            | 0       | (208) |
|                     | Jan                     | Feb       | Mar        | Apr                                   | May                     | Jun         | Jul                      | Aug         | Sep                      | Oct                   | Nov                             | Dec        | kWh     | /vear |
| Space               | e heatin                | g require | ement (c   | alculate                              | d above)                | )           |                          |             |                          |                       |                                 |            |         |       |
|                     | 294.42                  | 206.37    | 147.91     | 63.84                                 | 18.37                   | 0           | 0                        | 0           | 0                        | 68.55                 | 189.69                          | 306.69     |         |       |
| (211)m              | n = {[(98               | )m x (20  | 94)]}x 1   | 00 ÷ (20                              | )6)                     |             |                          |             |                          |                       |                                 |            |         | (211) |
| . ,                 | 315.23                  | 220.96    | 158.36     | 68.35                                 | 19.67                   | 0           | 0                        | 0           | 0                        | 73.4                  | 203.1                           | 328.36     |         |       |
| I                   |                         |           |            |                                       |                         |             |                          | Tota        | l (kWh/yea               | ar) =Sum(2            | 2 <b>11)</b> <sub>15,1012</sub> | -          | 1387.42 | (211) |
| Space               | e heatin                | g fuel (s | econdar    | y), kWh/                              | month                   |             |                          |             |                          |                       |                                 | L          |         |       |
| = {[(98             | )m x (20                | )1)]}x1   | 00 ÷ (20   | 8)                                    |                         |             |                          |             |                          |                       |                                 |            |         |       |
| (215)m=             | 0                       | 0         | 0          | 0                                     | 0                       | 0           | 0                        | 0           | 0                        | 0                     | 0                               | 0          |         |       |
|                     |                         |           |            |                                       |                         |             |                          | Tota        | l (kWh/yea               | ar) =Sum(2            | 215) <sub>15,1012</sub>         | =          | 0       | (215) |

#### Water heating

| Output                | from w     | ater hea             | ter (calc | ulated al  | oove)    |                    |                         |             |             | -                      |                         | -      |                                |        |
|-----------------------|------------|----------------------|-----------|------------|----------|--------------------|-------------------------|-------------|-------------|------------------------|-------------------------|--------|--------------------------------|--------|
|                       | 163.86     | 143.14               | 148.92    | 132.09     | 127.88   | 112.63             | 107.91                  | 120.3       | 121.62      | 138.49                 | 147.84                  | 160.01 |                                |        |
| Efficier              | ncy of w   | ater hea             | iter      |            |          |                    |                         | -           |             |                        |                         |        | 80.3                           | (216)  |
| (217)m=               | 86.51      | 85.97                | 85.03     | 83.33      | 81.44    | 80.3               | 80.3                    | 80.3        | 80.3        | 83.38                  | 85.68                   | 86.66  |                                | (217)  |
| Fuel fo               | r water    | heating,             | kWh/mo    | onth       |          |                    |                         |             |             |                        |                         |        |                                |        |
| (219)m                | = (64)     | m x 100              | ) ÷ (217) | m          | 457.00   | 440.07             | 404.00                  | 4 40.04     | 454.40      | 400.00                 | 470.55                  | 404.04 | 1                              |        |
| (219)m=               | 169.41     | 100.49               | 175.13    | 106.0      | 157.02   | 140.27             | 134.38                  | 149.01      | 131.40      | 192) -                 | 172.55                  | 164.04 | 4045 70                        |        |
| <b>A</b> nnuo         | 1 404010   |                      |           |            |          |                    |                         | 1010        | ii – Guin(2 | 1000) <sub>112</sub> – | Mhhaa                   |        | 1945.76                        | (219)  |
| Space                 | heating    | fuel use             | ed, main  | system     | 1        |                    |                         |             |             | ĸ                      | wn/year                 |        | 1387.42                        | 1      |
| Water I               | heating    | fuel use             | d         |            |          |                    |                         |             |             |                        |                         |        | 1945.76                        | Ī      |
| Electric              | city for p | oumps, fa            | ans and   | electric l | keep-ho  | t                  |                         |             |             |                        |                         |        |                                |        |
| centra                | al heatir  | ng pump              | :         |            |          |                    |                         |             |             |                        |                         | 30     | ]                              | (230c) |
| boiler                | with a f   | an-assis             | sted flue |            |          |                    |                         |             |             |                        |                         | 45     | ]                              | (230e) |
| Total e               | lectricit  | y for the            | above, ł  | (Wh/yea    | r        |                    |                         | sum         | of (230a).  | (230g) =               |                         |        | 75                             | (231)  |
| Electric              | city for I | ighting              |           |            |          |                    |                         |             |             |                        |                         |        | 236.49                         | (232)  |
| 12a. (                | CO2 em     | issions -            | – Individ | ual heati  | ng syste | ems inclu          | uding mi                | cro-CHF     | )           |                        |                         |        |                                |        |
|                       | Г          |                      |           | Г          |          | En<br>kW           | e <b>rgy</b><br>/h/year |             |             | <b>Emiss</b><br>kg CO  | <b>ion fac</b><br>2/kWh | tor    | <b>Emissions</b><br>kg CO2/yea | ar     |
| Spa <mark>ce</mark>   | heating    | (main <mark>s</mark> | ystem 1)  | )          |          | (21                | 1) x                    |             |             | 0.2                    | 16                      | =      | 299.68                         | (261)  |
| Spa <mark>ce</mark>   | heating    | (second              | dary)     |            |          | (21                | 5) x                    |             |             | 0.5                    | 19                      | =      | 0                              | (263)  |
| Wat <mark>er I</mark> | heating    |                      |           |            |          | (219               | 9) x                    |             |             | 0.2                    | 16                      | =      | 420.28                         | (264)  |
| Space                 | and wa     | ter heati            | ng        |            |          | (26                | 1) + (262)              | + (263) + ( | (264) =     |                        | •                       |        | 719.97                         | (265)  |
| Electric              | city for p | oumps, f             | ans and   | electric l | keep-ho  | t (23 <sup>-</sup> | 1) x                    |             |             | 0.5                    | 19                      | =      | 38.93                          | (267)  |
| Electric              | city for I | ighting              |           |            |          | (23)               | 2) x                    |             |             | 0.5                    | 19                      | =      | 122.74                         | (268)  |
| Total C               | :02, kg    | /year                |           |            |          |                    |                         |             | sum o       | f (265)(               | 271) =                  |        | 881.63                         | (272)  |
|                       |            |                      |           |            |          |                    |                         |             |             |                        |                         |        |                                |        |

TER =

(273)

17.42

# **Regulations Compliance Report**

| Approved Documen                                                 | t L1A, 2013 Edition,<br>2018 at 10:46:56     | England assessed by St                                                                                                                                                  | roma FSAP 2012 program, \                                       | /ersion: 1.0.3.11     |                |
|------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------|----------------|
| Project Information                                              | ):                                           |                                                                                                                                                                         |                                                                 |                       |                |
| Assassad By:                                                     | 0                                            |                                                                                                                                                                         | Building Type:                                                  | Flat                  |                |
| Assessed by.                                                     | 0                                            |                                                                                                                                                                         | Building Type.                                                  | Fidi                  |                |
| Dweiling Details:                                                |                                              |                                                                                                                                                                         | Total Floor Area                                                |                       |                |
| NEW DWELLING L                                                   |                                              | vielcenhom                                                                                                                                                              | I otal Floor Area                                               | 1: 50.6M <sup>2</sup> |                |
| Site Reference :                                                 | Anington works, T                            | vickennam                                                                                                                                                               | Plot Reference                                                  | Anington i be         |                |
| Address :                                                        |                                              |                                                                                                                                                                         |                                                                 |                       |                |
| Client Details:                                                  |                                              |                                                                                                                                                                         |                                                                 |                       |                |
| Name:<br>Address :                                               | Sharpes Refinery S                           | ervice                                                                                                                                                                  |                                                                 |                       |                |
| This report covers<br>It is not a complete                       | items included wite report of regulation     | hin the SAP calculation                                                                                                                                                 | IS.                                                             |                       |                |
| 1a TER and DER                                                   |                                              |                                                                                                                                                                         |                                                                 |                       |                |
| Fuel for main heatin                                             | ng system: Mains ga                          | S                                                                                                                                                                       |                                                                 |                       |                |
| Fuel factor: 1.00 (m                                             | ains gas)<br>ido Emission Boto <i>(</i> i    |                                                                                                                                                                         | $15.00 kg/m^{2}$                                                |                       |                |
| Dwelling Carbon Diox                                             | oxide Emission Rate (                        | (DFR)                                                                                                                                                                   | 15.29 kg/m²<br>14 44 kg/m²                                      |                       | ОК             |
| 1b TFEE and DFE                                                  | E                                            |                                                                                                                                                                         |                                                                 |                       |                |
| Target Fabric Energ<br>Dwelling Fabric Energe                    | gy Efficiency (TFEE)<br>ergy Efficiency (DFE | E)                                                                                                                                                                      | 25.8 kWh/m²<br>25.4 kWh/m²                                      |                       | OK             |
| Element<br>External w<br>Party wall<br>Floor<br>Roof<br>Openings | all                                          | Average<br>0.17 (max. 0.30)<br>0.00 (max. 0.20)<br>(no floor)<br>(no roof)<br>1.43 (max. 2.00)                                                                          | <b>Highest</b><br>0.17 (max. 0.70)<br>-<br>1.60 (max. 3.30)     | )                     | ок<br>ок<br>ок |
| 2a Thermal bridgi                                                | ing                                          | · ·                                                                                                                                                                     | · ·                                                             |                       |                |
| Thermal br                                                       | ridging calculated fro                       | om linear thermal transmi                                                                                                                                               | ttances for each junction                                       |                       |                |
| 3 Air permeability                                               | 1                                            |                                                                                                                                                                         |                                                                 |                       |                |
| Air permeabi<br>Maximum                                          | lity at 50 pascals                           |                                                                                                                                                                         | 4.00 (design v<br>10.0                                          | /alue)                | ок             |
| 4 Heating efficien                                               | су                                           |                                                                                                                                                                         |                                                                 |                       |                |
| Main Heating                                                     | g system:                                    | Database: (rev 397, pro<br>Boiler systems with radi<br>Brand name: Alpha<br>Model: InTec 34C<br>Model qualifier:<br>(Combi)<br>Efficiency 88.8 % SEDE<br>Minimum 88.0 % | duct index 016661):<br>ators or underfloor heating -<br>SUK2009 | mains gas             | ОК             |
| Secondary h                                                      | eating system:                               | None                                                                                                                                                                    |                                                                 |                       |                |

# **Regulations Compliance Report**

| 5 Cylinder insulation               |                                 |                               |    |
|-------------------------------------|---------------------------------|-------------------------------|----|
| Hot water Storage:                  | No cylinder                     |                               |    |
| 6 Controls                          |                                 |                               |    |
|                                     |                                 |                               |    |
| Space heating controls              | Time and temperature zone contr | ol by device in database      | ок |
| Hot water controls:                 | No cylinder                     |                               |    |
| Boiler interlock:                   | Yes                             |                               | OK |
| 7 Low energy lights                 |                                 |                               |    |
| Percentage of fixed lights with low | w-energy fittings               | 100.0%                        |    |
| Minimum                             |                                 | 75.0%                         | OK |
| 8 Mechanical ventilation            |                                 |                               |    |
| Not applicable                      |                                 |                               |    |
| 9 Summertime temperature            |                                 |                               |    |
| Overheating risk (Thames valley)    | :                               | Medium                        | ОК |
| Based on:                           |                                 |                               |    |
| Overshading:                        |                                 | Average or unknown            |    |
| Windows facing: South East          |                                 | 4.41m <sup>2</sup>            |    |
| Windows facing: South East          |                                 | 4.41m <sup>2</sup>            |    |
| Windows facing: South East          |                                 | 1.08m <sup>2</sup>            |    |
| Ventilation rate:                   |                                 | 3.00                          |    |
| Blinds/curtains:                    |                                 | None                          |    |
|                                     |                                 | Closed 100% of daylight hours |    |
| 10 Key features                     |                                 |                               |    |
| Party Walls U-value                 |                                 | 0 W/m²K                       |    |

|                                  |                                 |             | User D      | etails:          |                  |               |          |           |                        |          |
|----------------------------------|---------------------------------|-------------|-------------|------------------|------------------|---------------|----------|-----------|------------------------|----------|
| Assessor Name:<br>Software Name: | Stroma FSAP 201                 | 2           |             | Stroma<br>Softwa | a Num<br>Ire Ver | ber:<br>sion: |          | Versio    | n: 1.0.3.11            |          |
|                                  |                                 | Pr          | operty A    | Address:         | Arlingto         | on 1 Bec      | 1 MID 51 |           |                        |          |
| Address :                        |                                 |             |             |                  |                  |               |          |           |                        |          |
| 1. Overall dwelling dime         | ensions:                        |             |             |                  |                  |               |          |           |                        |          |
| •                                |                                 |             | Area        | a(m²)            |                  | Av. He        | ight(m)  |           | Volume(m <sup>3</sup>  | )        |
| Ground floor                     |                                 |             | 5           | 50.6             | (1a) x           | 2             | 2.3      | (2a) =    | 116.38                 | (3a)     |
| Total floor area TFA = (1        | a)+(1b)+(1c)+(1d)+(1e           | e)+(1n)     | ) 5         | 50.6             | (4)              |               |          |           |                        |          |
| Dwelling volume                  |                                 |             |             |                  | (3a)+(3b)        | +(3c)+(3c     | d)+(3e)+ | .(3n) =   | 116.38                 | (5)      |
| 2. Ventilation rate:             |                                 |             |             |                  |                  |               |          | -         |                        |          |
|                                  | main so                         | econdary    | /           | other            |                  | total         |          |           | m <sup>3</sup> per hou | r        |
| Number of chimneys               |                                 | 0           | ] + [       | 0                | ] = [            | 0             | X 4      | 40 =      | 0                      | (6a)     |
| Number of open flues             | 0 +                             | 0           | i + F       | 0                | 」<br>] = 匚       | 0             | x 2      | 20 =      | 0                      | (6b)     |
| Number of intermittent fa        | ins                             |             |             |                  |                  | 2             | x ^      | 10 =      | 20                     | <br>(7a) |
| Number of passive vents          | 5                               |             |             |                  |                  | 0             | x ^      | 10 =      | 0                      | <br>(7b) |
| Number of flueless gas fi        | ires                            |             |             |                  |                  | 0             | X        | 40 =      | 0                      | (7c)     |
|                                  |                                 |             |             |                  | L                |               |          | Air ch    | anges per ho           | our      |
| Infiltration due to chimne       | ys, flues and fans = (6         | a)+(6b)+(7a | a)+(7b)+(7  | 7c) =            |                  | 20            |          | ÷ (5) =   | 0.17                   | (8)      |
| If a pressurisation test has b   | een carried out or is intende   | ed, proceed | to (17), o  | otherwise c      | ontinue fro      | om (9) to (   | (16)     |           |                        | _        |
| Number of storeys in the         | he dwelling (ns)                |             |             |                  |                  |               | (0)      | 41-0-4    | 0                      | (9)      |
| Structural infiltration: 0       | 25 for steel or timber          | frame or    | 0 35 for    | masonr           | v constr         | uction        | [(9)     | -1]XU.1 = | 0                      | -(10)    |
| if both types of wall are p      | resent, use the value corres    | ponding to  | the greate  | er wall area     | a (after         | uction        |          |           | U                      |          |
| deducting areas of openii        | ngs); if equal user 0.35        |             |             |                  |                  |               |          |           |                        | _        |
| If suspended wooden t            | loor, enter 0.2 (unseal         | led) or 0.7 | 1 (seale    | d), else         | enter 0          |               |          |           | 0                      | (12)     |
| li no draught lobby, en          | ter 0.05, else enter 0          | trippod     |             |                  |                  |               |          |           | 0                      | (13)     |
| Window infiltration              | s and doors draught si          | inpped      |             | 0.25 - [0.2      | x (14) - 1       | 001 =         |          |           | 0                      | (14)     |
| Infiltration rate                |                                 |             |             | (8) + (10) -     | + (11) + (1      | 2) + (13) ·   | + (15) = |           | 0                      | (10)     |
| Air permeability value           | a50 expressed in cut            | oic metres  | s per ho    | ur per so        | ouare m          | etre of e     | envelope | area      | 0                      | -1(17)   |
| If based on air permeabil        | lity value, then $(18) = [(1)]$ | 7) ÷ 20]+(8 | ), otherwis | se (18) = (      | 16)              |               | molopo   | aiou      | 0.37                   |          |
| Air permeability value applie    | es if a pressurisation test ha  | s been done | e or a deg  | ıree air per     | meability        | is being u    | sed      |           | 0.01                   |          |
| Number of sides sheltere         | эd                              |             |             |                  |                  |               |          |           | 2                      | (19)     |
| Shelter factor                   |                                 |             |             | (20) = 1 - [     | 0.075 x (1       | 9)] =         |          |           | 0.85                   | (20)     |
| Infiltration rate incorporat     | ting shelter factor             |             |             | (21) = (18)      | x (20) =         |               |          |           | 0.32                   | (21)     |
| Infiltration rate modified f     | or monthly wind speed           | t t         |             |                  |                  |               |          |           | l.                     |          |
| Jan Feb                          | Mar Apr May                     | Jun         | Jul         | Aug              | Sep              | Oct           | Nov      | Dec       |                        |          |
| Monthly average wind sp          | eed from Table 7                |             |             |                  |                  |               |          |           |                        |          |
| (22)m= 5.1 5                     | 4.9 4.4 4.3                     | 3.8         | 3.8         | 3.7              | 4                | 4.3           | 4.5      | 4.7       |                        |          |
| Wind Factor $(22a)m = (2)$       | 2)m ÷ 4                         |             |             |                  |                  |               |          |           |                        |          |
| (22a)m= 1.27 1.25                | 1.23 1.1 1.08                   | 0.95        | 0.95        | 0.92             | 1                | 1.08          | 1.12     | 1.18      |                        |          |
| ······                           |                                 | · · · ·     |             |                  |                  |               | •        |           | •                      |          |

| Adjust     | ed infiltr           | ation rat           | e (allowi                  | ing for sh          | nelter an   | d wind s                | peed) =                | (21a) x                 | (22a)m         |                |             |           |                 |                         |
|------------|----------------------|---------------------|----------------------------|---------------------|-------------|-------------------------|------------------------|-------------------------|----------------|----------------|-------------|-----------|-----------------|-------------------------|
|            | 0.4                  | 0.4                 | 0.39                       | 0.35                | 0.34        | 0.3                     | 0.3                    | 0.29                    | 0.32           | 0.34           | 0.36        | 0.37      |                 |                         |
| Calcul     | ate effe             | ctive air           | change                     | rate for t          | he appli    | cable ca                | se                     |                         |                | -              |             | -         |                 | (00-)                   |
| lf ovh     | aust air b           |                     | using Ann                  | andix N (2          | 3h) - (23a  | a) v Emv (e             | austion (N             | (5)) other              | wise (23h      | ) – (23a)      |             |           | 0               | (238)                   |
| lf bala    | anced with           |                     |                            | iency in %          | allowing f  | or in-use f             | actor (from            | Table 4h                | ) –            | ) – (200)      |             |           | 0               | (23D)                   |
|            |                      |                     |                            |                     |             |                         |                        |                         | ) -<br>.)      | ⊃h.)           | 00k) [      | 1 (00-)   | 0               | (230)                   |
| a) If      | balance              |                     | anical ve                  |                     |             | at recove               |                        | HR) (24a                | m = (22)       | 2b)m + (<br>   | 23b) × [    | 1 - (23c) | ÷ 100]          | (245)                   |
| (24a)m=    |                      |                     |                            |                     | 0           |                         | 0                      |                         |                |                |             | 0         |                 | (24a)                   |
| b) If      | balance              | ed mecha            | anical ve                  | entilation          | without     | heat rec                | overy (N               | /IV) (24b               | )m = (22       | 2b)m + (2<br>I | 23b)        |           |                 | (0.45)                  |
| (24b)m=    | 0                    | 0                   | 0                          | 0                   | 0           | 0                       | 0                      | 0                       | 0              | 0              | 0           | 0         |                 | (240)                   |
| c) If      | whole h              | ouse ex             | tract ver                  | ntilation of        | or positiv  | e input v               | entilatio              | on from c               | outside        | F (00k         |             |           |                 |                         |
| (0.1 a) -  | it (22b)n            | n < 0.5 ×           | (23D), 1                   |                     | c) = (230   | ); otnerv               |                        | c) = (22c               | b) m + 0.      | 5 × (230       | ))<br>      |           | l               | (24c)                   |
| (24c)m=    |                      | 0                   |                            |                     | 0           | 0                       | 0                      |                         | 0              | 0              | 0           | 0         |                 | (240)                   |
| d) If      | natural<br>if (22b)n | ventilation = 1 the | on or wh<br>en (24d)       | ole hous $m = (22)$ | e positiv   | /e input v<br>erwise (2 | ventilatio<br>4d)m = ( | on from 1<br>0 5 + [(2) | oft<br>2b)m² x | 0 51           |             |           |                 |                         |
| (24d)m=    | 0.58                 | 0.58                | 0.57                       | 0.56                | 0.56        | 0.55                    | 0.55                   | 0.54                    | 0.55           | 0.56           | 0.56        | 0.57      |                 | (24d)                   |
| Effe       | ctive air            | change              | rate - er                  | nter (24a           | ) or (24t   | ) or (24                | c) or (24              | d) in box               | (25)           |                |             |           |                 |                         |
| (25)m=     | 0.58                 | 0.58                | 0.57                       | 0.56                | 0.56        | 0.55                    | 0.55                   | 0.54                    | 0.55           | 0.56           | 0.56        | 0.57      |                 | (25)                    |
| ()         |                      |                     |                            |                     |             |                         |                        |                         |                |                |             |           |                 |                         |
| 3. He      | at losse             | s and he            | eat loss                   | paramete            | er:         |                         |                        |                         |                |                |             |           |                 |                         |
| ELEN       |                      | Gros                | ss (m <sup>2</sup> )       | Openin              | gs          | Net Ar                  | ea                     | U-valu                  | le<br>Ne       | A X U          | K)          | k-value   |                 | A X k                   |
| Doors      |                      | area                | (111)                      |                     |             | 1.00                    |                        | 1.0                     |                | 2 024          |             | K0/111-1  | `               | (26)                    |
| Windo      |                      | .1                  |                            |                     |             | 1.69                    |                        |                         |                | 3.024          | H           |           |                 | (20)                    |
| WINGO      | ws Type              | ; ]                 |                            |                     |             | 4.41                    |                        | /[1/(1.4)+              | 0.04] =        | 5.85           |             |           |                 | (27)                    |
| Windo      | ws Type              | e 2                 |                            |                     |             | 4.41                    | x1/                    | /[1/( 1.4 )+            | 0.04] =        | 5.85           |             |           |                 | (27)                    |
| Windo      | ws Type              | e 3                 |                            |                     |             | 1.08                    | x1,                    | /[1/( 1.4 )+            | 0.04] =        | 1.43           |             |           |                 | (27)                    |
| Walls      |                      | 23.1                | 3                          | 11.79               | 9           | 11.34                   | x                      | 0.17                    | =              | 1.93           |             |           |                 | (29)                    |
| Total a    | rea of e             | lements             | , m²                       |                     |             | 23.13                   | 3                      |                         |                |                |             |           |                 | (31)                    |
| Party v    | vall                 |                     |                            |                     |             | 18.76                   | ; x                    | 0                       | =              | 0              |             |           |                 | (32)                    |
| Party f    | loor                 |                     |                            |                     |             | 50.6                    |                        |                         |                |                | [           |           | $\neg \square$  | (32a)                   |
| Party o    | ceiling              |                     |                            |                     |             | 50.6                    |                        |                         |                |                | [           |           | i –             | (32b)                   |
| * for win  | dows and             | roof wind           | ows, use e                 | effective wi        | ndow U-va   | alue calcula            | ated using             | formula 1,              | /[(1/U-valu    | ie)+0.04] a    | as given in | paragraph | 3.2             |                         |
| Eabria     | boot loc             | as on both $N/K$    |                            | iternai wali        | is and part | litions                 |                        | (26) (30)               | + (32) -       |                |             |           | 10.00           | (22)                    |
|            |                      | $c_m = c_1$         | = 3 (A X                   | 0)                  |             |                         |                        | (20)(00)                | ((20)          | (20) + (2)     | 2) + (22a)  | (220) -   | 18.08           | (33)                    |
| Thorm      |                      |                     | (A X K )                   |                     |             | 1/m21                   |                        |                         | ((20)          | (30) + (32)    | 2) + (32a). | (32e) =   | 5544.48         | 3 (34)                  |
| For dooi   | ai mass              | parame              |                            | = $CIII =$          |             | i KJ/III-K              | known nr               | raciaaly the            | indiaatiwa     |                |             | abla 1f   | 250             | (35)                    |
| can be u   | used inste           | ad of a de          | ere trie de<br>tailed calc | ulation.            | constructi  | ion are not             | known pr               | ecisely the             | Indicative     | values of      |             | able II   |                 |                         |
| Therm      | al bridge            | es : S (L           | x Y) cal                   | culated u           | using Ap    | pendix ł                | <                      |                         |                |                |             |           | 3.67            | (36)                    |
| if details | of therma            | al bridging         | are not kr                 | nown (36) =         | = 0.15 x (3 | 1)                      |                        |                         |                |                |             |           |                 |                         |
| Total fa   | abric he             | at loss             |                            |                     |             |                         |                        |                         | (33) +         | (36) =         |             |           | 21.74           | (37)                    |
| Ventila    | tion hea             | at loss ca          | alculated                  | monthly             | /           |                         |                        |                         | (38)m          | = 0.33 × (     | 25)m x (5   | )         |                 |                         |
|            | Jan                  | Feb                 | Mar                        | Apr                 | May         | Jun                     | Jul                    | Aug                     | Sep            | Oct            | Nov         | Dec       |                 |                         |
| (38)m=     | 22.32                | 22.2                | 22.08                      | 21.52               | 21.42       | 20.93                   | 20.93                  | 20.84                   | 21.12          | 21.42          | 21.63       | 21.85     |                 | (38)                    |
| Heat tr    | ansfer o             | coefficier          | nt, W/K                    |                     |             |                         |                        |                         | (39)m          | = (37) + (     | 38)m        |           |                 |                         |
| (39)m=     | 44.07                | 43.95               | 43.83                      | 43.27               | 43.16       | 42.68                   | 42.68                  | 42.59                   | 42.87          | 43.16          | 43.38       | 43.6      |                 |                         |
| Stroma I   | FSAP 201             | 2 Version:          | 1.0.3.11                   | (SAP 9.92)          | - http://wv | ww.stroma               | .com                   | •                       |                | Average =      | Sum(39)     | 12 /12=   | 43.2 <b>p</b> ; | age 2 o <sup>(39)</sup> |

| Heat lo                        | ss para                                                                                                                                                                                                              | meter (H                             | HLP), W/                             | ′m²K                                  |                                          |                                       |                            |                        | (40)m                  | = (39)m ÷   | - (4)                   |          |            |      |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|------------------------------------------|---------------------------------------|----------------------------|------------------------|------------------------|-------------|-------------------------|----------|------------|------|
| (40)m=                         | 0.87                                                                                                                                                                                                                 | 0.87                                 | 0.87                                 | 0.86                                  | 0.85                                     | 0.84                                  | 0.84                       | 0.84                   | 0.85                   | 0.85        | 0.86                    | 0.86     |            |      |
| Numbo                          | r of day                                                                                                                                                                                                             | vs in mo                             | nth (Tab                             | lo 12)                                |                                          |                                       |                            | •                      |                        | Average =   | Sum(40)1.               | 12 /12=  | 0.86       | (40) |
|                                | lan                                                                                                                                                                                                                  | Feb                                  | Mar                                  |                                       | May                                      | lun                                   | lul                        | Δυα                    | Sen                    | Oct         | Nov                     | Dec      |            |      |
| (41)m=                         | 31                                                                                                                                                                                                                   | 28                                   | 31                                   | 30                                    | 31                                       | 30                                    | 31                         | 31                     | 30                     | 31          | 30                      | 31       |            | (41) |
|                                |                                                                                                                                                                                                                      |                                      |                                      |                                       |                                          |                                       |                            |                        |                        |             |                         |          |            |      |
| 4. Wa                          | ter heat                                                                                                                                                                                                             | ting ene                             | rgy requi                            | irement:                              |                                          |                                       |                            |                        |                        |             |                         | kWh/ye   | ear:       |      |
| Assum<br>if TF/<br>if TF/      | ed occu<br>A > 13.9<br>A £ 13.9                                                                                                                                                                                      | ipancy,<br>9, N = 1<br>9, N = 1      | N<br>+ 1.76 x                        | [1 - exp                              | (-0.0003                                 | 349 x (TF                             | FA -13.9                   | )2)] + 0.(             | 0013 x ( <sup>-</sup>  | TFA -13     | 1.<br>.9)               | 71       |            | (42) |
| Annual<br>Reduce t<br>not more | averag<br>the annua<br>that 125                                                                                                                                                                                      | e hot wa<br>al average<br>litres per | ater usag<br>hot water<br>person per | ge in litre<br>usage by<br>day (all w | es per da<br>5% if the a<br>vater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us     | se target o | 74<br>of                | .76      |            | (43) |
| [                              | Jan                                                                                                                                                                                                                  | Feb                                  | Mar                                  | Apr                                   | May                                      | Jun                                   | Jul                        | Aug                    | Sep                    | Oct         | Nov                     | Dec      |            |      |
| Hot wate                       | r usage ii                                                                                                                                                                                                           | n litres pei                         | r day for ea                         | ach month                             | Vd,m = fa                                | ctor from                             | Table 1c x                 | (43)                   |                        |             |                         |          |            |      |
| (44)m=                         | 82.24                                                                                                                                                                                                                | 79.25                                | 76.25                                | 73.26                                 | 70.27                                    | 67.28                                 | 67.28                      | 70.27                  | 73.26                  | 76.25       | 79.25                   | 82.24    |            |      |
|                                |                                                                                                                                                                                                                      |                                      |                                      |                                       |                                          |                                       |                            |                        |                        | Total = Su  | im(44) <sub>112</sub> = |          | 897.12     | (44) |
| Energy c                       | Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)<br>(45)m = 121.95 106.66 110.06 95.96 92.07 79.45 73.62 84.48 85.49 99.63 108.76 118.11     |                                      |                                      |                                       |                                          |                                       |                            |                        |                        |             |                         |          |            |      |
| (45)m=                         | 5)m = 121.95 106.66 110.06 95.96 92.07 79.45 73.62 84.48 85.49 99.63 108.76 118.11<br>Total = Sum(45), $m = 100$                                                                                                     |                                      |                                      |                                       |                                          |                                       |                            |                        |                        |             |                         |          |            |      |
| lf instanta                    | $45)m = 121.95 106.66 110.06 95.96 92.07 79.45 73.62 84.48 85.49 99.63 108.76 118.11$ $Total = Sum(45)_{112} = $ f instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) |                                      |                                      |                                       |                                          |                                       |                            |                        |                        |             |                         |          |            | (45) |
| (46)m=                         | 1 <mark>8.29</mark>                                                                                                                                                                                                  | 16                                   | 16.51                                | 14. <mark>39</mark>                   | 13.81                                    | 11.92                                 | 11.04                      | 12.67                  | 12.82                  | 14.95       | 16.31                   | 17.72    |            | (46) |
| Water s                        | storage                                                                                                                                                                                                              | loss:                                |                                      |                                       |                                          |                                       |                            |                        |                        |             |                         |          |            |      |
| Storage                        | e volum                                                                                                                                                                                                              | e (litres)                           | ) includir                           | ng any se                             | olar or N                                | /WHRS                                 | storage                    | within sa              | ame ves                | sel         |                         | 0        |            | (47) |
| If comn                        | nunity h                                                                                                                                                                                                             | leating a                            | and no ta                            | ink in dw                             | /elling, e                               | nter 110                              | litres in                  | (47)<br>               |                        |             | ( 4 7 )                 |          |            |      |
| Water 9                        | ise if no                                                                                                                                                                                                            | o storea                             | not wate                             | er (this ir                           | iciudes i                                | nstantar                              | ieous co                   | iiod iamo              | ers) ente              | er 'O' in ( | (47)                    |          |            |      |
| a) If m                        | anufact                                                                                                                                                                                                              | urer's de                            | eclared I                            | oss facto                             | or is kno                                | wn (kWł                               | n/day):                    |                        |                        |             |                         | 0        |            | (48) |
| Tempe                          | rature f                                                                                                                                                                                                             | actor fro                            | m Table                              | 2b                                    |                                          | ,                                     | • •                        |                        |                        |             |                         | 0        |            | (49) |
| Energy                         | lost fro                                                                                                                                                                                                             | m water                              | · storage                            | , kWh/ye                              | ear                                      |                                       |                            | (48) x (49)            | ) =                    |             |                         | 0        |            | (50) |
| b) If m                        | anufact                                                                                                                                                                                                              | urer's de                            | eclared o                            | ylinder                               | loss fact                                | or is not                             | known:                     |                        |                        |             |                         |          |            |      |
| Hot wa                         | ter stora                                                                                                                                                                                                            | age loss                             | factor fr                            | om Tabl                               | le 2 (kW                                 | h/litre/da                            | ay)                        |                        |                        |             |                         | 0        |            | (51) |
| If comn                        | nunity n<br>factor                                                                                                                                                                                                   | from Ta                              | iee secti<br>bla 2a                  | on 4.3                                |                                          |                                       |                            |                        |                        |             |                         | 0        | l          | (52) |
| Tempe                          | rature f                                                                                                                                                                                                             | actor fro                            | m Table                              | 2b                                    |                                          |                                       |                            |                        |                        |             |                         | 0        |            | (52) |
| Energy                         | lost fro                                                                                                                                                                                                             | m water                              | storage                              | kWh/ve                                | ear                                      |                                       |                            | (47) x (51)            | ) x (52) x (           | 53) =       |                         | 0        |            | (54) |
| Enter (                        | (50) or (                                                                                                                                                                                                            | (54) in (5                           | 55)                                  | ,, j                                  |                                          |                                       |                            |                        | , , , ,                | ,           |                         | 0        |            | (55) |
| Water s                        | storage                                                                                                                                                                                                              | loss cal                             | culated f                            | for each                              | month                                    |                                       |                            | ((56)m = (             | 55) × (41)             | m           |                         |          |            |      |
| (56)m=                         | 0                                                                                                                                                                                                                    | 0                                    | 0                                    | 0                                     | 0                                        | 0                                     | 0                          | 0                      | 0                      | 0           | 0                       | 0        |            | (56) |
| If cylinde                     | r contains                                                                                                                                                                                                           | s dedicate                           | d solar sto                          | rage, (57)                            | <b>i</b><br>m = (56)m                    | x [(50) – (                           | <b>I</b><br>H11)] ÷ (5     | 1<br>50), else (5      | <b>1</b><br>7)m = (56) | m where (   | H11) is fro             | m Append | l<br>lix H |      |
| (57)m=                         | 0                                                                                                                                                                                                                    | 0                                    | 0                                    | 0                                     | 0                                        | 0                                     | 0                          | 0                      | 0                      | 0           | 0                       | 0        |            | (57) |
| Primary                        | / circuit                                                                                                                                                                                                            | loss (ar                             | nnual) fro                           | om Table                              | e 3                                      |                                       |                            |                        |                        |             |                         | 0        |            | (58) |
| Primary                        | / circuit                                                                                                                                                                                                            | loss cal                             | culated                              | for each                              | month (                                  | 59)m = (                              | (58) ÷ 36                  | 65 × (41)              | m                      |             |                         |          | -          |      |
| (mod                           | lified by                                                                                                                                                                                                            | factor f                             | rom Tab                              | le H5 if t                            | here is s                                | solar wat                             | ter heati                  | ng and a               | , cylinde              | r thermo    | ostat)                  |          | L          |      |
| (59)m=                         | 0                                                                                                                                                                                                                    | 0                                    | 0                                    | 0                                     | 0                                        | 0                                     | 0                          | 0                      | 0                      | 0           | 0                       | 0        |            | (59) |

| Combi                 | loss ca               | lculated                | for eac            | ch i | month (                 | 61)m =     | (60  | ) ÷ 36  | 65 × (41)                | m          |                        |                     |               |             |                      |      |
|-----------------------|-----------------------|-------------------------|--------------------|------|-------------------------|------------|------|---------|--------------------------|------------|------------------------|---------------------|---------------|-------------|----------------------|------|
| (61)m=                | 23.7                  | 21.39                   | 23.65              |      | 22.85                   | 23.59      | 2    | 2.81    | 23.55                    | 23.58      | 22.83                  | 23.63               | 22.9          | 23.69       |                      | (61) |
| Total h               | eat req               | uired for               | water              | he   | ating ca                | lculated   | fo   | r each  | n month                  | (62)m      | = 0.85 ×               | (45)m ·             | + (46)m +     | (57)m +     | -<br>· (59)m + (61)m |      |
| (62)m=                | 145.65                | 128.05                  | 133.7              | 1    | 118.81                  | 115.67     | 10   | )2.26   | 97.17                    | 108.06     | 108.33                 | 123.26              | 3 131.66      | 141.79      | ]                    | (62) |
| Solar DH              | HW input              | calculated              | using A            | ppe  | ndix G or               | Appendix   | Н (  | negativ | ve quantity              | ) (enter ' | 0' if no sola          | r contrib           | ution to wate | er heating) | -                    |      |
| (add a                | dditiona              | al lines if             | FGHR               | Sa   | and/or V                | VWHRS      | ар   | plies,  | , see Ap                 | pendix     | G)                     |                     |               |             | _                    |      |
| (63)m=                | 0                     | 0                       | 0                  |      | 0                       | 0          |      | 0       | 0                        | 0          | 0                      | 0                   | 0             | 0           |                      | (63) |
| Output                | from w                | ater hea                | ter                |      |                         |            |      |         |                          |            |                        | -                   |               | -           | _                    |      |
| (64)m=                | 145.65                | 128.05                  | 133.7 <sup>-</sup> | 1    | 118.81                  | 115.67     | 10   | 02.26   | 97.17                    | 108.06     | 108.33                 | 123.26              | 5 131.66      | 141.79      |                      | _    |
|                       |                       |                         |                    |      |                         |            |      |         |                          | Ou         | tput from w            | ater hea            | ter (annual)  | 112         | 1454.42              | (64) |
| Heat g                | ains fro              | m water                 | heatin             | g, l | kWh/mo                  | onth 0.2   | 5 í  | [0.85   | × (45)m                  | + (61)     | m] + 0.8 x             | x [(46)r            | n + (57)m     | + (59)m     | ]                    |      |
| (65)m=                | 46.47                 | 40.81                   | 42.51              |      | 37.62                   | 36.51      | 3    | 2.12    | 30.37                    | 33.99      | 34.13                  | 39.04               | 41.89         | 45.19       |                      | (65) |
| inclu                 | de (57)               | m in calo               | culation           | n of | f (65)m                 | only if c  | ylir | nder is | s in the c               | dwelling   | g or hot w             | ater is             | from com      | munity h    | neating              |      |
| 5. Int                | ernal g               | ains (see               | e Table            | 5    | and 5a)                 | :          |      |         |                          |            |                        |                     |               |             |                      |      |
| Metab                 | olic gair             | ns (Table               | e 5), W            | atts | 5                       |            |      |         |                          |            |                        |                     |               |             |                      |      |
|                       | Jan                   | Feb                     | Ma                 | r    | Apr                     | May        |      | Jun     | Jul                      | Aug        | Sep                    | Oct                 | Nov           | Dec         | ]                    |      |
| (66)m=                | 85.39                 | 85.39                   | 85.39              |      | 85.39                   | 85.39      | 8    | 5.39    | 85.39                    | 85.39      | 85.39                  | 8 <mark>5.39</mark> | 85.39         | 85.39       |                      | (66) |
| Ligh <mark>tin</mark> | g gains               | (calcula                | ted in <i>l</i>    | App  | o <mark>en</mark> dix l | _, equati  | ion  | L9 or   | <sup>r</sup> L9a), a     | lso see    | Table 5                |                     |               |             |                      |      |
| (67)m=                | 13.39                 | 11.89                   | 9.67               |      | 7.32                    | 5.47       | 4    | .62     | 4.99                     | 6.49       | 8.71                   | 11.06               | 12.91         | 13.76       |                      | (67) |
| App <mark>lia</mark>  | nces ga               | ins (ca <mark>lc</mark> | ulated             | in . | Append                  | lix L, eq  | uat  | ion L'  | 13 o <mark>r L</mark> 1: | 3a), als   | <mark>o se</mark> e Ta | ble 5               |               |             | -                    |      |
| (68)m=                | 148.79                | 150.34                  | 146.4              | 5    | <mark>138</mark> .16    | 127.71     | 11   | 17.88   | 111.31                   | 109.77     | 113.66                 | 121.94              | 132.4         | 142.23      |                      | (68) |
| Cookir                | g gains               | s (calcula              | ited in            | Ap   | pendix                  | L, equat   | ion  | L15     | or L15a)                 | , also s   | ee Table               | 9 5                 |               |             | -                    |      |
| (69)m=                | 31.54                 | 31.54                   | 31.54              |      | <mark>31.</mark> 54     | 31.54      | 3    | 1.54    | 31.54                    | 31.54      | 31.54                  | 31.54               | 31.54         | 31.54       |                      | (69) |
| Pumps                 | and fa                | ns gains                | (Table             | e 5a | a)                      |            |      |         |                          |            |                        |                     |               |             | ·                    |      |
| (70)m=                | 3                     | 3                       | 3                  |      | 3                       | 3          |      | 3       | 3                        | 3          | 3                      | 3                   | 3             | 3           | ]                    | (70) |
| Losses                | s e.g. e              | ,<br>vaporatio          | n (neg             | jati | ve valu                 | es) (Tab   | le : | 5)      |                          |            | 1                      |                     | •             | <b>!</b>    | -                    |      |
| (71)m=                | -68.31                | -68.31                  | -68.31             | 1    | -68.31                  | -68.31     | -6   | 8.31    | -68.31                   | -68.31     | -68.31                 | -68.31              | -68.31        | -68.31      | ]                    | (71) |
| Water                 | heating               | ,<br>gains (T           | able 5             | 5)   |                         |            |      |         |                          |            | •                      |                     |               | <u>.</u>    | -                    |      |
| (72)m=                | 62.46                 | 60.73                   | 57.14              |      | 52.25                   | 49.08      | 4    | 4.61    | 40.82                    | 45.68      | 47.41                  | 52.47               | 58.18         | 60.74       | ]                    | (72) |
| Total i               | nterna                | l gains =               |                    |      |                         |            |      | (66)    | m + (67)m                | + (68)m    | + (69)m +              | (70)m +             | (71)m + (72)  | )m          | -                    |      |
| (73)m=                | 276.26                | 274.58                  | 264.8              | 7    | 249.35                  | 233.87     | 21   | 18.73   | 208.74                   | 213.56     | 221.4                  | 237.09              | 255.1         | 268.35      | ]                    | (73) |
| 6. So                 | lar gain              | s:                      |                    |      |                         |            |      |         |                          |            |                        |                     |               |             | 2                    |      |
| Solar g               | ains are              | calculated              | using sc           | olar | flux from               | Table 6a a | and  | associ  | ated equa                | tions to c | onvert to th           | ne applic           | able orientat | tion.       |                      |      |
| Orienta               | ation:                | Access F                | actor              |      | Area                    |            |      | Flu     | x                        |            | g                      |                     | FF            |             | Gains                |      |
|                       |                       | Table 6d                |                    |      | m²                      |            |      | Tat     | ble 6a                   |            | Table 6b               |                     | Table 6c      |             | (VV)                 |      |
| Southe                | ast <mark>0.9x</mark> | 0.77                    |                    | x    | 4.4                     | 1          | ×    | 3       | 6.79                     | x          | 0.63                   | x                   | 0.7           | =           | 49.59                | (77) |
| Southe                | ast <mark>0.9x</mark> | 0.77                    |                    | x    | 4.4                     | 1          | x    | 3       | 6.79                     | x          | 0.63                   | x                   | 0.7           | =           | 49.59                | (77) |
| Southe                | ast <mark>0.9x</mark> | 0.77                    |                    | x    | 1.0                     | 8          | x    | 3       | 6.79                     | x          | 0.63                   | x                   | 0.7           | =           | 12.14                | (77) |
| Southe                | ast <mark>0.9x</mark> | 0.77                    |                    | x    | 4.4                     | 1          | x    | 6       | 2.67                     | x          | 0.63                   | x                   | 0.7           | =           | 84.47                | (77) |
| Southe                | ast <mark>0.9x</mark> | 0.77                    |                    | x    | 4.4                     | 1          | x    | 6       | 2.67                     | x          | 0.63                   | x                   | 0.7           | =           | 84.47                | (77) |

| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 1.0       | 8        | x              | 6      | 62.67               | x        |          | 0.63    | x        | 0.7      |       | =      | 20.69  | (77)          |
|---------|-----------------------|------------|--------|-----------|-----------|----------|----------------|--------|---------------------|----------|----------|---------|----------|----------|-------|--------|--------|---------------|
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | 1        | x              | ε      | 35.75               | ] ×      |          | 0.63    | ×        | 0.7      |       | =      | 115.57 | _<br>(77)     |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | -1       | x              | 6      | 85.75               | ] x      |          | 0.63    | ×        | 0.7      |       | =      | 115.57 | ]<br>(77)     |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 1.0       | 8        | x              | ε      | 35.75               | ] x      |          | 0.63    | ×        | 0.7      |       | =      | 28.3   | _<br>(77)     |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | 1        | x              | 1      | 06.25               | x        |          | 0.63    | ×        | 0.7      |       | =      | 143.2  | Ī(77)         |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | -1       | x              | 1      | 06.25               | ] x      |          | 0.63    | ×        | 0.7      |       | =      | 143.2  | ]<br>(77)     |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 1.0       | 8        | x              | 1      | 06.25               | x        |          | 0.63    | -<br>  x | 0.7      |       | =      | 35.07  | _<br>(77)     |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | 1        | x              | 1      | 19.01               | x        |          | 0.63    | - x      | 0.7      |       | =      | 160.4  | -<br> (77)    |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | 1        | x              | 1      | 19.01               | x        |          | 0.63    | ×        | 0.7      |       | =      | 160.4  | -<br>(77)     |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 1.0       | 8        | x              | 1      | 19.01               | x        |          | 0.63    | ×        | 0.7      |       | =      | 39.28  | -<br>(77)     |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | 1        | x              | 1      | 18.15               | x        |          | 0.63    | ×        | 0.7      |       | =      | 159.24 | -<br>(77)     |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | 1        | x              | 1      | 18.15               | x        |          | 0.63    | ×        | 0.7      |       | =      | 159.24 | (77)          |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 1.0       | 8        | x              | 1      | 18.15               | X        |          | 0.63    | ×        | 0.7      |       | =      | 39     | -<br>(77)     |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | -1       | x              | 1      | 13.91               | ) x      |          | 0.63    | ×        | 0.7      |       | =      | 153.52 | <b>]</b> (77) |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | 1        | x              | 1      | 13.91               | x        |          | 0.63    | ×        | 0.7      |       | =      | 153.52 | (77)          |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 1.0       | 8        | x              | 1      | 13.91               | <b>x</b> |          | 0.63    | ×        | 0.7      |       | =      | 37.6   | ](77)         |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | -1       | x              | 1      | 04.39               | x        |          | 0.63    | x        | 0.7      |       | =      | 140.69 | (77)          |
| Southea | ast 0.9x              | 0.77       |        | x         | 4.4       | 1        | x              | 1      | 04.39               | x        |          | 0.63    | x        | 0.7      |       | =      | 140.69 | (77)          |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 1.0       | 8        | x              | 1      | 04.39               | <b>x</b> |          | 0.63    | x        | 0.7      |       | -      | 34.46  | (77)          |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | .1       | х              | 9      | 92.85               | ] ×      |          | 0.63    | x        | 0.7      |       | =      | 125.14 | (77)          |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | 1        | x              | 9      | 92.85               | <b>x</b> |          | 0.63    | x        | 0.7      |       | =      | 125.14 | (77)          |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 1.0       | 8        | x              | 9      | 92.8 <mark>5</mark> | x        |          | 0.63    | x        | 0.7      |       | =      | 30.65  | (77)          |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | .1       | x              | 6      | 69.27               | x        |          | 0.63    | x        | 0.7      |       | =      | 93.36  | (77)          |
| Southea | ast 0.9x              | 0.77       |        | x         | 4.4       | 1        | x              | e      | 9.27                | <b>x</b> |          | 0.63    | x        | 0.7      |       | =      | 93.36  | (77)          |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 1.0       | 8        | x              | 6      | 9.27                | x        |          | 0.63    | x        | 0.7      |       | =      | 22.86  | (77)          |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | 1        | x              | 4      | 4.07                | x        |          | 0.63    | ×        | 0.7      |       | =      | 59.4   | (77)          |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | 1        | x              | 4      | 4.07                | x        |          | 0.63    | ×        | 0.7      |       | =      | 59.4   | (77)          |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 1.0       | 8        | x              | 4      | 4.07                | x        |          | 0.63    | ×        | 0.7      |       | =      | 14.55  | (77)          |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | -1       | x              | 3      | 31.49               | x        |          | 0.63    | x        | 0.7      |       | =      | 42.44  | (77)          |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 4.4       | 1        | x              | 3      | 31.49               | x        |          | 0.63    | x        | 0.7      |       | =      | 42.44  | (77)          |
| Southea | ast <mark>0.9x</mark> | 0.77       |        | x         | 1.0       | 8        | x              | 3      | 31.49               | x        |          | 0.63    | ×        | 0.7      |       | =      | 10.39  | (77)          |
|         |                       |            |        |           |           |          |                |        |                     |          |          |         |          |          |       |        |        |               |
| Solar g | ains in               | watts, c   | alcula | ted       | for eac   | n mont   | h              |        |                     | (83)m    | n = Si   | um(74)m | (82)m    |          |       |        |        | (00)          |
| (83)m=  | 111.32                | 189.62     | 259.4  | 45<br>Nor | 321.47    | 360.07   | 7 3            | 57.47  | 344.64              | 315      | 5.84     | 280.93  | 209.57   | 7 133.34 | 95.2  | 7      |        | (83)          |
| Total g |                       |            |        |           | (84)m =   | = (73)   | 1 + (<br>- 1 , | 83)m   |                     | 50       | 24       | 500.00  | 4.40.00  | 2000.44  |       | ~      |        | (94)          |
| (84)m=  | 387.59                | 464.2      | 524.   | 32        | 570.82    | 593.95   |                | 576.2  | 553.38              | 528      | 9.4      | 502.33  | 446.60   | 388.44   | 363.6 | 52     |        | (04)          |
| 7. Me   | an inter              | nal temp   | peratu | ire (     | (heating  | seaso    | n)             |        | ·                   |          | <b>-</b> | 4 (00)  |          |          |       | - 1    |        |               |
| Temp    | erature               | during r   | neatin | g p       | eriods ir | the liv  | /ing           | area   | from Tai            | ole 9    | , I h'   | 1 (°C)  |          |          |       |        | 21     | (85)          |
| Utilisa | ation fac             | ctor for g | ains f | or li     | ving are  | ea, h1,i | m (s<br>, I    |        |                     |          |          | 600     | 0~*      | Nov      |       |        |        |               |
| (86)m-  |                       | 0.07       |        |           | Apr       | IVIA)    | /              |        |                     |          | ug<br>37 | Sep     |          |          |       | C<br>A |        | (86)          |
|         | 0.99                  | 0.97       | 0.9    | <u></u>   | 0.02      | 0.00     |                | 0.47   | 0.54                |          |          | 0.00    | 0.07     | 0.90     | 0.99  | ,      |        | (00)          |
| Mean    | interna               | I temper   | rature | in I      | iving are | ea T1 (  | follo          | ow ste | ps 3 to 7           | 7 in T   |          | e 9c)   | 00.00    | 00.50    | 00.0  |        |        | (07)          |
| (87)m=  | 20.31                 | 20.5       | 20.7   | 1         | 20.9      | 20.98    |                | 21     | 21                  | 2        | 1        | 20.99   | 20.88    | 20.56    | 20.2  | 1      |        | (07)          |

| Temp    | erature                 | during h  | neating p       | eriods ir              | n rest of   | dwelling            | from Ta                  | ble 9, Tl   | h2 (°C)                  |                       |                                 |            |        |         |
|---------|-------------------------|-----------|-----------------|------------------------|-------------|---------------------|--------------------------|-------------|--------------------------|-----------------------|---------------------------------|------------|--------|---------|
| =m(88)  | 20.19                   | 20.19     | 20.2            | 20.21                  | 20.21       | 20.22               | 20.22                    | 20.22       | 20.21                    | 20.21                 | 20.2                            | 20.2       | 1      | (88)    |
| Utilisa | ation fac               | tor for g | ains for        | rest of d              | welling,    | h2,m (se            | e Table                  | 9a)         |                          |                       |                                 |            |        |         |
| (89)m=  | 0.99                    | 0.97      | 0.91            | 0.79                   | 0.61        | 0.42                | 0.28                     | 0.31        | 0.52                     | 0.83                  | 0.97                            | 0.99       | I      | (89)    |
| Mean    | interna                 | l temper  | ature in        | the rest               | of dwelli   | ing T2 (fo          | ollow ste                | eps 3 to 7  | 7 in Tabl                | e 9c)                 |                                 |            |        |         |
| (90)m=  | 19.28                   | 19.56     | 19.85           | 20.1                   | 20.19       | 20.21               | 20.22                    | 20.22       | 20.21                    | 20.08                 | 19.65                           | 19.23      | L      | (90)    |
|         |                         |           |                 |                        |             |                     |                          |             | f                        | LA = Livin            | g area ÷ (4                     | +) =       | 0.49   | (91)    |
| Mean    | interna                 | l temper  | ature (fo       | or the wh              | ole dwe     | lling) = fl         | _A × T1                  | + (1 – fL   | .A) × T2                 |                       |                                 |            |        |         |
| (92)m=  | 19.79                   | 20.02     | 20.28           | 20.49                  | 20.58       | 20.6                | 20.6                     | 20.6        | 20.6                     | 20.48                 | 20.1                            | 19.75      |        | (92)    |
| Apply   | adjustn                 | nent to t | he mear         | interna                | l temper    | ature fro           | m Table                  | 4e, whe     | ere appro                | opriate               |                                 |            |        |         |
| (93)m=  | 19.79                   | 20.02     | 20.28           | 20.49                  | 20.58       | 20.6                | 20.6                     | 20.6        | 20.6                     | 20.48                 | 20.1                            | 19.75      |        | (93)    |
| 8. Sp   | ace hea                 | ting req  | uirement        |                        |             |                     |                          |             |                          |                       |                                 |            |        |         |
| Set T   | i to the r              | nean int  | ternal ter      | nperatur               | re obtair   | ned at ste          | ep 11 of                 | Table 9     | o, so tha                | t Ti,m=(              | 76)m and                        | d re-calc  | ulate  |         |
| the ut  | liisation               | Eeb       | Mar             |                        |             | lup                 | lul                      | Δυσ         | Son                      | Oct                   | Nov                             | Dec        |        |         |
| Utilisa | ation fac               | tor for a | ains hm         | l.<br>h                | Iviay       | Jun                 | Jui                      | Aug         | Jeh                      | 001                   | INUV                            | Dec        |        |         |
| (94)m=  | 0.99                    | 0.97      | 0.92            | . 0.8                  | 0.63        | 0.44                | 0.31                     | 0.34        | 0.55                     | 0.84                  | 0.97                            | 0.99       |        | (94)    |
| Usefu   | l gains,                | hmGm      | . W = (9        | 4)m x (8 <sup>,</sup>  | 1<br>4)m    |                     |                          |             |                          |                       |                                 |            |        |         |
| (95)m=  | 382.82                  | 448.65    | 480.64          | 458.52                 | ,<br>374.78 | 2 <mark>55.4</mark> | 170.79                   | 178.93      | 275.65                   | 377.14                | 376.58                          | 360.4      |        | (95)    |
| Month   | nly avera               | age exte  | ernal tem       | perature               | e from Ta   | able 8              |                          | 7           |                          |                       |                                 |            |        |         |
| (96)m=  | 4.3                     | 4.9       | 6.5             | 8.9                    | 11.7        | 14.6                | 16.6                     | 16.4        | 14.1                     | 10.6                  | 7.1                             | 4.2        |        | (96)    |
| Heat    | los <mark>s rate</mark> | e for me  | an intern       | al tempe               | erature,    | Lm , W =            | =[( <mark>3</mark> 9)m : | x [(93)m    | <mark>– (96</mark> )m    | ]                     |                                 |            |        |         |
| (97)m=  | 6 <mark>82.7</mark>     | 664.59    | 603.77          | 501.56                 | 383.25      | 256.14              | 170.85                   | 179.03      | 278.41                   | <b>42</b> 6.31        | 564.02                          | 677.82     |        | (97)    |
| Space   | e heatin                | g requir  | ement fo        | <mark>r eac</mark> h m | nonth, k    | Wh/mont             | t <mark>h = 0</mark> .02 | 24 x [(97]  | ) <mark>m – (9</mark> 5) | )m] x (4 <sup>-</sup> | 1)m                             |            |        |         |
| (98)m=  | 223.11                  | 145.11    | 91.61           | 30.99                  | 6.3         | 0                   | 0                        | 0           | 0                        | 36.58                 | 134.96                          | 236.16     |        |         |
|         |                         |           |                 |                        |             |                     |                          | Tota        | l per year (             | (kWh/year             | <sup>•</sup> ) = Sum(98         | 8)15,912 = | 904.81 | (98)    |
| Space   | e heatin                | g requir  | ement in        | kWh/m²                 | ?/year      |                     |                          |             |                          |                       |                                 |            | 17.88  | (99)    |
| 9a. En  | ergy rec                | uiremer   | nts – Ind       | ividual h              | eating s    | ystems i            | ncluding                 | micro-C     | CHP)                     |                       |                                 | •          |        |         |
| Spac    | e heatir                | ng:       |                 |                        |             |                     |                          |             |                          |                       |                                 |            |        |         |
| Fracti  | on of sp                | ace hea   | at from s       | econdar                | y/supple    | mentary             | system                   |             |                          |                       |                                 |            | 0      | (201)   |
| Fracti  | ion of sp               | ace hea   | at from m       | nain syst              | em(s)       |                     |                          | (202) = 1 - | - (201) =                |                       |                                 |            | 1      | (202)   |
| Fracti  | on of to                | tal heati | ng from         | main sys               | stem 1      |                     |                          | (204) = (2  | 02) × [1 – (             | (203)] =              |                                 |            | 1      | (204)   |
| Efficie | ency of r               | main spa  | ace heat        | ing syste              | em 1        |                     |                          |             |                          |                       |                                 | İ          | 92.7   | (206)   |
| Efficie | ency of s               | seconda   | ry/suppl        | ementar                | y heatin    | g system            | n, %                     |             |                          |                       |                                 |            | 0      | (208)   |
|         | Jan                     | Feb       | Mar             | Apr                    | Mav         | Jun                 | Jul                      | Aua         | Sep                      | Oct                   | Nov                             | Dec        | kWh/v  | <br>ear |
| Space   | e heatin                | g require | ement (c        | alculate               | d above     | )                   |                          |             |                          |                       |                                 |            | ·····, |         |
| •       | 223.11                  | 145.11    | 91.61           | 30.99                  | 6.3         | 0                   | 0                        | 0           | 0                        | 36.58                 | 134.96                          | 236.16     |        |         |
| (211)m  | n = {[(98               | )m x (20  | 1<br>)4)] } x 1 | 00 ÷ (20               | )6)         |                     |                          |             |                          |                       |                                 |            |        | (211)   |
| ()      | 240.68                  | 156.54    | 98.82           | 33.43                  | 6.79        | 0                   | 0                        | 0           | 0                        | 39.46                 | 145.58                          | 254.76     | 1      |         |
|         |                         |           | 1               | <b></b>                | <u> </u>    |                     |                          | Tota        | l (kWh/yea               | ar) =Sum(2            | 211) <sub>15,1012</sub>         | =          | 976.07 | (211)   |
| Space   | e heatin                | g fuel (s | econdar         | y), kWh/               | month       |                     |                          |             |                          |                       |                                 | l          |        |         |
| = {[(98 | )m x (20                | )1)]}x1   | 00 ÷ (20        | 18)                    |             |                     |                          |             |                          |                       |                                 |            |        |         |
| (215)m= | 0                       | 0         | 0               | 0                      | 0           | 0                   | 0                        | 0           | 0                        | 0                     | 0                               | 0          | 1      |         |
|         |                         |           |                 |                        |             |                     |                          | Tota        | l (kWh/yea               | ar) =Sum(2            | 2 <b>15)</b> <sub>15,1012</sub> | =          | 0      | (215)   |

#### Water heating

| Output              | from w     | ater hea               | ter (calc | ulated al   | oove)    |                    |                         |             |            |                 |                         |        | _                              |                |
|---------------------|------------|------------------------|-----------|-------------|----------|--------------------|-------------------------|-------------|------------|-----------------|-------------------------|--------|--------------------------------|----------------|
|                     | 145.65     | 128.05                 | 133.71    | 118.81      | 115.67   | 102.26             | 97.17                   | 108.06      | 108.33     | 123.26          | 131.66                  | 141.79 |                                |                |
| Efficier            | ncy of w   | ater hea               | iter      |             |          |                    |                         |             |            |                 |                         |        | 87                             | (216)          |
| (217)m=             | 88.61      | 88.41                  | 88.08     | 87.55       | 87.14    | 87                 | 87                      | 87          | 87         | 87.6            | 88.35                   | 88.67  |                                | (217)          |
| Fuel fo             | r water    | heating,               | kWh/mo    | onth        |          |                    |                         |             |            |                 |                         |        |                                |                |
| (219)m              | 1 = (64)   | m x 100                | ) ÷ (217) | m<br>135.71 | 132 74   | 117 54             | 111 69                  | 124 21      | 124 51     | 140.7           | 149.03                  | 159.91 | 1                              |                |
| (210)11-            | 104.00     | 144.00                 | 101.01    | 100.71      | 102.74   | 117.54             | 111.00                  | Tota        | I = Sum(2) | 19a) =          | 143.00                  | 100.01 | 1657.06                        | (210)          |
| Δnnua               | l totals   |                        |           |             |          |                    |                         |             | ,          | /112            | Wh/veau                 |        | kWh/vea                        | (210)<br>r     |
| Space               | heating    | fuel use               | ed, main  | system      | 1        |                    |                         |             |            |                 | , you                   |        | 976.07                         | _              |
| Water               | heating    | fuel use               | d         |             |          |                    |                         |             |            |                 |                         |        | 1657.06                        |                |
| Electric            | city for p | oumps, fa              |           |             |          |                    |                         |             |            |                 |                         |        |                                |                |
| centra              | al heatir  | 30                     | ]         | (230c)      |          |                    |                         |             |            |                 |                         |        |                                |                |
| boiler              | with a f   | ]                      | (230e)    |             |          |                    |                         |             |            |                 |                         |        |                                |                |
| Total e             | lectricit  | 75                     | (231)     |             |          |                    |                         |             |            |                 |                         |        |                                |                |
| Electric            | city for I | ighting                |           |             |          |                    |                         |             |            |                 |                         |        | 236.49                         | (232)          |
| 12a. (              | CO2 em     | issions -              | – Individ | ual heati   | ng syste | ems inclu          | uding mi                | cro-CHF     | )          |                 |                         |        |                                |                |
|                     | Г          |                        |           | Г           |          | En<br>kW           | e <b>rgy</b><br>/h/year |             |            | Emiss<br>kg CO2 | <b>ion fac</b><br>2/kWh | tor    | <b>Emissio</b> ns<br>kg CO2/ye | <b>s</b><br>ar |
| Spa <mark>ce</mark> | heating    | ı (main <mark>s</mark> | ystem 1)  | )           |          | (21                | 1) x                    |             |            | 0.2             | 16                      | =      | 2 <mark>10.83</mark>           | (261)          |
| Spa <mark>ce</mark> | heating    | (second                | dary)     |             |          | (21                | 5) x                    |             |            | 0.5             | 19                      | =      | 0                              | (263)          |
| Wat <mark>er</mark> | heating    |                        |           |             |          | (219               | 9) x                    |             |            | 0.2             | 16                      | =      | 357.93                         | (264)          |
| Space               | and wa     | ter heati              | ng        |             |          | (26                | 1) + (262)              | + (263) + ( | 264) =     |                 | •                       |        | 568.76                         | (265)          |
| Electric            | city for p | oumps, fa              | ans and   | electric l  | keep-ho  | t (23 <sup>-</sup> | 1) x                    |             |            | 0.5             | 19                      | =      | 38.93                          | (267)          |
| Electric            | city for I | ighting                |           |             |          | (232               | 2) x                    |             |            | 0.5             | 19                      | =      | 122.74                         | (268)          |
| Total C             | 02, kg     | /year                  |           |             |          |                    |                         |             | sum o      | f (265)(2       | 271) =                  |        | 730.42                         | (272)          |
| Dwelli              | ng CO2     | 2 Emissi               | on Rate   |             |          |                    |                         |             | (272)      | ÷ (4) =         |                         |        | 14.44                          | (273)          |
| El ratir            | ig (sect   | ion 14)                |           |             |          |                    |                         |             |            |                 |                         |        | 90                             | (274)          |

|                                    |                                                 |              | User D     | etails:          |                  |               |          |           |                         |                                                       |
|------------------------------------|-------------------------------------------------|--------------|------------|------------------|------------------|---------------|----------|-----------|-------------------------|-------------------------------------------------------|
| Assessor Name:<br>Software Name:   | Stroma FSAP 201                                 | 2            |            | Stroma<br>Softwa | a Num<br>ire Ver | ber:<br>sion: |          | Versio    | on: 1.0.3.11            |                                                       |
|                                    |                                                 | Pr           | operty A   | Address:         | Arlingto         | on 1 Bed      | I MID 51 |           |                         |                                                       |
| Address :                          |                                                 |              |            |                  |                  |               |          |           |                         |                                                       |
| 1. Overall dwelling dimer          | ISIONS:                                         |              | <b>A</b>   | (                |                  | A 11.         | :        |           |                         |                                                       |
| Ground floor                       |                                                 |              | Area       | i(m²)            | (10) X           | AV. He        |          | (20) -    | Volume(m <sup>3</sup> ) |                                                       |
|                                    | \ . (4  - \ . (4 -) . (4 -  \ . (4 -            | ). (4)       |            | 0.6              |                  |               | 2.3      | (2a) =    | 116.38                  | _(3a)                                                 |
| 1  otal floor area  1  FA = (1  a) | l)+(1D)+(1C)+(1d)+(1e                           | )+(1h)       | ) 5        | 0.6              | (4)              |               |          | (0,-)     |                         | _                                                     |
| Dwelling volume                    |                                                 |              |            |                  | (3a)+(3b)        | )+(3C)+(3d    | I)+(3e)+ | .(3n) =   | 116.38                  | (5)                                                   |
| 2. Ventilation rate:               |                                                 |              |            | - 41             |                  | 4 - 4 - 1     |          |           |                         |                                                       |
|                                    | main se<br>heating h                            | eating       | /          | other            |                  | total         |          |           | m <sup>3</sup> per hou  | •                                                     |
| Number of chimneys                 | 0 +                                             | 0            | +          | 0                | ] = [            | 0             | X 4      | 40 =      | 0                       | (6a)                                                  |
| Number of open flues               | 0 +                                             | 0            | +          | 0                | ] = [            | 0             | x 2      | 20 =      | 0                       | (6b)                                                  |
| Number of intermittent fan         | IS                                              |              |            |                  | - E              | 2             | x ^      | 10 =      | 20                      | (7a)                                                  |
| Number of passive vents            |                                                 |              |            |                  | Γ                | 0             | x ^      | 10 =      | 0                       | (7b)                                                  |
| Number of flueless gas fire        | es                                              |              |            |                  | Г                | 0             | x 4      | 40 =      | 0                       | (7c)                                                  |
|                                    |                                                 |              |            |                  |                  |               |          | Air ch    | anges per ho            | ur                                                    |
| Infiltration due to chimney        | s, flues and fans = $(63)$                      | a)+(6b)+(7a  | a)+(7b)+(7 | 7c) =            |                  | 20            |          | ÷ (5) =   | 0.17                    | (8)                                                   |
| It a pressurisation test has be    | en carried out or is intende<br>o dwolling (ns) | d, proceed   | to (17), c | otherwise c      | ontinue fro      | om (9) to (   | (16)     |           |                         |                                                       |
| Additional infiltration            | e dwelling (lis)                                |              |            |                  |                  |               | [(9)-    | -11x0.1 = | 0                       | -(3)                                                  |
| Structural infiltration: 0.2       | 25 for steel or timber f                        | rame or      | 0.35 for   | masonr           | y constr         | uction        |          |           | 0                       |                                                       |
| if both types of wall are pre      | esent, use the value corresp                    | ponding to   | the greate | er wall area     | a (after         |               |          |           | -                       |                                                       |
| deducting areas of opening         | gs); if equal user 0.35                         | ad) ar 0 (   | 1 (00010   | d) alaa          | ontor O          |               |          |           |                         |                                                       |
| If no draught lobby, enter         | 001, efficient 0.2 (ufficient)                  |              | i (Seale   | u), eise         |                  |               |          |           | 0                       | $\begin{bmatrix} (12) \\ (12) \end{bmatrix}$          |
| Percentage of windows              | and doors draught st                            | rinned       |            |                  |                  |               |          |           | 0                       | $= \begin{bmatrix} (13) \\ (14) \end{bmatrix}$        |
| Window infiltration                |                                                 | nppou        |            | 0.25 - [0.2      | x (14) ÷ 1       | 00] =         |          |           | 0                       | $-1^{(11)}_{(15)}$                                    |
| Infiltration rate                  |                                                 |              |            | (8) + (10) -     | + (11) + (1      | 2) + (13) +   | + (15) = |           | 0                       | (16)                                                  |
| Air permeability value, o          | q50, expressed in cub                           | ic metres    | s per ho   | ur per so        | quare m          | etre of e     | nvelope  | area      | 5                       | (17)                                                  |
| If based on air permeabilit        | ty value, then (18) = [(1                       | 7) ÷ 20]+(8) | ), otherwi | se (18) = (      | 16)              |               |          |           | 0.42                    | (18)                                                  |
| Air permeability value applies     | if a pressurisation test has                    | been done    | e or a deg | ree air per      | meability        | is being us   | sed      |           |                         | _                                                     |
| Number of sides sheltered          | t                                               |              |            | (20) – 1 - [     | 0 075 v (1       | 0)1 -         |          |           | 2                       | (19)                                                  |
| Infiltration rate incorporation    | ng abaltar faatar                               |              |            | (20) - 1 - [     | v (20) -         | 5)] –         |          |           | 0.85                    | $ \begin{bmatrix} (20) \\ \hline (24) \end{bmatrix} $ |
| Infiltration rate modified for     | ry sheller laciol                               |              |            | (21) = (10)      | x (20) -         |               |          |           | 0.36                    |                                                       |
|                                    | Mar Apr May                                     | lun          | lul        | Διια             | Sen              | Oct           | Nov      | Dec       |                         |                                                       |
| Monthly average wind spe           | and from Table 7                                | oun          | Uui        | nug              | Ocp              | 001           | 1107     | 000       |                         |                                                       |
| (22)m= 5.1 5                       | 4.9 4.4 4.3                                     | 3.8          | 3.8        | 3.7              | 4                | 4.3           | 4.5      | 4.7       |                         |                                                       |
|                                    |                                                 |              |            |                  | -                |               | L        | I         | l                       |                                                       |
| Wind Factor $(22a)m = (22)$        | )m ÷ 4                                          | I            |            |                  |                  |               |          |           | l                       |                                                       |
| (22a)m= 1.27 1.25 1                | .23 1.1 1.08                                    | 0.95         | 0.95       | 0.92             | 1                | 1.08          | 1.12     | 1.18      |                         |                                                       |

| Adjust                 | ed infiltr               | ation rate                 | e (allowi                 | ng for sh                     | elter an                 | d wind s                | peed) =                 | (21a) x                | (22a)m         |                |             |                 |                |                         |
|------------------------|--------------------------|----------------------------|---------------------------|-------------------------------|--------------------------|-------------------------|-------------------------|------------------------|----------------|----------------|-------------|-----------------|----------------|-------------------------|
|                        | 0.46                     | 0.45                       | 0.44                      | 0.39                          | 0.39                     | 0.34                    | 0.34                    | 0.33                   | 0.36           | 0.39           | 0.4         | 0.42            |                |                         |
| Calcul                 | ate effe                 | ctive air i                | change                    | rate for t                    | he appli                 | cable ca                | se                      |                        |                | -              | -           | -               |                | (00-)                   |
| lf ovb                 |                          |                            |                           | andix N (2                    | 3h) - (23a               | a) x Emy (c             | auation (N              | (5)) other             | wice (23h      | ) - (23a)      |             |                 | 0              | (238)                   |
| If bold                |                          |                            |                           |                               | (23d) = (23d)            | or in uno f             | octor (from             | $T_{able}(Ab)$         | wise (230      | ) = (23a)      |             |                 | 0              | (23b)                   |
|                        |                          |                            |                           | iency in %                    | allowing                 | or in-use ia            |                         |                        | ) =            |                |             | 4 (22.)         | 0              | (23c)                   |
| a) If                  | balance                  | ed mecha                   | anical ve                 | entilation                    | with hea                 | at recove               | ery (MVI                | HR) (24a               | ı)m = (22      | 2b)m + (       | 23b) × [    | 1 – (23c)       | ÷ 100]         | (0.4-)                  |
| (24a)m=                | 0                        | 0                          | 0                         | 0                             | 0                        | 0                       | 0                       | 0                      | 0              | 0              | 0           | 0               |                | (24a)                   |
| b) lf                  | balance                  | ed mecha                   | anical ve                 | entilation                    | without                  | heat rec                | covery (N               | ЛV) (24b               | )m = (22       | 2b)m + (:<br>1 | 23b)        | 1               | I              |                         |
| (24b)m=                | 0                        | 0                          | 0                         | 0                             | 0                        | 0                       | 0                       | 0                      | 0              | 0              | 0           | 0               |                | (24b)                   |
| c) If                  | whole h                  | ouse ext                   | tract ver                 | tilation c                    | or positiv               | ve input v              | ventilatio              | on from c              | outside        | - (00)         |             |                 |                |                         |
|                        | if (22b)n                | n < 0.5 ×                  | : (23b), 1                | hen (240                      | c) = (23b                | ); otherv               | wise (24)               | c) = (22b              | o) m + 0.      | 5 × (23b       | ))<br>      |                 | l              | (04-)                   |
| (24c)m=                | 0                        | 0                          | 0                         | 0                             | 0                        | 0                       | 0                       | 0                      | 0              | 0              | 0           | 0               |                | (24C)                   |
| d) If                  | natural<br>if (22h)n     | ventilation = 1 the        | on or wh<br>en (24d)      | ole hous $m = (22)$           | e positiv                | /e input v<br>erwise (2 | ventilation = 0         | on from l<br>0 5 + [(2 | oft<br>2h)m² x | 0.51           |             |                 |                |                         |
| (24d)m=                | 0.6                      | 0.6                        | 0.6                       | 0.58                          | 0.57                     | 0.56                    | 0.56                    | 0.56                   | 0.56           | 0.57           | 0.58        | 0.59            |                | (24d)                   |
| Effe                   | ctive air                | change                     | rate - er                 | Ll<br>hter (24a               | ) or (24t                | ) or (24                | c) or (24               | d) in box              | (25)           | I              |             |                 |                |                         |
| (25)m=                 | 0.6                      | 0.6                        | 0.6                       | 0.58                          | 0.57                     | 0.56                    | 0.56                    | 0.56                   | 0.56           | 0.57           | 0.58        | 0.59            |                | (25)                    |
|                        |                          |                            |                           |                               |                          |                         |                         |                        |                |                |             |                 |                |                         |
| 3. He                  | at losse                 | s and he                   | at loss                   | baramete                      | er:                      |                         |                         |                        |                |                |             |                 |                |                         |
| ELEN                   |                          | Gros                       | SS<br>(m²)                | Openin                        | gs<br>2                  | Net Ar                  | ea<br>n²                | U-valu<br>W/m2         | k<br>Ne        | A X U          | K)          | k-value         | e<br>K         | A X k                   |
| Doors                  |                          | area                       | (111)                     |                               |                          | 1.80                    |                         | 1                      |                | 1.80           |             |                 | `              | (26)                    |
| Windo                  |                          | 1                          |                           |                               |                          | 1.09                    | ≓ _î                    | /[1/( 1 / )+           | 0.041          | 5.05           | H           |                 |                | (20)                    |
| Windo                  |                          |                            |                           |                               |                          | 4.41                    |                         |                        | 0.04]          | 5.85           | H           |                 |                | (27)                    |
| vvindo                 | ws Type                  | e Z                        |                           |                               |                          | 4.41                    | <b>x</b> <sup>1</sup> / | /[1/( 1.4 )+           | 0.04] =        | 5.85           | 4           |                 |                | (27)                    |
| Windo                  | ws Type                  | 93<br>                     |                           |                               |                          | 1.08                    | x1,                     | /[1/( 1.4 )+           | 0.04] =        | 1.43           | <u> </u>    |                 |                | (27)                    |
| Walls                  |                          | 23.1                       | 3                         | 11.79                         | 9                        | 11.34                   | k X                     | 0.18                   | =              | 2.04           |             |                 |                | (29)                    |
| Total a                | rea of e                 | elements                   | , m²                      |                               |                          | 23.13                   | 3                       |                        |                |                |             |                 |                | (31)                    |
| Party v                | vall                     |                            |                           |                               |                          | 18.76                   | 3 X                     | 0                      | =              | 0              |             |                 |                | (32)                    |
| Party f                | loor                     |                            |                           |                               |                          | 50.6                    |                         |                        |                |                |             |                 |                | (32a)                   |
| Party of               | ceiling                  |                            |                           |                               |                          | 50.6                    |                         |                        |                |                |             |                 | $\neg \square$ | (32b)                   |
| * for win<br>** inclua | dows and<br>le the area  | l roof winde<br>as on both | ows, use e<br>sides of ir | effective wil<br>nternal wall | ndow U-va<br>'s and part | alue calcula<br>titions | ated using              | formula 1,             | /[(1/U-valu    | ıe)+0.04] a    | as given in | n paragraph     | 1 3.2          |                         |
| Fabric                 | heat los                 | ss, W/K =                  | = S (A x                  | U)                            |                          |                         |                         | (26)(30)               | + (32) =       |                |             |                 | 17.06          | (33)                    |
| Heat c                 | apacity                  | Cm = S(                    | Axk)                      |                               |                          |                         |                         |                        | ((28)          | (30) + (32     | 2) + (32a)  | (32e) =         | 5544.48        | 3 (34)                  |
| Therm                  | al mass                  | parame                     | ter (TMI                  | <sup>2</sup> = Cm ÷           | - TFA) ir                | n kJ/m²K                |                         |                        | Indica         | tive Value     | : Medium    |                 | 250            | (35)                    |
| For desi<br>can be i   | ign assess<br>used inste | sments wh<br>ad of a dei   | ere the de<br>tailed calc | tails of the                  | construct                | ion are not             | t known pr              | ecisely the            | indicative     | e values of    | TMP in T    | able 1f         |                | (```                    |
| Therm                  | al brida                 | es : S (L                  | x Y) cal                  | culated u                     | usina Ap                 | pendix k                | <                       |                        |                |                |             |                 | 2 44           | (36)                    |
| if details             | of therma                | al bridging                | are not kr                | own (36) =                    | = 0.15 x (3              | 1)                      |                         |                        |                |                |             |                 | 2.11           | ()                      |
| Total fa               | abric he                 | at loss                    |                           |                               |                          | ,                       |                         |                        | (33) +         | (36) =         |             |                 | 19.5           | (37)                    |
| Ventila                | tion hea                 | at loss ca                 | alculated                 | d monthly                     | /                        |                         |                         |                        | (38)m          | = 0.33 × (     | (25)m x (5  | )               |                |                         |
|                        | Jan                      | Feb                        | Mar                       | Apr                           | Мау                      | Jun                     | Jul                     | Aug                    | Sep            | Oct            | Nov         | Dec             |                |                         |
| (38)m=                 | 23.22                    | 23.06                      | 22.91                     | 22.19                         | 22.06                    | 21.43                   | 21.43                   | 21.32                  | 21.67          | 22.06          | 22.33       | 22.61           |                | (38)                    |
| Heat tr                | ansfer o                 | coefficier                 | nt, W/K                   |                               |                          |                         | -                       |                        | (39)m          | = (37) + (3    | -<br>38)m   | -               |                |                         |
| (39)m=                 | 42.72                    | 42.56                      | 42.41                     | 41.69                         | 41.56                    | 40.93                   | 40.93                   | 40.82                  | 41.17          | 41.56          | 41.83       | 42.11           |                |                         |
| Stroma I               | FSAP 201                 | 2 Version:                 | 1.0.3.11                  | (SAP 9.92)                    | - http://ww              | ww.stroma               | .com                    |                        |                | Average =      | Sum(39)     | 112 <b>/12=</b> | 41.6 <b>9</b>  | age 2 o <sup>(39)</sup> |

| Heat lo                     | oss para                            | meter (H                             | HLP), W                             | /m²K                                    |                                          |                                       |                            |                        | (40)m                 | = (39)m ÷          | - (4)                       |          |         |      |
|-----------------------------|-------------------------------------|--------------------------------------|-------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------|----------------------------|------------------------|-----------------------|--------------------|-----------------------------|----------|---------|------|
| (40)m=                      | 0.84                                | 0.84                                 | 0.84                                | 0.82                                    | 0.82                                     | 0.81                                  | 0.81                       | 0.81                   | 0.81                  | 0.82               | 0.83                        | 0.83     |         |      |
| Numb                        | er of day                           | us in mo                             | nth (Tab                            | le 12)                                  |                                          |                                       |                            | 1                      | ,                     | Average =          | Sum(40)1.                   | .12 /12= | 0.82    | (40) |
| Numbe                       | .lan                                | Feb                                  | Mar                                 | Anr                                     | May                                      | Jun                                   | .lul                       | Aug                    | Sen                   | Oct                | Nov                         | Dec      |         |      |
| (41)m=                      | 31                                  | 28                                   | 31                                  | 30                                      | 31                                       | 30                                    | 31                         | 31                     | 30                    | 31                 | 30                          | 31       |         | (41) |
|                             |                                     |                                      |                                     |                                         |                                          |                                       |                            | l                      |                       |                    |                             |          |         |      |
| 4. Wa                       | ater heat                           | ting ene                             | rgy requ                            | irement:                                |                                          |                                       |                            |                        |                       |                    |                             | kWh/ye   | ear:    |      |
| Assum<br>if TF<br>if TF     | ed occu<br>A > 13.9<br>A £ 13.9     | upancy,<br>9, N = 1<br>9, N = 1      | N<br>+ 1.76 ×                       | : [1 - exp                              | 0(-0.0003                                | 849 x (TF                             | FA -13.9                   | 9)2)] + 0.0            | 0013 x ( <sup>-</sup> | TFA -13            | 1. <sup>-</sup><br>.9)      | 71       |         | (42) |
| Annua<br>Reduce<br>not more | l averag<br>the annua<br>e that 125 | e hot wa<br>al average<br>litres per | ater usag<br>hot water<br>person pe | ge in litre<br>usage by<br>r day (all w | es per da<br>5% if the a<br>vater use, l | ay Vd,av<br>lwelling is<br>not and co | erage =<br>designed<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o        | 74<br>f                     | .76      |         | (43) |
|                             | Jan                                 | Feb                                  | Mar                                 | Apr                                     | May                                      | Jun                                   | Jul                        | Aug                    | Sep                   | Oct                | Nov                         | Dec      |         |      |
| Hot wate                    | er usage i                          | n litres pei                         | r day for e                         | ach month                               | Vd,m = fa                                | ctor from                             | Table 1c x                 | (43)                   |                       |                    |                             |          |         |      |
| (44)m=                      | 82.24                               | 79.25                                | 76.25                               | 73.26                                   | 70.27                                    | 67.28                                 | 67.28                      | 70.27                  | 73.26                 | 76.25              | 79.25                       | 82.24    |         | _    |
| Energy                      | content of                          | hot water                            | used - ca                           | lculated m                              | onthly - 4                               | 190 x Vd r                            | m y nm y [                 | Tm / 3600              | -<br>) kW/h/mor       | Total = Su         | <mark>m(44)</mark> 112 =    | c 1d)    | 897.12  | (44) |
| (4E)m-                      | 121.05                              | 106 66                               | 110.06                              |                                         | 02.07                                    | 70.45                                 | 72.62                      | 04.40                  | 05 40                 |                    | 100 76                      | 110 11   |         |      |
| (43)11=                     | 121.95                              | 100.00                               | 110.00                              | 95.90                                   | 92.07                                    | 79.45                                 | 73.02                      | 04.40                  | - 05.49               | Total – Su         | m(45), $m = 100.70$         | 110.11   | 1176.26 | (45) |
| lf instan                   | taneous w                           | ater heati                           | ng at poin                          | t of use (no                            | o hot water                              | storage),                             | enter 0 in                 | boxes (46              | ) to (61)             |                    | 1 <mark>11(40)</mark> 112 - |          | 1170.20 |      |
| (46)m=                      | 18.29                               | 16                                   | 16.51                               | 14.39                                   | 13.81                                    | 11.92                                 | 11.04                      | 12.67                  | 12.82                 | 14.95              | 16.31                       | 17.72    |         | (46) |
| Water                       | storage                             | loss:                                |                                     |                                         |                                          |                                       |                            |                        |                       |                    |                             |          |         |      |
| Storag                      |                                     | e (litres)                           | rincludir                           | ng any s                                | olar or V                                | WHRS                                  | storage                    | within sa              | ame ves               | sel                | (                           | )        |         | (47) |
| If comi<br>Otherv           | munity r<br>vise if no              | eating a                             | nd no ta<br>hot wate                | ank in dv<br>er (this ir                | veiling, e<br>ocludes i                  | nter 110<br>nstantar                  | nitres in                  | 1 (47)<br>Smbi boil    | ers) ente             | er 'O' in <i>(</i> | 47)                         |          |         |      |
| Water                       | storage                             | loss:                                | not hat                             |                                         |                                          | notantai                              | 10000                      |                        |                       |                    | ,                           |          |         |      |
| a) If m                     | nanufact                            | urer's de                            | eclared l                           | oss fact                                | or is kno                                | wn (kWł                               | n/day):                    |                        |                       |                    | (                           | C        |         | (48) |
| Tempe                       | erature f                           | actor fro                            | m Table                             | e 2b                                    |                                          |                                       |                            |                        |                       |                    | (                           | C        |         | (49) |
| Energy                      | y lost fro                          | m watei                              | storage                             | e, kWh/y                                | ear                                      |                                       |                            | (48) x (49)            | ) =                   |                    | (                           | )        |         | (50) |
| b) If m                     | nanufact                            | urer's de                            | eclared (                           | cylinder<br>rom Tab                     | loss fact                                | or is not<br>h/litro/da               | known:                     |                        |                       |                    |                             | 2        | l       | (51) |
| If com                      | munity h                            | leating s                            | ee secti                            | on 4.3                                  |                                          | 1/1110/00                             | xy)                        |                        |                       |                    |                             | J        |         | (31) |
| Volum                       | e factor                            | from Ta                              | ble 2a                              |                                         |                                          |                                       |                            |                        |                       |                    | (                           | 0        |         | (52) |
| Tempe                       | erature f                           | actor fro                            | m Table                             | 2b                                      |                                          |                                       |                            |                        |                       |                    | (                           | 0        |         | (53) |
| Energy                      | y lost fro                          | m water                              | storage                             | e, kWh/y                                | ear                                      |                                       |                            | (47) x (51)            | ) x (52) x (          | 53) =              | (                           | )        |         | (54) |
| Enter                       | (50) or (                           | (54) in (5                           | 55)                                 |                                         |                                          |                                       |                            |                        |                       |                    | (                           | 0        |         | (55) |
| Water                       | storage                             | loss cal                             | culated                             | for each                                | month                                    |                                       |                            | ((56)m = (             | 55) × (41)ı           | m                  |                             |          |         |      |
| (56)m=                      | 0                                   | 0                                    | 0                                   | 0                                       | 0                                        | 0                                     | 0                          | 0                      | 0                     | 0                  | 0                           | 0        |         | (56) |
| If cylinde                  | er contains                         | s dedicate                           | d solar sto                         | orage, (57)<br>T                        | m = (56)m                                | x [(50) – (                           | [H11)] ÷ (5<br>1           | 50), else (5           | 7)m = (56)            | m wnere (<br>r     | H11) IS Tro                 | m Append |         |      |
| (57)m=                      | 0                                   | 0                                    | 0                                   | 0                                       | 0                                        | 0                                     | 0                          | 0                      | 0                     | 0                  | 0                           | 0        |         | (57) |
| Primar                      | y circuit                           | loss (ar                             | nnual) fro                          | om Table                                | e 3                                      |                                       |                            |                        |                       |                    | (                           | )        |         | (58) |
| Primar                      | y circuit                           | loss cal                             | culated                             | for each                                | month (                                  | 59)m = (                              | (58) ÷ 36                  | 65 × (41)              | m<br>                 |                    | atat)                       |          |         |      |
| (MO)                        |                                     |                                      |                                     |                                         |                                          |                                       |                            | ng and a               |                       |                    |                             | 0        | l       | (50) |
| (59)11=                     | 0                                   | U                                    |                                     |                                         | 0                                        | 0                                     |                            |                        | 0                     | U                  | 0                           | U        | l       | (00) |

| Combi    | loss ca               | alculated                | for ea          | ich  | month (             | 61)m =    | (60   | )) ÷ 36  | 65 × (41)   | )m           |                |                      |                |             |               |      |
|----------|-----------------------|--------------------------|-----------------|------|---------------------|-----------|-------|----------|-------------|--------------|----------------|----------------------|----------------|-------------|---------------|------|
| (61)m=   | 41.91                 | 36.47                    | 38.8            | 6    | 36.13               | 35.81     | 3     | 33.18    | 34.29       | 35.81        | 36.13          | 38.86                | 39.08          | 41.91       | ]             | (61) |
| Total h  | neat rec              | uired for                | wate            | r he | ating ca            | lculated  | d fo  | r eacl   | n month     | (62)m =      | = 0.85 ×       | (45)m                | + (46)m +      | (57)m +     | (59)m + (61)m |      |
| (62)m=   | 163.86                | 143.14                   | 148.9           | 92   | 132.09              | 127.88    | 1     | 12.63    | 107.91      | 120.3        | 121.62         | 138.4                | 9 147.84       | 160.01      |               | (62) |
| Solar DI | -IW input             | calculated               | using A         | Appe | ndix G or           | Appendi   | хH    | (negativ | ve quantity | /) (enter '( | )' if no sola  | r contrib            | oution to wate | er heating) | -             |      |
| (add a   | dditiona              | al lines if              | FGHF            | RS a | and/or V            | VWHRS     | S ap  | oplies   | , see Ap    | pendix       | G)             |                      |                |             | •             |      |
| (63)m=   | 0                     | 0                        | 0               |      | 0                   | 0         |       | 0        | 0           | 0            | 0              | 0                    | 0              | 0           | J             | (63) |
| Output   | t from w              | vater hea                | ter             |      |                     |           |       |          |             |              |                |                      |                |             | 1             |      |
| (64)m=   | 163.86                | 143.14                   | 148.9           | 92   | 132.09              | 127.88    | 1     | 12.63    | 107.91      | 120.3        | 121.62         | 138.4                | 9 147.84       | 160.01      |               | ٦    |
|          |                       |                          |                 |      |                     |           |       |          |             | Out          | put from w     | ater hea             | iter (annual)  | 112         | 1624.7        | (64) |
| Heat g   | ains fro              | om water                 | heatii          | ng,  | kWh/mo              | onth 0.2  | 25 ´  | [0.85    | × (45)m     | + (61)r      | n] + 0.8 x     | x [(46)ı<br>T        | m + (57)m      | + (59)m     | ·]<br>1       | ()   |
| (65)m=   | 51.03                 | 44.58                    | 46.3            | 1    | 40.94               | 39.57     | 3     | 84.71    | 33.05       | 37.04        | 37.46          | 42.84                | 45.93          | 49.75       | J             | (65) |
| inclu    | ıde (57)              | )m in calo               | culatio         | on o | f (65)m             | only if a | cylii | nder is  | s in the o  | dwelling     | or hot w       | ater is              | from com       | munity ł    | neating       |      |
| 5. Int   | ternal g              | ains (see                | e Tabl          | e 5  | and 5a)             | 1         |       |          |             |              |                |                      |                |             |               |      |
| Metab    | olic gai              | ns (Table                | <u>95), V</u>   | /att | s                   |           | -     |          |             |              | 1              | 1                    | -1             |             | 1             |      |
| _        | Jan                   | Feb                      | Ma              | ar   | Apr                 | May       |       | Jun      | Jul         | Aug          | Sep            | Oct                  | : Nov          | Dec         | -             | (    |
| (66)m=   | 85.39                 | 85.39                    | 85.3            | 9    | 85.39               | 85.39     | 8     | 35.39    | 85.39       | 85.39        | 85.39          | 85.39                | 85.39          | 85.39       | l i           | (66) |
| Lightin  | g gains               | s (calcula               | ted in          | Ap   | pendix I            | _, equa   | tion  | L9 oi    | r L9a), a   | lso see      | Table 5        | _                    |                |             | ,             |      |
| (67)m=   | 13.39                 | 11.89                    | 9.67            |      | 7.32                | 5.47      | Ŀ     | 4.62     | 4.99        | 6.49         | 8.71           | 11.06                | 12.91          | 13.76       |               | (67) |
| Applia   | nces ga               | ains (ca <mark>lc</mark> | ulated          | d in | Append              | lix L, ec | luat  | tion L'  | 13 or L1    | 3a), also    | o see Ta       | ble <mark>5</mark>   | _              |             | ,             |      |
| (68)m=   | 148.79                | 150.34                   | 146.4           | 15   | 138.16              | 127.71    | 1     | 17.88    | 111.31      | 109.77       | 113.66         | 121.9                | 4 132.4        | 142.23      | J             | (68) |
| Cookir   | ng gains              | s (calcula               | ated in         | ı Ap | pendix              | L, equa   | tion  | 1 L15    | or L15a)    | , also s     | ee Table       | 5                    |                |             |               |      |
| (69)m=   | 31.54                 | 31.54                    | 31.5            | 4    | <mark>31.</mark> 54 | 31.54     | 3     | 31.54    | 31.54       | 31.54        | 31.54          | 3 <mark>1.5</mark> 4 | 31.54          | 31.54       |               | (69) |
| Pumps    | and fa                | ins gains                | (Tabl           | e 5  | a)                  |           |       |          |             |              |                |                      |                |             | -             |      |
| (70)m=   | 3                     | 3                        | 3               |      | 3                   | 3         |       | 3        | 3           | 3            | 3              | 3                    | 3              | 3           |               | (70) |
| Losses   | s e.g. e              | vaporatic                | on (ne          | gati | ve valu             | es) (Tal  | ole   | 5)       |             |              |                |                      | -              |             | -             |      |
| (71)m=   | -68.31                | -68.31                   | -68.3           | 31   | -68.31              | -68.31    | -(    | 58.31    | -68.31      | -68.31       | -68.31         | -68.3                | 1 -68.31       | -68.31      |               | (71) |
| Water    | heating               | g gains (T               | able            | 5)   |                     |           |       |          |             |              |                |                      |                | -           | -             |      |
| (72)m=   | 68.58                 | 66.34                    | 62.2            | 5    | 56.86               | 53.18     | 4     | 8.21     | 44.42       | 49.79        | 52.03          | 57.58                | 63.79          | 66.86       |               | (72) |
| Total i  | nterna                | l gains =                | :               |      |                     |           |       | (66)     | m + (67)m   | ı + (68)m    | + (69)m +      | (70)m +              | (71)m + (72    | )m<br>      | -             |      |
| (73)m=   | 282.38                | 280.19                   | 269.9           | 98   | 253.96              | 237.98    | 2     | 22.33    | 212.35      | 217.67       | 226.02         | 242.2                | 1 260.72       | 274.47      | ]             | (73) |
| 6. So    | lar gain              | IS:                      |                 |      |                     |           |       |          |             |              |                |                      |                |             |               |      |
| Solar g  | ains are              | calculated               | using s         | olar | flux from           | Table 6a  | and   | associ   | ated equa   | tions to c   | onvert to th   | ne applic            | able orienta   | tion.       | Oping         |      |
| Orienta  | ation:                | Access F<br>Table 6d     | actor           |      | Area<br>m²          |           |       | Tab      | x<br>ole 6a | 7            | g_<br>Fable 6b |                      | Table 6c       |             | Gains<br>(W)  |      |
| Southe   | ast <mark>0.9x</mark> | 0.77                     | 7 x 4.41 x 36.7 |      |                     |           |       | 6.79     | x           | 0.63         | x              | 0.7                  | =              | 49.59       | (77)          |      |
| Southe   | ast <mark>0.9x</mark> | 0.77                     |                 | x    | 4.4                 | 1         | x     | 3        | 6.79        | x            | 0.63           | x                    | 0.7            | =           | 49.59         | (77) |
| Southe   | ast <mark>0.9x</mark> | 0.77                     |                 | x    | 1.0                 | 8         | x     | 3        | 6.79        | x            | 0.63           | x                    | 0.7            | =           | 12.14         | (77) |
| Southe   | ast <mark>0.9x</mark> | 0.77                     |                 | x    | 4.4                 | 1         | x     | 6        | 2.67        | x            | 0.63           | x                    | 0.7            | =           | 84.47         | (77) |
| Southe   | ast <mark>0.9x</mark> | 0.77                     |                 | x    | 4.4                 | 1         | x     | 6        | 2.67        | x            | 0.63           | x                    | 0.7            | =           | 84.47         | (77) |

| Southeas  | t 0.9x              | 0.77      |        | x             | 1.0                      | 8            | x             | 6             | 2.67      | x        |              | 0.63   | ] x [      | 0.7    | =      | - [ | 20.69  | (77)      |
|-----------|---------------------|-----------|--------|---------------|--------------------------|--------------|---------------|---------------|-----------|----------|--------------|--------|------------|--------|--------|-----|--------|-----------|
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | x             | 8             | 5.75      | ] x      |              | 0.63   |            | 0.7    | ╡ -    | - [ | 115.57 | -<br>(77) |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | -1           | x             | 8             | 5.75      | x        |              | 0.63   | -<br>  × [ | 0.7    |        | - [ | 115.57 | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 1.0                      | 8            | x             | 8             | 5.75      | x        |              | 0.63   |            | 0.7    | =      | - [ | 28.3   | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | x             | 10            | 06.25     | x        |              | 0.63   | -<br>  × [ | 0.7    |        | - [ | 143.2  | -<br>(77) |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | x             | 10            | 06.25     | x        |              | 0.63   | -<br>  × [ | 0.7    | =      | - [ | 143.2  | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 1.0                      | 8            | x             | 1(            | 06.25     | x        |              | 0.63   |            | 0.7    | =      | - [ | 35.07  | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | x             | 1             | 19.01     | x        |              | 0.63   |            | 0.7    |        | - [ | 160.4  | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | x             | 1'            | 19.01     | x        |              | 0.63   |            | 0.7    |        | ٠Ī  | 160.4  | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 1.0                      | 8            | x             | 1             | 19.01     | x        |              | 0.63   | ] × [      | 0.7    | =      | - [ | 39.28  | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | x             | 1             | 18.15     | x        |              | 0.63   | ] × [      | 0.7    | =      | - [ | 159.24 | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | x             | 1             | 18.15     | x        |              | 0.63   | _ × [      | 0.7    | =      | - [ | 159.24 | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 1.0                      | 8            | x             | 1             | 18.15     | x        |              | 0.63   | ×          | 0.7    | =      | - [ | 39     | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | x             | 1.            | 13.91     | x        |              | 0.63   | x          | 0.7    | =      | - [ | 153.52 | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | x             | 1'            | 13.91     | x        |              | 0.63   | _ × [      | 0.7    | =      | - [ | 153.52 | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 1.0                      | 8            | x             | 1'            | 13.91     | x        |              | 0.63   | ×          | 0.7    | =      | - [ | 37.6   | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | x             | 1(            | 04.39     | x        |              | 0.63   | <b>x</b>   | 0.7    | =      | - [ | 140.69 | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | ×             | 10            | 04.39     | x        |              | 0.63   | x          | 0.7    | =      |     | 140.69 | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 1.0                      | 8            | x             | 10            | 04.39     | ] x      |              | 0.63   | ×          | 0.7    | -      |     | 34.46  | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | .1           | x             | 9             | 2.85      | ] ×      |              | 0.63   | x          | 0.7    | =      | -   | 125.14 | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | x             | 9             | 2.85      | <b>x</b> |              | 0.63   | x          | 0.7    | =      | -   | 125.14 | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 1.0                      | 8            | x             | 9             | 2.85      | x        |              | 0.63   | ×          | 0.7    | =      | - [ | 30.65  | (77)      |
| Southeas  | t <mark>0.9x</mark> | 0.77      |        | x             | 4.4                      | .1           | x             | 6             | 9.27      | x        |              | 0.63   | x          | 0.7    | =      | - [ | 93.36  | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | x             | 6             | 9.27      | x        |              | 0.63   | x          | 0.7    | =      | - [ | 93.36  | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 1.0                      | 8            | x             | 6             | 9.27      | x        |              | 0.63   | ×          | 0.7    | =      | - [ | 22.86  | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | x             | 4             | 4.07      | x        |              | 0.63   | x          | 0.7    | =      | -   | 59.4   | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | x             | 4             | 4.07      | x        |              | 0.63   | ×          | 0.7    | =      | -   | 59.4   | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 1.0                      | 8            | x             | 4             | 4.07      | x        |              | 0.63   | ×          | 0.7    | =      | -   | 14.55  | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | x             | 3             | 1.49      | x        |              | 0.63   | _ × [      | 0.7    | =      | -   | 42.44  | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 4.4                      | 1            | x             | 3             | 1.49      | x        |              | 0.63   | _ × [      | 0.7    | =      | -   | 42.44  | (77)      |
| Southeas  | t 0.9x              | 0.77      |        | x             | 1.0                      | 8            | x             | 3             | 1.49      | x        |              | 0.63   | ×          | 0.7    | =      | -   | 10.39  | (77)      |
|           |                     |           |        |               |                          |              |               |               |           |          |              |        |            |        |        |     |        |           |
| Solar gai | ins in              | watts, ca | alcula | ted           | for each                 | n mont       | h             |               |           | (83)m    | n = Sur      | m(74)m | .(82)m     |        |        |     |        | (00)      |
| (83)m = 1 | 111.32              | 189.62    | 259.4  | <sup>15</sup> | $\frac{321.47}{(84)m}$ = | 360.07       | $\frac{1}{3}$ | 57.47<br>83)m | 344.64    | 315      | 5.84         | 280.93 | 209.57     | 133.34 | 95.27  |     |        | (83)      |
|           | 115 - II<br>202 71  |           |        | 12<br>12      | (04)III =                | = (73)II     |               | 53)III        | , walls   | 522      | 51           | 506.05 | 151 70     | 204.06 | 260.7/ | 4   |        | (84)      |
| (64)11= 3 | 593.71              | 409.01    | 529.4  | +3            | 575.45                   | 596.0        | , ;           | 579.0         | 556.99    | 555      | 5.51         | 506.95 | 431.76     | 394.00 | 309.72 | +   |        | (04)      |
| 7. Mear   | n inter             | nal temp  | peratu | ire (         | heating                  | seaso        | n)            |               | ····      |          | <b>T</b> L 4 | (00)   |            |        |        | г   |        |           |
| Temper    | rature              | auring r  | ieatin | g pe          | erioas ir                | the liv      | /ing          | area          | rom Tar   | ole 9    | , IN1        | (°C)   |            |        |        | L   | 21     | (85)      |
|           | UN TAC              | LOF TOP G |        |               |                          | a, n1,<br>Mo | m (s<br>,     |               | ые ча)    | <u>م</u> |              | Son    | Oct        | Nov    | Doc    | ,   |        |           |
| (86)m-    | 0.99                | 0.97      |        |               | 7.pi                     | 0.63         | /             | 0 45          | 0 32      |          | 35           | 0.56   | 0.85       | 0.97   |        | -   |        | (86)      |
|           |                     | L         |        | -             |                          |              |               | J1J           | 0.02      |          | <u> </u>     | 0.00   | 0.00       | 0.07   | 0.33   |     |        | (00)      |
| Mean ir   | nterna              | I temper  | ature  | in l          | iving are                | ea T1 (      |               | ow ste        | ps 3 to 7 | (in T    | able         | 9c)    | 20.0       | 20.64  | 20.22  |     |        | (87)      |
| (07)11=   | 20.30               | 20.55     | 20.7   | ິ             | 20.92                    | 20.98        |               | 21            | 21        |          | 1            | 20.99  | 20.9       | 20.01  | 20.33  | '   |        | (07)      |
| Temp                | erature                 | during h                 | eating p          | eriods ir               | n rest of               | dwelling    | from Ta                  | ble 9, T    | h2 (°C)                 |                          |                         |            |        |       |
|---------------------|-------------------------|--------------------------|-------------------|-------------------------|-------------------------|-------------|--------------------------|-------------|-------------------------|--------------------------|-------------------------|------------|--------|-------|
| (88)m=              | 20.22                   | 20.22                    | 20.22             | 20.23                   | 20.23                   | 20.25       | 20.25                    | 20.25       | 20.24                   | 20.23                    | 20.23                   | 20.23      | I      | (88)  |
| Utilisa             | ation fac               | tor for g                | ains for          | rest of d               | welling,                | h2,m (se    | e Table                  | 9a)         |                         |                          |                         |            |        |       |
| (89)m=              | 0.99                    | 0.96                     | 0.9               | 0.77                    | 0.59                    | 0.4         | 0.27                     | 0.29        | 0.5                     | 0.81                     | 0.97                    | 0.99       | I      | (89)  |
| Mean                | interna                 | l temper                 | ature in          | the rest                | of dwelli               | ing T2 (fo  | ollow ste                | eps 3 to 7  | 7 in Tabl               | e 9c)                    |                         |            |        |       |
| (90)m=              | 19.38                   | 19.64                    | 19.92             | 20.15                   | 20.22                   | 20.24       | 20.25                    | 20.25       | 20.24                   | 20.14                    | 19.74                   | 19.34      |        | (90)  |
|                     |                         |                          |                   |                         |                         |             |                          |             | f                       | LA = Livin               | g area ÷ (4             | ł) =       | 0.49   | (91)  |
| Mean                | interna                 | l temper                 | ature (fo         | or the wh               | ole dwe                 | lling) = fl | _A × T1                  | + (1 – fL   | .A) × T2                |                          |                         | -          |        |       |
| (92)m=              | 19.86                   | 20.09                    | 20.33             | 20.53                   | 20.6                    | 20.62       | 20.62                    | 20.62       | ,<br>20.61              | 20.52                    | 20.17                   | 19.83      |        | (92)  |
| Apply               | adjustn                 | nent to t                | ne mear           | internal                | temper                  | ature fro   | m Table                  | 4e, whe     | ere appro               | opriate                  |                         |            |        |       |
| (93)m=              | 19.86                   | 20.09                    | 20.33             | 20.53                   | 20.6                    | 20.62       | 20.62                    | 20.62       | 20.61                   | 20.52                    | 20.17                   | 19.83      |        | (93)  |
| 8. Spa              | ace hea                 | ting requ                | uirement          |                         |                         |             |                          |             |                         |                          |                         |            |        |       |
| Set Ti              | i to the r              | nean int                 | ernal ter         | mperatui                | re obtain               | ned at ste  | ep 11 of                 | Table 9     | o, so tha               | t Ti,m=(                 | 76)m an                 | d re-calc  | ulate  |       |
| the ut              | linsation               | Fob                      | Mar               |                         |                         | lun         | lul                      | Δυσ         | Son                     | Oct                      | Nov                     | Dec        |        |       |
| Utilisa             | ation fac               | tor for a                | ains hm           | <u>. чы</u>             | iviay                   | Jun         | Jui                      | Aug         | Jeh                     | 001                      | INOV                    | Dec        |        |       |
| (94)m=              | 0.99                    | 0.96                     | 0.91              | 0.78                    | 0.61                    | 0.42        | 0.3                      | 0.32        | 0.53                    | 0.83                     | 0.96                    | 0.99       |        | (94)  |
| Us <mark>efu</mark> | l gains,                | hmGm                     | W = (9            | <u>ا</u><br>4)m x (8    | 4)m                     |             |                          |             |                         |                          |                         |            |        |       |
| (95)m=              | 388.23                  | 452.11                   | 480.28            | 451.12                  | 363.83                  | 245.84      | 164.44                   | 172.15      | 266.31                  | 3 <mark>73.1</mark>      | 380.24                  | 366.01     |        | (95)  |
| Month               | nly avera               | age exte                 | rnal terr         | perature                | e from Ta               | able 8      |                          | 7           |                         |                          |                         |            |        |       |
| (96)m=              | 4.3                     | 4.9                      | <mark>6</mark> .5 | 8.9                     | 11.7                    | 14.6        | 16.6                     | 16.4        | 14.1                    | 10.6                     | 7.1                     | 4.2        |        | (96)  |
| Heat                | los <mark>s rate</mark> | e for m <mark>e</mark> a | an interr         | al tempe                | erature,                | Lm , W =    | =[( <mark>3</mark> 9)m : | x [(93)m    | – <mark>(96</mark> )m   | ]                        |                         |            |        |       |
| (97)m=              | 664.88                  | 646.57                   | 586.6             | 484.8                   | 369.79                  | 246.29      | 164.47                   | 172.21      | 268.11                  | 412.07                   | 546.75                  | 658.07     |        | (97)  |
| Sp <mark>ace</mark> | e heatin                | g require                | ement fo          | <mark>or eac</mark> h n | nonth, <mark>k</mark> l | Wh/mont     | t <mark>h = 0</mark> .02 | 24 x [(97]  | ) <mark>m – (9</mark> 5 | )m <mark>] x (4</mark> ′ | 1)m                     |            |        |       |
| (98)m=              | 205.83                  | 130.68                   | 79.1              | 24.25                   | 4.43                    | 0           | 0                        | 0           | 0                       | 28.99                    | 119.89                  | 217.29     |        |       |
|                     |                         |                          |                   |                         |                         |             |                          | Tota        | l per year              | (kWh/year                | ) = Sum(98              | 8)15,912 = | 810.47 | (98)  |
| Space               | e heatin                | g require                | ement in          | kWh/m <sup>2</sup>      | /year                   |             |                          |             |                         |                          |                         |            | 16.02  | (99)  |
| 9a. En              | ergy rec                | quiremer                 | nts – Ind         | ividual h               | eating s                | ystems i    | ncluding                 | micro-C     | CHP)                    |                          |                         | -          |        |       |
| Space               | e heatir                | ng:                      |                   |                         |                         |             |                          |             |                         |                          |                         | -          |        |       |
| Fracti              | on of sp                | ace hea                  | t from s          | econdar                 | y/supple                | mentary     | system                   |             |                         |                          |                         |            | 0      | (201) |
| Fracti              | on of sp                | ace hea                  | it from m         | nain syst               | em(s)                   |             |                          | (202) = 1 - | - (201) =               |                          |                         |            | 1      | (202) |
| Fracti              | on of to                | tal heati                | ng from           | main sys                | stem 1                  |             |                          | (204) = (2  | 02) × [1 –              | (203)] =                 |                         |            | 1      | (204) |
| Efficie             | ency of r               | main spa                 | ace heat          | ing syste               | em 1                    |             |                          |             |                         |                          |                         | ĺ          | 93.4   | (206) |
| Efficie             | ency of s               | seconda                  | ry/suppl          | ementar                 | y heating               | g system    | n, %                     |             |                         |                          |                         | ĺ          | 0      | (208) |
|                     | Jan                     | Feb                      | Mar               | Apr                     | May                     | Jun         | Jul                      | Aug         | Sep                     | Oct                      | Nov                     | Dec        | kWh/   | year  |
| Space               | e heatin                | g require                | ement (c          | alculate                | d above)                | )           |                          |             |                         |                          |                         |            | ·      |       |
|                     | 205.83                  | 130.68                   | 79.1              | 24.25                   | 4.43                    | 0           | 0                        | 0           | 0                       | 28.99                    | 119.89                  | 217.29     |        |       |
| (211)m              | n = {[(98               | )m x (20                 | 4)] } x 1         | 00 ÷ (20                | )6)                     |             |                          |             |                         |                          |                         |            |        | (211) |
|                     | 220.38                  | 139.91                   | 84.69             | 25.97                   | 4.75                    | 0           | 0                        | 0           | 0                       | 31.04                    | 128.36                  | 232.65     |        |       |
|                     |                         |                          |                   |                         |                         |             |                          | Tota        | l (kWh/yea              | ar) =Sum(2               | 211) <sub>15,1012</sub> | =          | 867.74 | (211) |
| Space               | e heatin                | g fuel (s                | econdar           | y), kWh/                | month                   |             |                          |             |                         |                          |                         | L          |        |       |
| = {[(98             | )m x (20                | )1)]}x <sup>1</sup>      | 00 ÷ (20          | 8)                      |                         |             |                          |             |                         |                          |                         |            |        |       |
| (215)m=             | 0                       | 0                        | 0                 | 0                       | 0                       | 0           | 0                        | 0           | 0                       | 0                        | 0                       | 0          |        |       |
|                     |                         |                          |                   |                         |                         |             |                          | Tota        | l (kWh/yea              | ar) = Sum(2)             | 215) <sub>15,1012</sub> | - 7        | 0      | (215) |

#### Water heating

| Output                | from w                | ater hea             | ter (calc | ulated al   | oove)    |                    |                 |             |            |                       |                         |        |                                |        |
|-----------------------|-----------------------|----------------------|-----------|-------------|----------|--------------------|-----------------|-------------|------------|-----------------------|-------------------------|--------|--------------------------------|--------|
|                       | 163.86                | 143.14               | 148.92    | 132.09      | 127.88   | 112.63             | 107.91          | 120.3       | 121.62     | 138.49                | 147.84                  | 160.01 |                                |        |
| Efficier              | icy of w              | ater hea             | iter      |             |          |                    |                 |             |            |                       |                         |        | 80.3                           | (216)  |
| (217)m=               | 85.63                 | 84.82                | 83.54     | 81.72       | 80.6     | 80.3               | 80.3            | 80.3        | 80.3       | 81.88                 | 84.53                   | 85.82  |                                | (217)  |
| Fuel fo               | r water               | heating,             | kWh/mo    | onth        |          |                    |                 |             |            |                       |                         |        |                                |        |
| (219)m                | = (64)                | m x 100              | ) ÷ (217) | m<br>161.64 | 159.66   | 140.27             | 12/ 29          | 140.91      | 151 46     | 160.12                | 174.0                   | 196.45 | 1                              |        |
| (219)11=              | 191.37                | 100.75               | 170.27    | 101.04      | 156.00   | 140.27             | 134.30          | Tota        | l = Sum(2) | 19a) =                | 174.9                   | 100.45 | 1065.08                        |        |
| Δηριιο                | l totale              |                      |           |             |          |                    |                 |             |            | د در ۱۰۵۰<br>ایا      | Whitea                  |        | kWb/year                       | (219)  |
| Space                 | heating               | fuel use             | ed, main  | system      | 1        |                    |                 |             |            | ĸ                     | vvi // year             |        | 867.74                         |        |
| Water I               | neating               | fuel use             | d         |             |          |                    |                 |             |            |                       |                         |        | 1965.08                        |        |
| Electric              | ity for p             | oumps, f             | ans and   | electric    | keep-ho  | t                  |                 |             |            |                       |                         |        |                                | _      |
| centra                | ıl heatir             | ng pump              | :         |             |          |                    |                 |             |            |                       |                         | 30     | ]                              | (230c) |
| boiler                | with a f              | an-assis             | sted flue |             |          |                    |                 |             |            |                       |                         | 45     |                                | (230e) |
| Total e               | lectricit             | y for the            | above, k  | (Wh/yea     | r        |                    |                 | sum         | of (230a). | (230g) =              |                         |        | 75                             | (231)  |
| Electric              | ity for I             | ighting              |           |             |          |                    |                 |             |            |                       |                         |        | 236.49                         | (232)  |
| 12a. (                | CO2 em                | issions -            | – Individ | ual heati   | ng syste | ems inclu          | uding mi        | cro-CHF     | )          |                       |                         |        |                                |        |
|                       | Г                     |                      |           | Г           |          | En<br>kW           | ergy<br>/h/year |             |            | <b>Emiss</b><br>kg CO | <b>ion fac</b><br>2/kWh | tor    | <b>Emissions</b><br>kg CO2/yea | ar     |
| Spa <mark>ce</mark>   | heating               | (main <mark>s</mark> | ystem 1)  | )           |          | (21                | 1) x            |             |            | 0.2                   | 16                      | =      | 187.43                         | (261)  |
| Spa <mark>ce</mark>   | <mark>he</mark> ating | (second              | dary)     |             |          | (21                | 5) x            |             |            | 0.5                   | 19                      | =      | 0                              | (263)  |
| Wat <mark>er I</mark> | neating               |                      |           |             |          | (219               | 9) x            |             |            | 0.2                   | 16                      | =      | 424.46                         | (264)  |
| Space                 | and wa                | ter heati            | ng        |             |          | (26                | 1) + (262)      | + (263) + ( | (264) =    |                       |                         |        | 611.89                         | (265)  |
| Electric              | ity for p             | oumps, f             | ans and   | electric    | keep-ho  | t (23 <sup>-</sup> | 1) x            |             |            | 0.5                   | 19                      | =      | 38.93                          | (267)  |
| Electric              | ity for I             | ighting              |           |             |          | (23)               | 2) x            |             |            | 0.5                   | 19                      | =      | 122.74                         | (268)  |
| Total C               | 02, kg                | /year                |           |             |          |                    |                 |             | sum o      | of (265)(             | 271) =                  |        | 773.55                         | (272)  |
|                       |                       |                      |           |             |          |                    |                 |             |            |                       |                         |        |                                |        |

TER =

(273)

15.29

# **Regulations Compliance Report**

| Approved Documer<br>Printed on 22 June                           | nt L1A, 2013 Edition,<br>2018 at 10:46:54     | England assessed by St                                                                                                                       | troma FSAP 2012 program, Ve                                              | ersion: 1.0.3.11       |
|------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------|
| Project Information                                              | ו                                             |                                                                                                                                              |                                                                          |                        |
| Assessed By:                                                     | ()                                            |                                                                                                                                              | Building Type:                                                           | Flat                   |
| Dwelling Details:                                                |                                               |                                                                                                                                              |                                                                          |                        |
| NEW DWELLING                                                     | DESIGN STAGE                                  |                                                                                                                                              | Total Floor Area:                                                        | 76.1m²                 |
| Site Reference :                                                 | Arlington Works, Tv                           | vickenham                                                                                                                                    | Plot Reference:                                                          | Arlington 3 Bed GND 76 |
| Address :                                                        |                                               |                                                                                                                                              |                                                                          |                        |
| Client Details:                                                  |                                               |                                                                                                                                              |                                                                          |                        |
| Name:<br>Address :                                               | Sharpes Refinery S                            | ervice                                                                                                                                       |                                                                          |                        |
| This report covers<br>It is not a complete                       | items included wite<br>e report of regulation | hin the SAP calculation ons compliance.                                                                                                      | <b>1</b> S.                                                              |                        |
| 1a TER and DER                                                   |                                               |                                                                                                                                              |                                                                          |                        |
| Fuel for main heatin                                             | ng system: Mains ga                           | S                                                                                                                                            |                                                                          |                        |
| Fuel factor: 1.00 (m                                             | ains gas)<br>ide Emission Rate (              |                                                                                                                                              | 17 25 kg/m²                                                              |                        |
| Dwelling Carbon Die                                              | oxide Emission Rate                           | (DER)                                                                                                                                        | 15.56 kg/m <sup>2</sup>                                                  | ОК                     |
| 1b TFEE and DFE                                                  | E                                             |                                                                                                                                              | Ŭ                                                                        |                        |
| Target Fabric Energ<br>Dwelling Fabric Energy                    | gy Efficiency (TFEE)<br>ergy Efficiency (DFE  | E)                                                                                                                                           | 45.5 kWh/m²<br>37.8 kWh/m²                                               | OK                     |
| Element<br>External w<br>Party wall<br>Floor<br>Roof<br>Openings | all                                           | Average<br>0.17 (max. 0.30)<br>0.00 (max. 0.20)<br>0.11 (max. 0.25)<br>(no roof)<br>1.42 (max. 2.00)                                         | Highest<br>0.17 (max. 0.70)<br>-<br>0.11 (max. 0.70)<br>1.60 (max. 3.30) | ОК<br>ОК<br>ОК         |
| 2a Thermal bridg                                                 | ing                                           |                                                                                                                                              |                                                                          |                        |
| Thermal bi                                                       | ridging calculated fro                        | om linear thermal transmi                                                                                                                    | ttances for each junction                                                |                        |
| 3 Air permeability<br>Air permeabi                               | /<br>lity at 50 pascals                       |                                                                                                                                              | 4.00 (design va                                                          | lue)                   |
| Maximum                                                          |                                               |                                                                                                                                              | 10.0                                                                     | UK                     |
| 4 Heating efficien                                               | icy                                           | Detekses (m. 207 mm                                                                                                                          | duct in deux 04.0004).                                                   |                        |
| Main Heating                                                     | g system:                                     | Boiler systems with radi<br>Brand name: Alpha<br>Model: InTec 34C<br>Model qualifier:<br>(Combi)<br>Efficiency 88.8 % SEDE<br>Minimum 88.0 % | auct index 010061):<br>iators or underfloor heating - m<br>BUK2009       | ains gas<br>OK         |
| Secondary h                                                      | eating system:                                | None                                                                                                                                         |                                                                          |                        |

# **Regulations Compliance Report**

| 5 Cy        | linder insulation                              |                                     |                |                               |    |
|-------------|------------------------------------------------|-------------------------------------|----------------|-------------------------------|----|
|             | Hot water Storage:                             | No cylinder                         |                |                               |    |
| 6 Co        | ontrols                                        |                                     |                |                               |    |
|             |                                                |                                     |                |                               |    |
|             | Space heating controls<br>Hot water controls:  | Time and temperature<br>No cylinder | e zone control | by device in database         | ОК |
|             | Boiler interlock:                              | Yes                                 |                |                               | ОК |
| 7 Lo        | w energy lights                                |                                     |                |                               |    |
|             | Percentage of fixed lights with low<br>Minimum | w-energy fittings                   |                | 100.0%<br>75.0%               | ок |
| 8 Me        | echanical ventilation                          |                                     |                |                               |    |
|             | Not applicable                                 |                                     |                |                               |    |
| 9 Su        | mmertime temperature                           |                                     |                |                               |    |
|             | Overheating risk (Thames valley)               | :                                   |                | Medium                        | ОК |
| Based       | d on:                                          |                                     |                |                               |    |
|             | Overshading:                                   |                                     |                | Average or unknown            |    |
|             | Windows facing: North West                     |                                     |                | 4.41m <sup>2</sup>            |    |
|             | Windows facing: North West                     |                                     |                | 4.41m <sup>2</sup>            |    |
|             | Windows facing: South East                     |                                     |                | 4.41m <sup>2</sup>            |    |
|             | Windows facing: South West                     |                                     |                | 2.52m <sup>2</sup>            |    |
| _           | Ventilation rate:                              |                                     |                | 3.00                          |    |
|             | Blinds/curtains:                               |                                     |                | None                          |    |
|             |                                                |                                     |                | Closed 100% of daylight hours |    |
| <u>10 K</u> | ey f <u>eatures</u>                            |                                     |                |                               |    |
|             | Party Walls U-value<br>Floors U-value          |                                     |                | 0 W/m²K<br>0.11 W/m²K         |    |

|                                  |                                |              | User D             | etails:           |                  |               |          |           |                        |                   |
|----------------------------------|--------------------------------|--------------|--------------------|-------------------|------------------|---------------|----------|-----------|------------------------|-------------------|
| Assessor Name:<br>Software Name: | Stroma FSAP 201                | 2            | :                  | Stroma<br>Softwa  | a Num<br>ire Ver | ber:<br>sion: |          | Versio    | n: 1.0.3.11            |                   |
|                                  |                                | Pro          | operty A           | Address:          | Arlingto         | on 3 Bec      | GND 7    | 6         |                        |                   |
| Address :                        |                                |              |                    |                   |                  |               |          |           |                        |                   |
| 1. Overall dwelling dime         | ensions:                       |              |                    |                   |                  |               |          |           |                        |                   |
|                                  |                                |              | Area               | 1 <b>(m²)</b>     |                  | Av. He        | ight(m)  |           | Volume(m <sup>3</sup>  | <u>)</u>          |
| Ground floor                     |                                |              | 7                  | 6.1               | (1a) x           | 2             | 2.3      | (2a) =    | 175.03                 | (3a)              |
| Total floor area TFA = (1        | a)+(1b)+(1c)+(1d)+(1e          | )+(1n)       | 7                  | 6.1               | (4)              |               |          |           |                        |                   |
| Dwelling volume                  |                                |              |                    |                   | (3a)+(3b)        | +(3c)+(3c     | l)+(3e)+ | .(3n) =   | 175.03                 | (5)               |
| 2. Ventilation rate:             |                                |              |                    |                   |                  |               |          |           |                        |                   |
|                                  | main se                        | econdary     | 1                  | other             |                  | total         |          |           | m <sup>3</sup> per hou | r                 |
| Number of chimneys               |                                | 0            | ] + [              | 0                 | ] = [            | 0             | x 4      | 40 =      | 0                      | (6a)              |
| Number of open flues             | 0 +                            | 0            | i + [              | 0                 | ] = [            | 0             | ×        | 20 =      | 0                      | (6b)              |
| Number of intermittent fa        | ns                             |              | J L                |                   | · _              | 2             | x /      | 10 =      | 20                     | (7a)              |
| Number of passive vents          |                                |              |                    |                   |                  | 0             | x /      | 10 =      | 0                      | (7b)              |
| Number of flueless gas fi        | res                            |              |                    |                   |                  | 0             | X 4      | 40 =      | 0                      | (7c)              |
|                                  |                                |              |                    |                   | _                |               |          | Air ch    | anges per ho           | our               |
| Infiltration due to chimne       | ys, flues and fans = $(6)$     | a)+(6b)+(7a  | <b>ı)+(7</b> b)+(7 | <sup>7</sup> c) = |                  | 20            |          | ÷ (5) =   | 0.11                   | (8)               |
| If a pressurisation test has b   | een carried out or is intende  | ed, proceed  | to (17), o         | therwise c        | ontinue fro      | om (9) to (   | (16)     |           |                        |                   |
| Additional infiltration          | ne dweiling (ns)               |              |                    |                   |                  |               | [(0)]    | -11x0 1 - | 0                      | (9)               |
| Structural infiltration: 0       | .25 for steel or timber t      | rame or (    | 0.35 for           | masonr            | v constr         | uction        | [(0)     | 1,0.1 -   | 0                      | $=_{(11)}^{(10)}$ |
| if both types of wall are p      | resent, use the value corres   | ponding to t | the greate         | er wall area      | a (after         |               |          |           | 0                      |                   |
| deducting areas of openir        | ngs); if equal user 0.35       | od) or 0 1   |                    | d) also           | optor 0          |               |          |           | 2                      |                   |
| If no draught lobby en           | ter 0.05 else enter 0          |              | (Seale             | u), eise          | Sinter U         |               |          |           | 0                      | -(12)             |
| Percentage of windows            | s and doors draught st         | ripped       |                    |                   |                  |               |          |           | 0                      | = (13) $=$ (14)   |
| Window infiltration              |                                |              | (                  | 0.25 - [0.2       | x (14) ÷ 1       | 00] =         |          |           | 0                      | (15)              |
| Infiltration rate                |                                |              |                    | (8) + (10) -      | + (11) + (1      | 2) + (13) -   | + (15) = |           | 0                      | (16)              |
| Air permeability value,          | q50, expressed in cub          | ic metres    | per ho             | ur per so         | uare m           | etre of e     | envelope | area      | 4                      | (17)              |
| If based on air permeabil        | ity value, then (18) = [(1     | 7) ÷ 20]+(8) | , otherwis         | se (18) = (       | 16)              |               |          |           | 0.31                   | (18)              |
| Air permeability value applie    | s if a pressurisation test has | been done    | e or a deg         | ree air per       | meability        | is being u    | sed      |           |                        | _                 |
| Number of sides sheltere         | d                              |              |                    | (20) 4 [          | 0 07E v (4       | 0)]           |          |           | 2                      | (19)              |
| Shelter factor                   | to a shallow factory           |              |                    | (20) = 1 - [      | 0.075 X (1       | 9)] =         |          |           | 0.85                   | (20)              |
| Infiltration rate incorporat     | ing shelter factor             |              |                    | (21) = (18)       | x (20) =         |               |          |           | 0.27                   | (21)              |
| Infiltration rate modified f     | or monthly wind speed          | . 1          |                    |                   |                  | 0.1           |          |           |                        |                   |
| Jan Feb                          | Mar Apr May                    | Jun          | Jui                | Aug               | Sep              | Oct           | NOV      | Dec       |                        |                   |
| Monthly average wind sp          | eed from Table 7               |              |                    | 1                 |                  |               | 1        |           | 1                      |                   |
| (∠∠)m= 5.1 5                     | 4.9 4.4 4.3                    | 3.8          | 3.8                | 3.7               | 4                | 4.3           | 4.5      | 4./       |                        |                   |
| Wind Factor (22a)m = (22         | 2)m ÷ 4                        |              |                    |                   |                  |               |          |           |                        |                   |
| (22a)m= 1.27 1.25                | 1.23 1.1 1.08                  | 0.95         | 0.95               | 0.92              | 1                | 1.08          | 1.12     | 1.18      |                        |                   |
|                                  |                                |              |                    |                   |                  |               |          |           |                        |                   |

| Adjuste          | ed infiltr             | ation rat               | e (allow                  | ing for sh    | elter an     | d wind s    | peed) =     | (21a) x                  | (22a)m       |                   |                       |                |           |              |
|------------------|------------------------|-------------------------|---------------------------|---------------|--------------|-------------|-------------|--------------------------|--------------|-------------------|-----------------------|----------------|-----------|--------------|
| <i>.</i>         | 0.34                   | 0.33                    | 0.33                      | 0.29          | 0.29         | 0.25        | 0.25        | 0.25                     | 0.27         | 0.29              | 0.3                   | 0.31           |           |              |
| Calcula<br>If me | ate ette               | ctive air<br>al ventila | change                    | rate for t    | he appli     | cable ca    | se          |                          |              |                   |                       |                | 0         | (23a)        |
| lf exh           | aust air h             | eat pump                | using App                 | endix N, (2   | 3b) = (23a   | ) × Fmv (e  | equation (N | N5)) , othe              | rwise (23b   | ) = (23a)         |                       |                | 0         | (23b)        |
| lf bala          | anced with             | heat reco               | overy: effic              | iency in %    | allowing for | or in-use f | actor (from | n Table 4h               | ) =          | , , ,             |                       |                | 0         | (23c)        |
| a) If            | balance                | ed mech                 | anical ve                 | entilation    | with hea     | at recove   | erv (MVI    | HR) (24a                 | a)m = (2)    | 2b)m + (          | 23b) x [ <sup>,</sup> | l<br>1 – (23c) | ÷ 1001    | (200)        |
| (24a)m=          | 0                      | 0                       | 0                         | 0             | 0            | 0           | 0           | 0                        | 0            | 0                 | 0                     | 0              |           | (24a)        |
| b) If            | balance                | ed mech                 | anical ve                 | entilation    | without      | heat rec    | overy (N    | и<br>ЛV) (24b            | m = (22)     | 1<br>2b)m + (2    | 23b)                  |                |           |              |
| ,<br>(24b)m=     | 0                      | 0                       | 0                         | 0             | 0            | 0           | 0           | 0                        | 0            | 0                 | 0                     | 0              |           | (24b)        |
| c) If            | whole h                | iouse ex                | tract ver                 | ntilation c   | or positiv   | e input v   | /entilatic  | n from c                 | outside      |                   |                       |                |           |              |
| í                | if (22b)r              | n < 0.5 >               | <b>(</b> 23b), t          | then (24c     | c) = (23b    | ); otherv   | vise (24    | c) = (22b                | o) m + 0.    | .5 × (23b         | )                     |                |           |              |
| (24c)m=          | 0                      | 0                       | 0                         | 0             | 0            | 0           | 0           | 0                        | 0            | 0                 | 0                     | 0              |           | (24c)        |
| d) If            | natural                | ventilati               | on or wh                  | ole hous      | e positiv    | e input     | ventilatio  | on from I                | oft          |                   |                       |                |           |              |
| (0.1.1)          | if (22b)r              | n = 1, th               | en (24d)                  | m = (22k)     | )m othe      | rwise (2    | 4d)m = (    | 0.5 + [(2                | 2b)m² x      | 0.5]              | 0.55                  | 0.55           |           | (244)        |
| (24d)m=          | 0.56                   | 0.56                    | 0.55                      | 0.54          | 0.54         | 0.53        | 0.53        | 0.53                     | 0.54         | 0.54              | 0.55                  | 0.55           |           | (240)        |
| Effe             | ctive air              |                         | rate - er                 |               | ) or (24b    | o) or (240  | c) or (24   |                          | (25)         | 0.54              | 0.55                  | 0.55           | l         | (25)         |
| (25)m=           | 0.56                   | 0.00                    | 0.55                      | 0.54          | 0.54         | 0.53        | 0.53        | 0.53                     | 0.54         | 0.54              | 0.55                  | 0.55           |           | (23)         |
| 3. He            | at l <mark>osse</mark> | s and he                | eat loss                  | paramete      | er:          |             |             |                          |              |                   |                       |                |           |              |
| ELEN             | IENT                   | Gros                    | SS<br>(m <sup>2</sup> )   | Openin        | gs           | Net Ar      | ea          | U-valu                   | ue           | AXU               |                       | k-value        |           | A X k        |
| Doors            |                        | area                    | (1112)                    | III           |              | A ,r        |             | VV/112                   | .r.          | ( V V / I         | $\sim$                | KJ/III-•r      |           | KJ/K<br>(26) |
| Mindo            |                        | . 1                     |                           |               |              | 1.89        |             | 1.6                      | =            | 3.024             | H                     |                |           | (20)         |
| Windo            |                        | . 2                     |                           |               |              | 4.41        |             | /[1/( 1.4 ) <del>+</del> | 0.04] =      | 5.85              | H                     |                |           | (27)         |
|                  | ws type                | 2                       |                           |               |              | 4.41        |             | /[1/(1.4)+               | 0.04] =      | 5.85              | L.                    |                |           | (27)         |
| windo            | ws type<br>T           | 3                       |                           |               |              | 4.41        | x1/         | /[1/( 1.4 )+             | 0.04] =      | 5.85              |                       |                |           | (27)         |
| Windo            | ws Type                | 94                      |                           |               |              | 2.52        | x1,         | /[1/( 1.4 )+             | 0.04] =      | 3.34              | ╡,                    |                |           | (27)         |
| Floor            |                        |                         |                           |               |              | 76.1        | x           | 0.11                     | =            | 8.37099           | 9                     |                | $\exists$ | (28)         |
| Walls            |                        | 56.3                    | 36                        | 17.64         | 4            | 38.72       | <u>x</u>    | 0.17                     | =            | 6.58              |                       |                |           | (29)         |
| Total a          | rea of e               | elements                | , m²                      |               |              | 132.4       | 6           |                          |              |                   |                       |                |           | (31)         |
| Party v          | vall                   |                         |                           |               |              | 38.24       | x           | 0                        | =            | 0                 |                       |                |           | (32)         |
| Party c          | eiling                 |                         |                           |               |              | 76.1        |             |                          |              |                   |                       |                |           | (32b)        |
| * for win        | dows and               | l roof wind             | ows, use e<br>sidos of ii | effective wil | ndow U-va    | alue calcul | ated using  | formula 1                | /[(1/U-valı  | ıe)+0.04] a       | is given in           | paragraph      | 3.2       |              |
| Fabric           | heat los               | ss W/K                  | = S (A x)                 |               | s anu part   | IUONS       |             | (26)(30)                 | ) + (32) =   |                   |                       | ĺ              | 29.96     | (33)         |
| Heat c           | anacity                | Cm = Si                 | (A x k )                  | 0)            |              |             |             | ( -/ (/                  | ((28)        | (30) + (32        | 2) + (32a).           | (32e) =        | 15712.00  | (34)         |
| Therm            | al mass                | parame                  | eter (TMI                 | ⊃ = Cm ÷      | · TFA) in    | ⊨k.J/m²K    |             |                          | Indica       | tive Value        | : Medium              |                | 250       | (35)         |
| For desi         | gn asses               | sments wh               | ere the de                | etails of the | constructi   | on are not  | t known pr  | ecisely the              | e indicative | e values of       | TMP in Ta             | able 1f        | 250       |              |
| can be ı         | ised inste             | ad of a de              | tailed calc               | ulation.      |              |             |             | -                        |              |                   |                       |                |           |              |
| Therm            | al bridg               | es : S (L               | x Y) cal                  | culated u     | using Ap     | pendix ł    | <           |                          |              |                   |                       |                | 8.22      | (36)         |
| if details       | of therma              | al bridging             | are not kr                | nown (36) =   | : 0.15 х (З  | 1)          |             |                          | (22) -       | (26) -            |                       | I              |           |              |
| Vontile          | abilition here         | at loss                 | alaulata                  | 1 months      | ,            |             |             |                          | (33) +       | = (30) =          | 25)m v (5)            |                | 47.07     | (37)         |
| venula           |                        |                         | Mor                       |               | Mov          | lun         | 11          | Δυσ                      | (30)m        | $= 0.33 \times ($ |                       |                |           |              |
|                  | Jan                    |                         | Iviai                     | Г чы          | iviay        | Jun         | Jui         | Aug                      | Seb          |                   |                       | Dec            |           |              |

| (38)m=          | 32.23                         | 32.1                            | 31.97                    | 31.37                      | 31.26                      | 30.74                  | 30.74             | 30.64       | 30.94                 | 31.26               | 31.49                  | 31.73               |         | (38)  |
|-----------------|-------------------------------|---------------------------------|--------------------------|----------------------------|----------------------------|------------------------|-------------------|-------------|-----------------------|---------------------|------------------------|---------------------|---------|-------|
| Heat tra        | ansfer o                      | coefficie                       | nt, W/K                  |                            |                            |                        |                   |             | (39)m                 | = (37) + (3         | 38)m                   |                     |         |       |
| (39)m=          | 79.3                          | 79.17                           | 79.05                    | 78.45                      | 78.34                      | 77.81                  | 77.81             | 77.72       | 78.02                 | 78.34               | 78.56                  | 78.8                |         |       |
|                 |                               | motor (l                        | אי (סור)                 | /m21/                      |                            |                        |                   |             | (40)~                 | Average =           | Sum(39)1               | 12 /12=             | 78.45   | (39)  |
| (40)m-          | 1 04                          |                                 | ⊐LP), VV/<br>I 1.04      | 1.03                       | 1.03                       | 1.02                   | 1.02              | 1.02        | (40)m                 | = (39)m -<br>1.03   | 1.03                   | 1.04                |         |       |
| (40)11-         | 1.04                          | 1.04                            | 1.04                     | 1.00                       | 1.00                       | 1.02                   | 1.02              | 1.02        | 1.00                  | Average =           | Sum(40)1               |                     | 1.03    | (40)  |
| Numbe           | r of day                      | /s in mo                        | nth (Tab                 | le 1a)                     |                            | -                      |                   |             |                       |                     |                        |                     |         |       |
|                 | Jan                           | Feb                             | Mar                      | Apr                        | May                        | Jun                    | Jul               | Aug         | Sep                   | Oct                 | Nov                    | Dec                 |         |       |
| (41)m=          | 31                            | 28                              | 31                       | 30                         | 31                         | 30                     | 31                | 31          | 30                    | 31                  | 30                     | 31                  |         | (41)  |
|                 |                               |                                 |                          |                            |                            |                        |                   |             |                       |                     |                        |                     |         |       |
| 4. Wa           | ter hea                       | ting ene                        | rgy requ                 | irement:                   |                            |                        |                   |             |                       |                     |                        | kWh/yea             | ar:     |       |
| Assum<br>if TF  | ed occu<br>A > 13.<br>A £ 13. | upancy,<br>9, N = 1<br>9, N = 1 | N<br>+ 1.76 x            | : [1 - exp                 | (-0.0003                   | 849 x (TF              | FA -13.9)         | )2)] + 0.(  | 0013 x ( <sup>-</sup> | TFA -13.            | 2.<br>9)               | .38                 |         | (42)  |
| Annual          | averag                        | e hot wa                        | ater usag                | ge in litre                | es per da                  | ay Vd,av               | erage =           | (25 x N)    | + 36                  |                     | 90                     | ).84                |         | (43)  |
| not more        | the annua<br>that 125         | al average<br>litres per        | not water<br>person pe   | usage by :<br>r day (all w | 5% If the d<br>ater use, l | hot and co             | aesignea t<br>ld) | o achieve   | a water us            | se target o         | T                      |                     |         |       |
| ſ               | Jan                           | Feb                             | Mar                      | Apr                        | May                        | Jun                    | Jul               | Αυα         | Sep                   | Oct                 | Nov                    | Dec                 |         |       |
| Hot wate        | er usage i                    | n litres pe                     | r day for ea             | ach month                  | Vd,m = fa                  | ctor from T            | Table 1c x        | (43)        | 000                   |                     | 1101                   | 200                 |         |       |
| (44)m=          | 9 <mark>9.92</mark>           | 96.29                           | 92.65                    | 89.02                      | 85.39                      | 81.75                  | 81.75             | 85.39       | 89.02                 | 9 <mark>2.65</mark> | 96.29                  | <mark>9</mark> 9.92 |         |       |
|                 |                               |                                 |                          |                            |                            |                        |                   |             |                       | Total = Su          | m(44) <sub>112</sub> = | =                   | 1090.04 | (44)  |
| Energy o        | content of                    | <sup>t</sup> hot water          | used - cal               | culated mo                 | onthly $= 4$ .             | 190 x Vd,r             | n x nm x D        | )Tm / 3600  | ) kWh/mor             | oth (see Ta         | bles 1b, 1             | c, 1d)              |         |       |
| (45)m=          | 148.18                        | 129.6                           | 133.73                   | 116.59                     | 111.87                     | 96.54                  | 89.46             | 102.65      | 103.88                | 121.06              | 132.15                 | 143.5               |         |       |
| lf instant      | aneous v                      | vater heati                     | ing at point             | t of use (no               | o hot water                | <sup>-</sup> storage), | enter 0 in        | boxes (46   | ) to (61)             | Total = Su          | m(45) <sub>112</sub> = | = L                 | 1429.21 | (45)  |
| (46)m=          | 22.23                         | 19.44                           | 20.06                    | 17.49                      | 16.78                      | 14.48                  | 13.42             | 15.4        | 15.58                 | 18.16               | 19.82                  | 21.53               |         | (46)  |
| Water           | storage                       | loss:                           |                          |                            |                            |                        |                   |             |                       |                     |                        |                     |         |       |
| Storage         | e volum                       | ne (litres)                     | ) includir               | ng any so                  | olar or W                  | /WHRS                  | storage           | within sa   | ame ves               | sel                 |                        | 0                   |         | (47)  |
| If comm         | nunity h                      | neating a                       | and no ta                | ank in dw                  | velling, e                 | nter 110               | litres in         | (47)        | <b>`</b>              | (0) : (             | ( <b>-</b> )           |                     |         |       |
| Otherw<br>Water | vise it no                    | o stored                        | hot wate                 | er (this ir                | ICIUDES I                  | nstantar               | ieous co          | mbi boil    | ers) ente             | er '0' in (         | 47)                    |                     |         |       |
| a) If m         | anufact                       | turer's d                       | eclared I                | oss facto                  | or is kno                  | wn (kWł                | n/day):           |             |                       |                     |                        | 0                   |         | (48)  |
| Tempe           | rature f                      | actor fro                       | m Table                  | 2b                         |                            |                        |                   |             |                       |                     |                        | 0                   |         | (49)  |
| Energy          | lost fro                      | om water                        | r storage                | e, kWh/ye                  | ear                        |                        |                   | (48) x (49) | ) =                   |                     |                        | 0                   |         | (50)  |
| b) If m         | anufact                       | turer's d                       | eclared (                | cylinder l                 | oss fact                   | or is not              | known:            |             |                       |                     |                        |                     |         | (= .) |
| If com          | ter stor<br>nunitv k          | age loss<br>neating s           | s lactor li<br>see secti | on 4.3                     | e z (kvv                   | n/iitre/da             | iy)               |             |                       |                     |                        | 0                   |         | (51)  |
| Volume          | e factor                      | from Ta                         | ble 2a                   |                            |                            |                        |                   |             |                       |                     |                        | 0                   |         | (52)  |
| Tempe           | rature f                      | actor fro                       | m Table                  | 2b                         |                            |                        |                   |             |                       |                     |                        | 0                   |         | (53)  |
| Energy          | lost fro                      | om water                        | r storage                | e, kWh/ye                  | ear                        |                        |                   | (47) x (51) | x (52) x (            | 53) =               |                        | 0                   |         | (54)  |
| Enter           | (50) or                       | (54) in (ধ                      | 55)                      |                            |                            |                        |                   |             |                       |                     |                        | 0                   |         | (55)  |
| Water           | storage                       | loss cal                        | culated                  | for each                   | month                      |                        |                   | ((56)m = (  | 55) × (41)            | m                   |                        |                     |         |       |
| (56)m=          | 0                             | 0                               | 0                        | 0                          | 0                          | 0                      | 0                 | 0           | 0                     | 0                   | 0                      | 0                   |         | (56)  |
| If cylinde      | r contain                     | s dedicate                      | d solar sto              | orage, (57)i               | m = (56)m                  | x [(50) – (            | H11)] ÷ (50       | 0), else (5 | 7)m = (56)            | m where (           | H11) is fro            | m Appendix          | ίΗ      |       |
| (57)m=          | 0                             | 0                               | 0                        | 0                          | 0                          | 0                      | 0                 | 0           | 0                     | 0                   | 0                      | 0                   |         | (57)  |

| Primar              | y circuit    | loss (ar       | nnual) fro           | om Table       | e 3       |            |             |                      |             |                           |             | 0           |               | (58) |
|---------------------|--------------|----------------|----------------------|----------------|-----------|------------|-------------|----------------------|-------------|---------------------------|-------------|-------------|---------------|------|
| Primar              | y circuit    | loss cal       | culated              | for each       | month (   | 59)m = (   | (58) ÷ 36   | 65 × (41)            | m           |                           |             |             |               |      |
| (mo                 | dified by    | factor f       | rom Tab              | le H5 if t     | here is s | solar wat  | ter heati   | ng and a             | cylinde     | r thermo                  | stat)       |             | L             |      |
| (59)m=              | 0            | 0              | 0                    | 0              | 0         | 0          | 0           | 0                    | 0           | 0                         | 0           | 0           |               | (59) |
| Combi               | loss ca      | lculated       | for each             | month          | (61)m =   | (60) ÷ 36  | 65 × (41    | )m                   |             |                           |             |             |               |      |
| (61)m=              | 23.84        | 21.5           | 23.77                | 22.95          | 23.68     | 22.88      | 23.62       | 23.66                | 22.92       | 23.73                     | 23.02       | 23.82       |               | (61) |
| Total h             | eat req      | uired for      | water h              | eating ca      | alculatec | l for eac  | h month     | (62)m =              | 0.85 × (    | (45)m +                   | (46)m +     | (57)m +     | (59)m + (61)m |      |
| (62)m=              | 172.01       | 151.1          | 157.5                | 139.54         | 135.56    | 119.42     | 113.07      | 126.31               | 126.8       | 144.79                    | 155.17      | 167.33      |               | (62) |
| Solar DI            | W input      | calculated     | using App            | endix G o      | Appendix  | H (negati  | ve quantity | y) (enter '0         | if no sola  | r contribut               | ion to wate | er heating) |               |      |
| (add a              | dditiona     | l lines if     | FGHRS                | and/or \       | WWHRS     | applies    | , see Ap    | pendix C             | G)          |                           |             |             |               |      |
| (63)m=              | 0            | 0              | 0                    | 0              | 0         | 0          | 0           | 0                    | 0           | 0                         | 0           | 0           |               | (63) |
| Output              | from w       | ater hea       | ter                  |                |           |            | -           |                      |             | -                         | -           | -           |               |      |
| (64)m=              | 172.01       | 151.1          | 157.5                | 139.54         | 135.56    | 119.42     | 113.07      | 126.31               | 126.8       | 144.79                    | 155.17      | 167.33      |               |      |
|                     |              |                |                      |                |           |            |             | Outp                 | out from wa | ater heate                | r (annual)  | 12          | 1708.6        | (64) |
| Heat g              | ains fro     | m water        | heating              | , kWh/m        | onth 0.2  | 5 ´ [0.85  | × (45)m     | n + (61)m            | n] + 0.8 x  | ۲ ((46)m                  | + (57)m     | + (59)m     | ]             |      |
| (65)m=              | 55.23        | 48.47          | 50.41                | 44.5           | 43.12     | 37.82      | 35.65       | 40.05                | 40.27       | 46.19                     | 49.69       | 53.67       |               | (65) |
| in <mark>clu</mark> | ide (57)     | m in calo      | culation             | of (65)m       | only if c | ylinder i  | s in the o  | dwelling             | or hot w    | ate <mark>r is f</mark> r | om com      | munity h    | eating        |      |
| 5. Int              | ernai ga     | ains (see      | Table 5              | 5 and 5a       | ):        |            |             |                      |             |                           | _           |             | _             |      |
| Metab               | olic gair    | s (Table       | 5) Wat               | ts             |           |            |             |                      |             |                           |             |             |               |      |
| in o tono           | Jan          | Feb            | Mar                  | Apr            | May       | Jun        | Jul         | Aug                  | Sep         | Oct                       | Nov         | Dec         |               |      |
| (66)m=              | 119.23       | 119.23         | 11 <mark>9.23</mark> | 119.23         | 119.23    | 119.23     | 119.23      | 119.23               | 119.23      | 119.23                    | 119.23      | 119.23      |               | (66) |
| Lightin             | g gains      | (calcula       | ted in A             | pendix         | L, equat  | ion L9 o   | r L9a), a   | lso see <sup>-</sup> | Table 5     |                           |             |             |               |      |
| (67)m=              | 18.89        | 16.78          | 13.65                | 10.33          | 7.72      | 6.52       | 7.04        | 9.16                 | 12.29       | 15.61                     | 18.21       | 19.42       |               | (67) |
| Applia              | nces ga      | ins (calc      | ulated ir            | Append         | dix L, eq | uation L   | 13 or L1    | 3a), also            | see Ta      | ble 5                     |             |             |               |      |
| (68)m=              | 211.1        | 213.29         | 207.77               | 196.02         | 181.18    | 167.24     | 157.93      | 155.74               | 161.26      | 173.01                    | 187.84      | 201.78      |               | (68) |
| Cookir              | na aains     | (calcula       | ted in A             | n<br>Dendix    | L. equat  | ion L15    | or L15a     | ), also se           | e Table     | 5                         | 1           |             |               |      |
| (69)m=              | 34.92        | 34.92          | 34.92                | 34.92          | 34.92     | 34.92      | 34.92       | 34.92                | 34.92       | 34.92                     | 34.92       | 34.92       |               | (69) |
| Pumps               | and fa       | ns dains       | (Table !             | 1              |           |            |             |                      |             |                           |             |             |               |      |
| (70)m=              | 3            | 3              | 3                    | 3              | 3         | 3          | 3           | 3                    | 3           | 3                         | 3           | 3           |               | (70) |
| Losses              |              | l<br>vaporatic | n (nega              | i<br>tive valu | es) (Tab  | l<br>le 5) |             |                      |             |                           |             |             |               |      |
| (71)m=              | -95.39       | -95.39         | -95.39               | -95.39         | -95.39    | -95.39     | -95.39      | -95.39               | -95.39      | -95.39                    | -95.39      | -95.39      |               | (71) |
| Water               | L<br>heating | L<br>nains (1  | I<br>Table 5)        |                |           |            | I           |                      |             | I                         | I           |             |               |      |
| (72)m=              | 74.23        | 72.12          | 67.75                | 61.81          | 57.96     | 52.53      | 47.92       | 53.83                | 55.93       | 62.08                     | 69.02       | 72.14       | l             | (72) |
| Total i             | ntornal      | asine -        |                      |                |           | (66)       | m + (67)m   | 1 + (68)m +          | - (69)m + ( | (70)m + (7                | 1)m + (72)  | )m          |               |      |
| (73)m=              | 365.99       | 363.96         | 350.94               | 329.93         | 308 63    | 288.06     | 274 66      | 280.49               | 291 25      | 312 46                    | 336.84      | 355 11      | l             | (73) |
| 6. So               | lar gains    | S:             |                      | 1              | 1         |            | 1           | 1                    |             | 1                         |             | 1           |               |      |
| Solar g             | ains are o   | alculated      | using sola           | r flux from    | Table 6a  | and assoc  | iated equa  | ations to co         | nvert to th | e applicat                | le orientat | tion.       |               |      |
| Orienta             | ation: /     | Access F       | actor                | Area           |           | Flu        | x           |                      | g_          |                           | FF          |             | Gains         |      |

| Onentation.    | Table 6d |   | m²   |   | Table 6a |   | 9_<br>Table 6b |   | Table 6c |   | (W)   |      |
|----------------|----------|---|------|---|----------|---|----------------|---|----------|---|-------|------|
| Southeast 0.9x | 0.77     | x | 4.41 | x | 36.79    | x | 0.63           | x | 0.7      | = | 49.59 | (77) |
| Southeast 0.9x | 0.77     | x | 4.41 | x | 62.67    | × | 0.63           | x | 0.7      | = | 84.47 | (77) |

|                                        |      | 1 |      | 1 |        | 1   |      |   |     | 1          |        | -         |
|----------------------------------------|------|---|------|---|--------|-----|------|---|-----|------------|--------|-----------|
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 85.75  | x   | 0.63 | X | 0.7 | =          | 115.57 | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 106.25 | x   | 0.63 | x | 0.7 | =          | 143.2  | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 119.01 | x   | 0.63 | x | 0.7 | =          | 160.4  | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 118.15 | x   | 0.63 | x | 0.7 | =          | 159.24 | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 113.91 | x   | 0.63 | x | 0.7 | =          | 153.52 | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 104.39 | x   | 0.63 | x | 0.7 | ] =        | 140.69 | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 92.85  | x   | 0.63 | x | 0.7 | ] =        | 125.14 | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 69.27  | x   | 0.63 | x | 0.7 | ] =        | 93.36  | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 44.07  | x   | 0.63 | x | 0.7 | =          | 59.4   | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 31.49  | x   | 0.63 | x | 0.7 | =          | 42.44  | (77)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 36.79  | ]   | 0.63 | x | 0.7 | =          | 28.34  | (79)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 62.67  | ]   | 0.63 | x | 0.7 | =          | 48.27  | (79)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 85.75  | ]   | 0.63 | x | 0.7 | ] =        | 66.04  | (79)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 106.25 | ]   | 0.63 | x | 0.7 | ] =        | 81.83  | (79)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 119.01 | 1   | 0.63 | x | 0.7 | =          | 91.66  | (79)      |
| Southwest <sub>0.9x</sub>              | 0.77 | × | 2.52 | x | 118.15 | ]   | 0.63 | x | 0.7 | =          | 90.99  | (79)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 113.91 | İ   | 0.63 | x | 0.7 | <b>j</b> = | 87.73  | (79)      |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | x | 2.52 | X | 104.39 |     | 0.63 | х | 0.7 | =          | 80.4   | (79)      |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | × | 2.52 | x | 92.85  | İ.  | 0.63 | x | 0.7 | =          | 71.51  | (79)      |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | x | 2.52 | x | 69.27  | i / | 0.63 | x | 0.7 | <b>j</b> = | 53.35  | (79)      |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | x | 2.52 | x | 44.07  | i/  | 0.63 | x | 0.7 | <b>i</b> = | 33.94  | (79)      |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | x | 2.52 | x | 31.49  | ĺ   | 0.63 | x | 0.7 | i =        | 24.25  | _<br>(79) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 11.28  | ×   | 0.85 | x | 0.7 | i =        | 20.52  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 11.28  | ×   | 0.85 | x | 0.7 | <b>i</b> = | 20.52  | (81)      |
| Northwest 0.9x                         | 0.77 | × | 4.41 | x | 22.97  | ×   | 0.85 | x | 0.7 | <b>j</b> = | 41.76  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 22.97  | x   | 0.85 | x | 0.7 | <b>j</b> = | 41.76  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 41.38  | ×   | 0.85 | x | 0.7 | =          | 75.24  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 41.38  | ×   | 0.85 | x | 0.7 | i =        | 75.24  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 67.96  | x   | 0.85 | x | 0.7 | i =        | 123.57 | -<br>(81) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 67.96  | ×   | 0.85 | x | 0.7 | i =        | 123.57 | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 91.35  | ×   | 0.85 | x | 0.7 | i =        | 166.1  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 91.35  | ×   | 0.85 | x | 0.7 | i =        | 166.1  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 97.38  | ×   | 0.85 | x | 0.7 | <b>i</b> = | 177.08 | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 97.38  | x   | 0.85 | x | 0.7 | i =        | 177.08 | -<br>(81) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 91.1   | x   | 0.85 | x | 0.7 | <b>i</b> = | 165.66 | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 91.1   | x   | 0.85 | x | 0.7 | <b>i</b> = | 165.66 | ]<br>(81) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 72.63  | x   | 0.85 | x | 0.7 | <b>i</b> = | 132.06 | -<br>(81) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 72.63  | x   | 0.85 | x | 0.7 | i =        | 132.06 | _<br>(81) |
| Northwest 0.9x                         | 0.77 | × | 4.41 | x | 50.42  | ×   | 0.85 | x | 0.7 | i =        | 91.68  | -<br>(81) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 50.42  | ×   | 0.85 | x | 0.7 | i =        | 91.68  | -<br>(81) |
| Northwest 0.9x                         | 0.77 | × | 4.41 | x | 28.07  | ×   | 0.85 | x | 0.7 | i =        | 51.04  | ]<br>(81) |
| 1                                      |      |   |      |   |        |     |      |   |     |            |        |           |

| Northw             | est <mark>0.9x</mark> | 0.77       | x         | 4.                 | 41            | x     | 2       | 28.07          | x            | 0.85       | ×                    | 0.7         | =                              | 51.04  | (81) |
|--------------------|-----------------------|------------|-----------|--------------------|---------------|-------|---------|----------------|--------------|------------|----------------------|-------------|--------------------------------|--------|------|
| Northw             | est 0.9x              | 0.77       | x         | 4.                 | 41            | x     |         | 14.2           | x            | 0.85       |                      | 0.7         | =                              | 25.82  | (81) |
| Northw             | est 0.9x              | 0.77       | ×         | 4.                 | 41            | x     |         | 14.2           | x            | 0.85       |                      | 0.7         | =                              | 25.82  | (81) |
| Northw             | est 0.9x              | 0.77       | ×         | 4.                 | 41            | x     | 9       | 9.21           | x            | 0.85       | _ × [                | 0.7         | =                              | 16.76  | (81) |
| Northw             | est 0.9x              | 0.77       | x         | 4.                 | 41            | x     | 9       | 9.21           | x            | 0.85       |                      | 0.7         | =                              | 16.76  | (81) |
|                    | -                     |            |           |                    |               |       |         |                |              |            |                      |             |                                |        |      |
| Solar g            | gains in              | watts, ca  | alculate  | d for eac          | h month       | ۱     |         | _              | (83)m = S    | um(74)m .  | (82)m                | -           | -                              | _      |      |
| (83)m=             | 118.96                | 216.26     | 332.1     | 472.17             | 584.26        | 6     | 604.4   | 572.56         | 485.22       | 380.02     | 248.78               | 144.97      | 100.2                          |        | (83) |
| Total g            | gains – i             | nternal a  | and sola  | r (84)m :          | = (73)m       | + (   | 83)m    | , watts        |              |            |                      |             |                                |        |      |
| (84)m=             | 484.95                | 580.22     | 683.04    | 802.1              | 892.89        | 8     | 92.45   | 847.22         | 765.71       | 671.27     | 561.24               | 481.81      | 455.31                         |        | (84) |
| 7. Me              | an inter              | nal temp   | perature  | (heating           | g seasor      | ר)    |         |                |              |            |                      |             |                                |        |      |
| Temp               | perature              | during h   | neating   | periods i          | n the livi    | ing   | area f  | from Tab       | ole 9, Th    | 1 (°C)     |                      |             |                                | 21     | (85) |
| Utilisa            | ation fac             | ctor for g | ains for  | living ar          | ea, h1,m      | า (s  | ее Та   | ble 9a)        |              |            |                      |             |                                |        |      |
|                    | Jan                   | Feb        | Mar       | Apr                | May           | Γ     | Jun     | Jul            | Aug          | Sep        | Oct                  | Nov         | Dec                            |        |      |
| (86)m=             | 1                     | 0.99       | 0.98      | 0.91               | 0.75          |       | 0.55    | 0.4            | 0.46         | 0.74       | 0.96                 | 0.99        | 1                              | 1      | (86) |
| Mean               | interna               | l temper   | ature in  | living ar          | ea T1 (f      |       | w ste   | ns 3 to 7      | r<br>in Tabl | e 9c)      |                      | •           |                                |        |      |
| (87)m=             | 19.94                 | 20.12      | 20.4      | 20.72              | 20.92         | 2     | 20.99   | 21             | 21           | 20.95      | 20.65                | 20.23       | 19.9                           | ]      | (87) |
| Tamar              | oroturo               |            |           | l<br>oriodo i      | n root of     |       | alling  | l from To      |              | L          |                      | Į           |                                | 1      |      |
| (88)m-             |                       | 20.05      | 20.05     |                    | 20.06         |       |         | 20.06          |              |            | 20.06                | 20.06       | 20.05                          |        | (88) |
| (00)11-            | 20.00                 | 20.00      | 20.00     | 20.00              | 20.00         |       | 0.00    | 20.00          | 20.07        | 20.00      | 20.00                | 20.00       | 20.00                          |        | ()   |
| Utilisa            | ation fac             | ctor for g | ains for  | rest of c          | welling,      | h2,   | m (se   | e Table        | 9a)          |            |                      |             |                                | 1      | (00) |
| (89)m=             |                       | 0.99       | 0.97      | 0.88               | 0.69          |       | 0.47    | 0.32           | 0.37         | 0.66       | 0.94                 | 0.99        | 1                              | J      | (69) |
| Me <mark>ar</mark> | interna               | l temper   | ature in  | the rest           | of dwell      | ling  | T2 (f   | ollow ste      | eps 3 to     | 7 in Tabl  | le 9 <mark>c)</mark> |             | i                              | ,      |      |
| (90)m=             | 18.64                 | 18.9       | 19.29     | 19.75              | 19.99         | 2     | 20.06   | 20.06          | 20.06        | 20.02      | 19.66                | 19.06       | 18.59                          |        | (90) |
|                    |                       |            |           |                    |               |       |         |                |              | I          | fLA = Livir          | ng area ÷ ( | 4) =                           | 0.33   | (91) |
| Mean               | n interna             | l temper   | ature (fo | or the wh          | nole dwe      | ellin | g) = fl | LA × T1        | + (1 – fL    | .A) × T2   |                      |             |                                |        |      |
| (92)m=             | 19.07                 | 19.3       | 19.66     | 20.07              | 20.3          | 2     | 20.36   | 20.37          | 20.37        | 20.33      | 19.99                | 19.44       | 19.02                          |        | (92) |
| Apply              | v adjustr             | nent to t  | he mea    | n interna          | l tempe       | ratu  | ire fro | m Table        | 4e, whe      | ere appro  | opriate              |             |                                |        |      |
| (93)m=             | 19.07                 | 19.3       | 19.66     | 20.07              | 20.3          | 2     | 20.36   | 20.37          | 20.37        | 20.33      | 19.99                | 19.44       | 19.02                          |        | (93) |
| 8. Sp              | ace hea               | ting requ  | uiremen   | t                  |               |       |         |                |              |            |                      |             |                                |        |      |
| Set T              | i to the              | mean int   | ernal te  | mperatu            | re obtai      | ned   | at ste  | ep 11 of       | Table 9      | b, so tha  | ıt Ti,m=(            | 76)m an     | d re-cal                       | culate |      |
| the u              |                       |            | Mor       |                    |               | Г     | lun     | lul            | Δυσ          | Son        | Oct                  | Nov         | Dec                            | 1      |      |
| l Itilis:          | ation fac             | tor for a  | ains hn   | n.<br>1 <u>vhi</u> | Iviay         |       | Jun     | Jui            | Aug          | Sep        |                      |             | Dec                            | J      |      |
| (94)m=             | 1                     | 0.99       | 0.96      | 0.88               | 0.71          | Г     | 0.5     | 0.35           | 0.4          | 0.69       | 0.94                 | 0.99        | 1                              | ]      | (94) |
| Usefu              | ul gains.             | hmGm       | W = (9    | 4)m x (8           | 4)m           |       |         |                |              |            |                      |             |                                | J      |      |
| (95)m=             | 482.6                 | 572.95     | 657.71    | 706.34             | 631.7         | 4     | 43.46   | 292.88         | 307.37       | 460.15     | 524.85               | 476.52      | 453.7                          | ]      | (95) |
| Mont               | L<br>hly aver         | age exte   | rnal ten  | nperatur           | I<br>e from T | abl   | e 8     |                |              |            |                      | Į           |                                | 1      |      |
| (96)m=             | 4.3                   | 4.9        | 6.5       | 8.9                | 11.7          | Γ     | 14.6    | 16.6           | 16.4         | 14.1       | 10.6                 | 7.1         | 4.2                            | ]      | (96) |
| Heat               | loss rate             | e for mea  | an interi | nal temp           | erature,      | Lm    | ı, W =  | -<br>=[(39)m : | r [(93)m     | – (96)m    | ]                    | I           |                                | 1      |      |
| (97)m=             | 1170.96               | 1140.02    | 1039.9    | 875.93             | 673.52        | 4     | 48.49   | 293.43         | 308.58       | 485.84     | 735.25               | 969.64      | 1167.74                        |        | (97) |
| Spac               | e heatin              | g require  | ement fo  | or each r          | nonth, k      | Wh    | /mont   | th = 0.02      | 24 x [(97    | )m – (95   | j)m] x (4            | 1)m         |                                |        |      |
| (98)m=             | 512.14                | 381.07     | 284.35    | 122.1              | 31.11         |       | 0       | 0              | 0            | 0          | 156.54               | 355.04      | 531.25                         |        |      |
|                    |                       |            |           |                    |               |       |         |                | Tota         | l per year | (kWh/yea             | r) = Sum(9  | <b>(8)</b> <sub>15,912</sub> = | 2373.6 | (98) |
| Spac               | e heatin              | g require  | ement ir  | n kWh/m            | ²/year        |       |         |                |              |            |                      |             |                                | 31.19  | (99) |

| 9a. En                                          | ergy re                                          | quiremer              | nts – Ind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ividual h    | eating s  | ystems i  | ncluding                | j micro-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HP)        |                        |                         |        |                         |                                         |
|-------------------------------------------------|--------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-----------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|-------------------------|--------|-------------------------|-----------------------------------------|
| Space                                           | e heati                                          | ng:                   | at frame -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b></b>      | 10        | manter    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                        |                         |        | -                       |                                         |
| Fracti                                          |                                                  | pace nea              | at from s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | econdar      | y/supple  | mentary   | system                  | (202) = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - (201) -  |                        |                         |        | 0                       | (201)                                   |
| Fracti                                          |                                                  | pace nea              | at from m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nain syst    | em(s)     |           |                         | (202) = 1 - (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = | -(201) =   | (202)] _               |                         |        | 1                       |                                         |
| Fracti                                          |                                                  |                       | ng from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | main sys     |           |           |                         | (204) = (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JZ) X [1 - | (203)] =               |                         |        | 1                       | (204)                                   |
| Efficie                                         | ency of                                          | main spa              | ace neat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ing syste    | em 1      |           | . 0/                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                        |                         |        | 92.7                    | (206)                                   |
| ETTICIE                                         | ency of                                          | seconda               | iry/suppi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ementar      | y neating | g system  | n, %                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -          |                        |                         | _      | 0                       | (208)                                   |
| Cross                                           | Jan                                              | Feb                   | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Apr          | May       | Jun       | Jul                     | Aug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sep        | Oct                    | Nov                     | Dec    | kWh/ye                  | ar                                      |
| Space                                           | 512.14                                           | 381.07                | 284.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122.1        | 31.11     | 0         | 0                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0          | 156.54                 | 355.04                  | 531.25 |                         |                                         |
| (211)m                                          |                                                  | $\frac{1}{2}$ m x (20 | $\frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}$ | 1 ···        | )6)       | Ů         |                         | Ů                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ū          |                        |                         | 001120 |                         | (211)                                   |
| (211)11                                         | 552.47                                           | 411.08                | 306.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 131.71       | 33.56     | 0         | 0                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0          | 168.86                 | 383                     | 573.08 |                         | (211)                                   |
|                                                 |                                                  |                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |           |           | I                       | Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l (kWh/yea | ar) =Sum(2             | 211) <sub>15,1012</sub> | F      | 2560.51                 | (211)                                   |
| Space                                           | e heatir                                         | ng fuel (s            | econdar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y), kWh/     | month     |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                        |                         |        |                         |                                         |
| = {[(98                                         | )m x (2                                          | 01)] } x 1            | 00 ÷ (20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )8)          |           |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                        |                         |        | L                       |                                         |
| (215)m=                                         | 0                                                | 0                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0            | 0         | 0         | 0                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0          | 0                      | 0                       | 0      |                         | _                                       |
| Total (kWh/year) =Sum(215) <sub>15,1012</sub> = |                                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |           |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                        |                         |        | 0                       | (215)                                   |
| Water                                           | heating                                          | g                     | tor (oolo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ulated a     | hours     |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                        |                         |        |                         |                                         |
| Output                                          | 172.01                                           | 151.1                 | 157.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 139.54       | 135.56    | 119.42    | 113.07                  | 126.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 126.8      | 144.79                 | 155.17                  | 167.33 |                         |                                         |
| Efficier                                        | Efficiency of water heater                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |           |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                        |                         |        |                         | (216)                                   |
| (217)m=                                         | <mark>8</mark> 9.01                              | 88.92                 | 88.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88.24        | 87.49     | 87        | 87                      | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87         | 88.38                  | 88.86                   | 89.04  |                         | (217)                                   |
| Fuel fo                                         | r water                                          | heating,              | , <mark>kW</mark> h/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | onth         |           |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                        |                         |        |                         |                                         |
| (219)m                                          | 1 = (64)                                         | )m x 100              | ) <del>÷</del> (217)<br>177 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )m<br>158 14 | 154 94    | 137.26    | 129.97                  | 145 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 145 74     | 163.83                 | 174 62                  | 187 93 |                         |                                         |
| (210)11-                                        | 100.20                                           | 100.04                | 117.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 104.04    | 107.20    | 120.01                  | Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I = Sum(2  | 19a) <sub>1.12</sub> = | 174.02                  | 107.00 | 1938.34                 | (219)                                   |
| Annua                                           | l totals                                         | 5                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |           |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | k                      | Wh/year                 |        | kWh/year                | , (_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| Space                                           | heating                                          | g fuel use            | ed, main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | system       | 1         |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                        |                         |        | 2560.51                 | 7                                       |
| Water                                           | heating                                          | fuel use              | ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |           |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                        |                         |        | 1938.34                 | 7                                       |
| Electric                                        | city for                                         | pumps, f              | ans and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | electric     | keep-ho   | t         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                        |                         |        |                         |                                         |
| centra                                          | al heatii                                        | na pump               | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |           |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                        |                         | 30     |                         | (230c)                                  |
| boiler                                          | with a                                           | fan-assis             | sted flue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                        |                         | 45     |                         | (230e)                                  |
| Totol o                                         | lootrioit                                        | v for the             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | -         |           |                         | sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of (230a)  | (230a) –               |                         | 40     | 75                      | (2000)<br>T(224)                        |
|                                                 | lectricit                                        | y ior the             | above, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kvvn/yea     | ſ         |           |                         | Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01 (2008). | (2009) –               |                         |        | /5                      |                                         |
| Electric                                        | city for                                         | lighting              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |           |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                        |                         |        | 333.64                  | (232)                                   |
| 12a. (                                          | CO2 en                                           | nissions ·            | – Individ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ual heat     | ing syste | ems inclu | uding mi                | cro-CHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        |                         |        |                         |                                         |
|                                                 |                                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |           | En<br>kW  | <b>lergy</b><br>/h/year |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | <b>Emiss</b><br>kg CO2 | <b>ion fac</b><br>2/kWh | tor    | Emissions<br>kg CO2/yea | ar                                      |
| Space                                           | heating                                          | g (main s             | system 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )            |           | (21       | 1) x                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 0.2                    | 16                      | =      | 553.07                  | (261)                                   |
| Space                                           | Space heating (secondary) (215) $\times$ 0.519 = |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |           |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                        |                         | 0      | (263)                   |                                         |
| Water                                           | heating                                          | l                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |           | (219      | 9) x                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 0.2                    | 16                      | =      | 418.68                  | (264)                                   |
| Space                                           | and wa                                           | ater heati            | ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | (26       | 1) + (262)              | + (263) + (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 264) =     |                        | ]                       |        | 971.75                  | (265)                                   |

| Electricity for pumps, fans and electric keep-hot | (231) | x |             | 0.519     | = | 38.93   | (267) |
|---------------------------------------------------|-------|---|-------------|-----------|---|---------|-------|
| Electricity for lighting                          | (232) | x |             | 0.519     | = | 173.16  | (268) |
| Total CO2, kg/year                                |       |   | sum of (26  | 5)(271) = |   | 1183.83 | (272) |
| Dwelling CO2 Emission Rate                        |       |   | (272) ÷ (4) | =         |   | 15.56   | (273) |
| EI rating (section 14)                            |       |   |             |           |   | 87      | (274) |
|                                                   |       |   |             |           |   |         |       |



|                                  |                                       | Use               | er Details:           |                         |               |          |             |                           |                                                    |
|----------------------------------|---------------------------------------|-------------------|-----------------------|-------------------------|---------------|----------|-------------|---------------------------|----------------------------------------------------|
| Assessor Name:<br>Software Name: | Stroma FSAP 201                       | 2                 | Stroma<br>Softwa      | a Num<br>ire Ver        | ber:<br>sion: |          | Versio      | n: 1.0.3.11               |                                                    |
|                                  |                                       | Prope             | erty Address:         | Arlingto                | on 3 Bed      | GND 7    | 6           |                           |                                                    |
| Address :                        |                                       |                   |                       |                         |               |          |             |                           |                                                    |
| 1. Overall dwelling dime         | nsions:                               |                   |                       |                         |               |          |             |                           |                                                    |
| Ground floor                     |                                       |                   | Area(m <sup>2</sup> ) | (10) ×                  | Av. He        | ight(m)  | ](20) - [   | Volume(m <sup>3</sup>     |                                                    |
| Total floor area $TEA = (1)$     | a) : (1b) : (1a) : (1d) : (1a         | ), (1p) [         | 76.1                  | (1a) X                  | 2             | 2.3      | (2d) =      | 175.03                    | _(3a)                                              |
| Total noor area $TFA = (13)$     | a)+(1b)+(1c)+(1d)+(1e                 | )+(11)            | 76.1                  | (4)<br>(20) (2b)        | (2c) (2d      |          | (2n) =      |                           |                                                    |
|                                  |                                       |                   |                       | (3a) <del>+</del> (3b)  | )+(30)+(30    | I)+(3e)+ | .(31) =     | 175.03                    | (5)                                                |
| 2. Ventilation rate:             | main                                  |                   | othou                 |                         | total         |          |             | m <sup>3</sup> nor hou    |                                                    |
|                                  | heating h                             | eating            | other                 |                         | total         |          |             | m <sup>°</sup> per nou    |                                                    |
| Number of chimneys               | 0 +                                   | 0 +               | 0                     | ] = [                   | 0             | X 4      | 40 =        | 0                         | (6a)                                               |
| Number of open flues             | 0 +                                   | 0 +               | 0                     | ] = [                   | 0             | ×        | 20 =        | 0                         | (6b)                                               |
| Number of intermittent fa        | ns                                    |                   |                       |                         | 3             | x ′      | 10 =        | 30                        | (7a)                                               |
| Number of passive vents          |                                       |                   |                       | Γ                       | 0             | x ′      | 10 =        | 0                         | (7b)                                               |
| Number of flueless gas fi        | res                                   |                   |                       | Γ                       | 0             | X 4      | 40 =        | 0                         | (7c)                                               |
|                                  |                                       |                   |                       |                         |               |          | Air ch      | anges <mark>per</mark> ho | ur                                                 |
| Infiltration due to chimne       | ys, flues and fans = (6               | a)+(6b)+(7a)+(7   | ′b)+(7c) =            |                         | 30            |          | ÷ (5) =     | 0.17                      | (8)                                                |
| If a pressurisation test has b   | een carried out or is intende         | ed, proceed to (  | 17), otherwise o      | ontinue fro             | om (9) to (   | (16)     |             |                           | _                                                  |
| Number of storeys in the         | ie dwelling (ns)                      |                   |                       |                         |               | [(0)     | 11-0.1 -    | 0                         | (9)                                                |
| Structural infiltration: 0       | 25 for steel or timber f              | rame or 0.34      | 5 for masonr          | v constr                | uction        | [(9)     | - 1]XU. 1 = | 0                         | $ = \begin{bmatrix} (10) \\ - (11) \end{bmatrix} $ |
| if both types of wall are pl     | resent, use the value corresp         | ponding to the g  | greater wall area     | a (after                | dottori       |          | l           | 0                         |                                                    |
| deducting areas of openir        | ngs); if equal user 0.35              |                   |                       |                         |               |          |             |                           | _                                                  |
| If suspended wooden f            | loor, enter 0.2 (unseal               | ed) or 0.1 (s     | ealed), else          | enter 0                 |               |          |             | 0                         | (12)                                               |
| If no draught lobby, en          | ter 0.05, else enter 0                | ulue e el         |                       |                         |               |          |             | 0                         |                                                    |
| Window infiltration              | s and doors draught st                | npped             | 0 25 - [0 2           | $\mathbf{x}(14) \div 1$ | 001 -         |          | ļ           | 0                         |                                                    |
|                                  |                                       |                   | (8) + (10) -          | + (11) + (1             | 2) + (13) -   | + (15) = |             | 0                         | $ \frac{(15)}{(16)} $                              |
| Air permeability value           | a50 expressed in cub                  | ic metres ne      | r hour per so         | nuare m                 | etre of e     | nvelone  | area        | 0                         | $-1^{(10)}_{(17)}$                                 |
| If based on air permeabil        | ity value, then $(18) = [(1)]$        | 7) ÷ 20]+(8), oth | nerwise $(18) = ($    | 16)                     |               | invelope | uicu        | 0.42                      | $= \frac{(17)}{(18)}$                              |
| Air permeability value applie    | s if a pressurisation test has        | been done or a    | a degree air pei      | meability               | is being u    | sed      | l           | 0.12                      |                                                    |
| Number of sides sheltere         | d                                     |                   |                       |                         |               |          | [           | 2                         | (19)                                               |
| Shelter factor                   |                                       |                   | (20) = 1 - [          | 0.075 x (1              | 9)] =         |          |             | 0.85                      | (20)                                               |
| Infiltration rate incorporat     | ing shelter factor                    |                   | (21) = (18)           | x (20) =                |               |          |             | 0.36                      | (21)                                               |
| Infiltration rate modified f     | or monthly wind speed                 |                   |                       |                         |               |          |             |                           |                                                    |
| Jan Feb                          | Mar Apr May                           | Jun Ju            | ul Aug                | Sep                     | Oct           | Nov      | Dec         |                           |                                                    |
| Monthly average wind sp          | eed from Table 7                      |                   |                       |                         |               |          | . <u> </u>  |                           |                                                    |
| (22)m= 5.1 5                     | 4.9 4.4 4.3                           | 3.8 3.            | 8 3.7                 | 4                       | 4.3           | 4.5      | 4.7         |                           |                                                    |
| Wind Factor (22a)m = (22         | 2)m ÷ 4                               |                   |                       |                         |               |          |             |                           |                                                    |
| (22a)m= 1.27 1.25                | 1.23 1.1 1.08                         | 0.95 0.9          | 95 0.92               | 1                       | 1.08          | 1.12     | 1.18        |                           |                                                    |
|                                  | · · · · · · · · · · · · · · · · · · · |                   |                       |                         |               |          |             |                           |                                                    |

| Adjuste              | ed infiltr              | ation rat               | e (allow                  | ing for sh               | elter an    | d wind s    | peed) =     | (21a) x       | (22a)m               |                    |             |                |          |        |
|----------------------|-------------------------|-------------------------|---------------------------|--------------------------|-------------|-------------|-------------|---------------|----------------------|--------------------|-------------|----------------|----------|--------|
|                      | 0.46                    | 0.45                    | 0.44                      | 0.39                     | 0.39        | 0.34        | 0.34        | 0.33          | 0.36                 | 0.39               | 0.4         | 0.42           |          |        |
| Calcula              | ate effe<br>chanic      | ctive air               | change                    | rate for t               | he appli    | cable ca    | se          |               |                      |                    |             | 1              | 0        | (232)  |
| lf exh               | aust air h              | eat pump                | using App                 | endix N, (2              | 3b) = (23a  | ı) × Fmv (e | equation (N | N5)) , othe   | rwise (23b           | ) = (23a)          |             | l<br>I         | 0        | (23b)  |
| lf bala              | anced with              | n heat reco             | overy: effic              | iency in %               | allowing f  | or in-use f | actor (from | n Table 4h    | ) =                  | , ( ,              |             | l<br>I         | 0        | (23c)  |
| a) If                | balance                 | d mech                  | anical ve                 | entilation               | with he     | at recove   | erv (MVF    | HR) (24a      | a)m = (2)            | 2h)m + (           | 23b) x [′   | ا<br>(23c) – 1 | - 1001   | (200)  |
| (24a)m=              | 0                       | 0                       |                           | 0                        | 0           | 0           | 0           | 0             | 0                    | 0                  | 0           |                | ]        | (24a)  |
| b) If                | balance                 | d mech                  | ı<br>anical ve            | entilation               | without     | heat rec    | overv (N    | і<br>ЛV) (24b | )m = (22             | 1<br>2b)m + (2     | 23b)        |                |          |        |
| ,<br>(24b)m=         | 0                       | 0                       | 0                         | 0                        | 0           | 0           | 0           | 0             | 0                    | 0                  | 0           | 0              |          | (24b)  |
| c) If                | whole h                 | ouse ex                 | tract ver                 | ntilation c              | or positiv  | ve input v  | /entilatic  | n from c      | outside              |                    |             |                |          |        |
| í                    | f (22b)n                | n < 0.5 >               | <b>(</b> 23b), t          | then (24o                | c) = (23b   | ); otherv   | vise (24    | c) = (22b     | o) m + 0.            | .5 × (23b          | )           |                |          |        |
| (24c)m=              | 0                       | 0                       | 0                         | 0                        | 0           | 0           | 0           | 0             | 0                    | 0                  | 0           | 0              |          | (24c)  |
| d) If                | natural                 | ventilati               | on or wh                  | ole hous                 | e positiv   | e input     | ventilatio  | on from I     | oft                  |                    |             |                |          |        |
| (C. (. ))            | f (22b)n                | n = 1, th               | en (24d)                  | m = (22k)                | )m othe     | erwise (2   | 4d)m = (    | 0.5 + [(2     | 2b)m² x              | 0.5]               | 0.50        |                |          | (244)  |
| (24d)m=              | 0.6                     | 0.6                     | 0.6                       | 0.58                     | 0.57        | 0.56        | 0.56        | 0.55          | 0.56                 | 0.57               | 0.58        | 0.59           |          | (240)  |
| Effec                | ctive air               |                         | rate - er                 | nter (24a                | ) or (24t   | o f (24)    | c) or (24   |               | (25)                 | 0.57               | 0.59        | 0.50           |          | (25)   |
| (25)11=              | 0.6                     | 0.6                     | 0.0                       | 0.58                     | 0.57        | 0.56        | 0.56        | -0.55         | 0.56                 | 0.57               | 0.58        | 0.59           |          | (23)   |
| 3. He                | at losse                | s and he                | eat loss                  | paramete                 | er:         |             |             |               |                      |                    |             |                |          |        |
| ELEN                 |                         | Gros                    | $(m^2)$                   | Openin                   | gs<br>2     | Net Ar      | ea          | U-valu        | ue<br>K              | A X U              | K)          | k-value        |          | A X k  |
| Doors                |                         | area                    | (111)                     |                          |             | 1.80        |             | 1             |                      | 1.80               |             | K0/111 -1      | `        | (26)   |
| Window               |                         | • 1                     |                           |                          |             | 1.03        |             | /[1/( 1.4 )+  | 0.041 -              | 5.95               | H           |                |          | (27)   |
| Window               |                         | 2                       |                           |                          |             | 4.41        |             | /[1/( 1 4 )+  | 0.041 -              | 5.05               | H           |                |          | (27)   |
| Window               |                         | 3                       |                           |                          |             | 4.41        |             | /[1/( 1 4 )+  | 0.041 =              | 5.05               | H           |                |          | (27)   |
| Window               | NS TYPE                 | , О<br>л Л              |                           |                          |             | 4.41        |             | /[1/( 1.4 )+  | 0.041 =              | 0.00               |             |                |          | (27)   |
| Floor                | ws type                 | 7 -                     |                           |                          |             | 2.52        | X''         |               | 0.04] =              | 3.34               |             |                |          | (27)   |
|                      |                         |                         |                           |                          | . ]         | /6.1        |             | 0.13          |                      | 9.893              | ╡┟          |                |          | (28)   |
| VVallS               | roo of a                | 56.3                    | 36                        | 17.64                    | 1           | 38.72       | <u> </u>    | 0.18          | = [                  | 6.97               |             |                |          | (29)   |
| Dominu               |                         | ements                  | , 111-                    |                          |             | 132.4       | 6           |               |                      |                    | —           |                |          | (31)   |
| Party v              |                         |                         |                           |                          |             | 38.24       | X           | 0             | =                    | 0                  | [           |                |          | (32)   |
| Party c              | elling                  | Iroofwind               |                           | footivowi                | ndow II. w  | 76.1        |             | formula 1     | 11/1/11/10/          | (0) (0) (1)        |             | noroaronh      |          | (32b)  |
| ** includ            | e the area              | as on both              | sides of i                | nternal wall             | s and part  | titions     | aleo using  | ionnula I     | /[(1/ <b>0-</b> vait | <i>le)+0.04]</i> a | is given in | paragraph      | 3.2      |        |
| Fabric               | heat los                | s, W/K                  | = S (A x                  | U)                       |             |             |             | (26)(30)      | ) + (32) =           |                    |             | [              | 39.63    | (33)   |
| Heat c               | apacity                 | Cm = S                  | (Axk)                     |                          |             |             |             |               | ((28).               | (30) + (32         | 2) + (32a). | (32e) =        | 15713.95 | 5 (34) |
| Therma               | al mass                 | parame                  | eter (TMI                 | <sup>-</sup> = Cm ÷      | - TFA) ir   | n kJ/m²K    |             |               | Indica               | tive Value         | : Medium    | Ī              | 250      | (35)   |
| For desi<br>can be u | gn assess<br>ised inste | sments wh<br>ad of a de | ere the de<br>tailed calc | tails of the<br>ulation. | constructi  | ion are not | t known pr  | ecisely the   | e indicative         | e values of        | TMP in Ta   | able 1f        |          |        |
| Therma               | al bridg                | es : S (L               | x Y) cal                  | culated u                | using Ap    | pendix ł    | <           |               |                      |                    |             | [              | 7.53     | (36)   |
| if details           | of therma               | al bridging             | are not kr                | own (36) =               | = 0.15 x (3 | 1)          |             |               |                      |                    |             |                |          |        |
| Fotal fa             | abric he                | at loss                 |                           |                          |             |             |             |               | (33) +               | (36) =             |             |                | 47.16    | (37)   |
| Ventila              | tion hea                | at loss ca              | alculated                 | monthly                  | /           |             |             |               | (38)m                | = 0.33 × (         | 25)m x (5)  |                |          |        |
|                      | Jan                     | ⊦eb                     | Mar                       | Apr                      | May         | Jun         | Jul         | Aug           | Sep                  | Oct                | Nov         | Dec            |          |        |

| (38)m=          | 34.9                  | 34.67                    | 34.44                  | 33.36                    | 33.16                       | 32.22                 | 32.22             | 32.05        | 32.59        | 33.16                     | 33.57                  | 34      |            | (38) |
|-----------------|-----------------------|--------------------------|------------------------|--------------------------|-----------------------------|-----------------------|-------------------|--------------|--------------|---------------------------|------------------------|---------|------------|------|
| Heat tr         | ansfer o              | coefficie                | nt, W/K                |                          |                             |                       |                   |              | (39)m        | = (37) + (3               | 38)m                   |         |            |      |
| (39)m=          | 82.07                 | 81.83                    | 81.6                   | 80.53                    | 80.33                       | 79.39                 | 79.39             | 79.21        | 79.75        | 80.33                     | 80.73                  | 81.16   |            |      |
| Heatla          | es nara               | motor (l                 |                        | /m2k                     |                             |                       |                   |              | (40)m        | Average =                 | Sum(39) <sub>1.</sub>  | 12 /12= | 80.53      | (39) |
| (40)m=          | 1.08                  | 1.08                     | 1.07                   | 1.06                     | 1.06                        | 1.04                  | 1.04              | 1.04         | 1.05         | 1.06                      | 1.06                   | 1.07    |            |      |
|                 |                       |                          |                        |                          |                             |                       |                   |              |              | Average =                 | Sum(40)1.              | 12 /12= | 1.06       | (40) |
| Numbe           | er of day             | /s in mo                 | nth (Tab               | le 1a)                   |                             |                       |                   |              |              |                           |                        |         |            |      |
|                 | Jan                   | Feb                      | Mar                    | Apr                      | May                         | Jun                   | Jul               | Aug          | Sep          | Oct                       | Nov                    | Dec     |            |      |
| (41)m=          | 31                    | 28                       | 31                     | 30                       | 31                          | 30                    | 31                | 31           | 30           | 31                        | 30                     | 31      |            | (41) |
|                 |                       |                          |                        |                          |                             |                       |                   |              |              |                           |                        |         |            |      |
| 4. Wa           | ter heat              | ting ene                 | rgy requ               | irement:                 |                             |                       |                   |              |              |                           |                        | kWh/ye  | ar:        |      |
| Assum           | ed occu               | upancy,                  | N                      | _                        |                             |                       |                   |              |              |                           | 2.                     | 38      |            | (42) |
| if TF.          | A > 13.9<br>A £ 13.9  | 9, N = 1<br>9. N = 1     | + 1.76 x               | [1 - exp                 | (-0.0003                    | 649 x (TF             | -A -13.9          | )2)] + 0.(   | 0013 x (     | FFA -13.                  | .9)                    |         |            |      |
| Annual          | averag                | je hot wa                | ater usag              | ge in litre              | es per da                   | y Vd,av               | erage =           | (25 x N)     | + 36         |                           | 90                     | .84     |            | (43) |
| Reduce          | the annua<br>that 125 | al average<br>litres per | hot water<br>person pe | usage by<br>r dav (all w | 5% if the a<br>rater use. I | welling is not and co | designed (<br>Id) | to achieve   | a water us   | se target o               | f                      |         |            |      |
|                 | lon                   | Ech                      | Mor                    | Apr                      | Mov                         | lup                   | lul               | Aug          | Son          | Oct                       | Nov                    |         |            |      |
| Hot wate        | er usage i            | n litres per             | r day for ea           | ach month                | Vd,m = fa                   | ctor from T           | Table 1c x        | (43)         | Sep          | Oci                       | INUV                   | Dec     |            |      |
| (44)m=          | 9 <mark>9.92</mark>   | 96.29                    | 92.65                  | 89.02                    | 85.39                       | 81.75                 | 81.75             | 85.39        | 89.02        | 92.65                     | 96.29                  | 99.92   |            |      |
|                 |                       |                          |                        |                          |                             |                       |                   |              |              | Total = Su                | m(44) <sub>112</sub> = | =       | 1090.04    | (44) |
| Energy o        | content of            | hot water                | used - ca              | culated mo               | onthly $= 4$ .              | 190 x Vd,n            | n x nm x D        | )Tm / 3600   | kWh/mor      | nth (see Ta               | bles 1b, 1             | c, 1d)  |            |      |
| (45)m=          | 148.18                | 129.6                    | 133.73                 | 116.59                   | 111.87                      | 96.54                 | 89.46             | 102.65       | 103.88       | 121.06                    | 132.15                 | 143.5   |            | _    |
| lf instant      | aneous w              | vater heati              | na at poin             | of use (no               | o hot water                 | storage).             | enter 0 in        | boxes (46    | ) to (61)    | Tota <mark>l = S</mark> u | m(45) <sub>112</sub> = | = [     | 1429.21    | (45) |
| (46)m-          | 22.23                 | 19.44                    | 20.06                  | 17.49                    | 16 78                       | 14.48                 | 13.42             | 15.4         | 15 58        | 18 16                     | 19.82                  | 21 53   |            | (46) |
| Water           | storage               | loss:                    | 20.00                  | 17.45                    | 10.70                       | 14.40                 | 10.42             | 10.4         | 10.00        | 10.10                     | 10.02                  | 21.00   |            | (10) |
| Storag          | e volum               | e (litres)               | ) includir             | ng any so                | olar or W                   | /WHRS                 | storage           | within sa    | ame ves      | sel                       |                        | 0       |            | (47) |
| If comr         | nunity h              | neating a                | and no ta              | nk in dw                 | velling, e                  | nter 110              | litres in         | (47)         |              |                           | ( <b>—</b> )           |         |            |      |
| Otherw<br>Water | vise it no            | o stored                 | hot wate               | er (this in              | icludes i                   | nstantar              | ieous co          | mbi boil     | ers) ente    | er '0' in (               | 47)                    |         |            |      |
| a) If m         | anufact               | urer's d                 | eclared I              | oss facto                | or is kno                   | wn (kWł               | n/day):           |              |              |                           |                        | 0       |            | (48) |
| Tempe           | rature f              | actor fro                | m Table                | 2b                       |                             | ,                     | • /               |              |              |                           |                        | 0       |            | (49) |
| Energy          | lost fro              | m water                  | <sup>-</sup> storage   | , kWh/ye                 | ear                         |                       |                   | (48) x (49)  | =            |                           |                        | 0       |            | (50) |
| b) If m         | anufact               | urer's d                 | eclared (              | cylinder l               | oss fact                    | or is not             | known:            |              |              |                           |                        |         |            |      |
| Hot wa          | ter stora<br>nunitv h | age loss<br>leating s    | ee secti               | om Tabi<br>on 4.3        | е 2 (кии                    | n/litre/da            | iy)               |              |              |                           |                        | 0       |            | (51) |
| Volume          | e factor              | from Ta                  | ble 2a                 |                          |                             |                       |                   |              |              |                           |                        | 0       |            | (52) |
| Tempe           | rature f              | actor fro                | m Table                | 2b                       |                             |                       |                   |              |              |                           |                        | 0       |            | (53) |
| Energy          | lost fro              | om water                 | <sup>-</sup> storage   | e, kWh/ye                | ear                         |                       |                   | (47) x (51)  | x (52) x (   | 53) =                     |                        | 0       |            | (54) |
| Enter           | (50) or (             | (54) in (5               | 55)                    |                          |                             |                       |                   |              |              |                           |                        | 0       |            | (55) |
| Water           | storage               | loss cal                 | culated <sup>-</sup>   | tor each                 | month                       |                       |                   | ((56)m = (   | 55) × (41)   | m                         | 1                      |         |            |      |
| (56)m=          |                       |                          | 0                      | 0                        | 0 = (50) = 0                | 0                     |                   | 0            | 0            |                           |                        |         | <i>и</i> П | (56) |
|                 |                       |                          | u sular sto            | aye, (57)<br>I           | וו = (סס)וז<br>ו            | ⊼ [(00) – (           | (5)<br>[          | u), eise (5. | (0C) = III ( | ni wnere (                | i i i i ) is tro<br>I  |         |            |      |
| (57)m=          | 0                     | 0                        | 0                      | 0                        | 0                           | 0                     | 0                 | 0            | 0            | 0                         | 0                      | 0       |            | (57) |

| Primar              | Primary circuit loss (annual) from Table 3 |            |            |             |           |           |             |              |              |                           |              | 0           |                                                                                                                | (58) |
|---------------------|--------------------------------------------|------------|------------|-------------|-----------|-----------|-------------|--------------|--------------|---------------------------|--------------|-------------|----------------------------------------------------------------------------------------------------------------|------|
| Primar              | y circuit                                  | loss cal   | culated    | for each    | month (   | 59)m = (  | (58) ÷ 36   | 65 × (41)    | m            |                           |              |             |                                                                                                                |      |
| (moo                | dified by                                  | factor fi  | rom Tab    | le H5 if t  | here is s | solar wat | ter heatii  | ng and a     | cylinde      | r thermo                  | stat)        |             |                                                                                                                |      |
| (59)m=              | 0                                          | 0          | 0          | 0           | 0         | 0         | 0           | 0            | 0            | 0                         | 0            | 0           |                                                                                                                | (59) |
| Combi               | loss ca                                    | lculated   | for each   | month (     | 61)m =    | (60) ÷ 36 | 65 × (41)   | )m           |              |                           |              |             |                                                                                                                |      |
| (61)m=              | 50.92                                      | 44.32      | 47.22      | 43.9        | 43.51     | 40.32     | 41.66       | 43.51        | 43.9         | 47.22                     | 47.48        | 50.92       |                                                                                                                | (61) |
| Total h             | eat requ                                   | uired for  | water he   | eating ca   | alculated | l for eac | h month     | (62)m =      | 0.85 × (     | (45)m +                   | (46)m +      | (57)m +     | (59)m + (61)m                                                                                                  |      |
| (62)m=              | 199.1                                      | 173.92     | 180.95     | 160.49      | 155.39    | 136.85    | 131.12      | 146.16       | 147.78       | 168.28                    | 179.63       | 194.42      |                                                                                                                | (62) |
| Solar DH            | -<br>IW input o                            | calculated | using App  | endix G or  | Appendix  | H (negati | ve quantity | /) (enter '0 | ' if no sola | r contribut               | ion to wate  | er heating) |                                                                                                                |      |
| (add a              | dditiona                                   | l lines if | FGHRS      | and/or \    | VWHRS     | applies   | , see Ap    | pendix C     | G)           |                           |              |             |                                                                                                                |      |
| (63)m=              | 0                                          | 0          | 0          | 0           | 0         | 0         | 0           | 0            | 0            | 0                         | 0            | 0           |                                                                                                                | (63) |
| Output              | from w                                     | ater hea   | ter        | -           |           |           | -           | -            |              |                           | -            | -           |                                                                                                                |      |
| (64)m=              | 199.1                                      | 173.92     | 180.95     | 160.49      | 155.39    | 136.85    | 131.12      | 146.16       | 147.78       | 168.28                    | 179.63       | 194.42      |                                                                                                                |      |
|                     |                                            |            |            |             |           |           |             | Outp         | out from wa  | ater heate                | r (annual)₁  | 12          | 1974.08                                                                                                        | (64) |
| Heat g              | ains fro                                   | m water    | heating,   | kWh/m       | onth 0.2  | 5 ´ [0.85 | × (45)m     | + (61)m      | n] + 0.8 x   | (46)m                     | + (57)m      | + (59)m     | ]                                                                                                              |      |
| (65)m=              | 62                                         | 54.17      | 56.27      | 49.74       | 48.08     | 42.18     | 40.16       | 45.01        | 45.51        | 52.06                     | 55.81        | 60.44       |                                                                                                                | (65) |
| in <mark>clu</mark> | ide (57)i                                  | m in calo  | culation   | of (65)m    | only if c | vlinder i | s in the o  | dwelling     | or hot w     | ate <mark>r is f</mark> r | om com       | munity h    | eating                                                                                                         |      |
| 5 Int               | ernal da                                   | ains (see  | Table f    | and 5a      |           | ,         |             | 9            |              |                           |              | 5           | 5                                                                                                              | -    |
| Motob               |                                            | o (Toblo   | 5) Mot     | to          |           |           |             |              |              |                           |              |             |                                                                                                                |      |
| Metabo              | Jiic gain                                  | Feb        | Mar        | Apr         | May       | Jun       | lul         | Αυσ          | Sen          | Oct                       | Nov          | Dec         |                                                                                                                |      |
| (66)m=              | 119.23                                     | 119.23     | 119.23     | 119.23      | 119.23    | 119.23    | 119.23      | 119.23       | 119.23       | 119.23                    | 119.23       | 119.23      |                                                                                                                | (66) |
| Lightin             | a daine                                    | (calcula   | ted in Ar  | pendix      |           |           | r   (9a) -a |              | Table 5      |                           |              |             | I and the second second second second second second second second second second second second second second se |      |
| (67)m=              | 18.89                                      | 16 78      | 13.65      | 10.33       | 2, Equal  | 6.52      | 7 04        | 9 16         | 12 29        | 15.61                     | 18 21        | 19.42       | 1                                                                                                              | (67) |
|                     |                                            |            |            |             |           | untion L  | 12 or   1   | 20) 000      |              |                           | 10.21        | 10.12       | I and the second second second second second second second second second second second second second second se | ()   |
|                     | 211 1                                      | 213 20     |            |             | 181 18    | 167.24    | 15 UI LI    | 3a), aisc    | 161 26       | 173.01                    | 187.84       | 201 78      | 1                                                                                                              | (68) |
|                     | 211.1                                      | (2010:20   |            |             |           | 107.24    | or 1 4 5 o  |              |              | F                         | 107.04       | 201.70      | ]                                                                                                              | (00) |
| COOKIN              |                                            |            |            |             | L, equai  |           |             | ), also se   |              | 5                         | 24.00        | 24.00       | l                                                                                                              | (60) |
| (69)m=              | 34.92                                      | 34.92      | 34.92      | 34.92       | 34.92     | 34.92     | 34.92       | 34.92        | 34.92        | 34.92                     | 34.92        | 34.92       | Į                                                                                                              | (09) |
| Pumps               | and fai                                    | ns gains   | (Table 5   | ba)         |           |           |             |              |              |                           |              |             | I                                                                                                              | (70) |
| (70)m=              | 3                                          | 3          | 3          | 3           | 3         | 3         | 3           | 3            | 3            | 3                         | 3            | 3           | l                                                                                                              | (70) |
| Losses              | s e.g. ev                                  | aporatio   | n (nega    | tive valu   | es) (Tab  | le 5)     |             |              |              |                           | 1            | 1           | ı.                                                                                                             |      |
| (71)m=              | -95.39                                     | -95.39     | -95.39     | -95.39      | -95.39    | -95.39    | -95.39      | -95.39       | -95.39       | -95.39                    | -95.39       | -95.39      |                                                                                                                | (71) |
| Water               | heating                                    | gains (T   | able 5)    |             |           | -         |             | -            |              |                           |              |             |                                                                                                                |      |
| (72)m=              | 83.33                                      | 80.61      | 75.63      | 69.09       | 64.62     | 58.58     | 53.98       | 60.5         | 63.21        | 69.97                     | 77.51        | 81.24       |                                                                                                                | (72) |
| Total i             | nternal                                    | gains =    |            |             |           | (66)      | m + (67)m   | n + (68)m +  | + (69)m + (  | (70)m + (7                | 1)m + (72)   | m           |                                                                                                                |      |
| (73)m=              | 375.09                                     | 372.45     | 358.82     | 337.2       | 315.29    | 294.11    | 280.72      | 287.16       | 298.53       | 320.35                    | 345.34       | 364.21      |                                                                                                                | (73) |
| 6. Sol              | lar gains                                  | 8:         |            |             |           |           |             |              |              |                           |              |             |                                                                                                                |      |
| Solar g             | ains are o                                 | calculated | using sola | r flux from | Table 6a  | and assoc | iated equa  | tions to co  | onvert to th | e applicat                | ole orientat | ion.        |                                                                                                                |      |

| Orientation:   | Access Factor<br>Table 6d | • | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |   | Gains<br>(W) |      |
|----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|---|--------------|------|
| Southeast 0.9x | 0.77                      | x | 4.41       | x | 36.79            | × | 0.63           | × | 0.7            | = | 49.59        | (77) |
| Southeast 0.9x | 0.77                      | x | 4.41       | x | 62.67            | × | 0.63           | × | 0.7            | = | 84.47        | (77) |

| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 85.75               | x | 0.63 | x | 0.7 | ] =        | 115.57 | (77)             |
|----------------------------------------|------|---|------|---|---------------------|---|------|---|-----|------------|--------|------------------|
| Southeast 0.9x                         | 0.77 | × | 4.41 | x | 106.25              | × | 0.63 | x | 0.7 | i =        | 143.2  | <b>–</b><br>(77) |
| Southeast 0.9x                         | 0.77 | × | 4.41 | x | 119.01              | × | 0.63 | x | 0.7 | i =        | 160.4  | _<br>(77)        |
| Southeast 0.9x                         | 0.77 | × | 4.41 | x | 118.15              | × | 0.63 | x | 0.7 | <b>i</b> = | 159.24 | _<br>](77)       |
| Southeast 0.9x                         | 0.77 | × | 4.41 | x | 113.91              | × | 0.63 | x | 0.7 | i =        | 153.52 | -<br> (77)       |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 104.39              | x | 0.63 | x | 0.7 | =          | 140.69 | _<br>(77)        |
| Southeast 0.9x                         | 0.77 | × | 4.41 | x | 92.85               | × | 0.63 | x | 0.7 | ] =        | 125.14 | (77)             |
| Southeast 0.9x                         | 0.77 | × | 4.41 | x | 69.27               | × | 0.63 | x | 0.7 | ] =        | 93.36  | (77)             |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 44.07               | x | 0.63 | x | 0.7 | =          | 59.4   | (77)             |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 31.49               | × | 0.63 | x | 0.7 | =          | 42.44  | (77)             |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 36.79               | ] | 0.63 | x | 0.7 | =          | 28.34  | (79)             |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 62.67               | ] | 0.63 | x | 0.7 | =          | 48.27  | (79)             |
| Southwest <sub>0.9x</sub>              | 0.77 | × | 2.52 | x | 85.75               | ] | 0.63 | x | 0.7 | ] =        | 66.04  | (79)             |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 106.25              | ] | 0.63 | x | 0.7 | =          | 81.83  | (79)             |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 119.01              | ] | 0.63 | x | 0.7 | =          | 91.66  | (79)             |
| Southwest <sub>0.9x</sub>              | 0.77 | × | 2.52 | x | 118.15              | ] | 0.63 | x | 0.7 | ] =        | 90.99  | (79)             |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 113.91              | ] | 0.63 | x | 0.7 | =          | 87.73  | (79)             |
| Southwest0.9x                          | 0.77 | x | 2.52 | x | 104.39              |   | 0.63 | х | 0.7 | =          | 80.4   | (79)             |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | x | 2.52 | x | 92.85               |   | 0.63 | x | 0.7 | ] =        | 71.51  | (79)             |
| Sout <mark>hwest</mark> 0.9x           | 0.77 | x | 2.52 | x | 69.27               |   | 0.63 | x | 0.7 | =          | 53.35  | (79)             |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | x | 2.52 | x | 44.07               |   | 0.63 | x | 0.7 | =          | 33.94  | (79)             |
| Sout <mark>hwest</mark> 0.9x           | 0.77 | x | 2.52 | x | 31.4 <mark>9</mark> | ] | 0.63 | x | 0.7 | =          | 24.25  | (79)             |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 11.28               | × | 0.63 | x | 0.7 | =          | 15.21  | (81)             |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 11.28               | x | 0.63 | x | 0.7 | =          | 15.21  | (81)             |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 22.97               | x | 0.63 | x | 0.7 | ] =        | 30.95  | (81)             |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 22.97               | x | 0.63 | x | 0.7 | ] =        | 30.95  | (81)             |
| Northwest 0.9x                         | 0.77 | × | 4.41 | x | 41.38               | × | 0.63 | x | 0.7 | ] =        | 55.77  | (81)             |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 41.38               | x | 0.63 | x | 0.7 | ] =        | 55.77  | (81)             |
| Northwest 0.9x                         | 0.77 | × | 4.41 | x | 67.96               | × | 0.63 | x | 0.7 | =          | 91.59  | (81)             |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 67.96               | x | 0.63 | x | 0.7 | =          | 91.59  | (81)             |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 91.35               | x | 0.63 | x | 0.7 | =          | 123.11 | (81)             |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 91.35               | x | 0.63 | x | 0.7 | =          | 123.11 | (81)             |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 97.38               | x | 0.63 | x | 0.7 | ] =        | 131.25 | (81)             |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 97.38               | x | 0.63 | x | 0.7 | =          | 131.25 | (81)             |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 91.1                | x | 0.63 | x | 0.7 | ] =        | 122.78 | (81)             |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 91.1                | x | 0.63 | x | 0.7 | ] =        | 122.78 | (81)             |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 72.63               | x | 0.63 | x | 0.7 | =          | 97.88  | (81)             |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 72.63               | × | 0.63 | x | 0.7 | =          | 97.88  | (81)             |
| Northwest 0.9x                         | 0.77 | × | 4.41 | x | 50.42               | × | 0.63 | x | 0.7 | =          | 67.95  | (81)             |
| Northwest 0.9x                         | 0.77 | × | 4.41 | x | 50.42               | × | 0.63 | x | 0.7 | =          | 67.95  | (81)             |
| Northwest 0.9x                         | 0.77 | × | 4.41 | x | 28.07               | × | 0.63 | x | 0.7 | =          | 37.83  | (81)             |
|                                        |      |   |      |   |                     |   |      |   |     |            |        | -                |

| Northw             | est <mark>0.9x</mark> | 0.77                   |                        | ×「       | 4.4                      | 1                   | x     | 2       | 28.07        | ) x [          | 0.63        | x                    | 0.7        | =          | 37.83   | (81) |
|--------------------|-----------------------|------------------------|------------------------|----------|--------------------------|---------------------|-------|---------|--------------|----------------|-------------|----------------------|------------|------------|---------|------|
| Northw             | /est 0.9x             | 0.77                   |                        | ×Ī       | 4.4                      | 1                   | x     |         | 14.2         | × [            | 0.63        |                      | 0.7        | =          | 19.13   | (81) |
| Northw             | est 0.9x              | 0.77                   |                        | ×Γ       | 4.4                      | 1                   | x     |         | 14.2         | x [            | 0.63        |                      | 0.7        | =          | 19.13   | (81) |
| Northw             | est 0.9x              | 0.77                   |                        | ×Γ       | 4.4                      | 1                   | x     |         | 9.21         | x [            | 0.63        |                      | 0.7        | =          | 12.42   | (81) |
| Northw             | est 0.9x              | 0.77                   |                        | ×Γ       | 4.4                      | 1                   | x     |         | 9.21         | i x 🗖          | 0.63        |                      | 0.7        | =          | 12.42   | (81) |
|                    | L                     |                        |                        | L        |                          |                     |       |         |              | J <u>L</u>     |             |                      |            |            |         |      |
| Solar              | gains in              | watts, ca              | alculate               | ed f     | or each                  | n month             | ו     |         |              | (83)m = S      | um(74)m .   | (82)m                |            |            |         |      |
| (83)m=             | 108.34                | 194.64                 | 293.15                 |          | 408.21                   | 498.28              | 5     | 12.73   | 486.81       | 416.85         | 332.56      | 222.36               | 131.6      | 91.53      |         | (83) |
| Total g            | gains – i             | nternal a              | and sola               | ar (     | 84)m =                   | (73)m               | + (   | 83)m    | , watts      |                |             |                      |            |            |         |      |
| (84)m=             | 483.43                | 567.09                 | 651.97                 | ·   ·    | 745.41                   | 813.57              | 8     | 06.84   | 767.53       | 704.01         | 631.09      | 542.71               | 476.94     | 455.74     |         | (84) |
| 7. Me              | ean inter             | rnal temp              | perature               | e (h     | neating                  | seasor              | า)    |         |              |                |             |                      |            |            |         |      |
| Temp               | oerature              | during h               | eating                 | ре       | riods in                 | the liv             | ing   | area    | from Tal     | ole 9, Th      | 1 (°C)      |                      |            |            | 21      | (85) |
| Utilis             | ation fac             | ctor for g             | ains for               | r liv    | ving are                 | a, h1,n             | n (s  | ee Ta   | ble 9a)      |                |             |                      |            |            |         |      |
|                    | Jan                   | Feb                    | Mar                    | Τ        | Apr                      | May                 | Ť     | Jun     | Jul          | Aug            | Sep         | Oct                  | Nov        | Dec        |         |      |
| (86)m=             | 1                     | 0.99                   | 0.98                   | ╈        | 0.93                     | 0.81                |       | 0.61    | 0.45         | 0.51           | 0.78        | 0.96                 | 0.99       | 1          |         | (86) |
| Moor               |                       | l temper               | aturo ir               | <br>\li\ | /ing are                 | a T1 / <del>1</del> |       | w sto   | ns 3 to 7    | I<br>7 in Tahl | ا<br>م (9م) | ļ                    | Į          | Į          | 1       |      |
| (87)m=             | 19.89                 | 20.06                  | 20.32                  | T        | 20.65                    | 20.88               |       | 20.98   | 21           | 20.99          | 20.93       | 20.61                | 20.19      | 19.86      |         | (87) |
| -                  |                       |                        |                        | -        |                          |                     |       |         | / <u> </u>   |                |             |                      |            |            |         | . ,  |
|                    |                       |                        | leating                | pe<br>I  | riods in                 |                     | r dw  |         | from 1a      | able 9, 1      | $h^2$ (°C)  | 20.04                | 20.02      | 20.02      |         | (88) |
| (00)11=            | 20.02                 | 20.02                  | 20.02                  | _        | 20.04                    | 20.04               |       | 0.05    | 20.05        | 20.05          | 20.04       | 20.04                | 20.03      | 20.03      |         | (00) |
| Utilis             | ation fac             | tor for g              | ains for               | r re     | st of dv                 | velling,            | h2,   | m (se   | e Table      | 9a)            |             | _                    | <br>       |            |         |      |
| (89)m=             | 1                     | 0.99                   | 0.97                   |          | 0.91                     | 0.75                |       | 0.53    | 0.36         | 0.41           | 0.7         | 0.95                 | 0.99       | 1          |         | (89) |
| Me <mark>ar</mark> | n interna             | l temp <mark>er</mark> | <mark>atu</mark> re ir | h th     | n <mark>e r</mark> est o | of dwel             | ling  | T2 (f   | ollow ste    | eps 3 to       | 7 in Tab    | le 9 <mark>c)</mark> |            |            |         |      |
| (90)m=             | 18.54                 | 18.78                  | 19.16                  |          | <mark>19.</mark> 63      | 19.93               | 2     | 20.03   | 20.05        | 20.05          | 19.99       | 19.59                | 18.98      | 18.5       |         | (90) |
|                    |                       |                        |                        |          |                          |                     |       |         |              |                | t           | fLA = Livin          | g area ÷ ( | 4) =       | 0.33    | (91) |
| Mear               | n interna             | ıl temper              | ature (f               | for      | the who                  | ole dwe             | ellin | g) = f  | LA x T1      | + (1 – fL      | _A) × T2    |                      |            |            |         |      |
| (92)m=             | 18.98                 | 19.2                   | 19.54                  | Τ        | 19.97                    | 20.24               | 2     | 20.35   | 20.36        | 20.36          | 20.3        | 19.92                | 19.38      | 18.95      |         | (92) |
| Apply              | / adjustr             | nent to tl             | he mea                 | n i      | nternal                  | tempe               | ratu  | ire fro | m Table      | 4e, whe        | ere appro   | opriate              |            |            |         |      |
| (93)m=             | 18.98                 | 19.2                   | 19.54                  |          | 19.97                    | 20.24               | 2     | 20.35   | 20.36        | 20.36          | 20.3        | 19.92                | 19.38      | 18.95      |         | (93) |
| 8. Sp              | ace hea               | ating requ             | uiremer                | nt       |                          |                     |       |         |              |                |             |                      |            |            |         |      |
| Set T              | i to the              | mean int               | ernal te               | em       | peratur                  | e obtai             | ned   | at st   | ep 11 of     | Table 9        | b, so tha   | t Ti,m=(             | 76)m an    | d re-calo  | culate  |      |
| the u              | tilisation            | factor fo              | or gains               | s us     | sing la                  | ble 9a              |       | 1       |              | A              | 0           | 0.4                  | Neu        | Dea        | 1       |      |
| Litilio            | Jan<br>ation for      | Feb                    | iviar                  |          | Apr                      | iviay               |       | Jun     | Jui          | Aug            | Sep         | Oct                  | INOV       | Dec        |         |      |
| (94)m=             |                       |                        | 0.97                   | <u> </u> | 0.91                     | 0.76                |       | 0.55    | 0.39         | 0.44           | 0.73        | 0.94                 | 0.99       | 1          | 1       | (94) |
| l Isefi            |                       | hmGm                   | W = (9)                | <br>عد/  | m x (84                  | L)m                 |       | 0.00    | 0.00         | 0.44           | 0.70        | 0.04                 | 0.00       | '          |         | ()   |
| (95)m=             | 481.12                | 560.77                 | 632.44                 | . [      | 676.74                   | 621.46              | 4     | 46.95   | 297.31       | 311.39         | 458.22      | 512.47               | 472.01     | 454.11     |         | (95) |
| Mont               | hly aver              | age exte               | rnal ter               | mp       | erature                  | from T              | abl   | e 8     |              | L              | L           | I                    | ļ          | L          | I       |      |
| (96)m=             | 4.3                   | 4.9                    | 6.5                    | T        | 8.9                      | 11.7                |       | 14.6    | 16.6         | 16.4           | 14.1        | 10.6                 | 7.1        | 4.2        |         | (96) |
| Heat               | loss rate             | e for mea              | an inter               | ma       | l tempe                  | erature,            | Lm    | ı, W =  | -<br>=[(39)m | x [(93)m       | ⊢ (96)m     | ]                    | 1          | I          | I       |      |
| (97)m=             | 1204.92               | 1170.36                | 1064.4                 | 3        | 891.19                   | 686.27              | 4     | 56.1    | 298.38       | 313.53         | 494.23      | 748.87               | 991.32     | 1197.14    |         | (97) |
| Spac               | e heatin              | ig require             | ement f                | or       | each m                   | ionth, k            | Wh    | /mon    | th = 0.02    | 24 x [(97      | )m – (95    | j)m] x (4            | 1)m        |            |         |      |
| (98)m=             | 538.5                 | 409.65                 | 321.4                  |          | 154.41                   | 48.21               |       | 0       | 0            | 0              | 0           | 175.89               | 373.9      | 552.81     |         |      |
|                    |                       |                        |                        |          |                          |                     |       |         |              | Tota           | al per year | (kWh/yea             | ) = Sum(9  | 8)15,912 = | 2574.77 | (98) |
| Spac               | e heatin              | ig require             | ement i                | n k      | Wh/m²                    | /year               |       |         |              |                |             |                      |            |            | 33.83   | (99) |
|                    |                       |                        |                        |          |                          |                     |       |         |              |                |             |                      |            |            |         |      |

| 9a. En   | ergy reo                         | quiremer    | nts – Ind          | ividual h          | eating sy  | /stems i          | ncluding     | micro-C     | HP)                     |                       |                         |        |            |                                                              |
|----------|----------------------------------|-------------|--------------------|--------------------|------------|-------------------|--------------|-------------|-------------------------|-----------------------|-------------------------|--------|------------|--------------------------------------------------------------|
| Spac     | e heatii                         | ng:         | t frage -          | <b></b>            | doursels   |                   | 0.01         |             |                         |                       |                         |        | 2          |                                                              |
| Fracti   | ion of sp                        |             | it from S          | econdary           |            | mentary           | system       | (202) - 1   | - (201) -               |                       |                         |        | 0          |                                                              |
| Fracti   | ion of to                        | tal booting | n nom m            | main syst          | tor 1      |                   |              | (204) = 12  | (201) =<br>(2) × [1 - 1 | (203)] -              |                         |        | 1          | (202)                                                        |
| Efficie  |                                  |             |                    | ing system         |            |                   |              | (204) - (20 | ~_/ ^ [ ' -             | (200)] -              |                         |        |            | $\left  \begin{array}{c} (204) \\ (206) \end{array} \right $ |
| Efficie  |                                  | nan spa     |                    | amontor            | v heating  | n evetor          | n ⁰⁄-        |             |                         |                       |                         |        | 93.4       |                                                              |
| EIIICIE  |                                  |             | suppl              |                    |            | JSYSLEIT          | 1, 70        | Δ           | 0                       | Oct                   | N.L.                    | Det    |            |                                                              |
| Snac     | Jan<br>e heatin                  | require     | Mar<br>Ment (c     |                    | May        | Jun               | Jul          | Aug         | Sep                     | Oct                   | Nov                     | Dec    | kwh/yea    | ar                                                           |
| Opaci    | 538.5                            | 409.65      | 321.4              | 154.41             | 48.21      | 0                 | 0            | 0           | 0                       | 175.89                | 373.9                   | 552.81 |            |                                                              |
| (211)m   | י<br>1 = {[(98                   | )m x (20    | u4)] } x 1         | 00 ÷ (20           | I<br>(6)   |                   | 1            | I           |                         |                       | 1                       | 1      | I          | (211)                                                        |
| . ,-     | 576.56                           | 438.59      | 344.11             | 165.32             | ,<br>51.62 | 0                 | 0            | 0           | 0                       | 188.32                | 400.33                  | 591.87 |            |                                                              |
|          | •                                | •           |                    | •                  |            |                   |              | Tota        | l (kWh/yea              | ar) =Sum(2            | 211) <sub>15,1012</sub> | 2=     | 2756.72    | (211)                                                        |
| Space    | e heatin                         | g fuel (s   | econdar            | y), kWh/           | month      |                   |              |             |                         |                       |                         |        |            |                                                              |
| = {[(98  | )m x (20                         | 01)] } x 1  | 00 ÷ (20           | )8)                |            | 0                 |              |             | 0                       | 0                     |                         |        |            |                                                              |
| (215)m=  | 0                                | 0           | 0                  | 0                  | 0          | 0                 | 0            | 0<br>Tota   | 0<br>L (kWb/vea         | 0<br>ar) = Sum(2)     | 0                       | 0      | 0          | 7(215)                                                       |
| Water    | heating                          | r           |                    |                    |            |                   |              | 1014        |                         |                       | - • • • 15,1012         | 2      | U          |                                                              |
| Output   | from w                           | ater hea    | ter (calc          | ulated al          | oove)      |                   |              |             |                         |                       |                         |        |            |                                                              |
|          | 199.1                            | 173.92      | 180.95             | 160.49             | 155.39     | 136.85            | 131.12       | 146.16      | 147.78                  | 168.28                | 179.63                  | 194.42 |            |                                                              |
| Efficier | ncy of w                         | ater hea    | iter               |                    |            |                   |              |             |                         |                       |                         |        | 80.3       | (216)                                                        |
| (217)m=  | 87.43                            | 87.13       | 86.48              | 84.95              | 82.48      | 80.3              | 80.3         | 80.3        | 80.3                    | 85.16                 | 86.85                   | 87.54  |            | (217)                                                        |
| Fuel fo  | or water $(64)$                  | heating,    | kWh/m<br>) → (217) | onth               |            |                   |              |             |                         |                       |                         |        |            |                                                              |
| (219)m=  | 227.72                           | 199.6       | 209.23             | 188.92             | 188.39     | 170.43            | 163.28       | 182.02      | 184.03                  | 197.59                | 206.82                  | 222.11 |            |                                                              |
|          |                                  |             |                    |                    |            |                   |              | Tota        | I = Sum(2               | 19a) <sub>112</sub> = |                         |        | 2340.14    | (219)                                                        |
| Annua    | al totals                        |             |                    |                    |            |                   |              |             |                         | k                     | Wh/year                 | r      | kWh/year   | -                                                            |
| Space    | heating                          | fuel use    | ed, main           | system             | 1          |                   |              |             |                         |                       |                         |        | 2756.72    |                                                              |
| Water    | heating                          | fuel use    | d                  |                    |            |                   |              |             |                         |                       |                         |        | 2340.14    |                                                              |
| Electri  | city for p                       | oumps, fa   | ans and            | electric           | keep-hot   | t                 |              |             |                         |                       |                         |        |            |                                                              |
| centra   | al heatir                        | ng pump:    | :                  |                    |            |                   |              |             |                         |                       |                         | 30     |            | (230c)                                                       |
| boiler   | with a f                         | an-assis    | sted flue          |                    |            |                   |              |             |                         |                       |                         | 45     |            | (230e)                                                       |
| Total e  | electricit                       | y for the   | above, l           | kWh/yea            | r          |                   |              | sum         | of (230a).              | (230g) =              |                         |        | 75         | (231)                                                        |
| Electri  | city for I                       | ighting     |                    |                    |            |                   |              |             |                         |                       |                         |        | 333.64     | (232)                                                        |
| 12a. (   | CO2 <u>er</u> r                  | issions -   | – Indivi <u>d</u>  | ual hea <u>t</u> i | ng syste   | ems inc <u>lu</u> | uding mi     | cro-CHP     |                         |                       |                         |        |            |                                                              |
|          | Energy Emission factor Emissions |             |                    |                    |            |                   |              |             |                         |                       |                         |        |            |                                                              |
|          |                                  |             |                    |                    |            | ⊏n<br>kW          | /h/year      |             |                         | kg CO                 | 2/kWh                   |        | kg CO2/yea | ır                                                           |
| Space    | heating                          | (main s     | ystem 1            | )                  |            | (21               | 1) x         |             |                         | 0.2                   | 16                      | =      | 595.45     | (261)                                                        |
| Space    | heating                          | (second     | dary)              |                    |            | (21               | 5) x         |             |                         | 0.5                   | 19                      | =      | 0          | <br>](263)                                                   |
| Water    | heating                          |             | .,                 |                    |            | (219              | 9) x         |             |                         | 0.2                   | 16                      | =      | 505.47     | ](264)                                                       |
| Space    | and wa                           | ter heati   | ng                 |                    |            | (26               | 1) + (262) · | + (263) + ( | 264) =                  | <u>,</u>              | -                       |        | 1100.92    | 」`´´´<br>](265)                                              |

| Electricity for pumps, fans and electric keep-hot | (231) | x |        | 0.519        | = | 38.93  | (267) |
|---------------------------------------------------|-------|---|--------|--------------|---|--------|-------|
| Electricity for lighting                          | (232) | x | [      | 0.519        | = | 173.16 | (268) |
| Total CO2, kg/year                                |       |   | sum of | (265)(271) = |   | 1313   | (272) |
|                                                   |       |   |        |              |   |        |       |
| TER =                                             |       |   |        |              |   | 17.25  | (273) |

# **Regulations Compliance Report**

| Approved Document L1<br>Printed on 22 June 2018                     | A, 2013 Edition, England assessed                                                                                                                               | by Stroma FSAP 2012 program, Vers                                    | ion: 1.0.3.11          |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------|
| Project Information:                                                | 5 dt 10.40.02                                                                                                                                                   |                                                                      |                        |
| Assessed By: ()                                                     |                                                                                                                                                                 | Building Type:                                                       | Flat                   |
| Assessed By. ()                                                     |                                                                                                                                                                 | Bunding Type.                                                        | ridi                   |
| Dwelling Details:                                                   |                                                                                                                                                                 |                                                                      | 42                     |
| NEW DWELLING DESI                                                   |                                                                                                                                                                 | Total Floor Area: 76                                                 | 0.1M <sup>2</sup>      |
| Site Reference : Anil                                               | ngton works, Twickennam                                                                                                                                         | Plot Reference:                                                      | Ariington 3 Bed MID 76 |
| Address :                                                           |                                                                                                                                                                 |                                                                      |                        |
| Client Details:                                                     |                                                                                                                                                                 |                                                                      |                        |
| Name: Sha<br>Address :                                              | arpes Refinery Service                                                                                                                                          |                                                                      |                        |
| This report covers iter<br>It is not a complete rep                 | ns included within the SAP calcul<br>port of regulations compliance.                                                                                            | ations.                                                              |                        |
| 1a TER and DER                                                      |                                                                                                                                                                 |                                                                      |                        |
| Fuel for main heating sy                                            | stem: Mains gas                                                                                                                                                 |                                                                      |                        |
| Fuel factor: 1.00 (mains                                            | gas)<br>Emission Rote (TER)                                                                                                                                     | 15.02 kg/m²                                                          |                        |
| Dwelling Carbon Dioxide                                             | e Emission Rate (DER)                                                                                                                                           | 13.79 kg/m²                                                          | ОК                     |
| 1b TFEE and DFEE                                                    |                                                                                                                                                                 |                                                                      | ••••                   |
| Target Fabric Energy Ef<br>Dwelling Fabric Energy                   | ficiency (TFEE)<br>Efficiency (DFEE)                                                                                                                            | 34.3 kWh/m²<br>30.3 kWh/m²                                           | ОК                     |
| Element<br>External wall<br>Party wall<br>Floor<br>Roof<br>Openings | Average<br>0.17 (max. 0.30)<br>0.00 (max. 0.20)<br>(no floor)<br>(no roof)<br>1.42 (max. 2.00)                                                                  | Highest<br>0.17 (max. 0.70)<br>-<br>1.60 (max. 3.30)                 | ок<br>ок<br>ок         |
| 2a Thermal bridging                                                 |                                                                                                                                                                 |                                                                      |                        |
| Thermal bridgi                                                      | ng calculated from linear thermal tra                                                                                                                           | nsmittances for each junction                                        |                        |
| 3 Air permeability                                                  |                                                                                                                                                                 |                                                                      |                        |
| Air permeability a<br>Maximum                                       | tt 50 pascals                                                                                                                                                   | 4.00 (design valu<br>10.0                                            | e)<br>OK               |
| 4 Heating efficiency                                                |                                                                                                                                                                 |                                                                      |                        |
| Main Heating sys                                                    | tem: Database: (rev 397<br>Boiler systems with<br>Brand name: Alpha<br>Model: InTec 34C<br>Model qualifier:<br>(Combi)<br>Efficiency 88.8 % S<br>Minimum 88.0 % | 7, product index 016661):<br>n radiators or underfloor heating - mai | ns gas<br>OK           |
| Secondary heatir                                                    | ng system: None                                                                                                                                                 |                                                                      |                        |

# **Regulations Compliance Report**

| 5 Cylinder insulation             |                    |                    |                                         |       |
|-----------------------------------|--------------------|--------------------|-----------------------------------------|-------|
| Hot water Storage:                | No cylinder        |                    |                                         |       |
| 6 Controls                        |                    |                    |                                         |       |
|                                   |                    |                    |                                         |       |
| Space heating controls            | Time and temper    | rature zone contro | I by device in database                 | ОК    |
| Hot water controls:               | No cylinder        |                    | ,                                       |       |
| Boiler interlock:                 | Yes                |                    |                                         | ОК    |
| 7 Low energy lights               |                    |                    |                                         |       |
| Percentage of fixed lights with I | ow-energy fittings |                    | 100.0%                                  |       |
| Minimum                           |                    |                    | 75.0%                                   | OK    |
| 8 Mechanical ventilation          |                    |                    |                                         |       |
| Not applicable                    |                    |                    |                                         |       |
| 9 Summertime temperature          |                    |                    |                                         |       |
| Overheating risk (Thames valle    | y):                |                    | Medium                                  | ОК    |
| Based on:                         |                    |                    |                                         |       |
| Overshading:                      |                    |                    | Average or unknown                      |       |
| Windows facing: North West        |                    |                    | 4.41m <sup>2</sup>                      |       |
| Windows facing: North West        |                    |                    | 4.41m <sup>2</sup>                      |       |
| Windows facing: South East        |                    |                    | 4.41m <sup>2</sup>                      |       |
| Windows facing: South West        |                    |                    | 2.52m <sup>2</sup>                      |       |
| Ventilation rate:                 |                    |                    | 3.00                                    |       |
| Blinds/curtains:                  |                    |                    | None                                    |       |
|                                   |                    |                    | Close <mark>d 100% of daylight</mark> l | hours |
|                                   |                    |                    |                                         |       |
| 10 Key features                   |                    |                    |                                         |       |
| Party Walls U-value               |                    |                    | 0 W/m²K                                 |       |
|                                   |                    |                    |                                         |       |
|                                   |                    |                    |                                         |       |
|                                   |                    |                    |                                         |       |
|                                   |                    |                    |                                         |       |

|                                  |                                |              | User D             | etails:          |                  |               |            |           |                        |                       |
|----------------------------------|--------------------------------|--------------|--------------------|------------------|------------------|---------------|------------|-----------|------------------------|-----------------------|
| Assessor Name:<br>Software Name: | Stroma FSAP 201                | 2            | :                  | Stroma<br>Softwa | a Num<br>ire Ver | ber:<br>sion: |            | Versio    | n: 1.0.3.11            |                       |
|                                  |                                | Pro          | operty A           | Address:         | Arlingto         | on 3 Bec      | 1 MID 76   |           |                        |                       |
| Address :                        |                                |              |                    |                  |                  |               |            |           |                        |                       |
| 1. Overall dwelling dime         | ensions:                       |              |                    |                  |                  |               |            |           |                        |                       |
|                                  |                                |              | Area               | 1 <b>(m²)</b>    |                  | Av. He        | ight(m)    |           | Volume(m <sup>3</sup>  | )                     |
| Ground floor                     |                                |              | 7                  | 6.1              | (1a) x           | 2             | 2.3        | (2a) =    | 175.03                 | (3a)                  |
| Total floor area TFA = (1        | a)+(1b)+(1c)+(1d)+(1e          | e)+(1n)      | 7                  | 6.1              | (4)              |               |            |           |                        |                       |
| Dwelling volume                  |                                |              |                    |                  | (3a)+(3b)        | )+(3c)+(3c    | d)+(3e)+   | .(3n) =   | 175.03                 | (5)                   |
| 2. Ventilation rate:             |                                |              |                    |                  |                  |               |            |           |                        |                       |
|                                  | main s                         | econdary     |                    | other            |                  | total         |            |           | m <sup>3</sup> per hou | r                     |
| Number of chimneys               |                                | 0            | + [                | 0                | ] = [            | 0             | x 4        | 40 =      | 0                      | (6a)                  |
| Number of open flues             | 0 +                            | 0            | i + [              | 0                | ] = [            | 0             | ×          | 20 =      | 0                      | (6b)                  |
| Number of intermittent fa        | ins                            |              | J L                |                  | · _              | 2             | <b>x</b> 7 | 10 =      | 20                     | (7a)                  |
| Number of passive vents          | i                              |              |                    |                  |                  | 0             | <b>x</b> 7 | 10 =      | 0                      | (7b)                  |
| Number of flueless gas fi        | res                            |              |                    |                  |                  | 0             | X 4        | 40 =      | 0                      | (7c)                  |
|                                  |                                |              |                    |                  |                  |               |            | Air ch    | anges per ho           | our                   |
| Infiltration due to chimne       | ys, flues and fans = (6        | a)+(6b)+(7a  | ) <b>+(7</b> b)+(7 | (c) =            |                  | 20            |            | ÷ (5) =   | 0.11                   | (8)                   |
| If a pressurisation test has b   | peen carried out or is intende | ed, proceed  | to (17), o         | therwise c       | ontinue fro      | om (9) to (   | (16)       |           |                        |                       |
| Additional infiltration          | ne dweiling (ns)               |              |                    |                  |                  |               | [(0).      | -11x0 1 - | 0                      | (9)                   |
| Structural infiltration: 0       | .25 for steel or timber        | frame or (   | ).35 for           | masonr           | v constr         | uction        | [(0)       | 1,0.1 -   | 0                      | $= \frac{(10)}{(11)}$ |
| if both types of wall are p      | resent, use the value corres   | ponding to t | the greate         | er wall area     | a (after         |               |            |           | 0                      |                       |
| deducting areas of openii        | ngs); if equal user 0.35       | lod) or 0 1  | (coolo             | d) also          | optor 0          |               |            |           | 2                      |                       |
| If no draught lobby en           | ter $0.05$ else enter $0$      |              | (Seale             | u), eise         | Sinter U         |               |            |           | 0                      | $-1^{(12)}_{(13)}$    |
| Percentage of windows            | s and doors draught st         | tripped      |                    |                  |                  |               |            |           | 0                      | $= \frac{(10)}{(14)}$ |
| Window infiltration              |                                |              | (                  | 0.25 - [0.2      | x (14) ÷ 1       | 00] =         |            |           | 0                      |                       |
| Infiltration rate                |                                |              |                    | (8) + (10) -     | + (11) + (1      | 2) + (13) -   | + (15) =   |           | 0                      | (16)                  |
| Air permeability value,          | q50, expressed in cub          | oic metres   | per ho             | ur per so        | uare m           | etre of e     | envelope   | area      | 4                      | (17)                  |
| If based on air permeabil        | ity value, then (18) = [(1     | 7) ÷ 20]+(8) | , otherwis         | se (18) = (      | 16)              |               |            |           | 0.31                   | (18)                  |
| Air permeability value applie    | es if a pressurisation test ha | s been done  | or a deg           | ree air per      | meability        | is being u    | sed        |           |                        | _                     |
| Number of sides sheltere         | ed                             |              |                    | (20) 4 [         | 0 07E v (4       | 0)]           |            |           | 2                      | (19)                  |
| Shelter factor                   | la substitue for the           |              |                    | (20) = 1 - [     | 0.075 X (1       | 9)] =         |            |           | 0.85                   | (20)                  |
| Infiltration rate incorporat     | ting shelter factor            |              |                    | (21) = (18)      | x (20) =         |               |            |           | 0.27                   | (21)                  |
| Infiltration rate modified f     | or monthly wind speed          |              |                    |                  |                  |               |            |           |                        |                       |
| Jan Feb                          | Mar Apr May                    | Jun          | Jui                | Aug              | Sep              | Oct           | NOV        | Dec       |                        |                       |
| Monthly average wind sp          | beed from Table 7              |              |                    |                  |                  |               | <u> </u>   |           | 1                      |                       |
| (∠∠)m= 5.1 5                     | 4.9 4.4 4.3                    | 3.8          | 3.8                | 3.7              | 4                | 4.3           | 4.5        | 4./       |                        |                       |
| Wind Factor $(22a)m = (22a)m$    | 2)m ÷ 4                        |              |                    |                  |                  |               |            |           |                        |                       |
| (22a)m= 1.27 1.25                | 1.23 1.1 1.08                  | 0.95         | 0.95               | 0.92             | 1                | 1.08          | 1.12       | 1.18      |                        |                       |
|                                  |                                |              |                    |                  |                  |               |            |           |                        |                       |

| Adjust               | ed infiltr               | ation rat                  | e (allowi                 | ing for sh                | nelter an                 | d wind s               | speed) =       | (21a) x         | (22a)m         |                |                  |                    |            |             |       |
|----------------------|--------------------------|----------------------------|---------------------------|---------------------------|---------------------------|------------------------|----------------|-----------------|----------------|----------------|------------------|--------------------|------------|-------------|-------|
|                      | 0.34                     | 0.33                       | 0.33                      | 0.29                      | 0.29                      | 0.25                   | 0.25           | 0.25            | 0.27           | 0.29           | 0.3              | 0.31               |            |             |       |
| Calcul<br>If ma      | ate etter                | ctive air                  | change                    | rate for t                | he appli                  | cable ca               | se             |                 |                |                |                  |                    |            |             | (220) |
| lf exh               | aust air he              | eat pump                   | usina App                 | endix N. (2               | 23b) = (23a               | i) x Fmv (e            | equation (N    | N5)) . othe     | rwise (23b     | ) = (23a)      |                  |                    | 0          |             | (23b) |
| If bala              | anced with               | heat reco                  | overv: effic              | iencv in %                | allowing f                | or in-use f            | actor (from    | n Table 4h      | ) =            | , (,           |                  |                    | 0          |             | (230) |
| a) If                | halance                  | d mech                     | anical ve                 | ntilation                 | with he                   | at recove              | orv (MI\/F     | HR) (24a        | /<br>a)m – (2' | 2h)m + (       | 23h) 🗸 [ʻ        | l – (23c)          | <br>∸ 1001 |             | (230) |
| (24a)m=              |                          |                            |                           |                           | 0                         | 0                      |                |                 |                |                |                  | 0                  | . 100]     |             | (24a) |
| b) If                | balance                  | d mech                     | I<br>anical ve            | L<br>entilation           | without                   | heat rec               | L<br>coverv (N | L<br>/\\/) (24b | l = (22)       | I<br>2b)m + () | L<br>23b)        |                    |            |             |       |
| (24b)m=              | 0                        | 0                          |                           | 0                         | 0                         | 0                      |                | 0               | 0              | 0              | 0                | 0                  |            |             | (24b) |
| c) If                | whole h                  | ouse ex                    | ract ver                  | ntilation of              | or positiv                | re input v             | ventilatio     | n from c        | utside         |                |                  |                    |            |             |       |
|                      | if (22b)n                | n < 0.5 ×                  | (23b), t                  | then (24                  | c) = (23b                 | ); other               | wise (24       | c) = (22b       | o) m + 0.      | .5 × (23b      | ))               |                    |            |             |       |
| (24c)m=              | 0                        | 0                          | 0                         | 0                         | 0                         | 0                      | 0              | 0               | 0              | 0              | 0                | 0                  |            |             | (24c) |
| d) If                | natural                  | ventilatio                 | on or wh                  | ole hous                  | se positiv                | /e input               | ventilatio     | on from I       | oft            | -              | -                | -                  |            |             |       |
|                      | if (22b)n                | n = 1, th                  | en (24d)<br>I             | m = (22l                  | b)m othe                  | erwise (2              | 24d)m = 0      | 0.5 + [(2       | 2b)m² x        | 0.5]           |                  |                    | l          |             |       |
| (24d)m=              | 0.56                     | 0.56                       | 0.55                      | 0.54                      | 0.54                      | 0.53                   | 0.53           | 0.53            | 0.54           | 0.54           | 0.55             | 0.55               |            |             | (24d) |
| Effe                 | ctive air                | change                     | rate - er                 | nter (24a                 | i) or (24b                | o) or (24              | c) or (24      | d) in boy       | (25)           | 0.54           | 0.55             | 0.55               | I          |             | (05)  |
| (25)m=               | 0.56                     | 0.56                       | 0.55                      | 0.54                      | 0.54                      | 0.53                   | 0.53           | 0.53            | 0.54           | 0.54           | 0.55             | 0.55               |            |             | (25)  |
| 3. He                | at losse                 | s and he                   | eat loss                  | paramet                   | er:                       |                        |                |                 |                |                |                  |                    |            |             |       |
| ELEN                 |                          | Gros<br>are <mark>a</mark> | ss<br>(m²)                | Openin<br>m               | lgs<br>1 <sup>2</sup>     | Net Ar<br>A ,r         | rea<br>m²      | U-valu<br>W/m2  | ue<br>K        | A X U<br>(W/I  | K)               | k-value<br>kJ/m²·ł | ↔<br>≺     | A X<br>kJ/K | k     |
| Doo <mark>rs</mark>  |                          |                            |                           |                           |                           | 1.89                   | x              | 1.6             | =              | 3.024          |                  |                    |            |             | (26)  |
| Windo                | <mark>ws</mark> Type     | e 1                        |                           |                           |                           | 4.41                   | x1,            | /[1/( 1.4 )+    | 0.04] =        | 5.85           | F                |                    |            |             | (27)  |
| Windo                | ws Type                  | 2                          |                           |                           |                           | 4.41                   | x1/            | /[1/( 1.4 )+    | 0.04] =        | 5.85           | F                |                    |            |             | (27)  |
| Windo                | ws Type                  | 93                         |                           |                           |                           | 4.41                   |                | /[1/( 1.4 )+    | 0.04] =        | 5.85           | 5                |                    |            |             | (27)  |
| Windo                | ws Type                  | e 4                        |                           |                           |                           | 2.52                   |                | /[1/( 1.4 )+    | 0.04] =        | 3.34           | =                |                    |            |             | (27)  |
| Walls                |                          | 56.3                       | 36                        | 17.6                      | 4                         | 38.72                  | 2 X            | 0.17            | = [            | 6.58           |                  |                    |            |             | (29)  |
| Total a              | area of e                | lements                    | , m²                      |                           |                           | 56.36                  | 3              |                 |                |                |                  |                    |            |             | (31)  |
| Party v              | wall                     |                            |                           |                           |                           | 38.24                  | + x            | 0               | =              | 0              |                  |                    |            |             | (32)  |
| Party f              | loor                     |                            |                           |                           |                           | 76.1                   |                |                 |                |                |                  |                    | <b>-</b> - |             | (32a) |
| Party of             | ceiling                  |                            |                           |                           |                           | 76.1                   | $\exists$      |                 |                |                | ſ                |                    | $\dashv$   |             | (32b) |
| * for win            | dows and<br>le the area  | roof wind                  | ows, use e<br>sides of ir | effective wi              | indow U-va<br>Is and part | alue calcul<br>titions | ated using     | formula 1       | /[(1/U-valı    | ie)+0.04] a    | L<br>as given in | paragraph          |            |             | 1, ,  |
| Fabric               | heat los                 | s, W/K                     | = S (A x                  | U)                        |                           |                        |                | (26)(30)        | ) + (32) =     |                |                  |                    | 30.4       | 19          | (33)  |
| Heat c               | apacity                  | Cm = S(                    | (Axk)                     |                           |                           |                        |                |                 | ((28)          | (30) + (32     | 2) + (32a).      | (32e) =            | 12289      | 9.45        | (34)  |
| Therm                | al mass                  | parame                     | eter (TMI                 | - = Cm -                  | + TFA) in                 | n kJ/m²K               |                |                 | Indica         | tive Value     | : Medium         |                    | 250        | 0           | (35)  |
| For desi<br>can be u | ign assess<br>used inste | sments wh<br>ad of a de    | ere the de<br>tailed calc | etails of the<br>ulation. | constructi                | ion are noi            | t known pr     | ecisely the     | e indicative   | e values of    | TMP in Ta        | able 1f            |            |             |       |
| Therm                | al bridge                | es : S (L                  | x Y) cal                  | culated                   | using Ap                  | pendix l               | <              |                 |                |                |                  |                    | 6.0        | 1           | (36)  |
| if details           | s of therma              | al bridging                | are not kr                | nown (36) =               | = 0.15 x (3               | 1)                     |                |                 |                |                |                  |                    |            |             |       |
| Total f              | abric he                 | at loss                    |                           |                           |                           |                        |                |                 | (33) +         | (36) =         |                  |                    | 36.        | 5           | (37)  |
| Ventila              | ation hea                | at loss ca                 | alculateo                 | d monthly                 | y                         |                        |                |                 | (38)m          | = 0.33 × (     | 25)m x (5)       |                    | l          |             |       |
|                      | Jan                      | Feb                        | Mar                       | Apr                       | May                       | Jun                    | Jul            | Aug             | Sep            | Oct            | Nov              | Dec                |            |             |       |

| (38)m=             | 32.23                         | 32.1                            | 31.97                   | 31.37                      | 31.26                       | 30.74                    | 30.74             | 30.64       | 30.94                 | 31.26                     | 31.49                       | 31.73               |         | (38) |
|--------------------|-------------------------------|---------------------------------|-------------------------|----------------------------|-----------------------------|--------------------------|-------------------|-------------|-----------------------|---------------------------|-----------------------------|---------------------|---------|------|
| Heat tr            | ansfer o                      | coefficie                       | nt, W/K                 |                            |                             |                          |                   |             | (39)m                 | = (37) + (3               | 38)m                        |                     |         |      |
| (39)m=             | 68.73                         | 68.6                            | 68.47                   | 67.87                      | 67.76                       | 67.24                    | 67.24             | 67.14       | 67.44                 | 67.76                     | 67.99                       | 68.22               |         |      |
| Heat lo            | oss para                      | ameter (H                       | HLP), W                 | /m²K                       |                             |                          |                   |             | (40)m                 | Average =<br>= (39)m ÷    | Sum(39) <sub>1</sub><br>(4) | 12 /12=             | 67.87   | (39) |
| (40)m=             | 0.9                           | 0.9                             | 0.9                     | 0.89                       | 0.89                        | 0.88                     | 0.88              | 0.88        | 0.89                  | 0.89                      | 0.89                        | 0.9                 |         |      |
| Numbe              | er of day                     | ,<br>vs in mo                   | nth (Tab                | le 1a)                     |                             |                          |                   |             |                       | Average =                 | Sum(40)1.                   | 12 /12=             | 0.89    | (40) |
|                    | Jan                           | Feb                             | Mar                     | Apr                        | May                         | Jun                      | Jul               | Aug         | Sep                   | Oct                       | Nov                         | Dec                 |         |      |
| (41)m=             | 31                            | 28                              | 31                      | 30                         | 31                          | 30                       | 31                | 31          | 30                    | 31                        | 30                          | 31                  |         | (41) |
|                    |                               |                                 |                         |                            |                             |                          |                   |             |                       |                           |                             |                     |         |      |
| 4. Wa              | ter hea                       | ting ene                        | rgy requ                | irement:                   |                             |                          |                   |             |                       |                           |                             | kWh/yea             | ar:     |      |
| Assum<br>if TF     | ed occu<br>A > 13.<br>A £ 13. | upancy,<br>9, N = 1<br>9, N = 1 | N<br>+ 1.76 x           | : [1 - exp                 | (-0.0003                    | 849 x (TF                | FA -13.9          | )2)] + 0.0  | )013 x ( <sup>-</sup> | TFA -13.                  | 9)<br>2.                    | 38                  |         | (42) |
| Annual             | averag                        | ge hot wa                       | ater usag               | ge in litre                | es per da                   | ay Vd,av                 | erage =           | (25 x N)    | + 36                  |                           | 90                          | .84                 |         | (43) |
| Reduce<br>not more | the annua<br>e that 125       | al average<br>i litres per      | hot water<br>person per | usage by .<br>r day (all w | 5% if the a<br>rater use, l | welling is<br>hot and co | designed (<br>ld) | o achieve   | a water us            | se target o               | Ť                           |                     |         |      |
|                    | Jan                           | Feb                             | Mar                     | Apr                        | May                         | Jun                      | ,<br>Jul          | Aug         | Sen                   | Oct                       | Nov                         | Dec                 |         |      |
| Hot wate           | er usage i                    | in litres per                   | r day for ea            | ach month                  | Vd,m = fa                   | ctor from                | Table 1c x        | (43)        |                       |                           | 1101                        |                     |         |      |
| (44)m=             | 99.92                         | 96.29                           | 92.65                   | 89.02                      | 85.39                       | 81.75                    | 81.75             | 85.39       | 89.02                 | 92.65                     | 96.29                       | <mark>9</mark> 9.92 |         |      |
|                    |                               |                                 |                         |                            |                             |                          |                   |             |                       | L<br>Total = Su           | l<br>m(44) <sub>112</sub> = |                     | 1090.04 | (44) |
| Energy o           | content of                    | <sup>f</sup> hot water          | used - cal              | culated mo                 | onthly $= 4$ .              | 190 x Vd,r               | n x nm x D        | 0Tm / 3600  | ) kWh/mor             | nth (see Ta               | bles 1b, 1                  | c, 1d)              |         |      |
| (45)m=             | 148.18                        | 129.6                           | 133.73                  | 116.59                     | 111.87                      | 96.54                    | 89.46             | 102.65      | 103.88                | 121.06                    | 132.15                      | 143.5               |         | _    |
| lf instant         | aneous v                      | vater heati                     | na at point             | t of use (no               | o hot water                 | r storage).              | enter 0 in        | boxes (46   | ) to (61)             | Tota <mark>l = S</mark> u | m(45) <sub>112</sub> =      | -                   | 1429.21 | (45) |
| (46)m-             | 22.23                         | 19.44                           | 20.06                   | 17.49                      | 16 78                       | 14.48                    | 13.42             | 15.4        | 15 58                 | 18 16                     | 19.82                       | 21.53               |         | (46) |
| Water              | storage                       | loss:                           | 20.00                   | 17.45                      | 10.70                       | 14.40                    | 10.42             | 10.4        | 10.00                 | 10.10                     | 10.02                       | 21.00               |         | (10) |
| Storag             | e volum                       | ne (litres)                     | ) includir              | ng any so                  | olar or W                   | /WHRS                    | storage           | within sa   | ame ves               | sel                       |                             | 0                   |         | (47) |
| If comr            | nunity ł                      | neating a                       | and no ta               | ank in dw                  | velling, e                  | nter 110                 | ) litres in       | (47)        |                       |                           |                             |                     |         |      |
| Otherw             | ise if no                     | o stored                        | hot wate                | er (this ir                | icludes i                   | nstantar                 | neous co          | mbi boil    | ers) ente             | er '0' in (               | 47)                         |                     |         |      |
| a) If m            | storage                       | turer's di                      | eclared I               | oss facto                  | or is kno                   | wn (kWł                  | n/dav).           |             |                       |                           |                             | 0                   |         | (48) |
| Tempe              | rature f                      | actor fro                       | m Table                 | 2h                         |                             |                          | "day).            |             |                       |                           |                             | 0                   |         | (40) |
| Energy             | lost fro                      | om water                        | r storage               | . kWh/ve                   | ear                         |                          |                   | (48) x (49) | ) =                   |                           |                             | 0                   |         | (50) |
| b) If m            | anufact                       | turer's de                      | eclared of              | cylinder l                 | oss fact                    | or is not                | known:            | (,,,        |                       |                           |                             | 0                   |         | (00) |
| Hot wa             | ter stor                      | age loss                        | factor fr               | rom Tabl                   | e 2 (kW                     | h/litre/da               | ay)               |             |                       |                           |                             | 0                   |         | (51) |
| If comr            | nunity f                      | from Ta                         | see secti<br>blo 20     | on 4.3                     |                             |                          |                   |             |                       |                           |                             |                     |         | (50) |
| Tempe              | rature f                      | actor fro                       | m Table                 | 2b                         |                             |                          |                   |             |                       |                           |                             | 0                   |         | (52) |
| Enerav             | lost fro                      | om water                        | r storage               | . kWh/ve                   | ear                         |                          |                   | (47) x (51) | ) x (52) x (          | 53) =                     |                             | 0                   |         | (54) |
| Enter              | (50) or                       | (54) in (5                      | 55)                     | , <b>,</b>                 |                             |                          |                   | 、 / (- ·)   | x- / (                | ,                         |                             | 0                   |         | (55) |
| Water              | storage                       | loss cal                        | culated                 | for each                   | month                       |                          |                   | ((56)m = (  | 55) × (41)            | m                         |                             |                     |         |      |
| (56)m=             | 0                             | 0                               | 0                       | 0                          | 0                           | 0                        | 0                 | 0           | 0                     | 0                         | 0                           | 0                   |         | (56) |
| If cylinde         | er contain                    | s dedicate                      | d solar sto             | rage, (57)                 | m = (56)m                   | x [(50) – (              | H11)] ÷ (5        | 0), else (5 | 7)m = (56)            | m where (                 | H11) is fro                 | m Appendix          | Ή       |      |
| (57)m=             | 0                             | 0                               | 0                       | 0                          | 0                           | 0                        | 0                 | 0           | 0                     | 0                         | 0                           | 0                   |         | (57) |

| Primar              | y circuit    | loss (ar       | nnual) fro           | om Table       | e 3       |            |             | 0                    |             | (58)                      |             |             |               |      |
|---------------------|--------------|----------------|----------------------|----------------|-----------|------------|-------------|----------------------|-------------|---------------------------|-------------|-------------|---------------|------|
| Primar              | y circuit    | loss cal       | culated              | for each       | month (   | 59)m = (   | (58) ÷ 36   | 65 × (41)            | m           |                           |             |             |               |      |
| (mo                 | dified by    | factor f       | rom Tab              | le H5 if t     | here is s | solar wat  | ter heati   | ng and a             | cylinde     | r thermo                  | stat)       |             | L             |      |
| (59)m=              | 0            | 0              | 0                    | 0              | 0         | 0          | 0           | 0                    | 0           | 0                         | 0           | 0           |               | (59) |
| Combi               | loss ca      | lculated       | for each             | month          | (61)m =   | (60) ÷ 36  | 65 × (41    | )m                   |             |                           |             |             |               |      |
| (61)m=              | 23.84        | 21.5           | 23.77                | 22.95          | 23.68     | 22.88      | 23.62       | 23.66                | 22.92       | 23.73                     | 23.02       | 23.82       |               | (61) |
| Total h             | eat req      | uired for      | water h              | eating ca      | alculatec | l for eac  | h month     | (62)m =              | 0.85 × (    | (45)m +                   | (46)m +     | (57)m +     | (59)m + (61)m |      |
| (62)m=              | 172.01       | 151.1          | 157.5                | 139.54         | 135.56    | 119.42     | 113.07      | 126.31               | 126.8       | 144.79                    | 155.17      | 167.33      |               | (62) |
| Solar DI            | W input      | calculated     | using App            | endix G o      | Appendix  | H (negati  | ve quantity | y) (enter '0         | if no sola  | r contribut               | ion to wate | er heating) |               |      |
| (add a              | dditiona     | l lines if     | FGHRS                | and/or \       | WWHRS     | applies    | , see Ap    | pendix C             | G)          |                           |             |             |               |      |
| (63)m=              | 0            | 0              | 0                    | 0              | 0         | 0          | 0           | 0                    | 0           | 0                         | 0           | 0           |               | (63) |
| Output              | from w       | ater hea       | ter                  |                |           |            | -           |                      |             | -                         | -           | -           |               |      |
| (64)m=              | 172.01       | 151.1          | 157.5                | 139.54         | 135.56    | 119.42     | 113.07      | 126.31               | 126.8       | 144.79                    | 155.17      | 167.33      |               |      |
|                     |              |                |                      |                |           |            |             | Outp                 | out from wa | ater heate                | r (annual)  | 12          | 1708.6        | (64) |
| Heat g              | ains fro     | m water        | heating              | , kWh/m        | onth 0.2  | 5 ´ [0.85  | × (45)m     | n + (61)m            | n] + 0.8 x  | ۲ ((46)m                  | + (57)m     | + (59)m     | ]             |      |
| (65)m=              | 55.23        | 48.47          | 50.41                | 44.5           | 43.12     | 37.82      | 35.65       | 40.05                | 40.27       | 46.19                     | 49.69       | 53.67       |               | (65) |
| in <mark>clu</mark> | ide (57)     | m in calo      | culation             | of (65)m       | only if c | ylinder i  | s in the o  | dwelling             | or hot w    | ate <mark>r is f</mark> r | om com      | munity h    | eating        |      |
| 5. Int              | ernai ga     | ains (see      | Table 5              | 5 and 5a       | ):        |            |             |                      |             |                           | _           |             | _             |      |
| Metab               | olic gair    | s (Table       | 5) Wat               | ts             |           |            |             |                      |             |                           |             |             |               |      |
| in o tono           | Jan          | Feb            | Mar                  | Apr            | May       | Jun        | Jul         | Aug                  | Sep         | Oct                       | Nov         | Dec         |               |      |
| (66)m=              | 119.23       | 119.23         | 11 <mark>9.23</mark> | 119.23         | 119.23    | 119.23     | 119.23      | 119.23               | 119.23      | 119.23                    | 119.23      | 119.23      |               | (66) |
| Lightin             | g gains      | (calcula       | ted in A             | pendix         | L, equat  | ion L9 o   | r L9a), a   | lso see <sup>-</sup> | Table 5     |                           |             |             |               |      |
| (67)m=              | 18.89        | 16.78          | 13.65                | 10.33          | 7.72      | 6.52       | 7.04        | 9.16                 | 12.29       | 15.61                     | 18.21       | 19.42       |               | (67) |
| Applia              | nces ga      | ins (calc      | ulated ir            | Append         | dix L, eq | uation L   | 13 or L1    | 3a), also            | see Ta      | ble 5                     |             |             |               |      |
| (68)m=              | 211.1        | 213.29         | 207.77               | 196.02         | 181.18    | 167.24     | 157.93      | 155.74               | 161.26      | 173.01                    | 187.84      | 201.78      |               | (68) |
| Cookir              | na aains     | (calcula       | ted in A             | n<br>Dendix    | L. equat  | ion L15    | or L15a     | ), also se           | e Table     | 5                         | 1           |             |               |      |
| (69)m=              | 34.92        | 34.92          | 34.92                | 34.92          | 34.92     | 34.92      | 34.92       | 34.92                | 34.92       | 34.92                     | 34.92       | 34.92       |               | (69) |
| Pumps               | and fa       | ns dains       | (Table !             | 1              |           |            |             |                      |             |                           |             |             |               |      |
| (70)m=              | 3            | 3              | 3                    | 3              | 3         | 3          | 3           | 3                    | 3           | 3                         | 3           | 3           |               | (70) |
| Losses              |              | l<br>vaporatic | n (nega              | i<br>tive valu | es) (Tab  | l<br>le 5) |             |                      |             |                           |             |             |               |      |
| (71)m=              | -95.39       | -95.39         | -95.39               | -95.39         | -95.39    | -95.39     | -95.39      | -95.39               | -95.39      | -95.39                    | -95.39      | -95.39      |               | (71) |
| Water               | L<br>heating | L<br>nains (1  | I<br>Table 5)        |                |           |            | I           |                      |             | I                         | I           |             |               |      |
| (72)m=              | 74.23        | 72.12          | 67.75                | 61.81          | 57.96     | 52.53      | 47.92       | 53.83                | 55.93       | 62.08                     | 69.02       | 72.14       | l             | (72) |
| Total i             | ntornal      | asine -        |                      |                |           | (66)       | m + (67)m   | 1 + (68)m +          | - (69)m + ( | (70)m + (7                | 1)m + (72)  | )m          |               |      |
| (73)m=              | 365.99       | 363.96         | 350.94               | 329.93         | 308 63    | 288.06     | 274 66      | 280.49               | 291 25      | 312 46                    | 336.84      | 355 11      | l             | (73) |
| 6. So               | lar gains    | S:             |                      | 1              | 1         |            | 1           | 1                    |             | 1                         |             | 1           |               |      |
| Solar g             | ains are o   | alculated      | using sola           | r flux from    | Table 6a  | and assoc  | iated equa  | ations to co         | nvert to th | e applicat                | le orientat | tion.       |               |      |
| Orienta             | ation: /     | Access F       | actor                | Area           |           | Flu        | x           |                      | g_          |                           | FF          |             | Gains         |      |

| Onentation.    | Table 6d |   | m²   |   | Table 6a |   | 9_<br>Table 6b |   | Table 6c |   | (W)   |      |
|----------------|----------|---|------|---|----------|---|----------------|---|----------|---|-------|------|
| Southeast 0.9x | 0.77     | x | 4.41 | x | 36.79    | x | 0.63           | x | 0.7      | = | 49.59 | (77) |
| Southeast 0.9x | 0.77     | x | 4.41 | x | 62.67    | × | 0.63           | x | 0.7      | = | 84.47 | (77) |

|                                        |      | 1 |      | 1 |        | 1   |      |   |     | 1          |        | -         |
|----------------------------------------|------|---|------|---|--------|-----|------|---|-----|------------|--------|-----------|
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 85.75  | x   | 0.63 | X | 0.7 | =          | 115.57 | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 106.25 | x   | 0.63 | x | 0.7 | =          | 143.2  | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 119.01 | x   | 0.63 | x | 0.7 | =          | 160.4  | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 118.15 | x   | 0.63 | x | 0.7 | =          | 159.24 | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 113.91 | x   | 0.63 | x | 0.7 | =          | 153.52 | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 104.39 | x   | 0.63 | x | 0.7 | ] =        | 140.69 | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 92.85  | x   | 0.63 | x | 0.7 | ] =        | 125.14 | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 69.27  | x   | 0.63 | x | 0.7 | ] =        | 93.36  | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 44.07  | x   | 0.63 | x | 0.7 | =          | 59.4   | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 31.49  | x   | 0.63 | x | 0.7 | =          | 42.44  | (77)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 36.79  | ]   | 0.63 | x | 0.7 | =          | 28.34  | (79)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 62.67  | ]   | 0.63 | x | 0.7 | =          | 48.27  | (79)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 85.75  | ]   | 0.63 | x | 0.7 | ] =        | 66.04  | (79)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 106.25 | ]   | 0.63 | x | 0.7 | ] =        | 81.83  | (79)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 119.01 | 1   | 0.63 | x | 0.7 | =          | 91.66  | (79)      |
| Southwest <mark>0.9x</mark>            | 0.77 | × | 2.52 | x | 118.15 | ]   | 0.63 | x | 0.7 | =          | 90.99  | (79)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 113.91 | İ   | 0.63 | x | 0.7 | <b>j</b> = | 87.73  | (79)      |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | x | 2.52 | X | 104.39 |     | 0.63 | х | 0.7 | =          | 80.4   | (79)      |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | × | 2.52 | x | 92.85  | İ.  | 0.63 | x | 0.7 | =          | 71.51  | (79)      |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | x | 2.52 | x | 69.27  | i / | 0.63 | x | 0.7 | <b>j</b> = | 53.35  | (79)      |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | x | 2.52 | x | 44.07  | i/  | 0.63 | x | 0.7 | <b>i</b> = | 33.94  | (79)      |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | x | 2.52 | x | 31.49  | ĺ   | 0.63 | x | 0.7 | i =        | 24.25  | _<br>(79) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 11.28  | ×   | 0.85 | x | 0.7 | i =        | 20.52  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 11.28  | ×   | 0.85 | x | 0.7 | <b>i</b> = | 20.52  | (81)      |
| Northwest 0.9x                         | 0.77 | × | 4.41 | x | 22.97  | ×   | 0.85 | x | 0.7 | <b>j</b> = | 41.76  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 22.97  | x   | 0.85 | x | 0.7 | <b>j</b> = | 41.76  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 41.38  | ×   | 0.85 | x | 0.7 | =          | 75.24  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 41.38  | ×   | 0.85 | x | 0.7 | i =        | 75.24  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 67.96  | x   | 0.85 | x | 0.7 | i =        | 123.57 | -<br>(81) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 67.96  | ×   | 0.85 | x | 0.7 | i =        | 123.57 | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 91.35  | ×   | 0.85 | x | 0.7 | i =        | 166.1  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 91.35  | ×   | 0.85 | x | 0.7 | i =        | 166.1  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 97.38  | ×   | 0.85 | x | 0.7 | <b>i</b> = | 177.08 | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 97.38  | x   | 0.85 | x | 0.7 | i =        | 177.08 | -<br>(81) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 91.1   | x   | 0.85 | x | 0.7 | <b>i</b> = | 165.66 | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 91.1   | x   | 0.85 | x | 0.7 | <b>i</b> = | 165.66 | ]<br>(81) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 72.63  | x   | 0.85 | x | 0.7 | <b>i</b> = | 132.06 | -<br>(81) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 72.63  | x   | 0.85 | x | 0.7 | i =        | 132.06 | _<br>(81) |
| Northwest 0.9x                         | 0.77 | × | 4.41 | x | 50.42  | ×   | 0.85 | x | 0.7 | i =        | 91.68  | -<br>(81) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 50.42  | ×   | 0.85 | x | 0.7 | i =        | 91.68  | -<br>(81) |
| Northwest 0.9x                         | 0.77 | × | 4.41 | x | 28.07  | ×   | 0.85 | x | 0.7 | i =        | 51.04  | -<br>(81) |
| 1                                      |      |   |      |   |        |     |      |   |     |            |        |           |

| Northw   | est <mark>0.9x</mark>     | 0.77      | x         | 4.4                  | ¥1           | x        | 2        | 8.07      | x          | 0.85       | x                   | 0.7         | =          | 51.04   | (81) |
|----------|---------------------------|-----------|-----------|----------------------|--------------|----------|----------|-----------|------------|------------|---------------------|-------------|------------|---------|------|
| Northw   | est 0.9x                  | 0.77      | x         | 4.4                  | 11           | x        | 1        | 4.2       | x          | 0.85       | =                   | 0.7         | = =        | 25.82   | (81) |
| Northw   | est 0.9x                  | 0.77      | x         | 4.4                  | 11           | x        | 1        | 4.2       | x          | 0.85       |                     | 0.7         | =          | 25.82   | (81) |
| Northw   | est 0.9x                  | 0.77      | x         | 4.4                  | 11           | x        |          | ).21      | x          | 0.85       | × [                 | 0.7         | =          | 16.76   | (81) |
| Northw   | /est 0.9x                 | 0.77      | ×         | 4.4                  | 11           | x        |          | ).21      | x          | 0.85       |                     | 0.7         | =          | 16.76   | (81) |
|          | L                         |           |           |                      |              |          |          |           |            |            |                     |             |            |         |      |
| Solar    | oains in                  | watts, ca | alculated | d for eac            | h month      | n        |          |           | (83)m = S  | um(74)m .  | (82)m               |             |            |         |      |
| (83)m=   | 118.96                    | 216.26    | 332.1     | 472.17               | 584.26       | 6        | 604.4    | 572.56    | 485.22     | 380.02     | 248.78              | 144.97      | 100.2      |         | (83) |
| Total g  | gains – i                 | nternal a | ind sola  | r (84)m =            | -<br>= (73)m | + (      | 83)m ,   | watts     |            |            | 1                   |             | 1          | 1       |      |
| (84)m=   | 484.95                    | 580.22    | 683.04    | 802.1                | 892.89       | 8        | 92.45    | 847.22    | 765.71     | 671.27     | 561.24              | 481.81      | 455.31     |         | (84) |
| 7 Mc     | an inter                  | nal temr  | oraturo   | (heating             |              | ן<br>בו  |          |           |            |            |                     |             |            | 1       |      |
| Temr     | perature                  | during b  | eating r  |                      | the liv      | "<br>ina | area f   | rom Tab   |            | 1 (°C)     |                     |             |            | 21      | (85) |
| Litilio  | otion for                 | tor for a | aine for  |                      | n une nv     | y<br>(c  |          |           | ле э, тп   | 1(0)       |                     |             |            | 21      | (00) |
| Ullis    | lan                       | Eeb       | Mar       |                      | May          |          |          |           | Δυσ        | Sen        | Oct                 | Nov         | Dec        | ]       |      |
| (86)m-   | 1                         | 0.99      | 0.97      | 0.87                 | 0.68         | +        | 0.48     | 0.35      | Aug        | 0.67       | 0.94                | 0.99        |            |         | (86) |
| (00)11-  | '                         | 0.99      | 0.97      | 0.07                 | 0.00         |          | 0.40     | 0.55      | 0.4        | 0.07       | 0.34                | 0.33        |            |         | (00) |
| Mear     | n interna                 | l temper  | ature in  | living ar            | ea T1 (f     | ollo     | w step   | os 3 to 7 | in Tabl    | e 9c)      |                     | i           | i          | 1       |      |
| (87)m=   | 20.14                     | 20.32     | 20.57     | 20.84                | 20.97        |          | 21       | 21        | 21         | 20.98      | 20.77               | 20.4        | 20.1       |         | (87) |
| Temp     | perature                  | during h  | eating p  | periods i            | n rest of    | dw       | velling  | from Ta   | ble 9, T   | h2 (°C)    |                     | -           |            |         |      |
| (88)m=   | 20.16                     | 20.17     | 20.17     | 20.17                | 20.18        | 2        | 0.18     | 20.18     | 20.18      | 20.18      | 2 <mark>0.18</mark> | 20.17       | 20.17      |         | (88) |
| Utilis   | ation fac                 | tor for g | ains for  | rest of d            | welling,     | h2.      | m (se    | e Table   | 9a)        |            |                     |             |            |         |      |
| (89)m=   | 1                         | 0.99      | 0.96      | 0.84                 | 0.63         |          | 0.42     | 0.28      | 0.33       | 0.6        | 0.92                | 0.99        | 1          |         | (89) |
| Mear     |                           | l temper  | ature in  | the rest             | of dwel      | ina      | T2 (fc   | ollow ste | ins 3 to 7 | 7 in Tabl  |                     |             |            |         |      |
| (90)m=   | 19.02                     | 19.27     | 19.63     | 20                   | 20.15        |          | 20.18    | 20.18     | 20.18      | 20.16      | 19.92               | 19.39       | 18.97      |         | (90) |
| (,       |                           |           |           |                      |              |          |          |           |            | f          | fLA = Livir         | ig area ÷ ( | 4) =       | 0.33    | (91) |
|          |                           |           |           |                      |              |          |          |           |            |            |                     |             |            |         |      |
| Mear     |                           | I temper  | ature (fo | or the wh            | ole dwe      | ellin    | g) = fL  | _A × T1   | + (1 – †L  | .A) × T2   | 00.0                | 10.70       | 10.04      | 1       | (02) |
| (92)m=   | 19.39                     | 19.61     | 19.94     | 20.28                | 20.42        | 2        | 20.45    | 20.45     | 20.45      | 20.43      | 20.2                | 19.72       | 19.34      |         | (92) |
| Appiy    | $\sqrt{\frac{10.20}{20}}$ |           | ne mear   | n interna            |              | ratu     |          | m Table   | 4e, whe    | ere appro  |                     | 10.72       | 10.24      | 1       | (03) |
| (93)III= | 19.59                     | ting root | uiromon   | 20.20                | 20.42        |          | .0.45    | 20.45     | 20.45      | 20.43      | 20.2                | 19.72       | 19.34      |         | (00) |
| Sot T    | i to the                  | mean int  | arnal to  | mporatu              | ro obtai     | nod      | l at sta | on 11 of  | Tabla Ol   | a sa tha   | t Ti m_(            | 76)m an     | d re-cale  | sulato  |      |
| the u    | tilisation                | factor fo | or gains  | using Ta             | able 9a      | neu      |          | p 11 01   | Table 31   | J, 50 IIIa | u 11,111–(          | 70)11 an    | u ie-cai   | Julate  |      |
|          | Jan                       | Feb       | Mar       | Apr                  | May          | Τ        | Jun      | Jul       | Aug        | Sep        | Oct                 | Nov         | Dec        |         |      |
| Utilis   | ation fac                 | tor for g | ains, hr  | <u>ו י</u> ו         |              |          |          |           |            |            |                     |             |            | 1       |      |
| (94)m=   | 0.99                      | 0.99      | 0.95      | 0.84                 | 0.64         |          | 0.44     | 0.31      | 0.35       | 0.62       | 0.92                | 0.99        | 1          |         | (94) |
| Usefu    | ul gains,                 | hmGm ,    | W = (9    | 4)m x (8             | 4)m          |          |          |           |            |            | •                   |             |            |         |      |
| (95)m=   | 482.48                    | 571.8     | 651.05    | 677                  | 574.51       | 3        | 91.89    | 258.77    | 271.69     | 417.38     | 514.08              | 475.76      | 453.67     |         | (95) |
| Mont     | hly aver                  | age exte  | rnal terr | perature             | e from T     | abl      | e 8      |           |            |            |                     |             | -          | -       |      |
| (96)m=   | 4.3                       | 4.9       | 6.5       | 8.9                  | 11.7         |          | 14.6     | 16.6      | 16.4       | 14.1       | 10.6                | 7.1         | 4.2        |         | (96) |
| Heat     | loss rate                 | e for mea | an interr | nal temp             | erature,     | Lm       | 1,W=     | =[(39)m : | x [(93)m   | – (96)m    | ]                   | i           | i          | 1       |      |
| (97)m=   | 1036.79                   | 1009.26   | 920.27    | 772.16               | 590.79       | 3        | 93.22    | 258.88    | 271.97     | 427.05     | 650.39              | 858.09      | 1032.92    |         | (97) |
| Spac     | e heatin                  | g require | ement fo  | or each r            | nonth, k     | Wh       | /mont    | h = 0.02  | 24 x [(97) | )m – (95   | 5)m] x (4           | 1)m         | 1          | 1       |      |
| (98)m=   | 412.41                    | 293.97    | 200.3     | 68.52                | 12.11        |          | 0        | 0         | 0          | 0          | 101.42              | 275.28      | 430.97     |         | _    |
|          |                           |           |           |                      |              |          |          |           | Tota       | l per year | (kWh/yea            | r) = Sum(9  | 8)15,912 = | 1794.98 | (98) |
| Spac     | e heatin                  | g require | ement ir  | n kWh/m <sup>;</sup> | ²/year       |          |          |           |            |            |                     |             |            | 23.59   | (99) |
|          |                           |           |           |                      |              |          |          |           |            |            |                     |             |            |         |      |

| 9a. En                                                                                                       | ergy re                                                                         | quiremer               | nts – Ind            | ividual h | eating sy | ystems i  | including               | j micro-C    | HP)                  |                        |                         |        |                                |                                                |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------|----------------------|-----------|-----------|-----------|-------------------------|--------------|----------------------|------------------------|-------------------------|--------|--------------------------------|------------------------------------------------|
| Spac                                                                                                         | e heati                                                                         | ng:                    | t from a             | 000000-   |           | montor    | , ovoto m               |              |                      |                        |                         |        | 0                              |                                                |
| Fract                                                                                                        | ion of c                                                                        | pace hee               | at from $\sim$       |           | y/supple  | mentary   | system                  | (202) – 1 -  | - (201) -            |                        |                         |        | 0                              | $\begin{bmatrix} (201) \\ (202) \end{bmatrix}$ |
| Fract                                                                                                        | ion of to                                                                       | vaue nea               | na from              | main syst | ciii(5)   |           |                         | (204) = (20) | ( (i )<br>(2) x [1 ) | $(203)^{1} =$          |                         |        | 1                              | (202)                                          |
| Ffficia                                                                                                      | ency of                                                                         | main ene               | ng nunn<br>Ace haat  | ina sveta | em 1      |           |                         | / _ (2)      | / ^ ['               | ()] -                  |                         |        | ۱<br>۵۶ 7                      |                                                |
| Efficia                                                                                                      | ency of                                                                         | seconda                | rv/sunnl             | ementar   | v heatin  | n svsten  | n %                     |              |                      |                        |                         |        | <u>عکار ا</u>                  |                                                |
|                                                                                                              |                                                                                 | Eab                    | Mar                  | Anr       | Mou       |           |                         | Aug          | Son                  | Oct                    | Nov                     | Dec    | k\M/b/vor                      |                                                |
| Spac                                                                                                         | e heatir                                                                        | ng require             | ement (c             |           | d above   | )         |                         | Aug          | Sep                  |                        |                         | Dec    |                                | ai                                             |
| •                                                                                                            | 412.41                                                                          | 293.97                 | 200.3                | 68.52     | 12.11     | 0         | 0                       | 0            | 0                    | 101.42                 | 275.28                  | 430.97 |                                |                                                |
| (211)m                                                                                                       | n = {[(98                                                                       | 3)m x (20              | 94)] } x 1           | 100 ÷ (20 | )6)       |           |                         |              |                      |                        |                         |        |                                | (211)                                          |
|                                                                                                              | 444.88                                                                          | 317.12                 | 216.08               | 73.91     | 13.06     | 0         | 0                       | 0            | 0                    | 109.4                  | 296.96                  | 464.9  |                                | -                                              |
|                                                                                                              |                                                                                 |                        |                      |           |           |           |                         | Tota         | l (kWh/yea           | ar) =Sum(2             | 211) <sub>15,1012</sub> | =      | 1936.33                        | (211)                                          |
| Spac                                                                                                         | e heatir                                                                        | ng fuel (s             | econdar              | y), kWh/  | month     |           |                         |              |                      |                        |                         |        |                                |                                                |
| = {[(98<br>(215)m=                                                                                           | 0 0 0                                                                           |                        | 00÷(20               | 0         | 0         | 0         | 0                       | 0            | 0                    | 0                      | 0                       | 0      |                                |                                                |
|                                                                                                              |                                                                                 | 1                      |                      |           | _         |           | ļ                       | Tota         | l (kWh/yea           | ar) =Sum(2             | 215) <sub>15,1012</sub> | =      | 0                              | (215)                                          |
| Water                                                                                                        | heating                                                                         | g                      | I                    |           |           |           |                         |              |                      |                        |                         |        |                                |                                                |
| Output                                                                                                       | t from w                                                                        | ater hea               | ter (calc            | ulated a  | bove)     |           | L                       |              | 400 -                |                        | 455 15                  | 467 55 |                                |                                                |
| 172.01 151.1 157.5 139.54 135.56 119.42 113.07 126.31 126.8 144.79 155.17 167.<br>Efficiency of water heater |                                                                                 |                        |                      |           |           |           |                         |              |                      |                        |                         |        | 07                             | (216)                                          |
| (217)m-                                                                                                      | fficiency of water heater 88.89 88.76 88.49 87.72 87 87 87 87 88.09 88.71 88.09 |                        |                      |           |           |           |                         |              |                      |                        |                         |        | 87                             | (217)                                          |
| Fuel fo                                                                                                      | or water                                                                        | heating                | kWh/m                | onth      | OT.LL     |           |                         |              | 01                   | 00.00                  | 00.71                   | 00.00  |                                | ()                                             |
| (219)m                                                                                                       | <u>1 = (64</u> )                                                                | )m x 100               | ) <del>;</del> (217) | )m        |           |           |                         |              |                      |                        |                         |        |                                |                                                |
| (219)m=                                                                                                      | 193.52                                                                          | 170.23                 | 177.98               | 158.81    | 155.43    | 137.26    | 129.97                  | 145.19       | 145.74               | 164.36                 | 174.92                  | 188.16 |                                |                                                |
| Annur                                                                                                        | al totale                                                                       | •                      |                      |           |           |           |                         | rota         | i = 3um(2            | 1 3a) <sub>112</sub> = | White                   |        | 1941.57                        | (219)                                          |
| Space                                                                                                        | heating                                                                         | <b>,</b><br>g fuel use | ed, main             | system    | 1         |           |                         |              |                      | K)                     | yeal                    |        | 1936.33                        | 7                                              |
| Water                                                                                                        | heating                                                                         | fuel use               | d                    |           |           |           |                         |              |                      |                        |                         |        | 1941.57                        | Ī                                              |
| Electri                                                                                                      | city for                                                                        | pumps, fa              | ans and              | electric  | keep-ho   | t         |                         |              |                      |                        |                         |        |                                | _                                              |
| centra                                                                                                       | al heatir                                                                       | ng pump                | :                    |           |           |           |                         |              |                      |                        |                         | 30     |                                | (230c)                                         |
| boiler                                                                                                       | with a                                                                          | fan-assis              | sted flue            |           |           |           |                         |              |                      |                        |                         | 45     |                                | (230e)                                         |
| Total e                                                                                                      | electricit                                                                      | y for the              | above, l             | kWh/yea   | r         |           |                         | sum          | of (230a).           | (230g) =               |                         |        | 75                             | (231)                                          |
| Electri                                                                                                      | city for I                                                                      | lighting               |                      |           |           |           |                         |              |                      |                        |                         |        | 333.64                         | (232)                                          |
| 12a.                                                                                                         | CO2 en                                                                          | nissions -             | – Individ            | ual heat  | ing syste | ems inclu | uding mi                | cro-CHP      | )                    |                        |                         |        |                                | -                                              |
|                                                                                                              |                                                                                 |                        |                      |           |           | En<br>kW  | <b>lergy</b><br>/h/year |              |                      | Emiss<br>kg CO         | <b>ion fac</b><br>2/kWh | tor    | <b>Emissions</b><br>kg CO2/yea | ar                                             |
| Space                                                                                                        | heating                                                                         | g (main s              | ystem 1              | )         |           | (21       | 1) x                    |              |                      | 0.2                    | 16                      | =      | 418.25                         | (261)                                          |
| Space                                                                                                        | heating                                                                         | g (second              | dary)                |           |           | (21       | 5) x                    |              |                      | 0.5                    | 19                      | =      | 0                              | (263)                                          |
| Water                                                                                                        | heating                                                                         | I                      |                      |           |           | (21       | 9) x                    |              |                      | 0.2                    | 16                      | =      | 419.38                         | (264)                                          |
| Space                                                                                                        | and wa                                                                          | ater heati             | ng                   |           |           | (26       | 1) + (262)              | + (263) + (  | 264) =               |                        |                         |        | 837.63                         | (265)                                          |

| Electricity for pumps, fans and electric keep-hot | (231) | x | 0.519 =             | 38.93   | (267) |
|---------------------------------------------------|-------|---|---------------------|---------|-------|
| Electricity for lighting                          | (232) | x | 0.519 =             | 173.16  | (268) |
| Total CO2, kg/year                                |       |   | sum of (265)(271) = | 1049.71 | (272) |
| Dwelling CO2 Emission Rate                        |       |   | (272) ÷ (4) =       | 13.79   | (273) |
| EI rating (section 14)                            |       |   |                     | 88      | (274) |
|                                                   |       |   |                     |         |       |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | ι                           | Jser De              | etails:                |                      |               |              |           |                        |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------|----------------------|------------------------|----------------------|---------------|--------------|-----------|------------------------|----------------------|
| Assessor Name:<br>Software Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stroma FSAP 201                                              | 2                           | ļ                    | Stroma<br>Softwa       | a Num<br>ire Ver     | ber:<br>sion: |              | Versio    | n: 1.0.3.11            |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | Pro                         | perty A              | Address:               | Arlingto             | n 3 Bed       | MID 76       |           |                        |                      |
| Address :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                             |                      |                        |                      |               |              |           |                        |                      |
| 1. Overall dwelling dime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ensions:                                                     |                             | -                    | ( )                    |                      |               |              |           |                        |                      |
| Cround floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |                             | Area                 | (m²)                   | (4 -)                | Av. Hei       | ight(m)      |           | Volume(m <sup>3</sup>  | $\frac{1}{2}$        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                        | · · · · ·                   | /                    | 6.1                    | (1a) X               | 2             | 2.3          | (2a) =    | 175.03                 | _(3a)                |
| Total floor area TFA = (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a)+(1b)+(1c)+(1d)+(1e                                        | e)+(1n)                     | 7                    | 6.1                    | (4)                  |               |              |           |                        |                      |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                             |                      |                        | (3a)+(3b)            | +(3c)+(3d     | )+(3e)+      | .(3n) =   | 175.03                 | (5)                  |
| 2. Ventilation rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |                             |                      |                        |                      |               |              |           |                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | main so<br>heating h                                         | econdary<br>leating         | (                    | other                  |                      | total         |              |           | m <sup>3</sup> per hou | ٢                    |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              | 0                           | +                    | 0                      | ] = [                | 0             | x 4          | 40 =      | 0                      | (6a)                 |
| Number of open flues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 +                                                          | 0                           | +                    | 0                      | ] = [                | 0             | x 2          | 20 =      | 0                      | (6b)                 |
| Number of intermittent fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ans                                                          |                             |                      |                        | , r                  | 3             | x 1          | 10 =      | 30                     | <br>(7a)             |
| Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                            |                             |                      |                        |                      | 0             | x 1          | 10 =      | 0                      | _<br> (7b)           |
| Number of flueless gas f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ires                                                         |                             |                      |                        |                      | 0             | x 4          | 40 =      | 0                      | (7c)                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                             |                      |                        |                      |               |              | Air ch    | anges per ho           | ur                   |
| Infiltration due to chimne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ys, flues and fans = (6                                      | a)+(6b)+(7a)                | +(7b)+(7             | (c) =                  |                      | 30            | -            | ÷ (5) =   | 0.17                   | (8)                  |
| Number of storeys in t<br>Additional infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | he dwelling (ns)                                             | ed, proceed t               | 0 (17), 0            | therwise c             | ontinue fro          | om (9) to (   | 16)<br>[(9)- | -1]x0.1 = | 0                      | (9)<br>(10)          |
| Structural infiltration: C<br>if both types of wall are p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.25 for steel or timber in<br>present, use the value corres | frame or 0<br>ponding to th | .35 for<br>ne greate | masonr<br>er wall area | y constr<br>a (after | uction        |              |           | 0                      | (11)                 |
| If suspended wooden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | floor. enter 0.2 (unseal                                     | ed) or 0.1                  | (seale               | d). else (             | enter 0              |               |              |           | 0                      | <b> (12)</b>         |
| If no draught lobby, en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ter 0.05, else enter 0                                       | ,                           | (                    | -,,                    |                      |               |              |           | 0                      | (13)                 |
| Percentage of window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s and doors draught st                                       | ripped                      |                      |                        |                      |               |              |           | 0                      | (14)                 |
| Window infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                             | (                    | 0.25 - [0.2            | x (14) ÷ 1           | = [00         |              |           | 0                      | (15)                 |
| Infiltration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                             | (                    | (8) + (10) -           | + (11) + (1          | 2) + (13) +   | + (15) =     |           | 0                      | (16)                 |
| Air permeability value,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | q50, expressed in cub                                        | oic metres                  | per ho               | ur per so              | quare m              | etre of e     | nvelope      | area      | 5                      | (17)                 |
| If based on air permeabi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lity value, then $(18) = [(1)]$                              | 7) ÷ 20]+(8),               | otherwis             | se (18) = (*           | 16)                  |               |              |           | 0.42                   | (18)                 |
| Air permeability value applie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es if a pressurisation test has                              | s been done (               | or a deg             | ree air per            | meability            | is being us   | sed          |           |                        |                      |
| Shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                                                           |                             | (                    | (20) = 1 - [           | 0.075 x (1           | 9)] =         |              |           | 2                      | (19)                 |
| Infiltration rate incorpora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ting shelter factor                                          |                             | (                    | (21) = (18)            | x (20) =             |               |              |           | 0.00                   | $\Box_{(21)}^{(20)}$ |
| Infiltration rate modified t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | for monthly wind speed                                       | ł                           |                      | . , . ,                | . ,                  |               |              |           | 0.50                   |                      |
| Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mar Apr May                                                  | Jun                         | Jul                  | Aug                    | Sep                  | Oct           | Nov          | Dec       |                        |                      |
| Monthly average wind sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | beed from Table 7                                            |                             |                      |                        |                      |               |              |           |                        |                      |
| (22)m= 5.1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9 4.4 4.3                                                  | 3.8                         | 3.8                  | 3.7                    | 4                    | 4.3           | 4.5          | 4.7       |                        |                      |
| Wind Factor $(22a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m = (2a)m =$ |                                                              | · · · · · · ·               |                      |                        |                      |               |              |           | I                      |                      |
| (22a)m= 1.27 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.23 1.1 1.08                                                | 0.95                        | 0.95                 | 0.92                   | 1                    | 1.08          | 1.12         | 1.18      |                        |                      |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | •                           | I                    |                        |                      |               | •            | -         | 1                      |                      |

| Adjust               | ed infiltr               | ation rat                  | e (allowi                 | ing for sl               | nelter an             | d wind s       | peed) =     | (21a) x         | (22a)m         |                   |                  |                    | _        |               |
|----------------------|--------------------------|----------------------------|---------------------------|--------------------------|-----------------------|----------------|-------------|-----------------|----------------|-------------------|------------------|--------------------|----------|---------------|
|                      | 0.46                     | 0.45                       | 0.44                      | 0.39                     | 0.39                  | 0.34           | 0.34        | 0.33            | 0.36           | 0.39              | 0.4              | 0.42               |          |               |
| Calcul<br>If m       | ate effe                 | ctive air<br>al ventila    | change                    | rate for t               | he appli              | cable ca       | se          |                 |                |                   |                  |                    | 0        | (220)         |
| lf exh               | aust air h               | eat pump i                 | using App                 | endix N. (2              | 23b) = (23a           | ) x Fmv (e     | equation (N | (5)) othe       | rwise (23b     | ) = (23a)         |                  |                    | 0        | (23a)         |
| If bala              | anced with               | n heat reco                | overv: effic              | iencv in %               | allowing f            | or in-use fa   | actor (from | n Table 4h      | ) =            | ) (200)           |                  |                    | 0        | (230)         |
| a) If                | halance                  | nech:                      | anical ve                 | ntilation                | with he               | at recove      | ⊃rv (M\/⊦   | HR) (24a        | /<br>a)m = (22 | 2h)m + (          | 23h) 🗙 [′        | 1 – (23c)          | 1001     | (230)         |
| (24a)m=              |                          |                            |                           | 0                        | 0                     | 0              | 0           | 0               |                |                   |                  | 0                  | ]        | (24a)         |
| b) If                | balance                  | L<br>d mech:               | l<br>anical ve            | I                        | without               | heat rec       | :overv (N   | L<br>/\\/) (24b | l = (22)       | I<br>2b)m + (;    | L<br>23b)        | I                  | 1        |               |
| (24b)m=              | 0                        | 0                          | 0                         | 0                        | 0                     | 0              | 0           | 0               | 0              | 0                 | 0                | 0                  | ]        | (24b)         |
| c) If                | whole h                  | i<br>ouse ex               | tract ver                 | ntilation of             | or positiv            | e input v      | /entilatic  | n from c        | utside         |                   |                  |                    | 1        |               |
| -,                   | if (22b)r                | n < 0.5 ×                  | : (23b), t                | hen (24                  | c) = (23b             | ); otherv      | vise (24    | c) = (22b       | o) m + 0.      | .5 × (23b         | ))               |                    |          |               |
| (24c)m=              | 0                        | 0                          | 0                         | 0                        | 0                     | 0              | 0           | 0               | 0              | 0                 | 0                | 0                  |          | (24c)         |
| d) If                | natural                  | ventilatio                 | on or wh                  | ole hous                 | se positiv            | ve input       | ventilatio  | on from I       | oft            | -                 | -                | -                  | -        |               |
|                      | if (22b)r                | n = 1, th                  | en (24d)                  | m = (22                  | b)m othe              | rwise (2       | 4d)m = (    | 0.5 + [(2       | 2b)m² x        | 0.5]              |                  |                    | 1        | ( N           |
| (24d)m=              | 0.6                      | 0.6                        | 0.6                       | 0.58                     | 0.57                  | 0.56           | 0.56        | 0.55            | 0.56           | 0.57              | 0.58             | 0.59               |          | (24d)         |
| Effe                 | ctive air                | change                     | rate - er                 | nter (24a                | ı) or (24b            | o) or (240     | c) or (24   | d) in box       | (25)           |                   |                  |                    | 1        |               |
| (25)m=               | 0.6                      | 0.6                        | 0.6                       | 0.58                     | 0.57                  | 0.56           | 0.56        | 0.55            | 0.56           | 0.57              | 0.58             | 0.59               | J        | (25)          |
| 3. He                | at l <mark>osse</mark>   | s and he                   | at loss                   | paramet                  | er:                   |                |             |                 |                |                   |                  |                    |          |               |
| ELEN                 |                          | Gros<br>are <mark>a</mark> | ss<br>(m²)                | Openin<br>m              | igs<br>1 <sup>2</sup> | Net Ar<br>A ,r | ea<br>n²    | U-valı<br>W/m2  | ue<br>K        | A X U<br>(W/I     | K)               | k-value<br>kJ/m²·l | e<br>K   | A X k<br>kJ/K |
| Doo <mark>rs</mark>  |                          |                            |                           |                          |                       | 1.89           | x           | 1               | = [            | 1.89              |                  |                    |          | (26)          |
| Windo                | <mark>ws</mark> Type     | e 1                        |                           |                          |                       | 4.41           | x1/         | /[1/( 1.4 )+    | 0.04] =        | 5.85              |                  |                    |          | (27)          |
| Windo                | ws Type                  | e 2                        |                           |                          |                       | 4.41           | x1/         | /[1/( 1.4 )+    | 0.04] =        | 5.85              | F                |                    |          | (27)          |
| Windo                | ws Type                  | e 3                        |                           |                          |                       | 4.41           | x1/         | /[1/( 1.4 )+    | 0.04] =        | 5.85              | 5                |                    |          | (27)          |
| Windo                | ws Type                  | <del>)</del> 4             |                           |                          |                       | 2.52           | x1/         | /[1/( 1.4 )+    | 0.04] =        | 3.34              | =                |                    |          | (27)          |
| Walls                |                          | 56.3                       | 6                         | 17.6                     | 4                     | 38.72          | 2 X         | 0.18            |                | 6.97              | Ξ r              |                    |          | (29)          |
| Total a              | area of e                | elements                   | , m²                      |                          |                       | 56.36          | ;           |                 |                |                   |                  |                    |          | (31)          |
| Party v              | wall                     |                            |                           |                          |                       | 38.24          | ×           | 0               | = [            | 0                 |                  |                    |          | (32)          |
| Party f              | loor                     |                            |                           |                          |                       | 76.1           |             |                 | I              |                   |                  |                    | $\dashv$ | (32a)         |
| Party of             | ceiling                  |                            |                           |                          |                       | 76.1           |             |                 |                |                   | Ĺ                |                    | $\dashv$ | (32b)         |
| * for win            | dows and                 | l roof wind                | ows, use e                | effective wi             | indow U-va            | lue calcula    | ated using  | formula 1       | /[(1/U-valu    | ıe)+0.04] a       | L<br>as given in | paragraph          | n 3.2    |               |
| ** incluc            | le the area              | as on both                 | sides of ir               | nternal wal              | ls and part           | itions         |             |                 |                |                   |                  |                    |          |               |
| Fabric               | heat los                 | ss, W/K :                  | = S (A x                  | U)                       |                       |                |             | (26)(30)        | ) + (32) =     |                   |                  |                    | 29.74    | (33)          |
| Heat c               | apacity                  | Cm = S(                    | Axk)                      |                          |                       |                |             |                 | ((28)          | (30) + (32        | 2) + (32a).      | (32e) =            | 12289.4  | 5 (34)        |
| Therm                | al mass                  | parame                     | ter (TMI                  | <sup>-</sup> = Cm -      | - TFA) in             | ı kJ/m²K       |             |                 | Indica         | tive Value        | : Medium         |                    | 250      | (35)          |
| For desi<br>can be ι | ign asses:<br>used inste | sments wh<br>ad of a de    | ere the de<br>tailed calc | tails of the<br>ulation. | constructi            | on are not     | t known pr  | ecisely the     | e indicative   | e values of       | TMP in Ta        | able 1f            |          |               |
| Therm                | al bridg                 | es : S (L                  | x Y) cal                  | culated                  | using Ap              | pendix ł       | <           |                 |                |                   |                  |                    | 4        | (36)          |
| if details           | of therma                | al bridging                | are not kr                | 10wn (36) =              | = 0.15 x (3           | 1)             |             |                 | (22) ·         | (26) -            |                  |                    | -        |               |
| Vontile              | abilit ne                | at loce or                 | alculator                 | monthly                  |                       |                |             |                 | (33) +         | (30) =            | 25)m v (5)       |                    | 33.74    | (37)          |
| venula               |                          |                            | Mor                       |                          | y<br>Mov              | lun            | [11]        | Δυσ             | (30)M          | $= 0.33 \times ($ | 20)III X (5)     | Doo                | 1        |               |
|                      | Jan                      |                            | iviai                     | Г чы                     | iviay                 | Jun            | Jui         | Aug             | Seh            |                   |                  | Dec                | J        |               |

| (38)m=         | 34.9                           | 34.67                          | 34.44         | 33.36            | 33.16          | 32.22                             | 32.22             | 32.05       | 32.59                 | 33.16                     | 33.57                  | 34          |         | (38) |
|----------------|--------------------------------|--------------------------------|---------------|------------------|----------------|-----------------------------------|-------------------|-------------|-----------------------|---------------------------|------------------------|-------------|---------|------|
| Heat tra       | ansfer o                       | coefficie                      | nt, W/K       |                  |                |                                   |                   |             | (39)m                 | = (37) + (3               | 38)m                   |             |         |      |
| (39)m=         | 68.64                          | 68.4                           | 68.18         | 67.1             | 66.9           | 65.96                             | 65.96             | 65.79       | 66.32                 | 66.9                      | 67.3                   | 67.73       |         |      |
| Hoot lo        |                                | motor (l                       | אי (סוב)      | /m2k             |                |                                   |                   |             | (40)m                 | Average =                 | Sum(39)1               | 12 /12=     | 67.1    | (39) |
| (40)m=         | 0.9                            |                                | 0.9           | 0.88             | 0.88           | 0.87                              | 0.87              | 0.86        | 0.87                  | = (39)III ÷               | 0.88                   | 0.89        |         |      |
| (,             | 0.0                            | 0.0                            | 0.0           | 0.00             | 0.00           | 0.01                              | 0.01              | 0.00        |                       | Average =                 | Sum(40)1               | 12 /12=     | 0.88    | (40) |
| Numbe          | r of day                       | /s in mo                       | nth (Tab      | le 1a)           |                |                                   |                   |             |                       |                           |                        |             |         |      |
|                | Jan                            | Feb                            | Mar           | Apr              | May            | Jun                               | Jul               | Aug         | Sep                   | Oct                       | Nov                    | Dec         |         |      |
| (41)m=         | 31                             | 28                             | 31            | 30               | 31             | 30                                | 31                | 31          | 30                    | 31                        | 30                     | 31          |         | (41) |
|                |                                |                                |               |                  |                |                                   |                   |             |                       |                           |                        |             |         |      |
| 4. Wa          | ter hea                        | ting ene                       | rgy requ      | irement:         |                |                                   |                   |             |                       |                           |                        | kWh/ye      | ar:     |      |
| Assum<br>if TF | ed occu<br>A > 13.<br>A £ 13 : | upancy,<br>9, N = 1<br>9 N = 1 | N<br>+ 1.76 x | : [1 - exp       | (-0.0003       | 849 x (TF                         | FA -13.9)         | )2)] + 0.(  | )013 x ( <sup>-</sup> | TFA -13.                  | 2.<br>9)               | .38         |         | (42) |
| Annual         | averag                         | je hot wa                      | ater usag     | ge in litre      | es per da      | ay Vd,av                          | erage =           | (25 x N)    | + 36                  |                           | 90                     | ).84        |         | (43) |
| Reduce a       | the annua                      | al average<br>litres per       | hot water     | usage by a       | 5% if the a    | welling is                        | designed t<br>Id) | to achieve  | a water us            | se target o               | f                      |             |         |      |
|                |                                |                                |               |                  | Maier use, r   |                                   |                   | <b>A</b>    | 0.00                  | Ort                       | New                    |             |         |      |
| Hot wate       | Jan<br>r usage i               | n litres per                   | r day for ea  | Apr<br>ach month | Vd,m = fa      | ctor from T                       | Jui<br>Table 1c x | Aug<br>(43) | Sep                   | Oct                       | INOV                   | Dec         |         |      |
| (44)m=         | 99.92                          | 96.29                          | 92.65         | 89.02            | 85.39          | 81.75                             | 81.75             | 85.39       | 89.02                 | 92.65                     | 96.29                  | 99.92       |         |      |
| (,             | 00.02                          | 00.20                          | 02.00         | 00.02            | 00.00          | oniro                             |                   | 00.00       |                       | Total = Su                | m(44) <sub>112</sub> = | 00.02       | 1090.04 | (44) |
| Energy c       | ontent of                      | <sup>t</sup> hot water         | used - cal    | lculated mo      | onthly $= 4$ . | 190 x Vd,r                        | n x nm x D        | )Tm / 3600  | kWh/mor               | oth ( <mark>see Ta</mark> | bles 1b, 1             | c, 1d)      |         |      |
| (45)m=         | 148.18                         | 129.6                          | 133.73        | 116.59           | 111.87         | 96.54                             | 89.46             | 102.65      | 103.88                | 121.06                    | 132.15                 | 143.5       |         |      |
| lf instant     | aneous v                       | vater heati                    | ina at noint  | t of use (no     | hot water      | r storage)                        | enter () in       | hoxes (46   | ) to (61)             | Tota <mark>l = S</mark> u | m(45) <sub>112</sub> = | =           | 1429.21 | (45) |
| (46)-          | 22.22                          |                                |               | 17.40            | 16 70          | 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 | 12 42             | 15 4        | 15 59                 | 10.16                     | 10.92                  | 21.52       |         | (46) |
| Water s        | storage                        | loss:                          | 20.00         | 17.49            | 10.70          | 14.40                             | 13.42             | 15.4        | 15.56                 | 10.10                     | 19.02                  | 21.55       |         | (40) |
| Storage        | e volum                        | ne (litres)                    | ) includir    | ng any so        | olar or W      | /WHRS                             | storage           | within sa   | ame ves               | sel                       |                        | 0           |         | (47) |
| If comm        | nunity ł                       | neating a                      | and no ta     | ank in dw        | velling, e     | nter 110                          | litres in         | (47)        |                       |                           |                        |             |         |      |
| Otherw         | ise if no                      | o stored                       | hot wate      | er (this ir      | icludes i      | nstantar                          | neous co          | mbi boil    | ers) ente             | er '0' in (               | 47)                    |             |         |      |
| a) If m        | anufact                        | turer's de                     | eclared I     | oss facto        | or is kno      | wn (kWł                           | n/dav):           |             |                       |                           |                        | 0           |         | (48) |
| Tempe          | rature f                       | actor fro                      | m Table       | 2b               |                |                                   | , <b>,</b> , .    |             |                       |                           |                        | 0           |         | (49) |
| Energy         | lost fro                       | om water                       | r storage     | e, kWh/ye        | ear            |                                   |                   | (48) x (49) | =                     |                           |                        | 0           |         | (50) |
| b) If m        | anufact                        | turer's de                     | eclared of    | cylinder l       | oss fact       | or is not                         | known:            |             |                       |                           | L                      |             |         |      |
| Hot wa         | ter stor                       | age loss                       | s factor fr   | rom Tabl         | e 2 (kW        | h/litre/da                        | ıy)               |             |                       |                           |                        | 0           |         | (51) |
| Volume         | e factor                       | from Ta                        | ble 2a        | 011 4.5          |                |                                   |                   |             |                       |                           |                        | 0           |         | (52) |
| Tempe          | rature f                       | actor fro                      | m Table       | 2b               |                |                                   |                   |             |                       |                           |                        | 0           |         | (53) |
| Energy         | lost fro                       | om water                       | r storage     | e, kWh/ye        | ear            |                                   |                   | (47) x (51) | x (52) x (            | 53) =                     |                        | 0           |         | (54) |
| Enter          | (50) or                        | (54) in ( <del>5</del>         | 55)           |                  |                |                                   |                   |             |                       |                           |                        | 0           |         | (55) |
| Water          | storage                        | loss cal                       | culated       | for each         | month          |                                   |                   | ((56)m = (  | 55) × (41)            | m                         |                        |             |         |      |
| (56)m=         | 0                              | 0                              | 0             | 0                | 0              | 0                                 | 0                 | 0           | 0                     | 0                         | 0                      | 0           |         | (56) |
| If cylinde     | r contain                      | s dedicate                     | d solar sto   | orage, (57)i     | m = (56)m      | x [(50) – (                       | H11)] ÷ (50       | 0), else (5 | 7)m = (56)            | m where (                 | H11) is fro            | om Appendix | κΗ      |      |
| (57)m=         | 0                              | 0                              | 0             | 0                | 0              | 0                                 | 0                 | 0           | 0                     | 0                         | 0                      | 0           |         | (57) |

| Primar              | rimary circuit loss (annual) from Table 3                                                                                           |           |            |             |           |           |             |             |              |                           |              |          |               | (58) |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-------------|-----------|-----------|-------------|-------------|--------------|---------------------------|--------------|----------|---------------|------|
| Primar              | y circuit                                                                                                                           | loss cal  | culated    | for each    | month (   | 59)m = (  | (58) ÷ 36   | 65 × (41)   | m            |                           |              |          |               |      |
| (moo                | dified by                                                                                                                           | factor fi | rom Tab    | le H5 if t  | here is s | solar wat | ter heatii  | ng and a    | cylinde      | r thermo                  | stat)        |          |               |      |
| (59)m=              | 0                                                                                                                                   | 0         | 0          | 0           | 0         | 0         | 0           | 0           | 0            | 0                         | 0            | 0        |               | (59) |
| Combi               | loss ca                                                                                                                             | culated   | for each   | month (     | 61)m =    | (60) ÷ 36 | 65 × (41)   | )m          |              |                           |              |          |               |      |
| (61)m=              | 50.92                                                                                                                               | 44.32     | 47.22      | 43.9        | 43.51     | 40.32     | 41.66       | 43.51       | 43.9         | 47.22                     | 47.48        | 50.92    |               | (61) |
| Total h             | eat requ                                                                                                                            | uired for | water he   | eating ca   | alculated | l for eac | h month     | (62)m =     | 0.85 × (     | (45)m +                   | (46)m +      | (57)m +  | (59)m + (61)m |      |
| (62)m=              | 199.1                                                                                                                               | 173.92    | 180.95     | 160.49      | 155.39    | 136.85    | 131.12      | 146.16      | 147.78       | 168.28                    | 179.63       | 194.42   |               | (62) |
| Solar DH            | Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) |           |            |             |           |           |             |             |              |                           |              |          |               |      |
| (add a              | add additional lines if FGHRS and/or WWHRS applies, see Appendix G)                                                                 |           |            |             |           |           |             |             |              |                           |              |          |               |      |
| (63)m=              | 0                                                                                                                                   | 0         | 0          | 0           | 0         | 0         | 0           | 0           | 0            | 0                         | 0            | 0        |               | (63) |
| Output              | from w                                                                                                                              | ater hea  | ter        | -           |           |           | -           | -           |              |                           | -            | -        | '             |      |
| (64)m=              | 199.1                                                                                                                               | 173.92    | 180.95     | 160.49      | 155.39    | 136.85    | 131.12      | 146.16      | 147.78       | 168.28                    | 179.63       | 194.42   |               |      |
|                     |                                                                                                                                     |           |            |             |           |           |             | Outp        | out from wa  | ater heate                | r (annual)₁  | 12       | 1974.08       | (64) |
| Heat g              | ains fro                                                                                                                            | m water   | heating,   | kWh/mo      | onth 0.2  | 5 ´ [0.85 | × (45)m     | + (61)m     | n] + 0.8 x   | (46)m                     | + (57)m      | + (59)m  | ]             |      |
| (65)m=              | 62                                                                                                                                  | 54.17     | 56.27      | 49.74       | 48.08     | 42.18     | 40.16       | 45.01       | 45.51        | 52.06                     | 55.81        | 60.44    |               | (65) |
| in <mark>clu</mark> | ide (57)i                                                                                                                           | m in calc | culation   | of (65)m    | only if c | vlinder i | s in the o  | dwelling    | or hot w     | ate <mark>r is f</mark> r | om com       | munity h | eating        |      |
| 5 Int               | ernal da                                                                                                                            | ains (see | Table f    | and 5a      |           | ,         |             | 9           |              |                           |              | 5        | 5             | -    |
| Motob               |                                                                                                                                     | o (Toblo  |            |             |           |           |             |             |              |                           |              |          |               |      |
| Metabo              | Jiic gain                                                                                                                           | Feb       | Mar        | Apr         | May       | Jun       | lul         | Αυσ         | Sen          | Oct                       | Nov          | Dec      |               |      |
| (66)m=              | 119.23                                                                                                                              | 119.23    | 119.23     | 119.23      | 119.23    | 119.23    | 119.23      | 119.23      | 119.23       | 119.23                    | 119.23       | 119.23   |               | (66) |
| Lightin             | a daine                                                                                                                             | (calcula  | ted in Ar  | pendix      |           |           | r   (9a) -a |             | Table 5      |                           |              |          |               |      |
| (67)m=              | 18.89                                                                                                                               | 16.78     | 13.65      | 10.33       | 2, Equal  | 6.52      | 7 04        | 9 16        | 12 29        | 15.61                     | 18 21        | 19.42    |               | (67) |
|                     |                                                                                                                                     |           |            |             |           | untion L  | 12 or   1   | 20) 000     |              |                           | 10.21        | 10.12    |               | ()   |
|                     | 211 1                                                                                                                               | 213 20    |            |             | 181 18    | 167.24    | 15 UI LI    | 3a), aisc   | 161 26       | 173.01                    | 187.84       | 201 78   | 1             | (68) |
|                     | 211.1                                                                                                                               | 213.23    |            |             |           | 107.24    | or 1 4 5 o  |             |              | F                         | 107.04       | 201.70   |               | (00) |
| COOKIN              |                                                                                                                                     |           |            | ppenaix     | L, equai  |           |             | ), also se  |              | 5                         | 24.00        | 24.00    | l             | (60) |
| (69)m=              | 34.92                                                                                                                               | 34.92     | 34.92      | 34.92       | 34.92     | 34.92     | 34.92       | 34.92       | 34.92        | 34.92                     | 34.92        | 34.92    | I             | (09) |
| Pumps               | and fai                                                                                                                             | ns gains  | (Table 5   | ba)         |           |           |             |             |              |                           |              |          | 1             | (70) |
| (70)m=              | 3                                                                                                                                   | 3         | 3          | 3           | 3         | 3         | 3           | 3           | 3            | 3                         | 3            | 3        |               | (70) |
| Losses              | s e.g. ev                                                                                                                           | aporatio  | n (nega    | tive valu   | es) (Tab  | le 5)     |             |             |              |                           | 1            | 1        | 1             |      |
| (71)m=              | -95.39                                                                                                                              | -95.39    | -95.39     | -95.39      | -95.39    | -95.39    | -95.39      | -95.39      | -95.39       | -95.39                    | -95.39       | -95.39   |               | (71) |
| Water               | heating                                                                                                                             | gains (T  | able 5)    |             |           | -         |             | -           |              |                           |              |          |               |      |
| (72)m=              | 83.33                                                                                                                               | 80.61     | 75.63      | 69.09       | 64.62     | 58.58     | 53.98       | 60.5        | 63.21        | 69.97                     | 77.51        | 81.24    |               | (72) |
| Total i             | nternal                                                                                                                             | gains =   |            |             |           | (66)      | m + (67)m   | n + (68)m + | + (69)m + (  | (70)m + (7                | 1)m + (72)   | m        |               |      |
| (73)m=              | 375.09                                                                                                                              | 372.45    | 358.82     | 337.2       | 315.29    | 294.11    | 280.72      | 287.16      | 298.53       | 320.35                    | 345.34       | 364.21   |               | (73) |
| 6. Sol              | lar gains                                                                                                                           | 8:        |            |             |           |           |             |             |              |                           |              |          |               |      |
| Solar g             | ains are o                                                                                                                          | alculated | using sola | r flux from | Table 6a  | and assoc | iated equa  | tions to co | onvert to th | e applicat                | ole orientat | ion.     |               |      |

| Orientation:   | Access Factor<br>Table 6d | • | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b | FF<br>Table 6c |     |   |       |      |
|----------------|---------------------------|---|------------|---|------------------|---|----------------|----------------|-----|---|-------|------|
| Southeast 0.9x | 0.77                      | x | 4.41       | x | 36.79            | × | 0.63           | ×              | 0.7 | = | 49.59 | (77) |
| Southeast 0.9x | 0.77                      | x | 4.41       | x | 62.67            | × | 0.63           | ×              | 0.7 | = | 84.47 | (77) |

| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 85.75  | x | 0.63 | x | 0.7 | =   | 115.57 | (77)      |
|---------------------------|------|----------|------|---|--------|---|------|---|-----|-----|--------|-----------|
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 106.25 | × | 0.63 | x | 0.7 | i = | 143.2  | ]<br>(77) |
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 119.01 | x | 0.63 | x | 0.7 | =   | 160.4  | -<br>(77) |
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 118.15 | × | 0.63 | x | 0.7 | ] = | 159.24 | (77)      |
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 113.91 | × | 0.63 | x | 0.7 | ] = | 153.52 | (77)      |
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 104.39 | × | 0.63 | x | 0.7 | =   | 140.69 | (77)      |
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 92.85  | x | 0.63 | x | 0.7 | =   | 125.14 | (77)      |
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 69.27  | x | 0.63 | x | 0.7 | =   | 93.36  | (77)      |
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 44.07  | × | 0.63 | x | 0.7 | ] = | 59.4   | (77)      |
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 31.49  | × | 0.63 | x | 0.7 | =   | 42.44  | (77)      |
| Southwest0.9x             | 0.77 | x        | 2.52 | x | 36.79  |   | 0.63 | x | 0.7 | =   | 28.34  | (79)      |
| Southwest0.9x             | 0.77 | x        | 2.52 | x | 62.67  |   | 0.63 | x | 0.7 | =   | 48.27  | (79)      |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.52 | x | 85.75  |   | 0.63 | x | 0.7 | =   | 66.04  | (79)      |
| Southwest0.9x             | 0.77 | x        | 2.52 | x | 106.25 |   | 0.63 | x | 0.7 | =   | 81.83  | (79)      |
| Southwest0.9x             | 0.77 | x        | 2.52 | x | 119.01 |   | 0.63 | x | 0.7 | =   | 91.66  | (79)      |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.52 | x | 118.15 |   | 0.63 | x | 0.7 | =   | 90.99  | (79)      |
| Southwest0.9x             | 0.77 | x        | 2.52 | x | 113.91 |   | 0.63 | x | 0.7 | =   | 87.73  | (79)      |
| Southwest0.9x             | 0.77 | x        | 2.52 | X | 104.39 |   | 0.63 | x | 0.7 | ] = | 80.4   | (79)      |
| Southwest0.9x             | 0.77 | <b>x</b> | 2.52 | x | 92.85  |   | 0.63 | x | 0.7 | =   | 71.51  | (79)      |
| Southwest0.9x             | 0.77 | x        | 2.52 | x | 69.27  |   | 0.63 | x | 0.7 | =   | 53.35  | (79)      |
| Southwest0.9x             | 0.77 | ] x      | 2.52 | x | 44.07  |   | 0.63 | x | 0.7 | =   | 33.94  | (79)      |
| Southwest0.9x             | 0.77 | <b>x</b> | 2.52 | × | 31.49  |   | 0.63 | x | 0.7 | ] = | 24.25  | (79)      |
| Northwest 0.9x            | 0.77 | <b>x</b> | 4.41 | x | 11.28  | × | 0.63 | x | 0.7 | =   | 15.21  | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 11.28  | × | 0.63 | x | 0.7 | =   | 15.21  | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 22.97  | x | 0.63 | x | 0.7 | =   | 30.95  | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 22.97  | x | 0.63 | x | 0.7 | =   | 30.95  | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 41.38  | × | 0.63 | x | 0.7 | =   | 55.77  | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 41.38  | x | 0.63 | x | 0.7 | =   | 55.77  | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 67.96  | x | 0.63 | x | 0.7 | =   | 91.59  | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 67.96  | × | 0.63 | x | 0.7 | =   | 91.59  | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 91.35  | x | 0.63 | x | 0.7 | =   | 123.11 | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 91.35  | x | 0.63 | x | 0.7 | =   | 123.11 | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 97.38  | × | 0.63 | x | 0.7 | ] = | 131.25 | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 97.38  | × | 0.63 | x | 0.7 | ] = | 131.25 | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 91.1   | × | 0.63 | x | 0.7 | =   | 122.78 | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 91.1   | × | 0.63 | x | 0.7 | =   | 122.78 | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 72.63  | × | 0.63 | x | 0.7 | ] = | 97.88  | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 72.63  | × | 0.63 | x | 0.7 | =   | 97.88  | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | × | 50.42  | × | 0.63 | x | 0.7 | =   | 67.95  | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 50.42  | x | 0.63 | x | 0.7 | =   | 67.95  | (81)      |
| Northwest 0.9x            | 0.77 | x        | 4.41 | × | 28.07  | × | 0.63 | x | 0.7 | =   | 37.83  | (81)      |

| Northwest 0.9x 0.77                      |                        |            | x        | 4.4       | 1                    | x                 | 2          | 28.07     | x         | 0.63         | x                  | 0.7                  | =           | 37.83      | (81)    |      |
|------------------------------------------|------------------------|------------|----------|-----------|----------------------|-------------------|------------|-----------|-----------|--------------|--------------------|----------------------|-------------|------------|---------|------|
| Northwest 0.9x 0.77                      |                        |            | x        | 4.4       | 1                    | x                 |            | 14.2      | ×         | 0.63         |                    | 0.7                  | =           | 19.13      | (81)    |      |
| Northwest 0.9x 0.77                      |                        |            | x        | 4.4       | 1                    | x                 | · ·        | 14.2      | ×         | 0.63         |                    | 0.7                  | =           | 19.13      | (81)    |      |
| Northwest 0.9x 0.77                      |                        |            | x        | 4.4       | 1                    | x                 | 9          | 9.21      | × [       | 0.63         |                    | 0.7                  | =           | 12.42      | (81)    |      |
| Northw                                   | est 0.9x               | 0.77       |          | x         | 4.4                  | 1                 | x          | 9         | 9.21      | × [          | 0.63               |                      | 0.7         | =          | 12.42   | (81) |
|                                          | L                      |            |          |           |                      |                   |            |           |           |              |                    |                      |             |            |         |      |
| Solar g                                  | gains in               | watts, ca  | alculate | ed        | for eacl             | n montl           | h          |           |           | (83)m = S    | um(74)m .          | (82)m                |             |            |         |      |
| (83)m=                                   | 108.34                 | 194.64     | 293.15   | 5         | 408.21               | 498.28            | 5          | 12.73     | 486.81    | 416.85       | 332.56             | 222.36               | 131.6       | 91.53      |         | (83) |
| Total g                                  | gains – i              | nternal a  | and sol  | ar        | (84)m =              | = (73)m           | + (        | 83)m      | , watts   |              |                    |                      |             |            |         |      |
| (84)m=                                   | 483.43                 | 567.09     | 651.97   | 7         | 745.41               | 813.57            | 8          | 06.84     | 767.53    | 704.01       | 631.09             | 542.71               | 476.94      | 455.74     |         | (84) |
| 7. Me                                    | ean inter              | rnal temp  | peratur  | e (       | heating              | seaso             | n)         |           |           |              |                    |                      |             |            |         |      |
| Temp                                     | perature               | during h   | eating   | ре        | eriods ir            | n the liv         | ring       | area      | from Tab  | ole 9, Th    | 1 (°C)             |                      |             |            | 21      | (85) |
| Utilisa                                  | ation fac              | ctor for g | ains fo  | r li      | ving are             | ea, h1,r          | n (s       | ee Ta     | ble 9a)   |              |                    |                      |             |            |         |      |
|                                          | Jan                    | Feb        | Mar      | ·         | Apr                  | May               | , <u> </u> | Jun       | Jul       | Aug          | Sep                | Oct                  | Nov         | Dec        |         |      |
| (86)m=                                   | 1                      | 0.99       | 0.97     | 1         | 0.9                  | 0.73              |            | 0.52      | 0.38      | 0.43         | 0.7                | 0.94                 | 0.99        | 1          |         | (86) |
| Mean                                     | interns                | l temper   | ature i  | _ Li      | ving ar              |                   | follo      | w sta     | ns 3 to 7 | r<br>in Tahl | e 9c)              |                      |             |            | 1       |      |
| (87)m=                                   | 20.14                  | 20.3       | 20.54    | Т         | 20.81                | 20.96             | T          | 21        | 21        | 21           | 20.98              | 20.76                | 20.4        | 20.12      |         | (87) |
| Taraa                                    |                        |            |          | _         | a ni a ala i in      | we at a           |            | e ll'in a |           |              |                    |                      | Į           | I          | l       |      |
|                                          | 20.17                  | 20 17      | 20 17    | pe<br>T   | 20 18                | 1 rest 0          |            |           |           | DIE 9, 1     | $n_{2}(^{\circ}C)$ | 20.10                | 20.18       | 20.18      |         | (88) |
| (00)11-                                  | 20.17                  | 20.17      | 20.17    | _         | 20.10                | 20.10             |            | 20.2      | 20.2      | 20.2         | 20.15              | 20.13                | 20.10       | 20.10      |         | (00) |
| Utilisa                                  | ation fac              | ctor for g | ains fo  | r re      | est of d             | welling.          | , h2       | m (se     | e Table   | 9a)          |                    |                      |             |            | 1       | (00) |
| (89)m=                                   |                        | 0.99       | 0.96     |           | 0.87                 | 0.67              |            | 0.46      | 0.31      | 0.35         | 0.63               | 0.92                 | 0.99        | 1          |         | (09) |
| Me <mark>an</mark>                       | interna                | l temper   | ature i  | n tl      | he rest              | of dwel           | lling      | T2 (f     | ollow ste | eps 3 to     | 7 in Tabl          | le 9 <mark>c)</mark> |             | 1          |         |      |
| (90)m=                                   | 19.02                  | 19.25      | 19.6     |           | 19.97                | 20.15             | 2          | 20.19     | 20.2      | 20.2         | 20.17              | 19.92                | 19.41       | 18.99      |         | (90) |
|                                          |                        |            |          |           |                      |                   |            |           |           |              |                    | fLA = Livir          | ig area ÷ ( | 4) =       | 0.33    | (91) |
| Mean                                     | interna                | l temper   | ature (  | for       | the wh               | ole dw            | ellin      | g) = fl   | LA × T1   | + (1 – fL    | A) × T2            |                      |             |            |         |      |
| (92)m=                                   | 19.39                  | 19.6       | 19.91    |           | 20.25                | 20.41             | 2          | 20.46     | 20.46     | 20.46        | 20.44              | 20.2                 | 19.73       | 19.36      |         | (92) |
| Apply                                    | v adjustr              | ment to t  | he mea   | an        | internal             | tempe             | ratu       | ire fro   | m Table   | 4e, whe      | ere appro          | opriate              |             |            | 1       |      |
| (93)m=                                   | 19.39                  | 19.6       | 19.91    |           | 20.25                | 20.41             | 2          | 20.46     | 20.46     | 20.46        | 20.44              | 20.2                 | 19.73       | 19.36      |         | (93) |
| 8. Sp                                    | ace hea                | ating requ | uireme   | nt        |                      |                   |            |           |           | <b>-</b>     |                    |                      |             |            |         |      |
| Set I                                    | i to the<br>tilisatior | mean int   | ernal te | em<br>s u | iperatur<br>Ising Ta | e obtai<br>ble 9a | ined       | at ste    | ep 11 of  | I able 9     | b, so tha          | it II,m=(            | 76)m an     | d re-calo  | culate  |      |
|                                          | Jan                    | Feb        | Mar      |           | Apr                  | Mav               | ,          | Jun       | Jul       | Aua          | Sep                | Oct                  | Nov         | Dec        |         |      |
| Utilisa                                  | ation fac              | ctor for g | ains, h  | <br>m:    |                      |                   | _          |           |           |              | F                  |                      |             |            | l       |      |
| (94)m=                                   | 0.99                   | 0.99       | 0.96     | Τ         | 0.87                 | 0.69              |            | 0.48      | 0.33      | 0.38         | 0.65               | 0.92                 | 0.99        | 1          |         | (94) |
| Usefu                                    | ul gains,              | hmGm       | , W = (  | 94        | )m x (84             | 4)m               |            |           |           |              |                    |                      |             |            | 1       |      |
| (95)m=                                   | 481.01                 | 559.66     | 626.44   | t         | 649.37               | 560.52            | 3          | 84.42     | 254.43    | 266.79       | 408.96             | 501.15               | 471.16      | 454.09     |         | (95) |
| Montl                                    | hly aver               | age exte   | rnal te  | mp        | perature             | e from T          | Fabl       | e 8       |           |              |                    |                      |             |            |         |      |
| (96)m=                                   | 4.3                    | 4.9        | 6.5      |           | 8.9                  | 11.7              |            | 14.6      | 16.6      | 16.4         | 14.1               | 10.6                 | 7.1         | 4.2        |         | (96) |
| Heat                                     | loss rat               | e for mea  | an inte  | rna       | al tempe             | erature,          | , Lm       | ı , W =   | =[(39)m : | x [(93)m     | – (96)m            | ]                    | i           | i          | 1       |      |
| (97)m=                                   | 1035.46                | 1005.4     | 913.99   | <u>}</u>  | 761.59               | 582.99            | 3          | 86.31     | 254.59    | 267.14       | 420.34             | 641.93               | 850.21      | 1026.56    |         | (97) |
| Space                                    | e heatir               | ig require | ement    | for       | each m               | nonth, k          | wh<br>۲    | /mont     | th = 0.02 | 24 x [(97    | )m – (95           | 5)m] x (4            | 1)m         | 407        | 1       |      |
| (98)m=                                   | 412.52                 | 299.53     | 213.94   | ł         | 80.8                 | 16.71             |            | 0         | 0         | 0            | 0                  | 104.74               | 272.92      | 425.92     | 4007.00 |      |
|                                          |                        |            |          |           |                      |                   |            |           |           | Tota         | al per year        | (kWh/yea             | r) = Sum(9  | 8)15,912 = | 1827.08 | (98) |
| Space heating requirement in kWh/m²/year |                        |            |          |           |                      |                   |            |           |           |              | 24.01              | (99)                 |             |            |         |      |
| 9a. En                                                       | ergy reo           | quiremer           | nts – Ind                     | ividual h     | eating sy | /stems i  | ncluding               | micro-C     | HP)        |                        |                         |           |                                |                   |
|--------------------------------------------------------------|--------------------|--------------------|-------------------------------|---------------|-----------|-----------|------------------------|-------------|------------|------------------------|-------------------------|-----------|--------------------------------|-------------------|
| Spac                                                         | e heatii           | ng:                | t frage -                     |               | 40.00-1-  | m 0 - 1   |                        |             |            |                        |                         |           |                                |                   |
| Fracti                                                       | ion of sp          |                    | it from S                     | econdar       | y/supple  | mentary   | system                 | (202) = 1   | _ (201) -  |                        |                         |           | 0                              |                   |
| Fracti                                                       | ion of sp          | bace hea           | it from m                     | nain syst     | em(s)     |           |                        | (202) = 1 - | -(201) =   | (202)]                 |                         |           | 1                              | (202)             |
| Fracti                                                       | ion of to          | tal heati          | ng from                       | main sys      | stem 1    |           |                        | (204) = (20 | 02) × [1 – | (203)] =               |                         |           | 1                              | (204)             |
| Efficie                                                      | ency of            | main spa           | ace heat                      | ing syste     | em 1      |           |                        |             |            |                        |                         |           | 93.4                           | (206)             |
| Efficie                                                      | ency of :          | seconda<br>1       | ry/suppl<br>r                 | ementar<br>1  | y heating | g system  | n, %<br>r              | <b></b>     |            |                        |                         | I         | 0                              | (208)             |
| Creek                                                        | Jan                | Feb                | Mar                           | Apr           | May       | Jun       | Jul                    | Aug         | Sep        | Oct                    | Nov                     | Dec       | kWh/yea                        | ar                |
| Space                                                        | e neatin<br>412.52 | g require          | 213 94                        |               | d above)  | 0         | 0                      | 0           | 0          | 104 74                 | 272 92                  | 425 92    | ]                              |                   |
| (211)m                                                       |                    | m x (20)           | /)] \ v 1                     |               |           | •         | Ů                      | Ŭ           | Ŭ          | 101.11                 | 272.02                  | 120.02    |                                | (211)             |
| (211)11                                                      | 441.67             | 320.7              | 229.06                        | 86.51         | 17.89     | 0         | 0                      | 0           | 0          | 112.14                 | 292.21                  | 456.02    |                                | (211)             |
|                                                              |                    |                    |                               |               |           |           |                        | Tota        | l (kWh/yea | l<br>ar) =Sum(2        | 211) <sub>15,1012</sub> | <u></u> = | 1956.19                        | (211)             |
| Space                                                        | e heatin           | g fuel (s          | econdar                       | y), kWh/      | month     |           |                        |             |            |                        |                         |           |                                |                   |
| = {[(98                                                      | )m x (20           | 01)] } x 1         | 00 ÷ (20                      | )8)           |           |           |                        |             |            | -                      | -                       |           |                                |                   |
| (215)m=                                                      | 0                  | 0                  | 0                             | 0             | 0         | 0         | 0                      | 0           | 0          | 0                      | 0                       | 0         |                                | -                 |
|                                                              |                    |                    |                               |               |           |           |                        | Tota        | l (kWh/yea | ar) =Sum(2             | 215) <sub>15,1012</sub> | <b>7</b>  | 0                              | (215)             |
| Water heating<br>Output from water heater (calculated above) |                    |                    |                               |               |           |           |                        |             |            |                        |                         |           |                                |                   |
| Output                                                       | 199.1              | ater nea<br>173.92 | 180.95                        | 160.49        | 155.39    | 136.85    | 131.12                 | 146.16      | 147.78     | 168.28                 | 179.63                  | 194.42    |                                |                   |
| Efficier                                                     | ncy of w           | i<br>ater hea      | iter                          |               |           |           |                        |             |            |                        |                         | <u> </u>  | 80.3                           | (216)             |
| (217)m=                                                      | 86.84              | 86.41              | 85.47                         | 83.42         | 81.18     | 80.3      | 80.3                   | 80.3        | 80.3       | 83.9                   | 86.1                    | 86.97     |                                | (217)             |
| Fuel fo                                                      | or water           | heating,           | kWh/m                         | onth          |           |           |                        |             |            |                        |                         | •         | 1                              |                   |
| (219)m                                                       | 1 = (64)           | m x 100            | ) <del>÷</del> (217)<br>211 7 | m             | 101 41    | 170.43    | 163.28                 | 182.02      | 184.03     | 200.58                 | 208.63                  | 223 55    |                                |                   |
| (213)11-                                                     | 223.20             | 201.27             | 211.7                         | 102.00        | 101.41    | 170.43    | 103.20                 | Tota        | I = Sum(2  | 19a) <sub>1 12</sub> = | 200.00                  | 220.00    | 2358.55                        | (219)             |
| Annua                                                        | al totals          |                    |                               |               |           |           |                        |             | ·          | k                      | Wh/vear                 |           | kWh/vear                       |                   |
| Space                                                        | heating            | fuel use           | ed, main                      | system        | 1         |           |                        |             |            |                        |                         |           | 1956.19                        | 7                 |
| Water                                                        | heating            | fuel use           | d                             |               |           |           |                        |             |            |                        |                         |           | 2358.55                        | Ī                 |
| Electri                                                      | city for p         | oumps, fa          | ans and                       | electric      | keep-ho   | t         |                        |             |            |                        |                         |           |                                |                   |
| centra                                                       | al heatir          | na numn            |                               |               | •         |           |                        |             |            |                        |                         | 30        | ]                              | (230c)            |
| boiler                                                       | with a f           | an-accie           | tod fluo                      |               |           |           |                        |             |            |                        |                         | 45        | ]                              | (230e)            |
|                                                              |                    |                    |                               | 111 h h i a a | _         |           |                        | cum         | of (220a)  | (220a) -               |                         | 40        |                                |                   |
| i otal e                                                     | ectricit           | y for the          | above, i                      | kvvn/yea      | ſ         |           |                        | Sum         | 01 (230a). | (230 <u>y</u> ) =      |                         |           | 75                             | (231)             |
| Electri                                                      | city for I         | ighting            |                               |               |           |           |                        |             |            |                        |                         |           | 333.64                         | (232)             |
| 12a. (                                                       | CO2 em             | issions -          | – Individ                     | ual heat      | ing syste | ems inclu | uding mi               | cro-CHP     |            |                        |                         |           |                                |                   |
|                                                              |                    |                    |                               |               |           | En<br>kW  | <b>ergy</b><br>/h/year |             |            | Emiss<br>kg CO         | <b>ion fac</b><br>2/kWh | tor       | <b>Emissions</b><br>kg CO2/yea | ar                |
| Space                                                        | heating            | ı (main s          | ystem 1                       | )             |           | (21       | 1) x                   |             |            | 0.2                    | 16                      | =         | 422.54                         | (261)             |
| Space                                                        | heating            | (second            | darv)                         | <u>.</u>      |           | (21       | 5) x                   |             |            | 0.5                    | 19                      | =         |                                | $\frac{1}{(263)}$ |
| Water beating                                                |                    |                    |                               |               |           |           |                        |             |            |                        |                         | E00.45    | $\Box_{(264)}$                 |                   |
| Space                                                        | and wa             | tor boot           | na                            |               |           | (26)      | 1) + (262)             | + (263) + ( | 264) –     | L0.2                   | 10                      |           | 009.45                         |                   |
| Space                                                        | and wa             | ter heati          | ng                            |               |           | (26       | 1) + (262)             | + (263) + ( | 264) =     |                        |                         |           | 931.98                         | (265)             |

| (231) x | 0.510               | ] =                                                   | 28.02                                                         | 7(267)                                               |
|---------|---------------------|-------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|
| (232) x | 0.519               | ]<br>1 _                                              | 470.40                                                        |                                                      |
| (202)   | 0.519               |                                                       | 173.16                                                        | _(200)<br>_(200)                                     |
|         | Sun Of (205)(271) = |                                                       | 1144.07                                                       | (272)                                                |
|         |                     |                                                       |                                                               | _                                                    |
|         |                     |                                                       | 15.03                                                         | (273)                                                |
|         | (231) x<br>(232) x  | (231) x 0.519<br>(232) x 0.519<br>sum of (265)(271) = | (231) x $0.519 =$<br>(232) x $0.519 =$<br>sum of (265)(271) = | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

## **Regulations Compliance Report**

| Approved Document<br>Printed on 22 June 2                         | t L1A, 2013 Edition,<br>2018 at 10:46:50    | England assessed by St                                                                                                                       | troma FSAP 2012 program, Vers                                            | ion: 1.0.3.11          |
|-------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------|
| Project Information                                               | :                                           |                                                                                                                                              |                                                                          |                        |
| Assessed By:                                                      | ()                                          |                                                                                                                                              | Building Type:                                                           | Flat                   |
| Dwelling Details:                                                 |                                             |                                                                                                                                              |                                                                          |                        |
| NEW DWELLING D                                                    | ESIGN STAGE                                 |                                                                                                                                              | Total Floor Area: 76                                                     | .1m²                   |
| Site Reference :                                                  | Arlington Works, Tv                         | vickenham                                                                                                                                    | Plot Reference:                                                          | Arlington 3 Bed TOP 76 |
| Address :                                                         |                                             |                                                                                                                                              |                                                                          |                        |
| Client Details:                                                   |                                             |                                                                                                                                              |                                                                          |                        |
| Name:<br>Address :                                                | Sharpes Refinery S                          | ervice                                                                                                                                       |                                                                          |                        |
| This report covers<br>It is not a complete                        | items included wit<br>report of regulation  | hin the SAP calculation ons compliance.                                                                                                      | <b>IS</b> .                                                              |                        |
| 1a TER and DER                                                    |                                             |                                                                                                                                              |                                                                          |                        |
| Fuel for main heating                                             | g system: Mains gas                         | 3                                                                                                                                            |                                                                          |                        |
| Fuel factor: 1.00 (ma                                             | ains gas)<br>de Emission Pate (             |                                                                                                                                              | 16 67 ka/m²                                                              |                        |
| Dwelling Carbon Dick                                              | xide Emission Rate                          | (DER)                                                                                                                                        | 15.82 kg/m²                                                              | ОК                     |
| 1b TFEE and DFE                                                   | E                                           |                                                                                                                                              | Ŭ                                                                        |                        |
| Target Fabric Energy<br>Dwelling Fabric Ene                       | y Efficiency (TFEE)<br>rgy Efficiency (DFEI |                                                                                                                                              | 42.5 kWh/m <sup>2</sup><br>39.0 kWh/m <sup>2</sup>                       | ОК                     |
| Element<br>External wa<br>Party wall<br>Floor<br>Roof<br>Openings |                                             | Average<br>0.17 (max. 0.30)<br>0.00 (max. 0.20)<br>(no floor)<br>0.16 (max. 0.20)<br>1.42 (max. 2.00)                                        | Highest<br>0.17 (max. 0.70)<br>-<br>0.16 (max. 0.35)<br>1.60 (max. 3.30) | ок<br>ок<br>ок<br>ок   |
| 2a Thermal bridgi                                                 | ng                                          |                                                                                                                                              |                                                                          |                        |
| Thermal bri                                                       | idging calculated fro                       | m linear thermal transmi                                                                                                                     | ttances for each junction                                                |                        |
| 3 Air permeability<br>Air permeabil                               | ity at 50 pascals                           |                                                                                                                                              | 4.00 (design value                                                       | e)                     |
| Maximum                                                           |                                             |                                                                                                                                              | 10.0                                                                     | UK                     |
| 4 Heating efficient                                               | су                                          | Deteboool (rev 207 pre                                                                                                                       | duct index 010001)                                                       |                        |
| Main Heating                                                      | system:                                     | Boiler systems with radi<br>Brand name: Alpha<br>Model: InTec 34C<br>Model qualifier:<br>(Combi)<br>Efficiency 88.8 % SEDE<br>Minimum 88.0 % | auct index 016661).<br>iators or underfloor heating - mai                | ns gas<br>OK           |
| Secondary he                                                      | eating system:                              | None                                                                                                                                         |                                                                          |                        |

## **Regulations Compliance Report**

| 5 Cylinder insulation             |                    |                    |                                         |       |
|-----------------------------------|--------------------|--------------------|-----------------------------------------|-------|
| Hot water Storage:                | No cylinder        |                    |                                         |       |
| 6 Controls                        |                    |                    |                                         |       |
|                                   |                    |                    |                                         |       |
| Space heating controls            | Time and temper    | rature zone contro | I by device in database                 | ОК    |
| Hot water controls:               | No cylinder        |                    | ,                                       |       |
| Boiler interlock:                 | Yes                |                    |                                         | ОК    |
| 7 Low energy lights               |                    |                    |                                         |       |
| Percentage of fixed lights with I | ow-energy fittings |                    | 100.0%                                  |       |
| Minimum                           |                    |                    | 75.0%                                   | OK    |
| 8 Mechanical ventilation          |                    |                    |                                         |       |
| Not applicable                    |                    |                    |                                         |       |
| 9 Summertime temperature          |                    |                    |                                         |       |
| Overheating risk (Thames valle    | y):                |                    | Medium                                  | ОК    |
| Based on:                         |                    |                    |                                         |       |
| Overshading:                      |                    |                    | Average or unknown                      |       |
| Windows facing: North West        |                    |                    | 4.41m <sup>2</sup>                      |       |
| Windows facing: North West        |                    |                    | 4.41m <sup>2</sup>                      |       |
| Windows facing: South East        |                    |                    | 4.41m <sup>2</sup>                      |       |
| Windows facing: South West        |                    |                    | 2.52m <sup>2</sup>                      |       |
| Ventilation rate:                 |                    |                    | 3.00                                    |       |
| Blinds/curtains:                  |                    |                    | None                                    |       |
|                                   |                    |                    | Close <mark>d 100% of daylight</mark> l | hours |
|                                   |                    |                    |                                         |       |
| 10 Key features                   |                    |                    |                                         |       |
| Party Walls U-value               |                    |                    | 0 W/m²K                                 |       |
|                                   |                    |                    |                                         |       |
|                                   |                    |                    |                                         |       |
|                                   |                    |                    |                                         |       |
|                                   |                    |                    |                                         |       |

|                                  |                                 |              | User D             | etails:          |                  |                  |          |           |                        |                         |
|----------------------------------|---------------------------------|--------------|--------------------|------------------|------------------|------------------|----------|-----------|------------------------|-------------------------|
| Assessor Name:<br>Software Name: | Stroma FSAP 201                 | 2            | :                  | Stroma<br>Softwa | a Num<br>ire Ver | ber:<br>sion:    |          | Versio    | n: 1.0.3.11            |                         |
|                                  |                                 | Pro          | operty A           | Address:         | Arlingto         | on 3 Bec         | TOP 76   | 6         |                        |                         |
| Address :                        |                                 |              |                    |                  |                  |                  |          |           |                        |                         |
| 1. Overall dwelling dime         | ensions:                        |              |                    |                  |                  |                  |          |           |                        |                         |
|                                  |                                 |              | Area               | 1 <b>(m²)</b>    |                  | Av. He           | ight(m)  |           | Volume(m <sup>3</sup>  | )                       |
| Ground floor                     |                                 |              | 7                  | 6.1              | (1a) x           | 2                | 2.3      | (2a) =    | 175.03                 | (3a)                    |
| Total floor area TFA = (1        | a)+(1b)+(1c)+(1d)+(1e           | e)+(1n)      | 7                  | 6.1              | (4)              |                  |          |           |                        |                         |
| Dwelling volume                  |                                 |              |                    |                  | (3a)+(3b)        | +(3c)+(3c        | l)+(3e)+ | .(3n) =   | 175.03                 | (5)                     |
| 2. Ventilation rate:             |                                 |              |                    |                  |                  |                  |          |           |                        |                         |
|                                  | main s                          | econdary     | /                  | other            |                  | total            |          |           | m <sup>3</sup> per hou | r                       |
| Number of chimneys               |                                 | 0            | + [                | 0                | ] = [            | 0                | x 4      | 40 =      | 0                      | (6a)                    |
| Number of open flues             | 0 +                             | 0            | ,<br>  + [         | 0                | ] = [            | 0                | ×        | 20 =      | 0                      | (6b)                    |
| Number of intermittent fa        | ins                             |              | J L                |                  | · _              | 2                | x /      | 10 =      | 20                     | (7a)                    |
| Number of passive vents          | i                               |              |                    |                  |                  | 0                | x /      | 10 =      | 0                      | (7b)                    |
| Number of flueless gas fi        | res                             |              |                    |                  |                  | 0                | X 4      | 40 =      | 0                      | (7c)                    |
|                                  |                                 |              |                    |                  | _                |                  |          | Air ch    | anges per ho           | our                     |
| Infiltration due to chimne       | ys, flues and fans = (6         | a)+(6b)+(7a  | ) <b>+(7</b> b)+(7 | (c) =            |                  | 20               |          | ÷ (5) =   | 0.11                   | (8)                     |
| If a pressurisation test has b   | een carried out or is intende   | ed, proceed  | to (17), o         | therwise c       | ontinue fre      | om (9) to (      | (16)     |           |                        | -                       |
| Additional infiltration          | ne dweiling (ns)                |              |                    |                  |                  |                  | [(0)]    | 11×0.1 -  | 0                      | (9)                     |
| Structural infiltration: 0       | 25 for steel or timber          | frame or (   | ) 35 for           | masonr           | v constr         | uction           | [(9)     | -1]x0.1 = | 0                      | -(10)                   |
| if both types of wall are p      | resent, use the value corres    | ponding to t | the greate         | er wall area     | a (after         | Gottori          |          |           | 0                      |                         |
| deducting areas of openii        | ngs); if equal user 0.35        | lad) ar 0 1  |                    | d) alaa          | ontor O          |                  |          |           | _                      |                         |
| If suspended wooden i            | tor $0.05$ also optor $0$       | ied) of 0.1  | (seale             | a), eise         | enter u          |                  |          |           | 0                      | (12)                    |
| Percentage of windows            | s and doors draught st          | trinned      |                    |                  |                  |                  |          |           | 0                      | $ - \frac{(13)}{(14)} $ |
| Window infiltration              | s and doors draught s           | inpped       | (                  | 0.25 - [0.2      | x (14) ÷ 1       | 00] =            |          |           | 0                      | (14)                    |
| Infiltration rate                |                                 |              |                    | (8) + (10) -     | + (11) + (1      | -<br>2) + (13) - | + (15) = |           | 0                      | $= \frac{(10)}{(16)}$   |
| Air permeability value.          | a50. expressed in cub           | oic metres   | per ho             | ur per so        | uare m           | etre of e        | envelope | area      | 4                      |                         |
| If based on air permeabil        | lity value, then $(18) = [(1)]$ | 7) ÷ 20]+(8) | , otherwis         | se (18) = (      | 16)              |                  |          |           | 0.31                   |                         |
| Air permeability value applie    | s if a pressurisation test ha   | s been done  | or a deg           | ree air per      | meability        | is being u       | sed      |           |                        |                         |
| Number of sides sheltere         | ed                              |              |                    |                  |                  |                  |          |           | 2                      | (19)                    |
| Shelter factor                   |                                 |              |                    | (20) = 1 - [     | 0.075 x (1       | 9)] =            |          |           | 0.85                   | (20)                    |
| Infiltration rate incorporat     | ting shelter factor             |              |                    | (21) = (18)      | x (20) =         |                  |          |           | 0.27                   | (21)                    |
| Infiltration rate modified f     | or monthly wind speed           | tt           |                    |                  |                  |                  |          |           | l.                     |                         |
| Jan Feb                          | Mar Apr May                     | Jun          | Jul                | Aug              | Sep              | Oct              | Nov      | Dec       |                        |                         |
| Monthly average wind sp          | eed from Table 7                |              |                    |                  |                  |                  | -        | -         |                        |                         |
| (22)m= 5.1 5                     | 4.9 4.4 4.3                     | 3.8          | 3.8                | 3.7              | 4                | 4.3              | 4.5      | 4.7       |                        |                         |
| Wind Factor $(22a)m = (2)$       | 2)m ÷ 4                         |              |                    |                  |                  |                  |          |           |                        |                         |
| (22a)m= 1.27 1.25                | 1.23 1.1 1.08                   | 0.95         | 0.95               | 0.92             | 1                | 1.08             | 1.12     | 1.18      |                        |                         |
| ······                           |                                 |              |                    |                  |                  |                  | -        |           | •                      |                         |

| Adjuste          | ed infiltr             | ation rat               | e (allowi               | ing for sh    | elter an     | d wind s    | peed) =     | (21a) x       | (22a)m       |                |                              |                      |            |           |
|------------------|------------------------|-------------------------|-------------------------|---------------|--------------|-------------|-------------|---------------|--------------|----------------|------------------------------|----------------------|------------|-----------|
|                  | 0.34                   | 0.33                    | 0.33                    | 0.29          | 0.29         | 0.25        | 0.25        | 0.25          | 0.27         | 0.29           | 0.3                          | 0.31                 |            |           |
| Calcula<br>If me | ate ette               | ctive air<br>al ventila | change                  | rate for t    | he appli     | cable ca    | se          |               |              |                |                              |                      | 0          | (232)     |
| lf exh           | aust air h             | eat pump                | using App               | endix N, (2   | 3b) = (23a   | ) × Fmv (e  | equation (N | N5)) , othe   | rwise (23b   | ) = (23a)      |                              |                      | 0          | (23b)     |
| lf bala          | anced with             | heat reco               | overy: effic            | iency in %    | allowing for | or in-use f | actor (from | n Table 4h    | ) =          | , , ,          |                              |                      | 0          | (23c)     |
| a) If            | balance                | ed mech                 | ,<br>anical ve          | entilation    | with her     | at recove   | erv (MVI    | HR) (24a      | )<br>m = (2) | 2b)m + (       | 23b) <b>x</b> [ <sup>,</sup> | 1 – (23c)            | <br>→ 1001 | (200)     |
| (24a)m=          | 0                      | 0                       | 0                       | 0             | 0            | 0           | 0           | 0             | 0            | 0              | 0                            | 0                    |            | (24a)     |
| b) If            | balance                | d mech                  | ı<br>anical ve          | entilation    | without      | heat rec    | covery (N   | и<br>ЛV) (24b | )m = (22     | 1<br>2b)m + (2 | 23b)                         |                      | 1          |           |
| ,<br>(24b)m=     | 0                      | 0                       | 0                       | 0             | 0            | 0           | 0           | 0             | 0            | 0              | 0                            | 0                    |            | (24b)     |
| c) If            | whole h                | ouse ex                 | tract ver               | ntilation c   | or positiv   | e input v   | ventilatic  | n from o      | outside      | 1              |                              |                      | 1          |           |
| i                | f (22b)n               | n < 0.5 >               | < (23b), t              | hen (24a      | c) = (23b    | ); otherv   | wise (24    | c) = (22k     | o) m + 0.    | 5 × (23b       | )                            | -                    |            |           |
| (24c)m=          | 0                      | 0                       | 0                       | 0             | 0            | 0           | 0           | 0             | 0            | 0              | 0                            | 0                    |            | (24c)     |
| d) If            | natural                | ventilatio              | on or wh                | ole hous      | e positiv    | e input     | ventilatio  | on from I     | oft          | 1              |                              |                      |            |           |
|                  | f (22b)n               | n = 1, th               | en (24d)                | m = (22k)     | b)m othe     | rwise (2    | (4d)m = 0   | 0.5 + [(2     | 2b)m² x      | 0.5]           | 0.55                         | 0.55                 | 1          | (244)     |
| (240)m=          | 0.56                   | 0.56                    | 0.55                    | 0.54          | 0.54         | 0.53        | 0.53        | 0.53          | 0.54         | 0.54           | 0.55                         | 0.55                 |            | (240)     |
|                  |                        |                         | rate - er               | nter (24a     | ) or (240    | o 52        | c) or (24   |               | (25)         | 0.54           | 0.55                         | 0.55                 | 1          | (25)      |
| (25)11=          | 0.56                   | 0.50                    | 0.55                    | 0.54          | 0.54         | 0.55        | 0.55        | 0.55          | 0.54         | 0.34           | 0.55                         | 0.55                 |            | (23)      |
| 3. He            | at l <mark>osse</mark> | s and he                | eat loss                | paramete      | er:          |             |             |               |              |                |                              |                      |            |           |
| ELEN             | 1ENT                   | Gros                    | SS<br>(m <sup>2</sup> ) | Openin        | gs           | Net Ar      | ea          | U-valu        | ue           | AXU            |                              | k-value              |            | AXk       |
| Doors            |                        | area                    | (1112)                  | - m           |              | A ,r        |             | VV/11/2       | .r.          | ( V V / I      | <pre></pre>                  | KJ/M <sup>2</sup> ·M |            | KJ/K (26) |
| Windo            |                        | 1                       |                         |               |              | 1.89        |             | 1.0           | 0.041        | 3.024          | 8                            |                      |            | (20)      |
| Windo            |                        |                         |                         |               |              | 4.41        |             | /[1/(1.4)+    | 0.04]        | 5.85           | H                            |                      |            | (27)      |
| Windo            | ws Type                | 2                       |                         |               |              | 4.41        |             | /[1/( 1.4 )+  | 0.04] =      | 5.85           | L.                           |                      |            | (27)      |
| VVINdov          | ws type<br>            | 3                       |                         |               |              | 4.41        | x1/         | /[1/(1.4)+    | 0.04] =      | 5.85           |                              |                      |            | (27)      |
| vvindov          | ws Type                | 94<br>                  |                         |               |              | 2.52        | x1,         | /[1/( 1.4 )+  | 0.04] =      | 3.34           | ╡,                           |                      |            | (27)      |
| walls            |                        | 56.3                    | 36                      | 17.64         | 1            | 38.72       | <u>×</u>    | 0.17          | =            | 6.58           |                              |                      | $\dashv$   | (29)      |
| Roof             |                        | 76.                     | 1                       | 0             |              | 76.1        | ×           | 0.16          | =            | 12.18          |                              |                      |            | (30)      |
| Total a          | rea of e               | elements                | s, m²                   |               |              | 132.4       | 6           |               |              |                |                              |                      |            | (31)      |
| Party v          | vall                   |                         |                         |               |              | 38.24       | x           | 0             | =            | 0              |                              |                      |            | (32)      |
| Party f          | loor                   |                         |                         |               |              | 76.1        |             |               |              |                |                              |                      |            | (32a)     |
| * for wind       | dows and               | l roof wind             | ows, use e              | effective wil | ndow U-va    | alue calcul | ated using  | formula 1     | /[(1/U-valı  | ıe)+0.04] a    | as given in                  | paragraph            | 1 3.2      |           |
| Fabric           | heat los               | s W/K                   | = S (A x)               |               | s anu pan    | 1110115     |             | (26)(30)      | ) + (32) =   |                |                              |                      | 12.66      | (33)      |
| Heat c           | apacity                | Cm = Si                 | (A x k )                | 0)            |              |             |             |               | ((28).       | (30) + (32     | 2) + (32a).                  | (32e) =              | 42.00      | 5 (34)    |
| Therm            | al mass                | parame                  | eter (TMF               | ⊃ = Cm ÷      | - TFA) in    | ı kJ/m²K    |             |               | Indica       | tive Value     | : Medium                     | (/                   | 250        | (35)      |
| For desi         | gn assess              | sments wh               | ere the de              | tails of the  | constructi   | on are not  | t known pr  | ecisely the   | e indicative | e values of    | TMP in Ta                    | able 1f              | 200        | (00)      |
| can be u         | ised inste             | ad of a de              | tailed calc             | ulation.      |              |             |             |               |              |                |                              |                      |            |           |
| Therm            | al bridg               | es : S (L               | x Y) cal                | culated u     | using Ap     | pendix ł    | <           |               |              |                |                              |                      | 6.01       | (36)      |
| if details       | of therma              | al bridging             | are not kr              | 10wn (36) =   | = 0.15 x (3  | 1)          |             |               | (22) ·       | (36) -         |                              |                      |            |           |
| Ventilo          | tion bor               | at loss of              | alculator               | monthly       | ,            |             |             |               | (32)~        | (30) =         | 25)m v (F)                   |                      | 48.67      | (37)      |
| venuid           | lan                    | Fob                     | Mar                     |               | May          | lun         | Iul         | Διια          | Sen          |                | Nov                          | Dec                  | ]          |           |
|                  | Jan                    |                         |                         |               | ivicity      | Juli        |             | l Aug         | l ogh        |                |                              |                      | l          |           |

| (38)m=                  | 32.23                 | 32.1                    | 31.97                     | 31.37                   | 31.26                    | 30.74                   | 30.74                 | 30.64                  | 30.94              | 31.26                     | 31.49                  | 31.73      |         | (38) |
|-------------------------|-----------------------|-------------------------|---------------------------|-------------------------|--------------------------|-------------------------|-----------------------|------------------------|--------------------|---------------------------|------------------------|------------|---------|------|
| Heat tr                 | ansfer o              | coefficie               | nt, W/K                   |                         |                          |                         |                       |                        | (39)m              | = (37) + (3               | 38)m                   |            |         |      |
| (39)m=                  | 80.9                  | 80.77                   | 80.65                     | 80.05                   | 79.94                    | 79.41                   | 79.41                 | 79.32                  | 79.62              | 79.94                     | 80.16                  | 80.4       |         |      |
|                         |                       |                         |                           | /                       |                          |                         |                       |                        | (10)               | Average =                 | Sum(39)1               | 12 /12=    | 80.05   | (39) |
| Heat lo                 | ss para               | ameter (I               | HLP), W/                  | /m²K                    | 4.05                     | 4.04                    | 4.04                  | 4.04                   | (40)m              | = (39)m ÷                 | (4)                    | 4.00       |         |      |
| (40)m=                  | 1.06                  | 1.06                    | 1.06                      | 1.05                    | 1.05                     | 1.04                    | 1.04                  | 1.04                   | 1.05               |                           | 1.05<br>Sum(40).       | 1.06       | 1.05    | (40) |
| Numbe                   | er of day             | /s in mo                | nth (Tab                  | le 1a)                  |                          |                         |                       |                        | ,                  | -verage -                 | Curr(+0)1              | 12712-     | 1.00    |      |
|                         | Jan                   | Feb                     | Mar                       | Apr                     | May                      | Jun                     | Jul                   | Aug                    | Sep                | Oct                       | Nov                    | Dec        |         |      |
| (41)m=                  | 31                    | 28                      | 31                        | 30                      | 31                       | 30                      | 31                    | 31                     | 30                 | 31                        | 30                     | 31         |         | (41) |
|                         |                       |                         |                           |                         |                          |                         |                       |                        |                    |                           |                        |            |         |      |
| 4. Wa                   | ter hea               | ting ene                | rgy requ                  | irement:                |                          |                         |                       |                        |                    |                           |                        | kWh/yea    | ar:     |      |
| Assum                   | ed occi               | inancy                  | N                         |                         |                          |                         |                       |                        |                    |                           |                        |            |         | (42) |
| if TF.                  | A > 13.               | 9, N = 1                | + 1.76 x                  | [1 - exp                | (-0.0003                 | 849 x (TF               | -13.9)                | )2)] + 0.0             | )013 x (           | TFA -13.                  | 9)                     | .30        |         | (42) |
| if TF.                  | A £ 13.               | 9, N = 1                |                           |                         |                          |                         |                       |                        |                    |                           |                        |            |         | (10) |
| Annual<br><i>Reduce</i> | averag                | je not wa<br>al average | ater usag<br>hot water    | ge in litre<br>usage by | es per da<br>5% if the d | ay va,av<br>Iwelling is | erage =<br>designed t | (25 X N)<br>to achieve | + 36<br>a water us | se target o               | 90<br>f                | .84        |         | (43) |
| not more                | e that 125            | litres per              | person pel                | r day (all w            | ater use, l              | hot and co              | ld)                   |                        |                    |                           |                        |            |         |      |
|                         | Jan                   | Feb                     | Mar                       | Apr                     | Мау                      | Jun                     | Jul                   | Aug                    | Sep                | Oct                       | Nov                    | Dec        |         |      |
| Hot wate                | er usage i            | n litres pe             | r day for ea              | ach month               | Vd,m = fa                | ctor from T             | Table 1c x            | (43)                   |                    |                           |                        |            |         |      |
| (44)m=                  | <mark>9</mark> 9.92   | 96.29                   | 92.65                     | 89.02                   | 85.39                    | 81.75                   | 81.75                 | 85.39                  | 89.02              | 9 <mark>2.65</mark>       | 96.29                  | 99.92      |         | _    |
| Energy (                | content of            | hot water               | used - cal                | culated m               | onthly – 4               | 190 x Vd r              | n x nm x D            | )Tm / 3600             | kWh/mor            | Total = Su<br>oth (see Ta | m(44) <sub>112</sub> = | = [        | 1090.04 | (44) |
| (45)m-                  | 1/9/19                | 120.6                   | 122 72                    | 116 50                  | 111 97                   | 06.54                   | 80.46                 | 102.65                 | 102.99             | 121.06                    | 122.15                 | 1425       |         |      |
| (45)11=                 | 140.10                | 129.0                   | 133.73                    | 110.59                  | 111.07                   | 90.54                   | 09.40                 | 102.05                 | 103.00             | $\frac{121.00}{121 - Su}$ | m(45),                 | 143.5      | 1/20 21 | (45) |
| lf instant              | aneous v              | vater heati             | ng at point               | of use (no              | hot water                | r storage),             | enter 0 in            | boxes (46              | ) to (61)          |                           | n(-10)112 -            | - L        | 1720.21 |      |
| (46)m=                  | 22.23                 | 19.44                   | 20.06                     | 17.49                   | 16.78                    | 14.48                   | 13.42                 | 15.4                   | 15.58              | 18.16                     | 19.82                  | 21.53      |         | (46) |
| Water                   | storage               | loss:                   |                           |                         |                          |                         |                       |                        |                    |                           | ·                      | ·          |         |      |
| Storag                  | e volum               | ne (litres)             | ) includir                | ng any so               | olar or W                | /WHRS                   | storage               | within sa              | ame ves            | sel                       |                        | 0          |         | (47) |
| If comr                 | nunity h<br>vise if n | neating a               | and no ta                 | nk in dw<br>r (this in  | elling, e                | nter 110<br>nstantar    | litres in             | (47)<br>mbi boil       | ore) onto          | ar '∩' in <i>(</i>        | 17)                    |            |         |      |
| Water                   | storage               | loss:                   | not wate                  | 51 (1115 11             | iciuues i                | nstantai                | 10003 00              |                        |                    |                           | <i></i>                |            |         |      |
| a) If m                 | anufact               | turer's d               | eclared I                 | oss facto               | or is kno                | wn (kWł                 | n/day):               |                        |                    |                           |                        | 0          |         | (48) |
| Tempe                   | rature f              | actor fro               | m Table                   | 2b                      |                          |                         |                       |                        |                    |                           |                        | 0          |         | (49) |
| Energy                  | lost fro              | om water                | r storage                 | e, kWh/y€               | ear                      |                         |                       | (48) x (49)            | =                  |                           |                        | 0          |         | (50) |
| b) If m                 | anufact               | turer's d               | eclared of the factor for | cylinder l              | oss fact                 | or is not               | known:                |                        |                    |                           |                        |            |         | (54) |
| If comr                 | nunity h              | neating s               | see secti                 | on 4.3                  |                          |                         | ly)                   |                        |                    |                           |                        | 0          |         | (51) |
| Volume                  | e factor              | from Ta                 | ble 2a                    |                         |                          |                         |                       |                        |                    |                           |                        | 0          |         | (52) |
| Tempe                   | rature f              | actor fro               | m Table                   | 2b                      |                          |                         |                       |                        |                    |                           |                        | 0          |         | (53) |
| Energy                  | lost fro              | om water                | r storage                 | e, kWh/y€               | ear                      |                         |                       | (47) x (51)            | x (52) x (         | 53) =                     |                        | 0          |         | (54) |
| Enter                   | (50) or               | (54) in ( <del>!</del>  | 55)                       |                         |                          |                         |                       |                        |                    |                           |                        | 0          |         | (55) |
| Water                   | storage               | loss cal                | culated                   | for each                | month                    |                         |                       | ((56)m = (             | 55) × (41)         | m                         |                        |            |         |      |
| (56)m=                  | 0                     | 0                       | 0                         | 0                       | 0                        | 0                       | 0                     | 0                      | 0                  | 0                         | 0                      | 0          |         | (56) |
| If cylinde              | er contain            | s dedicate              | d solar sto               | rage, (57)i             | m = (56)m                | x [(50) – (             | H11)] ÷ (50           | 0), else (5            | ()m = (56)         | m where (                 | H11) is fro            | m Appendix | (H      |      |
| (57)m=                  | 0                     | 0                       | 0                         | 0                       | 0                        | 0                       | 0                     | 0                      | 0                  | 0                         | 0                      | 0          |         | (57) |

| Primar              | y circuit    | loss (ar       | nnual) fro           | om Table       |           |            | 0           |                      | (58)        |                           |              |             |               |      |
|---------------------|--------------|----------------|----------------------|----------------|-----------|------------|-------------|----------------------|-------------|---------------------------|--------------|-------------|---------------|------|
| Primar              | y circuit    | loss cal       | culated              | for each       | month (   | 59)m = (   | (58) ÷ 36   | 65 × (41)            | m           |                           |              |             |               |      |
| (mo                 | dified by    | factor f       | rom Tab              | le H5 if t     | here is s | solar wat  | ter heati   | ng and a             | cylinde     | r thermo                  | stat)        |             | L             |      |
| (59)m=              | 0            | 0              | 0                    | 0              | 0         | 0          | 0           | 0                    | 0           | 0                         | 0            | 0           |               | (59) |
| Combi               | loss ca      | lculated       | for each             | month          | (61)m =   | (60) ÷ 36  | 65 × (41    | )m                   |             |                           |              |             |               |      |
| (61)m=              | 23.84        | 21.5           | 23.77                | 22.95          | 23.68     | 22.88      | 23.62       | 23.66                | 22.92       | 23.73                     | 23.02        | 23.82       |               | (61) |
| Total h             | eat req      | uired for      | water h              | eating ca      | alculatec | l for eac  | h month     | (62)m =              | 0.85 × (    | (45)m +                   | (46)m +      | (57)m +     | (59)m + (61)m |      |
| (62)m=              | 172.01       | 151.1          | 157.5                | 139.54         | 135.56    | 119.42     | 113.07      | 126.31               | 126.8       | 144.79                    | 155.17       | 167.33      |               | (62) |
| Solar DI            | W input      | calculated     | using App            | endix G o      | Appendix  | H (negati  | ve quantity | y) (enter '0         | if no sola  | r contribut               | ion to wate  | er heating) |               |      |
| (add a              | dditiona     | l lines if     | FGHRS                | and/or \       | WWHRS     | applies    | , see Ap    | pendix C             | G)          |                           |              |             |               |      |
| (63)m=              | 0            | 0              | 0                    | 0              | 0         | 0          | 0           | 0                    | 0           | 0                         | 0            | 0           |               | (63) |
| Output              | from w       | ater hea       | ter                  |                |           |            | -           |                      |             | -                         | -            |             |               |      |
| (64)m=              | 172.01       | 151.1          | 157.5                | 139.54         | 135.56    | 119.42     | 113.07      | 126.31               | 126.8       | 144.79                    | 155.17       | 167.33      |               |      |
|                     |              |                |                      |                |           |            |             | Outp                 | out from wa | ater heate                | r (annual)   | 12          | 1708.6        | (64) |
| Heat g              | ains fro     | m water        | heating              | , kWh/m        | onth 0.2  | 5 ´ [0.85  | × (45)m     | n + (61)m            | n] + 0.8 x  | ۲ ((46)m                  | + (57)m      | + (59)m     | ]             |      |
| (65)m=              | 55.23        | 48.47          | 50.41                | 44.5           | 43.12     | 37.82      | 35.65       | 40.05                | 40.27       | 46.19                     | 49.69        | 53.67       |               | (65) |
| in <mark>clu</mark> | ide (57)     | m in calo      | culation             | of (65)m       | only if c | ylinder i  | s in the o  | dwelling             | or hot w    | ate <mark>r is f</mark> r | om com       | munity h    | eating        |      |
| 5. Int              | ernai ga     | ains (see      | Table 5              | 5 and 5a       | ):        |            |             |                      |             |                           | _            |             | _             |      |
| Metab               | olic gair    | s (Table       | 5) Wat               | ts             |           |            |             |                      |             |                           |              |             |               |      |
| in o tono           | Jan          | Feb            | Mar                  | Apr            | May       | Jun        | Jul         | Aug                  | Sep         | Oct                       | Nov          | Dec         |               |      |
| (66)m=              | 119.23       | 119.23         | 11 <mark>9.23</mark> | 119.23         | 119.23    | 119.23     | 119.23      | 119.23               | 119.23      | 119.23                    | 119.23       | 119.23      |               | (66) |
| Lightin             | g gains      | (calcula       | ted in A             | pendix         | L, equat  | ion L9 o   | r L9a), a   | lso see <sup>-</sup> | Table 5     |                           |              |             |               |      |
| (67)m=              | 18.89        | 16.78          | 13.65                | 10.33          | 7.72      | 6.52       | 7.04        | 9.16                 | 12.29       | 15.61                     | 18.21        | 19.42       |               | (67) |
| Applia              | nces ga      | ins (calc      | ulated ir            | Append         | dix L, eq | uation L   | 13 or L1    | 3a), also            | see Ta      | ble 5                     |              |             |               |      |
| (68)m=              | 211.1        | 213.29         | 207.77               | 196.02         | 181.18    | 167.24     | 157.93      | 155.74               | 161.26      | 173.01                    | 187.84       | 201.78      |               | (68) |
| Cookir              | na aains     | (calcula       | ted in A             | n<br>Dendix    | L. equat  | ion L15    | or L15a     | ), also se           | e Table     | 5                         | 1            |             |               |      |
| (69)m=              | 34.92        | 34.92          | 34.92                | 34.92          | 34.92     | 34.92      | 34.92       | 34.92                | 34.92       | 34.92                     | 34.92        | 34.92       |               | (69) |
| Pumps               | and fa       | ns dains       | (Table !             | 1              |           |            |             |                      |             |                           |              |             |               |      |
| (70)m=              | 3            | 3              | 3                    | 3              | 3         | 3          | 3           | 3                    | 3           | 3                         | 3            | 3           |               | (70) |
| Losses              |              | l<br>vaporatic | n (nega              | i<br>tive valu | es) (Tab  | l<br>le 5) |             |                      |             |                           |              |             |               |      |
| (71)m=              | -95.39       | -95.39         | -95.39               | -95.39         | -95.39    | -95.39     | -95.39      | -95.39               | -95.39      | -95.39                    | -95.39       | -95.39      |               | (71) |
| Water               | L<br>heating | L<br>nains (1  | I<br>Table 5)        |                |           |            | I           |                      |             | I                         | I            |             |               |      |
| (72)m=              | 74.23        | 72.12          | 67.75                | 61.81          | 57.96     | 52.53      | 47.92       | 53.83                | 55.93       | 62.08                     | 69.02        | 72.14       | l             | (72) |
| Total i             | ntornal      | asine -        |                      |                |           | (66)       | m + (67)m   | 1 + (68)m +          | - (69)m + ( | (70)m + (7                | 1)m + (72)   | )m          |               |      |
| (73)m=              | 365.99       | 363.96         | 350.94               | 329.93         | 308 63    | 288.06     | 274 66      | 280.49               | 291 25      | 312 46                    | 336.84       | 355 11      | l             | (73) |
| 6. So               | lar gains    | S:             |                      | 1              | 1         |            | 1           | 1                    |             | 1                         |              | 1           |               |      |
| Solar g             | ains are o   | alculated      | using sola           | r flux from    | Table 6a  | and assoc  | iated equa  | ations to co         | nvert to th | e applicat                | ole orientat | tion.       |               |      |
| Orienta             | ation: /     | Access F       | actor                | Area           |           | Flu        | x           |                      | g_          |                           | FF           |             | Gains         |      |

| Onentation.    | Table 6d |   | m²   |   | Table 6a |   | 9_<br>Table 6b |   | Table 6c |   | (W)   |      |
|----------------|----------|---|------|---|----------|---|----------------|---|----------|---|-------|------|
| Southeast 0.9x | 0.77     | x | 4.41 | x | 36.79    | x | 0.63           | x | 0.7      | = | 49.59 | (77) |
| Southeast 0.9x | 0.77     | x | 4.41 | x | 62.67    | × | 0.63           | x | 0.7      | = | 84.47 | (77) |

|                                        |      | 1 |      | 1 |        | 1   |      |   |     | 1          |        | -         |
|----------------------------------------|------|---|------|---|--------|-----|------|---|-----|------------|--------|-----------|
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 85.75  | x   | 0.63 | X | 0.7 | =          | 115.57 | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 106.25 | x   | 0.63 | x | 0.7 | =          | 143.2  | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 119.01 | x   | 0.63 | x | 0.7 | =          | 160.4  | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 118.15 | x   | 0.63 | x | 0.7 | =          | 159.24 | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 113.91 | x   | 0.63 | x | 0.7 | =          | 153.52 | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 104.39 | x   | 0.63 | x | 0.7 | ] =        | 140.69 | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 92.85  | x   | 0.63 | x | 0.7 | ] =        | 125.14 | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 69.27  | x   | 0.63 | x | 0.7 | ] =        | 93.36  | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 44.07  | x   | 0.63 | x | 0.7 | =          | 59.4   | (77)      |
| Southeast 0.9x                         | 0.77 | x | 4.41 | x | 31.49  | x   | 0.63 | x | 0.7 | =          | 42.44  | (77)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 36.79  | ]   | 0.63 | x | 0.7 | =          | 28.34  | (79)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 62.67  | ]   | 0.63 | x | 0.7 | =          | 48.27  | (79)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 85.75  | ]   | 0.63 | x | 0.7 | ] =        | 66.04  | (79)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 106.25 | ]   | 0.63 | x | 0.7 | ] =        | 81.83  | (79)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 119.01 | 1   | 0.63 | x | 0.7 | =          | 91.66  | (79)      |
| Southwest <mark>0.9x</mark>            | 0.77 | × | 2.52 | x | 118.15 | ]   | 0.63 | x | 0.7 | =          | 90.99  | (79)      |
| Southwest <sub>0.9x</sub>              | 0.77 | x | 2.52 | x | 113.91 | İ   | 0.63 | x | 0.7 | <b>j</b> = | 87.73  | (79)      |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | x | 2.52 | X | 104.39 |     | 0.63 | х | 0.7 | =          | 80.4   | (79)      |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | × | 2.52 | x | 92.85  | İ.  | 0.63 | x | 0.7 | =          | 71.51  | (79)      |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | x | 2.52 | x | 69.27  | i / | 0.63 | x | 0.7 | <b>j</b> = | 53.35  | (79)      |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | x | 2.52 | x | 44.07  | i/  | 0.63 | x | 0.7 | =          | 33.94  | (79)      |
| Sout <mark>hwest<sub>0.9x</sub></mark> | 0.77 | x | 2.52 | x | 31.49  | ĺ   | 0.63 | x | 0.7 | i =        | 24.25  | _<br>(79) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 11.28  | ×   | 0.85 | x | 0.7 | i =        | 20.52  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 11.28  | ×   | 0.85 | x | 0.7 | <b>i</b> = | 20.52  | (81)      |
| Northwest 0.9x                         | 0.77 | × | 4.41 | x | 22.97  | ×   | 0.85 | x | 0.7 | <b>j</b> = | 41.76  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 22.97  | x   | 0.85 | x | 0.7 | <b>j</b> = | 41.76  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 41.38  | ×   | 0.85 | x | 0.7 | =          | 75.24  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 41.38  | ×   | 0.85 | x | 0.7 | i =        | 75.24  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 67.96  | x   | 0.85 | x | 0.7 | i =        | 123.57 | -<br>(81) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 67.96  | ×   | 0.85 | x | 0.7 | i =        | 123.57 | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 91.35  | ×   | 0.85 | x | 0.7 | i =        | 166.1  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 91.35  | ×   | 0.85 | x | 0.7 | i =        | 166.1  | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 97.38  | ×   | 0.85 | x | 0.7 | <b>i</b> = | 177.08 | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 97.38  | x   | 0.85 | x | 0.7 | i =        | 177.08 | -<br>(81) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 91.1   | x   | 0.85 | x | 0.7 | <b>i</b> = | 165.66 | (81)      |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 91.1   | x   | 0.85 | x | 0.7 | <b>i</b> = | 165.66 | ]<br>(81) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 72.63  | x   | 0.85 | x | 0.7 | <b>i</b> = | 132.06 | -<br>(81) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 72.63  | x   | 0.85 | x | 0.7 | i =        | 132.06 | _<br>(81) |
| Northwest 0.9x                         | 0.77 | × | 4.41 | x | 50.42  | ×   | 0.85 | x | 0.7 | i =        | 91.68  | -<br>(81) |
| Northwest 0.9x                         | 0.77 | x | 4.41 | x | 50.42  | ×   | 0.85 | x | 0.7 | i =        | 91.68  | -<br>(81) |
| Northwest 0.9x                         | 0.77 | × | 4.41 | x | 28.07  | ×   | 0.85 | x | 0.7 | i =        | 51.04  | ]<br>(81) |
| 1                                      |      |   |      |   |        |     |      |   |     |            |        |           |

| Northwest 0.9x 0.77 x 4.41 |                  |            |          | 1           | x         | 2            | 28.07       | x            | 0.85           | x              | 0.7           | =              | 51.04       | (81)       |        |      |
|----------------------------|------------------|------------|----------|-------------|-----------|--------------|-------------|--------------|----------------|----------------|---------------|----------------|-------------|------------|--------|------|
| Northw                     | est 0.9x         | 0.77       |          | х           | 4.4       | 1            | x           | · ·          | 14.2           | ×              | 0.85          |                | 0.7         | =          | 25.82  | (81) |
| Northw                     | est 0.9x         | 0.77       |          | x           | 4.4       | 1            | x           |              | 14.2           | x              | 0.85          | =              | 0.7         | =          | 25.82  | (81) |
| Northw                     | est 0.9x         | 0.77       |          | x           | 4.4       | 1            | x           |              | 9.21           | x              | 0.85          | = × [          | 0.7         | =          | 16.76  | (81) |
| Northw                     | vest 0.9x        | 0.77       |          | х           | 4.4       | 1            | x           |              | 9.21           | x [            | 0.85          | ╡ <u>×</u>     | 0.7         | =          | 16.76  | (81) |
|                            | L                |            |          |             |           |              |             |              |                |                |               |                |             |            |        |      |
| Solar                      | nains in         | watts, ca  | alculate | ъ           | for eacl  | h mont       | h           |              |                | (83)m = S      | um(74)m .     | (82)m          |             |            |        |      |
| (83)m=                     | 118.96           | 216.26     | 332.1    | Ĩ           | 472.17    | 584.26       | 6           | 604.4        | 572.56         | 485.22         | 380.02        | 248.78         | 144.97      | 100.2      |        | (83) |
| Total g                    | gains – i        | nternal a  | and sol  | ar          | (84)m =   | -<br>= (73)m | + (         | 83)m         | , watts        |                | 1             | I              | 1           | 1          | 1      |      |
| (84)m=                     | 484.95           | 580.22     | 683.04   | 1           | 802.1     | 892.89       | 8           | 92.45        | 847.22         | 765.71         | 671.27        | 561.24         | 481.81      | 455.31     | ]      | (84) |
| 7 Mc                       | an inter         | nal temr   | oratur   | <u>م</u> (  | beating   | 60260        | n)          |              |                |                |               |                | 1           |            | 1      |      |
| Tomr                       |                  | during k   | eating   |             | ariode ir | the liv      | vina        | area         | from Tak       |                | 1 (°C)        |                |             |            | 21     | (85) |
| Litilio                    |                  | tor for a  | oine fe  | pe<br>- III |           |              | miy<br>m (a |              |                | JE 3, 11       | n ( C)        |                |             |            | 21     | (00) |
| Utilisa                    |                  | T Tab      | ains io  | r II<br>. T | ving are  | a, ni,r      | n (s<br>. T |              |                | <b>A</b> 110   | San           | Oct            | Nov         | Dee        | 1      |      |
| (00) m                     | Jan              |            |          | ╉           | Apr       | 0.76         |             | Jun          |                | Aug            | Sep           |                |             |            |        | (86) |
| (00)11=                    | I                | 0.99       | 0.98     |             | 0.91      | 0.76         |             | 0.56         | 0.41           | 0.47           | 0.75          | 0.96           | 0.99        |            | ]      | (00) |
| Mear                       | n interna        | l temper   | ature i  | n li        | iving are | ea T1 (      | follc       | w ste        | ps 3 to 7      | ' in Tabl      | e 9c)         |                |             |            | 1      |      |
| (87)m=                     | 19.91            | 20.09      | 20.37    |             | 20.7      | 20.92        | 2           | 20.99        | 21             | 21             | 20.94         | 20.63          | 20.2        | 19.87      |        | (87) |
| Temp                       | perature         | during h   | neating  | pe          | eriods ir | n rest o     | f dw        | elling       | from Ta        | ble 9, T       | h2 (°C)       |                |             |            |        |      |
| (88)m=                     | 20.03            | 20.03      | 20.03    | Τ           | 20.04     | 20.04        | 2           | 0.05         | 20.05          | 20.05          | 20.05         | 20.04          | 20.04       | 20.04      |        | (88) |
| Utilis                     | ation fac        | tor for a  | ains fo  | r re        | est of d  | welling      | h2          | m (se        | e Table        | 9a)            |               |                |             |            |        |      |
| (89)m=                     | 1                | 0.99       | 0.97     | T           | 0.88      | 0.7          |             | 0.48         | 0.32           | 0.38           | 0.67          | 0.94           | 0.99        | 1          |        | (89) |
|                            | · .              |            |          |             |           |              |             | <b>TO</b> // |                |                |               |                |             |            |        |      |
| Mear                       |                  | l temper   | ature I  | n ti        | he rest   | of dwe       | lling       | 12 (f        | ollow ste      | eps 3 to       | / in Tabl     |                | 10.01       | 40.50      | 1      | (00) |
| (90)m=                     | 18.58            | 18.84      | 19.24    | _           | 19.71     | 19.97        |             | 20.04        | 20.05          | 20.05          | 20            | 19.62          | 19.01       | 18.53      |        |      |
|                            |                  |            |          |             |           |              |             |              |                |                |               |                | iy alea ÷ ( | +) =       | 0.33   | (91) |
| Mear                       | n interna        | l temper   | ature (  | for         | the wh    | ole dw       | ellin       | g) = fl      | $LA \times T1$ | + (1 – fL      | A) × T2       |                |             |            |        |      |
| (92)m=                     | 19.02            | 19.25      | 19.61    |             | 20.03     | 20.28        | 2           | 20.35        | 20.36          | 20.36          | 20.31         | 19.95          | 19.4        | 18.97      |        | (92) |
| Apply                      | / adjustr        | nent to t  | he mea   | an          | internal  | tempe        | ratu        | ire fro      | m Table        | 4e, whe        | ere appro     | opriate        |             |            | 1      |      |
| (93)m=                     | 19.02            | 19.25      | 19.61    |             | 20.03     | 20.28        | 2           | 20.35        | 20.36          | 20.36          | 20.31         | 19.95          | 19.4        | 18.97      |        | (93) |
| 8. Sp                      | ace hea          | ting requ  | uireme   | nt          |           |              |             |              |                |                |               |                |             |            |        |      |
| Set T                      | i to the         | mean int   | ernal t  | em          | nperatur  | re obtai     | ined        | at ste       | ep 11 of       | Table 9        | b, so tha     | t Ti,m=(       | 76)m an     | d re-cald  | culate |      |
| the u                      |                  |            | or gains | s u<br>. T  |           | ible 9a      |             |              |                | <u> </u>       | San           | Oct            | Nov         | Dee        | 1      |      |
| l Itilie                   | Jan<br>ation fac | tor for a  | _ iviai  |             | Арг       | Iviay        |             | Jun          | Jui            | Aug            | Sep           | Oci            |             | Dec        | J      |      |
| (94)m=                     |                  |            | 0.96     | <u> </u>    | 0.88      | 0.72         |             | 0.51         | 0.35           | 0.41           | 0.69          | 0.94           | 0.99        | 1          | 1      | (94) |
|                            |                  | hmGm       | W = (    | <br>04      | )m x (8/  | 4)m          |             | 0.01         | 0.00           | 0.41           | 0.00          | 0.04           | 0.00        |            | J      | ()   |
| (95)m=                     | 482.6            | 573.05     | 658.37   | 7           | 709.52    | 638.91       | 4           | 50.75        | 297.85         | 312.52         | 465.61        | 525.95         | 476.59      | 453.69     | ]      | (95) |
| Mont                       | hlv aver         | ade exte   | rnal te  | <br>mr      | rature    | from         | <br>Fahl    | e 8          |                | 0.2.02         |               | 020100         |             |            | J      |      |
| (96)m=                     | 4.3              | 4.9        | 6.5      | T           | 8.9       | 11.7         | T           | 14.6         | 16.6           | 16.4           | 14.1          | 10.6           | 7.1         | 4.2        | ]      | (96) |
| Heat                       | loss rate        | e for me   | an inte  | <br>rna     | al tempe  | erature      | _L_m        | 1.W=         | L<br>=[(39)m   | L<br>x [(93)m  | L<br>(96)m    | 1              | L           |            | 1      |      |
| (97)m=                     | 1190.78          | 1159.33    | 1057.5   | 4           | 891.14    | 685.68       | 4           | 56.66        | 298.52         | 313.97         | 494.45        | 747.7          | 986.09      | 1187.66    | ]      | (97) |
| Spac                       | e heatin         | a require  | ement    | <br>for     | each m    | nonth.       | ⊥<br>⟨Wh    | /mon         | h = 0.02       | 1<br>24 x [(97 | ı<br>)m — (95 | i<br>5)ml x (4 | 1)m         | I          | 1      |      |
| (98)m=                     | 526.89           | 393.98     | 296.98   | 3           | 130.76    | 34.8         |             | 0            | 0              | 0              | 0             | 164.98         | 366.84      | 546.07     | ]      |      |
|                            | L                | I          | 1        |             |           |              |             |              | I              | r<br>Tota      | l per year    | ı<br>(kWh/yea  | r) = Sum(9  | 8)15,912 = | 2461.3 | (98) |
| Snoo                       | a haatin         | a requir   | amont    | in '        | k\//h/m?  | wear         |             |              |                |                |               |                |             |            | 22.24  |      |
| Spac                       | enealli          | ig require | ement    |             |           | year         |             |              |                |                |               |                |             |            | 32.34  | (99) |

| 9a. En                                | ergy rea                                                                                                  | quireme          | nts – Ind             | lividual h          | eating sy  | ystems i | including               | g micro-C   | CHP)       |                |                                 |                     |                         |                 |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------|-----------------------|---------------------|------------|----------|-------------------------|-------------|------------|----------------|---------------------------------|---------------------|-------------------------|-----------------|
| Spac                                  | e heati                                                                                                   | ng:              |                       | _                   | , <u>-</u> |          |                         |             |            |                |                                 |                     |                         | ٦               |
| Fract                                 | ion of sp                                                                                                 | bace hea         | at from s             | econdar             | y/supple   | mentary  | v system                | (0.0.0)     | (0.0.1)    |                |                                 |                     | 0                       | (201)           |
| Fract                                 | ion of sp                                                                                                 | bace hea         | at from n             | nain syst           | em(s)      |          |                         | (202) = 1 - | - (201) =  |                |                                 |                     | 1                       | (202)           |
| Fract                                 | ion of to                                                                                                 | otal heati       | ng from               | main sys            | stem 1     |          |                         | (204) = (2  | 02) × [1 – | (203)] =       |                                 |                     | 1                       | (204)           |
| Effici                                | ency of                                                                                                   | main spa         | ace heat              | ting syste          | em 1       |          |                         |             |            |                |                                 |                     | 92.7                    | (206)           |
| Effici                                | ency of                                                                                                   | seconda          | ary/suppl             | ementar             | y heating  | g systen | n, %                    |             |            |                |                                 | -                   | 0                       | (208)           |
| _                                     | Jan                                                                                                       | Feb              | Mar                   | Apr                 | May        | Jun      | Jul                     | Aug         | Sep        | Oct            | Nov                             | Dec                 | kWh/yea                 | ar              |
| Spac                                  | e heatin                                                                                                  | ng requir        | ement (c              |                     | d above)   | )        |                         |             | 0          | 164.09         | 266.04                          | F46 07              | l                       |                 |
| (011)-                                | 020.09                                                                                                    | 393.90           | 290.90                | 100 . (00           | 34.0<br>() | 0        | 0                       | 0           | 0          | 104.90         | 300.04                          | 540.07              |                         | (014)           |
| (211)n                                | $n = \{[(98) \\ 568, 38]$                                                                                 | 3)m x (20<br>425 | [320.36]              | 100 ÷ (20<br>141.06 | 37 54      | 0        | 0                       | 0           | 0          | 177 97         | 395 73                          | 589.07              |                         | (211)           |
|                                       | 000.00                                                                                                    | 120              | 020.00                | 111.00              | 01.01      | ů        | Ů                       | Tota        | l (kWh/yea | ar) =Sum(2     | 211) <sub>151012</sub>          | =                   | 2655.13                 | (211)           |
| Spac                                  | e heatin                                                                                                  | ng fuel (s       | econdar               | v), kWh/            | month      |          |                         |             |            |                |                                 |                     |                         |                 |
| = {[(98                               | 3)m x (20                                                                                                 | 01)] } x 1       | 00 ÷ (20              | )8)                 |            | -        |                         |             | -          | -              | -                               | -                   |                         |                 |
| (215)m=                               | 0                                                                                                         | 0                | 0                     | 0                   | 0          | 0        | 0                       | 0           | 0          | 0              | 0                               | 0                   |                         | _               |
|                                       |                                                                                                           |                  |                       |                     |            |          |                         | Tota        | l (kWh/yea | ar) =Sum(2     | 2 <b>15)</b> <sub>15,1012</sub> | 2                   | 0                       | (215)           |
| Water                                 | heating                                                                                                   | g                | 1 ( I -               | late lat            |            |          |                         |             |            |                |                                 |                     |                         |                 |
| Outpu                                 | 172.01                                                                                                    | 151.1            | 157.5                 | 139.54              | 135.56     | 119.42   | 113.07                  | 126.31      | 126.8      | 144.79         | 155.17                          | 167.33              |                         |                 |
| Efficie                               | ncy of w                                                                                                  | l<br>ater hea    | ater                  |                     |            |          |                         |             |            |                |                                 |                     | 87                      | (216)           |
| (217)m=                               | 8 <mark>9.02</mark>                                                                                       | 88.93            | 88.75                 | 88.29               | 87.54      | 87       | 87                      | 87          | 87         | 88.42          | 88.88                           | <mark>8</mark> 9.05 |                         | (217)           |
| Fuel fo                               | or water                                                                                                  | heating          | , <mark>kW</mark> h/m | onth                |            |          |                         | · · · ·     |            |                |                                 |                     |                         |                 |
| (219)n                                | n = (64)                                                                                                  | )m x 100         | 0 ÷ (217)             | )m                  | 154.95     | 127.26   | 120.07                  | 145 10      | 145 74     | 162.76         | 174 59                          | 197.0               |                         |                 |
| (219)11-                              | 195.25                                                                                                    | 109.9            | 1 177.47              | 138.00              | 134.05     | 137.20   | 129.91                  | Tota        | I = Sum(2) | 19a), =        | 174.30                          | 107.9               | 1937 92                 | 7(219)          |
| Annua                                 | al totals                                                                                                 |                  |                       |                     |            |          |                         |             | ,          | /112<br>k      | Wh/vear                         | •                   | kWh/vear                |                 |
| Space                                 | heating                                                                                                   | g fuel use       | ed, main              | system              | 1          |          |                         |             |            |                | , <b>,</b>                      |                     | 2655.13                 | 7               |
| Water                                 | heating                                                                                                   | fuel use         | ed                    |                     |            |          |                         |             |            |                |                                 |                     | 1937.92                 | Ī               |
| Electri                               | city for p                                                                                                | oumps, f         | ans and               | electric            | keep-ho    | t        |                         |             |            |                |                                 |                     |                         |                 |
| centr                                 | al heatir                                                                                                 | ng pump          | :                     |                     |            |          |                         |             |            |                |                                 | 30                  |                         | (230c)          |
| boile                                 | r with a                                                                                                  | fan-assis        | sted flue             |                     |            |          |                         |             |            |                |                                 | 45                  |                         | (230e)          |
| Total e                               | electricit                                                                                                | v for the        | above.                | kWh/vea             | r          |          |                         | sum         | of (230a). | (230g) =       |                                 |                     | 75                      | <b>]</b> (231)  |
| Flectri                               | city for I                                                                                                | iahtina          | ,                     |                     |            |          |                         |             |            |                |                                 |                     | 333.64                  | $\frac{1}{232}$ |
| 120                                   |                                                                                                           |                  | Individ               | lual hoat           | ing evet   | me incl  | udina mi                |             | )          |                |                                 |                     | 555.04                  |                 |
| IZd.                                  | CO2 en                                                                                                    | 115510115        |                       | iual neat           | ing syste  |          | uaing mi                |             |            |                |                                 |                     |                         |                 |
|                                       |                                                                                                           |                  |                       |                     |            | En<br>kW | <b>lergy</b><br>Vh/year |             |            | Emiss<br>kg CO | <b>ion fac</b><br>2/kWh         | tor                 | Emissions<br>kg CO2/yea | ar              |
| Space                                 | heating                                                                                                   | g (main s        | system 1              | )                   |            | (21      | 1) x                    |             |            | 0.2            | 16                              | =                   | 573.51                  | (261)           |
| Space                                 | heating                                                                                                   | g (secon         | dary)                 |                     |            | (21      | 5) x                    |             |            | 0.5            | 19                              | =                   | 0                       | (263)           |
| Water heating $(219) \times 0.216 = $ |                                                                                                           |                  |                       |                     |            |          |                         |             |            |                | 418.59                          | (264)               |                         |                 |
| Space                                 | ater heating    (219) x    0.216    =      bace and water heating    (261) + (262) + (263) + (264) =    = |                  |                       |                     |            |          |                         |             |            |                |                                 | 992.1               | (265)                   |                 |

| Electricity for pumps, fans and electric keep-hot | (231) | x |               | 0.519   | = | 38.93   | (267) |
|---------------------------------------------------|-------|---|---------------|---------|---|---------|-------|
| Electricity for lighting                          | (232) | x |               | 0.519   | = | 173.16  | (268) |
| Total CO2, kg/year                                |       |   | sum of (265)  | (271) = |   | 1204.18 | (272) |
| Dwelling CO2 Emission Rate                        |       |   | (272) ÷ (4) = |         |   | 15.82   | (273) |
| EI rating (section 14)                            |       |   |               |         |   | 87      | (274) |
|                                                   |       |   |               |         |   |         |       |



|                                  |                                   | Use               | er Details:     |                           |                |          |           |                           |                                                    |
|----------------------------------|-----------------------------------|-------------------|-----------------|---------------------------|----------------|----------|-----------|---------------------------|----------------------------------------------------|
| Assessor Name:<br>Software Name: | Stroma FSAP 201                   | 2                 | Strom<br>Softwa | a Num<br>are Ver          | ber:<br>rsion: |          | Versio    | n: 1.0.3.11               |                                                    |
|                                  |                                   | Prope             | rty Address     | : Arlingto                | on 3 Bec       | TOP 76   | 6         |                           |                                                    |
| Address :                        |                                   |                   |                 |                           |                |          |           |                           |                                                    |
| 1. Overall dwelling dime         | nsions:                           | -                 | ( )             |                           |                |          |           |                           |                                                    |
| Ground floor                     |                                   | ۹<br>             | (m²)            | (10) ×                    | Av. He         | ight(m)  |           | Volume(m <sup>3</sup>     | )                                                  |
| Total floor area TEA = (1)       | -) . (1 h) . (1 o) . (1 d) . (1 o | ) (1p) [          | 76.1            | (1a) X                    | 2              | 2.3      | (2a) =    | 175.03                    | (34)                                               |
| Total noor area $TFA = (13)$     | a)+(1b)+(1c)+(1d)+(1e             | )+(111)           | 76.1            | (4)<br>(20) (2b)          | ) . (20) . (20 |          | (2n) =    |                           | <b>–</b>                                           |
|                                  |                                   |                   |                 | (Ja)+(Jb)                 | )+(30)+(30     | I)+(3e)+ | .(31) =   | 175.03                    | (5)                                                |
| 2. Ventilation rate:             | moin                              |                   | othow           |                           | totol          |          |           |                           | -                                                  |
|                                  | heating h                         | eating            | other           |                           | total          |          |           | m <sup>3</sup> per nou    |                                                    |
| Number of chimneys               | 0 +                               | 0 +               | 0               | =                         | 0              | X 4      | 40 =      | 0                         | (6a)                                               |
| Number of open flues             | 0 +                               | 0 +               | 0               | =                         | 0              | ×        | 20 =      | 0                         | (6b)                                               |
| Number of intermittent fa        | ns                                |                   |                 |                           | 3              | x ′      | 10 =      | 30                        | (7a)                                               |
| Number of passive vents          |                                   |                   |                 |                           | 0              | x ′      | 10 =      | 0                         | (7b)                                               |
| Number of flueless gas fi        | res                               |                   |                 |                           | 0              | X 4      | 40 =      | 0                         | (7c)                                               |
|                                  |                                   |                   |                 |                           |                |          | Air ch    | anges <mark>per</mark> ho | ur                                                 |
| Infiltration due to chimne       | $y_{s}$ , flues and fans = (6)    | a)+(6b)+(7a)+(7   | o)+(7c) =       |                           | 30             |          | ÷ (5) =   | 0.17                      | (8)                                                |
| If a pressurisation test has b   | een carried out or is intende     | ed, proceed to (1 | 7), otherwise o | continue fr               | om (9) to (    | (16)     |           |                           | _                                                  |
| Number of storeys in the         | he dwelling (ns)                  |                   |                 |                           |                | [(0)     | 11-0.1 -  | 0                         | (9)                                                |
| Structural infiltration: 0       | 25 for steel or timber f          | rame or 0.35      | for mason       | v constr                  | uction         | [(9)     | -1]x0.1 = | 0                         | $ = \begin{bmatrix} (10) \\ - (11) \end{bmatrix} $ |
| if both types of wall are pr     | resent, use the value corresp     | ponding to the g  | reater wall are | a (after                  | dottorr        |          |           | 0                         |                                                    |
| deducting areas of openir        | ngs); if equal user 0.35          |                   |                 |                           |                |          |           |                           | _                                                  |
| If suspended wooden f            | loor, enter 0.2 (unseal           | ed) or 0.1 (se    | ealed), else    | enter 0                   |                |          |           | 0                         | (12)                                               |
| If no draught lobby, en          | ter 0.05, else enter 0            | n'a a a al        |                 |                           |                |          |           | 0                         | (13)                                               |
| Window infiltration              | s and doors draught st            | nppea             | 0 25 - [0 2     | $\mathbf{x}(14) \doteq 1$ | 001 -          |          |           | 0                         |                                                    |
|                                  |                                   |                   | (8) + (10)      | + (11) + (1               | 2) + (13) -    | + (15) = |           | 0                         | $ \frac{(15)}{(16)} $                              |
| Air permeability value           | a50 expressed in cub              | ic metres nei     | hour per s      | nuare m                   | etre of e      | nvelone  | area      | 0                         | $-1^{(10)}_{(17)}$                                 |
| If based on air permeabil        | ity value, then $(18) = [(1)]$    | 7) ÷ 20]+(8), oth | erwise (18) = ( | (16)                      |                | invelope | uicu      | 0.42                      | $= \frac{(17)}{(18)}$                              |
| Air permeability value applie    | s if a pressurisation test has    | been done or a    | degree air pe   | rmeability                | is being u     | sed      |           | 0.12                      |                                                    |
| Number of sides sheltere         | d                                 |                   |                 |                           |                |          |           | 2                         | (19)                                               |
| Shelter factor                   |                                   |                   | (20) = 1 -      | [0.075 x (1               | 9)] =          |          |           | 0.85                      | (20)                                               |
| Infiltration rate incorporat     | ing shelter factor                |                   | (21) = (18      | ) x (20) =                |                |          |           | 0.36                      | (21)                                               |
| Infiltration rate modified f     | or monthly wind speed             | <br>i             |                 |                           |                |          |           |                           |                                                    |
| Jan Feb                          | Mar Apr May                       | Jun Ju            | Il Aug          | Sep                       | Oct            | Nov      | Dec       |                           |                                                    |
| Monthly average wind sp          | eed from Table 7                  |                   |                 |                           |                |          |           |                           |                                                    |
| (22)m= 5.1 5                     | 4.9 4.4 4.3                       | 3.8 3.8           | 3.7             | 4                         | 4.3            | 4.5      | 4.7       |                           |                                                    |
| Wind Factor (22a)m = (22         | 2)m ÷ 4                           |                   |                 |                           |                |          |           |                           |                                                    |
| (22a)m= 1.27 1.25                | 1.23 1.1 1.08                     | 0.95 0.9          | 5 0.92          | 1                         | 1.08           | 1.12     | 1.18      |                           |                                                    |
|                                  |                                   |                   |                 |                           |                |          |           |                           |                                                    |

| Adjuste          | ed infiltr             | ation rat              | e (allowi                 | ng for sh     | elter an    | d wind s    | peed) =     | (21a) x        | (22a)m         |                |             |                |          |       |
|------------------|------------------------|------------------------|---------------------------|---------------|-------------|-------------|-------------|----------------|----------------|----------------|-------------|----------------|----------|-------|
|                  | 0.46                   | 0.45                   | 0.44                      | 0.39          | 0.39        | 0.34        | 0.34        | 0.33           | 0.36           | 0.39           | 0.4         | 0.42           |          |       |
| Calcula<br>If me | ate ette               | ctive air              | change i<br>ation:        | rate for ti   | he appli    | cable ca    | se          |                |                |                |             | ſ              | 0        | (23a) |
| lf exh           | aust air h             | eat pump               | usina Appe                | endix N. (2   | 3b) = (23a  | ) × Fmv (e  | equation (N | N5)) . othe    | rwise (23b     | ) = (23a)      |             | l              | 0        | (23b) |
| lf bala          | anced with             | heat reco              | overy: effic              | iency in %    | allowing f  | or in-use f | actor (from | n Table 4h     | ) =            | , ( ,          |             | l<br>I         | 0        | (23c) |
| a) If            | halance                | d mech                 | ,<br>anical ve            | ntilation     | with he     | at recove   | ≥rv (M\/⊦   | HR) (24a       | ,<br>a)m = (2; | 2h)m + (       | 23h) x [1   | ا<br>(23c) – 1 | ÷ 1001   | (200) |
| (24a)m=          | 0                      | 0                      |                           | 0             | 0           | 0           | 0           | 0              |                | 0              | 0           |                | . 100]   | (24a) |
| b) If            | balance                | d mech                 | ı<br>anical ve            | ntilation     | without     | heat rec    | coverv (N   | I<br>/IV) (24b | m = (22)       | 1<br>2b)m + () | 1<br>23b)   | II             |          |       |
| (24b)m=          | 0                      | 0                      | 0                         | 0             | 0           | 0           | 0           | 0              | 0              | 0              | 0           | 0              |          | (24b) |
| c) If            | whole h                | use ex                 | tract ver                 | ntilation c   | or positiv  | e input v   | /entilatic  | n from o       | utside         | <b></b>        |             | I              |          |       |
| i                | f (22b)r               | n < 0.5 >              | (23b), t                  | hen (24c      | c) = (23b   | ); otherv   | wise (24    | c) = (22k      | o) m + 0.      | .5 × (23b      | ))          |                |          |       |
| (24c)m=          | 0                      | 0                      | 0                         | 0             | 0           | 0           | 0           | 0              | 0              | 0              | 0           | 0              |          | (24c) |
| d) If            | natural                | ventilatio             | on or wh                  | ole hous      | e positiv   | ve input    | ventilatio  | on from I      | oft            |                |             |                |          |       |
| i                | f (22b)r               | n = 1, th              | en (24d)<br>1             | m = (22k      | )m othe     | rwise (2    | 4d)m = (    | 0.5 + [(2      | 2b)m² x        | 0.5]           |             |                |          |       |
| (24d)m=          | 0.6                    | 0.6                    | 0.6                       | 0.58          | 0.57        | 0.56        | 0.56        | 0.55           | 0.56           | 0.57           | 0.58        | 0.59           |          | (24d) |
| Effec            | ctive air              | change                 | rate - er                 | nter (24a     | ) or (24b   | o) or (240  | c) or (24   | d) in box      | k (25)         |                |             |                |          |       |
| (25)m=           | 0.6                    | 0.6                    | 0.6                       | 0.58          | 0.57        | 0.56        | 0.56        | 0.55           | 0.56           | 0.57           | 0.58        | 0.59           |          | (25)  |
| 3. He            | at l <mark>osse</mark> | s and he               | eat loss p                | oaramete      | er:         |             |             |                |                |                |             |                |          |       |
| ELEN             | IENT                   | Gros                   | SS                        | Openin        | gs          | Net Ar      | ea          | U-val          | ue             | AXU            |             | k-value        |          | AXk   |
| Deere            |                        | area                   | (m²)                      | m             | 2           | A ,r        | n²          | VV/m2          | 2K             | (VV/           | K)          | KJ/m²∙ł        |          | KJ/K  |
| Doors            | . <b>.</b> .           |                        |                           |               |             | 1.89        |             |                | =              | 1.89           | =           |                |          | (26)  |
| vvindov          | ws Type                | 91                     |                           |               |             | 4.41        |             | /[1/( 1.4 )+   | 0.04] =        | 5.85           |             |                |          | (27)  |
| Window           | ws Type                | e 2                    |                           |               |             | 4.41        | ×1/         | /[1/( 1.4 )+   | 0.04] =        | 5.85           | Ľ           |                |          | (27)  |
| Window           | ws Type                | 93                     |                           |               |             | 4.41        | x1/         | /[1/( 1.4 )+   | 0.04] =        | 5.85           |             |                |          | (27)  |
| Window           | ws Type                | 94<br>                 |                           |               |             | 2.52        | x1/         | /[1/( 1.4 )+   | 0.04] =        | 3.34           |             |                |          | (27)  |
| Walls            |                        | 56.3                   | 36                        | 17.64         | L .         | 38.72       | <u>x</u>    | 0.18           | =              | 6.97           |             |                |          | (29)  |
| Roof             |                        | 76.                    | 1                         | 0             |             | 76.1        | x           | 0.13           | =              | 9.89           |             |                |          | (30)  |
| Total a          | rea of e               | lements                | , m²                      |               |             | 132.4       | 6           |                |                |                |             |                |          | (31)  |
| Party v          | vall                   |                        |                           |               |             | 38.24       | x           | 0              | =              | 0              |             |                |          | (32)  |
| Party f          | loor                   |                        |                           |               |             | 76.1        |             |                |                |                | [           |                |          | (32a) |
| * for win        | dows and               | roof wind              | ows, use e<br>sides of ir | effective wil | ndow U-va   | alue calcul | ated using  | formula 1      | /[(1/U-valu    | ıe)+0.04] a    | as given in | paragraph      | 3.2      |       |
| Fabric           | heat los               | s. W/K                 | = S (A x)                 | U)            | s and part  | 110/13      |             | (26)(30)       | ) + (32) =     |                |             | [              | 30.63    | (33)  |
| Heat c           | apacity                | Cm = Si                | (A x k )                  | 0)            |             |             |             | . , . ,        | ((28).         | (30) + (32     | 2) + (32a). | (32e) =        | 11452 35 | (34)  |
| Therma           | al mass                | parame                 | eter (TMF                 | ⊃ = Cm ÷      | · TFA) in   | ı kJ/m²K    |             |                | Indica         | tive Value     | : Medium    | 、 <i>′</i> [   | 250      | (35)  |
| For desi         | gn asses               | sments wh              | ere the de                | tails of the  | constructi  | on are not  | t known pr  | ecisely the    | e indicative   | e values of    | TMP in Ta   | able 1f        | 230      | (00)  |
| can be u         | ised inste             | ad of a de             | tailed calc               | ulation.      |             |             |             |                |                |                |             | -              |          |       |
| Therma           | al bridg               | es : S (L              | x Y) cal                  | culated ι     | ising Ap    | pendix ł    | <           |                |                |                |             | [              | 4        | (36)  |
| if details       | of therma              | al bridging<br>at loss | are not kn                | own (36) =    | : 0.15 x (3 | 1)          |             |                | (22) •         | (36) -         |             | ſ              | 10.00    | (07)  |
|                  | tion be                | at loss of             | alculated                 | monthly       | ,           |             |             |                | (32)+          | (30) =         | 25)m v (5)  | l              | 43.63    | (37)  |
| ventila          | Jan                    | Feh                    | Mar                       | Anr           | May         | Jun         | . lul       | Aug            | Sen            |                | Nov         | Dec            |          |       |
|                  | 0.011                  | I                      | 1                         | · ۳۰ ا        |             | 0.011       |             | 1              |                | 1 200          | 1           | 00             |          |       |

| (38)m=             | 34.9                  | 34.67                      | 34.44                    | 33.36                    | 33.16                      | 32.22                     | 32.22             | 32.05       | 32.59        | 33.16                     | 33.57                  | 34                  |         | (38) |
|--------------------|-----------------------|----------------------------|--------------------------|--------------------------|----------------------------|---------------------------|-------------------|-------------|--------------|---------------------------|------------------------|---------------------|---------|------|
| Heat tr            | ansfer o              | coefficie                  | nt, W/K                  |                          |                            |                           |                   |             | (39)m        | = (37) + (3               | 38)m                   |                     |         |      |
| (39)m=             | 78.53                 | 78.3                       | 78.07                    | 76.99                    | 76.79                      | 75.85                     | 75.85             | 75.68       | 76.21        | 76.79                     | 77.2                   | 77.62               |         |      |
| Heatle             | ee nara               | motor (l                   |                          | /m2k                     |                            |                           |                   |             | (40)m        | Average =                 | Sum(39)1               | 12 /12=             | 76.99   | (39) |
| (40)m=             | 1.03                  | 1.03                       | 1.03                     | 1.01                     | 1.01                       | 1                         | 1                 | 0.99        | (40)11       | - ( <del>33)</del> II +   | 1.01                   | 1.02                |         |      |
| ( - /              |                       |                            |                          |                          |                            |                           |                   |             | l,           | Average =                 | Sum(40)1               | <sub>12</sub> /12=  | 1.01    | (40) |
| Numbe              | er of day             | /s in mo                   | nth (Tab                 | le 1a)                   |                            |                           |                   |             |              |                           |                        | -<br>1              |         |      |
|                    | Jan                   | Feb                        | Mar                      | Apr                      | May                        | Jun                       | Jul               | Aug         | Sep          | Oct                       | Nov                    | Dec                 |         | (    |
| (41)m=             | 31                    | 28                         | 31                       | 30                       | 31                         | 30                        | 31                | 31          | 30           | 31                        | 30                     | 31                  |         | (41) |
|                    |                       |                            |                          |                          |                            |                           |                   |             |              |                           |                        |                     |         |      |
| 4. Wa              | ter hea               | ting ene                   | rgy requ                 | irement:                 |                            |                           |                   |             |              |                           |                        | kWh/ye              | ar:     |      |
| Assum              | ed occu               | upancy,                    | N                        | •.                       |                            |                           |                   |             |              |                           | 2.                     | .38                 |         | (42) |
| if TF.             | A > 13.9<br>A £ 13.9  | 9, N = 1<br>9. N = 1       | + 1.76 x                 | (1 - exp                 | (-0.0003                   | 849 x (TH                 | -A -13.9          | )2)] + 0.0  | 0013 x (     | IFA -13.                  | 9)                     |                     |         |      |
| Annual             | averag                | e hot w                    | ater usa                 | ge in litre              | es per da                  | ay Vd,av                  | erage =           | (25 x N)    | + 36         |                           | 90                     | ).84                |         | (43) |
| Reduce<br>not more | the annua<br>that 125 | al average<br>i litres per | e hot water<br>person pe | usage by<br>r dav (all w | 5% if the a<br>ater use. I | lwelling is<br>hot and co | designed t<br>ld) | to achieve  | a water us   | se target o               | f                      |                     |         |      |
|                    | lan                   | Eeb                        | Mar                      | Apr                      | May                        | lup                       |                   | Αμα         | Sen          | Oct                       | Nov                    | Dec                 |         |      |
| Hot wate           | er usage i            | n litres pe                | r day for ea             | ach month                | Vd,m = fa                  | ctor from                 | Table 1c x        | (43)        | Sep          |                           | NUV                    | Dec                 |         |      |
| (44)m=             | 9 <mark>9.92</mark>   | 96.29                      | 92.65                    | 89.02                    | 85.39                      | 81.75                     | 81.75             | 85.39       | 89.02        | 9 <mark>2.65</mark>       | 96.29                  | <mark>9</mark> 9.92 |         |      |
|                    |                       |                            |                          |                          |                            |                           |                   |             |              | L<br>Total = Su           | L                      | =                   | 1090.04 | (44) |
| Energy o           | content of            | <sup>f</sup> hot water     | <sup>·</sup> used - cal  | lculated mo              | onthly $= 4$ .             | 190 x Vd,r                | n x nm x D        | 0Tm / 3600  | ) kWh/mor    | nth ( <mark>see Ta</mark> | bles 1b, 1             | c, 1d)              |         |      |
| (45)m=             | 148.18                | 129.6                      | 133.73                   | 116.59                   | 111.87                     | 96.54                     | 89.46             | 102.65      | 103.88       | 121.06                    | 132.15                 | 143.5               |         |      |
| lf instant         | aneous w              | vater heati                | ing at point             | t of use (no             | o hot water                | r storage),               | enter 0 in        | boxes (46   | ) to (61)    | Tota <mark>l = Su</mark>  | m(45) <sub>112</sub> = | = [                 | 1429.21 | (45) |
| (46)m=             | 22.23                 | 19.44                      | 20.06                    | 17.49                    | 16.78                      | 14.48                     | 13.42             | 15.4        | 15.58        | 18.16                     | 19.82                  | 21.53               |         | (46) |
| Water              | storage               | loss:                      |                          |                          |                            | _                         |                   | _           |              |                           |                        |                     |         |      |
| Storag             | e volum               | ne (litres                 | ) includir               | ng any so                | olar or W                  | /WHRS                     | storage           | within sa   | ame ves      | sel                       |                        | 0                   |         | (47) |
| If comr            | nunity h              | neating a                  | and no ta                | ank in dw                | velling, e                 | nter 110                  | litres in         | (47)        |              | or (0) in (               | 47)                    |                     |         |      |
| Water              | ise it no<br>storage  | o storea<br>loss:          | not wate                 | er (this ir              | iciudes i                  | nstantar                  | ieous co          | iioa iamo   | ers) ente    | er 'O' in (               | 47)                    |                     |         |      |
| a) If m            | anufact               | turer's d                  | eclared I                | oss facto                | or is kno                  | wn (kWł                   | n/day):           |             |              |                           |                        | 0                   |         | (48) |
| Tempe              | rature f              | actor fro                  | om Table                 | 2b                       |                            |                           |                   |             |              |                           |                        | 0                   |         | (49) |
| Energy             | lost fro              | om wate                    | r storage                | e, kWh/ye                | ear                        |                           |                   | (48) x (49) | ) =          |                           |                        | 0                   |         | (50) |
| b) If m            | anufact               | turer's d                  | eclared (                | cylinder l               | loss fact                  | or is not<br>b/litro/da   | known:            |             |              |                           |                        |                     |         | (51) |
| If comr            | nunity h              | neating s                  | see secti                | on 4.3                   |                            | n/ntre/ue                 | (y)               |             |              |                           |                        | 0                   |         | (31) |
| Volume             | e factor              | from Ta                    | ble 2a                   |                          |                            |                           |                   |             |              |                           |                        | 0                   |         | (52) |
| Tempe              | rature f              | actor fro                  | om Table                 | 2b                       |                            |                           |                   |             |              |                           |                        | 0                   |         | (53) |
| Energy             | lost fro              | m wate                     | r storage                | e, kWh/ye                | ear                        |                           |                   | (47) x (51) | ) x (52) x ( | 53) =                     |                        | 0                   |         | (54) |
| Enter              | (5U) Or (             | (54) IN (8                 | 05)<br>Ioulotest         | for oach                 | marth                      |                           |                   | ((EC)       |              | ~                         |                        | 0                   |         | (55) |
| vvater             | siorage               |                            |                          |                          |                            |                           |                   | ((σc))) = ( | ວວ) × (41)   |                           |                        |                     |         | (50) |
| (56)m=             | 0<br>er contain       | 0<br>s dedicate            | 0<br>ed solar sto        | 0<br>prage (57)          | $\frac{0}{m = (56)m}$      | $0 \times [(50) - ($      | 0<br>H11)1 ∸ (5)  | 0), else (5 | 0 = (56)     | 0<br>m where (            | 0<br>H11) is fro       | 0<br>m Annendi      | хH      | (56) |
| (57)               |                       |                            |                          |                          |                            |                           | · · · · )] ÷ (0   |             | . , = (00)   |                           |                        |                     |         | (57) |
| (57)m=             | U                     | 0                          | 0                        | 0                        | 0                          | 0                         | Ů                 | 0           | 0            | 0                         | U                      | U                   |         | (57) |

| Primar              | y circuit       | loss (an   | nual) fro  | om Table    | 93        |           |             |              |              |                           |              | 0           |               | (58) |
|---------------------|-----------------|------------|------------|-------------|-----------|-----------|-------------|--------------|--------------|---------------------------|--------------|-------------|---------------|------|
| Primar              | y circuit       | loss cal   | culated    | for each    | month (   | 59)m = (  | (58) ÷ 36   | 65 × (41)    | m            |                           |              |             |               |      |
| (moo                | dified by       | factor fi  | rom Tab    | le H5 if t  | here is s | solar wat | ter heatii  | ng and a     | cylinde      | r thermo                  | stat)        |             |               |      |
| (59)m=              | 0               | 0          | 0          | 0           | 0         | 0         | 0           | 0            | 0            | 0                         | 0            | 0           |               | (59) |
| Combi               | loss ca         | culated    | for each   | month (     | 61)m =    | (60) ÷ 36 | 65 × (41)   | )m           |              |                           |              |             |               |      |
| (61)m=              | 50.92           | 44.32      | 47.22      | 43.9        | 43.51     | 40.32     | 41.66       | 43.51        | 43.9         | 47.22                     | 47.48        | 50.92       |               | (61) |
| Total h             | eat requ        | uired for  | water he   | eating ca   | alculated | l for eac | h month     | (62)m =      | 0.85 × (     | (45)m +                   | (46)m +      | (57)m +     | (59)m + (61)m |      |
| (62)m=              | 199.1           | 173.92     | 180.95     | 160.49      | 155.39    | 136.85    | 131.12      | 146.16       | 147.78       | 168.28                    | 179.63       | 194.42      |               | (62) |
| Solar DH            | -<br>IW input o | calculated | using App  | endix G or  | Appendix  | H (negati | ve quantity | /) (enter '0 | ' if no sola | r contribut               | ion to wate  | er heating) | I             |      |
| (add a              | dditiona        | l lines if | FGHRS      | and/or V    | VWHRS     | applies   | , see Ap    | pendix C     | G)           |                           |              |             |               |      |
| (63)m=              | 0               | 0          | 0          | 0           | 0         | 0         | 0           | 0            | 0            | 0                         | 0            | 0           |               | (63) |
| Output              | from w          | ater hea   | ter        | -           |           |           | -           | -            |              |                           | -            | -           | '             |      |
| (64)m=              | 199.1           | 173.92     | 180.95     | 160.49      | 155.39    | 136.85    | 131.12      | 146.16       | 147.78       | 168.28                    | 179.63       | 194.42      |               |      |
|                     |                 |            |            |             |           |           |             | Outp         | out from wa  | ater heate                | r (annual)₁  | 12          | 1974.08       | (64) |
| Heat g              | ains fro        | m water    | heating,   | kWh/mo      | onth 0.2  | 5 ´ [0.85 | × (45)m     | + (61)m      | n] + 0.8 x   | (46)m                     | + (57)m      | + (59)m     | ]             |      |
| (65)m=              | 62              | 54.17      | 56.27      | 49.74       | 48.08     | 42.18     | 40.16       | 45.01        | 45.51        | 52.06                     | 55.81        | 60.44       |               | (65) |
| in <mark>clu</mark> | ide (57)i       | m in calc  | culation   | of (65)m    | only if c | vlinder i | s in the o  | dwelling     | or hot w     | ate <mark>r is f</mark> r | om com       | munity h    | eating        |      |
| 5 Int               | ernal da        | ains (see  | Table f    | and 5a      |           | ,         |             | 9            |              |                           |              | 5           | 5             | -    |
| Motob               |                 | o (Toblo   |            |             |           |           |             |              |              |                           |              |             |               |      |
| Metabo              | Jiic gain       | Feb        | Mar        | Apr         | May       | Jun       | lul         | Αυσ          | Sen          | Oct                       | Nov          | Dec         |               |      |
| (66)m=              | 119.23          | 119.23     | 119.23     | 119.23      | 119.23    | 119.23    | 119.23      | 119.23       | 119.23       | 119.23                    | 119.23       | 119.23      |               | (66) |
| Lightin             | a daine         | (calcula   | ted in Ar  | pendix      |           |           | r   (9a) -a |              | Table 5      |                           |              |             |               |      |
| (67)m=              | 18.89           | 16.78      | 13.65      | 10.33       | 2, Equal  | 6.52      | 7 04        | 9 16         | 12 29        | 15.61                     | 18 21        | 19.42       |               | (67) |
|                     |                 |            |            |             |           | untion L  | 12 or   1   | 20) 000      |              |                           | 10.21        | 10.12       |               | ()   |
|                     | 211 1           | 213 20     |            |             | 181 18    | 167.24    | 15 UI LI    | 3a), aisc    | 161 26       | 173.01                    | 187.84       | 201 78      | 1             | (68) |
|                     | 211.1           | 213.23     |            |             |           | 107.24    | or 1 4 5 o  |              |              | F                         | 107.04       | 201.70      |               | (00) |
| COOKIN              |                 |            |            | ppenaix     | L, equai  |           |             | ), also se   |              | 5                         | 24.00        | 24.00       | l             | (60) |
| (69)m=              | 34.92           | 34.92      | 34.92      | 34.92       | 34.92     | 34.92     | 34.92       | 34.92        | 34.92        | 34.92                     | 34.92        | 34.92       | I             | (09) |
| Pumps               | and fai         | ns gains   | (Table 5   | ba)         |           |           |             |              |              |                           |              |             | 1             | (70) |
| (70)m=              | 3               | 3          | 3          | 3           | 3         | 3         | 3           | 3            | 3            | 3                         | 3            | 3           |               | (70) |
| Losses              | s e.g. ev       | aporatio   | n (nega    | tive valu   | es) (Tab  | le 5)     |             |              |              |                           | 1            | 1           | 1             |      |
| (71)m=              | -95.39          | -95.39     | -95.39     | -95.39      | -95.39    | -95.39    | -95.39      | -95.39       | -95.39       | -95.39                    | -95.39       | -95.39      |               | (71) |
| Water               | heating         | gains (T   | able 5)    |             |           | -         |             | -            |              |                           |              |             |               |      |
| (72)m=              | 83.33           | 80.61      | 75.63      | 69.09       | 64.62     | 58.58     | 53.98       | 60.5         | 63.21        | 69.97                     | 77.51        | 81.24       |               | (72) |
| Total i             | nternal         | gains =    |            |             |           | (66)      | m + (67)m   | n + (68)m +  | + (69)m + (  | (70)m + (7                | 1)m + (72)   | m           |               |      |
| (73)m=              | 375.09          | 372.45     | 358.82     | 337.2       | 315.29    | 294.11    | 280.72      | 287.16       | 298.53       | 320.35                    | 345.34       | 364.21      |               | (73) |
| 6. Sol              | lar gains       | 8:         |            |             |           |           |             |              |              |                           |              |             |               |      |
| Solar g             | ains are o      | alculated  | using sola | r flux from | Table 6a  | and assoc | iated equa  | tions to co  | onvert to th | e applicat                | ole orientat | ion.        |               |      |

| Orientation:   | Access Factor<br>Table 6d | • | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |   | Gains<br>(W) |      |
|----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|---|--------------|------|
| Southeast 0.9x | 0.77                      | x | 4.41       | x | 36.79            | × | 0.63           | x | 0.7            | = | 49.59        | (77) |
| Southeast 0.9x | 0.77                      | x | 4.41       | x | 62.67            | × | 0.63           | × | 0.7            | = | 84.47        | (77) |

| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 85.75  | x | 0.63 | x | 0.7 | =   | 115.57 | (77)          |
|---------------------------|------|----------|------|---|--------|---|------|---|-----|-----|--------|---------------|
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 106.25 | × | 0.63 | x | 0.7 | i = | 143.2  | <u> </u> (77) |
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 119.01 | x | 0.63 | x | 0.7 | =   | 160.4  | -<br>(77)     |
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 118.15 | × | 0.63 | x | 0.7 | ] = | 159.24 | (77)          |
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 113.91 | × | 0.63 | x | 0.7 | ] = | 153.52 | (77)          |
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 104.39 | × | 0.63 | x | 0.7 | ] = | 140.69 | (77)          |
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 92.85  | x | 0.63 | x | 0.7 | =   | 125.14 | (77)          |
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 69.27  | x | 0.63 | x | 0.7 | =   | 93.36  | (77)          |
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 44.07  | × | 0.63 | x | 0.7 | ] = | 59.4   | (77)          |
| Southeast 0.9x            | 0.77 | x        | 4.41 | x | 31.49  | × | 0.63 | x | 0.7 | =   | 42.44  | (77)          |
| Southwest0.9x             | 0.77 | x        | 2.52 | x | 36.79  |   | 0.63 | x | 0.7 | =   | 28.34  | (79)          |
| Southwest0.9x             | 0.77 | x        | 2.52 | x | 62.67  |   | 0.63 | x | 0.7 | =   | 48.27  | (79)          |
| Southwest0.9x             | 0.77 | x        | 2.52 | x | 85.75  |   | 0.63 | x | 0.7 | =   | 66.04  | (79)          |
| Southwest0.9x             | 0.77 | x        | 2.52 | x | 106.25 |   | 0.63 | x | 0.7 | =   | 81.83  | (79)          |
| Southwest0.9x             | 0.77 | x        | 2.52 | x | 119.01 |   | 0.63 | x | 0.7 | =   | 91.66  | (79)          |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.52 | x | 118.15 |   | 0.63 | x | 0.7 | =   | 90.99  | (79)          |
| Southwest0.9x             | 0.77 | x        | 2.52 | x | 113.91 |   | 0.63 | x | 0.7 | =   | 87.73  | (79)          |
| Southwest0.9x             | 0.77 | x        | 2.52 | X | 104.39 |   | 0.63 | x | 0.7 | ] = | 80.4   | (79)          |
| Southwest0.9x             | 0.77 | <b>x</b> | 2.52 | x | 92.85  |   | 0.63 | x | 0.7 | =   | 71.51  | (79)          |
| Southwest0.9x             | 0.77 | x        | 2.52 | x | 69.27  |   | 0.63 | x | 0.7 | =   | 53.35  | (79)          |
| Southwest0.9x             | 0.77 | ] x      | 2.52 | x | 44.07  |   | 0.63 | x | 0.7 | =   | 33.94  | (79)          |
| Southwest0.9x             | 0.77 | <b>x</b> | 2.52 | × | 31.49  |   | 0.63 | x | 0.7 | ] = | 24.25  | (79)          |
| Northwest 0.9x            | 0.77 | <b>x</b> | 4.41 | x | 11.28  | × | 0.63 | x | 0.7 | =   | 15.21  | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 11.28  | × | 0.63 | x | 0.7 | =   | 15.21  | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 22.97  | x | 0.63 | x | 0.7 | =   | 30.95  | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 22.97  | x | 0.63 | x | 0.7 | =   | 30.95  | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 41.38  | × | 0.63 | x | 0.7 | =   | 55.77  | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 41.38  | x | 0.63 | x | 0.7 | =   | 55.77  | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 67.96  | x | 0.63 | x | 0.7 | =   | 91.59  | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 67.96  | × | 0.63 | x | 0.7 | =   | 91.59  | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 91.35  | x | 0.63 | x | 0.7 | =   | 123.11 | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 91.35  | x | 0.63 | x | 0.7 | =   | 123.11 | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 97.38  | × | 0.63 | x | 0.7 | =   | 131.25 | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 97.38  | × | 0.63 | x | 0.7 | =   | 131.25 | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 91.1   | x | 0.63 | x | 0.7 | =   | 122.78 | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 91.1   | × | 0.63 | x | 0.7 | ] = | 122.78 | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 72.63  | × | 0.63 | x | 0.7 | ] = | 97.88  | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 72.63  | × | 0.63 | x | 0.7 | =   | 97.88  | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | × | 50.42  | × | 0.63 | x | 0.7 | =   | 67.95  | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | x | 50.42  | × | 0.63 | x | 0.7 | =   | 67.95  | (81)          |
| Northwest 0.9x            | 0.77 | x        | 4.41 | × | 28.07  | × | 0.63 | x | 0.7 | =   | 37.83  | (81)          |

| Northw   | est 0.9x               | 0.77       |          | x          | 4.4                  | 1                  | x     | 2       | 28.07       | x            | 0.63          | x                    | 0.7         | =                               | 37.83  | (81) |
|----------|------------------------|------------|----------|------------|----------------------|--------------------|-------|---------|-------------|--------------|---------------|----------------------|-------------|---------------------------------|--------|------|
| Northw   | est 0.9x               | 0.77       |          | x          | 4.4                  | 1                  | x     |         | 14.2        | ×            | 0.63          | × [                  | 0.7         | =                               | 19.13  | (81) |
| Northw   | est 0.9x               | 0.77       |          | x          | 4.4                  | 1                  | x     |         | 14.2        | ×            | 0.63          |                      | 0.7         | =                               | 19.13  | (81) |
| Northw   | est 0.9x               | 0.77       |          | x          | 4.4                  | 1                  | x     |         | 9.21        | ×            | 0.63          |                      | 0.7         | =                               | 12.42  | (81) |
| Northw   | est 0.9x               | 0.77       |          | x          | 4.4                  | 1                  | x     |         | 9.21        | ×            | 0.63          |                      | 0.7         | =                               | 12.42  | (81) |
|          | L                      |            |          |            |                      |                    |       |         |             |              |               |                      |             |                                 |        |      |
| Solar g  | gains in               | watts, ca  | alculate | ed         | for eac              | h mont             | h     |         |             | (83)m = S    | um(74)m .     | (82)m                |             |                                 |        |      |
| (83)m=   | 108.34                 | 194.64     | 293.15   | 5          | 408.21               | 498.28             | 3 5   | 12.73   | 486.81      | 416.85       | 332.56        | 222.36               | 131.6       | 91.53                           |        | (83) |
| Total g  | gains – i              | nternal a  | ind sol  | ar         | (84)m =              | = (73)m            | n + ( | 83)m    | , watts     |              |               |                      |             |                                 |        |      |
| (84)m=   | 483.43                 | 567.09     | 651.97   | 7          | 745.41               | 813.57             | 7 8   | 06.84   | 767.53      | 704.01       | 631.09        | 542.71               | 476.94      | 455.74                          |        | (84) |
| 7. Me    | ean inter              | rnal temp  | peratur  | e (        | heating              | seaso              | n)    |         |             |              |               |                      |             |                                 |        |      |
| Temp     | perature               | during h   | eating   | ре         | eriods ir            | n the liv          | /ing  | area    | from Tab    | ole 9, Th    | 1 (°C)        |                      |             |                                 | 21     | (85) |
| Utilisa  | ation fac              | ctor for g | ains fo  | r liv      | ving are             | ea, h1,i           | m (s  | ee Ta   | ble 9a)     |              |               |                      |             |                                 |        |      |
|          | Jan                    | Feb        | Mar      | ·          | Apr                  | May                | / Ì   | Jun     | Jul         | Aug          | Sep           | Oct                  | Nov         | Dec                             |        |      |
| (86)m=   | 1                      | 0.99       | 0.98     |            | 0.93                 | 0.79               |       | 0.59    | 0.43        | 0.49         | 0.76          | 0.96                 | 0.99        | 1                               |        | (86) |
| Mean     | interns                | l temper   | ature i  | n li       | ving ar              |                    | follo | w sto   | $rac{1}{1}$ | r<br>in Tahl | e 9c)         |                      | <u> </u>    |                                 |        |      |
| (87)m=   | 19.95                  | 20.12      | 20.38    | Т          | 20.69                | 20.91              |       | 20.99   | 21          | 21           | 20.94         | 20.65                | 20.24       | 19.93                           |        | (87) |
| <b>T</b> |                        |            |          | _          | uta da tu            |                    |       |         |             |              |               |                      | <u> </u>    | <u> </u>                        |        |      |
|          |                        |            |          | pe<br>T    | 20.07                | 1 rest c           |       |         |             | DIE 9, 1     | nz (°C)       | 20.08                | 20.07       | 20.07                           |        | (88) |
| (00)11-  | 20.00                  | 20.00      | 20.00    | -          | 20.07                | 20.00              |       | 0.03    | 20.03       | 20.03        | 20.00         | 20.00                | 20.07       | 20.07                           |        | (00) |
| Utilisa  | ation fac              | ctor for g | ains fo  | r re       | est of d             | welling            | , h2  | m (se   | e Table     | 9a)          |               |                      |             |                                 |        | (00) |
| (89)m=   | 1                      | 0.99       | 0.97     |            | 0.9                  | 0.73               |       | 0.51    | 0.34        | 0.4          | 0.69          | 0.94                 | 0.99        | 1                               |        | (89) |
| Mean     | interna                | l temper   | ature i  | n tł       | he rest              | of dwe             | lling | T2 (f   | ollow ste   | eps 3 to     | 7 in Tabl     | le 9 <mark>c)</mark> |             | 1                               |        |      |
| (90)m=   | 18.66                  | 18.9       | 19.28    |            | 19.72                | 19.99              | 2     | 20.08   | 20.09       | 20.09        | 20.04         | 19.67                | 19.09       | 18.63                           |        | (90) |
|          |                        |            |          |            |                      |                    |       |         |             |              |               | fLA = Livir          | ng area ÷ ( | 4) =                            | 0.33   | (91) |
| Mear     | interna                | l temper   | ature (  | for        | the wh               | ole dw             | ellin | g) = f  | LA × T1     | + (1 – fL    | A) × T2       | -                    |             | -                               |        |      |
| (92)m=   | 19.09                  | 19.3       | 19.64    |            | 20.04                | 20.29              | 2     | 20.38   | 20.39       | 20.39        | 20.34         | 19.99                | 19.47       | 19.05                           |        | (92) |
| Apply    | / adjustr              | ment to t  | he mea   | an         | interna              | tempe              | eratu | ire fro | m Table     | 4e, whe      | ere appro     | opriate              | i           |                                 |        |      |
| (93)m=   | 19.09                  | 19.3       | 19.64    |            | 20.04                | 20.29              | 2     | 20.38   | 20.39       | 20.39        | 20.34         | 19.99                | 19.47       | 19.05                           |        | (93) |
| 8. Sp    | ace hea                | ating requ | uireme   | nt         |                      |                    | _     |         |             |              |               |                      |             |                                 |        |      |
| Set T    | i to the<br>tilisation | mean int   | ernal te | em<br>s II | iperatui<br>Ising Ta | re obta<br>Ible 9a | inec  | at st   | ep 11 of    | Table 9      | b, so tha     | t Ti,m=(             | 76)m an     | d re-calo                       | culate |      |
|          | Jan                    | Feb        | Mar      | . T        | Apr                  | May                | , [   | Jun     | Jul         | Aug          | Sep           | Oct                  | Nov         | Dec                             |        |      |
| Utilisa  | ation fac              | ctor for g | ains, h  | <br>m:     | 7.01                 | iviay              |       | Uarr    | Uui         | , lug        |               |                      |             | 000                             |        |      |
| (94)m=   | 1                      | 0.99       | 0.97     | Τ          | 0.9                  | 0.75               |       | 0.53    | 0.37        | 0.43         | 0.71          | 0.94                 | 0.99        | 1                               |        | (94) |
| Usefu    | ul gains,              | hmGm       | W = (    | 94)        | )m x (84             | 4)m                | -     |         | 1           |              |               |                      |             |                                 |        |      |
| (95)m=   | 481.12                 | 560.59     | 631.35   | 5          | 671.41               | 608.09             | ) 4   | 31.6    | 286.41      | 300.15       | 447.16        | 510.35               | 471.87      | 454.12                          |        | (95) |
| Mont     | hly aver               | age exte   | rnal te  | mp         | perature             | from <sup>-</sup>  | Tabl  | e 8     |             |              |               |                      |             |                                 |        |      |
| (96)m=   | 4.3                    | 4.9        | 6.5      |            | 8.9                  | 11.7               |       | 14.6    | 16.6        | 16.4         | 14.1          | 10.6                 | 7.1         | 4.2                             |        | (96) |
| Heat     | loss rat               | e for mea  | an inte  | rna        | al tempe             | erature            | , Lm  | ı, W =  | =[(39)m     | x [(93)m     | – (96)m       | ]                    |             | i                               | 1      |      |
| (97)m=   | 1161.15                | 1127.77    | 1025.6   | 4          | 857.91               | 659.76             | 6 4   | 38.08   | 287.11      | 301.58       | 475.29        | 721.4                | 954.92      | 1153.08                         |        | (97) |
| Spac     | e heatir               | ig require | ement    | for        | each n               | nonth,             | kWh   | /mon    | th = 0.02   | 24 x [(97    | )m – (95<br>I | 5)m] x (4            | 1)m         |                                 | 1      |      |
| (98)m=   | 505.94                 | 381.14     | 293.36   | 5          | 134.28               | 38.44              |       | 0       | 0           | 0            | 0             | 157.03               | 347.79      | 520.02                          |        |      |
|          |                        |            |          |            |                      |                    |       |         |             | Tota         | al per year   | (kWh/yea             | r) = Sum(9  | <b>108)</b> <sub>15,912</sub> = | 2378   | (98) |
| Spac     | e heatir               | ig require | ement    | in l       | kWh/m²               | /year              |       |         |             |              |               |                      |             |                                 | 31.25  | (99) |

| 9a. En                | ergy reo       | quiremer             | nts – Ind  | ividual h       | eating sy | /stems i    | ncluding               | micro-C           | HP)                    |                       |                                 |           |                         |            |
|-----------------------|----------------|----------------------|------------|-----------------|-----------|-------------|------------------------|-------------------|------------------------|-----------------------|---------------------------------|-----------|-------------------------|------------|
| Spac                  | e heati        | ng:                  | t frage -  | <b></b>         | 10        | m o = 1 = - |                        |                   |                        |                       |                                 |           | 2                       |            |
| Fract                 | ion of sp      |                      | at from S  | econdar         | y/supple  | mentary     | system                 | (202) = 1         | - (201) -              |                       |                                 |           | 0                       |            |
| Fract                 | ion of sp      |                      | at from m  | nain syst       | em(s)     |             |                        | (202) = 1 - (202) | -(201) =               | (202)1 -              |                                 |           | 1                       |            |
| Fract                 |                | tal neatil           | ng trom    | main sys        |           |             |                        | (204) = (20       | J2) <b>x</b> [1 –      | (203)] =              |                                 |           | 1                       |            |
|                       | ency of        | main spa             | ace neat   | ing syste       | em 1      |             | - 0/                   |                   |                        |                       |                                 |           | 93.4                    | (206)      |
| ETTICI                | ency of        | seconda              | ry/suppi   | ementar<br>I    | y neating | g system    | 1, %<br>1              |                   |                        |                       |                                 | _         | 0                       | (208)      |
| Snoo                  | Jan            | Feb                  | Mar        | Apr             | May       | Jun         | Jul                    | Aug               | Sep                    | Oct                   | Nov                             | Dec       | kWh/yea                 | ar         |
| эрас                  | 505.94         | 381.14               | 293.36     | 134.28          | 38.44     | 0           | 0                      | 0                 | 0                      | 157.03                | 347.79                          | 520.02    |                         |            |
| (211)m                | $L = \{[(98)]$ | l)m x (20            | (4)] } x 1 | $100 \div (20)$ | )6)       | _           |                        | _                 | -                      |                       |                                 |           |                         | (211)      |
| (211)                 | 541.69         | 408.08               | 314.08     | 143.77          | 41.15     | 0           | 0                      | 0                 | 0                      | 168.12                | 372.37                          | 556.77    |                         | (2)        |
|                       |                | !                    | 1          | !               |           |             | Į                      | Tota              | l (kWh/yea             | ar) =Sum(2            | 2 <b>11)</b> <sub>15,1012</sub> | <u></u> = | 2546.04                 | (211)      |
| Spac                  | e heatin       | g fuel (s            | econdar    | y), kWh/        | month     |             |                        |                   |                        |                       |                                 |           |                         |            |
| = {[(98               | )m x (20       | 01)]                 | 00 ÷ (20   | )8)             |           |             |                        |                   |                        |                       |                                 | i         | I                       |            |
| (215)m=               | 0              | 0                    | 0          | 0               | 0         | 0           | 0                      | 0                 | 0                      | 0                     | 0                               | 0         |                         |            |
|                       |                |                      |            |                 |           |             |                        | Tota              | Г (КУУЛ/УӨЗ            | ar) =5um(2            | 215) <sub>15,1012</sub>         | 2         | 0                       | (215)      |
| Output                | heating        | <b>g</b><br>ater hea | ter (calc  | ulated al       | hove)     |             |                        |                   |                        |                       |                                 |           |                         |            |
| Carpa                 | 199.1          | 173.92               | 180.95     | 160.49          | 155.39    | 136.85      | 131.12                 | 146.16            | 147.78                 | 1 <mark>6</mark> 8.28 | 179.63                          | 194.42    |                         |            |
| Effic <mark>ie</mark> | ncy of w       | ater hea             | iter       |                 |           | 7           |                        | 7                 |                        |                       |                                 |           | 80.3                    | (216)      |
| (217)m=               | 87.3           | 86.97                | 86.26      | 84.61           | 82.12     | 80.3        | 80.3                   | 80.3              | 80.3                   | 84.88                 | 86.69                           | 87.41     |                         | (217)      |
| Fuel fo               | or water       | heating,             | kWh/m      | onth            |           |             |                        |                   |                        |                       |                                 |           |                         |            |
| (219)m<br>(219)m=     | 1 = (64)       | 199.97               | 209.77     | )m<br>189.69    | 189.22    | 170.43      | 163.28                 | 182.02            | 184.03                 | 198.26                | 207.22                          | 222.43    |                         |            |
|                       |                |                      |            |                 |           |             |                        | Tota              | I = Sum(2 <sup>-</sup> | 19a) <sub>112</sub> = |                                 | <u> </u>  | 2344.39                 | (219)      |
| Annua                 | al totals      | i                    |            |                 |           |             |                        |                   |                        | k                     | Wh/year                         | •         | kWh/year                | _          |
| Space                 | heating        | fuel use             | ed, main   | system          | 1         |             |                        |                   |                        |                       |                                 |           | 2546.04                 |            |
| Water                 | heating        | fuel use             | d          |                 |           |             |                        |                   |                        |                       |                                 |           | 2344.39                 |            |
| Electri               | city for p     | oumps, fa            | ans and    | electric        | keep-ho   | t           |                        |                   |                        |                       |                                 |           |                         |            |
| centra                | al heatir      | ng pump              | :          |                 |           |             |                        |                   |                        |                       |                                 | 30        |                         | (230c)     |
| boiler                | with a         | fan-assis            | sted flue  |                 |           |             |                        |                   |                        |                       |                                 | 45        |                         | (230e)     |
| Total e               | electricit     | y for the            | above, l   | kWh/yea         | r         |             |                        | sum               | of (230a).             | (230g) =              |                                 |           | 75                      | (231)      |
| Electri               | citv for I     | iahtina              |            | ,               |           |             |                        |                   |                        |                       |                                 |           | 333.64                  | ]<br>(232) |
| 12a                   | CO2 em         |                      | – Individ  | ual heati       | ina svete | ms inclu    | udina mi               | cro-CHP           |                        |                       |                                 |           | 000.01                  |            |
| 120.                  |                | 113310113 -          |            | iuai neati      | ing syste |             |                        |                   |                        |                       |                                 |           |                         |            |
|                       |                |                      |            |                 |           | En<br>kW    | <b>ergy</b><br>/h/year |                   |                        | Emiss<br>kg CO        | <b>ion fac</b><br>2/kWh         | tor       | Emissions<br>kg CO2/yea | ar         |
| Space                 | heating        | ) (main s            | ystem 1    | )               |           | (21         | 1) x                   |                   |                        | 0.2                   | 16                              | =         | 549.94                  | (261)      |
| Space                 | heating        | (second              | dary)      |                 |           | (21         | 5) x                   |                   |                        | 0.5                   | 19                              | =         | 0                       | (263)      |
| Water                 | heating        |                      |            |                 |           | (219        | 9) x                   |                   |                        | 0.2                   | 16                              | =         | 506.39                  | (264)      |
| Space                 | and wa         | iter heati           | ng         |                 |           | (26         | 1) + (262)             | + (263) + (       | 264) =                 |                       |                                 |           | 1056.33                 | <br>](265) |

| Electricity for pumps, fans and electric keep-hot | (231) | x |        | 0.519        | = | 38.93   | (267) |
|---------------------------------------------------|-------|---|--------|--------------|---|---------|-------|
| Electricity for lighting                          | (232) | x | [      | 0.519        | = | 173.16  | (268) |
| Total CO2, kg/year                                |       |   | sum of | (265)(271) = |   | 1268.41 | (272) |
|                                                   |       |   |        |              |   |         |       |
| TER =                                             |       |   |        |              |   | 16.67   | (273) |
|                                                   |       |   |        |              |   |         |       |



Appendix 6 – Details of an Air Source Heat Pump

# Heating

## **Product Information**

PUHZ-(H)W50-140VHA(2)/YHA2(-BS) Ecodan Monobloc Air Source Heat Pumps Making a World of Difference



Designed to meet the demands of today's heating needs



## 





Our range of Ecodan monobloc air source heat pumps includes 5, 8.5, 11.2 and 14kW sizes. Now with the ability to cascade up to six units of the same output, Ecodan monobloc systems offer a capacity range from 5 through to 84kW. Designed to suit a wide number of applications, these models offer a viable solution for the varying requirements that domestic and small commercial applications demand.

#### **Key Features**

- Self-contained unit, only requiring water and electric connections
- No need for gas supply, flues or ventilation
  - Single phase power supply with a low starting current (3 phase available for 14kW)

**Renewable Heating Technology** 

- Low maintenance and quiet operation
- Operates with outside temperatures as low as -25°C
- Multiple unit connection
- Hybrid function, for use with conventional boilers
- 2-zone energy efficient space heating control
- Available as a standalone, packaged or semi packaged system
- Energy monitoring as standard
  Coastal protection models available (-BS)

#### Coastal protection models available

- Application Examples
- The vast majority of UK homes
- Small Retail Outlets
- Dental / Doctor's Surgeries
- Public Sector / Commercial Buildings



Air Conditioning | Heating Ventilation | Controls

## Heat

#### **Product Information**

PUHZ-(H)W50-140VHA(2)/YHA2(-BS) Ecodan Monobloc Air Source Heat Pumps Making a World of Difference

| OUTDOOR UNIT                |                                          | PUHZ-W50VHA2(-BS) | PUHZ-W85VHA2(-BS) | PUHZ-W112VHA(-BS) | PUHZ-HW140VHA2(-BS)  | PUHZ-HW140YHA2(-BS)  |
|-----------------------------|------------------------------------------|-------------------|-------------------|-------------------|----------------------|----------------------|
| HEAT PUMP SPACE             | ErP Rating                               | A++               | A++               | A++               | A++                  | A++                  |
| HEATER - 55°C               | η,                                       | 127%              | 128%              | 125%              | 126%                 | 126%                 |
|                             | SCOP                                     | 3.25              | 3.27              | 3.20              | 3.22                 | 3.22                 |
| HEAT PUMP SPACE             | ErP Rating                               | A++               | A++               | A++               | A++                  | A++                  |
| HEATER - 35°C               | η.                                       | 162%              | 162%              | 164%              | 157%                 | 157%                 |
|                             | SCOP                                     | 4.12              | 4.12              | 4.18              | 3.99                 | 3.99                 |
| HEAT PUMP COMBINATION       | ErP Rating                               | A                 | A                 | A                 | A                    | A                    |
| HEATER - Large Profile      | η <sub>wh</sub>                          | 99%               | 97%               | 100%              | 96%                  | 96%                  |
| HEATING <sup>*2</sup>       | Capacity (kW)                            | 4.8               | 8.3               | 11.0              | 14.0                 | 14.0                 |
| (A-3/W35)                   | Power Input (kW)                         | 1.63              | 2.96              | 3.65              | 4.81                 | 4.81                 |
|                             | COP                                      | 2.95              | 2.80              | 3.01              | 2.91                 | 2.91                 |
| <b>OPERATING AMBIENT TE</b> | MPERATURE (°C DB)                        | -15 ~ +35°C       | -20 ~ +35°C       | -20 ~ +35°C       | -25 ~ +35°C          | -25 ~ +35°C          |
| SOUND PRESSURE LEVE         | L AT 1M (dBA) <sup>*3*4</sup>            | 45                | 48                | 53                | 53                   | 53                   |
| LOW NOISE MODE (dBA)        | "3                                       | 40                | 42                | 46                | 46                   | 46                   |
| WATER DATA                  | Pipework Size (mm)                       | 22                | 22                | 28                | 28                   | 28                   |
|                             | Flow Rate (I/min)                        | 14.3              | 25.8              | 32.1              | 40.1                 | 40.1                 |
|                             | Water Pressure Drop (kPa)                | 12                | 13.5              | 6.3               | 9                    | 9                    |
| DIMENSIONS (mm)*7           | Width                                    | 950               | 950               | 1020              | 1020                 | 1020                 |
|                             | Depth                                    | 330+305           | 330+305           | 330+30'5          | 330+30 <sup>-5</sup> | 330+30 <sup>-5</sup> |
|                             | Height                                   | 740               | 943               | 1350              | 1350                 | 1350                 |
| WEIGHT (kg)                 |                                          | 64                | 77                | 133               | 134                  | 148                  |
| ELECTRICAL DATA             | Electrical Supply                        | 220-240v, 50Hz    | 220-240v, 50Hz    | 220-240v, 50Hz    | 220-240v, 50Hz       | 380-415v, 50Hz       |
|                             | Phase                                    | Single            | Single            | Single            | Single               | 3                    |
|                             | Nominal Running Current [MAX] (A)        | 5.4 [13]          | 10.3 [23]         | 11.2 [29.5]       | 14.9 [35]            | 5.1 [13]             |
|                             | Fuse Rating - MCB Sizes (A) <sup>6</sup> | 16                | 25                | 32                | 40                   | 16                   |

"1 Combination with EHPT20X-MHCW Cylinder
 "2 Under normal heating conditions at outdoor temp: -3"CDB / -4"CWB, outlet water temp 35"C, inlet water temp 30"C.
 "3 Under normal heating conditions at outdoor temp: -3"CDB / 6"CWB, outlet water temp 35"C, inlet water temp 30"C.
 "4 Sound power level of the PUHZ-WS0VHA2 is 61:05A, PUHZ-WBSVHA2 is 62:36BA, PUHZ-HW140VHA2 is 65:56BA, PUHZ-HW140VHA2 is 67:5dBA. Tested to BS EN12102.
 "5 Grile.
 "6 MCB Sizes BS EN60898-2 & BS EN60947-2.
 "7 FOW Temperature Controller (FTC) for standalone systems PAC-IF062B-E Dimensions WXDxH (mm) - 520x150x450

 $\eta_{a}$  is the seasonal space heating energy efficiency (SSHEE)  $\eta_{ab}$  is the water heating energy efficiency

#### DIMENSIONS

#### PUHZ-W50VHA2(-BS)

#### PUHZ-W85VHA2(-BS)



Front View





Front View



PUHZ-(H)W112-140VHA(2) / YHA2(-BS)





MITSUBISHI ELECTRIC Changes for the Better

#### Telephone: 01707 282880

email: heating@meuk.mee.com web: heating.mitsubishielectric.co.uk

UNITED KINGDOM Mitsubishi Electric Europe Living Environmental Systems Division Travellers Lane, Hatfield, Hertfordshire, AL10 8XB, England General Enquiries Telephone: 01707 282880 Fax: 01707 278881 IRELAND Mitsubishi Electric Europe Westgate Business Park, Ballymount, Dublin 24, Ireland Telephone: Dublin (01) 419 8800 Fax: Dublin (01) 419 8890 International code: (003531)

Country of origin: United Kingdom – Japan – Thaliand – Malaysia. @Mitsubishi Bectric Europe 2015. Mitsubishi and Mitsubishi Bectric are trademarks of Mitsubishi Bectric Europe B.V. The company reserves the right to make any variation in technical specification to the equipment described, or to withdraw or replace products without prior notification or public announcement. Mitsubishi Bectric is constantly developing and improving its products. Al descriptions, illustrations, drawings and specifications in the product start descriptions, illustration, drawings and specifications in the product start descriptions, illustration, drawings and specifications in the product and brand names may be trademarks or registered trademarks of their respective owners.





