Appendix E - Thames Water

Asset Location Search

Thames Water Formal Response

MLM Consulting Engineers Limited Felaw Maltings,46

IPSWICH IP2 8PN

Search address supplied Richmond-Upon-Thames College

Egerton Road Twickenham TW2 7SJ

Your reference 619579

Our reference ALS/ALS Standard/2018_3848777

Search date 3 August 2018

Keeping you up-to-date

Knowledge of features below the surface is essential in every development. The benefits of this not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility for any commercial or residential project.

An asset location search provides information on the location of known Thames Water clean and/or wastewater assets, including details of pipe sizes, direction of flow and depth. Please note that information on cover and invert levels will only be provided where the data is available.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

Search address supplied: Richmond-Upon-Thames College, Egerton Road, Twickenham, TW2 7SJ

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: searches@thameswater.co.uk

Web: www.thameswater-propertysearches.co.uk

Waste Water Services

Please provide a copy extract from the public sewer map.

The following quartiles have been printed as they fall within Thames' sewerage area:

TQ1573NW TQ1573NE

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts
 or highway drains. If any of these are shown on the copy extract they are shown for
 information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

The following quartiles have been printed as they fall within Thames' water area:

TQ1573NW TQ1573NE

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public
 water mains in the vicinity of the property. It should be possible to estimate the
 likely length and route of any private water supply pipe connecting the property to
 the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

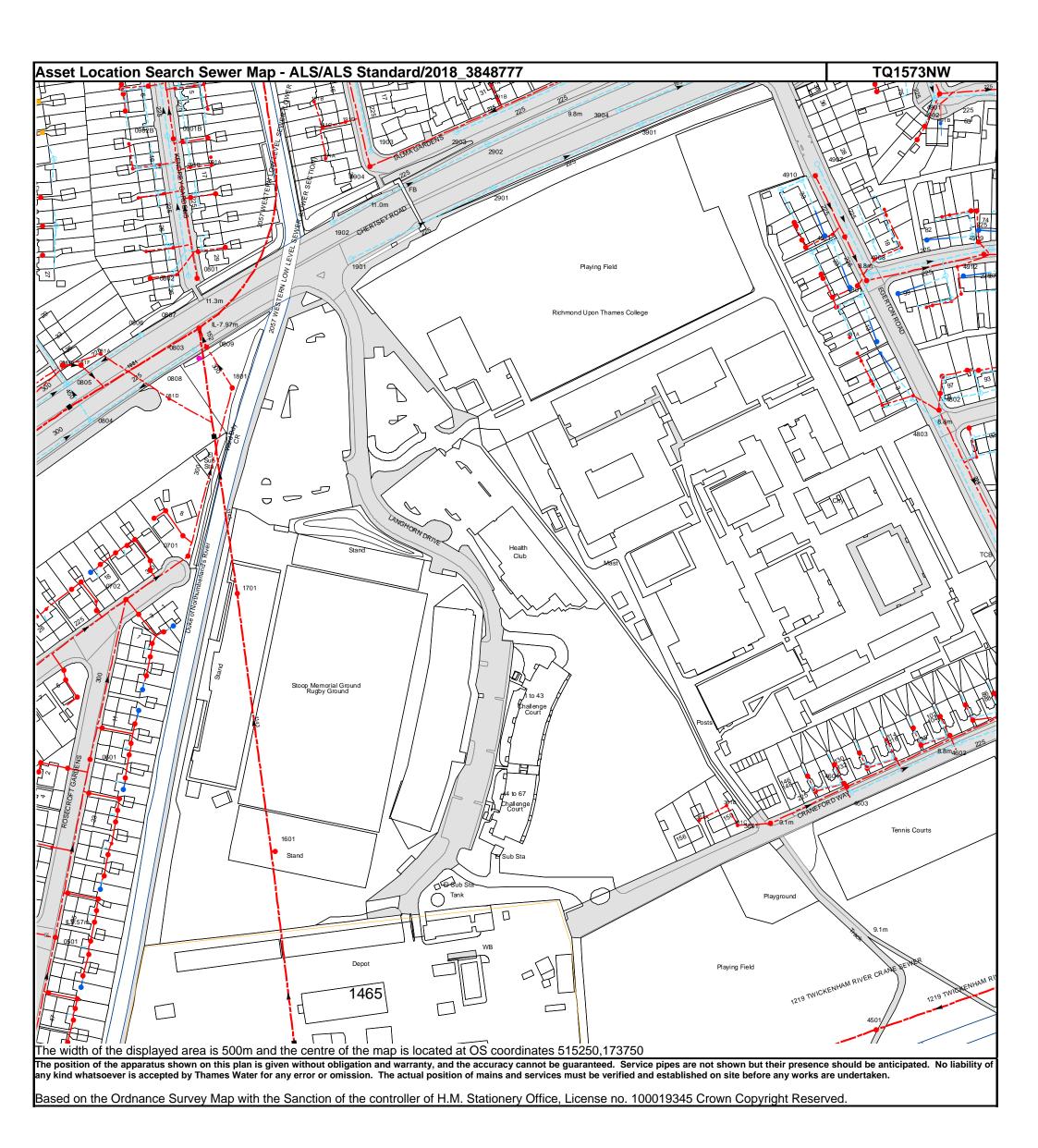
Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921

Email: developer.services@thameswater.co.uk


Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921

Email: developer.services@thameswater.co.uk

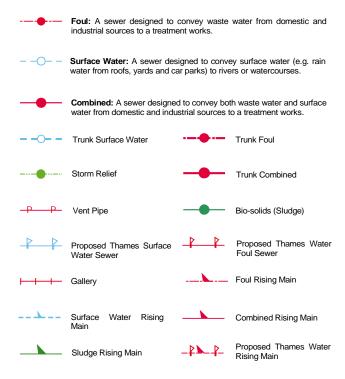
Manhole Reference	Manhole Cover Level	Manhole Invert Level
09PR	n/a	n/a
09PS 09QR	n/a	n/a
09PT	n/a n/a	n/a n/a
09QQ	n/a	n/a
09PQ	n/a	n/a
0902B	n/a	n/a
0901B	n/a	n/a
09QX	n/a	n/a
09RX	n/a	n/a
09VS	n/a	n/a
09TZ 09QY	n/a n/a	n/a n/a
09XX	n/a	n/a
09QZ	n/a	n/a
09RP	n/a	n/a
09VT	n/a	n/a
09PP	n/a	n/a
49VP	n/a	n/a
49TZ	n/a	n/a
49YW 49VX	n/a n/a	n/a n/a
49VX 49TX	n/a	n/a n/a
49TY	n/a	n/a
49YX	n/a	n/a
4910	n/a	n/a
4907	n/a	n/a
49SS	n/a	n/a
49SY	n/a	n/a
491B	n/a	n/a
4902	n/a	n/a
4901 49TR	n/a n/a	n/a n/a
491R 49TQ	n/a n/a	n/a n/a
49YQ	n/a	n/a
49WY	n/a	n/a
48WY	n/a	n/a
49XT	n/a	n/a
48WX	n/a	n/a
49YP	n/a	n/a
49XP 48WT	n/a	n/a
48XY	n/a n/a	n/a n/a
4911	n/a	n/a
481A	n/a	n/a
48WZ	n/a	n/a
48WW	n/a	n/a
48ZQ	n/a	n/a
48XX	n/a	n/a
48ZP	n/a	n/a
4801 4908	n/a n/a	n/a n/a
48YZ	n/a	n/a
49YT	n/a	n/a
48XV	n/a	n/a
48YT	n/a	n/a
49ZT	n/a	n/a
48VY	n/a	n/a
49ZV	n/a	n/a
49YV 48VP	n/a n/a	n/a n/a
48VP 49VT	n/a n/a	n/a n/a
48TZ	n/a	n/a
48SV	n/a	n/a
48SZ	n/a	n/a
48VZ	n/a	n/a
48TY	n/a	n/a
48WP	n/a	n/a
49WV	n/a	n/a
48TX 48VR	n/a n/a	n/a n/a
48SW	n/a	n/a
49VW	n/a	n/a
48TV	n/a	n/a
49TW	n/a	n/a
48SX	n/a	n/a
49WQ	n/a	n/a
4912	n/a	n/a
4909 1701	n/a 10.42	n/a -7.66
1701 191B	10.42 n/a	-7.00 n/a
191C	n/a n/a	n/a n/a
191A	n/a	n/a
1902	11.38	8.53
191D	n/a	n/a
	10.99	9.35
1901		
1901 1904	n/a	n/a
1901 1904 1903	n/a n/a	n/a n/a
1901 1904 1903 2903	n/a n/a n/a	n/a n/a n/a
1901 1904 1903	n/a n/a	n/a n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level
2901	n/a	n/a
291B 3904	n/a n/a	n/a n/a
3901	n/a	n/a
39ZV 39ZR	n/a n/a	n/a n/a
39ZQ	n/a	n/a
39ZT 39ZP	n/a n/a	n/a n/a
49XQ	n/a	n/a
48RT 48RY	n/a n/a	n/a n/a
48RZ	n/a	n/a
48RS 4803	n/a n/a	n/a n/a
4802 48ZV	n/a n/a	n/a n/a
48YX	n/a	n/a
48TR 48ZT	n/a n/a	n/a n/a
48YW	n/a	n/a
48SQ 48TT	n/a n/a	n/a n/a
48YY	n/a	n/a
46XR 46WX	n/a n/a	n/a n/a
4601 4603	9.19 8.95	7.58
46XY	n/a	8.14 n/a
46XX 46YR	n/a n/a	n/a n/a
4501	8.59	.14
46XT 46YQ	n/a n/a	n/a n/a
46XW	n/a	n/a
46YX 46ZQ	n/a n/a	n/a n/a
46YW 46WT	n/a n/a	n/a n/a
46ZP	n/a	n/a
46YV 4602	n/a 8.9	n/a 7.94
46ZV	n/a	n/a
46ZX 46ZT	n/a n/a	n/a n/a
46ZS	n/a	n/a
1601 361C	11.24 n/a	-7.24 n/a
3601 361A	9.43 n/a	8.24 n/a
361B	n/a	n/a
46WY 46XS	n/a n/a	n/a n/a
46WZ	n/a	n/a
46WV 09ZS	n/a n/a	n/a n/a
09XQ 09YZ	n/a n/a	n/a n/a
09SS	n/a	n/a
09SY 09SX	n/a n/a	n/a n/a
09WS	n/a	n/a
09YV 09YT	n/a n/a	n/a n/a
09WT 09VZ	n/a	n/a
09YP	n/a n/a	n/a n/a
09FX 09XY	n/a n/a	n/a n/a
091B	n/a	n/a
09GS 09XS	n/a n/a	n/a n/a
09XN	n/a	n/a
091A 09TS	n/a n/a	n/a n/a
09VV 09IR	n/a n/a	n/a n/a
0804	9.33	8.08
081D 1801	n/a n/a	n/a n/a
0805	9.75	8.07
081B 081F	n/a n/a	n/a n/a
081E	n/a 10.2	n/a -8
0808 081A	n/a	n/a
0803 0809	10.5 11.06	8.52 5.7
0806	10.08	8.18
0807 08ZY	10.6 n/a	-8.12 n/a
0801	10.25	8.98
0802	10.21	8.63

Manhole Reference	Manhole Cover Level	Manhole Invert Level
09ZY	n/a	n/a
09ZW	n/a	n/a
09SR	n/a	n/a
09XP	n/a	n/a
09ZT 09WW	n/a n/a	n/a n/a
07ZY	n/a	n/a
07ZW	n/a	n/a
07ZT	n/a	n/a
07ZS	n/a	n/a
07YW	n/a	n/a
07ZQ	n/a	n/a
07ZR	n/a	n/a
07YT 07YS	n/a n/a	n/a n/a
0713	9.6	7.39
07YQ	n/a	n/a
07YP	n/a	n/a
07WZ	n/a	n/a
07XZ	n/a	n/a
07WX	n/a	n/a
07XY 07WV	n/a n/a	n/a
07WV 07YZ	n/a n/a	n/a n/a
0712 07XQ	n/a	n/a
07YY	n/a	n/a
07XS	n/a	n/a
07ZV	n/a	n/a
0701	9.65	7.03
06YQ	n/a	n/a
06WR 06WP	n/a n/a	n/a n/a
06WQ	n/a	n/a
0601	9.85	8.02
06YP	n/a	n/a
06XY	n/a	n/a
06YV	n/a	n/a
06YX 06YZ	n/a n/a	n/a n/a
067Z 06ZX	n/a	n/a
06ZS	n/a	n/a
06ZW	n/a	n/a
06ZQ	n/a	n/a
06ZV	n/a	n/a
05YW	n/a	n/a 8.42
0501 05YV	10.3 n/a	8.42 n/a
051V 05YS	n/a	n/a
05YR	n/a	n/a
05YQ	n/a	n/a
05XW	n/a	n/a
05XT	n/a	n/a
05XS	n/a	n/a
06WT 06XS	n/a	n/a
06XR	n/a n/a	n/a n/a
06XP	n/a	n/a
06WZ	n/a	n/a
06WY	n/a	n/a
06YS	n/a	n/a
05ZR	n/a	n/a
05ZY	n/a	n/a
05ZW 05ZV	n/a n/a	n/a n/a
052V 05ZT	n/a	n/a
05ZQ	n/a	n/a
05YZ	n/a	n/a
05YY	n/a	n/a

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
59YS	n/a	n/a
59WT	n/a	n/a
69VX	n/a n/a	
59WS 59TW	n/a n/a	n/a n/a
59TX	n/a	n/a
69VV	n/a	n/a
69VW	n/a	n/a
69WT 69VT	n/a n/a	n/a n/a
5906	n/a	n/a
5903	n/a	n/a
5901 59RZ	n/a n/a	n/a n/a
59TP	n/a	n/a
59TY	n/a	n/a
5904 59VQ	n/a n/a	n/a n/a
58XP	n/a	n/a
58WZ	n/a	n/a
59TV 58ZR	n/a n/a	n/a n/a
59ZW	n/a	n/a
58WY	n/a	n/a
59YV	n/a	n/a
59VT 59VV	n/a n/a	n/a n/a
59TS	n/a	n/a
59TT	n/a	n/a
59ZQ 59WX	n/a n/a	n/a n/a
58XW	n/a	n/a
58XV	n/a	n/a
58YV	n/a	n/a
59ZS 58XT	n/a n/a	n/a n/a
59XQ	n/a	n/a
59XP	n/a	n/a
59WR 59YX	n/a n/a	n/a n/a
59WQ	n/a	n/a
59WP	n/a	n/a
58XS	n/a	n/a
59XX 78VT	n/a n/a	n/a n/a
681A	n/a	n/a
78WR	n/a	n/a
78WS 79ZY	n/a n/a	n/a n/a
691A	n/a	n/a
6902	n/a	n/a
6903	n/a	n/a
691B 691C	n/a n/a	n/a n/a
69TZ	n/a	n/a
691D	n/a	n/a
69TY 69TX	n/a n/a	n/a n/a
691E	n/a	n/a
6904	n/a	n/a
6901 5905	n/a	n/a
58XY	n/a n/a	n/a n/a
5902	n/a	n/a
58RX	n/a	n/a
59XZ 69VQ	n/a n/a	n/a n/a
69XV	n/a	n/a
68WP	n/a	n/a
68VT 68TZ	n/a n/a	n/a n/a
69WP	n/a	n/a n/a
69XR	n/a	n/a
68SW	n/a	n/a
68VS 68RZ	n/a n/a	n/a n/a
68VR	n/a	n/a
68VQ	n/a	n/a
68ST 68SS	n/a n/a	n/a n/a
69XT	n/a n/a	n/a n/a
68VW	n/a	n/a
69WZ	n/a	n/a
69WS 68VP	n/a n/a	n/a n/a
69VS	n/a	n/a
68TS	n/a	n/a
68SR 58WQ	n/a n/a	n/a n/a
58WR	n/a n/a	n/a n/a


Manhole Reference	Manhole Cover Level	Manhole Invert Level
59ZY	n/a	n/a
58XR	n/a	n/a
58ZX	n/a	n/a
58XQ	n/a	n/a
58ZQ	n/a	n/a
59SZ	n/a	n/a
58WV	n/a	n/a
68SV	n/a	n/a
58AS	n/a	n/a
58QS	n/a	n/a
58AF	n/a	n/a
58UW	n/a	n/a
58PR	n/a	n/a
68RY	n/a	n/a
58AD	n/a	n/a
5802	n/a	n/a
5803	n/a	n/a
5801	n/a	n/a
5804	n/a	n/a
58TS	n/a	n/a
58RW	n/a	n/a
58VR	n/a	n/a
58VP	n/a	n/a
58ST	n/a	n/a
58SW	n/a	n/a
58RQ	n/a	n/a
58TW	n/a	n/a
58VS	n/a	n/a
58TV	n/a	n/a
58TT	n/a	n/a
58SP	n/a	n/a
58RZ	n/a	n/a
58SX	n/a	n/a
58RY	n/a	n/a
67VW	n/a	n/a
67YW	n/a	n/a
67ZV	n/a	n/a
77YR	n/a	n/a
67YT	n/a	n/a
77ZW	n/a	n/a
77YS	n/a	n/a
77XY	n/a	n/a
67WQ	n/a	n/a
77YT 77XX	n/a	n/a
68QW	n/a n/a	n/a n/a
68QT	n/a	n/a
68QV	n/a	n/a
68QS	n/a	n/a
68RT	n/a	n/a
68RP	n/a	n/a
68RS	n/a	n/a
68QR	n/a	n/a
68WS	n/a	n/a
6801	n/a	n/a
68SQ	n/a	n/a
68TY	n/a	n/a
68SZ	n/a	n/a
68TR	n/a	n/a
78XQ	n/a	n/a
6802	n/a	n/a
57VZ	n/a	n/a
57YX	n/a	n/a
57XT	n/a	n/a
57ZY	n/a	n/a
57VX	n/a	n/a
57YV	n/a	n/a
57XY	n/a	n/a
57XP	n/a	n/a
57WX	n/a	n/a
57WY	n/a	n/a
57WZ	n/a	n/a
57ZW	n/a	n/a
57YY	n/a	n/a
57XQ	n/a	n/a
57ZX	n/a	n/a
57ZR	n/a	n/a
57ZS	n/a	n/a
58PT	n/a	n/a
58BP	n/a	n/a
58AA	n/a	n/a
58PV	n/a	n/a
58AB	n/a	n/a
58PS	n/a	n/a
58QT	n/a	n/a
58OX	n/a	n/a
58AC	n/a	n/a
68QX	n/a	n/a
77VR	n/a	n/a
77XW	n/a	n/a
77WP	n/a	n/a
77XZ	n/a	n/a
77WQ	n/a	n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level
7701	n/a	n/a
77WR	n/a n/a	
7703 77ZS	n/a n/a	n/a n/a
78TX	n/a	n/a
77YP 77WT	n/a n/a	n/a n/a
77VX	n/a	n/a
77WS	n/a	n/a
78ST 78SS	n/a n/a	n/a n/a
77PZ	n/a	n/a
77XV 78SV	n/a n/a	n/a n/a
77XS	n/a	n/a
78SW 77XR	n/a n/a	n/a n/a
78SY	n/a	n/a
78SX	n/a	n/a
77XQ 88TQ	n/a n/a	n/a n/a
87ZQ	n/a	n/a
881B 56YQ	n/a n/a	n/a n/a
56YR	n/a	n/a
56YP	n/a	n/a
5703B 5701B	n/a n/a	n/a n/a
57VS	n/a	n/a
57WP 57WQ	n/a n/a	n/a n/a
57VT	n/a	n/a
58PX	n/a	n/a
58PW 58WP	n/a n/a	n/a n/a
58QQ	n/a	n/a
67VY 67WW	n/a n/a	n/a n/a
6701A	n/a	n/a
6702	n/a	n/a
67SV 67ST	n/a n/a	n/a n/a
67SY	n/a	n/a
66WW 66WT	n/a n/a	n/a n/a
67TP	n/a	n/a
67SZ	n/a	n/a
67RZ 67VZ	n/a n/a	n/a n/a
67SX	n/a	n/a
67QZ 67XP	n/a n/a	n/a n/a
67WP	n/a	n/a
67RT 67RV	n/a n/a	n/a n/a
67RW	n/a	n/a
67RR	n/a	n/a
7601B 77SX	n/a n/a	n/a n/a
77\$Y	n/a	n/a
77SZ 77VP	n/a n/a	n/a n/a
77TV	n/a	n/a
86ZR 76ZS	n/a n/a	n/a n/a
76YZ	n/a	n/a
76VX	n/a	n/a
7704 77SV	n/a n/a	n/a n/a
77QZ	n/a	n/a
7702 77ST	n/a n/a	n/a n/a
77SW	n/a	n/a
77SP	n/a	n/a
77RS 77RP	n/a n/a	n/a n/a
77SS	n/a	n/a
77RY 77RR	n/a n/a	n/a n/a
77RQ	n/a	n/a
77QY 77QS	n/a n/a	n/a n/a
77QX	n/a	n/a
771A	n/a	n/a
77QR 77YN	n/a n/a	n/a n/a
87YT	n/a	n/a
77TQ	n/a n/a	n/a n/a
/ / V VV	11/4	:#4
77VW 77VQ	n/a	n/a
		n/a n/a n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level
56ZY	n/a	n/a
56YZ	n/a	n/a
66ZV 57RW	n/a n/a	n/a n/a
57RT	n/a	n/a
57SZ	n/a	n/a
57TQ	n/a	n/a
57VQ 57TW	n/a n/a	n/a n/a
57VP	n/a	n/a
57TV	n/a	n/a
57SS	n/a	n/a
57RX 57SW	n/a n/a	n/a n/a
57SR	n/a	n/a
57TZ	n/a	n/a
57SQ	n/a	n/a
57SP 57TT	n/a n/a	n/a n/a
5704A	n/a	n/a
5702B	n/a	n/a
57WW	n/a	n/a
57ZV 57XX	n/a n/a	n/a n/a
66ZQ	n/a	n/a
67VR	n/a	n/a
671A	n/a	n/a
67TR 67TT	n/a n/a	n/a n/a
6711 67YY	n/a	n/a
66ZX	n/a	n/a
66ZY	n/a	n/a
67XY 67XX	n/a n/a	n/a n/a
66ZS	n/a	n/a
67YX	n/a	n/a
67ZQ	n/a	n/a
67TQ 67TV	n/a n/a	n/a n/a
66YX	n/a	n/a
66YY	n/a	n/a
66YT	n/a	n/a
67YV 66YQ	n/a n/a	n/a n/a
67TW	n/a	n/a
67TX	n/a	n/a
67ZT	n/a	n/a
66ZP 67YS	n/a n/a	n/a n/a
66YZ	n/a	n/a
66YR	n/a	n/a
651A	n/a	n/a
751C 751D	n/a n/a	n/a n/a
751B	n/a	n/a
751A	n/a	n/a
66XR	n/a n/a	n/a
7609 7601A	n/a 8.47	n/a .31
76ZW	n/a	n/a
66XS	n/a	n/a
76ZX 76ZY	n/a n/a	n/a n/a
66XT	n/a n/a	n/a n/a
76ZT	n/a	n/a
66WY	n/a	n/a
66VQ	n/a	n/a
66VX 76WP	n/a n/a	n/a n/a
66TZ	n/a	n/a
66VW	n/a	n/a
76XY 76XX	n/a n/a	n/a n/a
76WZ	n/a n/a	n/a n/a
76XS	n/a	n/a
76WY	n/a	n/a
76XW	n/a	n/a
66VV 76XV	n/a n/a	n/a n/a
76XT	n/a	n/a
7603	n/a	n/a
56XZ	n/a	n/a
5601B 56XX	n/a n/a	n/a n/a
	-	-
	s given without obligation and warranty, and the acc liability of any kind whatsoever is accepted by Thames	

Public Sewer Types (Operated & Maintained by Thames Water)

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

Air Valve

Dam Chase

Fitting

Meter

♦ Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

Control Valve

Drop Pipe

Ancillary

✓ Weir

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

Outfall

Undefined End

✓ Inle

Notes:

----- Vacuum

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Other Symbols

Symbols used on maps which do not fall under other general categories

▲ / ▲ Public/Private Pumping Station

* Change of characteristic indicator (C.O.C.I.)

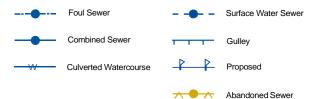
M Invert Level

< Summit

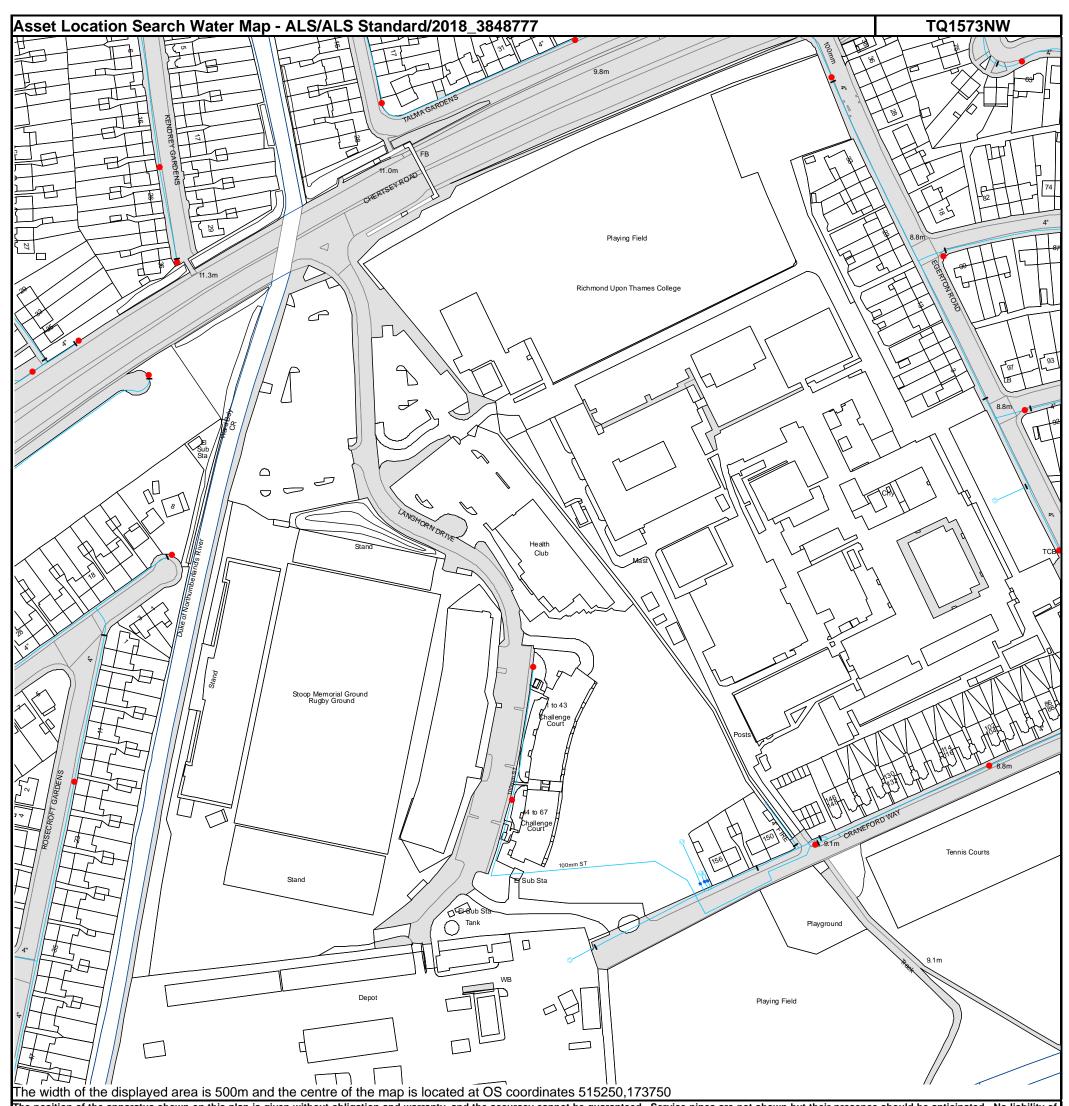
Areas

Lines denoting areas of underground surveys, etc.

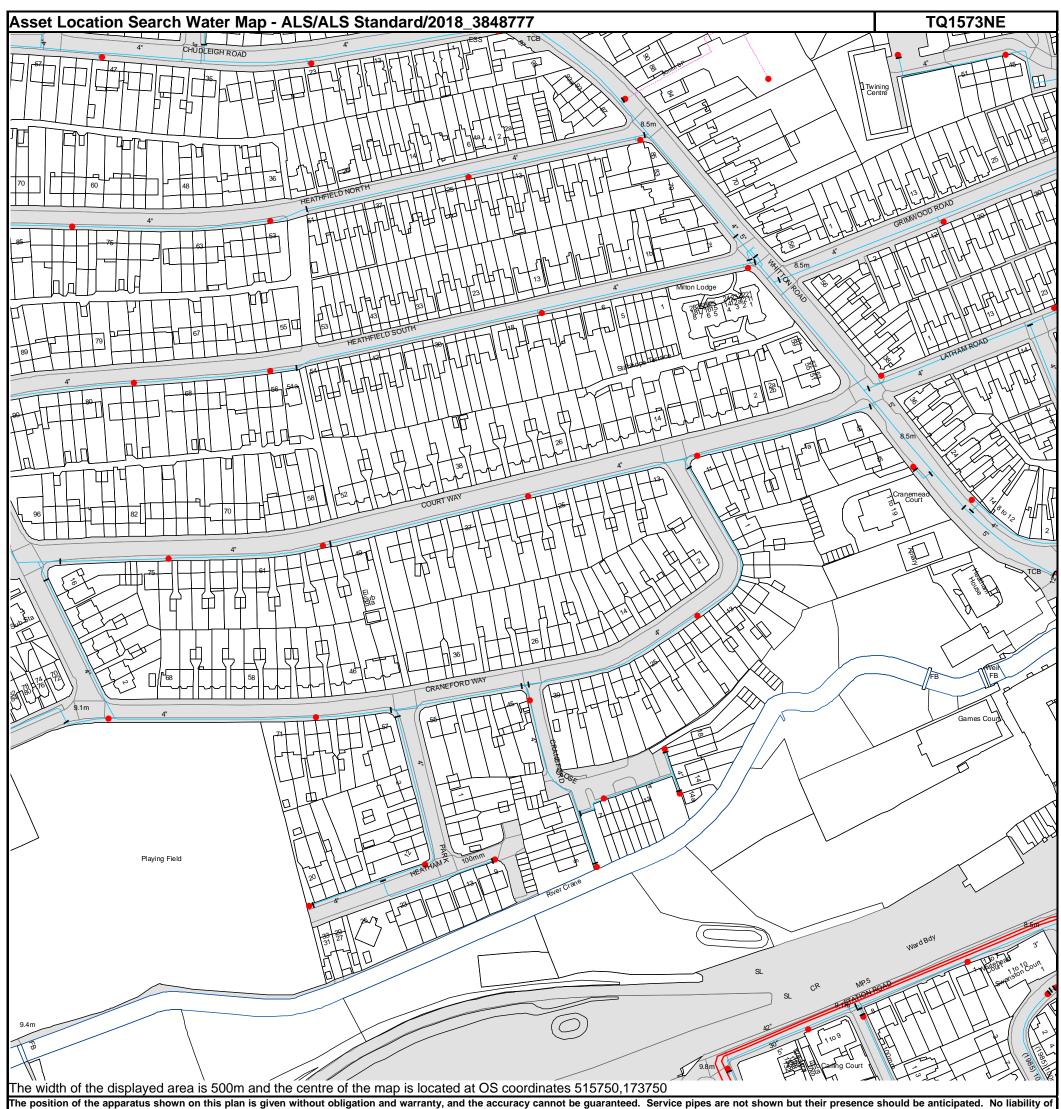
Agreement


Operational Site

Chamber


Tunnel

Conduit Bridge


Other Sewer Types (Not Operated or Maintained by Thames Water)

,

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Water Pipes (Operated & Maintained by Thames Water)

	(Operated a maintained by mained vater)
4"	Distribution Main: The most common pipe shown on water maps. With few exceptions, domestic connections are only made to distribution mains.
16"	Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
3" SUPPLY	Supply Main: A supply main indicates that the water main is used as a supply for a single property or group of properties.
3° FIRE	Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
3" METERED	Metered Pipe: A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.
	Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.
	Proposed Main: A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.

PIPE DIAMETER	DEPTH BELOW GROUND
Up to 300mm (12")	900mm (3')
300mm - 600mm (12" - 24")	1100mm (3' 8")
600mm and bigger (24" plus)	1200mm (4')

Valves General PurposeValve Air Valve Pressure ControlValve Customer Valve Hydrants Single Hydrant Meters Meter Meter End Items Symbol indicating what happens at the end of a water main. Blank Flange Capped End

Emptying Pit
Undefined End
Manifold

Customer Supply

Fire Supply

Operational Sites

$-\oplus$	Booster Station	
—	Other	
	Other (Proposed)	
	Pumping Station	
	Service Reservoir	
	Shaft Inspection	
—	Treatment Works	
 •	Unknown	
———	Water Tower	

Other Symbols

Other Water Pipes (Not Operated or Maintained by Thames Water)

Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.

Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Ways to pay your bill

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to 'Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Search Code

IMPORTANT CONSUMER PROTECTION INFORMATION

This search has been produced by Thames Water Property Searches, Clearwater Court, Vastern Road, Reading RG1 8DB, which is registered with the Property Codes Compliance Board (PCCB) as a subscriber to the Search Code. The PCCB independently monitors how registered search firms maintain compliance with the Code.

The Search Code:

- provides protection for homebuyers, sellers, estate agents, conveyancers and mortgage lenders who
 rely on the information included in property search reports undertaken by subscribers on residential
 and commercial property within the United Kingdom
- sets out minimum standards which firms compiling and selling search reports have to meet
- promotes the best practise and quality standards within the industry for the benefit of consumers and property professionals
- enables consumers and property professionals to have confidence in firms which subscribe to the code, their products and services.

By giving you this information, the search firm is confirming that they keep to the principles of the Code. This provides important protection for you.

The Code's core principles

Firms which subscribe to the Search Code will:

- display the Search Code logo prominently on their search reports
- act with integrity and carry out work with due skill, care and diligence
- at all times maintain adequate and appropriate insurance to protect consumers
- conduct business in an honest, fair and professional manner
- handle complaints speedily and fairly
- ensure that products and services comply with industry registration rules and standards and relevant laws
- monitor their compliance with the Code

Complaints

If you have a query or complaint about your search, you should raise it directly with the search firm, and if appropriate ask for any complaint to be considered under their formal internal complaints procedure. If you remain dissatisfied with the firm's final response, after your complaint has been formally considered, or if the firm has exceeded the response timescales, you may refer your complaint for consideration under The Property Ombudsman scheme (TPOs). The Ombudsman can award compensation of up to £5,000 to you if he finds that you have suffered actual loss as a result of your search provider failing to keep to the Code.

Please note that all queries or complaints regarding your search should be directed to your search provider in the first instance, not to TPOs or to the PCCB.

TPOs Contact Details

The Property Ombudsman scheme Milford House 43-55 Milford Street Salisbury Wiltshire SP1 2BP

Tel: 01722 333306 Fax: 01722 332296 Email: admin@tpos.co.uk

You can get more information about the PCCB from www.propertycodes.org.uk

PLEASE ASK YOUR SEARCH PROVIDER IF YOU WOULD LIKE A COPY OF THE SEARCH CODE

Jessica Taylor Atkins Euston Tower 286 Euston Road London NW1 3AT

Your account number DS4007616

thameswater.co.uk

0800 009 3921 Mon – Fri 9am-5pm, 01/11/2017

Pre Development Enquiry

Site Address: Richmond College, Twickenham, Middlesex, TW2 7SQ

Development Details: Demolition of existing college buildings, site clearance and groundworks together with the redevelopment of the site to provide:

Phase 1 - RuT College - Main Building

Phase 2 - RuT College - STEM and Sports buildings

Phase 3 - Haymarket Building

Phase 3 (1) – Residential (approximately 90 units)

Phase 3 (2) – Residential (approximately 89 units)

Proposed SW 10I/s into SW sewer in Chertsey Rd, proposed total FW 29.81I/s in Egerton Rd and Craneford Way.

Dear Miss Taylor

I write in relation to the above site regarding the proposed development here.

Please note: your initial fee of £398+ VAT covers the expense of our asset planners reviewing your proposed discharges in relation to the capacity in our existing network. They also carry out flood risk assessments. At this stage if your proposal is accepted, we issue an approval letter for you to progress with your development.

Foul Water

Details approved in principle.

In this instance we have notified our Catchment Planners for the area and they have made comment regarding the capacity of the public sewers. From the information you have provided, I can confirm that the existing foul sewer network does have sufficient capacity to accommodate the proposed foul water discharge from the proposed development.

Surface Water

Please note that discharging surface water to the public sewer network should only be considered after all other methods of disposal have been investigated and proven to be not viable. In accordance with the Building Act 2000 Clause H3.3, positive connection to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable.

The disposal hierarchy being: 1st Store rain water for Later Use; 2nd Use infiltration techniques, such as porous surfaces in non-clay area; 3rd Attenuate rainwater in ponds or open water features for gradual release to a watercourse; 4th Attenuate rainwater by storing in tanks or sealed water features for gradual release to a watercourse; 5th Discharge rainwater direct to a watercourse; 6th Discharge rainwater to a surface water drain; 7th Discharge rainwater to the combined sewer.

Only when it can be proven that soakage into the ground or a connection into the adjacent watercourse is not possible would we consider a restricted discharge into the public surface water sewer network. A reduction of at least 50% on existing flows from the same site area would be sought for a range of storm conditions.

Any approvals are subject to conditions that may be imposed through the planning process.

There is no right of discharge of highway drainage into the public sewerage system. An agreement to allow a discharge may be granted under section 115 (WIA 1991) by negotiation between the Highway Authority and Thames Water.

Details approved in principle.

Please Note

Public sewers are liable to surcharge to ground level. Any property that has a floor level lower than an adjacent manhole may be subject to flooding. Adequate provision shall be made by the developer to guard against this eventuality.

All connection requests are subject to a full Section 106 (Water Industry Act 1991) application before the Company can confirm approval to the connection itself. Please also note that capacity in the public sewerage system cannot be reserved.

The views expressed by Thames Water in this letter are in response to this pre development enquiry at this time and do not represent our final views on any future planning applications made in relation to this site.

Yours sincerely

Natalya Collins

Development Engineer

Deleur

Appendix F - Foul and Surface Water Drainage Strategy

Greenfield Calculations

Surface Water Drainage Strategy and Foul Drawing

MicroDrainage Calculations

Atkins - Connection Point Levels

Atkins - Thames Water Formal Response

Atkins Drawing - 5137894-ATK-00-XX-SK-C-0012-A1 LV

Atkins Drawing - 5137894-ATK-00-XX-SK-C-0014

MLM		Page 1
North Kiln Felaw Maltings	619579	
46 Felaw Street	Richmond Upon Thames College	4
Ipswich IP2 8PN		Micro
Date 15/08/18	Designed by AW	Desipago
File	Checked by	Diamade
XP Solutions	Source Control 2017.1.2	•

ICP SUDS Mean Annual Flood

Input

Return Period (years) 100 Soil 0.300
Area (ha) 1.970 Urban 0.000
SAAR (mm) 638 Region Number Region 6

Results 1/s

QBAR Rural 3.2 QBAR Urban 3.2

Q100 years 10.3

Q1 year 2.7 Q30 years 7.3 Q100 years 10.3

©1982-2017 XP Solutions

MLM		Page 1
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FEH Rainfall Model

Return Period (years) 100 FEH Rainfall Version 1999 Site Location GB 516200 173750 TQ 16200 73750 C (1km) -0.025 D1 (1km) 0.297 D2 (1km) 0.319 0.231 D3 (1km) 0.307 E (1km) F (1km) 2.536 Maximum Rainfall (mm/hr) Ω 30 Maximum Time of Concentration (mins) 0.000 Foul Sewage (1/s/ha) Volumetric Runoff Coeff. 0.750 PIMP (%) 100 Add Flow / Climate Change (%) 0 0.000 Minimum Backdrop Height (m) Maximum Backdrop Height (m) 0.000 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Time Area Diagram for Storm

Time	Area	Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)	(mins)	(ha)
0-4	0.333	4-8	0.862	8-12	0.017

Total Area Contributing (ha) = 1.212

Total Pipe Volume $(m^3) = 130.432$

Network Design Table for Storm

PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design

Network Results Table

PN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s)

©1982-2017 XP Solutions

MLM		Page 2
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	41.690	0.139	300.0	0.045	3.00	0.0	0.600	0	300	Pipe/Conduit	ô
S2.000	41.690	0.139	300.0	0.078	3.00	0.0	0.600	0	300	Pipe/Conduit	ð
S1.001	7.720	0.026	300.0	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	ð
s3.000	21.621	0.043	500.0	0.099	3.00	0.0	0.600	0	525	Pipe/Conduit	ð
	41.794 33.635			0.144	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	<u>†</u>
S4.000	18.001	0.060	300.0	0.026	3.00	0.0	0.600	0	300	Pipe/Conduit	ð
S5.000	23.999	0.080	300.0	0.026	3.00	0.0	0.600	0	300	Pipe/Conduit	0
S4.001	3.472	0.012	300.0	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	⊕
	38.510 61.501			0.026 0.124	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	#
	14.227 13.882			0.010 0.029	3.00		0.600	0		Pipe/Conduit Pipe/Conduit	0 0

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S1.000	0.00	3.77	8.173	0.045	0.0	0.0	0.0	0.90	63.8	0.0	
S2.000	0.00	3.77	8.173	0.078	0.0	0.0	0.0	0.90	63.8	0.0	
S1.001	0.00	3.91	8.034	0.123	0.0	0.0	0.0	0.90	63.8	0.0	
s3.000	0.00	3.36	7.826	0.099	0.0	0.0	0.0	0.99	215.4	0.0	
S1.002 S1.003	0.00		7.783 7.699	0.366 0.392	0.0	0.0	0.0		215.4 378.9	0.0	
S4.000	0.00	3.33	7.789	0.026	0.0	0.0	0.0	0.90	63.8	0.0	
S5.000	0.00	3.44	7.809	0.026	0.0	0.0	0.0	0.90	63.8	0.0	
S4.001	0.00	3.51	7.729	0.052	0.0	0.0	0.0	0.90	63.8	0.0	
S1.004 S1.005	0.00		7.492 7.256	0.470 0.594	0.0	0.0	0.0		379.0 215.4	0.0	
S6.000 S6.001	0.00		7.249 7.221	0.010 0.039	0.0	0.0	0.0		215.4 215.4	0.0	
	@1000 0017 VD 0-1										

©1982-2017 XP Solutions

MLM		Page 3
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E.	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S6.002	29.664	0.059	500.0	0.000	0.00	0.0	0.600	0	525	Pipe/Conduit	ô
S1.006	39.593	0.079	500.0	0.092	0.00	0.0	0.600	0	525	Pipe/Conduit	ď
S7.000	37.184	0.124	300.0	0.045	3.00	0.0	0.600	0	300	Pipe/Conduit	ô
S8.000	17.919	0.060	300.0	0.023	3.00	0.0	0.600	0	300	Pipe/Conduit	ð
S7.001	7.920	0.026	300.0	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	0
S9.000	35.359	0.071	500.0	0.154	3.00	0.0	0.600	0	525	Pipe/Conduit	ð
	15.633 71.837			0.000	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	0 0
S1.007	56.202	0.112	500.0	0.134	0.00	0.0	0.600	0	525	Pipe/Conduit	₽
S10.000	62.894	0.126	500.0	0.045	3.00	0.0	0.600	0	525	Pipe/Conduit	ð
S1.008	12.263	0.082	150.0	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	#

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S6.002	0.00	3.97	7.193	0.039	0.0	0.0	0.0	0.99	215.4	0.0
S1.006	0.00	6.99	7.133	0.725	0.0	0.0	0.0	0.99	215.4	0.0
s7.000	0.00	3.69	7.604	0.045	0.0	0.0	0.0	0.90	63.8	0.0
S8.000	0.00	3.33	7.540	0.023	0.0	0.0	0.0	0.90	63.8	0.0
S7.001	0.00	3.83	7.480	0.068	0.0	0.0	0.0	0.90	63.8	0.0
S9.000	0.00	3.59	7.300	0.154	0.0	0.0	0.0	0.99	215.4	0.0
\$7.002 \$7.003	0.00		7.229 7.198	0.222	0.0	0.0	0.0		215.4 215.4	0.0
S1.007	0.00	7.93	7.054	1.167	0.0	0.0	0.0	0.99	215.4	0.0
S10.000	0.00	4.05	7.068	0.045	0.0	0.0	0.0	0.99	215.4	0.0
S1.008	0.00	8.18	6.942	1.212	0.0	0.0	0.0	0.82	14.5	0.0

MLM		Page 4
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilada
XP Solutions	Network 2017.1.2	

Free Flowing Outfall Details for Storm

Outfall	Outfall	C.	Level	I.	Level	Min		D,L	W
Pipe Number	Name		(m)		(m)	I. Level		(mm)	(mm)
					(m)				

S1.008 S 9.050 6.860 0.000 0 0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow	0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Storage Structures 10 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model Return Period (years)					FEH 100
FEH Rainfall Version					1999
Site Location	GB	516200	173750	ΤQ	16200 73750
C (1km)					-0.025
D1 (1km)					0.297
D2 (1km)					0.319
D3 (1km)					0.231
E (1km)					0.307
F (1km)					2.536
Summer Storms					Yes
Winter Storms					Yes
Cv (Summer)					0.750
Cv (Winter)					0.840
Storm Duration (mins)					30

MLM		Page 5
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

Online Controls for Storm

Hydro-Brake® Optimum Manhole: S9, DS/PN: S1.008, Volume (m3): 28.9

Unit Reference MD-SHE-0100-5000-1400-5000 1.400 Design Head (m) Design Flow (1/s) 5.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 100 Invert Level (m) 6.942 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s)

Design Point (Calculated) 1.400 5.0 Flush-Flo $^{\text{M}}$ 0.416 5.0 Kick-Flo $^{\text{M}}$ 0.855 4.0 Mean Flow over Head Range - 4.4

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	3.3	1.200	4.7	3.000	7.1	7.000	10.7
0.200	4.6	1.400	5.0	3.500	7.7	7.500	11.0
0.300	4.9	1.600	5.3	4.000	8.2	8.000	11.4
0.400	5.0	1.800	5.6	4.500	8.6	8.500	11.7
0.500	5.0	2.000	5.9	5.000	9.1	9.000	12.0
0.600	4.9	2.200	6.2	5.500	9.5	9.500	12.3
0.800	4.3	2.400	6.4	6.000	9.9		
1.000	4.3	2.600	6.7	6.500	10.3		

MLM		Page 6
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

Storage Structures for Storm

Cellular Storage Manhole: S4, DS/PN: S3.000

Invert Level (m) 7.826 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 99.0 0.0 0.401 0.0 0.0

Cellular Storage Manhole: S3, DS/PN: S1.002

Invert Level (m) 7.783 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 103.5 0.0 0.401 0.0 0.0 0.400 103.5 0.0

Cellular Storage Manhole: S4, DS/PN: S1.003

Invert Level (m) 7.699 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 157.5 0.0 0.401 0.0 0.0

Cellular Storage Manhole: S6, DS/PN: S1.005

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 126.0 0.0 0.801 0.0 0.0 0.800 126.0 0.0

Cellular Storage Manhole: S13, DS/PN: S6.001

Invert Level (m) 7.221 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

MLM		Page 7
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	•

Cellular Storage Manhole: S13, DS/PN: S6.001

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m ²)
0.	000	1	128.0			0.0	0	.801		0.0			0.0
0.	800	1	128.0			0.0							

Cellular Storage Manhole: S7, DS/PN: S1.006

Invert Level (m) 7.133 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 162.0 0.0 0.801 0.0 0.0

Cellular Storage Manhole: S19, DS/PN: S9.000

Invert Level (m) 7.300 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 108.0 0.0 0.801 0.0 0.0

Cellular Storage Manhole: S18, DS/PN: S7.002

Invert Level (m) 7.229 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 90.0 0.801 0.0 0.0 0.800 90.0 0.0

Cellular Storage Manhole: S19, DS/PN: S7.003

Invert Level (m) 7.198 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.0	000	1	39.5			0.0	0	.801		0.0			0.0
0.8	300	1	39.5			0.0							

MLM		Page 8
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

Cellular Storage Manhole: S8, DS/PN: S1.007

Invert Level (m) 7.054 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
-	.000	_	L44.0 L44.0			0.0	0.	801		0.0			0.0

MLM		Page 9
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	namaye
XP Solutions	Network 2017.1.2	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Storm}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 10 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

<u>~1</u>							
Rainfall I	Model						FEH
FEH Rainfall Ve	rsion						1999
Site Loca	ation	GB	516200	173750	TQ	16200	73750
C	(1km)					=	-0.025
D1	(1km)						0.297
D2	(1km)						0.319
D3	(1km)						0.231
E	(1km)						0.307
F	(1km)						2.536
Cv (Su	mmer)						0.750
Cv (Wi	nter)						0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 40

	PN	US/MH Name	s	Storm		Climate Change	First Surch	• •	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
	S1.000	S1	60	Summer	1	+0%						8.226
	S2.000	S2	60	Summer	1	+0%						8.243
	S1.001	S2	60	Summer	1	+0%	100/60	Summer				8.133
	S3.000	S4	60	Winter	1	+0%	100/960	Winter				7.896
	S1.002	S3	60	Winter	1	+0%	100/960	Winter				7.885
	S1.003	S4	60	Winter	1	+0%	100/960	Winter				7.768
	S4.000	s7	60	Summer	1	+0%	100/360	Winter				7.834
	S5.000	S8	60	Summer	1	+0%	100/360	Winter				7.850
	S4.001	S8	60	Summer	1	+0%	100/240	Winter				7.792
	S1.004	S5	60	Winter	1	+0%	100/240	Winter				7.565
	S1.005	S6	120	Winter	1	+0%	100/60	Summer				7.360
İ						©1982-2	2017 XP	Solut	ions			

MLM	Page 10	
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Storm}}$

		Surcharged	Flooded			Pipe			
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level	
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded	
S1.000	S1	-0.247	0.000	0.07		4.2	OK		
S2.000	S2	-0.230	0.000	0.12		7.2	OK		
S1.001	S2	-0.201	0.000	0.24		11.4	OK		
S3.000	S4	-0.455	0.000	0.02		3.3	OK		
S1.002	S3	-0.423	0.000	0.09		16.0	OK		
S1.003	S4	-0.456	0.000	0.04		13.5	OK		
S4.000	s7	-0.255	0.000	0.04		2.4	OK		
S5.000	S8	-0.259	0.000	0.04		2.4	OK		
S4.001	S8	-0.237	0.000	0.10		4.9	OK		
S1.004	S5	-0.453	0.000	0.05		15.2	OK		
S1.005	S6	-0.422	0.000	0.08		16.0	OK		

MLM		Page 11
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

PN	US/MH Name	s	torm		Climate Change		(X) arge	First Floc	٠,	First Overf	٠,	Overflow Act.
S6.000	S12	360	Winter	1	+0%	100/60	Summer					
S6.001	S13	360	Winter	1	+0%	100/60	Summer					
S6.002	S14	360	Winter	1	+0%	100/60	Summer					
S1.006	s7	360	Winter	1	+0%	100/60	Summer					
S7.000	S16	60	Summer	1	+0%	100/120	Winter					
S8.000	S17	60	Summer	1	+0%	100/60	Winter					
S7.001	S17	60	Summer	1	+0%	100/60	Winter					
S9.000	S19	60	Winter	1	+0%	100/60	Winter					
S7.002	S18	360	Winter	1	+0%	100/60	Summer					
S7.003	S19	360	Winter	1	+0%	100/60	Summer					
S1.007	S8	360	Winter	1	+0%	30/360	Winter					
S10.000	S23	360	Winter	1	+0%	30/360	Winter					
S1.008	S9	360	Winter	1	+0%	1/60	Summer					

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
S6.000	S12	7.315	-0.459	0.000	0.00		0.2	OK	
S6.001	S13	7.315	-0.431	0.000	0.01		0.6	OK	
S6.002	S14	7.315	-0.403	0.000	0.00		0.6	OK	
S1.006	s7	7.315	-0.343	0.000	0.04		8.1	OK	
S7.000	S16	7.657	-0.247	0.000	0.07		4.2	OK	
S8.000	S17	7.585	-0.255	0.000	0.04		2.2	OK	
S7.001	S17	7.552	-0.228	0.000	0.13		6.3	OK	
S9.000	S19	7.372	-0.453	0.000	0.04		6.7	OK	
S7.002	S18	7.315	-0.439	0.000	0.03		3.7	OK	
S7.003	S19	7.314	-0.409	0.000	0.02		3.9	OK	
S1.007	S8	7.314	-0.265	0.000	0.03		6.8	OK	
S10.000	S23	7.312	-0.281	0.000	0.00		0.8	OK	
S1.008	S9	7.312	0.220	0.000	0.38		5.0	SURCHARGED	

MLM		Page 12
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micco
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 10 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

	7 - 0 - 1:0: - 1:0
Rainfall Model	L FEH
FEH Rainfall Version	1999
Site Location	n GB 516200 173750 TQ 16200 73750
C (1km)	-0.025
D1 (1km)	0.297
D2 (1km)	0.319
D3 (1km)	0.231
E (1km)	0.307
F (1km)	2.536
Cv (Summer)	0.750
Cv (Winter)	0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

PN	US/MH Name	S	Storm		Climate Change	First Surch	• •	First (Y Flood) First Over	 Overflow Act.	Water Level (m)
S1.000	S1	60	Summer	30	+0%						8.267
S2.000	S2	60	Summer	30	+0%						8.296
S1.001	S2	60	Summer	30	+0%	100/60	Summer				8.212
S3.000	S4	60	Summer	30	+0%	100/960	Winter				7.992
S1.002	S3	60	Summer	30	+0%	100/960	Winter				7.984
S1.003	S4	60	Winter	30	+0%	100/960	Winter				7.844
S4.000	s7	60	Summer	30	+0%	100/360	Winter				7.871
S5.000	S8	60	Summer	30	+0%	100/360	Winter				7.884
S4.001	S8	60	Summer	30	+0%	100/240	Winter				7.836
S1.004	S5	60	Winter	30	+0%	100/240	Winter				7.649
S1.005	S6	480	Winter	30	+0%	100/60	Summer				7.606
					©1982-2	2017 XP	Solut	ions			

MLM		Page 13
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S1.000	S1	-0.206	0.000	0.20		11.7	OK	
S2.000	S2	-0.177	0.000	0.34		20.4	OK	
S1.001	S2	-0.122	0.000	0.65		30.9	OK	
S3.000	S4	-0.359	0.000	0.09		14.4	OK	
S1.002	s3	-0.324	0.000	0.31		58.6	OK	
S1.003	S4	-0.380	0.000	0.17		55.2	OK	
S4.000	s7	-0.218	0.000	0.13		6.9	OK	
S5.000	S8	-0.225	0.000	0.12		6.9	OK	
S4.001	S8	-0.193	0.000	0.28		13.7	OK	
S1.004	S5	-0.369	0.000	0.19		63.6	OK	
S1.005	S6	-0.175	0.000	0.10		19.8	OK	

MLM		Page 14
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micro
Date 22/11/18	Designed by AW	Drainane
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	namaye
XP Solutions	Network 2017.1.2	

PN	US/MH Name	S	torm		Climate Change	First Surch	• •	First Floor	• •	First Overf	 Overflow Act.
S6.000	S12	480	Winter	30	+0%	100/60	Summer				
S6.001	S13	480	Winter	30	+0%	100/60	Summer				
S6.002	S14	480	Winter	30	+0%	100/60	Summer				
S1.006	s7	480	Winter	30	+0%	100/60	Summer				
S7.000	S16	60	Summer	30	+0%	100/120	Winter				
S8.000	S17	60	Summer	30	+0%	100/60	Winter				
S7.001	S17	60	Summer	30	+0%	100/60	Winter				
S9.000	S19	480	Winter	30	+0%	100/60	Winter				
S7.002	S18	480	Winter	30	+0%	100/60	Summer				
S7.003	S19	480	Winter	30	+0%	100/60	Summer				
S1.007	S8	480	Winter	30	+0%	30/360	Winter				
S10.000	S23	480	Winter	30	+0%	30/360	Winter				
S1.008	S9	480	Winter	30	+0%	1/60	Summer				

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
S6.000	S12	7.605	-0.169	0.000	0.00		0.3	OK	
S6.001	S13	7.605	-0.141	0.000	0.01		0.7	OK	
S6.002	S14	7.605	-0.113	0.000	0.00		0.8	OK	
S1.006	s7	7.605	-0.053	0.000	0.05		8.6	OK	
S7.000	S16	7.696	-0.208	0.000	0.20		11.9	OK	
S8.000	S17	7.627	-0.213	0.000	0.11		6.1	OK	
S7.001	S17	7.605	-0.175	0.000	0.37		17.5	OK	
S9.000	S19	7.601	-0.224	0.000	0.03		4.8	OK	
S7.002	S18	7.601	-0.153	0.000	0.04		5.1	OK	
S7.003	S19	7.601	-0.122	0.000	0.02		4.0	OK	
S1.007	S8	7.603	0.023	0.000	0.04		6.9	SURCHARGED	
S10.000	S23	7.621	0.028	0.000	0.01		1.7	SURCHARGED	
S1.008	S9	7.621	0.530	0.000	0.38		5.0	SURCHARGED	

MLM		Page 15
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 10 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

<u>-1</u>								
Rainfall Model	L FEH							
FEH Rainfall Version	1999							
Site Location	n GB 516200 173750 TQ 16200 73750							
C (1km)	-0.025							
D1 (1km)	0.297							
D2 (1km)	0.319							
D3 (1km)	0.231							
E (1km)	0.307							
F (1km)	2.536							
Cv (Summer)	0.750							
Cv (Winter)	0.840							

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

ON

Inertia Status

PN	US/MH Name	s	Storm		Climate Change	First Surch	• •	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S1.000	S1	60	Summer	100	+40%						8.394
S2.000	S2	60	Summer	100	+40%						8.416
S1.001	S2	960	Winter	100	+40%	100/60	Summer				8.358
S3.000	S4	960	Winter	100	+40%	100/960	Winter				8.358
S1.002	s3	960	Winter	100	+40%	100/960	Winter				8.358
S1.003	S4	960	Winter	100	+40%	100/960	Winter				8.358
S4.000	s7	960	Winter	100	+40%	100/360	Winter				8.358
S5.000	S8	960	Winter	100	+40%	100/360	Winter				8.358
S4.001	S8	960	Winter	100	+40%	100/240	Winter				8.358
S1.004	S5	960	Winter	100	+40%	100/240	Winter				8.358
S1.005	S6	960	Winter	100	+40%	100/60	Summer				8.358
					©1982-2	2017 XP	Solut	ions			

MLM		Page 16
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micco
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

		Surcharged	${\tt Flooded}$			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S1.000	S1	-0.079	0.000	0.39		22.9	OK	
S2.000	S2	-0.057	0.000	0.68		40.2	OK	
S1.001	S2	0.024	0.000	0.12		5.5	SURCHARGED	
S3.000	S4	0.007	0.000	0.03		4.5	SURCHARGED	
S1.002	S3	0.050	0.000	0.09		16.0	SURCHARGED	
S1.003	S4	0.134	0.000	0.07		21.1	SURCHARGED	
S4.000	s7	0.269	0.000	0.04		2.3	SURCHARGED	
S5.000	S8	0.249	0.000	0.04		2.1	SURCHARGED	
S4.001	S8	0.329	0.000	0.16		7.8	SURCHARGED	
S1.004	S5	0.341	0.000	0.07		21.9	SURCHARGED	
S1.005	S6	0.577	0.000	0.12		23.2	SURCHARGED	

MLM		Page 17
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1 + 2	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

PN	US/MH PN Name Storm			Climate Change	First Surch	• •	First (Y) Flood	First (Z) Overflow	Overflow Act.
S6.000	S12	960 Winter	100	+40%	100/60	Summer			
S6.001	S13	960 Winter	100	+40%	100/60	Summer			
S6.002	S14	960 Winter	100	+40%	100/60	Summer			
S1.006	s7	960 Winter	100	+40%	100/60	Summer			
S7.000	S16	960 Winter	100	+40%	100/120	Winter			
S8.000	S17	960 Winter	100	+40%	100/60	Winter			
S7.001	S17	960 Winter	100	+40%	100/60	Winter			
S9.000	S19	960 Winter	100	+40%	100/60	Winter			
S7.002	S18	960 Winter	100	+40%	100/60	Summer			
S7.003	S19	960 Winter	100	+40%	100/60	Summer			
S1.007	S8	960 Winter	100	+40%	30/360	Winter			
S10.000	S23	960 Winter	100	+40%	30/360	Winter			
S1.008	S9	960 Winter	100	+40%	1/60	Summer			

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
S6.000	S12	8.358	0.584	0.000	0.04		4.4	SURCHARGED	
S6.001	S13	8.358	0.612	0.000	0.27		32.0	SURCHARGED	
S6.002	S14	8.358	0.640	0.000	0.15		27.5	SURCHARGED	
S1.006	s7	8.358	0.700	0.000	0.14		26.9	SURCHARGED	
S7.000	S16	8.357	0.453	0.000	0.05		2.9	SURCHARGED	
S8.000	S17	8.357	0.517	0.000	0.06		3.0	SURCHARGED	
S7.001	S17	8.357	0.577	0.000	0.16		7.6	SURCHARGED	
S9.000	S19	8.357	0.532	0.000	0.13		23.8	SURCHARGED	
S7.002	S18	8.357	0.603	0.000	0.26		32.9	SURCHARGED	
S7.003	S19	8.357	0.634	0.000	0.10		19.1	SURCHARGED	
S1.007	S8	8.357	0.778	0.000	0.09		16.7	SURCHARGED	
S10.000	S23	8.355	0.762	0.000	0.03		5.9	SURCHARGED	
S1.008	S9	8.355	1.264	0.000	0.38		5.0	SURCHARGED	

MLM		Page 1
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FEH Rainfall Model

	110001		
Return Period (years)			100
FEH Rainfall Version			1999
Site Location	GB 5162	00 173750	TQ 16200 73750
C (1km)			-0.025
D1 (1km)			0.297
D2 (1km)			0.319
D3 (1km)			0.231
E (1km)			0.307
F (1km)			2.536
Maximum Rainfall (mm/hr)			0
Maximum Time of Concentration (mins)			30
Foul Sewage (1/s/ha)			0.000
Volumetric Runoff Coeff.			0.750
PIMP (%)			100
Add Flow / Climate Change (%)			0
Minimum Backdrop Height (m)			0.000
Maximum Backdrop Height (m)			0.000
Min Design Depth for Optimisation (m)			1.200
Min Vel for Auto Design only (m/s)			1.00
Min Slope for Optimisation (1:X)			500

Designed with Level Soffits

Time Area Diagram for Storm

Time	Area	Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)	(mins)	(ha)
0-4	0.205	4-8	0.637	8-12	0.017

Total Area Contributing (ha) = 0.859

Total Pipe Volume $(m^3) = 85.773$

Network Design Table for Storm

PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design

Network Results Table

PN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s)

MLM		Page 2
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Diamage
XP Solutions	Network 2017.1.2	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	41.690	0.139	300.0	0.045	3.00	0.0	0.600	0	300	Pipe/Conduit	ô
S2.000	41.690	0.139	300.0	0.078	3.00	0.0	0.600	0	300	Pipe/Conduit	ð
S1.001	7.720	0.026	300.0	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	Ô
s3.000	21.621	0.043	500.0	0.099	3.00	0.0	0.600	0	525	Pipe/Conduit	ð
	41.794 33.635			0.144	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	0
S4.000	18.001	0.060	300.0	0.026	3.00	0.0	0.600	0	300	Pipe/Conduit	ð
s5.000	23.999	0.080	300.0	0.026	3.00	0.0	0.600	0	300	Pipe/Conduit	<u> </u>
S4.001	3.472	0.012	300.0	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	♂
	38.510 61.501			0.026 0.124	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	#
	14.227 13.882			0.010 0.029	3.00		0.600	0		Pipe/Conduit Pipe/Conduit	ට් එ

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S1.000	0.00	3.77	8.173	0.045	0.0	0.0	0.0	0.90	63.8	0.0	
S2.000	0.00	3.77	8.173	0.078	0.0	0.0	0.0	0.90	63.8	0.0	
S1.001	0.00	3.91	8.034	0.123	0.0	0.0	0.0	0.90	63.8	0.0	
s3.000	0.00	3.36	7.826	0.099	0.0	0.0	0.0	0.99	215.4	0.0	
S1.002 S1.003	0.00		7.783 7.699	0.366 0.392	0.0	0.0	0.0		215.4 378.9	0.0	
S4.000	0.00	3.33	7.789	0.026	0.0	0.0	0.0	0.90	63.8	0.0	
S5.000	0.00	3.44	7.809	0.026	0.0	0.0	0.0	0.90	63.8	0.0	
S4.001	0.00	3.51	7.729	0.052	0.0	0.0	0.0	0.90	63.8	0.0	
S1.004 S1.005	0.00		7.492 7.256	0.470 0.594	0.0	0.0	0.0		379.0 215.4	0.0	
S6.000 S6.001	0.00		7.249 7.221	0.010 0.039	0.0	0.0	0.0		215.4 215.4	0.0	
				1000 00	17 VD C-1						_

MLM		Page 3
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)		k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S6.002	29.664	0.059	500.0	0.000	0.00	0.0	0.600	0	525	Pipe/Conduit	Ô
S1.007	39.593 56.202 12.263	0.112	500.0	0.092 0.134 0.000	0.00 0.00 0.00	0.0	0.600 0.600 0.600	0	525	Pipe/Conduit Pipe/Conduit Pipe/Conduit	₩

Network Results Table

PN	Rain		•		Σ Base				Cap	
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S6.002	0.00	3.97	7.193	0.039	0.0	0.0	0.0	0.99	215.4	0.0
S1.006	0.00	6.99	7.133	0.725	0.0	0.0	0.0	0.99	215.4	0.0
S1.007	0.00	7.93	7.054	0.859	0.0	0.0	0.0	0.99	215.4	0.0
S1.008	0.00	8.18	6.942	0.859	0.0	0.0	0.0	0.82	14.5	0.0

Free Flowing Outfall Details for Storm

Outfall	Outfall	C.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
							(m)		

Simulation Criteria for Storm

S1.008 S 9.050 6.860 0.000 0 0

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000	
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 2.000	
Hot Start (mins)	0	Inlet Coefficeient 0.800	
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day) 0.000	
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60	
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins) 1	

Number of Input Hydrographs 0 Number of Storage Structures 7 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

del					FEH
rs)					100
ion					1999
ion GB	516200	173750	TQ	16200	73750
cm)				=	-0.025
cm)					0.297
cm)					0.319
cm)					0.231
	ion ion GB cm) cm)	ion ion GB 516200 cm) cm)	crs) ion ion GB 516200 173750 cm) cm)	crs) ion ion GB 516200 173750 TQ cm) cm)	crs) ion ion GB 516200 173750 TQ 16200 cm) cm) cm)

MLM		Page 4
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1	Micco
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Diamage
XP Solutions	Network 2017.1.2	

Synthetic Rainfall Details

E (1km) 0.307
F (1km) 2.536
Summer Storms Yes
Winter Storms Yes
Cv (Summer) 0.750
Cv (Winter) 0.840
Storm Duration (mins) 30

MLM		Page 5
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

Online Controls for Storm

Hydro-Brake® Optimum Manhole: S9, DS/PN: S1.008, Volume (m³): 15.6

Unit Reference MD-SHE-0100-5000-1400-5000 1.400 Design Head (m) Design Flow (1/s) 5.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 100 Invert Level (m) 6.942 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.400 5.0 Flush-Flom 0.416 5.0 Kick-Flom 0.855 4.0 Mean Flow over Head Range - 4.4

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	3.3	1.200	4.7	3.000	7.1	7.000	10.7
0.200	4.6	1.400	5.0	3.500	7.7	7.500	11.0
0.300	4.9	1.600	5.3	4.000	8.2	8.000	11.4
0.400	5.0	1.800	5.6	4.500	8.6	8.500	11.7
0.500	5.0	2.000	5.9	5.000	9.1	9.000	12.0
0.600	4.9	2.200	6.2	5.500	9.5	9.500	12.3
0.800	4.3	2.400	6.4	6.000	9.9		
1.000	4.3	2.600	6.7	6.500	10.3		

MLM		Page 6
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

Storage Structures for Storm

Cellular Storage Manhole: S4, DS/PN: S3.000

Invert Level (m) 7.826 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 99.0 0.0 0.401 0.0 0.0 0.0

Cellular Storage Manhole: S3, DS/PN: S1.002

Invert Level (m) 7.783 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 103.5 0.0 0.401 0.0 0.0 0.400 103.5 0.0

Cellular Storage Manhole: S4, DS/PN: S1.003

Invert Level (m) 7.699 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 157.5 0.0 0.401 0.0 0.0 0.400 157.5 0.0 0.0 0.0 0.0

Cellular Storage Manhole: S6, DS/PN: S1.005

Invert Level (m) 7.256 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.0	000	1	26.0			0.0	0	.801		0.0			0.0
0.8	800	1	26.0			0.0							

Cellular Storage Manhole: S13, DS/PN: S6.001

Invert Level (m) 7.221 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

MLM		Page 7
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Diamage
XP Solutions	Network 2017.1.2	

Cellular Storage Manhole: S13, DS/PN: S6.001

Depth (m)	Area (m²)	Inf. Area	(m ²)	Depth	(m)	Area	(m²)	Inf. Area	(m ²)
0.000	128.0		0.0	0.	.801		0.0		0.0
0.800	128.0		0.0						

Cellular Storage Manhole: S7, DS/PN: S1.006

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 162.0 0.0 0.801 0.0 0.0 0.0

Cellular Storage Manhole: S8, DS/PN: S1.007

Invert Level (m) 7.054 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth ((m) Area	(m ²)	Inf.	Area	(m ²)	Depth	(m)	Area	(m²)	Inf.	Area	(m ²)
0.0	000	144.0			0.0	0.	801		0.0			0.0
0.8	300	144.0			0.0							

MLM		Page 8
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 7 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

<u>~1</u>							
Rainfall I	Model						FEH
FEH Rainfall Ve	rsion						1999
Site Loca	ation	GB	516200	173750	TQ	16200	73750
C	(1km)					=	-0.025
D1	(1km)						0.297
D2	(1km)						0.319
D3	(1km)						0.231
E	(1km)						0.307
F	(1km)						2.536
Cv (Su	mmer)						0.750
Cv (Wi	nter)						0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

PN	US/MH Name	S	Storm		Climate Change	First Surch		First (Y) Flood	First Overf	 Overflow Act.	Water Level (m)
S1.000	S1	60	Summer	1	+0%						8.226
S2.000	S2	60	Summer	1	+0%						8.243
S1.001	S2	60	Summer	1	+0%	100/60	Summer				8.133
S3.000	S4	60	Winter	1	+0%						7.896
S1.002	s3	60	Winter	1	+0%						7.885
S1.003	S4	60	Winter	1	+0%						7.768
S4.000	s7	60	Summer	1	+0%	100/240	Winter				7.834
S5.000	S8	60	Summer	1	+0%	100/240	Winter				7.850
S4.001	S8	60	Summer	1	+0%	100/240	Winter				7.792
S1.004	S5	60	Winter	1	+0%	100/240	Winter				7.565
S1.005	S6	120	Winter	1	+0%	100/60	Summer				7.359
					©1982-2	2017 XP	Solut	ions			

MLM		Page 9
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
S1.000	S1	-0.247	0.000	0.07		4.2	OK	
S2.000	S2	-0.230	0.000	0.12		7.2	OK	
S1.001	S2	-0.201	0.000	0.24		11.4	OK	
S3.000	S4	-0.455	0.000	0.02		3.3	OK	
S1.002	S3	-0.423	0.000	0.09		16.0	OK	
S1.003	S4	-0.456	0.000	0.04		13.5	OK	
S4.000	s7	-0.255	0.000	0.04		2.4	OK	
S5.000	S8	-0.259	0.000	0.04		2.4	OK	
S4.001	S8	-0.237	0.000	0.10		4.9	OK	
S1.004	S5	-0.453	0.000	0.05		15.2	OK	
S1.005	S6	-0.423	0.000	0.08		16.1	OK	

MLM		Page 10
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1	Micro
Date 22/11/18	Designed by AW	Drainane
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	niailiade
XP Solutions	Network 2017.1.2	

PN	US/MH Name	Sto	orm		Climate Change	First Surch		First Floo	 First (Z) Overflow	Overflow Act.	Water Level (m)
S6.000	S12	360 W	inter	1	+0%	100/60	Summer				7.284
S6.001	S13	360 W	inter	1	+0%	100/60	Summer				7.284
S6.002	S14	240 W	inter	1	+0%	100/60	Summer				7.286
S1.006	s7	240 W	inter	1	+0%	100/60	Summer				7.288
S1.007	S8	240 W	inter	1	+0%	30/240	Winter				7.286
S1.008	S9	240 W	inter	1	+0%	1/60	Summer				7.284

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S6.000	S12	-0.490	0.000	0.00		0.2	OK	
						0.2	ON	
S6.001	S13	-0.462	0.000	0.01		0.7	OK	
S6.002	S14	-0.432	0.000	0.00		0.7	OK	
S1.006	s7	-0.371	0.000	0.06		11.2	OK	
S1.007	S8	-0.293	0.000	0.03		6.6	OK	
S1.008	S9	0.192	0.000	0.38		5.0	SURCHARGED	

MLM		Page 11
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	niailiade
XP Solutions	Network 2017.1.2	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 7 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

<u>~1</u>							
Rainfall I	Model						FEH
FEH Rainfall Ve	rsion						1999
Site Loca	GB	516200	173750	TQ	16200	73750	
C	(1km)					=	-0.025
D1	(1km)						0.297
D2	(1km)						0.319
D3	(1km)						0.231
E	(1km)						0.307
F	(1km)						2.536
Cv (Su	mmer)						0.750
Cv (Wi	nter)						0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

PN	US/MH Name	S	Storm		Climate Change	First Surch		First (Y) Flood	First Overf		Overflow Act.	Water Level (m)
S1.000	S1	60	Summer	30	+0%							8.267
S2.000	S2	60	Summer	30	+0%							8.296
S1.001	S2	60	Summer	30	+0%	100/60	Summer					8.212
S3.000	S4	60	Summer	30	+0%							7.992
S1.002	S3	60	Summer	30	+0%							7.984
S1.003	S4	60	Winter	30	+0%							7.844
S4.000	s7	60	Summer	30	+0%	100/240	Winter					7.871
S5.000	S8	60	Summer	30	+0%	100/240	Winter					7.884
S4.001	S8	60	Summer	30	+0%	100/240	Winter					7.836
S1.004	S5	60	Winter	30	+0%	100/240	Winter					7.649
S1.005	S6	360	Winter	30	+0%	100/60	Summer					7.603
	©1982-2017 XP Solutions											

MLM		Page 12
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1	Micro
Date 22/11/18	Designed by AW	Desipago
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilada
XP Solutions	Network 2017.1.2	

1
ded

MLM		Page 13
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1	Micco
Date 22/11/18	Designed by AW	Desinado
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S6.000	S12	360 Winter	30	+0%	100/60 Summer				7.601
S6.001	S13	360 Winter	30	+0%	100/60 Summer				7.601
S6.002	S14	360 Winter	30	+0%	100/60 Summer				7.601
S1.006	s7	360 Winter	30	+0%	100/60 Summer				7.602
S1.007	S8	360 Winter	30	+0%	30/240 Winter				7.600
S1.008	S9	360 Winter	30	+0%	1/60 Summer				7.667

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S6.000	S12	-0.173	0.000	0.00		0.5	OK	
S6.001	S13	-0.145	0.000	0.01		1.1	OK	
S6.002	S14	-0.117	0.000	0.01		1.1	OK	
S1.006	s7	-0.057	0.000	0.07		12.6	OK	
S1.007	S8	0.021	0.000	0.07		12.8	SURCHARGED	
S1.008	S9	0.575	0.000	0.38		5.0	SURCHARGED	

MLM		Page 14
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Dialilade
XP Solutions	Network 2017.1.2	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 7 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

<u>~1</u>							
Rainfall I	Model						FEH
FEH Rainfall Ve	rsion						1999
Site Loca	GB	516200	173750	TQ	16200	73750	
C	(1km)					=	-0.025
D1	(1km)						0.297
D2	(1km)						0.319
D3	(1km)						0.231
E	(1km)						0.307
F	(1km)						2.536
Cv (Su	mmer)						0.750
Cv (Wi	nter)						0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

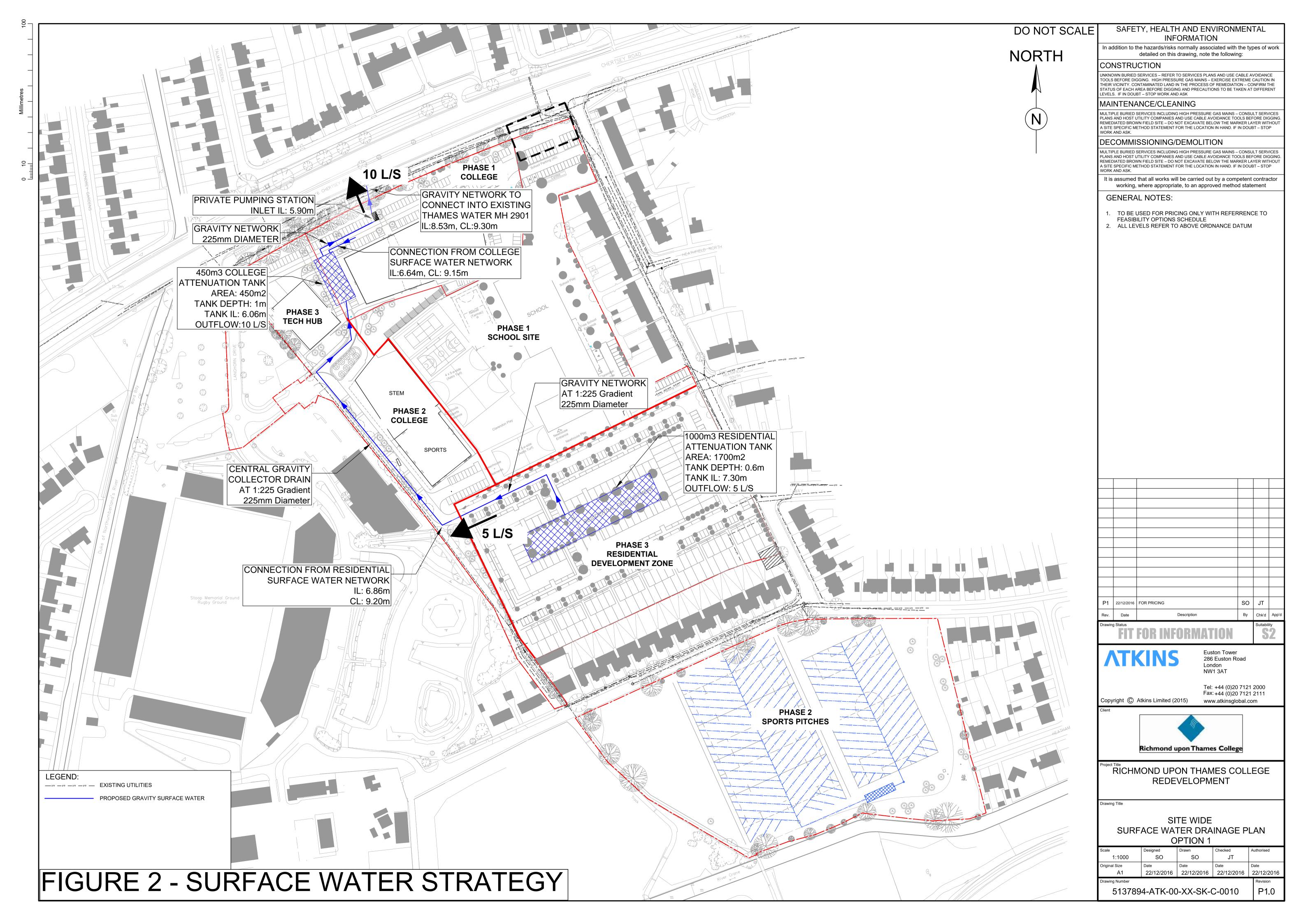
DTS Status

DVD Status

ON

Inertia Status

PN	US/MH Name	St	corm		Climate Change	First Surch	• •	First (Y) Flood	First (Z) Overflow	Overflow Act.
S1.000	S1	60	Summer	100	+40%					
S2.000	S2	60	Summer	100	+40%					
S1.001	S2	60	Summer	100	+40%	100/60	Summer			
S3.000	S4	480	Winter	100	+40%					
S1.002	s3	480	Winter	100	+40%					
S1.003	S4	480	Winter	100	+40%					
S4.000	s7	360	Winter	100	+40%	100/240	Winter			
S5.000	S8	960	Winter	100	+40%	100/240	Winter			
S4.001	S8	360	Winter	100	+40%	100/240	Winter			
S1.004	S5	1440	Winter	100	+40%	100/240	Winter			
S1.005	S6	1440	Winter	100	+40%	100/60	Summer			
				©19	82-2017	XP Sol	utions	5		


MLM		Page 15
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1	Micro
Date 22/11/18	Designed by AW	Drainage
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	Diamage
XP Solutions	Network 2017.1.2	

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S1.000	S1	8.394	-0.079	0.000	0.39		22.9	OK	
S2.000	S2	8.416	-0.057	0.000	0.68		40.2	OK	
S1.001	S2	8.356	0.022	0.000	1.31		61.9	SURCHARGED	
S3.000	S4	8.155	-0.196	0.000	0.05		7.5	OK	
S1.002	s3	8.156	-0.152	0.000	0.15		28.0	OK	
S1.003	S4	8.158	-0.066	0.000	0.09		29.4	OK	
S4.000	s7	8.163	0.074	0.000	0.05		2.8	SURCHARGED	
S5.000	S8	8.162	0.053	0.000	0.03		1.9	SURCHARGED	
S4.001	S8	8.163	0.134	0.000	0.19		9.3	SURCHARGED	
S1.004	S5	8.170	0.152	0.000	0.05		15.0	SURCHARGED	
S1.005	S6	8.207	0.425	0.000	0.12		23.8	SURCHARGED	

MLM		Page 16
North Kiln Felaw Maltings	619679	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network - Phase 1	Micro
Date 22/11/18	Designed by AW	Drainane
File 619579-MLM-ZZ-XX-CA-C-S	Checked by JRC	niairiade
XP Solutions	Network 2017.1.2	

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S6.000	S12	360 Winter	100	+40%	100/60 Summer				8.201
S6.001	S13	360 Winter	100	+40%	100/60 Summer				8.202
S6.002	S14	360 Winter	100	+40%	100/60 Summer				8.206
S1.006	s7	360 Winter	100	+40%	100/60 Summer				8.221
S1.007	S8	1440 Winter	100	+40%	30/240 Winter				8.296
S1.008	S9	1440 Winter	100	+40%	1/60 Summer				8.326

	Surcharged Flooded				Pipe			
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S6.000	S12	0.427	0.000	0.04		4.9	SURCHARGED	
S6.001	S13	0.456	0.000	0.27		32.1	SURCHARGED	
S6.002	S14	0.488	0.000	0.18		31.8	SURCHARGED	
S1.006	s7	0.562	0.000	0.28		52.3	SURCHARGED	
S1.007	S8	0.717	0.000	0.10		18.5	SURCHARGED	
S1.008	S9	1.235	0.000	0.38		5.0	SURCHARGED	

Jessica Taylor Atkins Euston Tower 286 Euston Road London NW1 3AT

Your account number DS4007616

thameswater.co.uk

0800 009 3921 Mon – Fri 9am-5pm, 01/11/2017

Pre Development Enquiry

Site Address: Richmond College, Twickenham, Middlesex, TW2 7SQ

Development Details: Demolition of existing college buildings, site clearance and groundworks together with the redevelopment of the site to provide:

Phase 1 - RuT College - Main Building

Phase 2 - RuT College - STEM and Sports buildings

Phase 3 - Haymarket Building

Phase 3 (1) – Residential (approximately 90 units)

Phase 3 (2) – Residential (approximately 89 units)

Proposed SW 10I/s into SW sewer in Chertsey Rd, proposed total FW 29.81I/s in Egerton Rd and Craneford Way.

Dear Miss Taylor

I write in relation to the above site regarding the proposed development here.

Please note: your initial fee of £398+ VAT covers the expense of our asset planners reviewing your proposed discharges in relation to the capacity in our existing network. They also carry out flood risk assessments. At this stage if your proposal is accepted, we issue an approval letter for you to progress with your development.

Foul Water

Details approved in principle.

In this instance we have notified our Catchment Planners for the area and they have made comment regarding the capacity of the public sewers. From the information you have provided, I can confirm that the existing foul sewer network does have sufficient capacity to accommodate the proposed foul water discharge from the proposed development.

Surface Water

Please note that discharging surface water to the public sewer network should only be considered after all other methods of disposal have been investigated and proven to be not viable. In accordance with the Building Act 2000 Clause H3.3, positive connection to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable.

The disposal hierarchy being: 1st Store rain water for Later Use; 2nd Use infiltration techniques, such as porous surfaces in non-clay area; 3rd Attenuate rainwater in ponds or open water features for gradual release to a watercourse; 4th Attenuate rainwater by storing in tanks or sealed water features for gradual release to a watercourse; 5th Discharge rainwater direct to a watercourse; 6th Discharge rainwater to a surface water drain; 7th Discharge rainwater to the combined sewer.

Only when it can be proven that soakage into the ground or a connection into the adjacent watercourse is not possible would we consider a restricted discharge into the public surface water sewer network. A reduction of at least 50% on existing flows from the same site area would be sought for a range of storm conditions.

Any approvals are subject to conditions that may be imposed through the planning process.

There is no right of discharge of highway drainage into the public sewerage system. An agreement to allow a discharge may be granted under section 115 (WIA 1991) by negotiation between the Highway Authority and Thames Water.

Details approved in principle.

Please Note

Public sewers are liable to surcharge to ground level. Any property that has a floor level lower than an adjacent manhole may be subject to flooding. Adequate provision shall be made by the developer to guard against this eventuality.

All connection requests are subject to a full Section 106 (Water Industry Act 1991) application before the Company can confirm approval to the connection itself. Please also note that capacity in the public sewerage system cannot be reserved.

The views expressed by Thames Water in this letter are in response to this pre development enquiry at this time and do not represent our final views on any future planning applications made in relation to this site.

Yours sincerely

Natalya Collins

Development Engineer

Deleur