

G. Thames Water Consultation

Asset location search

Waterman Infrastructure & Environment Pickfords Wharf Pickfords Wharf

LONDON SE1 9DG

Search address supplied

Greggs Gould Road Twickenham TW2 6RT

our reference	WIE12357 Greggs Bakery Twickenham
---------------	-----------------------------------

Our reference ALS/ALS Standard/2018_3900038

Search date

30 October 2018

Keeping you up-to-date

Notification of Price Changes

From 1 September 2018 Thames Water Property Searches will be increasing the price of its Asset Location Search in line with RPI at 3.23%.

For further details on the price increase please visit our website: www.thameswater-propertysearches.co.uk Please note that any orders received with a higher payment prior to the 1 September 2018 will be non-refundable.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

Search address supplied: Greggs, Gould Road, Twickenham, TW2 6RT

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4WW, DX 151280 Slough 13 T 0845 070 9148 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Manhole Reference	Manhole Cover Level	Manhole Invert Level
53TZ	n/a	n/a
53VP	n/a	n/a n/a
4314	n/a	n/a
53TX	n/a	n/a
53TQ	n/a	n/a
43RS	n/a	n/a
	n/a	n/a
54YQ 4401	n/a n/a	n/a n/a
4401 44ZX	n/a	n/a
4402	n/a	n/a
54YX	n/a	n/a
4403	9.3	.33
44ZW	n/a n/a	n/a n/a
547S	n/a	n/a
5402	9.45	7.66
54ZR	n/a	n/a
4501	8.59	.14
5501 23WT	8.5	.2 n/a
23W1 23XT	n/a	n/a
23ZX	n/a	n/a
2302	n/a	n/a
23VP	n/a	n/a
23VV 237V	n/a n/a	n/a n/a
2320	n/a	n/a
23WW	n/a	n/a
23WZ	n/a	n/a
23VQ	n/a	n/a
23WX	n/a	n/a
3308	n/a	n/a
3302A	10.03	.2
3303	10.06	7.01
3307	10.08	6.96
3301B	10.04	.29
2401	10.89	.03 - 02
1402	10.38	08
1401	9.66	n/a
3401	8.98	.12
22BB	n/a	n/a
22QR 12AO	n/a n/a	n/a p/a
1202	n/a	n/a
12SR	n/a	n/a
32YX	n/a	n/a
1201A	n/a	n/a
22AX	n/a	n/a n/a
12SF 22YQ	n/a n/a	n/a n/a
1206	n/a	n/a
121A	n/a	n/a
12ZY	n/a	n/a
22AW	n/a n/a	n/a n/a
137T	n/a	n/a
13ZX	n/a	n/a
23YV	n/a	n/a
23ZR	n/a	n/a
2321	n/a	n/a p/a
3304	n/a	n/a
13ZQ	n/a	n/a
23ZS	n/a	n/a
23XW	n/a	n/a
2301 227W	n/a n/a	n/a n/a
232VV 32YT	n/a	n/a
32QW	n/a	n/a
32RT	n/a	n/a
3301A	n/a	n/a
32RQ 2202B	n/a	n/a p/a
3310	n/a	n/a
3309	n/a	n/a
32VT	n/a	n/a
32QV	n/a	n/a
331A	n/a	n/a
32RO 3201	n/a	n/a
3203	n/a	n/a
32RZ	n/a	n/a
32SQ	n/a	n/a
43WY	n/a	n/a
431B 4288	n/a n/a	n/a n/a
431C	n/a	n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level
42IR	n/a	n/a
42OZ 43SW	n/a n/a	n/a n/a
43SP	n/a	n/a
42GT	0	0
42AF 42BT	0	0
42B1 42PS	n/a	n/a
43SV	n/a	n/a
4306 42DW	n/a	n/a
42PW 42PP	n/a n/a	n/a n/a
4303	n/a	n/a
43TY	n/a	n/a
42PV	n/a	n/a
4207	n/a	n/a
43WT 43TS	n/a n/a	n/a n/a
43WR	n/a	n/a
4202	n/a	n/a
43VY 42BV	n/a n/a	n/a n/a
42RS	n/a	n/a
42RQ	n/a	n/a
421N 42XS	n/a	n/a
42QY	n/a	n/a
42RT	n/a	n/a
431D 43WQ	n/a	n/a
431E	n/a	n/a
4305	n/a	n/a
421A 4307	n/a	n/a
42WX	n/a	n/a
42XQ	n/a	n/a
4304 43XW	n/a n/a	n/a n/a
43XZ	n/a	n/a
42XP	n/a	n/a
43XX 43YR	n/a n/a	n/a n/a
42ZP	n/a	n/a
43XT	n/a	n/a
53WV	n/a	n/a
52XQ	n/a	n/a
52XR	n/a	n/a n/a
52YW	n/a	n/a
53WR	n/a	n/a
53WT 5302	n/a n/a	n/a n/a
53YS	n/a	n/a
531D	n/a	n/a
531C 5201	n/a n/a	n/a n/a
22UV	n/a	n/a
12YX	n/a	n/a
2211 12PV	n/a	n/a
22YZ	n/a	n/a
22BH	n/a	n/a
2203 22WY	n/a	n/a
12VQ	n/a	n/a
12PX	n/a n/a	n/a
12TV	n/a	n/a
12QR	n/a	n/a
12QV 22BD	n/a n/a	n/a n/a
12QT	n/a	n/a
22YW	n/a	n/a
12QS 12PY	n/a n/a	n/a n/a
22YT	0	n/a
32ZR	n/a	n/a
12TV 12BP	n/a	n/a
22QS	n/a	n/a
22YR	n/a	n/a
1207	10.11	n/a
0102A	n/a	n/a
01TS	n/a	n/a
01TW	n/a	n/a
0106	n/a	n/a
01WX	n/a	n/a
02VV	n/a	n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level
02VQ	n/a	n/a
02VX 02TP	n/a n/a	n/a n/a
02WP	n/a	n/a
021A 021B	n/a n/a	n/a n/a
021C	n/a	n/a
501A	n/a	n/a
501B 511A	n/a n/a	n/a n/a
411C	n/a	n/a
5107 5103	8.42 8.61	7.12 6.79
5101	n/a	n/a
5102	n/a	n/a
5104 51YY	n/a n/a	n/a n/a
51YW	n/a	n/a
51YS 427V	n/a n/a	n/a n/a
42VY	n/a	n/a
42VZ	n/a	n/a
42VV 52YS	n/a n/a	n/a n/a
52YT	n/a	n/a
521E	n/a n/a	n/a n/a
5202 521C	n/a	n/a
4203	n/a	n/a
4208 521D	n/a n/a	n/a n/a
42ZX	n/a	n/a
42SP 42ST	n/a n/a	n/a n/a
4206	n/a	n/a
42SS	n/a	n/a
4201 42TW	n/a n/a	n/a n/a
32TY	n/a	n/a
32VR 42AI	n/a n/a	n/a n/a
42SW	n/a	n/a
42AJ	n/a	n/a
42P1 42TS	n/a n/a	n/a n/a
42WQ	n/a	n/a
42TT 421B	n/a n/a	n/a n/a
42RW	n/a	n/a
42AK	n/a	n/a
32VP	n/a n/a	n/a n/a
42AW	n/a	n/a
321R 42AH	n/a n/a	n/a n/a
42TN	n/a	n/a
32TQ	n/a	n/a
30ZR	n/a	n/a
40YT	n/a	n/a
401B 401A	n/a n/a	n/a n/a
411B	n/a	n/a
31YR 4114	n/a n/a	n/a n/a
4107	n/a	n/a
31ZV	n/a	n/a
3102 4110	n/a n/a	n/a n/a
41ZW	n/a	n/a
41XZ 411D	n/a n/a	n/a n/a
41XY	n/a	n/a
311A	n/a	n/a
31YY	n/a	n/a
4106	n/a	n/a
3109 3103	n/a 9.97	n/a 4.43
4108	n/a	n/a
4101	n/a n/a	n/a n/a
321A	n/a	n/a
3202	10.59	3.91
32WQ	n/a n/a	n/a n/a
201E	n/a	n/a
2004 21WS	n/a n/a	n/a n/a
31XT	n/a	n/a
21VP 21WO	n/a	n/a
3101	n/a	n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level
3104	n/a	n/a
21RW	n/a	n/a
21ZV 21TT	n/a n/a	n/a n/a
3105	n/a	n/a
21TS	n/a	n/a
2105	n/a	n/a
21 I V 32X7	n/a n/a	n/a n/a
32XR	n/a	n/a
22SQ	n/a	n/a
22RZ	n/a	n/a
32VY 22UY	n/a n/a	n/a n/a
22RW	n/a	n/a
22RT	n/a	n/a
221A	n/a	n/a
22QZ 22OW	n/a n/a	n/a n/a
32AS	n/a	n/a
32XT	n/a	n/a
4009	9.86	7.04
30XS 30WY	n/a n/a	n/a n/a
401F	n/a	n/a
4001	9.81	7.46
30XV	n/a	n/a
4002 30XP	n/a	n/a
30WR	n/a	n/a
30ZS	n/a	n/a
4008	9.77	7.29
201B 4003	n/a 9.76	n/a 6.83
30XZ	n/a	n/a
201C	n/a	n/a
201G	n/a	n/a
301A 2007	n/a n/a	n/a n/a
201D	n/a	n/a
2011	n/a	n/a
12VR	n/a	n/a
12TW	n/a n/a	n/a n/a
12FV 12GT	n/a	n/a
12IS	n/a	n/a
12ZR	n/a	n/a
12OR 22AB	n/a n/a	n/a n/a
22DY	n/a	n/a
221B	n/a	n/a
21YP	n/a	n/a
21YQ 22AD	n/a	n/a
21YS	0	0
22XP	n/a	n/a
2201A	n/a	n/a
2202 227X	n/a n/a	n/a n/a
22ZQ	n/a	n/a
22XQ	n/a	n/a
2101	n/a	n/a
2100 211B	n/a	n/a
22XR	n/a	n/a
22XT	n/a	n/a
22ZY	n/a	n/a
0107	n/a	n/a
0103	n/a	n/a
01ST	n/a	n/a
1001	n/a	n/a
11003	n/a	n/a
1102	n/a	n/a
11ZV	n/a	n/a
11ZW	n/a	n/a
111A 11YW	n/a n/a	n/a n/a
111B	n/a	n/a
11ZY	n/a	n/a
11TX	n/a	n/a
	iva	iva i
The position of the apparatus shown on this plan	is given without obligation and warranty, and the acc	curacy cannot be guaranteed. Service pipes are not
of mains and services must be verified and establish	inability of any kind whatsoever is accepted by Thames led on site before any works are undertaken.	water for any error or omission. The actual position

ALS Sewer Map Key

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

- Air Valve Dam Chase Fitting
- ≥ Meter

Π

0 Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

X Control Valve Ф Drop Pipe Ξ Ancillary Weir

Outfall

Inlet

Undefined End

End Items

いし

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

Other Symbols

Symbols used on maps which do not fall under other general categories

- ****/ Public/Private Pumping Station
- * Change of characteristic indicator (C.O.C.I.)
- Ø Invert Level
- < Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement **Operational Site** :::::: Chamber Tunnel Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes:

hames

Water

2) All measurements on the plans are metric.

- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

ALS Water Map Key

Water Pipes (Operated & Maintained by Thames Water)

- Distribution Main: The most common pipe shown on water maps.
 With few exceptions, domestic connections are only made to distribution mains.
- Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
- **Supply Main:** A supply main indicates that the water main is used as a supply for a single property or group of properties.
- STRE
 Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
- **Metered Pipe:** A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.
- Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.
- **Proposed Main:** A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.

PIPE DIAMETER	DEPTH BELOW GROUND		
Up to 300mm (12")	900mm (3')		
300mm - 600mm (12" - 24")	1100mm (3' 8")		
600mm and bigger (24" plus)	1200mm (4')		

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Valves

- Manifold
- Customer Supply
- Fire Supply

Other Symbols

Data Logger

Other Water Pipes (Not Operated or Maintained by Thames Water)

Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.

Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Search Code

IMPORTANT CONSUMER PROTECTION INFORMATION

This search has been produced by Thames Water Property Searches, Clearwater Court, Vastern Road, Reading RG1 8DB, which is registered with the Property Codes Compliance Board (PCCB) as a subscriber to the Search Code. The PCCB independently monitors how registered search firms maintain compliance with the Code.

The Search Code:

- provides protection for homebuyers, sellers, estate agents, conveyancers and mortgage lenders who
 rely on the information included in property search reports undertaken by subscribers on residential
 and commercial property within the United Kingdom
- sets out minimum standards which firms compiling and selling search reports have to meet
- promotes the best practise and quality standards within the industry for the benefit of consumers and property professionals
- enables consumers and property professionals to have confidence in firms which subscribe to the code, their products and services.

By giving you this information, the search firm is confirming that they keep to the principles of the Code. This provides important protection for you.

The Code's core principles

Firms which subscribe to the Search Code will:

- display the Search Code logo prominently on their search reports
- act with integrity and carry out work with due skill, care and diligence
- at all times maintain adequate and appropriate insurance to protect consumers
- conduct business in an honest, fair and professional manner
- handle complaints speedily and fairly
- ensure that products and services comply with industry registration rules and standards and relevant laws
- monitor their compliance with the Code

Complaints

If you have a query or complaint about your search, you should raise it directly with the search firm, and if appropriate ask for any complaint to be considered under their formal internal complaints procedure. If you remain dissatisfied with the firm's final response, after your complaint has been formally considered, or if the firm has exceeded the response timescales, you may refer your complaint for consideration under The Property Ombudsman scheme (TPOs). The Ombudsman can award compensation of up to £5,000 to you if he finds that you have suffered actual loss as a result of your search provider failing to keep to the Code.

Please note that all queries or complaints regarding your search should be directed to your search provider in the first instance, not to TPOs or to the PCCB.

TPOs Contact Details

The Property Ombudsman scheme Milford House 43-55 Milford Street Salisbury Wiltshire SP1 2BP Tel: 01722 333306 Fax: 01722 332296 Email: <u>admin@tpos.co.uk</u>

You can get more information about the PCCB from www.propertycodes.org.uk

PLEASE ASK YOUR SEARCH PROVIDER IF YOU WOULD LIKE A COPY OF THE SEARCH CODE

Waterman Infrastructure & Environment

Search address supplied

Greggs Gould Road Twickenham TW2 6RT

Your reference	WIE12357 Greggs Bakery Twickenham
Our reference	SFH/SFH Standard/2018_3900040
Received date	30 October 2018
Search date	30 October 2018

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

Search address supplied: Greggs, Gould Road, Twickenham, TW2 6RT

This search is recommended to check for any sewer flooding in a specific address or area

- TWUL, trading as Property Searches, are responsible in respect of the following:-
- (i) any negligent or incorrect entry in the records searched;
- (ii) any negligent or incorrect interpretation of the records searched;
- (iii) and any negligent or incorrect recording of that interpretation in the search report
- (iv) compensation payments

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

History of Sewer Flooding

Is the requested address or area at risk of flooding due to overloaded public sewers?

The flooding records held by Thames Water indicate that there have been no incidents of flooding in the requested area as a result of surcharging public sewers.

For your guidance:

- A sewer is "overloaded" when the flow from a storm is unable to pass through it due to a permanent problem (e.g. flat gradient, small diameter). Flooding as a result of temporary problems such as blockages, siltation, collapses and equipment or operational failures are excluded.
- "Internal flooding" from public sewers is defined as flooding, which enters a building or passes below a suspended floor. For reporting purposes, buildings are restricted to those normally occupied and used for residential, public, commercial, business or industrial purposes.
- "At Risk" properties are those that the water company is required to include in the Regulatory Register that is presented annually to the Director General of Water Services. These are defined as properties that have suffered, or are likely to suffer, internal flooding from public foul, combined or surface water sewers due to overloading of the sewerage system more frequently than the relevant reference period (either once or twice in ten years) as determined by the Company's reporting procedure.
- Flooding as a result of storm events proven to be exceptional and beyond the reference period of one in ten years are not included on the At Risk Register.
- Properties may be at risk of flooding but not included on the Register where flooding incidents have not been reported to the Company.
- Public Sewers are defined as those for which the Company holds statutory responsibility under the Water Industry Act 1991.
- It should be noted that flooding can occur from private sewers and drains which are not the responsibility of the Company. This report excludes flooding from private sewers and drains and the Company makes no comment upon this matter.
- For further information please contact Thames Water on Tel: 0800 316 9800 or website www.thameswater.co.uk

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

H. Soakaway Test Results

SOAKAWAY TEST RESULTS

BRE DIGEST 365 - SOIL INFILTRATION RATE

Project: GREGGS, GOULD ROAD, TWICKENHAM

Client: London Square

Agent: Waterman Structures

Project No: 4998 Sheet No: 1/2

SA	2	Description of stratum under test	Depth to water prior to
Test No.			test, m below g.l.
Depth, m	2.00		
Length, m	1.00	Firm orange brown CLAY and KEMPTON PARK GRAVEL	pit dry
Width, m	0.50		

f =	(V75-V25)/A50)(T75	-T25)
V75-V25 =	0.27	m³	
A50 =	2.14	m²	
T75-T25 =	460	min	extrapolated
f =	<u>4.62E-006</u>	m/s	extrapolated

Elapsed	Depth to	
Time	Water	
min	m	
0.0	0.91	
1.0	0.91	
2.0	0.92	
3.0	0.94	
4.0	0.95	
5.0	0.98	
6.0	0.99	
7.0	1.00	
8.0	1.01	
9.0	1.02	
10.0	1.04	
15.0	1.06	
20.0	1.10	
25.0	1.12	
30.0	1.15	
40.0	1.19	
50.0	1.22	
60.0	1.24	
90.0	1.30	
120.0	1.35	
150.0	1.38	
		1

SOAKAWAY TEST RESULTS

BRE DIGEST 365 - SOIL INFILTRATION RATE

Project: GREGGS, GOULD ROAD, TWICKENHAM

Client: London Square

Elapsed

Time

min

0.0

1.0 2.0

3.0

Agent: Waterman Structures

Depth to

Water

m

1.01 1.01

1.02

1.04

Project No: 4998 Sheet No: 2/2

SA Test No.	2 2	Description of stratum under test	Depth to water prior to test, m below g.l.
Depth, m	2.00		
Length, m	1.00	Firm orange brown CLAY and KEMPTON PARK GRAVEL	pit dry
Width, m	0.50		

-T25))(T75-	(V75-V25)/A50	f =
	m³	0.25	V75-V25 =
	m²	1.99	A50 =
extrapolated	min	465	T75-T25 =
extrapolated	m/s	<u>4.47E-006</u>	f =

4.0	1.06
5.0	1.07
6.0	1.08
7.0	1.09
8.0	1.10
9.0	1.11
10.0	1.12
15.0	1.14
20.0	1.17
25.0	1.18
30.0	1.21
40.0	1.24
50.0	1.26
60.0	1.28
90.0	1.32

I. Proposed Drainage Layout

12357-WIE-ZZ-GF-M2-C-92001-Ex drainage, 12357-WIE-ZZ-GF-M2-C-92002-Pr drainage, A1-Wat-BS-S, A1-Wat-S

J. Proposed Permeable Area

K. Surface Water Calculations

CALCULATIONS

WIE	Office:	Lon	don
1 of 3	Project I	lo:	WIE12357
C.Henderson	Date	21.0	2.19
D.O'Donovan	Date	21.0	2.19
	WIE 1 of 3 C.Henderson D.O'Donovan	WIEOffice:1 of 3Project NC.HendersonDateD.O'DonovanDate	WIEOffice:Lon1 of 3Project No:C.HendersonDate21.0D.O'DonovanDate21.0

Project Title:

Greggs Bakery, Twickenham Calculations Title: Surface Water Management - Summary Sheet

LOCATION	CALCULATIONS										OPTIONS																	
	Sur	face	e wa	ter a	at the	e Sit	e wi	ll be	man	age	d in a	acco	orda	nce	with	the	Lor	ndor	n Bor	oug	h of	Ric	hmo	nd-				
	upc	on-Thames, i.e. surface water discharge restricted to as close to the greenfield rate as is																										
	rea	easonably practicable.																										
	Evi	etin	u ei	urfa		ato	r dia	cha	rao	inor	mo (M1(0 6	<u>۱۰</u>														
		Sun	y si		56 W	ale			iigei	eyi			0_0	<i>.</i>														
							A	a (h	-)		Cal		4		ام م ما													
		0.1	•				Are	a (n	a)		Cal	Jula		me	nou			Disc	Snar	је п г 4	ale							
		Site	e Are	ea				1.13	0	• • •	vvai	ling	tora	(Pa	ge 2)			14	·3.4	I/S							
		(calc	ulat	ed w	vith I		ot C	100	%)																		
	Pro	pos	ed s	surf	ace	wat	er d	lisch	narge	e reç	gime	:																
		50%	6 Εx	kistir	ıg							=		7	2.7	l/s												
		Gre	enfi	eld	runo	off ra	te (*	1 in [·]	100 v	ear))	=		1	0.8	l/s												
									,	,																		
																												<u> </u>
																_									_			

CALCULATIONS

Company:	WIE	Office:	London
Sheet No:	2 of 3	Project I	No: WIE12357
Ву	C.Henderson	Date	21.02.19
Checked:	D.O'Donovan	Date	21.02.19

Project Title:

Greggs Bakery, Twickenham

Calculations Title: Surface Water Management - Existing Runoff Rate (M100_60)

LOCATION											CAL	CUI	_ATI	ONS	3									C	PT	ON	s
	Cal	cula	tion	s ba	ased	on:	Desi	gn a	and	Ana	alysi	s of	urba	an st	orm	dra	inag	je. T	'ne ∖	Vall	ingfo	ord					
	Pro	ced	ure,	Vo	lume	e 1 P	Princip	oles	me	tho	ds ai	nd p	oracti	ice.													
	Use	er In	put	Da	<u>ta</u>																						
	Tot	al si	te a	rea															1.	130	ha						
	SA	AR (Fro	m F	EH)															627							
	Rai	nfal	Inte	ensi	ity (F	rom	FEH)											46	6.40							
	PIN	۱P (۲	% in	npe	rviou	s)														100	%						
	Soi	ΙТу	be																().40							
	Ver	y Lo	w R	Runo	off (v	vello	draine	ed s	and	ly, lo	bam	y or	eart	hy p	eat	soils	s)		().15							
	Lov	v Ru	noff	f (Ve	ery p	erm	eable	e so	ils (e.g.	gra	vel,	sand	d)					(0.30							
	Mo	dera	te ('	Ver	y fine	e sa	nds, s	silts	and	d se	dime	enta	ry cl	ays)					().40							
	Hig	h Rı	unof	ff (C	laye	y or	loam	iy so	oils)										().45							
	Ver	y Hi	gh F	Run	off (S	Soils	s of th	ne w	/et ı	ıpla	nds)								().50	_						
																											<u> </u>
																											
Fig. 9.7	UC	WI (Froi	m F	igure	e 9.7	of V	/alli	ngfo	ord I	Meth	nod)							1	58							
						Ļ		_																			
Eqn. 13	Qp	(pea	ak d	isch	harge	e) =	2.78	Cv	CR	İΑ																	
	Wh	ere:		Qp) (Pe	ak L	Discha	arge	e)		i = 1	rain	tall ir	nten	sity			A =	Tot	al A	rea						
						l .																					
From FEH	Ave	erag	e ra	Infa	II Int	ensi	ty (I)		~ 4																		
r			M1	00_	60 IS	S:		4	6.4	mm	1																
F	<u></u>																										
Eqn 7.20	CV	= PI	10</td <td>00</td> <td></td> <td></td> <td>. (2)</td> <td>- 0 -</td> <td>201</td> <td></td> <td>(0.0</td> <td>070</td> <td></td> <td>N/1 \</td> <td>20.7</td> <td>7</td> <td></td>	00			. (2)	- 0 -	201		(0.0	070		N/1 \	20.7	7											
Eqn 7.3		PR		7.82	9 PI	IVIP)	+ (2:	5.0	501	L) +	(U.U	J/8		vi) -	20.	(-)		100	0/								
Dere 50			PIN	/IP (Perc		age o		alchi	men				iperv	/ious	5)		100	% 0/								
Page 52							^r can		be	less	s ina	n 40	J%					40	% 0/								
				10	us va		40		10 1			F	50					100	70								
		סס		50	II.	0.	40			00	VVI.	,	0					76	3 7 2								
	Thi		-).72								
Soc 7 10			v –	- 	ndo	d for	cim	ulati	on 6	and	doci	an)						,	1.7								
3607.10		(Re	COL	ime	nue		SIIIL	llatio		anu	uesi	gn)							1.5								
	αQ	for	1 in	100) vea	r 60) min	ute	dur	atio	n =				14	5.4	l/s	or	12	28.7	l/s/ł	าล					
	- 4-																										
					-																						
					1																						

CALCULATIONS

WIE	Office:	Lo	ndon
3 of 3	Project I	lo:	WIE12357
C.Henderson	Date	21.	02.19
D.O'Donovan	Date	21.	02.19
	WIE 3 of 3 C.Henderson D.O'Donovan	WIEOffice:3 of 3Project NC.HendersonDateD.O'DonovanDate	WIEOffice:Lor3 of 3Project No:C.HendersonDate21.D.O'DonovanDate21.

Project Title: Calculations Title: Greggs Bakery, Twickenham Greenfield Runoff Rate Calculation

LOCATION										C	CAL	CUL	ATI	ONS	;										C	OPT	ION	S
	ln o	order to calculate the rate of surface water discharge from the permeable portion of the																										
	Site	e, the	e W	inde	s Mi	icroc	Irain	age	ver	sion	201	8.1	Sou	rce	Cont	rol r	modu	ule l	nas	bee	en ut	ilise	d.					
	Rur	al ru	unof	fhas	s be	en c	alcu	late	d us	sing	the I	οΗ	124	Met	hodo	logy	y. Th	ne ir	put	and	d out	put	dat	a				
	for	whic	ch ai	re sh	nowr	ו be	low;																					
	An	area	a of	50ha	a ha	s be	en ı	ised	l in t	he c	alcu	latic	ons a	as th	is is	the	lowe	est d	cato	hme	ent a	rea	wh	ich				
	the	lоН	124	l me	thoo	d cai	n cal	cula	te.	The	50h	na oi	utpu	t is t	hen	oror	ratec	l as	set	out	in lo	bH 1	24					
		Θ. Ι	Rural F	Runoff	Calcu	lator				1 1												>	<					
		6																										
		Micro IH 124 Results																										
		Dra	Interform Results Drainage IH 124 Input Results Return Period (Years) IO0 Partly Urbanised Catchment (OBAR) QBAR rural (/s)																									
					A	rea (ha)	,	50.0	00		Ur	ban	buma		0.000	0				149.5	; ;	-					
					s	AAR (m	m)		627			Re	egion	Region	6		~ .			QB	AR urba	n (l/s)						
					s	oil		Мар	0.40	0			- [-							149.5	;	-	-				
					G	rowth C	ùırve					(None)			C	Calculat	te										
					R	eturn	Period	Flood															=					
										OBA	R	Q (10	()vrs)	0	1 vrs)	0) (2 vrs	3	0.(5	vrs)	00	10 vi	~					
			IH 12	24			Regio	n		(l/s)		(1/	s)		(l/s)		(l/s)		(1	s)	-	(I/s)						
			ICP SI	JDS	R	egion	1			1	49.5		370.9		127.1		13	5.9		179.	5	21						
			ADAS	345		egion : eaion :	2 3			1.	49.5 49.5		393.3 311.1		130.1 128.6	; ;	13	6.7 1.1		176.	5 9	21						
			FFI	н	R	egion	4			1	49.5		384.3		124.1		13	4.0		183.	9	22						
			D-CI		R	egion	5 S/Dogi	on 7		1.	49.5		532.4	•	130.1		13	3.6		192.	9	24		-				
			пегі	n2	R	egion	B B			1	49.5 49.5		361.9		116.6	5	13	2.1		183.	• 9	24						
		Gre	entield	Volum	R	egion	9			1	49.5		326.0		131.6	5	13	8.9		181.	D	21,	~	-				
			(ReFI	H2)		c																>						
																	OK		Ca	ncel		Help						
					1	1			Er	nter Ret	tum Per	riod bet	tween	1 and 1	000													
																-+								-	-			
																												<u> </u>
		Qbar (1 in 2.333) 149.5 I/s/50ha 3.0 I/s/ha 3.4 I/s																										
		1 in	100)			47	7.1	I/s/5	50ha	1		9.5	l/s/h	a			1(0.8	l/s								

Waterman Group LTD							Pa	ge 1
Pickfords Wharf								
Clink Street								
London, SE1 9DG							B. 6	licco
Dete 21 (02 (2010 15:	0.0	Degi	an od br	r agab?			IVI	
Date 21/02/2019 15:		Dest	gnea by	2 CSCIIS				rainage
File 190109 - soaka	ge design.	Chec	ked by					
Innovyze		Sour	ce Cont	rol 2018	3.1			
Summary	of Results	s for 10	0 year	Return H	Perio	d (+40)응)	
	Half	Drain Tim	ne : 356	minutes.				
			_				.	
Storm	Max Max	Max	M. Lian Can	lax Ma	ax Fflore	Max	Stat	us
Event	(m) (m)	(1/g)		(r) (1	(a)			
	(ш) (ш)	(1/5)	(1	./5) (1	/5/	(111-)		
15 min Summer	9.353 0.253		2.0	9.1	11.1	171.2		ΟK
30 min Summer	9.464 0.364		2.0	10.8	12.8	246.3		O K
60 min Summer	9.574 0.474		2.0	10.8	12.8	320.4		O K
120 min Summer	9.701 0.601		2.0	10.8	12.8	406.6	Flood	Risk
180 min Summer	9.759 0.659		2.0	10.8	12.8	446.1	Flood	Risk
240 min Summer	9.785 0.685		2.0	10.8	12.8	463.6	Flood	Risk
360 min Summer	9.794 0.694		2.0	10.8	12.8	469.4	Flood	Risk
480 min Summer	9.784 0.684		2.0	10.8	12.8	462.5	Flood	Risk
600 min Summer	9.766 0.666		2.0	10.8	12.8	450.5	Flood	Risk
720 min Summer	9.744 0.644		2.0	10.8	12.8	435.9	Flood	Risk
960 min Summer	9.697 0.597		2.0	10.8	12.8	403.7		ОК
1440 min Summer	9.605 0.505		2.0	10.8	12.8	341.3		ОК
2160 min Summer	9.492 0.392		2.0	10.8	12.8	265.5		ОК
2880 min Summer	9.415 0.315		2.0	10.8	12.8	213.2		ОК
4320 min Summer	9.340 0.240		2.0	8.6	10.6	162.7		ОК
5760 min Summer	9.295 0.195		2.0	7.0	9.0	131.9		ОК
7200 min Summer	9.100 0.000		0.0	0.0	0.0	0.0		ОК
8640 min Summer	9.100 0.000		0.0	0.0	0.0	0.0		ОК
10080 min Summer	9.100 0.000		0.0	0.0	0.0	0.0		ОК
15 min Winter	9.384 0.284		2.0	10.2	12.2	192.0		O K
	Storm	Rain	Flooded	Discharge	Time-	Peak		
	Event	(mm/hr)	Volume	Volume	(mi	ns)		
			(m³)	(m³)				
-	5 min Comme-	10E 440	0.0	177 6		10		
	a min Summer	103.448 77 176	0.0	⊥//.0 261 1		33 ⊤Q		
	o min summer	11.4/0 50 050	0.0	201.1 251 0		23		
	0 min Summer	24.052	0.0	351.0		∠ס 100		
	o min Summer	24.037 26 015	0.0	4/U.U EAD 7		100		
	10 min Summer	20.010 21 004	0.0	542./ E02 2		10U 240		
24	o min Summer	41.904 16 007	0.0	593.2		240		
30	0 min Summer	12 000	0.0	007.3 701 c		264		
48	o min Summer	10 010	0.0	/UL.0 701 0		1204		
	0 min Summer	10.049 0 207	0.0	/31.9 755 0		720 201		
	o min Summer	9.34/ 7.210	0.0	/ 22. 2 700 1		774 626		
144	10 min Summer	1.JLU	0.0	/07.1 070 1		020		
	o min summer	2 602	0.0	033.1		1260		
210	0 min Summer	3.0U∠ 2.700	0.0	0/5.0		1610		
200	0 min Summor	1 071	0.0	057 Q		2226		
576	50 min Summer	1 547	0.0	1002 2		3056		
720)0 min Summer	-0 012	0.0	_9 4		0		
864	0 min Summer	-0.010	0.0	-9.4		õ		
1008	30 min Summer	-0.008	0.0	-9.4		õ		
1	5 min Winter	105.448	0.0	199.0	1	18		
1								

©1982-2018 Innovyze

Waterman Group LTD							Page 2
Pickfords Wharf							
Clink Street							
London, SE1 9DG							Micco
Date 21/02/2019 15:	08	Desi	aned b	v csch3			
File 190109 - soaka	ae desian	Chec	ked by	2			Urainage
	ge debign	- Chice	an Cont	-rol 2019	. 1		
тшоууге		Sour	Ce COII	LIOI ZUIC	•••		
Summary	of Regults	for 10)n vear	Return I	Period	(+40	12)
Dummary	OI REBUIES	101 10	JU ycar	Recurn	CIIOU	(110	
Storm	Max Max	Max	I	lax Ma	ax	Max	Status
Event	Level Depth	Infiltra	tion Cor	ntrol Σ Out	tflow V	olume	
	(m) (m)	(l/s) (]	L/s) (l,	/s)	(m³)	
30 min Winter	9 510 0 410		2 0	10 8	128	277 4	O K
60 min Winter	9.635 0.535		2.0	10.8	12.8	362.0	0 K
120 min Winter	9.783 0.683		2.0	10.8	12.8	462.0	Flood Risk
180 min Winter	9.853 0.753		2.0	10.8	12.8	509.7	Flood Risk
240 min Winter	9.888 0.788		2.0	10.8	12.8	532.9	Flood Risk
360 min Winter	9.901 0.801		2.0	10.8	12.8	541.7	Flood Risk
480 min Winter	9.882 0.782		2.0	10.8	12.8	529.0	Flood Risk
600 min Winter	9.858 0.758		2.0	10.8	12.8	512.9	Flood Risk
720 min Winter	9.829 0.729		2.0	10.8	12.8	492.9	Flood Risk
960 min Winter	9.762 0.662		2.0	10.8	12.8	44/./	Flood Risk
2160 min Winter	9.472 0.372		2.0	10.8	12.8	251.3	0 K
2880 min Winter	9.384 0.284		2.0	10.2	12.2	191.9	0 K
4320 min Winter	9.303 0.203		2.0	7.3	9.3	137.4	ОК
5760 min Winter	9.256 0.156		2.0	5.6	7.6	105.3	O K
7200 min Winter	9.100 0.000		0.0	0.0	0.0	0.0	ОК
8640 min Winter	9.100 0.000		0.0	0.0	0.0	0.0	O K
10080 min Winter	9.100 0.000		0.0	0.0	0.0	0.0	ОК
	Storm	Rain	Flooded	Discharge	Time-P	eak	
	Event	(mm/hr)	Volume	Volume	(min;	5)	
			(m³)	(m ³)			
	o 1					2.0	
3	0 min Winter	77.476 F2 0F2	0.0	292.5		32	
	0 min Winter	34 220	0.0	393.2 576 1		0⊿ 120	
18	0 min Winter	26.815	0.0	607.8		176	
24	0 min Winter	21.984	0.0	664.4		234	
36	0 min Winter	16.287	0.0	738.4		340	
48	0 min Winter	12.999	0.0	785.8		390	
60	0 min Winter	10.849	0.0	819.8		462	
72	0 min Winter	9.327	0.0	845.9		538	
96	U min Winter	7.310	0.0	883.9		684	
	u min Winter	5.144	0.0	933.1	1	966 201	
	0 min Winter	2 799	0.0	980.1 1015 4	1	.344 648	
432	0 min Winter	1.971	0.0	1072.8	2	380	
576	0 min Winter	1.547	0.0	1122.5	3	120	
720	0 min Winter	-0.012	0.0	-10.6		0	
864	0 min Winter	-0.010	0.0	-10.6		0	
1008	0 min Winter	-0.008	0.0	-10.6		0	

©1982-2018 Innovyze

Waterman Group LTD		Page 3
Pickfords Wharf		
Clink Street		
London, SE1 9DG		Mirro
Date 21/02/2019 15:08	Designed by csch3	Dcainago
File 190109 - soakage design	Checked by	Diamade
Innovyze	Source Control 2018.1	1
Ra	infall Details	
Rainfall Mode Return Period (years	el FEH s) 100	
FEH Rainfall Versio	on 2013	
Site Locatio	on GB 515350 173450 TQ 15350 73450	
Data Ty Summer Story	pe Catchment	
Winter Store	ms Yes	
Cv (Summe:	r) 0.750	
Cv (Winte:	r) 0.840	
Longest Storm (min	s) 10080	
Climate Change	%	
	ne Area Diagram	
Tota	al Area (ha) 0.900	
T:	ime (mins) Area	
Fr	om: To: (ha)	
	0 4 0.900	
©198	32-2018 Innovyze	

Waterman Group LTD		Page 4
Pickfords Wharf		
Clink Street		
London, SE1 9DG		Micro
Date 21/02/2019 15:08	Designed by csch3	Drainage
File 190109 - soakage design	Checked by	Drainiage
Innovyze	Source Control 2018.1	
I	Model Details	
Storage is Or	nline Cover Level (m) 10.000	
Cellula	r Storage Structure	
Inve: Infiltration Coefficient Infiltration Coefficient	rt Level (m) 9.100 Safety Factor 2.1 Base (m/hr) 0.01600 Porosity 0.3 Side (m/hr) 0.00000	0
Depth (m) Area (m ²) Inf. Are	ea (m ²) Depth (m) Area (m ²) Inf. Area	(m²)
0.000 2255.0	892.0 0.600 2255.0 8	92.0
Pump	Outflow Control	
Inve	ert Level (m) 9.100	
Der	oth (m) Flow (l/s)	
	0.300 10.8000	

©1982-2018 Innovyze

L. Foul Water Calculations

Sheet No: 1 of 2 Project No: WIE14625 By: Project Title: Former Greggs Bakery C Henderson Date: 18.02.19 Calculations Title: Existing Foul Flow Estimate Checked: D O'Donovan Date: 18.02.19

		Dry Weather Flow Rate (per day)		Source	Number of	Factor	Profile (hours)	Peak Flow Rate (litres/second)
Residential						2.12	24	
Existing property =	160 litres/person/day	368.0 litres per	unit	Thames Water Guidelines (2016)	0 existing units			0.0
New property =	125 litres/person/day	287.5 litres per	unit	Thames Water Guidelines (2016)	0 proposed units			0.0
Occupancy =	2.3 persons							
Hotel		500.0 litres per	room	British Water (2013)	0 rooms	3	24	0.0
Student Accommodation		200.0 litres per	bed	Thames Water Guidelines (2016)	0 beds	3	24	0.0
Offices		750.0 litres per	100m ²	Jones (1992)	265.4 m ²	3	10	0.2
Retail		400.0 litres per	100m ²	Jones (1992)	0 m ²	3	12	0.0
Cinema		10.0 litres per	seat	Jones (1992)	0 seats*	3	8	0.0
Health Club/Sports Centre		50.0 litres per	customer	British Water (2013)	0 customers**	3	16	0.0
Day School		90.0 litres per	pupil	British Water (2013)	0 pupils	3	10	0.0
Boarding School		175.0 litres per	pupil	British Water (2013)	0 pupils	3	24	0.0
Hospital		625.0 litres per	bed	Jones (1992)	0 beds	3	24	0.0
Nursing Home		350.0 litres per	bed	British Water (2013)	0 beds	3	24	0.0
Restaurant		30.0 litres per	cover	British Water (2013)	0 covers	3	8	0.0
Pub/Club		15.0 litres per	customer	Butler and Davies (2004)	0 customers***	3	12	0.0
Warehouse		150.0 litres per	100m ²	Jones (1992)	7111.8 m ²	3	12	0.7
Manufacturing		550.0 litres per	100m ²	Jones (1992)	0 m ²	3	12	0.0
Commercial		300.0 litres per	100m ²	Jones (1992)	0 m ²	3	12	0.0
SUB TOTAL								0.9
Infiltration percentage	10%							0.1
TOTAL								1.0

* Foul flow rate needs to be calculated based on number of seats. An allowance of 4m² has been made for each seat.

Floor area = 0 m^2 $4 \text{ m}^2 \text{ per person}$

** Foul flow rate needs to be calculated based on number of customers. An allowance of 4m² has been made for each customer.

Floor area = 0 m^2 $4 \text{ m}^2 \text{ per person}$

*** Foul flow rate needs to be calculated based on number of customers. An allowance of 4m² has been made for each customer.

Floor area = 0 m²

4 m² per person

 Project Title:
 Former Greggs Bakery

 Calculations Title:
 Proposed Foul Flow Estimate

Sheet No:	2 of 2	Project No:	WIE14625
By:	C Henderson	Date:	18.02.19
Checked:	D O'Donovan	Date:	18.02.19

		Dry Weather Flow R	Rate (per day)	Source	Number of	Factor	Profile (hours)	Peak Flow Rate (litres/second)
Residential						2.12	24	
Existing property =	160 litres/person/day	400.0 litres per	unit	Thames Water Guidelines (2016)	0 existing units			0.0
New property =	125 litres/person/day	312.5 litres per	unit	Thames Water Guidelines (2016)	116 proposed units			0.9
Occupancy =	2.5 persons							
Hotel		500.0 litres per	room	British Water (2013)	0 rooms	3	24	0.0
Student Accommodation		200.0 litres per	bed	Thames Water Guidelines (2016)	0 beds	3	24	0.0
Offices		750.0 litres per	100m ²	Jones (1992)	0 m ²	3	10	0.0
Retail		400.0 litres per	100m ²	Jones (1992)	0 m ²	3	12	0.0
Cinema		10.0 litres per	seat	Jones (1992)	0 seats*	3	8	0.0
Health Club/Sports Centre		50.0 litres per	customer	British Water (2013)	0 customers**	3	16	0.0
Day School		90.0 litres per	pupil	British Water (2013)	0 pupils	3	10	0.0
Boarding School		175.0 litres per	pupil	British Water (2013)	0 pupils	3	24	0.0
Hospital		625.0 litres per	bed	Jones (1992)	0 beds	3	24	0.0
Nursing Home		350.0 litres per	bed	British Water (2013)	0 beds	3	24	0.0
Restaurant		30.0 litres per	cover	British Water (2013)	0 covers	3	8	0.0
Pub/Club		15.0 litres per	customer	Butler and Davies (2004)	0 customers***	3	12	0.0
Warehouse		150.0 litres per	100m ²	Jones (1992)	0 m ²	3	12	0.0
Manufacturing		550.0 litres per	100m ²	Jones (1992)	0 m ²	3	12	0.0
Commercial		300.0 litres per	100m ²	Jones (1992)	175 m ²	3	12	0.0
SUB TOTAL								0.9
Infiltration percentage	10%	, b						0.1
TOTAL								1.0

* Foul flow rate needs to be calculated based on number of seats. An allowance of 4m² has been made for each seat.

Floor area = 0 m^2 $4 \text{ m}^2 \text{ per person}$

** Foul flow rate needs to be calculated based on number of customers. An allowance of 4m² has been made for each customer.

Floor area = 0 m^2 $4 \text{ m}^2 \text{ per person}$

*** Foul flow rate needs to be calculated based on number of customers. An allowance of 4m² has been made for each customer.

Floor area = 0 m^2

4 m² per person

UK and Ireland Office Locations

