

Greggs Bakery / Twickenham

Phase II, Geoenvironmental Investigation

CONTENTS

	Sec	ction	Page								
	SYN	NOPSIS	ı								
I	Site	description	2								
2	Dev	velopment proposals	2								
3	Geo	Geology									
4		Field work									
5	Lab	Laboratory testing									
6		ound conditions									
		Stratigraphy	5								
		6.1.1 Made Ground	5								
		6.1.2 Superficial clay	6								
		6.1.3 Kempton Park Gravel	6								
		6.1.4 London Clay	6								
	6.2	6.2 Groundwater									
7	Dis	Discussion									
	7. I	General	7								
	7.2	Spread foundations	8								
	7.3	Ground floor slabs	9								
	7.4	Excavations	9								
	7.5	Contaminant analysis									
		7.5.1 Solid phase	10								
		7.5.2 Dissolved phase	12								
		7.5.3 Gas phase	13								
		7.5.4 Waste Acceptance Criteria (WAC)	13								
	7.6	Conclusions and recommendations	14								
	7.7	16									

Procedural Notes

APPENDICES

A	- ·
Α	Figures
$\overline{}$	i igui co

- B Borehole Records
- C Standpipe Records
- D Laboratory Test Results

FORMER GREGGS BAKERY GOULD ROAD TWICKENHAM TW2 6RT

Phase II Geoenvironmental Investigation

Synopsis

An investigation has been carried out at the now defunct Greggs Bakery in Twickenham on the instructions of London Square. A Phase I Environmental Assessment' has been prepared for the site and should be read in conjunction with this report.

The purpose of the investigation was to determine the ground conditions and to provide recommendations in respect of foundation design and other geoenvironmental matters for the proposed mixed use development.

Five boreholes and 18 continuous open drive (windowless) samplers were carried out, supported by a programme of in situ and laboratory testing.

Conventional spread foundations are envisioned for the development and appropriate design data is provided. Chemical analysis revealed some slight contamination in the Made Ground and dissolved phase hydrocarbons in groundwater but insufficient to prejudice the development.

Report No. 4609-1 Phase I Environmental Assessment. Former Greggs Bakery, Gould Road, Twickenham TW2 6RT. AP Geotechnics Ltd., 14 March 2017

1

Site description

The area under investigation is an approximate 'L' shaped plot of land extending to some 1.12 hectares, as shown on Figure 1 at Appendix A. The site was, from 1953 until November 2016, a bakery and distribution depot for Greggs.

A full site description is available in the Phase I report to which the reader is referred.

2

Development proposals

It is intended to demolish the existing buildings and redevelop the site for both residential and commercial use. However, the exact configuration has yet to be finalised.

The latest iteration of the proposed ground floor general arrangement is given at Figure 2 of Appendix A.

3

Geology

Published records of the British Geological Survey (BGS) indicate the site to lie on Kempton Park Gravel over London Clay. No Made Ground or Worked Ground is mapped at the subject site.

4

Field work

The extent of the field work was agreed with London Square and comprised five boreholes drilled by light percussive techniques to a maximum depth of 20 m. The two external BHs were advanced with a conventional rig whilst the three internal ones were drilled with a demountable rig. In addition, 18 window samplers were carried out to give a more detailed description of the near surface soils and to gain greater spatial coverage of the site. The Phase I report includes an unexploded ordnance (UXO) threat assessment which concludes that there is a medium risk of UXOs at the site. The location of the boreholes and window samplers therefore had to be cleared of potential UXOs during drilling which was achieved with a UXO technician, magnetometer and use of stainless steel casing. The location of all exploratory points is shown on Figure 1 at Appendix A.

Representative soil samples were recovered from the boreholes for subsequent laboratory examination and testing; whilst Standard Penetration Tests (SPT) were carried out as appropriate. Details of the strata encountered are provided on the Borehole Records at Appendix B; together with particulars of the samples recovered, groundwater observations and SPT results. The profile of SPT with depth in the cable percussive boreholes is also presented at Figure 3 of Appendix A.

Standpipes were installed in boreholes 1, 2 & 5 and WS 13, 16 and 17 to allow monitoring of soil gas concentrations and groundwater levels. The results to date are presented at Appendix C.

Whilst positioning the exploratory locations a manhole cover was lifted in front of the offices which revealed a set of stairs descending into a basement. Greggs personnel confirmed there

was a basement under part of the northern portion of the offices but its extent is not known. No entry into the basement was made during the field work.

5

Laboratory testing

The following laboratory tests were conducted on soil samples recovered during the field work:-

- Natural moisture content: to assess the in situ condition of the soil.
- Liquid and Plastic Limits: to classify cohesive soil into behavioural groups.
- Particle size distribution: by sieve analysis to classify granular material.
- Unconsolidated undrained triaxial compression: to determine the shear
 strength of cohesive material and thus to assess its load bearing capacity.
- One-dimensional consolidation: to determine the deformation characteristics of clay under applied loading.
- Soluble sulphate and pH value: for the specification of buried concrete.
- Contamination: chemical analyses to detect the presence of contaminants as indicated by the Phase I Assessment, viz:-

Metals & metalloids: Total arsenic, cadmium, chromium, copper, lead, mercury, nickel,

selenium and zinc. Water soluble boron and hexavalent

chromium.

Organic: Petroleum hydrocarbons (TPH), polyaromatic hydrocarbons

(PAH), polychlorinated biphenyls (PCBs) and phenols.

Others: Asbestos screen and Waste Acceptance Criteria

(WAC) full solid waste suite and 2 stage leachate suite.

Results of these tests are presented at Appendix D and the variation of shear strength with depth is shown at Figure 4 of Appendix A.

6

Ground conditions

6.1

Stratigraphy

The stratigraphy of the site as revealed by the investigation is described in detail at Appendix B and in general terms hereafter.

6.1.1

Made Ground

Made Ground was encountered in all exploratory locations under a surfacing of either asphalt, concrete or the former factory floor and was observed to a maximum depth of 1.7 m in WS2.

The Made Ground comprised both granular and cohesive material with the latter more prevalent. The granular material was represented by a black sand in BH2 and by fragments of brick and concrete in a matrix of silt and sand sized particles elsewhere.

The cohesive member was generally represented by a clay, sometimes sandy and with the addition of fragments of brick, concrete and flint. Relic topsoil was also encountered in WSI, 2, 10 and 18.

Window samplers 6 and 11 were terminated within Made Ground.

6.1.2

Superficial clay

Although not mapped at this location by the BGS, up to 1 m of mottled brown slightly sandy clay with occasional gravel was recorded. The superficial clay was encountered in 12 of the 23 exploratory locations and was observed to a maximum depth of 1.8 m in BH1.

6.1.3

Kempton Park Gravel

This stratum was encountered in all boreholes (save for WS6, 11 & 12) at depths ranging from 0.32 m in WS14 to 1.80 m in BH1. It was generally represented by a brown or orange brown sandy to very sandy flint gravel with occasional sand layers. The gravel was sometimes clayey in its upper reaches and was locally a sand and gravel.

The gravel was observed to a maximum depth of 9.15 m in BH3. The majority of WS holes were terminated within gravel at 4 m depth.

In situ testing indicates the gravels to be often in a very dense to dense state of compaction in the upper reaches, becoming medium dense with depth.

6.1.4

London Clay

London Clay was proved beneath the Kempton Park Gravel in the cable percussive boreholes and extended to the limit of investigation of 20 m depth.

The London Clay was represented by a dark grey clay which was locally fissured and is typical of the unweathered material.

Triaxial testing indicates the London Clay to be predominately stiff to very stiff. A firm result was recorded in the upper part of the London Clay in BH4. However, the other firm results are considered to be a result of premature failure due to fissures.

6.2

Groundwater

Groundwater was encountered at depths ranging from 2.4 m in WS13 to 4.2 m in BH2. However, the speed of drilling, the requirement to add water in granular material to aid the drilling process and the use of casing to support the bore may have masked any small inflows and impinged upon the accuracy of the observations.

Details of all groundwater observations during drilling are provided on the Borehole Records.

Standpipe readings taken during subsequent monitoring visits recorded the depth to groundwater at around the three metre mark in most standpipes. However, groundwater in BH2 has been consistently deeper, at some 6 m depth or so.

7

Discussion

7.1

General

The site has evidently already carried development and the investigation has revealed Made Ground to be present. It is likely that other pockets of Made Ground may also be present; perhaps deeper, of different character or associated with the remains of construction; even though not detected by this investigation.

All remnants of previous construction should be removed prior to redevelopment to enable the proposals to be constructed without hindrance and to perform satisfactorily.

A 375 mm diameter sewer lies under the site and discussions should start at an early stage with Thames Water regarding any potential impact on the proposed site layout. Thames Water may require exclusion zones over or adjacent to their sewer which could potentially affect the foundation design required.

7.2

Spread foundations

Made Ground is inherently variable in both composition and compaction and is therefore prone to large and unpredictable settlement. It does not form a reliable bearing stratum. The thin and laterally inconsistent superficial clay layers are also not considered suitable.

Foundations should therefore bear on the underlying Kempton Park Gravel throughout. Some disturbance may have occurred at the contact of the gravel with the overlying material and foundations should be constructed in undisturbed material. An allowance of 200 to 300 mm is often sufficient in this respect, foundations thus bearing at the minimum recommended depth of 0.9 m in the vicinity of WS14 & 15, increasing to around 2 m depth adjacent to BH1 and WS2.

Based upon the data provided by in situ testing, a net allowable bearing capacity of 200 kPa is available for conventional strip or pad foundations. Pad foundations should not be less than 750 mm side and a minimum width of 0.45m be employed for strip foundations to minimise the risk of overstress of locally weaker material. Deeper trench fill foundations should satisfy the minimum aspect ratio of 3/1 (depth/breadth) for the concrete to reduce the effect of any unintentional eccentricity of loading.

Total settlement of these foundations is not expected to exceed some 25 mm over a 25 year period, with approximately two thirds occurring immediately load is applied and the remainder at gradually decreasing rate over the ensuing years, although actual settlement is likely to be in the order of 15 mm or less.

7.3

Ground floor slabs

As stated in Section 7.2, Made Ground will not form a reliable bearing stratum, therefore suspended ground floor construction should be adopted unless natural gravel is present at shallow depth.

7.4

Excavations

All material likely to be encountered in general construction excavations should be regarded as unstable. Some apparent stability may be present immediately on excavation, especially where there is a high clay content, but this must not be relied upon. All excavations should therefore be supported at all times unless battered to a safe angle of repose. In any event, excavations to greater than 1.2 m depth should be supported at all times.

Provision of adequate support is especially important for the safety of personnel when required to work in or close to excavations. Particular care should be exercised where excavations are close to existing structures to ensure they do not experience any loss of support. Temporary and permanent works should be designed to resist the additional lateral earth pressures arising from any superimposed loads in addition to those generated by the soil itself, without significant deformation.

Observations during the intrusive works and the subsequent monitoring visits suggests that significant groundwater inflows are unlikely within general construction excavations. However, a perched water table may be established in the Made Ground, especially after periods of high rainfall but this is expected to drain into the underlying gravels where excavations are of sufficient depth.

7.5

Contaminant analysis

7.5.1

Solid phase

Contaminant testing was undertaken on selected soil samples and the results compared with the limited number of CLEA² Soil Guideline Values (SGVs) for residential land use that have been published to date. Where not available from that source, reference has also been made to the LQM/CIEH S4ULs for Human Health Risk Assessment³. Appropriate trigger levels are given with the results at Appendix D and individual values exceeding the triggers have been highlighted. Although some portions of the site may be developed for commercial use, the more conservative residential triggers have been used as an initial site wide screen to highlight any potential issues.

Analysis for metals and metalloids revealed all determinands to be below the triggers for residential land use with plant uptake.

No SGV exists for lead (the old SGV of 450 mg/kg having been withdrawn) and LQM have not calculated one. However, provisional Category 4 Screening Levels (C4SLs) have been

² The Contaminated Land Exposure Assessment Model, Department for Environment, Food and Rural Affairs, The Environment Agency, R & D Publications SGV 1 et al., March 2002

³ The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, 2015

published by Defra which suggest a maximum concentration of 210 mg/kg lead for residential land use with plant uptake (a number of different concentrations have been published, dependant on differing exposure scenarios). Samples from WS4, 5, 8 & 10 recorded lead in excess of this value with concentrations of 1350, 217, 333 and 230 mg/kg respectfully.

No phenols were recorded above the limit of detection for the test of 5 mg/kg

No polychlorinated biphenyls were recorded above the limit of detection for the test of 0.03 mg/kg in the two samples analysed. The samples were recovered from WS9, the closest location to the existing substation.

Analysis for speciated TPH recorded a maximum concentration of 5910 mg/kg in WS17 at 3.0 m depth. This was also the only sample to record concentrations above the S4UL triggers. Aromatic carbon bands $>C_{12}$ - C_{16} and $>C_{16}$ - C_{21} recorded concentrations of 1020 and 1360 mg/kg respectfully; the S4UL of these carbon bands is 660 & 930 mg/kg respectively. Contrastingly, the samples immediately above and below (from 2.5 m & 4.0 m depth) recorded very little or no TPH. In addition to the foregoing, the sample from WS2 at 2.9 m depth recorded 1190 and 1040 mg/kg TPH in carbon bands $>C_{12}$ - C_{16} and $>C_{16}$ - C_{21} respectfully. Such concentrations would be above the aromatic S4ULs, if the TPH were wholly aromatic.

Fourteen samples were analysed for speciated PAH. A maximum total PAH concentration of 90.4 mg/kg was recorded in WS4 whilst six samples recorded concentrations at or below the limit of detection for the test of 0.1 mg/kg. The sample from WS4 and one from WS2 were the only samples to record individual PAHs above the relevant S4UL and were recovered from Made Ground.

Analysis for asbestos was carried out on 15 samples. No asbestos fibres were detected.

7.5.2

Dissolved phase

Contaminant testing was carried out on purged groundwater samples recovered with a submersible pump from the boreholes on 5 September 2017. The results are presented at Appendix D. There was insufficient groundwater in the window samplers to allow sampling. No UK standards exist for groundwater quality and the results have therefore been compared to the UK Drinking Water Standards (UKDWS) and the Environmental Quality Standard (EQS) where available as an initial screen.

Analysis for metals and metalloids revealed the vast majority of determinands to be below the limit of detection or below the relevant triggers. However, a concentration of 19 μ g/l arsenic and 84 μ g/l nickel was recorded in BH2 versus the UKDWS of 10 μ g/l and 20 μ g/l respectfully. No phenols were detected above the limit ofd detection for the test of 1 μ g/l.

Analysis for dissolved phase TPH with aromatic/aliphatic split and carbon banding recorded a maximum concentration of 84.9 μ g/I in BH2. All of the TPH was found to be in the >C₂₁ - C₃₅ carbon band range (both aromatic and aliphatic). Borehole I recorded 34.7 μ g/I total TPH, predominately within the same carbon band range.

No MTBE or BTEX was recorded in any of the samples.

Analysis for speciated PAH recorded total concentrations of 41.2, 2.64 & 0.93 µg/l in BHs 1, 2 & 5 respectively. Benzo(a)pyrene was recorded above the UKDWS of 0.1 µg/l in all three boreholes; concentrations of 3.94, 0.22 and 0.06 µg/l were recorded in BHs 1, 2 and 5 respectively. No other PAH was recorded above the UKDWS or EQS.

7.5.3

Gas phase

The standpipes installed in the boreholes are being monitored for gas flow rate and concentrations of oxygen, methane, carbon dioxide, carbon monoxide and hydrogen sulphide. A note is also being made of the weather conditions at the time of reading. Data obtained thus far is presented at Appendix C and the complete set of six will be issued once monitoring is complete.

7.5.4

Waste Acceptance Criteria (WAC)

Five samples were subject to the WAC full solid waste suite and the WAC 2 stage leachate suite. The results have been compared to the criteria contained in the Landfill Regulations 2002 as amended and are presented at Appendix D.

Within the solid waste suite, the vast majority of results were within the Inert Waste Landfill criteria limits save for Total Organic Carbon in WS1 between 0.5-0.8 m depth and in WS9 between 0.5-0.7 m depth which recorded 4.4 and 3.3 % respectfully. This value is above the Inert criteria limit of 3 % but below the Stable Non-reactive Hazardous waste in non-hazardous Landfill criteria limit of 5 %.

Parameters determined on the compliance leaching test were also predominately within the Inert Waste Landfill criteria limits save for antimony in WS9 between 0.5-0.7 m depth. The leachate concentration of 0.08 mg/kg (equivalent) is above the Inert criteria limit of 0.06 mg/kg but below the Stable Non-reactive Hazardous waste in non-hazardous Landfill criteria limit of 0.7 mg/kg.

The results are only marginally above the Inert Waste Landfill criteria limits and any arisings or spoil may be able to go as Inert, when dilution is taken into account. However, this should be confirmed with the disposal facility.

The contamination test results and the WAC results should be forwarded to the contractor appointed to undertake any spoil removal to confirm disposal requirements. Transfer notes and chain of custody sheets should be retained for all arisings removed from site.

7.6

Conclusions and recommendations

The investigation carried out to date has revealed elevated concentrations of lead in the Made Ground at shallow depth in WS4, 5, 8 & 10. In addition, TPH was recorded above the relevant S4UL in WS2⁴ & WS17 and some individual PAHs were above the relevant S4UL in WS2 & WS4, also in Made Ground.

Groundwater samples have revealed low concentrations of dissolved phase hydrocarbons (TPH & PAH) in all BHs and arsenic and nickel above the UKDWS in BH2.

Three underground fuel storage tanks (USTs) are located between the Enessa Works and the building to its north. Surplus diesel was removed from tank No. 3 and the USTs were foam filled between 27 and 29 September 2006. Full details are presented at Appendix B of the Phase I report. The tanks and any remaining pipework will need to be removed and the resultant excavation validated prior to backfill. Window sampler 17 was drilled adjacent to the USTs and was one of only two locations to record TPH bands above the relevant S4UL. There is therefore likely to be some impacted soils around the USTs due to past spillages/leakage.

⁴ Assuming all TPH aromatic species

An interceptor is located adjacent to the former stores building in the south of the site. As for the USTs, this will need to be removed and the resultant excavation validated prior to backfilling.

In addition to the foregoing, a former Greggs employee indicated that two underground cavities or partial voids were present in the northern part of the site; one under the boiler house and one close to the public sewer manhole, as shown on Figure I at Appendix A. The former was apparently caused by hot water/steam 'blow-down' from the boiler and the latter by the force of water coming from a damaged downpipe. The likelihood of actual voids being present within the Kempton Park Gravel is considered unlikely due to its granular nature. However, the subsoil may have been weakened locally and this may account for the anomalous depth to groundwater consistently recorded in BH2. In addition, the construction of the sewer would have disturbed the adjacent ground.

During one of the monitoring visits, a falling head test was attempted in BH2. The aim was to raise the water level within the standpipe and make a note of the time taken for it to drop back to water table level. However, 50 litres of water was added and the water level only rose 70 mm, dropping back to the pre-fill level within six minutes. The reason for the more than 3 m difference is unclear and unusual as it is assumed that the gravels are in hydraulic continuity across the site. A high rate of pumping would cause such a depression in the water table but this does not appear to be happening at the site as no water abstraction licences are held within 1000 m. Therefore at present the reason for the difference remains unknown.

The proposals include private gardens which may be used for the cultivation and consumption of home grown produce. The current subsoil is considered unsuitable as a garden material due to its visual appearance, chemical composition and as a suitable growing medium.

Imported subsoil and topsoil will therefore undoubtedly be required. The soil(s) should be

delivered certified clean although the Local Authority Pollution Control Officer (or similar) may also require additional validation of the soil, depending on its source(s).

The shallow lead and PAH contamination in the Made Ground is likely to be removed or diluted by the demolition process. Indeed, the soils tested are unlikely to remain in situ over the course of the redevelopment due to tracking by heavy plant etc. In any event, an appropriate thickness of clean soil will be provided in garden and soft landscaping areas.

The deeper TPH contamination is not considered significant in terms of human health due to its depth. However, the Kempton Park Gravel is a Principle Aquifer and a receptor in its own right. The dissolved phase contaminants recorded at the site are not considered significant enough to warrent modelling or to require remediation. There is likely to be attenuation of the species within the natural environment before any pore water eventually reaches either groundwater or surface waters that may feed potable water supplies. The site lies on a Principle Aquifer underlain by Unproductive strata. There is no groundwater abstracted within 1000 m of the subject site.

At this stage no remediation is considered necessary. However, additional investigations are recommended in the vicinity of WS2 and when the tanks and interceptor are removed.

7.7

Buried concrete

Laboratory tests on soil samples within the anticipated depth of construction yielded a maximum soluble sulphate concentration of 0.39 g/l which results in a Design Sulphate Class⁵ of DS-1.

⁵ Concrete in aggressive ground. BRE Special Digest 1. Building Research Establishment, 2005

The groundwater is considered to be mobile and all pH determinations were in excess of 6.5.

Therefore the Aggressive Chemical Environment for Concrete, ACEC, is classed as AC-1.

R G Chapman
AP GEOTECHNICS LTD.
26th September 2017

This report has been prepared for the sole and specific use of London Square for the purpose of the redevelopment of the former Greggs Bakery, Gould Road, Twickenham and should not be relied upon by any third party. Any other persons who use any information contained herein without the written permission of AP GEOTECHNICS LTD. do so at their own risk.

The copyright to this report remains the property of AP GEOTECHNICS LTD.

PROCEDURAL NOTES for GROUND INVESTIGATIONS

General

This report is based upon data obtained from field descriptions of the strata and examination of the samples by an engineer, together with the results of in situ and laboratory tests as appropriate. Responsibility cannot be accepted for variations in ground conditions between and around any of the exploratory points that is not revealed by the data. Whilst the report may offer an opinion on the ground conditions between exploratory points and below the depth of investigation, this is for guidance only and no liability is accepted for its accuracy. Unless specifically included in the report, it should be assumed that no testing has been carried out in respect of asbestos or Japanese Knotweed and no liability is inferred or will be accepted.

Drilling procedure

Boring by light cable percussion drilling allows the ground conditions to be reasonably well established. However, a certain amount of disturbance is inevitable and some mixing of soils can occur.

Sampling procedure

"Undisturbed" samples of predominantly cohesive soils are taken with a 100mm diameter open tube sampler, generally in accordance with BS 5930: 1999.

Where appropriate, or where an undisturbed sample is unsuccessful, disturbed samples are recovered and sealed into polythene bags.

Groundwater samples are taken when water is encountered in sufficient quantity.

Standard penetration tests

The test is conducted generally in accordance with BS 1377: Part 9: 1990. The sampler tube is subject to a seating drive of 150mm into the soil at the base of the borehole. Results are given on the Borehole Records as the number of blows required to drive the sampler tube a further 300mm and this is known as the "N" value. Where the driving resistance is such that full penetration is not achieved, the test is generally terminated after 50 blows and the actual distance penetrated is recorded.

Groundwater

Groundwater observations necessarily reflect the conditions encountered at the time of the exploratory work. Long term monitoring of standpipes is usually required to establish an equilibrium water level since the normal rate of boring is too fast to permit steady state conditions to be achieved.

Groundwater levels are subject to variations caused by changes in drainage conditions and seasonal climatic changes.

Water may necessarily be added to advance the bore whilst casing may be required to maintain an open hole. These can both mask subsequent groundwater observations and are therefore noted on the individual Borehole Record.

APPENDICES

A Figures

Figure I Site Plan

Figure 2 Proposed arrangement

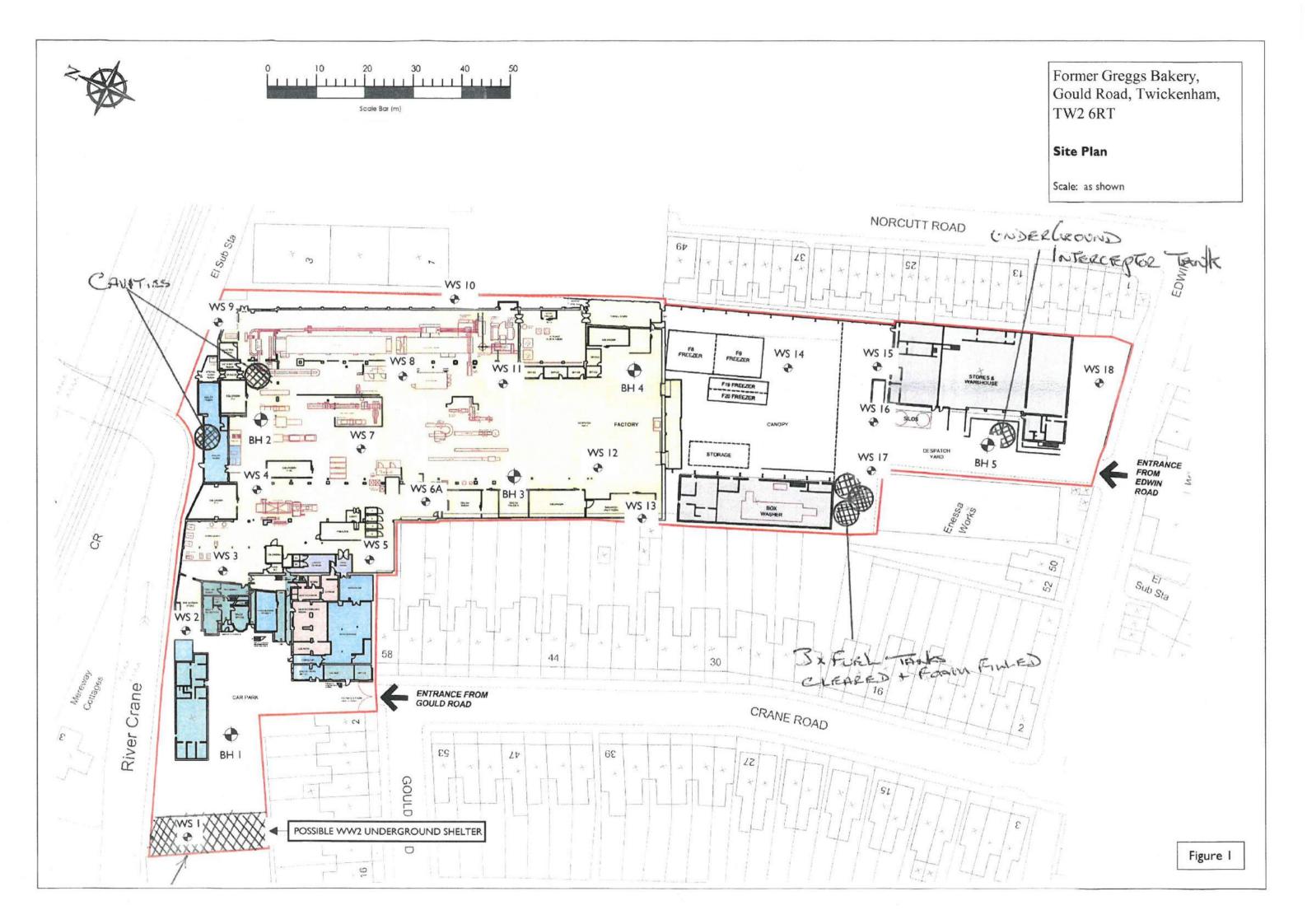
Figure 3 SPT Profile

Figure 4: Shear Strength Profile

B Borehole Records

Symbols and Abbreviations Borehole Records

C Standpipe Records

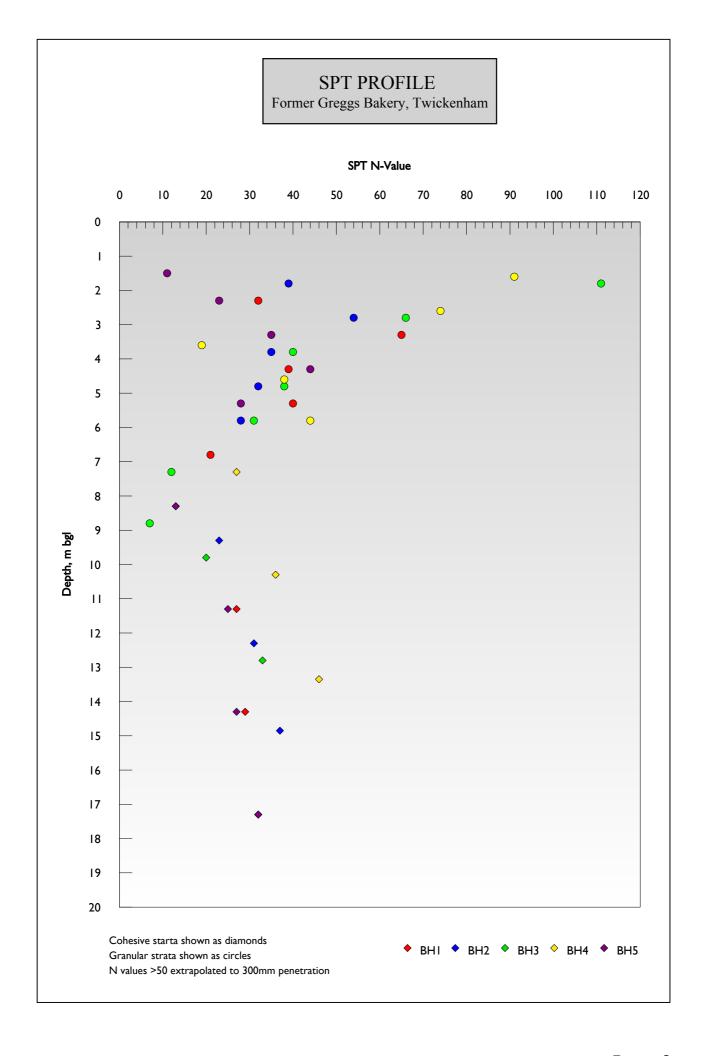

Gas Emissions and Water Levels

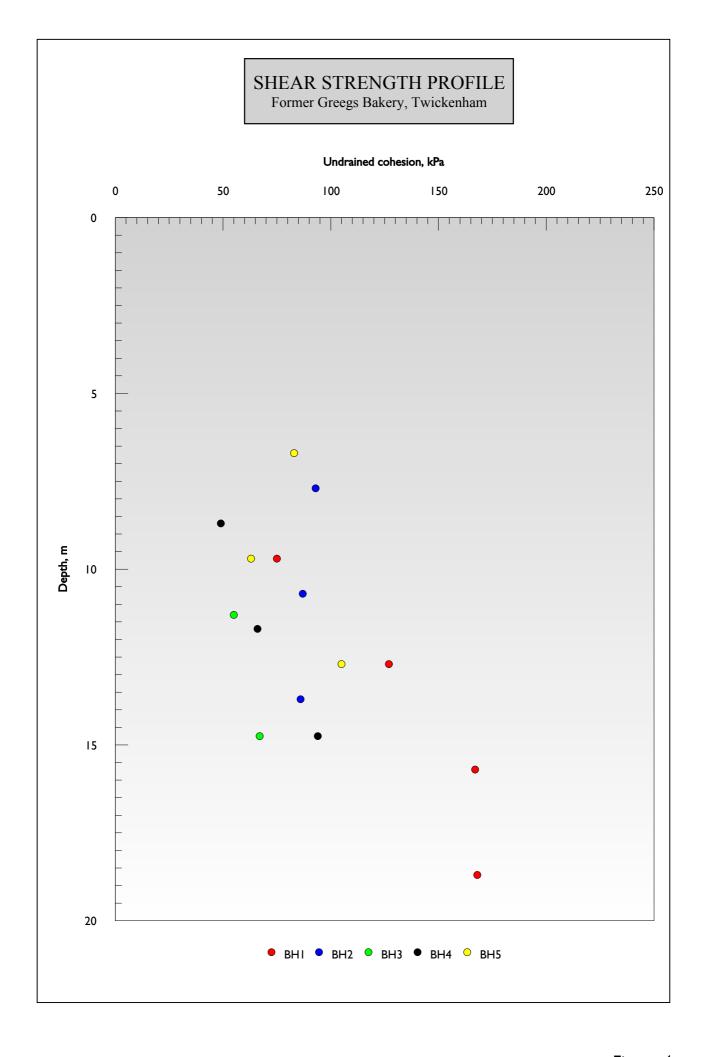
D Laboratory Test Results

Summary of Geotechnical Tests
Particle Size Distribution
Contaminants in Soil
Contaminants in Water
Waste Acceptance Criteria (WAC)

APPENDIX A

FIGURES




Former Greggs Bakery, Gould Road, Twickenham, TW2 6RT

Site arrangement

Scale: as shown

© AP GEOTECHNICS LTD. Figure 3

© AP GEOTECHNICS LTD.

APPENDIX B

BOREHOLE RECORDS

SYMBOLS and ABBREVIATIONS

Samples

Undisturbed

U Standard open drive "undisturbed"

102mm dia. in boreholes

38mm dia. in trial pits, window sampler

and hand auger

T Thin wall open drive

P Piston

CBR CBR mould

L Windowless sampler liner

Disturbed

D Small

B Bulk

W Water

C Contaminants: plastic tub

Contaminants: brown glass jar

In situ tests

SPT Standard Penetration Test, open shoe

CPT solid cone

N value is number of blows for 300mm

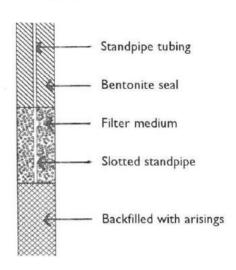
penetration.

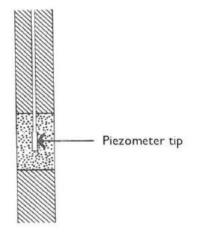
Blow count also given as seating drive followed by four increments of 75mm.

V() Vane test $(c_u kPa)$

P() Hand penetrometer (c_u kg/cm²)

M() Mexe probe (CBR %)


Water records


▼
₂ Standing level

→
2 Depth encountered

suffix identifies separate strikes

Standpipes

ΑР	GEOTE	CHN	ICS	- I E mail@a	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		N	orehole umber BH1		
Boring Meth Cable Percus		200	Diamete Omm cas Omm cas	ed to 7.00m ed to 8.60m	Ground	Level (mOD)	Client London Square		N	ob umber 1609-2
		Locatio Se	n e site pla	n		8/08/2017- 9/08/2017	Engineer			heet 1/3
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Legend	Water	Instr
						(0.15) (0.27) (0.27) 0.42	Asphalt MADE GROUND: Black relic topsoil with brick and flint MADE GROUND: Soft to firm dark brown very			
1.20-1.65 1.20-1.70	SPT(C) N=10 B1		DRY	1,1/1,1,3,5		1.20	sandy clay with flint and brick Firm brown sandy CLAY with flint gravel	·/		
1.70 2.00-2.45 2.00-2.50	D1 SPT(C) N=32 B2	2.00	DRY	3,5/7,8,8,9		1.80	Dense to very dense brown very sandy GRAVEL. Gravel is fine to coarse subangular to rounded flint	2		
3.00-3.50	D2 B3			Water strike(1) at 3.00m, rose to 2.80m in 20 mins,					▼ 1 ∇ 1	
3.00-3.27 3.50	SPT(C) 50/115 D3	3.00	2.80	sealed at 6.90m. 5,7/9,10,14,17		<u>=</u> = =				
4.00-4.45 4.00-4.50	SPT(C) N=39 B4	4.00	3.00	4,7/7,9,10,13		(4.40)				
4.50	D4									
5.00-5.45 5.00-5.50	SPT(C) N=40 B5	5.00	3.00	6,8/8,10,10,12			becoming SAND and GRAVEL			
6.00	D5					6.20	Medium dnse grey green SAND with black flint	0 0 0		
6.50-6.95 6.50-7.00	SPT(C) N=21 B6	6.50	3.50	4,6/5,6,5,5		(0.70)	gravel and cobbles	0,000		
7.50	D6					- 0.90 	Stiff to very stiff dark grey CLAY			
8.00-8.45	SPT N=13	7.00	WET	2,2/3,3,3,4						
9.00	D7					= = = = = = = =				
9.50-9.95	U1	8.60	DRY	50 blows						
Remarks Chiselling fro	m 10.00m to 10.10m	n for 0.15	hours. W	ater added from 1.80n	n to 3.50m	1.		Scale (approx)	L ₀	ogged y
								1:50 Figure N 4609		ljs BH1

АР	GEOTE		HCS		T 01932 F 01932 apgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM	1	Boreh Numb BH	
Boring Meth Cable Percus	od	Casing 20	Diamete 0mm cas			Level (mOD)	Client London Square			ob lumber 4609-2
		Locatio Se	n e site pla	n		8/08/2017- 9/08/2017	Engineer			sheet 2/3
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
10.00	D8						Stiff to very stiff dark grey CLAYclaystone from 10.00m to 10.10m			
10.50	D9									
11.00-11.45 11.00	SPT N=27 D10	8.60	DRY	3,4/5,7,7,8						
12.00	D11									
12.50-12.95	U2	8.60	DRY	70 blows		<u>-</u> - - - - - - -				
13.00	D12					E				
13.50	D13									
14.00-14.45 14.00	SPT N=29 D14	8.60	DRY	4,6/7,7,7,8		= = = = =				
15.00	D15					(13.10)				
15.50-15.95	U3	8.60	DRY	75 blows						
16.00	D16					= = = =	claystone from 16.20 to 16.30m			
16.50	D17									
17.00-17.45 17.00	SPT N=32 D18	8.60	DRY	4,7/7,8,8,9						
18.00	D19					=- - - - - - - - - - -				
18.50-18.95	U4	8.60	DRY	75 blows		=_ =_ =_ =_				
19.00	D20					<u> </u>				
19.50 20.00-20.45	D21 SPT N=34	8.60	DRY	5,7/8,8,9,9						
Remarks				niselling from 16.20m	to 16.30m	20.00	5.	Scale (approx)	L B	ogged Sy
								1:50		ljs
								Figure N 4609		3H1

	#				Site	l	orehole umber			
	GEOTE			E mail@a		i cs .co.uk	FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		E	3H1
Boring Meth Cable Percus		l	Diameter Omm case Omm case	ed to 7.00m ed to 8.60m	Ground	Level (mOD)	Client London Square			ob umber 609-2
		Locatio			08/08/2017- 09/08/2017		Engineer			neet
			e site plar	n						3/3
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
19.95	D22							Scale	Lc	paged
Remarks								Scale (approx)	Lo By	ogged /
								1:50		ljs
								Figure N		H1

ΑР	GEOTE	CHN	ICS		「 01932 F 01932 pgeotechr	851255	FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM				le r
Boring Meth		_	Diamete Omm cas	r ed to 7.60m	Ground	Level (mOD)	Client London Square			ob umber 1609-2	
		Locatio Se	n e site pla	n		1/08/2017- 5/08/2017	Engineer			heet 1/2	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr	r
0.50-1.00	B1					(0.20)	CONCRETE (cored floor) MADE GROUND: Black sand			5	; ·
1.50-1.95 1.50-1.95	SPT(C) N=39 B2			7/7,9,11,12		1.40	Very dense becoming medium dense brown slightly sandy to very sandy GRAVEL. Dense to very dense brown very sandy GRAVEL. Gravel is fine to coarse subangular to rounded flint			(15) (15) (15) (15) (15) (15) (15) (15)	100 of 10
2.50-2.95 2.50-2.95	SPT(C) N=54 B3			11/11,14,14,15						\$\text{\frac{1}{2}\text{\texit{\text{\text{\text{\tert{\text{\texict{\text{\text{\tert{\tert{\tert{\terict{\text{\tert{\tert{\tert{\tert{\tert{\tert{\tert{\tert{\tert{\tert{\tert{\	
3.50-3.95 3.50-3.95	SPT(C) N=35 B4			6/7,9,9,10					∇1		
4.50-4.95 4.50-4.95	SPT(C) N=32 B5			Fast(1) at 4.20m, sealed at 7.60m. 7/7,8,8,9		(5.75)					
5.50-5.95 5.50-5.95	SPT(C) N=28 B6			4/5,7,7,9						<u> </u>	ૢ૱ૺ૱ૡ૽ૺૡ૽૽ૢ૽ઌૢૢૢૢૢૢ૽ૡૢ૾ઌ૱ૺૡ૽ૺ૽૽ૡ૱ૢૡૢ૿ઌ૱ૡ૽ૡ૽ૡ૱ૡૢૢૢૢૢૢ૽ૡ૱૽ૡૡ૽ૺૡ૽ ૱૱૱ઌ૱૱૱૱૱૱૱ૡૡ૽૽ૡ૽૽ૢ૽ૺઌ૽૽ૺૺૺૡૺૺૺૺૺઌૺૺૺૺૺૺૺૺૺઌૺૺૺૺૺૺઌૺૺૺૺૺૺૺૺ
7.20 7.50-7.95	`D7 U8					7.15	Stiff dark grey CLAY				
8.50	D9					<u>-</u> - - - - -					※
9.00-9.45 9.00-9.45	SPT N=23 D10			5/4,5,7,7							
Remarks Excavating for	rom 0.20m to 1.20m	for 1.5 ho	urs.			,		Scale (approx)	L ₀	ogged Y	
							-	1:50 Figure N 4609		 3H2	

ΑР	GEOTE		I C S		「 01932 F 01932 pgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM			orehole umber 3H2
Boring Meth Cable Percus			Diameter Omm case	ed to 7.60m	Ground	Level (mOD)	Client London Square			ob umber 609-2
		Locatio Se	n e site pla	n		/08/2017- /08/2017	Engineer			2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
10.00	D11						Stiff dark grey CLAY			
10.50-10.95	U12									
11.50	D13						claystone from 11.7 - 11.85 m depth			
12.00-12.45 12.00-12.45	SPT N=31 D14			8/6,8,8,9		(7.85)				
13.00	D15									
13.50-13.95	U16									
14.30 14.55-15.00 14.55-15.00	D17 SPT N=37 D18			8/7,9,10,11						
Remarks				14/08/2017:DRY		15.00	Complete at 15.00m			onned.
Chiselling from	m 11.70m to 11.85m	i for 0.5 h	ours.					Scale (approx) 1:50 Figure N 4609	o.	ogged /

ΑР	GEOTE	CHN	ICS		F 01932 F 01932 pgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM	Borehole Number BH3
Boring Meth Cable Percus		_	Diamete Omm cas	r ed to 9.50m	Ground	Level (mOD)	Client London Square	Job Number 4609-2
		Locatio Se	n e site pla	n)/08/2017- /08/2017	Engineer	Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend X
						(0.20)	CONCRETE (cored floor)	******
						0.20	MADE GROUND: Brown grey clay with brick and flint	
0.50-1.00	B1					(1.20)		
				10/08/2017:DRY		1.40		
1.50-1.95	B2			11/08/2017:		<u></u>	Very dense becoming dense brown sandy to very sandy GRAVEL, locally a SAND & GRAVEL	y
1.50-1.95	SPT(C) N=111			19/25,26,30,30		<u> </u>		
						E		2
2.50-2.95	SPT(C) N=66			13/11,17,19,19		<u> </u>		
2.50-2.95	B3					<u> </u>		
						<u> </u>		
2 50 2 05	CDT(C) N=40			<i>5/</i> 7 0 40 40		E		
3.50-3.95 3.50-3.95	SPT(C) N=40 B4			5/7,9,12,12		(4.60)		2
				Fast(1) at 4.00m, sealed at 9.50m.		<u>-</u>		1
				sealed at 9.50m.		E		
4.50-4.95 4.50-4.95	SPT(C) N=38 B5			5/7,9,11,11		Ē		
						<u> </u>		
						E		2
5.50-5.95	SPT(C) N=31			10/10,7,7,7		=		
5.50-5.95	B6					E		1
						6.00	Medium dense becoming loose dark grey slightly gravel silty SAND	lly × × ×
				44/00/0047:4 70		Ē	SIILY SAIND	
				11/08/2017:4.70m 		E		X:-(7,7,1)
7.00-7.45	SPT(C) N=12			3/2,3,3,4		<u>-</u>		× · · · · · · · · · · · · · · · · · · ·
7.00-7.45	B7					E		
						(3.15)		× · · · · × · · · · · · · · · · · · · ·
						<u>-</u>		× · · · · · · ·
						<u> </u>		x ×
8.50-8.95 8.50-8.95	SPT(C) N=7			2/2,2,1,2				×*****
8.50-8.95	B8					Ē		
						9.15		×*********
9.20	D9					E	Stiff dark grey CLAY	
9.50-9.95 9.50-9.95	SPT N=20 D10			5/3,4,6,7		Ē		
						<u> </u>		
Borehole bad	stated in concrete	5 A I:					S _(ap)	cale Logged prox) By
Excavating fr	rom 0.20m to 1.20m t	tor 1 hour					1	:50
							Fi	gure No. 4609-2.BH3

ΑР	GEOTE	: CHN	ICS		T 01932 F 01932 apgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD TWICKENHAM	ROAD,	Boreho Numbe	er
Boring Meth Cable Percus	od	Casing	Diamete			Level (mOD)	Client London Square		Job Numbe 4609-2	
		Locatio Se	n e site pla	n	Dates 10 11	0/08/2017- 1/08/2017	Engineer		Sheet 2/2	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
10.50	D11						Stiff dark grey CLAY			
11.00-11.45	U12									
12.00	D13					(5.85)				
12.50-12.95 12.50-12.95	SPT N=33 D14			6/7,8,8,10		(5.85)				
13.80	D15									
14.55-15.00	U16			11/08/2017:DRY		15.00	Complete at 15.00m			
Remarks								Scale (approx)	Logged By	t
								Figure N 4609	l o.)-2.BH3	

АР	GEOTE		ICS	1	T 01932 F 01932 apgeotechr	8512	55	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Borehole Number BH4		
Boring Meth Cable Percus	od	Casing	Diamete		Ground			Client London Square		Job Numbe		
		Locatio Se	n e site pla	n		9/08/2 9/08/2		Engineer		Sheet 1/2		
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	D (Thi	epth (m) ckness)	Description		Legend	Water	
1.30-1.75	SPT(C) N=91			13/17,24,24,26			(0.20) 0.20 (1.10)	CONCRETE (cored floor) MADE GROUND: Cobbles of flint, brick and concrete Very dense brown sandy GRAVEL.				
2.30-2.75 2.30-2.75	SPT(C) N=74 B2			19/15,17,21,21			(1.70)	very delise blown salidy GRAVEL.				
3.30-3.75 3.30-3.75	B3 SPT(C) N=19			Fast(1) at 3.20m, sealed at 7.00m. 5/3,4,5,7			3.00	Medium dense to dense brown silty gravelly SAND			∇1	
4.30-4.75 4.30-4.75	SPT(C) N=38 B4			8/7,9,11,11			(3.50)					
5.50-5.95 5.50-6.00	SPT(C) N=44 B5			5/7,11,12,14								
6.50	D6						6.50	Firm to stiff dark grey CLAY			-	
7.00-7.45 7.00-7.45	SPT N=27 D7			5/5,7,7,8] 	
8.00	D8											
8.50-8.95	U9										- - -	
9.50	D10										1	
Remarks	SPT N=36			5/7,9,9,11					Scale .	Logge By	d d	
Surface reins Chiselling fro	ckfilled with arisings stated in concrete m 0.20m to 1.30m fo	or 2 hours						(a)	pprox) 1:50			
								F	Figure No 4609-	o. -2.BH4		

AP GEO	# TECHN	NICS		T 01932 F 01932 pgeotechn	851255	Site FORMER GREGGS B TWICKENHAM	AKERY, GOULD ROAD,		Boreho Numbe	- 1
Boring Method Cable Percussion	Casing	Diamete			Level (mOD)	Client London Square			Job Number 4609-2	
	Location	on ee site pla	n		/08/2017- /08/2017	Engineer			Sheet 2/2	
Depth (m) Sample /	Tests Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description		Legend	Water
10.00-10.45 D11						Stiff dark grey CLAY				
11.00 D12					<u>-</u>					
11.50-11.95 U13										
12.50 D14					(8.50)					
13.05-13.50 SPT N=46 13.05-13.50 D15	6		7/9,12,12,13							
14.00 D16					<u>-</u>					
14.55-15.00 U17					<u>-</u> - - -					
Remarks			10/08/2017:DRY 10/08/2017:		15.00	Complete at 15.00m		Scale		d
								1:50	Logged By o. -2.BH4	

ΑР	GEOTE	CHN	I C S		F 01932 F 01932 pgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM			orehole umber 3H5
Boring Meth Cable Percus		_	Diamete Omm case	r ed to 7.00m	Ground	Level (mOD)	Client London Square			ob umber 609-2
		Locatio Se	n e site pla	n	Dates 10	/08/2017	Engineer		SI	1/3
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
						(0.36) - (0.36) - (0.36) - (0.72	CONCRETE MADE GROUND: Brick and concrete fragments in a matrix of silt and sand sized particles Medium dense brown slightly sandy clayey GRAVEL			
1.20-1.65 1.20-1.70	SPT(C) N=11 B1		DRY	1,2/2,3,3,3		(0.98)		, , , , ,		
1.70 2.00-2.45 2.00-2.50	D1 SPT(C) N=23 B2	2.00	DRY	2,4/4,5,6,8		1.70	Medium dense to dense brown very sandy GRAVEL becoming a very gravelly sand with depth			
3.00-3.50	D2 B3			Water strike(1) at 3.00m, rose to 2.73m in 20 mins,					▼ 1 ▽ 1	
3.00-3.45 3.50	SPT(C) N=35 D3	3.00	2.73	sealed at 6.20m. 4,6/6,8,9,12		<u>=</u> = = =				
4.00-4.45 4.00-4.50	SPT(C) N=44 B4	4.00	3.00	6,6/6,9,11,18		(4.50)				
4.50 5.00-5.45 5.00-5.50	D4 SPT(C) N=28 B5	5.00	3.50	3,3/6,7,7,8						
6.00	D5									
6.50-6.95	U1	6.50	WET	50 blows		6.20	Stiff dark grey CLAY			
7.00	D6									200 100
8.00-8.45 8.00	SPT N=13 D8	7.00	DRY	1,2/2,3,3,5						
9.00	D9					 				
9.50 9.50-9.95	D10 U2	7.00	DRY	55 blows		=_ == == == == == ==				
Remarks Water added	from 1.80m to 3.50r	n.						Scale (approx)	Lo B	ogged /
								1:50 Figure N 4609		ljs H5

АР	AP GEOTECHNICS Em				T 01932 848460 F 01932 851255 il@apgeotechnics.co.uk		Site FORMER GREGGS BAKERY, GOULD ROAD TWICKENHAM	,	Borehole Number BH5		
Boring Meth Cable Percus			Diamete 0mm cas	r ed to 7.00m	Ground	Level (mOD)	Client London Square		N	ob umber 1609-2	
		Locatio	n		Dates 10	0/08/2017	Engineer			heet	
			e site pla	n						2/3	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr	
10.00	D11					<u>-</u>	Stiff dark grey CLAY				
10.50	D12										
11.00-11.45 11.00	SPT N=25 D13	7.00	DRY	2,4/5,6,6,8			alayatana from 14 20m to 44/40m				
							claystone from 11.30m to 11/40m				
12.00	D14										
12.50-12.95	U3	7.00	DRY	65 blows							
13.00	D15										
13.50	D16					E E					
14.00-14.45 14.00	SPT N=27 D17	7.00	DRY	3,5/6,6,7,8		(13.80)					
						<u>E</u>					
15.00	D18					(13.80)					
15.50-15.95	U4	7.00	DRY	80 blows		E E					
16.00	D19					<u> </u>					
16.50	D20					E E					
17.00-17.45 17.00	SPT N=32 D21	7.00	DRY	4,6/7,8,8,9							
						<u> </u>					
18.00	D22										
18.50-18.55 18.60	U5 refusal D23	7.00	WET	100 blows			claystone from 18.55m to 18.65m				
						<u></u>		<u> </u>			
19.50	D24										
20.00-20.45 Remarks	SPT N=31	7.00	WET	2,6/6,7,8,10		20.00		Scale	1.	oaced	
Chiselling fro	m 11.30m to 11.40r	m for 0.25	hours. Ch	niselling from 18.55m	to 18.65m	for 0.25 hours	S.	Scale (approx)	В	ogged y ljs	
								Figure N			

T 01932 848460 F 01932 851255 A P G E O T E C H N I C S E mail@apgeotechnics.couk						851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM			orehole umber
A P Boring Meth			ICS Diameter			Level (mOD)	TWICKENHAM Client		Jo	3H5
Cable Percus				ed to 7.00m	Ground	Level (MOD)	London Square		N	umber 609-2
		Locatio	n		Dates 10	/08/2017	Engineer		SI	neet
		Se	e site plar	1						3/3
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
Remarks	D25							Scale	Lo	paged
Neillaiks								Scale (approx)	Lo By	ogged /
								1:50		ljs
								Figure N 4609		H5

ΑР	GEOTE		LICS Emails	T 01932 F 01932 @apgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM	Number WS1
Excavation		Dimens			Level (mOD)		Job Number 4609-2
		Locatio Se	n ee site plan	Dates 07	7/08/2017	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Xate
0.00-1.00	L1				(0.13) 0.13	Asphalt	
					(0.10) 0.23	MADE GROUND: Brick and concrete fragments in sandy matrix	_
					- - -	MADE GROUND: Relic topsoil with brick, flint and pockets of sand	
0.50-0.80	C1				_		
					(1.37)		
1.00-1.45 1.00-2.00	SPT(C) N=4 L2		0,0/1,0,1,2		-		
					-		
					1.60	Very dense orange brown sandy to very sandy GRAVEL with occasional sand layers	
					- - -		
2.00-2.45 2.00-3.00	SPT(C) N=64 L3		23/12,14,17,21				
2.00-3.00					-		
					_ _ _		1
							2
					(2.40)		
					(2.40)		
3.00-3.45 3.00-4.00	SPT(C) N=46 L4		16/10,11,12,13		-		
			Water strike(1) at 3.40m.				∇1
					<u>-</u> -		
			07/08/2017:3.30m				
			07/08/2017:		 - - 4.00		
Remarks UXO Engine Strata depth	er in attendance s approximate where	erecovery	is less than 100 %			Scale (approx	Logged By
						1:20 Figure	No.
						460	09-2.WS1

ΑР	GEOTE		IICS E mail@	T 01932 F 01932 apgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		ımber VS2
Excavation		Dimens			Level (mOD)	Client London Square		b imber 609-2
		Locatio Se	on ee site plan	Dates 07	//08/2017	Engineer	Sh	1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Leg	Mater bne
0.00-1.00	L1				(0.23)	Asphalt over reinforced CONCRETE MADE GROUND: Brown relic topsoil with pockets of cla and fragments of brick and flint	ay	
0.40	C1				- - - - - - - - -	and fragments of brick and flint		
1.00-1.45 1.00-2.00	SPT(C) N=5 L2		2/1,1,1,2		(1.47)			
					- 1.70 - - - -	Very dense orange brown sandy to very sandy GRAVE with occasional sand layers. Stained and odorous from to 4 m	iL 11.9	
2.00-2.45 2.00 2.00-3.00	SPT(C) N=52 C2 L3		17/11,13,13,15		- - - - - - - - - - - - - - - - - - -			
2.90 3.00-3.45	C3 SPT(C) N=52		16/11,13,13,15					
3.00-4.00	L4		Water strike(1) at 3.20m.		- - - - - - - - - -			⊻1
			07/08/2017:3.12m		- - -			
4.00	C4		07/08/2017:		4.00			
Remarks Gravels stair UXO Engine Strata depth	ned and slightly odor eer in attendance s approximate where	ous from	1.9 m to base of hole at 4 m					gged '
							igure No.	
							4609-2.W	S2

	#			r 01932 F 01932		Site FORMER GREGGS BAKERY GOULD ROAD		Number
	GEOTE		IICS E mail@a	pgeotechr	ii cs .co.uk	FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		WS3
Drive-in Wind		Dimens 11	sions 5mm to 1.00m	Ground	Level (mOD)	Client London Square		Job Number 4609-2
		Locatio	n ee site plan	Dates 09	/08/2017	Engineer		Sheet 1/1
Donth				Lovel	Donth			
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend seg
0.00-1.00	L1				(0.20)	CONCRETE floor		
					0.20	MADE GROUND: Firm brown clay with flint and bri	iok	XXXXX
						WADE GROOND. I lill blown clay with lillt and bli	CK	
					(0.60)			
					(0.00)			
					_			
					0.80	Soft to firm brown mottled slightly sandy CLAY		**************************************
1.00-1.45	SPT(C) N=39		4/11,9,9,10		(0.40)			
1.00-2.00	L2		4711,9,9,10		_			
					1.20 	Very dense to dense orange brown sandy to very s GRAVEL with occasional sand layers	sandy	
					_			
					_			
					_			
					_			
					_			
2.00-2.30 2.00-3.00	SPT(C) 50/150 L3		29/31,19		_			
2.00 0.00								
					_			
					_			
								1
					_			
					_			
3.00-3.45 3.00-4.00	SPT(C) N=41 L4		27/9,12,9,11		_			
					_			
					_			1
					_			
					_			
					_			
					-			
Domarka					4.00	1		
Remarks Strata depths Borehole dry	s approximate where er in attendence	recovery	is less than 100 %				Scale (approx)	Logged By
UXU Engine	er in attendence						1:20	
							Figure No. 4609-	o. -2.WS3

ΑР	GEOTE		LICS Emaile	T 01932 F 01932 Dapgeotechn	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM	Number WS4
Excavation		Dimens			Level (mOD)		Job Number 4609-2
		Locatio Se	n ee site plan	Dates 09	0/08/2017	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend set
0.00-1.00	L1				- (0.20) - 0.20 (0.80)	CONCRETE floor MADE GROUND: Brown clay with brick and flint	
1.00-1.45 1.00-2.00	SPT N=35 L2		6/7,8,9,11		1.00 - - (0.30) - 1.30	Soft to firm brown mottled slightly sandy CLAY Dense to medium dense orange brown sandy to very sand GRAVEL with occasional sand layers	dy (1)
2.00-2.45 2.00-3.00	SPT(C) N=37 L3		14/10,9,10,8		- - - - - - - - - - - - - - - - - - -		
3.00-3.45 3.00-4.00	SPT(C) N=33 L4		15/8,9,9,7		- (2.70) - (2.70) (- (- (- (- (- (- (- (- (- (- (- (-		
4.00-4.45	SPT(C) N=28		Water strike(1) at 3.70m. 09/08/2017:3.70m 09/08/2017: 11/7,8,6,7				∇ 1
Remarks UXO Engine Strata depth	er in attendance s approximate where	recovery	is less than 100 %			Scal (appro	ox) By
							ore No. 1609-2.WS4

ΑР	GEOTE			F 01932 F 01932	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS5
Excavation Drive-in Wind	Method	Dimens			Level (mOD)	Client London Square		Job Number 4609-2
		Locatio Se	n e site plan	Dates 08	/08/2017	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend see
0.00-1.00	L1					CONCRETE floor MADE GROUND: Brown clay with brick, concrete a	nd flint	
1.00-1.45 1.00-2.00	SPT(C) N=5 L2		1/1,1,1,2		- (1.35) - (1.35) 			
2.00-2.45 2.00-3.00	SPT(C) N=37 L3		12/8,9,10,10		- 1.60 	Dense to medium dense orange brown sandy to ver GRAVEL with occasional sand layers	ry sandy	
3.00-3.45 3.00-4.00	SPT(C) N=25 L4	2.90	Water strike(1) at 2.90m. 8/6,5,7,7		- (2.40) - (2.40) - (- (- (- (- (- (- (- (- (- (- (- (- (-			∑1
Remarks Strata depths UXO Engine	s approximate where er in attendance	recovery	08/08/2017:2.92m 08/08/2017: is less than 100 %		- - - - - - - - - - - - - - - - - - -		Scale (approx)	Logged By
							1:20 Figure N 4609-	o. 2.WS5

ΑР	GEOTE		C S E mail(T 01932 F 01932 Dapgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS6	
Excavation		Dimensio			Level (mOD)	Client London Square		Job Number 4609-2	
		Location See s	site plan	Dates 08	3/08/2017	Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	L	-egend Kate	
					. (0.24) . (0.24) . (0.56) . (0.56) . (0.80	MADE GROUND: Brown clay with pockets of soil and fragments of brick and flint Abandoned at 0.80m			
Remarks No further p	rogress - borehole al	oandoned an	d relocated to WS6A			Sc: (app	ale rox)	Logged By	
						1:2 Figi	20 Jure No	·.	1
							4609-2		

ΑР	GEOTE	CHN		T 01932 F 01932 pgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS6A
Excavation		Dimens			Level (mOD)	Client London Square		Job Number 4609-2
		Locatio Se	n e site plan	Dates 08	5/08/2017	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend Nate
0.00-1.00	L1				(0.23) - (0.23) - (0.23) - (0.23) - (0.77)	CONCRETE floor MADE GROUND: Brown clay with pockets of relic to and fragments of brick and flint	ppsoil	
1.00-1.45 1.00-2.00	SPT(C) N=6 L2		2/1,2,1,2		1.00 - - - - - - - - - - - - - - - - - -	Soft to firm brown mottled slightly sandy CLAY with a gravel Dense orange brown sandy to very sandy GRAVEL occasional sand layers	-	
2.00-2.45 2.00-3.00	SPT(C) N=48 L3		15/10,13,13,12		- - - - - - - - - - - - - - - - - - -			
3.00-3.45 3.00-4.00	SPT(C) N=34 L4		10/7,8,10,9 Water strike(1) at 3.15m.		- (2.60) - (2.60) 			▼ 1
			08/08/2017:2.91m 08/08/2017:			1		
Remarks UXO Engine Strata depths	er in attendance s approximate where	recovery	is less than 100 %				Scale (approx)	Logged By
							Figure No 4609-2	o. 2.WS6A

AP GEOTEC				T 01932 848460 F 01932 851255 Papgeotechnics.co.uk		Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS7
Excavation		Dimens			Level (mOD)	Client London Square		Job Number 4609-2
		Locatio Se	n e site plan	Dates 07	/08/2017	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kate bneged
0.00-1.00	L1				(0.23)	CONCRETE floor		
						MADE GROUND: Brown clay with brick and flint		
1.00-1.45 1.00-2.00	SPT(C) N=18 L2		3/1,3,6,8		0.90	Firm brown slightly sandy CLAY with rare gravel	-	******
					- (0.60) 1.50			
					- 1.50 	Dense to medium dense orange brown sandy to very GRAVEL with occasional sand layers	sandy .	
2.00-2.45 2.00-3.00	SPT(C) N=39 L3		13/8,10,10,11		- - - - - -			
					- - - - - -			
			Water strike(1) at 2.70m.		(2.50)			∇1
3.00-3.45 3.00-4.00	SPT(C) N=25 L4	2.75	7/5,5,7,8		- - - - - - -			
			07/08/2017:2.77m					
			07/08/2017:		4.00		-	
Remarks UXO Engine Strata depths	er in attendance s approximate where	recovery	is less than 100 %				Scale approx)	Logged By
							1:20 Figure No 4609-2	o. 2.WS7

AP GEOTE			T 01932 F 01932 apgeotechn	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS8
Excavation Method Drive-in Window Sampler	Dimens	ions 5mm to 1.00m	Ground	Level (mOD)	Client London Square		Job Number 4609-2
	Locatio Se	n ee site plan	Dates 07	//08/2017	Engineer		Sheet 1/1
Depth (m) Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	L	Nate Magend
0.00-1.00 L1				(0.20) - (0.20) - (0.50) - (0.50) - (0.70	CONCRETE floor MADE GROUND: Brown clay with brick and flint Firm brown mottled slightly sandy CLAY		
1.00-1.45 1.00-2.00 SPT N=16 L2		4/3,4,5,4		- - - - - - - - - - - - - - - - - - -			
2.00-2.45 2.00-3.00 SPT(C) N=31 L3		13/8,8,7,8			Dense orange brown sandy to very sandy GRAVEL with occasional sand layers	th .	
3.00-3.45 3.00-4.00 SPT(C) N=31 L4		11/9,8,7,7					
Remarks Borehole dry UXO Engineer in attendance Strata depths approximate where	e recovery	is less than 100 %		4.00	1	icale prox) 1:20 igure No 4609-2	

ΑР	GEOTE		LLCS Email©	T 01932 F 01932 Dapgeotechn	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS9
Excavation		Dimens			Level (mOD)			Job Number 4609-2
		Locatio Se	n ee site plan	Dates 09)/08/2017	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend see
0.00-1.00	L1				- (0.30) - 0.30	ASPHALT over brick fragments MADE GROUND: Brown clay with brick and flint	0.00.00.00.00.00.00.00.00.00.00.00.00.0	
					- (0.50) 0.80	Soft to firm orange brown slightly sandy CLAY with gravel	rare	
1.00-1.45 1.00-2.00	SPT(C) N=29 L2		4/3,6,9,11		(0.40) - - - - 1.20	Very dense medium dense orange brown sandy to value of sandy GRAVEL with occasional sand layers	very	
2.00-2.45	SPT(C) N=52		16/12,12,13,15		- - - - - - - -			
2.00-3.00	L3		10/12,12,13,13		-			
3.00-3.45 3.00-4.00	SPT(C) N=29 L4	2.90	Water strike(1) at 2.90m. 11/7,7,7,8		(2.80) 			∑ 1
			09/08/2017:2.84m		- - - - - - - - - -			
Remarks			09/08/2017:		4.00		Scale	hanno
UXO Engine	er in attendance s approximate where	erecovery	is less than 100 %				(approx)	Logged By
							1:20 Figure No 4609-	o. 2.WS9

AD	GEOTE		1	T 01932 F 01932	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS10
Excavation		Dimens			Level (mOD)	Client London Square		Job Number 4609-2
		Locatio Se	n ee site plan	Dates 09	/08/2017	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	ı	Legend see
0.00-1.00	L1				- (0.10) - 0.10 (0.60) (0.60) (0.70	CONCRETE MADE GROUND: Brown relic topsoil with brick and flin Soft orange brown slightly sandy CLAY		
1.00-1.45 1.00-2.00	SPT(C) N=60 L2		7/10,13,17,20		- (0.40) - 1.10 - 1.10	Very dense orange brown sandy to very sandy GRAVE with occasional sand layers	EL	
2.00-2.45 2.00-3.00	SPT(C) N=35 L3		11/7,9,9,10		- - - - - - - - - - - - - - - - - - -			
3.00-3.45 3.00-4.00	SPT(C) N=31 L4		Water strike(1) at 2.90m. 10/7,7,8,9		- (2.90) - (2.90)			V 1
Remarks UXO Engine Strata depth:	er in attendance s approximate where	recovery	09/08/2017:2.80m 09/08/2017: is less than 100 %		4.00	S (ap	Scale pprox)	Logged By
- F A.		- 3					1:20 Figure No 4609-2	o. 2.WS10

ΑР	GEOTE		CS E ma	T 01932 F 01932 il@apgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS11
Excavation		Dimension			Level (mOD)	Client London Square		Job Number 4609-2
		Location See s	site plan	Dates 09)/08/2017	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	L	Legend N
					(0.25) 0.25 (0.08) 0.33 (0.08) 1.11 (0.25)	MADE GROUND: Brown clay with brick and flint Abandoned at 0.33m		
Remarks No further pr	rogress - obstruction	at 0.33 m de	epth		======================================	1	Scale oprox) 1:50 igure No 4609-2	

	#			T 01932 F 01932	848460 851255	Site FORMER GREGGS BAKERY, GOULD ROAD,		Number
	GEOTE		IICS E mail@a	pgeotechr	ni cs .co.uk	FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		WS12
Excavation Drive-in Wine	Method dow Sampler	Dimens 11	ions 5mm to 1.00m	Ground	Level (mOD)	Client London Square		Job Number 4609-2
		Locatio Se	n e site plan	Dates 09)/08/2017	Engineer	:	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	L	egend Nate
0.00-1.00	L1 SPT(C) 50/100		21/26,24		(0.25) - (0.25) - (0.15) - (0.40) - (0.60)	MADE GROUND: Firm grey and black slightly sandy clawith brick and flint Soft to firm brown mottled slightly sandy CLAY with occasional gravel	ay	
Remarks						Abandoned at 1.00m		Logged
Remarks Could not pro	ogress past 1 m dept	h - shoe a	and liner stuck down hole and c	ould not r	ecover	1:	:20	Logged By
							gure No. 4609-2.\	

АР	GEOTE		IICS E mail@	T 01932 F 01932 Japgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM			lumb VS	
Excavation Drive-in Wine	Method dow Sampler	Dimens	iions 5mm to 1.00m	Ground	Level (mOD)	Client London Square		N	ob lumb 4609	
		Locatio Se	ee site plan	Dates 09	9/08/2017	Engineer		SI	heet	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	ln:	str
0.00-1.00	L1				- (0.20) - 0.20 - (0.60) - (0.60) - 0.80	CONCRETE MADE GROUND: Brown clay with brick and flint Soft to firm orange brown sandy CLAY with ocasional gravel		Programme	5-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	0000
1.00-1.45 1.00-2.00	SPT(C) N=38 L2		8/10,10,9,9		(0.40) 1.20	Very dense to medium dense orange brown sands to very sandy GRAVEL with occasional sand layer	(s			100 - 100 -
2.00-2.45 2.00-3.00	SPT(C) N=77 L3		26/19,18,19,21 Water strike(1) at 2.40m.					∑ 1		
3.00-3.45 3.00-4.00	SPT(C) N=26 L4	2.35	09/08/2017:2:00m		- - - - - - - - - - - - - - - - - - -					
Remarks UXO Engine	er in attendance		09/08/2017:		4.00		Scale (approx)	L _t	ogge	ed
Strata depth	s approximate where	erecovery	is less than 100 %				1:20			
							4609-		/S13	3

ΑР	GEOTE			T 01932 F 01932 apgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM	Number WS14
Excavation		Dimens		1	Level (mOD)		Job Number 4609-2
		Locatio Se	n e site plan	Dates 07	/08/2017	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Kater Mater
0.00-1.00	L1				(0.22)	CONCRETE	
					0.22 (0.10) 0.32	MADE GROUND: Compact flint cobbles in a matrix of silt and sand sized particles	
					- - - - - - - - - - - - - - - - - - -	Very dense to medium dense orange brown sandy to very sandy GRAVEL with occasional sand layers	
1.00-1.45 1.00-2.00	SPT(C) N=67 L2		16/15,17,17,18		- - - - - - - - - - - - - - - - - - -		
2.00-2.45 2.00-3.00	SPT(C) N=48 L3		16/11,12,12,13 Water strike(1) at 2.70m.		- (3.68) - (3.68) 		
3.00-3.45 3.00-4.00	SPT(C) N=25 L4	2.70	6/6,6,6,7 07/08/2017:2.70m				
Remarks	or in attendance		07/00/2017:2.70M		4.00	, Scal	e Logged bx) By
Strata depths	er in attendance s approximate where	recovery	is less than 100 %			(appro	ox) By
						Figu	re No. 609-2.WS14

ΑР	GEOTE			T 01932 F 01932	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS15
Excavation		Dimens			Level (mOD)	Client London Square		Job Number 4609-2
		Locatio Se	n e site plan	Dates 07	7/08/2017	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kate pueged
0.00-1.00	L1				(0.25) - (0.25) - 0.25 - (0.35)	CONCRETE MADE GROUND: Dark brown and grey sandy clay wibrick and flint	ith	
1.00-1.30 1.00-2.00	SPT(C) 49/150 L2		25/23,26		0.60	Very dense to medium dense orange brown sandy to sandy GRAVEL with occasional sand layers	very	
					- - - - - - - - - - -			
2.00-2.45 2.00-3.00	SPT(C) N=43 L3		16/10,11,10,12		(3.40)			
			Water strike(1) at 2.70m.		- - - -			∇1
3.00-3.45 3.00-4.00	SPT(C) N=22 L4	2.75	5/4,6,6,6					
			07/08/2017:2.70m 07/08/2017:				-	
Remarks UXO Engine Strata depths	er in attendance s approximate where	recovery	is less than 100 %		4.00	(a	Scale approx)	Logged By
							1:20 Figure No 4609-2	

АР	GEOTE			T 01932 F 01932 apgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM			umb /S1	
Excavation Drive-in Win		Dimens		1	Level (mOD)	Client London Square			ob umb 609-	
		Locatio Se	on ee site plan	Dates 08	8/08/2017	Engineer		Sh	1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
0.00-1.00	L1				(0.27) 0.27	CONCRETE MADE GROUND: Fragments of brick and concrete in a matrix of silt and sand sized particles		2		
					(0.63) 0.90	Dense grey clayey sandy GRAVEL (stained)				
1.00-1.45 1.00-2.00	SPT(C) N=39 L2		8/9,9,10,11		- (1.10)			8 0 º ono 8 º or o º ono 8 º or o o º ono 8	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 10 10 10 10 10 10 10 10 10 10 10 10
					2.00			100 h 0 0 0 0 00 0 00 0 0 0 0 0 0 0 0 0		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
2.00-2.45 2.00-3.00	SPT(C) N=42 L3		16/10,10,10,12			Dense orange brown sandy to very sandy GRAVEL with occasional sand layers		n O B OU h O O E AN O B OU h O O E OU h O O E AN O E OU N	المراكب والمراكب وال والمراكب والمراكب وا	్లాన్ క్లో స్ట్రాన్ స్ట్రాన్స్ లా స్ట్రాన్స్ లేక్ స్ట్రాన్స్ స్ట్రాన్స్ లో స్ట్రాన్స్ లో స్ట్రాన్స్ లో స్ట్రాన్ ఈ గ్రామ్ క్లోన్ డ్రాన్ స్ట్రాన్ క్లోన్ క్లోన్ డ్రాన్స్ క్లోన్ క్లోన్ డ్లోన్ డ్రాన్స్ క్లోన్ స్ట్రాన్స్ క్లోన్ సింకటించిలు ఫ్లోన్ స్ట్రాన్ క్లోన్ స్ట్రాన్ ఫ్లోన్ స్ట్రాన్స్ కల్లోన్ స్ట్రాన్స్ క్లోన్ స్ట్రాన్స్ కల్లోన్ స్ట
			Water strike(1) at 2.80m.		_ - - -			V 1 8		
3.00-3.45 3.00-4.00	SPT(C) N=32 L4	2.80	12/8,7,8,9		- (2.00) - (2.00) - (2.00)			"ano el	(2000) (2000) (2000) (2000) (2000)	
			08/08/2017:2.82m 08/08/2017:		- - - -		2 0 0			
Remarks Gravel stains UXO Engine Strata depth	ed from 0.9 to 2.0 m er in attendance s approximate where	depth	is less than 100 %		4.00		Scale (approx)	Lo By	ogge /	∍d
Judia depili	o approximate where	, 1000very	10 1000 that 100 /0				1:20 Figure N 4609-		 S16	

АР	GEOTE	CHN	IICS E mail@	T 01932 F 01932 Japgeotechn	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM			umb VS	
Excavation Drive-in Win		Dimens			Level (mOD)	Client London Square		N	ob umb 4609	
		Locatio Se	on ee site plan	Dates 08	3/08/2017	Engineer		SI	heet	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	ln:	str
0.00-1.00	L1				(0.25) - (0.25) - (0.35) - (0.35) - (0.60 - (0.20) - 0.80	CONCRETE MADE GROUND: Brick and concrete fragments in matrix of silt and sand sized particles MADE GROUND: Dark grey and brown slightly sandy clay with brick and flint Soft to firm brown mottled slightly sandy CLAY			000000000000000000000000000000000000000	0,000
1.00-1.45 1.00-2.00	SPT(C) N=27 L2		4/5,6,7,9		(0.40) 1.20	Medium dense to dense orange brown sandy to very sandy GRAVEL with occasional sand layers - stained and odorous from 3 - 4 m depth				1 CO 0 CO 1 CO 0 CO 0 CO 0 CO 0 CO 0 CO
2.00-2.45 2.00-3.00	SPT(C) N=27 L3		13/7,7,6,7							ي منظم على المؤاخل الم إن منظم على المؤاخل ال
3.00-3.45 3.00-4.00	SPT(C) N=34 L4		17/8,9,8,9 Water strike(1) at 3.10m.					∇1	CATTO	
Remarks			08/08/2017:		4.00		Scale	1.	Odd	
UXO Engine	er in attendance s approximate where	recovery	is less than 100 %				Scale (approx) 1:20	B	ogge y	-u
							Figure N 4609		/S17	

ΑР	GEOTE			T 01932 F 01932	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM	Number WS18
Excavation I	Method	Dimens			Level (mOD)	Client London Square	Job Number 4609-2
		Locatio Se	n e site plan	Dates 08	/08/2017	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Nater
0.00-1.00	L1				(0.20) - (0.20) - (0.20) - (0.50) - (0.50)	CONCRETE MADE GROUND: Relic topsoil with brick Brown very clayey slightly sandy GRAVEL	
1.00-1.45 1.00-2.00	SPT(C) N=54 L2		4/9,13,15,17		- (0.50) - 1.20	Dense to medium dense orange brown sandy to very sandy GRAVEL with occasional sand layers	
2.00-2.45 2.00-3.00	SPT(C) N=41 L3		14/10,10,10,11		- - - - - - - - - - - - - - - - - - -		
3.00-3.45 3.00-4.00	SPT(C) N=29 L4		12/7,6,8,8 Water strike(1) at 3.20m.		- (2.80)		∑ 1
Remarks			08/08/2017:3.13m		- - - - - - - - 4.00	1	
UXO Engine	er in attendance s approximate where	recovery	is less than 100 %			Scale (approx) 1:20 Figure 460	

APPENDIX C

STANDPIPE RECORDS

STANDPIPE RECORDS

GAS EMISSIONS AND WATER LEVELS

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM

Client: London Square Project No: 4609-2

Sheet No: 1/2

Da	ate	Measurement	Units				Loca	ation					
24/08	/2017			BHI BH2 BH!				⊣ 5	WS13				
Weather o	conditions			Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady		
Temp. °C	24	Flow rate	1/hr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Atmos. mb	1020	Methane	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
		Carbon dioxide	%	4.4	4.7	1.8	0.3	0.3	0.3	0.7	0.7		
Cloud	25 %	Carbon monoxide	ppm	0	0	0	0	0	0	0	0		
Sun	bright	Hydrogen sulphide	ppm	0	0	0	0	0	0	0	0		
Rainfall	nil	Oxygen	%	21.8	11.4	17.0	20.4	20.0	20.4	20.1	20.1		
	PID re		ppm	0	0	0	0	0	0	0	0		
		Water level	m bgl	2.98		6.24		2.89		2.32			

Da	ate	Measurement	Units				Loca	ation			
24/08	/2017			W:	S16	W:	S17				
Weather o	conditions			Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady
Temp. °C	24	Flow rate	1/hr	0.0	0.0	0.2	0.0				
Atmos. mb	1020	Methane	%	0.0	0.0	0.0	0.0				
	Carbon dioxide % 4		4.6	5.7	4.4	4.6					
Cloud	25 %	Carbon monoxide	ppm	0	0	0	0				
Sun	bright	Hydrogen sulphide	ppm	0	0	0	0				
Rainfall	nil	Oxygen	%	11.4	9.6	2.3	1.7				
		PID reading	ppm	0	0	0	0				
		Water level	m bgl	2.	80	3.	20				

Da	ate	Measurement	Units				Loc	ation			
5/09/	2017			Bl	-11	Bl	-1 2	ВІ	⊣ 5	W:	S13
Weather o	conditions			Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady
Temp. °C	19	Flow rate	l/hr	-0.2	0.0	0.6	0.0	0.0	0.0	-0.3	0.0
Atmos. mb	1017	Methane	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Carbon dioxide	%	5.2	5.2	1.8	1.9	0.3	0.4	1.2	1.2
Cloud	100 %	Carbon monoxide	ppm	0	0	0	0	0	0	0	0
Sun	nil	Hydrogen sulphide	ppm	0	0	0	0	0	0	0	0
Rainfall	nil	Oxygen	%	13.0	12.3	19.4	18.6	20.6	20.0	19.7	19.5
		PID reading	ppm	0	0	0	0	0	0	0	0
		Water level	m bgl	3.	09	6.	22	2.	94	2.	40

Da	te	Measurement	Units				Loca	ation			
5/09/	2017			W:	S16	W:	S17				
Weather c	onditions			Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady
Temp. °C	19	Flow rate	1/hr	0.1	0.0	0.6	0.0				
Atmos. mb	1017	Methane	%	3.2	3.6	0.0	0.0				
		Carbon dioxide	%	8.1	8.1 8.5		3.4				
Cloud	100 %	Carbon monoxide	ppm	0	0	0	0				
Sun	nil	Hydrogen sulphide	ppm	0	0	0	0				
Rainfall	nil	Oxygen	%	1.3	0.2	4.1	3.1				
		PID reading	ppm	0	3.5	0	0				
		Water level	m bgl	2.	82	3.	08				

Readings taken with GFM435 manufactured by Gas Data Ltd.

STANDPIPE RECORDS

GAS EMISSIONS AND WATER LEVELS

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM

Client: London Square Project No: 4609-2

Sheet No: 2/2

Da	ate	Measurement	Units				Loca	ation			
19/09	/2017			ВІ	-11	Bl	⊣ 2	BI	⊣ 5	W	S13
Weather o	conditions			Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady
Temp. °C	19	Flow rate	1/hr	0.6	0.0	0.3	0.0	0.1	0.0	0.0	0.0
Atmos. mb	1024	Methane	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Carbon dioxide	%	4.5	4.3	1.2	1.1	0.4	0.4	0.4	0.4
Cloud	10 %	Carbon monoxide	ppm	0	0	0	0	0	0	0	0
Sun	bright	Hydrogen sulphide	ppm	0	0	0	0	0	0	0	0
Rainfall	nil	Oxygen	%	14.1	14.2	19.3	19.4	20.3	20.1	20.4	20.5
		PID reading	ppm	0	0	0	0	0	0	0	0
		Water level	m bgl	3.	15	6.	24	2.	95	Dry (2.42

Da	nto	Measurement	Units				Loo	ation			
		Measurement	Units					ation		ı	
19/09	/2017			W	S16	W:	S17				
Weather o	conditions			Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady
Temp. °C	19	Flow rate	1/hr	0.1	0.0	0.1	0.0				
Atmos. mb	1024	Methane	%	1.7	2.1	0.0	0.0				
		Carbon dioxide	%	6.4	6.4 6.5		2.0				
Cloud	10 %	Carbon monoxide	ppm	0	0	0	0				
Sun	bright	Hydrogen sulphide	ppm	0	0	0	0				
Rainfall	nil	Oxygen	%	1.3	0.7	6.8	6.5				
		PID reading	ppm	2.0	2.1	0	0				
		Water level	m bgl	2.	62	2.	99				

Da	ite	Measurement	Units				Loc	ation			
5/09/	2017			ВІ	-11	Bl	1 2	Bl	⊣ 5	W:	S13
Weather c	conditions			Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady
Temp. °C	19	Flow rate	1/hr	-0.2	0.0	0.6	0.0	0.0	0.0	-0.3	0.0
Atmos. mb	1017	Methane	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Carbon dioxide	%								1.2
Cloud	100 %	Carbon monoxide	ppm								0
Sun	nil	Hydrogen sulphide	ppm								0
Rainfall	nil	Oxygen	%	13.0	12.3	19.4	18.6	20.6	20.0	19.7	19.5
		PID reading	ppm	0	0	0	0	0	0	0	0
		Water level	m bgl	3.	09	6.	22	2.	94	2.	40

Da	te	Measurement	Units				Loca	ation			
5/09/	2017			W:	S16	W:	S17				
Weather c	onditions			Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady
Temp. °C	19	Flow rate	1/hr	0.1	0.0	0.6	0.0				
Atmos. mb	1017	Methane	%	3.2	3.6	0.0	0.0				
		Carbon dioxide	%	8.1	8.1 8.5		3.4				
Cloud	100 %	Carbon monoxide	ppm	0	0	0	0				
Sun	nil	Hydrogen sulphide	ppm	0	0	0	0				
Rainfall	nil	Oxygen	%	1.3	0.2	4.1	3.1				
		PID reading	ppm	0	3.5	0	0				
		Water level	m bgl	2.	82	3.	08				

Readings taken with GFM435 manufactured by Gas Data Ltd.

APPENDIX D

LABORATORY TEST RESULTS

SUMMARY OF GEOTECHNICAL TESTS

Project No: 4609-2

Sheet No: 1/3

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

				CLASSIFICATION Natural Liquid Plastic Plast. Passing Mod. Class Ty								TRIAZ	XIAL COM	PRESSION	N - TOTAL	STRESS		C	HEMICA	AL
Location	_	Depth	Description	Natural				Passing		Class	Type	Moisture	Bulk	Radial	Deviator	Cohe			e (SO4)	pН
	No			Moisture	Limit	Limit	Index	425µm	Plast.			Content	Density	Stress	Stress	cu, kPa		Water		
				Content					Index							assuming	Øu, deg		(Sol)	
		m		%	%	%	%	%	%			%	Mg/m³	kPa	kPa	Øu = 0		g/l	g/l	
BHI	CI	0.40	MADE GROUND: Black relic topsoil with brick and flint																0.22	7.26
	C2	0.80	MADE GROUND: Soft to firm dark brown very sandy clay with flint and brick																0.19	7.12
	UI	9.50	Stiff dark grey CLAY								UU 102	29	1.98	190	151	75			0.53	7.88
	U2	12.50	Stiff dark grey CLAY								UU 102	25	2.06	250	253	127				
	U3	15.50	Very stiff dark grey CLAY								UU 102	27	2.05	310	334	167				
	U4	18.50	Very stiff dark grey CLAY								UU 102	25	2.09	370	336	168				
вн2	ВІ	0.50	MADE GROUND: Black sand																0.32	7.20
	B5	4.50	Brown very sandy GRAVEL																0.08	7.11

Note: Soil Classification based upon unmodified Plasticity Index

SUMMARY OF GEOTECHNICAL TESTS

Project No: 4609-2

Sheet No: 2/3

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

				CLASSIFICATION								TRIA	XIAL COM	PRESSION	N - TOTAL	STRESS		Cl	HEMICA	I L
Location	Sample	Depth	Description	Natural	Liquid	Plastic	Plast.	Passing	Mod.	Class	Type	Moisture	Bulk	Radial	Deviator	Cohe	esion	Sulphate	e (SO4)	pН
	No			Moisture	Limit	Limit	Index	425µm	Plast.			Content	Density	Stress	Stress	cu, kPa	cu, kPa	Water	Soil	
				Content					Index							assuming	Øu, deg		(Sol)	
		m		%	%	%	%	%	%			%	Mg/m³	kPa	kPa	Øu = 0		g/l	g/l	
вн2	U8	7.50	 Stiff dark grey CLAY	29	77	31	46	100		CV	UU 102	26	2.03	150	186	93			0.51	7.49
	UI2	10.50	Stiff dark grey CLAY								UU 102	30	2.04	210	174	87				
	UI6	13.50	Stiff dark grey CLAY								UU 102	26	2.10	270	173	86				
вн3	ВІ	0.50	MADE GROUND: Brown grey clay with brick and flint																0.39	7.44
	B2	1.50	Brown SAND and GRAVEL																0.06	7.24
	UI2	11.00	Stiff dark grey CLAY (premature failure)								UU 102	32	2.05	220	111	55				
	UI6	14.55	Stiff dark grey CLAY (premature failure)								UU 102	27	2.05	291	135	67				
BH4	U9	8.50	Firm dark grey CLAY	29	74	30	44	100		CV	UU 102	29	2.04	170	98	49			0.36	7.85

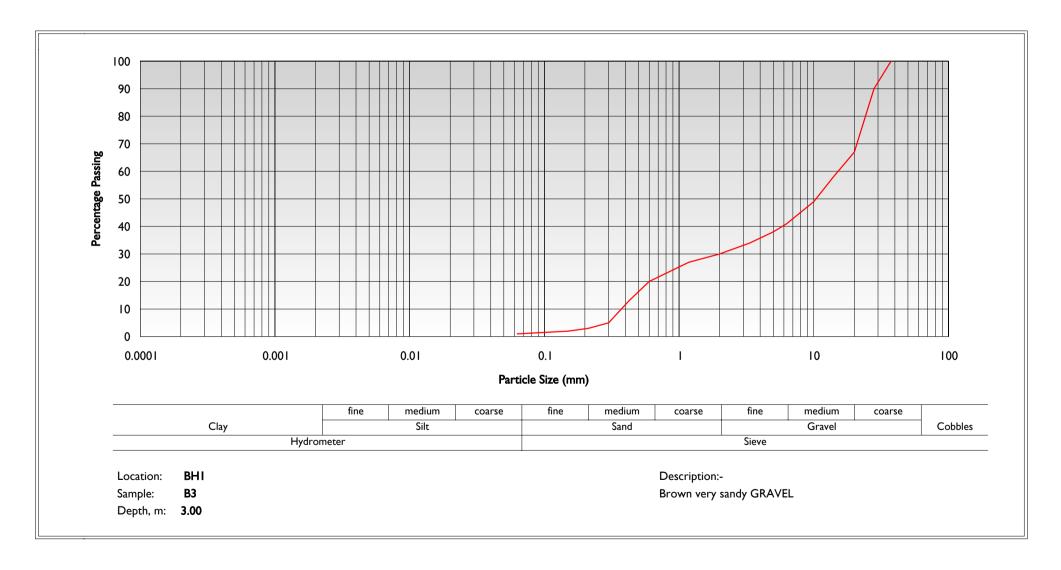
Note: Soil Classification based upon unmodified Plasticity Index

SUMMARY OF GEOTECHNICAL TESTS

Project No: 4609-2

Sheet No: 3/3

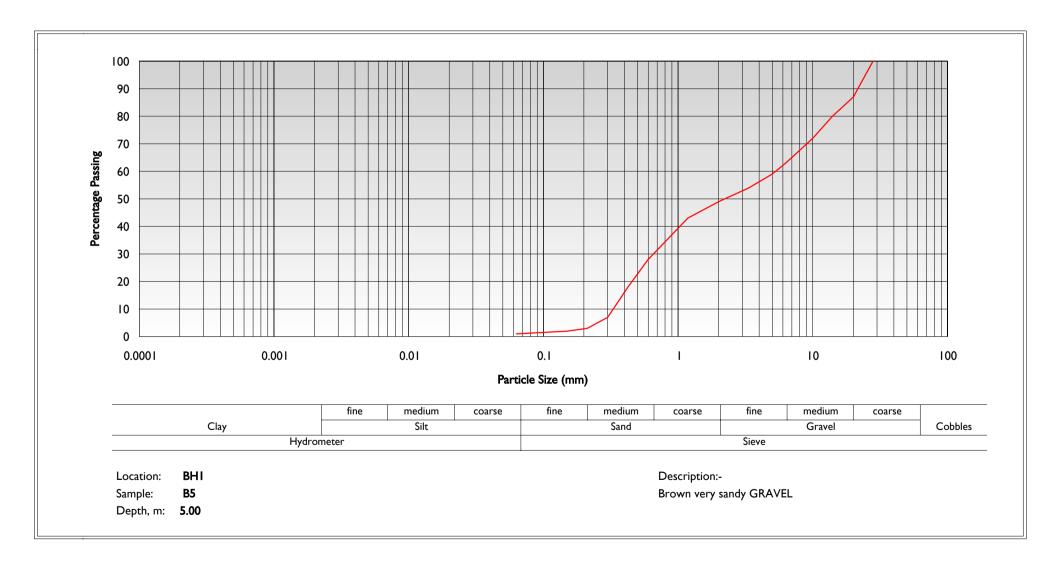
Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT


Client: London Square Developments Limited

				CLASSIFICATION								TRIA	XIAL COM	PRESSION	N - TOTAL	STRESS		C	HEMICA	AL
Location	Sample	Depth	Description	Natural	Liquid	Plastic	Plast.	Passing	Mod.	Class	Type	Moisture	Bulk	Radial	Deviator	Cohe	sion	Sulphat	e (SO4)	pН
	No			Moisture	Limit	Limit	Index	425µm	Plast.			Content	Density	Stress	Stress	cu, kPa	cu, kPa	Water	Soil	
				Content					Index							assuming	Øu, deg		(Sol)	
		m		%	%	%	%	%	%			%	Mg/m³	kPa	kPa	Øu = 0		g/l	g/l	
BH4	UI3	11.50	Stiff dark grey CLAY			İ		i i	i		UU	29	1.91	230	133	66				ĺ
											102									
											102									
	UI7	14.55	Stiff dark grey CLAY								UU	27	2.05	291	189	94				
											102									
BH5	CI	0.50	MADE GROUND: Brick and concrete																0.17	7.02
5.15	<u> </u>	0.50	fragments in matrix of silt and sand																0	7.02
			If agrirents in matrix of site and said																	
	B2	2.00	Brown very sandy GRAVEL																0.04	7.09
	UI	6.50	Stiff dark grey CLAY	29	74	31	43	100		CV	UU	29	2.00	130	167	83			0.21	7.86
		0.00				•				•										
											102									
	U2	9.50	Stiff dark grey CLAY								UU	30	2.00	190	126	63				
			(premature failure)								102									
			,																	
	U3	12 50	Stiff dark grey CLAY								UU	28	2.02	250	211	105				
		12.30	John dank grey CE/ (1										2.02	230		103				
	U4	15.50	Stiff dark grey CLAY																0.61	7.59

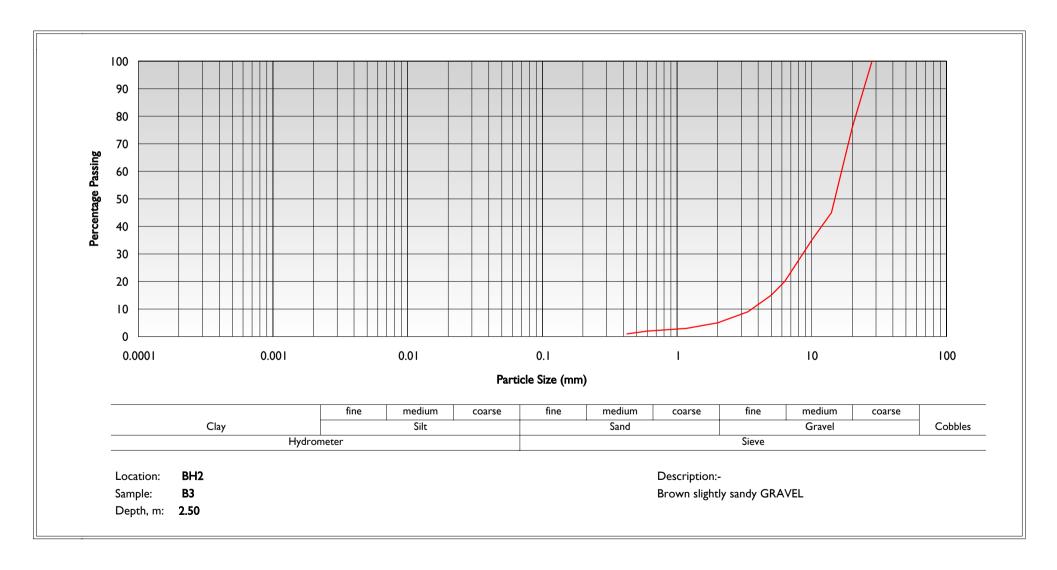
Note: Soil Classification based upon unmodified Plasticity Index

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT


Project No: 4609-2 Sheet No: I/I0 Client: London Square Developments Limited

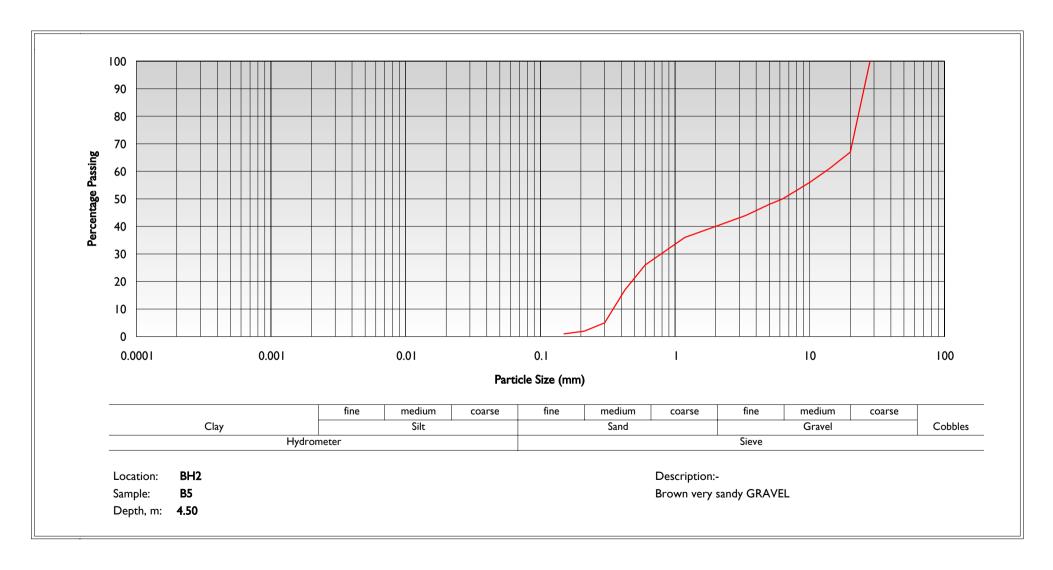
Project No: 4609-2

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT


Client: London Square Developments Limited Sheet No: 2/10

Project No: 4609-2

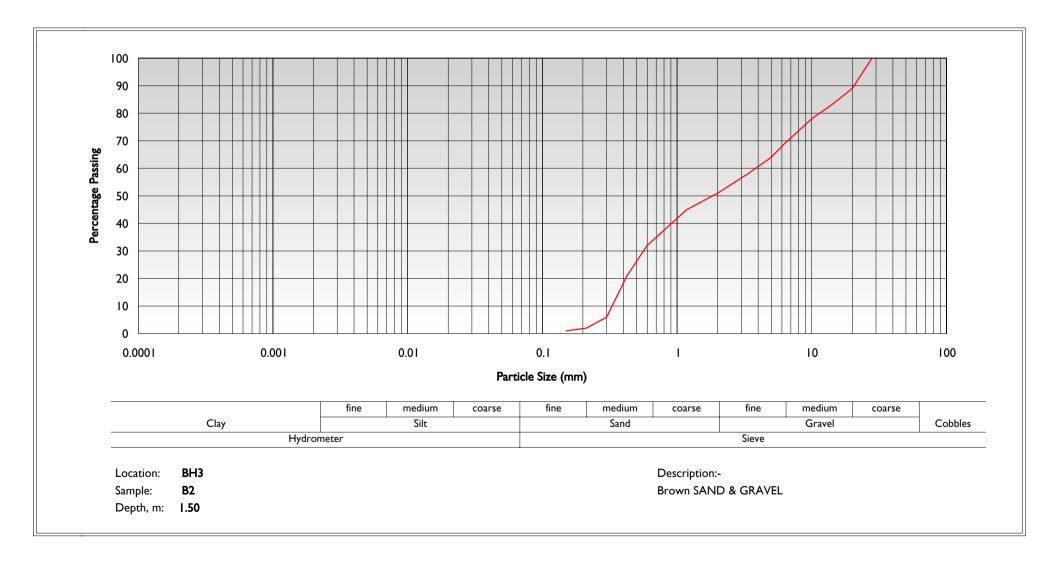
Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT


Client: London Square Developments Limited Sheet No: 3/10

Project No: 4609-2

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

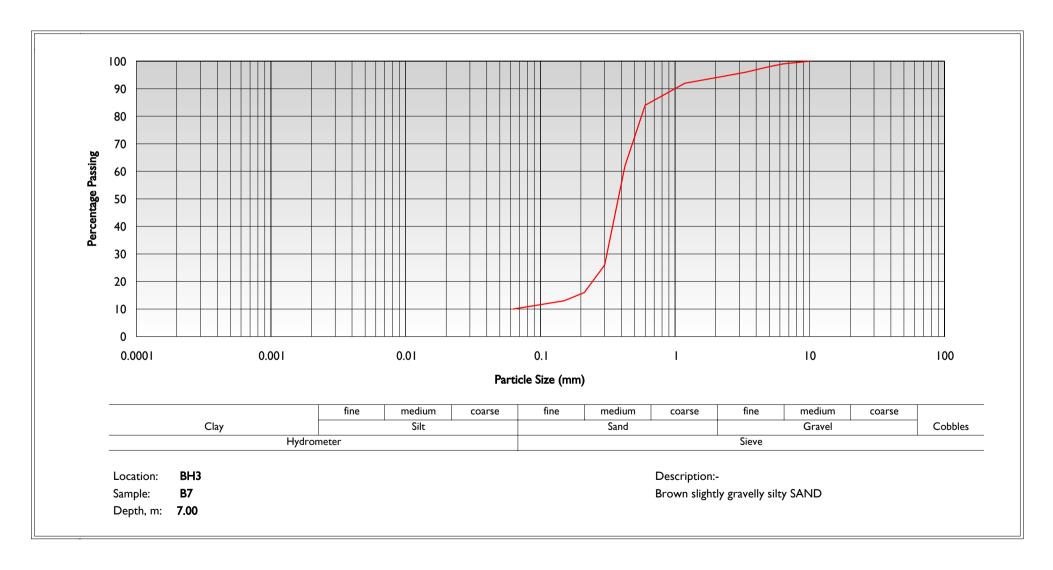
Client: London Square Developments Limited Sheet No: 4/10



Project No: 4609-2

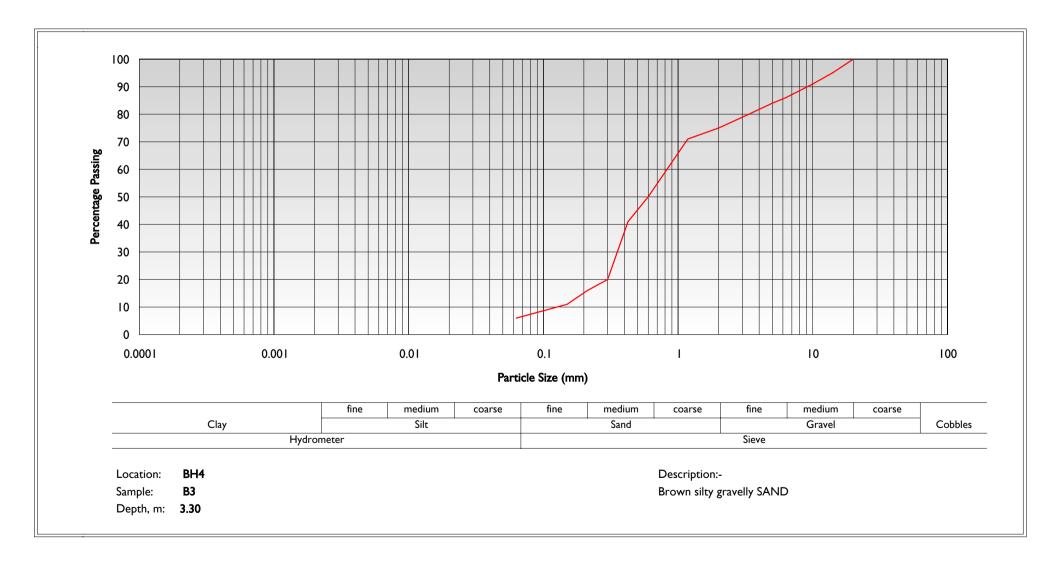
Sheet No: 5/10

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT


Client: London Square Developments Limited

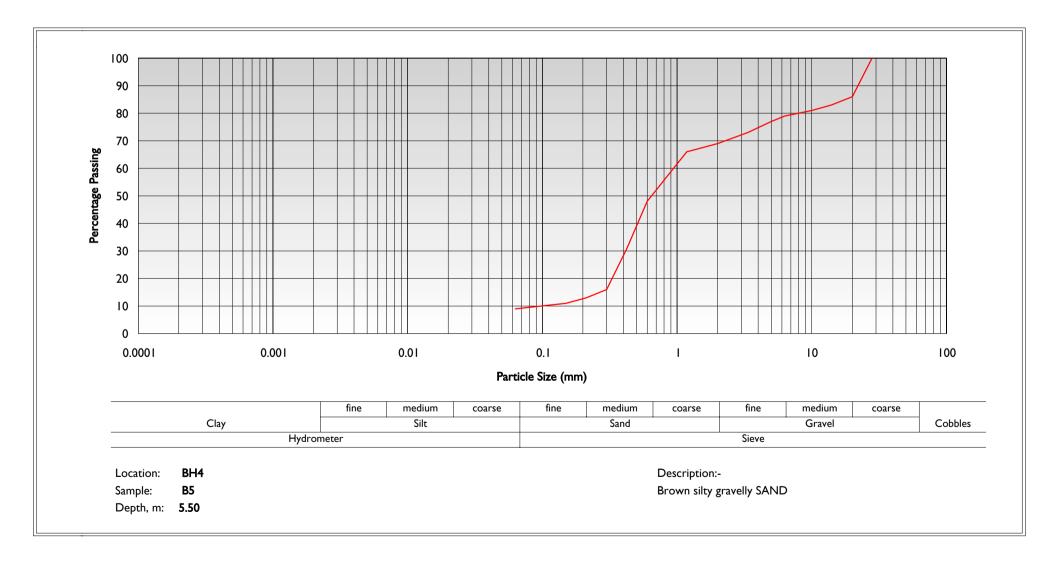
Project No: 4609-2

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT


Client: London Square Developments Limited Sheet No: 6/10

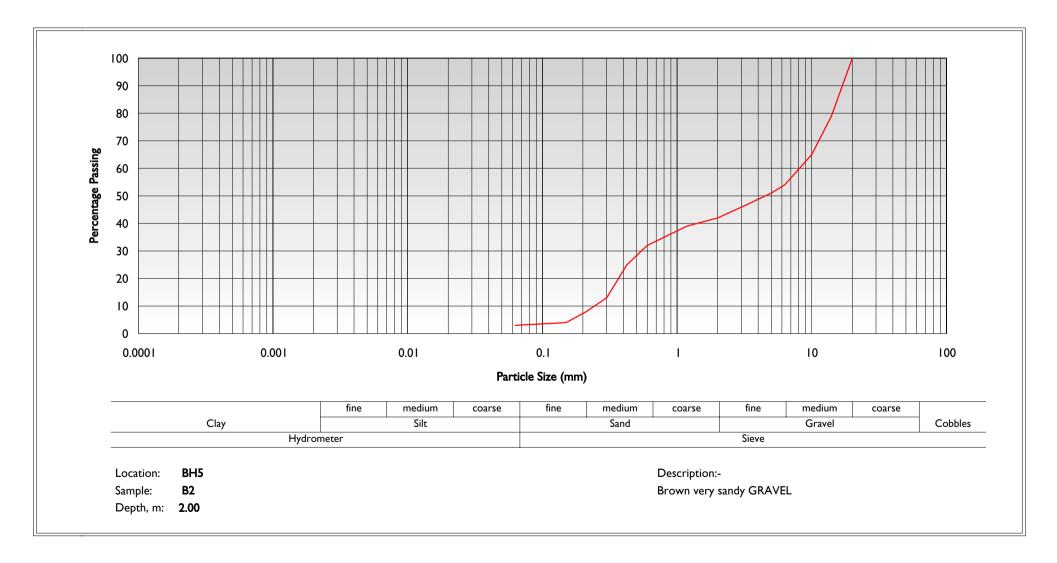
Project No: 4609-2

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT


Client: London Square Developments Limited Sheet No: 7/10

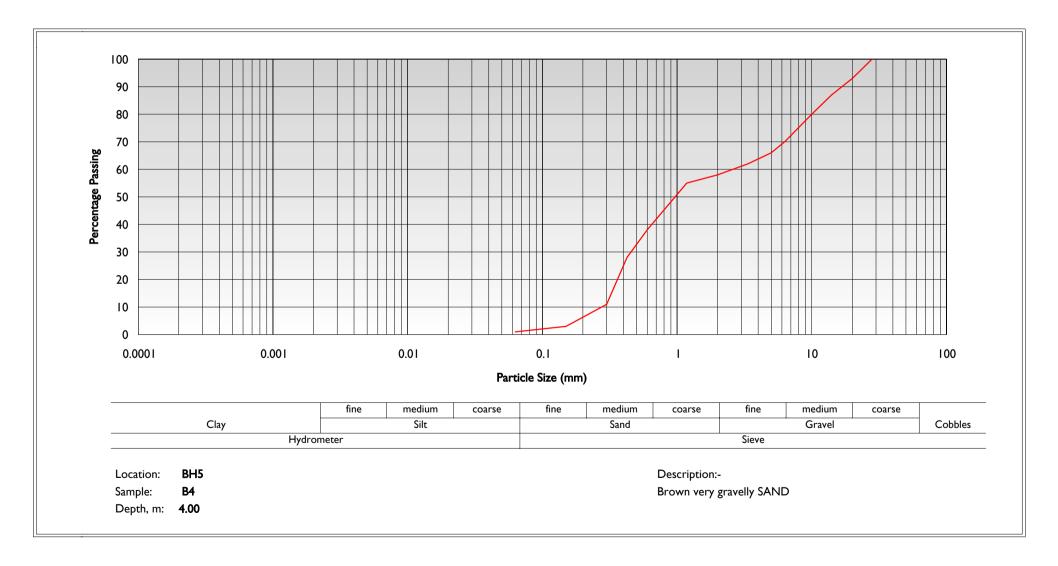
Project No: 4609-2

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT


Client: London Square Developments Limited Sheet No: 8/10

Project No: 4609-2 Sheet No: 9/10

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT


Client: London Square Developments Limited

Project No: 4609-2

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited Sheet No: 10/10

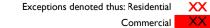
Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

op o	S Salar	D'ENH	A.S. S.	O definition of the second	And distribution of the second	San Comment	Peop	W Signature of the state of the	Airotest	Sept.	Tige	800t	Par de la	President	₹ [©]			RRIT	SCAR S				PH
		Ф			He least			ines ou junes junes				ios sopem	Hoperosop	de de la companya de	ģ	05°50	\$\display \$\display \text{\$\display \tex	%; %	\(\frac{1}{2}\)	\$5. '6		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	
WS2	CI C3	0.40 2.90	13.7	<0.5	73.9	56.9	193	0.9	71.3	<1.0	112	2.6	<0.8	<5		84.8	378	1190	1040	318	<1.0	3010	
WS3	CI	0.50	13.8	<0.5	24.2	32.9	136	<0.5	19.4	<1.0	71	0.9	<0.8										
WS4	CI	0.50	18.2	0.9	28.3	49.3	1350	1.6	24.3	1.2	453	2.2	<0.8	<5		<1.0	<1.0	<1.0	<1.0	6.0	<1.0	6.0	
WS5	C1	0.50 1.80	24.5	<0.5	44.7	51.4	217	<0.5	31.3	<1.0	161	5.2	<0.8	<5		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
S4UL ¹	reside	ential ³	37	11	910	2400		40	180	250	3700	290	6	380									
	reside	ential ^{3a}	40	85	910	7100		56	180	430	40000	11000	6	1200									
		nercial	640	190	8600	68000		1100	980	12000	730000	240000	33	1300									
CLEA ²		ential nercial	32 640					170 3600	130 1800	350 13000													

Notes

1. S4UL given at 6% soil organic matter


2. CLEA SGVs given at 6% soil organic matter

3. Residential with plant uptake

3a. Residential without plant uptake

© AP GEOTECHNICS LTD.

All units are mg/kg dry weight of soil unless otherwise stated, except for pH which is dimensionless

Project No: 4609-2 Sheet No: 1/4

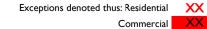
Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

Co Co Chi	S Salar	Doug Dough	A Senic	Coldina	Chaling	GRE	Pro ₂	Mercial	A Piloto	Sept.	Úď.	Soon	- Arterials	or design of the second	₹ [©]			Ratin	COME SOME				ph
		Ф			He leaf			in i				ios sopen	Hoperatop	in the state of th	ģ	95.35	^ç 7). 9/2	%; %	153.9%	\$6, '6	B.	05) 08) 08)	
WS6A	C2	0.80	10.7	<0.5	32.4	23.9	51.9	<0.5	18.6	<1.0	73.9	1.1	<0.8	<5		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
WS7	CI C2	1.00 3.50	12.3	<0.5	142	30.1	114	<0.5	31.6	<1.0	89.9	1.1	<0.8	<5		<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	
WS8	CI C2	0.50 1.00	16.1 10.7	<0.5 <0.5	30.9 28.4	62.I 23.I	333 44.2	0.8 <0.5	22.8 16.3	1.2 <1.0	208 71.4	2.3 1.2	<0.8 <0.5	<5 <5		<1.0	<1.0	<1.0	<1.0	14.8	1.3	16.1	
WS9	C2 C3	1.00 3.00	10.1	<0.5	29.6	17.5	27.2	<0.5	16.5	<1.0	56.2	0.6	<0.8	<5	<0.03 <0.03								
S4UL ¹	reside	ential ³	37	H	910	2400		40	180	250	3700	290	6	380									
3-10L	reside		40	85	910	7100		56	180	430	40000	11000	6	1200									
	comn		640	190	8600	68000		1100	980	12000		240000	33	1300									
CLEA ²	resid	ential	32					170	130	350													
	comn	nercial	640					3600	1800	13000													

Notes

1. S4UL given at 6% soil organic matter


2. CLEA SGVs given at 6% soil organic matter

3. Residential with plant uptake

3a. Residential without plant uptake

© AP GEOTECHNICS LTD.

All units are mg/kg dry weight of soil unless otherwise stated, except for pH which is dimensionless

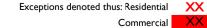
Project No: 4609-2 Sheet No: 2/4

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

o co	S S S S S S S S S S S S S S S S S S S	O South	A.senic	Coldinati	Charling	GRE	Pro ₂	Mercial	in the second	Sept.	(Jac	Boot	- Arterials	st day	₹ [©]			Ratin	COMP COMP				PH
		Ф			Hope July			in i				ios 1996 ¹⁴	Hoperatop	ip though job	ģ	95.3	ç ₀ ,00	%; %	15.30 30		Ş. Ş.	ob journ	
WS10	C1 C2	0.40 0.90	17.4 10.9	0.6 <0.5	31.0 30.5	56.3 16.9	230 23.7	<0.5 <0.5	22.7 18.7	<1.0 <1.0	255 53.0	0.8 <0.5	<0.8 <0.8	<5 <5		<1.0	<1.0	<1.0	<1.0	4.5	<1.0	4.5	
WS13	C1	0.40 3.00	12.4	<0.5	27.0	33	165	0.6	17.3	<1.0	195	0.7	<0.8	<5		<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	
WS15	СІ	3.00												<5									
WS16	CI C4	0.50 2.20	12.0	<0.5	29.0	40.7	167	0.6	20.2	<1.0	186	1.0	<0.8	<5		43.7 <1.0	113 1.5	381 8.1	323 10.6	76.7 5.4	<1.0 <1.0	937 25.6	
S4UL'			37	П	910	2400		40	180	250	3700	290	6	380									
	reside		40	85	910	7100		56	180	430	40000	11000	6	1200									
	comn		640	190	8600	68000		1100	980	12000	730000	240000	33	1300									
CLEA ²	•	ential nercial	32 640					170 3600	130 1800	350 13000													

Notes


1. S4UL given at 6% soil organic matter

2. CLEA SGVs given at 6% soil organic matter

3. Residential with plant uptake

3a. Residential without plant uptake

All units are mg/kg dry weight of soil unless otherwise stated, except for pH which is dimensionless

Project No: 4609-2 Sheet No: 3/4

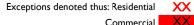
Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

To do dilitica de la constante	South	D'ENH	A Sonic	Code	And distribution of the second	Call	Peop	West of the second	Wickel Williams	Solution in the second in the	Úď.	Sparie Sp	The distribution of the second	opision of the state of the sta	₹ [©]			Relati	SCAS S				tha art
		Ø			Hopeart			di con i				10s 39th	despident	di d	ģ	0 0 0 0 0	ç,	90. ?b	15. 90 90	. Cy.	i de la companya de l	P) (5) (8)	
WS17	CI	2.50														<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
WS18	CI	0.40	9.3	<0.5	158	28.3	102	<0.5	23.4	<1.0	92.7	<0.8	1.5	<5									
S4UL ¹	reside	ential ³	37	H	910	2400		40	180	250	3700	290	6	380									
	1	ential ^{3a}	40	85	910	7100		56	180	430	40000	11000	6	1200									
		nercial	640	190	8600	68000		1100	980	12000	730000	240000	33	1300									
CLEA ²			32					170	130	350													
	comn	nercial	640					3600	1800	13000													

Notes

1. S4UL given at 6% soil organic matter


2. CLEA SGVs given at 6% soil organic matter

3. Residential with plant uptake

3a. Residential without plant uptake

© AP GEOTECHNICS LTD.

All units are mg/kg dry weight of soil unless otherwise stated, except for pH which is dimensionless

Project No: 4609-2 Sheet No: 4/4

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 1/2

		Speci	ated Total Petro	oleum Hydroca	rbons (Aromati	c / Aliphatic Sp	lit with BTEX)				
Location	WS2	WS2	WS9	WS13	WS13	WS15	WS16	WS16		LQM/CIEH	
Sample	C2	C4	C3	C2	C4	CI	C2	C3		S4UL	
Depth, m	2.00	4.00	3.00	1.50	4.00	3.00	1.00	1.70	residential	allotments	commercial
Determinand				Concentra	tion, mg/kg						
Aromatic Hydrocarbons											
C5 - C7	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	300	57	86000
>C7 - C8	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	660	120	180000
>C8 - C10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	18.0	<1.0	190	51	17000
>C10 - C12	83.9	<1.0	<1.0	<1.0	<1.0	<1.0	40.9	<1.0	380	74	34000
>C12 - C16	453	2.9	<1.0	<1.0	<1.0	<1.0	122	1.6	660	130	38000
>C16 - C21	470	5.2	<1.0	<1.0	<1.0	<1.0	104	2.1	930	260	28000
>C21 - C35	214	4.5	<1.0	<1.0	<1.0	<1.0	24.5	<1.0	1700	1600	28000
>C35 - C40	18.8	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1700	1600	28000
Total Aromatic Hydrocarbons	12 4 0	14	<1.0	<1.0	<1.0	<1.0	309	3.7			
Aliphatic Hydrocarbons	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	160	3900	12000
C5 - C6 >C6 - C8	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	530	13000	40000
>C8 - C10	<1.0	<0.01 <1.0	<1.0	<1.0	<1.0	<1.0	18.2	<1.0	150	1700	11000
>C10 - C12	11.0	<1.0	<1.0	<1.0	<1.0	<1.0	38.9	<1.0	760	7300	47000
>C12 - C16	534	3.0	<1.0	<1.0	<1.0	<1.0	112	1.4	4300	13000	90000
>C16 - C21	437	4.8	<1.0	<1.0	<1.0	<1.0	96.1	1.9	1500	13000	70000
>C21 - C35	172	3.6	1.7	<1.0	<1.0	<1.0	20.8	<1.0			
>C35 - C40	19.1	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			
Total Aliphatic Hydrocarbons	1279	13	1.7	<1.0	<1.0	<1.0	286	3.3			
Total Petroleum Hydrocarbons	2519	27	1.7	<1.0	<1.0	<1.0	595	7.0			
BTEX					tion, μg/kg						
Benzene	<10	<10	<10	<10	<10	<10	<10	<10	370	75	90000
Toluene	<10	<10	<10	<10	<10	<10	<10	<10	660000	120000	180000000
Ethyl Benzene	<10	<10	<10	<10	<10	<10	<10	<10	260000	91000	27000000
Xylenes*	<10	<10	<10	<10	<10	<10	13.8	<10	310000	160000	30000000
MTBE	<10	<10	<10	<10	<10	<10	<10	<10			

Notes

Total = Sum of compounds above detection limit.

S4UL given at 6% soil organic matter

Exceptions denoted thus:

Residential
Commercial

XX

^{*}Results given as total of (ortho), (meta) and (para) xylene. SGV given is the lowest permissible value for any xylene compound

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 2/2

		Speci	ated Total Petro	oleum Hydroca	rbons (Aromati	ic / Aliphatic Sp	lit with BTEX)				
Location	WS17	WS17								LQM/CIEH	
Sample	C2	C3	İ	ĺ	ĺ	Ì	ĺ	ĺ		S4UL	
Depth, m	3.00	4.00							residential	allotments	commercial
Determinand				Concentra	tion, mg/kg						
Aromatic Hydrocarbons											
C5 - C7	<0.01	<0.01							300	57	86000
>C7 - C8	<0.01	<0.01							660	120	180000
>C8 - C10	3.0	<1.0							190	51	17000
>C10 - C12	75.6	<1.0							380	74	34000
>C12 - C16	1020	1.1							660	130	38000
>C16 - C21	1360	1.9							930	260	28000
>C21 - C35	382	<1.0							1700	1600	28000
>C35 - C40	<1.0	<1.0							1700	1600	28000
Total Aromatic Hydrocarbons	28 4 1	3.1									
Aliphatic Hydrocarbons C5 - C6 >C6 - C8 >C8 - C10 >C10 - C12 >C12 - C16 >C16 - C21 >C21 - C35 >C35 - C40 Total Aliphatic Hydrocarbons Total Petroleum Hydrocarbons	<0.01 <0.01 4.0 98.3 1140 1430 390 <1.0 3062	<0.01 <0.01 <1.0 <1.0 <1.0 <1.0 <1.0 <1.							160 530 150 760 4300	3900 13000 1700 7300 13000	12000 40000 11000 47000 90000
BTEX				Concentra	tion, μg/kg						
Benzene	<10	<10							370	75	90000
Toluene	<10	<10	İ	İ	İ	İ	i	i	660000	120000	180000000
Ethyl Benzene	<10	<10							260000	91000	27000000
Xylenes*	<10	<10							310000	160000	30000000
MTBE	<10	<10									

Notes

Total = Sum of compounds above detection limit.

S4UL given at 6% soil organic matter

Exceptions denoted thus:

Residential
Commercial

XX

^{*}Results given as total of (ortho), (meta) and (para) xylene. SGV given is the lowest permissible value for any xylene compound

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Project No: 4609-2 Client: London Square Developments Limited Sheet No: 1/2

				Speciat	ed Polyaro	omatic Hyd	lrocarbon	s by GCM	S						
Location	WS2	WS2	WS2	WS3	WS4	WS6A	WS8	WS8	WS10	WS13	WS13		LQM	/CIEH	
Sample	CI	C2	C4	CI	CI	C2	CI	C2	CI	CI	C3		S41	UL³	
Depth, m	0.40	2.00	4.00	0.50	0.50	0.80	0.50	1.00	0.40	0.40	3.00	residential4	residential5	allotments	commercial
Determinand						,	Cor	ncentration, m	g/kg						
PAH															
Naphthalene	0.2	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	13	13	24	1100
Acenaphthylene	0.9	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	920	6000	160	100000
Acenaphthene	<0.1	0.5	<0.1	<0.1	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1100	6000	200	100000
Fluorene	<0.1	0.2	<0.1	<0.1	0.9	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	860	4500	160	71000
Phenanthrene	1.6	1.0	<0.1	0.3	10.9	<0.1	0.3	<0.1	0.4	0.3	<0.1	440	1500	90	23000
Anthracene	0.6	1.0	<0.1	<0.1	17.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	11000	37000	2200	540000
Fluoranthene	8.5	<0.1	<0.1	1.0	13.3	<0.1	1.1	0.1	1.0	0.8	<0.1	890	1600	290	23000
Pyrene	7.9	0.1	<0.1	8.0	9.9	<0.1	0.9	0.1	8.0	0.6	<0.1	2000	3800	620	54000
Benzo(a)anthracene	5.1	<0.1	<0.1	0.6	5.6	<0.1	0.6	<0.1	0.4	0.4	<0.1	13	15	13	180
Chrysene	5.5	<0.1	<0.1	0.7	8.5	<0.1	0.7	<0.1	0.7	0.5	<0.1	27	32	19	350
Benzo(b)fluoranthene	5.7	0.5	<0.1	8.0	4.8	<0.1	8.0	<0.1	8.0	0.4	<0.1	3.7	4.0	3.9	45
Benzo(k)fluoranthene	5.6	0.4	<0.1	0.7	4.7	<0.1	8.0	<0.1	0.9	0.6	<0.1	100	110	130	1200
Benzo(a)pyrene	6.8	<0.1	<0.1	0.7	5.5	<0.1	8.0	<0.1	1.4	0.5	<0.1	3	3.2	3.5	36
Indeno(123-cd)pyrene	5.3	<0.1	<0.1	0.7	3.6	<0.1	0.7	<0.1	1.0	0.5	<0.1	41	46	39	510
Dibenzo(ah)anthracene	1.3	<0.1	<0.1	0.2	1.1	<0.1	0.2	<0.1	0.3	0.2	<0.1	0.3	0.32	0.43	3.6
Benzo(ghi)perylene	4.7	<0.1	<0.1	0.6	3.3	<0.1	0.7	<0.1	1.6	0.4	<0.1	350	360	640	4000
Total PAH (16)	59.7	2.9	<0.4	7.5	90.4	<0.4	7.7	0.6	9.4	5.3	<0.4				

Notes

I. Total PAH = Sum of EPA16 identified components

2. The results are expressed as mg/kg dry weight soil after correction for moisture content

3. S4UL given at 6% soil organic matter

4.Residential with plant uptake

5.Residential without plant uptake © AP GEOTECHNICS LTD.

Exceptions denoted thus: Residential

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited Sheet No: 2/2

				Speciate	ed Polyaro	omatic Hydrocarbons	s by GCM	S					
Location	WS15	WS16	WS18								LQM/	CIEH	
Sample	CI	CI	CI	ĺ			ĺ	ĺ			S4l	JL³	
Depth, m	3.00	0.50	0.40							residential4	residential5	allotments	commercial
Determinand						Con	ncentration, m	g/kg					
PAH													
Naphthalene	<0.1	3.3	<0.1							13	13	24	1100
Acenaphthylene	<0.1	3.6	<0.1							920	6000	160	100000
Acenaphthene	<0.1	2.0	<0.1							1100	6000	200	100000
Fluorene	<0.1	0.8	<0.1							860	4500	160	71000
Phenanthrene	<0.1	2.6	<0.1							440	1500	90	23000
Anthracene	<0.1	1.2	<0.1							11000	37000	2200	540000
Fluoranthene	<0.1	2.7	0.1							890	1600	290	23000
Pyrene	<0.1	1.3	<0.1							2000	3800	620	54000
Benzo(a)anthracene	<0.1	0.7	<0.1							13	15	13	180
Chrysene	<0.1	0.8	<0.1							27	32	19	350
Benzo(b)fluoranthene	<0.1	0.7	<0.1							3.7	4.0	3.9	45
Benzo(k)fluoranthene	<0.1	0.7	0.1							100	110	130	1200
Benzo(a)pyrene	<0.1	0.6	<0.1							3	3.2	3.5	36
Indeno(123-cd)pyrene	<0.1	0.5	<0.1							41	46	39	510
Dibenzo(ah)anthracene	<0.1	0.2	<0.1							0.3	0.32	0.43	3.6
Benzo(ghi)perylene	<0.1	0.5	<0.1							350	360	640	4000
Total PAH (16)	<0.4	22.3	<0.4										

Notes

I. Total PAH = Sum of EPA16 identified components

2. The results are expressed as mg/kg dry weight soil after correction for moisture content

3. S4UL given at 6% soil organic matter

4.Residential with plant uptake

5.Residential without plant uptake © AP GEOTECHNICS LTD.

Exceptions denoted thus: Residential

Commercial

Project No: 4609-2

Project No: 4609-2

Sheet No: I/I

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

Location	Sample	Depth	Asbe	stos identification	
		m	Description of matrix	Overall percentage of asbestos identified (approx.)	Type of asbestos identified
WS2	CI	0.40	Brown soil, stones, brick		none detected
WS2	C2	2.00	Brown sandy soil, stones		none detected
WS3	CI	0.50	Brown sandy soil, stones		none detected
WS4	CI	0.50	Brown soil, stones, clinker		none detected
WS5	CI	0.50	Brown sandy soil, clinker, stones		none detected
WS6A	C2	0.80	Brown soil		none detected
WS7	CI	1.00	Brown soil, stones		none detected
WS8	CI	0.50	Brown soil,, stones, brick, clinker		none detected
WS8	C2	1.00	Brown soil		none detected
WS9	C2	1.00	Brown soil, stones		none detected
WS10	CI	0.40	Brown soil, stones		none detected
WS10	C2	0.90	Brown soil		none detected
WS13	CI	0.40	Brown soil		none detected
WS16	CI	0.50	Brown soil		none detected
WS18	CI	0.40	Brown soil, stones		none detected

CONTAMINANTS IN WATER

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited Sheet No: 1/1

Codio)	S S S S S S S S S S S S S S S S S S S	Con the control of th	P. S. S. S. S. S. S. S. S. S. S. S. S. S.	Solon	Comming	Caronina	Charles	A Touch	Nickel Wickel	Pesy	Se oni	Úže ^c	Q. T.	Store Brown	the department of the second				Reflection				Ha
		Æ						inesoni.					(6 ₂ 0 ₀ 0	Sith Mondey joy	Charle	90 80	ç0,°00	90°.5%	15, 20,	\$5, 'S	S. S.	OB STATE OF	on Ho
ВНІ	WI	s'pipe	<5		<i< td=""><td><5</td><td><5</td><td><0.1</td><td>8</td><td>< </td><td><5</td><td><5</td><td></td><td><i< td=""><td><100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></i<></td></i<>	<5	<5	<0.1	8	<	<5	<5		<i< td=""><td><100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></i<>	<100								
BH2	WI	s'pipe	19		<i< td=""><td><5</td><td><5</td><td><0.1</td><td>84</td><td>< </td><td><5</td><td>14</td><td></td><td>< </td><td><100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></i<>	<5	<5	<0.1	84	<	<5	14		<	<100								
вн5	WI	s'pipe	<5		<i< td=""><td><5</td><td><5</td><td><0.1</td><td><5</td><td>< </td><td><5</td><td><5</td><td></td><td><i< td=""><td><100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></i<></td></i<>	<5	<5	<0.1	<5	<	<5	<5		<i< td=""><td><100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></i<>	<100								
UK Drir			10	1000	5	50	2000	I	20	10	10	5000		0.5									
EQS fres	shwatei	r	50	2000	5	5-250'	I-281		50-2001	4-2501	-	8-5001		30									

Notes

I. Depends on hardness, use lower value if unknown

All units are µg/I unless otherwise stated, except for pH which is dimensionless

United Kingdom Drinking Water XX
Environmental Quality Standards freshwater XX

Project No: 4609-2

CONTAMINANTS IN WATER

FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT Project:

Project No: 4609-2 Client: London Square Developments Limited Sheet No: I/I

		Speciated To	tal Petroleum H	ydrocarbons (A	Aromatic / Alipł	hatic Split with	BTEX)			
Location	BHI	BH2	BH5							
Sample	W3	W3	W3							
Depth, m	s'pipe	s'pipe	s'pipe							
Determinand					Concentra	ation, μg/l				
									ļ	
Aromatic Hydrocarbons										
>C5 - C7	<1.0	<1.0	<1.0							
>C7 - C8	<1.0	<1.0	<1.0							
>C8 - C10	<5.0	<5.0	<5.0							
>C10 - C12	<5.0	<5.0	<5.0							
>C12 - C16	<5.0	<5.0	<5.0							
>C16 - C21	6.2	<5.0	<5.0							
>C21 - C35	18.9	<5.0	31.3							
>C35 - C40	<5.0	<5.0	<5.0							
Total Aromatic Hydrocarbons	25. I	<5.0	31.3							
Aliphatic Hydrocarbons										
>C5 - C6	<1.0	<1.0	<1.0							
>C6 - C8	<1.0	<1.0	<1.0							
>C8 - C10	<5.0	<5.0	<5.0							
>C10 - C12	<5.0	<5.0	<5.0							
>C12 - C16	<5.0	<5.0	<5.0							
>C16 - C21	<5.0	<5.0	<5.0							
>C2I - C35	9.6	<5.0	53.6							
>C35 - C40	<5.0	<5.0	<5.0							
Total Aliphatic Hydrocarbons	9.6	<5.0	53.6							
Total Petroleum Hydrocarbons	34.7	<5.0	84.9							
I Otal Fetroleum Hydrocarbons	34./	_3.0	07.7							
BTEX					Concentra	ation, μg/l		•		
Benzene	<1.00	<1.00	<1.00							
Toluene	<1.00	<1.00	<1.00							
Ethyl Benzene	<1.00	<1.00	<1.00							
Xylenes*	<1.00	<1.00	<1.00							
MTBE	<1.00	<1.00	<1.00							

Notes

Total = Sum of compounds above detection limit.

^{*}Results given as total of (ortho), (meta) and (para) xylene.

CONTAMINANTS IN WATER

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 1/1 Sampled on: 04/05/17

			Sp	eciated Po	lyaromati	c Hydroca	rbons by (GCMS					
Location	BHI	BH2	BH5									UK	EQS
Sample	W2	W2	W2			ĺ		İ	j	j	İ	Drinking	Fresh
Depth, m	s'pipe	s'pipe	s'pipe									Water	Water
Determinand		, , , , ,					Concentr	ation, μg/l					
PAH													
Naphthalene	0.05	0.04	0.09										10
Acenaphthylene	0.35	0.04	0.02										
Acenaphthene	0.77	0.03	0.02										
Fluorene	0.21	0.02	0.04										
Phenanthrene	1.21	0.17	0.11										
Anthracene	0.74	0.07	0.03										
Fluoranthene	8.03	0.47	0.13										
Pyrene	6.67	0.39	0.12										
Benzo(a)anthracene	3.84	0.24	0.05										
Chrysene	3.82	0.26	0.06										
Benzo(b)fluoranthene	2.99	0.20	0.04										
Benzo(k)fluoranthene	3.47	0.22	0.06										
Benzo(a)pyrene	3.94	0.22	0.06									0.01	-
Indeno(123-cd)pyrene	2.07	0.11	0.04										
Dibenzo(ah)anthracene	0.76	0.04	0.02										
Benzo(ghi)perylene	2.26	0.13	0.05										
Total PAH(16)	41.2	2.64	0.93										

Notes

I. Total PAH = Sum of 16 identified components

2. UKDWS for total PAH = 0.10 µg/l and is the sum of benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene and indeno(1,2,3-cd)pyrene

Exceptions denoted thus:

exceeds Drinking Water Standard

exceeds Environmental Quality Standard

WAC Analysis									
Elab Ref:	109395				Landf	Landfill Waste Acceptance Criteria Limits			
Sample Date:						Otable Ness			
Sample ID:	WS1 C1					Stable Non- reactive			
Depth (m)	0.50 - 0.80)			Inert Waste		Hazardous		
Site:			Gregg	3	Landfill	waste in non-	Waste Landfill		
						hazardous			
Determinand		Code	Units			Landfill			
Total Organic Carbon		N	%	4.40	3	5	6		
Loss on Ignition		М	%	4.4			10		
Total BTEX		М	mg/kg	< 0.0	1 6				
Total PCBs (7 congeners)		М	mg/kg	< 0.0	3 1				
TPH Total WAC		М	mg/kg	23	500				
Total (of 17) PAHs		N	mg/kg	43.0	100				
рН		М		9.3		>6			
Acid Neutralisation Capacity		N	mol/kg	< 0.1	l	To evaluate	To evaluate		
Eluate Analysis			10:1	10:1	I imit value	s for complian	ce leaching test		
			mg/l	mg/k		S EN 12457-2 a	-		
Arsenic		N	0.016	0.16	-	2	25		
Barium		N	0.011	0.11	_	100	300		
Cadmium		N	< 0.001	< 0.0		1	5		
Chromium		N	< 0.005	< 0.0		10	70		
Copper		N	< 0.005	< 0.0		50	100		
Mercury		N	< 0.005	< 0.0	-	0.2	2		
Molybdenum		N	< 0.005	< 0.0		10	30		
Nickel		N	0.001	< 0.0		10	40		
Lead		N	0.001	< 0.0		10	50		
Antimony		N	< 0.005	< 0.0		0.7	5		
Selenium		N	< 0.005	< 0.0		0.5	7		
Zinc		N	< 0.005	< 0.0		50	200		
Chloride		N	< 5	< 50	-	15000	25000		
Fluoride		N	< 5	< 10	10	150	500		
Sulphate		N	10	96.50	_	20000	50000		
Total Dissolved Solids		N	160	1600.0		60000	100000		
Phenol Index		N	< 0.01	< 0.1		-	-		
Dissolved Organic Carbon		N	9.210	92.0		800	1000		
Leach Test Informatio	n			1 200	1 1 1 1				
рН		N	7.6						
Conductivity (uS/cm)		N	151						
Dry mass of test portion (g)			103.000						
Dry Matter (%)			91						
Moisture (%)			10						
Eluent Volume (ml)			994						
` '					_				

Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ELAB cannot be held responsible for any discrepencies with current legislation

WAC Analysis									
Elab Ref:	109396				Landf	Landfill Waste Acceptance Criteria Limits			
Sample Date:						Ctoble New			
Sample ID:	WS5 C2					Stable Non- reactive			
Depth (m)	0.80 - 1.00)			Inert Waste		Hazardous		
Site:			Greggs		Landfill	waste in non-	Waste Landfill		
						hazardous Landfill			
Determinand		Code	Units			Landilli			
Total Organic Carbon		N	%	0.56	3	5	6		
Loss on Ignition		М	%	1.8			10		
Total BTEX		М	mg/kg	< 0.01	6				
Total PCBs (7 congeners)		М	mg/kg	< 0.03	1				
TPH Total WAC		М	mg/kg	8	500				
Total (of 17) PAHs		N	mg/kg	3.0	100				
рН		М		8.7		>6			
Acid Neutralisation Capacity		N	mol/kg	< 0.1		To evaluate	To evaluate		
Eluate Analysis			10:1	10:1	l imit value	s for complian	ce leaching test		
			mg/l	mg/kg		S EN 12457-2 a	_		
Arsenic		N	0.006	0.06	0.5	2	25		
Barium		N	< 0.005	< 0.05	20	100	300		
Cadmium		N	< 0.001	< 0.01	0.04	1	5		
Chromium		N	< 0.005	< 0.05	0.5	10	70		
Copper		N	< 0.005	< 0.05	2	50	100		
Mercury		N	< 0.005	< 0.01	0.01	0.2	2		
Molybdenum		N	0.008	0.08	0.5	10	30		
Nickel		N	< 0.001	< 0.05	0.4	10	40		
Lead		N	< 0.001	< 0.05	0.5	10	50		
Antimony		N	< 0.005	< 0.05	0.06	0.7	5		
Selenium		N	< 0.005	< 0.05	0.1	0.5	7		
Zinc		N	< 0.005	< 0.05	4	50	200		
Chloride		N	5	52.00	800	15000	25000		
Fluoride		N	< 5	< 10	10	150	500		
Sulphate		N	31	312.00	1000	20000	50000		
Total Dissolved Solids		N	320	3200.00		60000	100000		
Phenol Index		N	< 0.01	< 0.10		-	-		
Dissolved Organic Carbon		N	13.700	137.00	500	800	1000		
Leach Test Informatio	n				•				
рН		N	7.9						
Conductivity (uS/cm)		N	298						
Dry mass of test portion (g)			101.000						
Dry Matter (%)			88						
Moisture (%)			14						
Eluent Volume (ml)			976						
` '									

Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ELAB cannot be held responsible for any discrepencies with current legislation

WAC Analysis									
Elab Ref:	109397					Landfill Waste Acceptance Criteria Limits			
Sample Date:							Stable Non-		
Sample ID:	WS6A C	1					reactive Hazardous		
Depth (m)	0.40 - 0.6	0				Inert Waste		Hazardous Waste Landfill	
Site:			Greggs	3		Landfill			
Determinand		Code	Units						
Total Organic Carbon		N	%	(0.82	3	5	6	
Loss on Ignition		М	%		2.0			10	
Total BTEX		М	mg/kg	<	0.01	6			
Total PCBs (7 congeners)		М	mg/kg	<	0.03	1			
TPH Total WAC		М	mg/kg		8	500			
Total (of 17) PAHs		N	mg/kg		14.0	100			
рН		М			11.0		>6		
Acid Neutralisation Capacity		N	mol/kg		0.1		To evaluate	To evaluate	
Eluate Analysis			10:1		10:1	l imit values	for complian	ce leaching test	
			mg/l	m	g/kg		S EN 12457-2 a		
Arsenic		N	< 0.005		0.05	0.5	2	25	
Barium		N	< 0.005		0.05	20	100	300	
Cadmium		N	< 0.001		0.01	0.04	1	5	
Chromium		N	< 0.005		0.05	0.5	10	70	
Copper		N	< 0.005		0.05	2	50	100	
Mercury		N	< 0.005		0.01	0.01	0.2	2	
Molybdenum		N	0.006		0.06	0.5	10	30	
Nickel		N	< 0.001		0.05	0.4	10	40	
Lead		N	< 0.001	<	0.05	0.5	10	50	
Antimony		N	< 0.005		0.05	0.06	0.7	5	
Selenium		N	< 0.005	<	0.05	0.1	0.5	7	
Zinc		N	< 0.005		0.05	4	50	200	
Chloride		N	8		9.00	800	15000	25000	
Fluoride		N	< 5		< 10	10	150	500	
Sulphate		N	84		11.00	1000	20000	50000	
Total Dissolved Solids		N	300		00.00	4000	60000	100000	
Phenol Index		N	< 0.01		0.10	1	-	-	
Dissolved Organic Carbon		N	3.510		5.00	500	800	1000	
Leach Test Informatio	n								
pН		N	10.3						
Conductivity (uS/cm)		N	379						
Dry mass of test portion (g)			101.000						
Dry Matter (%)			86						
Moisture (%)			17						
Eluent Volume (ml)			970						
						<u>l</u>			

Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ELAB cannot be held responsible for any discrepencies with current legislation

WAC Analysis							
Elab Ref:	109398				Landf	ill Waste Ac Criteria Lim	•
Sample Date:						Otable New	
Sample ID:	WS9 C1					Stable Non- reactive	
Depth (m)	0.50 - 0.7	0			Inert Waste	Hazardous	Hazardous
Site:			Gregg	3	Landfill	waste in non-	Waste Landfill
						hazardous	
Determinand		Code	Units			Landfill	
Total Organic Carbon		N	%	3.30	3	5	6
Loss on Ignition		М	%	4.4			10
Total BTEX		М	mg/kg	< 0.01	6		
Total PCBs (7 congeners)		М	mg/kg	< 0.03	1		
TPH Total WAC		М	mg/kg	< 5	500		
Total (of 17) PAHs		N	mg/kg	14.0	100		
рН		М		7.6		>6	
Acid Neutralisation Capacity		N	mol/kg	< 0.1		To evaluate	To evaluate
Eluate Analysis			10:1	10:1	Limit values	s for complian	ce leaching test
			mg/l	mg/kg	-	S EN 12457-2 a	-
Arsenic		N	0.010	0.10	0.5	2	25
Barium		N	0.008	0.08	20	100	300
Cadmium		N	< 0.001	< 0.01	0.04	1	5
Chromium		N	< 0.005	< 0.05	0.5	10	70
Copper		N	0.008	0.08	2	50	100
Mercury		N	< 0.005	< 0.01	0.01	0.2	2
Molybdenum		N	< 0.005	< 0.05	0.5	10	30
Nickel		N	0.001	< 0.05	0.4	10	40
Lead		N	< 0.001	< 0.05	0.5	10	50
Antimony		N	0.008	0.08	0.06	0.7	5
Selenium		N	< 0.005	< 0.05	0.1	0.5	7
Zinc		N	0.007	0.07	4	50	200
Chloride		N	5	50.00	800	15000	25000
Fluoride		N	< 5	< 10	10	150	500
Sulphate		N	6	63.50	1000	20000	50000
Total Dissolved Solids		N	< 10	< 100	4000	60000	100000
Phenol Index		N	< 0.01	< 0.10	1	-	-
Dissolved Organic Carbon		N	15.600	156.00	500	800	1000
Leach Test Informatio	n			1 22 2			
pН		N	7.4				
Conductivity (uS/cm)		N	74				
Dry mass of test portion (g)			101.000				
Dry Matter (%)			81				
Moisture (%)			23				
Eluent Volume (ml)			950				
			220				

Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ELAB cannot be held responsible for any discrepencies with current legislation

WAC Analysis					1 .		
Elab Ref:	109399				Landf	ill Waste Ac Criteria Lim	•
Sample Date:						Stable New	
Sample ID:	WS14 C	1			7	Stable Non- reactive	
Depth (m)	0.50 - 0.7	0			Inert Waste	Hazardous waste in non-	Hazardous
Site:			Gregg	3	Landfill		Waste Landfill
					7	hazardous Landfill	
Determinand		Code	Units		7	Landilli	
Total Organic Carbon		N	%	0.09	3	5	6
Loss on Ignition		М	%	0.7			10
Total BTEX		М	mg/kg	< 0.01	6		
Total PCBs (7 congeners)		М	mg/kg	< 0.03	1		
TPH Total WAC		М	mg/kg	< 5	500		
Total (of 17) PAHs		N	mg/kg	< 2	100		
рН		М		7.9		>6	
Acid Neutralisation Capacity		N	mol/kg	< 0.1		To evaluate	To evaluate
Eluate Analysis			10:1	10:1	Limit value	s for complian	ce leaching test
			mg/l	mg/kg		S EN 12457-2 a	_
Arsenic		N	< 0.005	< 0.05	0.5	2	25
Barium	+	N	< 0.005	< 0.05	20	100	300
Cadmium		N	< 0.001	< 0.01	0.04	1	5
Chromium	+	N	< 0.005	< 0.05	0.5	10	70
Copper	+	N	< 0.005	< 0.05	2	50	100
Mercury		N	< 0.005	< 0.01	0.01	0.2	2
Molybdenum	+	N	0.006	0.06	0.5	10	30
Nickel	+	N	0.002	< 0.05	0.4	10	40
Lead	+	N	< 0.001	< 0.05	0.5	10	50
Antimony	+	N	< 0.005	< 0.05	0.06	0.7	5
Selenium	+	N	< 0.005	< 0.05	0.1	0.5	7
Zinc		N	0.007	0.07	4	50	200
Chloride		N	18	181.00	800	15000	25000
Fluoride		N	< 5	< 10	10	150	500
Sulphate		N	7	74.40	1000	20000	50000
Total Dissolved Solids		N	130	1300.00		60000	100000
Phenol Index	+	N	< 0.01	< 0.10	1	-	-
Dissolved Organic Carbon	+	N	16.000	160.00		800	1000
Leach Test Informatio	n			11.00	1		
pН		N	7.5				
Conductivity (uS/cm)	 	N	123				
Dry mass of test portion (g)	+		103.000				
Dry Matter (%)			97				
Moisture (%)			3				
Eluent Volume (ml)	 		980				
						L	

Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ELAB cannot be held responsible for any discrepencies with current legislation