
Homebase, Manor Road. Richmond, London.

Avanton Richmond Development Ltd.

AIR QUALITY

REVISED AIR QUALITY ASSESSMENT

NOVEMBER 2019

Audit sheet.

Rev.	Date	Description of change / purpose of issue	Prepared	Reviewed	Authorised
01	25/10/2019	First Draft	HW	AD	KW
02	15/11/2019	First Issue	AD	KW	CR
03	20/11/2019	Second Issue	AD	KW	CR

This document has been prepared for Avanton Richmond Development Ltd only and solely for the purposes expressly defined herein. We owe no duty of care to any third parties in respect of its content. Therefore, unless expressly agreed by us in signed writing, we hereby exclude all liability to third parties, including liability for negligence, save only for liabilities that cannot be so excluded by operation of applicable law. The consequences of climate change and the effects of future changes in climatic conditions cannot be accurately predicted. This report has been based solely on the specific design assumptions and criteria stated herein.

Document reference: REP-1010539-5A-20191120-Manor Road-R3

AIR QUALITY

REVISED AIR QUALITY ASSESSMENT - REV. 03

Contents.

Audit sheet.	2
Contents.	3
Executive summary.	5
1. Introduction.	6
1.1 Amended Proposed Development.	6
1.2 Scope of Assessment.	7
2. Legislation, Policy and Guidance Documents.	9
2.1 Air Quality Strategy and Local Air Quality Management.	9
2.2 EU limit values.	10
2.3 Clean Air Strategy 2019	10
2.4 The London Environment Strategy.	10
2.5 Local Air Quality Management in Richmond.	11
2.6 Planning Policy.	12
2.7 London Planning Policy.	13
2.8 London Borough of Richmond upon Thames Local Plan.	14
2.9 Guidance Documents.	15
3. Methodology of Assessment.	17
3.1 Consultation.	17
3.2 Existing Air Quality in the Study Area.	17
3.3 Construction Phase Impacts.	17
3.4 Operational Phase Impacts.	18
3.5 Assessment of Significance.	19
4. Baseline Air Quality.	21
4.1 LAQM Review and Assessment.	21
4.2 Local Air Quality Monitoring.	21
4.3 Industrial Pollution.	23
4.4 Defra Predicted Concentrations.	23
4.5 Greater London Authority.	23
4.6 Pollution Maps	24
4.7 Summary of background data.	27
5. Impact Assessment.	28

AIR QUALITY

REVISED AIR QUALITY ASSESSMENT - REV. 03

5.1 Construction phase.		28
5.2 0	perational Phase.	31
5.3 A	r Quality Neutral Assessment.	32
6. Mit	igation.	34
6.1 C	onstruction Phase.	34
6.2 O	perational Phase.	37
6.3 A	r Quality Neutral.	37
7. Res	idual Impacts.	38
7.1 C	onstruction Phase.	38
8. Sur	nmary and Conclusions.	39
9. Glo	40	
10. References. Appendix 1 -Amended Proposed Development Plans.		41
		42
Appei	ndix 2 – IAQM and GLA Methodology.	43
Appei	ndix 3 Road Traffic Model Input Data.	45
A3.1	Road Traffic Modelling.	45
A3.2	Traffic Data	45
A3.3	Emissions	45
A3.4	Meteorological Data	45
A3.5	Background Concentrations	45
A3.6	Verification	47
A3.7	Sensitivity Analysis.	49
Appei	ndix 4 – Air Quality Neutral.	50
10.1	Transport Emissions.	50
Appei	ndix 5 – Professional Experience.	51

HOMEBASE, MANOR ROAD AVANTON RICHMOND DEVELOPMENT LTD AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

5

Executive summary.

This revised air quality assessment describes the potential air quality impacts associated with the construction and operation of a proposed residential development, located on Manor Road, Richmond. As the Amended Proposed Development is for residential uses, the annual mean objective for nitrogen dioxide (NO_2) and Particulate Matter 10 micrometres or less applies (PM_{10}).

The Amended Proposed Development is within an Air Quality Management Area (AQMA) declared for exceedances of the annual mean NO₂ objective and the PM₁₀ objective.

A risk assessment of the potential impacts of the construction phase of the Amended Proposed Development has been undertaken to identify appropriate mitigation measures. Provided these are implemented, for example through a planning condition, the residual impacts are considered to be not significant.

The need to undertake a detailed assessment of road traffic emissions associated with both the construction and the operation of the Amended Proposed Development has been scoped out because the traffic generated by the Amended Proposed Development is less than the traffic generated by the existing site use.

Exposure of users of the Amended Proposed Development once operational has been assessed, considering the pollutants NO_2 , PM_{10} and $PM_{2.5}$. There is predicted to be no exceedance of any of the air quality objectives for these pollutants and therefore the impacts on the Amended Proposed Development are not significant.

All heating and cooling of the Amended Proposed Development is to be via an electrical solution. As such, there will be no need for assessment of the impact of combustion emissions as there will be no combustion on site.

The Amended Proposed Development is air quality neutral according to the Greater London Authority's (GLA) benchmarking assessment methodology.

The overall operational air quality impacts of the Amended Proposed Development are judged to be not significant.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

6

1. Introduction.

1.1 Amended Proposed Development.

Hoare Lea has been commissioned by Avanton Richmond Development Ltd to undertake a revised air quality assessment of the potential air quality impacts arising from the construction and operation of a proposed residential development, located at 84 Manor Road, Richmond (postcode TW9 1YB) and is shown in Figure 1.

A detailed planning application (ref. 19/0510/FUL) was submitted to the London Borough of Richmond Upon Thames (LBRuT) in February 2019 for the redevelopment of the Homebase store at 84 Manor Road, North Sheen. The application was considered at LBRuT Planning Committee on 3 July 2019 and was recommended for refusal by LBRuT officers. A review of the scheme has been undertaken and an amended scheme has been put together to address the key issues raised. The updated schemes is hereafter referred to as the 'Amended Proposed Development'.

This air quality assessment is an updated assessment that considers the Amended Proposed Development subsequent to the Original Proposed Development. The key changes in terms of air quality relate to the addition of Block E and the introduction of new receptors along Manor Road, this has been considered in this assessment.

The Amended Proposed Development involves the demolition of existing buildings and structures and comprehensive phased residential-led redevelopment to provide residential units (Class C3), flexible retail /community / office uses (Classes A1, A2, A3, D2, B1), a police facility (Use Class B1), a bus layover with driver facilities (Sui Generis Use), provision of car and cycle parking, landscaping, public and private open spaces and all other necessary enabling works. All onsite car parking spaces will be for disabled use.

The Site is on Manor Road and currently occupied by a Homebase branch and associated surface car park; it is bounded by railways lines to the south and west of the Site; to the east is Manor Road, beyond which there is a Sainsburys and residential premises; to the north of the Site are more residential and commercial premises.

The Amended Proposed Development is shown in Figure 1 within the wider context of Richmond.

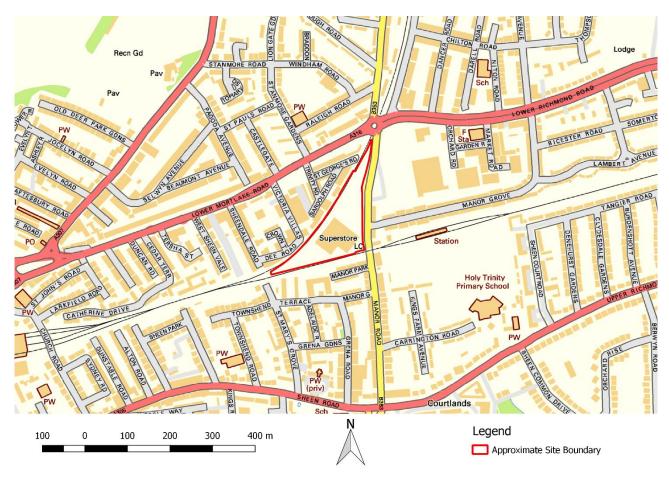


Figure 1 Location of the Amended Proposed Development. Contains OS Data © Crown Copyright and Database rights 2018

The assessment describes the potential air quality impacts associated with the construction and operational phases of the Amended Proposed Development

A glossary of terms provided in section 9.

1.2 Scope of Assessment.

The scope of the assessment was provided to and agreed with Carol Lee Senior Environmental Health Pollution Practitioner (Air Quality) at the London Borough of Richmond upon Thames (LBRT) by email on the 26th July 2018 as follows:

- The assessment of baseline air quality has drawn on the Council's air quality data and Defra's local background data.
- The assessment of the impact of emissions from existing road traffic at proposed receptors has been undertaken using dispersion modelling.
- The transport consultant, Sanderson Associates, has confirmed that the traffic generated by the
 development results in a change of less than 100 annual average daily traffic (AADT) for light duty vehicles
 (LDV). For this reason, assessment of impacts on existing receptors has been scoped out in line with the
 EPUK/IAQM document 'Land-Use Planning & Development Control: Planning for Air Quality' January 2017.
- The assessment was undertaken in line with the EPUK/IAQM document 'Land-Use Planning & Development Control: Planning for Air Quality' January 2017.

HOMEBASE, MANOR ROAD AVANTON RICHMOND DEVELOPMENT LTD AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

The assessment of energy systems was scoped out as all heating and cooling of the Amended Proposed

8

- The air quality assessment includes an assessment of construction impacts on air quality and dust using the IAQM methodology, in compliance with London's SPG on 'The Control of Dust and Emissions During Construction and Demolition (2014)'. This includes assessment of demolition.
- An air quality neutral assessment has also been carried out as part of the air quality assessment for the Amended Proposed Development.

Development is to be via an electric solution – i.e. no combustion.

The railway line to the west and south of the Site is not a relevant line as detailed in Table 4.2 of the LLAQM TG16² document, therefore assessment of the impact from the railway line has not been undertaken. There is considered to be no significant impact of this railway line on the Amended Proposed Development.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

2. Legislation, Policy and Guidance Documents.

2.1 Air Quality Strategy and Local Air Quality Management.

The Environment Act 1995 (Part IV) requires the Secretary of State to publish an air quality strategy and local authorities to review and assess the quality of air within their boundaries. The latter has become known as Local Air Quality Management (LAQM).

The Air Quality Strategy¹ provides the policy framework for local air quality management and assessment in the UK. It sets out air quality standards and objectives for key air pollutants. These standards and objectives are designed to protect human health and the environment. The Strategy also sets out how the different sectors of industry, transport and local government, can contribute to achieving these air quality objectives.

Air quality in London is devolved to the Mayor of London, who has powers Under Part IV of the Environment Act 1995 to intervene and direct local authorities in Greater London. In support of these devolved powers, the Mayor established a London specific LAQM system (LLAQM)² in 2016 for the coordinated discharge of Mayor's and Boroughs' responsibilities.

Local authorities are required to identify whether the objectives have been, or will be, achieved at relevant locations, by the applicable date. If the objectives are not achieved, the authority must declare an AQMA and should prepare an action plan within 12 months. An action plan must identify appropriate measures and policies that can be introduced in order to work towards achieving the objective(s).

The air quality objectives set out the extent to which the Government expects the standards to be achieved by a certain date. They take account of economic efficiency, practicability, technical feasibility and timescale. The objectives for use by local authorities are prescribed within the Air Quality (England) Regulations 2000³, and the Air Quality (England) (Amendment) Regulations 2002⁴.

The objectives for NO_2 and particulate matter (PM_{10} and $PM_{2.5}$) are set out in Table 1. The objectives for NO_2 and PM_{10} were to have been achieved by 2005 and 2004 respectively, and continue to apply in all future years thereafter. The $PM_{2.5}$ objective is to be achieved by 2020. It should be noted that local authorities in England have a flexible role in working towards reducing emissions and concentrations of $PM_{2.5}$.

Table 1: Air Quality Criteria for NO_2 , PM_{10} and $PM_{2.5}$

Pollutant	Time Period	Objective
Nitrogen Dioxide (NO ₂)	1-hour Mean	200 μg/m³ Not to be exceeded more than 18 times a year
	Annual Mean	40 μg/m ³
Fine Particles (PM ₁₀)	24-hour Mean	50 μg/m³ Not to be exceeded more than 35 times a year
	Annual Mean	40 μg/m ³
Fine Particles (PM _{2.5}) *	Annual Mean	25 μg/m ³

^{*} The PM_{2.5} objective, which is to be met by 2020, is not in (Air Quality England) Regulations and there is no requirement for local authorities to assess it, although they are encouraged to do so.

The objectives apply at locations where members of the public are likely to be regularly present and exposed over the averaging period of the objective. Examples of where the annual mean objectives should apply are provided in LAQM.TG16, and include: building facades of residential properties, schools, hospitals. The annual mean objectives are not relevant for the building facades of offices or other places of work where members of the public do not have regular access, kerbsides or gardens.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

The 24-hour objective for PM_{10} is considered to apply at the same locations as the annual mean objective, as well as in gardens of residential properties and at hotels.

The 1-hour objective for NO_2 also applies wherever members of the public might regularly spend 1-hour or more, including outdoor eating locations, pavements of busy shopping streets, carparks and bus stations which are not fully enclosed. The 1-hour objective does not apply at kerbside sites where the public do not have regular access.

2.2 EU limit values.

The European Union has also set limit values for NO_2 , PM_{10} and $PM_{2.5}$; these are legally binding and have been implemented into English legislation by The Air Quality Standards Regulations 2010⁵.

The limit values for NO_2 , PM_{10} and $PM_{2.5}$ are the same as the English objectives (Table 1), but applied from 2010 for NO_2 , 2005 for PM_{10} and 2015 for $PM_{2.5}$. The limit values apply at all locations (apart from where the public does not have access, where health and safety at work provisions apply and on the road carriageway).

According to the Government's 2017 Air Quality Plan the annual mean NO₂ limit value will be achieved throughout London by 2028⁶.

2.3 Clean Air Strategy 2019

The Clean Air Strategy (CAS)⁷, published in 2019, sets out the Government's proposals aimed at delivering cleaner air in England, and also indicates how devolved administrations intend to make emissions reductions. It sets out the comprehensive action that is required from across all parts of government and society to deliver clean air.

2.4 The London Environment Strategy.

The London Environment strategy (LES), published in May 2018²³, supersedes the previous Mayor's Air Quality Strategy (MAQS)⁸ for London, published in December 2010. The LES strategy aims to reduce pollution concentrations in London to achieve compliance within the EU limit values as soon as possible. The LES commits to the continuation of measures identified in the 2002 and 2010 MAQS and sets out a series of additional measures.

Proposal 4.3.3.a states that the London Strategy provides policies in which all new large-scale developments can not only become 'Air Quality Positive', but also maintain Air Quality Neutral requirements for all other developments. Within the planning guidance for building operations and transport emissions, information about emission benchmarks for 'Air Quality Neutral' developments are set out. Any development that either meets or exceeds the benchmarks is considered Air Quality Neutral as they avoid any increase in PM and NO_x emission²³s. In order for the benchmarks to remain relevant, the Mayor will continue to review them. To ensure that the requirements are met, execution of the Air Quality Neutral policy will be monitored by utilising both the London Local Air Quality Management (LLAQM) and the London Plan monitoring report.

The current Mayor of London is introducing a programme of measures to improve air quality and is planning on publishing a new air quality strategy, as part of a broader environmental strategy. The main aims with regards to air quality is outlined below:

"London will have the best air quality of any major world city by 2050, going beyond the legal requirements to protect human health and minimise inequalities."

In order to put London on to zero carbon by 2050, it is proposed that by 2019 all new buildings will be zero carbon whilst the early introduction of Ultra Low Emission Zone (ULEZ) in the capital's Congestion Charge Zone in 2020 will be implemented, with its possible extension to cover the area within the north and south circular roads for light duty vehicles and the replacement of the Low Emission Zone by an ULEZ for all light and heavy-duty vehicles in 2021. The long-term plan is to phase out the use of fossil fuels that are used to heat and cool buildings and to provide hot water.

AIR QUALITY REVISED AIR QUALITY ASSESSMENT - REV. 03

After public consultation, the MAQS has been replaced with the London Environment Strategy. The following proposed policies relate to the planning process with regards to improving air quality:

- Policy 4.2.2 "Reduce emissions from non-road transport sources, including by phasing out fossil fuels;"
- Policy 4.2.3 "Reduce emissions from non-transport sources, including by phasing out fossil fuels;"
- Policy 4.2.4 "The Mayor will work with the government, the London boroughs and other partners to accelerate the achievement of legal limits in Greater London and improve air quality;"
- Policy 4.2.5 "The Mayor will work with other cities (here and internationally), global city and industry networks to share best practice, lead action and support evidence based steps to improve air quality;"
- Policy 4.3.1 "The Mayor will establish new targets for PM_{2.5} and other pollutants where needed. The Mayor will seek to meet these targets as soon as possible, working with government and other partners;"
- Policy 4.3.2 "The Mayor will encourage the take up of ultra-low and zero emission technologies to make sure London's entire transport system is zero emission by 2050 to further reduce levels of pollution and achieve WHO air quality guidelines;"
- Policy 4.3.3 "Phase out the use of fossil fuels to heat, cool and maintain London's buildings, homes and urban spaces, and reduce the impact of building emissions on air quality;"
- Policy 4.3.4 "Work to reduce exposure to indoor air pollutants in the home, schools, workplace and other enclosed spaces."

Furthermore, the strategy outlines that negative consequences that can occur from developing air quality and climate policies in isolation, particularly with regards to energy and planning policy. Instead, integrated policy design can lead to benefits such as reducing carbon emissions by switching to zero emission vehicles simultaneously.

The Strategy also includes the focus on the 187 Air Quality Focus Areas (AQFA) declared by the GLA. Focus Areas are defined to address concerns raised by boroughs within the LAQM review process and forecasted air pollution trends. These are locations that not only exceed the EU annual mean limit value for NO₂ but are also locations with high human exposure. This is not an exhaustive list of London's hotspot locations, but where the GLA believe the problem to be most acute.

2.5 Local Air Quality Management in Richmond.

LBRT has declared its entire borough in the northwest as an AQMA for exceedances of the annual mean objective for NO_2 and the objective for PM_{10} .

LBRT's Air Quality Action Plan (AQAP) was published in 2017; it covers period from 2017 to 2022 and outlines the action LBRT will take to improve air quality in Richmond during this period. It replaces the previous action plan that ran from 2002 to 2017. Its aim is to reduce concentrations of, and exposure to, pollution thereby positively impacting on the health and quality of life of residents and visitors to the borough. Key priorities for the 2017 to 2022 AQAP are as follows:

- Establish and maintain an effective air quality steering group to ensure that the implementation of AQAP measures are coordinated effectively between relevant council services and external partners.
- To identify the key causes of traffic congestion within our AQ Focus Areas and pollution 'hotspots' and to determine effective measures for improving traffic flow through those areas using detailed air quality and traffic management modelling tools;
- To evaluate the air quality benefits and feasibility of introducing Clean Air Zones (CAZs) in the areas of the borough identified as having the poorest AQ;

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

- To provide guidance to developers on the impact of development on air quality and ensure that approved schemes include effective mitigation and maximise the opportunity to improve infrastructure for sustainable transport options;
- Encourage the uptake of low emission vehicles through expansion of the electric vehicle charging infrastructure:
- To formalise anti-idling enforcement in order to minimise emission from vehicles around key locations such as schools, taxi-ranks, AQ focus areas and hot-spots;
- To continue to work with schools, parents and students to improve awareness of air quality and to optimise parents' and children's desire and opportunity to adopt sustainable travel options;
- To review the research pertaining to air quality benefits of 'green infrastructure' and to implement appropriate schemes of planting in relevant locations;
- To continue to review our air quality monitoring network to ensure that it effectively identifies areas of poor air quality and provides accurate data to enable us to evaluate air quality trends and the impact of AQAP measures.

2.6 Planning Policy.

2.6.1 National Planning Policy Framework

The National Planning Policy Framework (NPPF) 2019⁹ sets out planning policy for England. It includes advice on when air quality should be a material consideration in development control decisions. Relevant sections are set out below:

Paragraph 170: "Planning policies and decisions should contribute to and enhance the natural and local environment by: preventing new and existing development from contributing to, being put at unacceptable risk from, or being adversely affected by, unacceptable levels of soil, air, water or noise pollution or land instability. Development should, wherever possible, help to improve local environmental conditions such as air and water quality"

Paragraph 180: "Planning policies and decisions should also ensure that new development is appropriate for its location taking into account the likely effects (including cumulative effects) of pollution on health, living conditions and the natural environment, as well as the potential sensitivity of the site or the wider area to impacts that could arise from the development".

Paragraph 181: "Planning policies and decisions should sustain and contribute towards compliance with relevant limit values or national objectives for pollutants, taking into account the presence of Air Quality Management Areas and Clean Air Zones, and the cumulative impacts from individual sites in local areas. Opportunities to improve air quality or mitigate impacts should be identified, such as through traffic and travel management, and green infrastructure provision and enhancement. So far as possible these opportunities should be considered at the plan-making stage, to ensure a strategic approach and limit the need for issues to be reconsidered when determining individual applications. Planning decisions should ensure that any new development in Air Quality Management Areas and Clean Air Zones is consistent with the local air quality action plan."

Paragraph 183: "The focus of planning policies and decisions should be on whether proposed development is an acceptable use of land, rather than the control of processes or emissions (where these are subject to separate pollution control regimes). Planning decisions should assume that these regimes will operate

13

HOMEBASE, MANOR ROAD AVANTON RICHMOND DEVELOPMENT LTD AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

effectively. Equally, where a planning decision has been made on a particular development, the planning issues should not be revisited through the permitting regimes operated by pollution control authorities."

Paragraph 54: "Local planning authorities should consider whether otherwise unacceptable development could be made acceptable through the use of conditions or planning obligations. Planning obligations should only be used where it is not possible to address unacceptable impacts through a planning condition."

The NPPF is supported by Planning Practice Guidance (PPG) 10.

The PPG states that:

Paragraph 001 (Reference ID: 32-001-20191101): "Defra carries out an annual national assessment of air quality using modelling and monitoring to determine compliance relevant Limit Values. It is important that the potential impact of new development on air quality is taken into account in planning where the national assessment indicates that relevant limits have been exceeded or are near the limit or where the need for emissions reductions has been identified."

Paragraph 002 (Reference ID: 32-002-20191101): Plans may need to consider ways in which the development could be made appropriate in locations where air quality is or is likely to be a concern, and not give rise to unacceptable risks from pollution. This could, for example entail identifying measures for offsetting the impact on air quality arising from new development including supporting measures in an air quality action plan or low emissions strategy where applicable".

Paragraph 005 (Reference ID: 32-005-20191101): "Whether air quality is relevant to a planning decision will depend on the proposed development and its location. Concerns could arise if the development is likely to have an adverse effect on air quality in areas where it is already known to be poor, particularly if it could affect the implementation of air quality strategies and action plans and / or breach legal obligations (including those relating to the conversation of habitats and species). Air quality may also be a material consideration if the proposed development would be particularly sensitive to poor air quality in its vicinity.

The PPG also sets out the information that may be required in an air quality assessment, stating that:

Paragraph 007 (Reference ID: 32-007-20191101): "Assessments need to be proportional to the nature and scale of development proposed and the potential impacts (taking into account existing air quality conditions), and because of this are likely to be locationally specific. The scope and content of supporting information is best discussed and agreed between the local planning authority and applicant before it is commissioned".

It also provides guidance on options for mitigating air quality impacts, and makes clear that:

Paragraph 008 (Reference ID: 32-008-20191101): "Mitigation options will need to be locationally specific, will depend on the proposed development and need to be proportionate to the likely impact."

2.7 London Planning Policy.

The London Plan Consolidated with Alterations since 2011 sets out the spatial development strategy for London. It brings together all relevant strategies, including the MAQS¹¹.

Policy 7.14, 'Improving Air Quality', addresses the spatial implications of the MAQS¹¹ and how development and land use can help achieve its objectives. It recognises that Boroughs should have policies in place to reduce pollutant concentrations, having regard to the Mayor's Air Quality Strategy. This policy seeks development proposals to:

- minimise increased exposure to existing poor air quality and make provision to address local problems of air quality particularly within AQMAs
- promote sustainable design and construction to reduce emission
- be at least 'air quality neutral' and not lead to/ further deterioration of existing poor air quality

14

HOMEBASE, MANOR ROAD AVANTON RICHMOND DEVELOPMENT LTD

AIR QUALITY REVISED AIR QUALITY ASSESSMENT - REV. 03

- ensure that where provision to reduce emissions from a development is made on-site.

A draft London plan¹², highlighting the spatial development strategy for Greater London which serves as a blueprint for future development and sustainable growth for the city, was published in July 2019. Public examination has now been completed and the inspectors report has been issued. Once approved, this plan is to supersede the previous London plan released in March 2016. It is scheduled for adoption early 2020.

Policy SI1, 'Improving Air Quality" aims to ensure that new developments are designed and built, as far as is possible, to improve local air quality and reduce the extent to which the public are exposed to poor air quality.

- development proposals should not:
 - lead to further deterioration of existing poor air quality;
 - create any new areas that exceed air quality limits, or delay the date at which compliance will be achieved in areas that are currently in exceedance of legal limits;
 - reduce air quality benefits that result from the Mayor's or boroughs' activities to improve air quality; or
 - create unacceptable risk of high levels of exposure to poor air quality.
- development proposals should use design solutions to prevent or minimise increased exposure to existing air
 pollution and make provision to address local problems of air quality. Particular care should be taken with
 developments that are in Air Quality Focus Areas or that are likely to be used by large numbers of people
 particularly vulnerable to poor air quality, such as children or older people.
- masterplans and development briefs for large-scale development proposals subject to an Environmental Impact Assessment should propose methods of achieving an Air Quality Positive approach through the new development.
- major development proposals must be at least air quality neutral and be submitted with an Air Quality Assessment
- development proposals must demonstrate how they plan to comply with the Non-Road Mobile Machinery Low Emission Zone and reduce emissions from the demolition and construction of buildings following best practice guidance.
- development proposals should ensure that where emissions need to be reduced, this is done on-site. Where
 it can be demonstrated that on-site provision is impractical or inappropriate, off-site measures to improve
 local air quality may be acceptable, provided that equivalent air quality benefits can be demonstrated.

Supplementary Planning Guidance (SPG)¹³ on 'The Control of Dust and Emissions during Construction and Demolition' requires an assessment of the impacts of construction works on air quality, using the IAQM methodology. An Air Quality and Dust Management Plan (AQDMP), should be submitted with the planning application, together with confirmation that an Air Quality and Dust Management Plan (AQDMP) will be provided to the local authority prior to the commencement of works. Within this report these documents are referred to as the Air Quality Assessment and the Dust Management Plan respectively.

The Sustainable Design and Construction SPG 14 makes reference to the Mayor's 'air quality neutral' policy and provides minimum requirements for emissions from boilers. All major developments in London needs to be assessed against emissions benchmarks for buildings and transport. Developments with emissions of NOx and PM $_{10}$ below these benchmarks are considered to be 'air quality neutral'.

2.8 London Borough of Richmond upon Thames Local Plan.

The Local Plan, adopted on the 3rd July 2018 and covering the period to 2033, is the lead Local Plan document for Richmond. It sets out policies and guidance for the development of the borough over the next 15 years. It looks ahead to 2033 and identifies where the main developments will take place, and how places within the

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

borough will change, or be protected from change, over that period. It also forms part of the development plan for the borough.

It contains the following policies related to air quality:

Policy LP 2 4.2.5 states: "Tall or taller buildings can have a greater impact on their environment than other building types, posing problems of overshadowing, overlooking, creation of harmful micro-climates, worsening air quality and harmful effects on residents and amenity spaces. The siting and massing of new buildings will be controlled to avoid harmful intrusions into the skyline and on significant local views. In particular buildings that are higher and bulkier than their surroundings can have a visual impact over a wide area, altering the historic skyline and the character and appearance of Conservation Areas as well as open spaces. They can also dominate, obscure or detract from the setting of listed buildings and Buildings of Townscape Merit, Conservation Areas, Scheduled Monuments, Registered Parks and Gardens and the World Heritage Site at Kew."

Policy LP 10 B Air Quality states: "The Council promotes good air quality design and new technologies. Developers should secure at least 'Emissions Neutral' development. To consider the impact of introducing new developments in areas already subject to poor air quality, the following will be required:

- 1. an air quality impact assessment, including where necessary, modelled data;
- 2. mitigation measures to reduce the development's impact upon air quality, including the type of equipment installed, thermal insulation and ducting abatement technology;
- 3. measures to protect the occupiers of new developments from existing sources;
- 4. strict mitigation for developments to be used by sensitive receptors such as schools, hospitals and care homes in areas of existing poor air quality; this also applies to proposals close to developments used by sensitive receptors."

Policy LP 10 4.10.6 states: "The Council will seek financial contributions through the use of Planning Obligations towards air quality measures where a proposed development is not air quality neutral or mitigation measures do not reduce the impact upon poor air quality."

2.9 Guidance Documents.

2.9.1 Guidance on the Assessment of Dust from Demolition and Construction

The Institute of Air Quality Management (IAQM) produced guidance on the assessment of dust from demolition and construction¹⁵. This document provides a risk-based methodology for assessing construction impacts, including demolition and earthworks where appropriate.

2.9.2 Guidance on the Assessment of Operational Impact of New Developments

Guidance produced by Environmental Protection UK (EPUK), and IAQM in January 2017 entitled 'Land-Use Planning & Development Control: Planning for Air Quality¹⁶ aims to ensure that air quality is properly accounted for in the development control process. The main foci of the guidance are the assessment of the impact of traffic and energy centre emissions and advice on how to describe air quality impacts and their significance.

2.9.3 Air Quality Neutral Planning Support Update: GLA 80371

Air Quality Consultants Ltd and ENVIRON UK Ltd produced guidance on behalf of the Greater London Authority on how to assess whether a development is air quality neutral. It provides benchmarks for assessing that development is consistent with the Mayor's policy.¹⁷

HOMEBASE, MANOR ROAD AVANTON RICHMOND DEVELOPMENT LTD AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

16

2.9.4 The Control of Dust and Emissions During Construction and Demolition

The Mayor of London's Supplementary Planning Guidance¹⁸ on the control of dust emissions seeks to reduced emissions of dust, PM_{10} and $PM_{2.5}$ from construction and demolition activities in London. It also aims to manage emissions of nitrogen oxides (NOx) from construction and demolition machinery by means of a new non-road mobile machinery ultra-low emissions zone (ULEZ).

3. Methodology of Assessment.

3.1 Consultation.

The approach to the assessment was agreed with the Environmental Health Pollution Practitioner at LBRT as described in section 1.2.

3.2 Existing Air Quality in the Study Area.

A baseline air quality review was undertaken to determine the existing air quality in the vicinity of the Application Site.

This desk-top study was undertaken using the following sources:

- Air quality data for Richmond, including a review of the LBRT air quality reports and local monitoring data;
- The UK Pollutant Release and Transfer Register¹⁹;
- Defra's Magic Map Application²⁰
- Background pollution maps from Defra's Local Air Quality Management (LAQM) website²¹;
- Pollution Inventory from the Environment Agency²²
- Greater London Authority LAEI Air Quality Focus Areas ²³
- Greater London Authority (GLA) modelling²⁴; and
- Aerial photography from Google Maps.

3.3 Construction Phase Impacts.

Fugitive dust emissions during the construction may give rise to increased PM_{10} concentrations and dust deposition, albeit this is a temporary impact. These impacts have been assessed using the IAQM and GLA methodology (see Appendix 2) to identify appropriate mitigation measures commensurate with the risk.

Activities on the proposed construction site have been divided into four types to reflect their different potential impacts. These are:

- Demolition
- Earthworks:
- Construction and
- Trackout

The risk of dust emissions was assessed for each activity with respect to:

- Potential loss of amenity due to dust soiling;
- The risk of health effects due to a significant increase in exposure to PM₁₀

A desk based review using online resources of habitats and ecologically designated sites has been undertaken. No relevant ecological receptors within 50m of the Amended Proposed Development or roads used by the construction traffic have been identified.

First the potential dust emission magnitude was defined based on the scale of the anticipated works and is classified as Small, Medium or Large. Then the sensitivity of the area was defined based on the receptor sensitivity, number of receptors, and the distance from the source.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

Receptors were identified within distance bands from the site boundary using aerial imagery and maps of the surrounding area (see Figure 7). The PM_{10} background concentration was also taken into account. The area was then defined as High, Medium or Low sensitivity.

The potential dust emission magnitude and the sensitivity of the area were combined to define the risk of impacts.

3.4 Operational Phase Impacts.

3.4.1 Site Suitability

Concentrations of NO_2 , PM_{10} and $PM_{2.5}$ have been predicted at the receptors in 2022, which is the earliest anticipated year of occupation for the Amended Proposed Development. These receptors are located at the façades of the Amended Proposed Development where concentrations are expected to be greatest and there is relevant exposure.

Predicted concentrations for NO_2 , PM_{10} and $PM_{2.5}$ in the earliest expected opening year of 2022 are shown in Table 5. The predicted concentrations include the contributions from road traffic, the bus terminal within the Application Site and existing background concentrations.

The number of buses using the terminal have been provided by the projects transport consultants, Sanderson Associates, and assumes that the number of buses on the route currently will remain the same, further detail is provided in Appendix 3.

For NO_2 two sets of concentrations have been predicted, one that's assumes background concentrations and future emissions reduce in line with Defra's predictions and one that assumes there will be no improvement between the base year (2018) and the opening year (2022), this is considered a conservative sensitivity test.

The locations of these receptors are shown in Figure 2.

AIR QUALITY REVISED AIR QUALITY ASSESSMENT - REV. 03

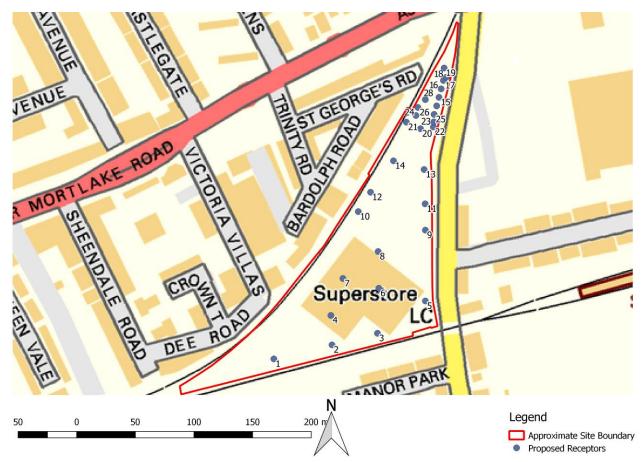


Figure 2 Location of proposed receptors. Contains OS Data © Crown Copyright and Database rights 2019.

3.4.2 Air Quality Neutral Assessment

To enable the implementation of the air quality neutral policy of the London Plan, emission benchmarks have been developed for buildings and transport, the latter of which are dependent on the zone in London where the development is located. Developers are required to calculate emissions due to building operations and transport, and to compare these emissions with the benchmarks, which are set out in Appendix 4.

Where the development's emissions exceed the benchmarks, on-site mitigation is required. Where emissions continue to exceed the benchmarks after appropriate on-site mitigation, the excess emissions need to be offset off-site through agreement with LBRT.

Full details of the modelling methodology are provided in Appendix 4.

3.5 Assessment of Significance.

3.5.1 Construction Dust

The IAQM and GLA guidance on the assessment of dust from demolition and construction states that the primary aim of the risk assessment is to identify site specific mitigation that, once implemented, should ensure that there will be no significant effect. Therefore, the assessment has been used to determine an appropriate level of mitigation for the construction phase.

The determination of which mitigation measures are recommended include elements of professional judgement and the professional experience of the consultants preparing this report is set out in Appendix 5.

HOMEBASE, MANOR ROAD AVANTON RICHMOND DEVELOPMENT LTD AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

20

3.5.2 Operational Impacts

For the proposed receptors the predicted concentrations have been assessed against the objectives shown in Table 1 in line with the EPUL/IAQM guidance.

The EPUK/IAQM guidance states:

"Where the air quality is such that an air quality objective at the building façade is not met, the effect on residents or occupants will be judged as significant, unless provision is made to reduce their exposure by some means."

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

4. Baseline Air Quality.

This section sets out the available information on air quality in the vicinity of the Amended Proposed Development.

4.1 LAQM Review and Assessment.

LBRT has declared the whole borough as an AQAM for exceedances of the annual mean objective for NO_2 and the objectives for PM_{10} . The Amended Proposed Development is therefore located within an AQMA.

4.2 Local Air Quality Monitoring.

There are four automatic monitoring stations in operation in the borough. The closest automatic monitor, RHG, is approximately 3.7 km west of the Amended Proposed Development; this is a mobile monitoring station and was located on Chertsey Road for 2018²⁵. This is a roadside site and its location is shown in Figure 3.

Table 2 Automatic monitoring for Richmond. Concentration in $\mu g/m^3$, 1-hour and 24-hour measurements show number of exceedances of the concentration i.e. 200 $\mu g/m^3$ for NO₂ and 50 $\mu g/m^3$ for PM₁₀.

Monitoring site and distance (km) from site boundary (approx.)	Objective		2015	2016	2017	2018
NO ₂						
RHG, 3.7 km	Annual mean (μg/m³)	42	*	*	37	34
	Number of days with concentrations >200 μg/m ³	0	*	*	0	0
PM ₁₀						
RHG, 3.7 km	Annual mean (μg/m³)	*	*	*	18	21
	Number of days with concentrations > 50 μg/m ³	*	*	*	1	1

^{*}This mobile unit was located at another site therefore data is not available.

It can be seen from Table 2 that the annual mean NO_2 objective was exceeded in 2014, however, concentrations were below the annual mean objective in the most recent years of 2017 and 2018. The 1-hour objective has not been exceeded based on the recent data available.

PM₁₀ monitoring at the automatic monitoring station shows that the annual objective has not been exceeded in the years with available data, 2017 and 2018. The 24-hour objective has not been exceeded in either year.

LBRT also have 64 diffusion tubes in place across the borough. The diffusion tube monitoring locations within the vicinity of the Site are given in Figure 3 and the annual mean concentrations in Table 3.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

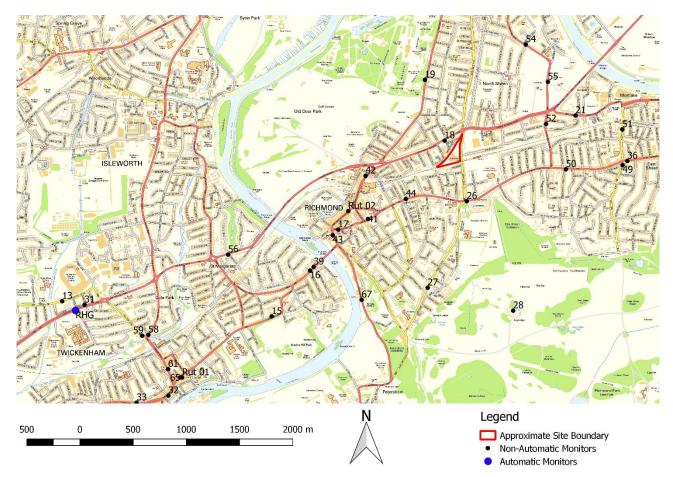


Figure 3 Local authority automatic and non-automatic monitoring locations in vicinity of the Amended Proposed Development. Contains OS Data © Crown Copyright and Database rights 2018

Table 3 Diffusion tube data (annual mean NO_2 concentrations $\mu g/m^3$) for the diffusion tubes located within the vicinity of the Amended Proposed Development site

Site	Site Type	Distance (km) from site (approx.)	2014	2015	2016	2017	2018
18	Roadside	0.1	66	67	56	58	46
19	Roadside	0.7	55	48	49	49	42
21	Roadside	1.1	41	37	39	36	50
26	Roadside	0.4	42	40	40	36	36
27	Roadside	1.1	38	37	43	41	37
42	Roadside	0.7	54	47	82	89	72
67	Roadside	1.4	**	**	**	44	41

^{**}Monitoring commenced in 2017 for this monitoring site

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

The diffusion tube monitoring data shows that the closest monitoring site, site 18, has exceeded the annual mean objective for NO_2 for the last five years. However, the site has generally shown a decrease in measured NO_2 concentration over the same period. There are also exceedances at monitoring sites located on busy roads, such as sites: 19, 21 and 42. Although site 42 is located along a busy high street on the junction of Kew Road and the Richmond Station Car Park. Due to this, it is likely that it is heavily trafficked and is subjected to idling traffic on a regular basis.

An annual mean concentration of $60 \,\mu\text{g/m}^3$ or above is often used to indicate a possible exceedance of the hourly mean NO_2 objective. It is likely that the one-hour objective was exceeded at site 42. It is considered unlikely that the one-hour objective will be exceeded at the Amended Proposed Development based on the monitoring data provided.

4.3 Industrial Pollution.

A desk based review of potential industrial sources using the UK Pollutant Release and Transfer Register¹⁹ did not identify any significant industrial or waste management sources of air pollution that are likely to affect the Amended Proposed Development with regard to air quality.

4.4 Defra Predicted Concentrations.

The background concentrations have been obtained from the national maps published by Defra 21 . These estimated concentrations are produced on a 1km by 1km grid basis for the whole of the UK. The Site falls into grid square x 518500 y 175500 and the predicted concentrations for this grid square for NO₂, PM₁₀ and PM_{2.5} are provided in Table 4.

Table 4 Estimated background concentrations in 2017, 2019 and 2022 in µg/m³

Year	Background				
	NO ₂	PM ₁₀	PM _{2.5}		
2017	25.1	17.6	12.2		
2019	23.1	17.1	11.9		
2022	20.1	16.5	11.4		

It can be seen that the modelled background concentrations are below the objective levels for all pollutants at the assumed opening year, 2022.

4.5 Greater London Authority.

4.5.1 Air Quality Focus Areas

There are a number of Air Quality Focus Area's (AQFA's) identified in London with four AQFA's in Richmond. These are locations that not only exceed the EU annual mean limit value for NO₂ but are also locations with high human exposure.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

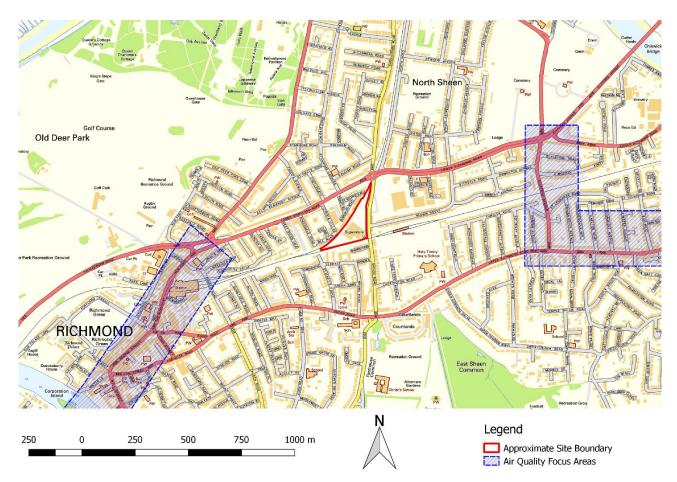


Figure 4 Air Quality Focus Areas and location of Amended Proposed Development in Richmond. OS Data © Crown Copyright and Database rights 2018

The Amended Proposed Development is located within 500m of two declared AQFA's.

4.6 Pollution Maps

4.6.1 London Air Emission Inventory

The GLA produce annual mean concentration maps for the whole of London on a 20m by 20m grid for a historic year (2013) and future years (2020, 2025 and 2030). Figure 5 and Figure 6 illustrate the annual mean NO_2 and PM_{10} concentrations in the immediate area of the Amended Proposed Development for 2013.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

Figure 5 Modelled 2013 annual mean NO_2 concentrations (GLA, 2017), with red outline indicating approximate Amended Proposed Development location OS Data © Crown Copyright and Database rights 2019

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

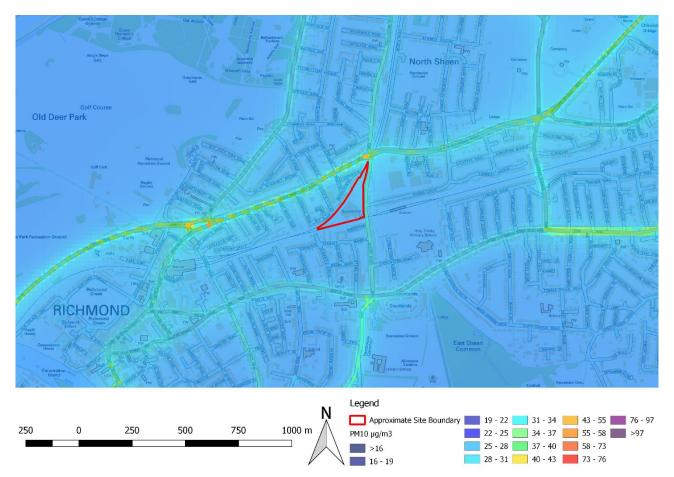


Figure 6 Modelled 2013 annual mean PM_{10} concentrations (GLA, 2017), with red outline indicating approximate Amended Proposed Development location OS Data © Crown Copyright and Database rights 2019

The concentration of key pollutants in 2013 are shown on Table 5 for the coordinates of the Amended Proposed Development. The annual mean NO_2 objective is not predicted to be exceeded in 2013. The objectives for PM_{10} and $PM_{2.5}$ are also not predicted to be exceeded in 2013. It is shown in Table 6 that there is a decrease in concentration for all pollutants, with no predicted exceedances of the annual objectives.

Table 5 Annual mean concentrations of NO₂, PM₁₀ and PM_{2.5} (grid reference x 518960, y 175480) (GLA, 2017)

Year	Pollutant Concentration - (µg/m³) NO2 PM ₁₀ PM _{2.5}					
2013	36	25	16			
2020	29	23	14			

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

27

4.7 Summary of background data.

In summary, the baseline assessment has shown that the air quality in parts of Richmond regularly exceed the NO_2 annual mean objective, particularly close to busy roads. The annual mean NO_2 objective is exceeded at all of the monitoring sites within 1.5 km of the Site in the most recent year, 2018, with the exception of two sites: 26 and 27.

The 1-hour objective is not exceeded at the automatic monitoring station located at Chertsey Road, RHG, and is unlikely to have been exceeded at diffusion tube sites at other locations, with the exception of site 42.

 PM_{10} concentrations are below the objectives at the automatic monitoring station, RHG, located on Chertsey Road.

Both the LAEI and Defra's predicted background concentrations are below the annual mean objectives for NO_2 , PM_{10} , and $PM_{2.5}$ at the Application Site.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT

- REV. 03

28

5. Impact Assessment.

The potential for air quality impacts during construction and operation of the Amended Proposed Development are discussed in this section.

5.1 Construction phase.

This sub section provides the results for demolition, earthworks, construction and trackout activities associated with the Amended Proposed Development. Based on the impact assessment appropriate mitigation has been identified.

The risk of dust impacts is based on the potential dust emissions magnitude and the sensitivity of the area as described in section 5.1.3. The two factors are then combined to determine the risk of dust impacts with no mitigation applied. In the absence of any site-specific information a higher risk category has been applied to represent the worst-case scenario.

5.1.1 Potential Dust Emission Magnitude

Demolition

The Site is currently occupied by a Homebase branch and associated surface car park, which are to be demolished. This is likely to have a total building volume between 20,000 m³ to 50,000 m³, with potentially dusty construction material, such as concrete. The potential dust emission magnitude from demolition activities would therefore be considered medium.

Earthworks

The Site is large at approximately $15,000 \text{ m}^2$, and there will be considerable earthworks proposed to include a basement in Blocks A and D. The potential dust emissions magnitude from earthworks is therefore considered to be large.

Construction

The total building volume for the Amended Proposed Development is likely to be over $100,000 \, \text{m}^3$. The construction will be mainly concrete and masonry which have potential for high dust release. In accordance with the IAQM criteria, the potential dust emission magnitude from construction based on this detail would be large.

Trackout

Initial information on the number of outward Heavy-Duty Vehicle (HDV) trips to be generated during the construction phase per day was not available at the time of writing of this report. There may be short distances of unpaved road / tracks proposed as part of the Amended Proposed Development. However, given the dimension of the Site are they are likely to be between 50 m to 100 m in length. The potential dust emissions magnitude from trackout is considered to be medium.

5.1.2 Summary of Potential Dust Emission Magnitude

As outlined in the IAQM guidance, the scale and nature of the works has been assessed to determine the potential dust emissions magnitude for the Site. Table 6 shows a summary of the classifications for the Amended Proposed Development for each of the activities.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

Table 6 Dust Emission Magnitude for the Amended Proposed Development

Activity	Dust Emission Magnitude
Demolition	Medium
Earthworks	Large
Construction	Large
Trackout	Medium

5.1.3 Sensitivity of the Study Area

The area surrounding the Site consists primarily of commercial and residential premises. Figure 7 shows the Amended Proposed Development location (red line) and a series of distance bands from the boundary of the Site. Note that receptors identified at a greater distance than 350 m have not been included as the IAQM Guidance¹⁵ does not consider that there will be a material impact beyond this distance (see Appendix 2.)



Figure 7 IAQM demolition and construction distance band criteria from site boundary. Contains Ordnance Survey Data © Crown Copyright 2018

5.1.4 Sensitivity of the Study Area to Dust Soiling

For the assessment of construction impacts the surrounding area is considered as a whole and the impacts at all receptors within 350 m are taken in to account. Residential areas are considered to be highly sensitive to dust

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

soiling. There are between one to ten residential receptors within 20 m of the Amended Proposed Development, and therefore the area surrounding the site is considered to be medium sensitivity.

For trackout, the distances are measured from the side of the roads used by construction traffic. Without site specific mitigation, trackout may occur from roads up to 200m from medium development sites, as measured from the Site exit, and up to 50m from the edge of the road. The Site has been classified as medium sensitivity to dust soiling for trackout.

5.1.5 Sensitivity of the Study Area to the Health Effects of PM₁₀

The LAEI forecast for 2020 modelled background PM_{10} concentrations is 23 $\mu g/m^3$. As the local PM_{10} concentration is under 24 $\mu g/m^3$ the area is considered to be of low sensitivity to the health effects of PM_{10} for all four activities.

5.1.6 Summary of Sensitivity

The sensitivity of the area is summarised for each activity in Table 7.

Table 7 Sensitivity of the Surrounding Area

Potential Impact	Demolition	Earthworks	Construction	Trackout
Dust Soiling	Medium	Medium	Medium	Medium
Human Health	Low	Low	Low	Low

5.1.7 Risk of Dust Effects

The dust emissions magnitude (section 5.1.1) is combined with the sensitivity of the area (section 5.1.3) to determine the risk of impacts with no mitigation applied. A summary of the unmitigated risk during each activity is provided in Table 8.

It should be noted that the potential for impacts depends significantly on the distance between the dust generating activity and receptor location. Risk was predicted based on the worst-case assumption that all works will be undertaken at the site boundary closest to each receptor area. Therefore, the actual risk is likely to be lower than that predicted during the majority of the construction phase.

Table 8 Summary of Potential Unmitigated Dust Risks

Potential Impact	Demolition	Earthworks	Construction	Trackout
Dust Soiling	Medium Risk	Medium Risk	Medium Risk	Medium Risk
Human Health	Low Risk	Low Risk	Low Risk	Low Risk

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

5.2 Operational Phase.

5.2.1 Site Suitability

There are predicted to be no exceedances of the NO_2 annual mean objective using Defra's emission factors for 2022 or in the sensitivity test using Defra's emission factors for 2018 at any receptor on any floor of the Amended Proposed Development.

There are predicted to be no exceedances of the annual mean objectives for PM_{10} or $PM_{2.5}$ at any receptor on any floor of the Amended Proposed Development.

The highest concentration for each receptor is recorded on the lowest floor, for receptors 1-20 this is ground floor, from receptors 21-28 this is the first floor.

Table 9 Predicted Concentrations of NO₂, PM₁₀ and PM_{2.5} in 2022 at proposed receptors.

		Annual Me	an (μg/m³)	
Receptor	NO	2	DNA	DNA
	2022 Emissions	Sensitivity	PM ₁₀	PM _{2.5}
1 - G	21.9	26.5	16.8	11.6
2 - G	22.2	26.7	16.9	11.6
3 - G	22.9	27.4	16.9	11.7
4 – G	22.3	26.9	16.9	11.6
5 – G	27.8	32.1	17.5	12.0
6 – G	23.1	27.7	17.0	11.7
7 - G	22.6	27.3	16.9	11.7
8 – G	23.3	28.0	17.0	11.7
9 - G	28.1	32.6	17.6	12.1
10 - G	23.2	28.2	17.1	11.7
11 - G	28.0	32.7	17.6	12.1
12 - G	23.6	28.7	17.1	11.8
13 - G	28.5	33.4	17.7	12.2
14 - G	24.7	29.9	17.3	11.9
15 - G	29.9	35.3	18.0	12.3
16 - G	29.9	35.3	18.1	12.3
17 - G	30.1	35.6	18.1	12.4
18 - G	31.1	36.5	18.2	12.5
19 - G	29.8	35.5	18.1	12.4
20 - G	27.4	33.5	17.7	12.1

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

AQAL	40		32	25
28 - 1	23.7	28.8	17.2	11.8
27 - 1	23.5	28.6	17.1	11.8
26 - 1	23.6	28.8	17.2	11.8
25 - 1	23.5	28.5	17.1	11.8
24 - 1	23.5	28.7	17.1	11.8
23 - 1	23.4	28.4	17.1	11.8
22 - 1	23.4	28.3	17.1	11.8
21 - 1	23.4	28.6	17.1	11.8

G – in the receptor name denotes a ground floor receptor at a height of 1.5 m.

 NO_2 concentrations are predicted to be well below $60~\mu g/m^3$ in both scenarios, which is considered to be the annual mean concentration at which the short-term objective for NO_2 may be exceeded. Therefore, the short-term objective is also likely to be met.

5.3 Air Quality Neutral Assessment.

5.3.1 Building Emissions

There will be no combustion energy plant included as part of the Amended Proposed Development as energy demand will be met by electrical plant, therefore there will be no building emissions under the operational phase.

5.3.2 Transport Emissions

The input data for the calculation of the transport related emissions (TRE) are shown in Table 10 and the transport emissions benchmark (TEB) input data are shown in Table 18.

The trip generation for the existing site is known and therefore has been used to calculate the TEB for both NOx and PM_{10} .

Table 10: Calculation of TRE and TEB

Description		Value	Unit
А	Annual Average Daily Traffic (Retail)	266	No. of vehicles/24 hours
В	Annual Average Daily Traffic (Residential)	441	No. of vehicles/24 hours
С	Annual Average Daily Traffic (Existing Retail Use)	1779	No. of vehicles/24 hours
D	TEB NOx	1,238	kg/yr
Е	Annual Emissions Generated by Development (TRE)	833	kg/yr
F	TEB PM ₁₀	212	kg/yr
G	Annual Emissions Generated by Development (TRE)	143	kg/yr

^{1 -} in the receptor name denotes a first floor receptor, within block E at a height of 7.8 m.

HOMEBASE, MANOR ROAD
AVANTON RICHMOND
REVISED AIR C

DEVELOPMENT LTD

REVISED AIR QUALITY ASSESSMENT - REV. 03

33

The Amended Proposed Development TRE for NO_x is 833 kg/yr and for PM_{10} is 143 kg/yr. Both these TRE's are below the relevant TEB, 1,238 kg/yr NO_x and 212 kg/yr PM_{10} ; and therefore, the Amended Proposed Development is considered air quality neutral with regard to transport emissions thus mitigation is not required.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

6. Mitigation.

6.1 Construction Phase.

To mitigate the potential impacts during the construction phase it is recommended that mitigation measures consistent with the GLA's SPG and IAQM guidance are implemented. An Air Quality and Dust Management Plan (AQDMP), should be included as part of a Construction Environmental Management Plan (CEMP) and provided to the local authority prior to the commencement of works.

The following mitigation measures in Table 11 have been selected for the Amended Proposed Development based upon the dust risk categories outlined in 4.1.3 of this report and should be incorporated in the AQDMP:

Table 11 Fugitive dust mitigation measures that are applicable to the Amended Proposed Development

Issue	Mitigation Measure	
Communications	Develop and implement a stakeholder communications plan that includes community engagement before work commences on site	
	Display the name and contact details of person(s) accountable for air quality and dust issues on the site boundary. This may be the environment manager/engineer or the site manager	
	Display the head or regional office contact information	
Dust Management Plan	Develop and implement a Dust Management Plan (DMP), which may include measures to control emissions, approved by the Local Authority. The DMP may include monitoring of dust deposition, dust flux, real-time PM ₁₀ continuous monitoring and/or visual inspections.	
Site Management	Record all dust and air quality complaints, identify cause(s), take appropriate measures to reduce emissions in a timely manner, and record the measures taken	
	Make the complaints log available to the Local Authority when asked	
	Record any exceptional incidents that cause dust and/or air emissions, either on- or off- site, and the action taken to resolve the situation in the log book	
	Hold regular liaison meetings with other high-risk construction sites within 500m of the site boundary, to ensure plans are coordinated and dust and particulate matter emissions are minimized. It is important to understand the interactions of the offsite transport/deliveries which might be using the same strategic road network routes	
Monitoring	Undertake daily on-site and off-site inspection, where receptors (including roads) are nearby, to monitor dust, record inspection results, and make the log available to the Local Authority when asked. This should include regular dust soiling check of surfaces such as street furniture, cars, window sills within 100m of the site boundary, with cleaning to be provided if necessary	
	Carry out regular site inspections to monitor compliance with the DMP, record inspection results, and make an inspection log available to the Local Authority when asked	

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

Issue	Mitigation Measure
	Increase the frequency of site inspections by the person accountable for air quality and dust issues on site when activities with a high potential to produce dust are being carried out and during prolonged dry or windy conditions
	Agree dust deposition, dust flux, or real time PM_{10} continuous monitoring locations with the Local authority. Where possible commence baseline monitoring at least three months before work commences on site or, if it is a large site, before work on a phase commences. Further guidance is provided by IAQM on monitoring during demolition, earthworks and construction.
Preparing and maintaining the site	Plan site layout so that machinery and dust causing activities are located away from receptors, as far as is possible
	Erect solid screens or barriers around dusty activities or the site boundary that are at least as high as any stockpiles on site
	Fully enclose site or specific operations where there is a high potential for dust production and the site is active for an extensive period
	Avoid site runoff of water or mud
	Keep site fencing, barriers and scaffolding clean using wet methods
	Remove materials that have a potential to produce dust from site as soon as possible, unless being re-used on site. If they are being re-used cover as described below
	Cover, seed or fence stockpiles to prevent wind whipping
	Ensure all on-road vehicles comply with the requirements of the London Low Emission Zone and London Non- Road Mobile Machinery (NRMM) standards
Operating vehicle/machinery and sustainable travel	Ensure all vehicles switch off engines when stationary – no idling vehicles
	Avoid the use of diesel or petrol-powered generators and use mains electricity or battery powered equipment where practicable
	Impose and signpost a maximum-speed-limit of 15 mph on surfaced and 10 mph on unsurfaced haul roads and work areas (if long haul routes are required these speeds may be increased with suitable additional control measures provided, subject to the approval of the nominated undertaker and with the agreement of the Local Authority, where applicable)
	Produce a construction logistics plan to manage the sustainable delivery of goods and materials
	Implement a Travel Plan that supports and encourages sustainable travel (public transport, cycling, walking and car-sharing)
Operations	Only use cutting, grinding or sawing equipment fitted or in conjunction with suitable dust suppression techniques such as water sprays or local extraction, e.g. suitable local exhaust ventilation systems
	Ensure an adequate water supply on the site for effective dust/particulate matter suppression/mitigation, using non-potable water where possible and appropriate

AIR QUALITY REVISED AIR QUALITY ASSESSMENT - REV. 03

Issue	Mitigation Measure	
	Use enclosed chutes and conveyors and covered skips	
	Minimize drop heights from conveyors, loading shovels, hoppers and other loading or handling equipment and use fine water sprays on such equipment wherever appropriate	
	Ensure equipment is readily available on site to clean any dry spillages, and clean up spillages as soon as reasonably practicable after the event using wet cleaning methods	
Waste management	Avoid bonfires and burning of waste materials	
Demolition	Soft strip inside buildings before demolition (retaining walls and windows in the rest of the building where possible, to provide a screen against dust)	
	Ensure effective water suppression is used during demolition operations. Hand held sprays are more effective than hoses attached to equipment as the water can be directed to where it is needed. In addition, high volume water suppression systems, manually controlled, can produce fine water droplets that effectively bring the dust particles to the ground	
	Avoid explosive blasting, using appropriate manual or mechanical alternatives	
	Bag and remove any biological debris or damp down such material before demolition	
Earthworks	Re-vegetate earthworks and exposed areas/soil stockpiles to stabilise surfaces as soon as practicable	
	Use hessian, mulches or trackifiers where it is not possible to re-vegetate or cover with topsoil, as soon as practicable	
	Only remove the cover in small areas during work and not all at once	
Construction	Avoid scrabbling (roughening of concrete surfaces) if possible	
	Ensure sand and other aggregates are stored in bunded areas and are not allowed to dry out, unless this is required for a particular process, in which case ensure that appropriate additional control measures are in place	
	Ensure bulk cement and other fine powder materials are delivered in enclosed tankers and stored in silos with suitable emission control systems to prevent escape of material and overfilling during delivery	
	For smaller supplies of fine powder material ensure bags are sealed after use and stored appropriately to prevent dust	
Trackout	Use water-assisted dust sweeper(s) on the access and local roads, to remove, as necessary, any material tracked out of the site. This may require the sweeper being in continuous use	
	Avoid dry sweeping of large areas	

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

Issue	Mitigation Measure
	Ensure vehicles entering and leaving sites are covered to prevent escape of materials during transport
	Inspect on-site haul routes for integrity and instigate repairs to the surface as soon as reasonably practicable
	Record all inspections of haul routes and any subsequent action in a site log book
	Install hard surfaced haul routes, which are regularly damped down with fixed or mobile sprinkler systems, or mobile water bowsers and regularly cleaned
	Implement a wheel washing system (with rumble grids to dislodge accumulated dust and mud prior to leaving the site where reasonably practicable)
	Ensure there is an adequate area of hard surfaced road between the wheel wash facility and the site exit, wherever site size and layout permits
	Access gates to be located at least 10m from receptors where possible

6.2 Operational Phase.

There are not expected to be any exceedances of the relevant air quality objectives at any receptor within the Amended Proposed Development and therefore no mitigation is required.

Although no measures are required to mitigate the impacts of the air quality from the Amended Proposed Development, electric vehicle charge points will be provided as part of the scheme in line with the draft London Plan. This will require provision of active charging at 20% of parking spaces and passive provision at the remaining 80% of parking spaces.

6.3 Air Quality Neutral.

The air quality neutral benchmark has been met and further mitigation measures are not required.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

38

7. Residual Impacts.

7.1 Construction Phase.

Assuming the relevant mitigation measures outlined in the mitigation section are implemented through, for example, a planning condition, the residual effect from dust generating activities associated with this phase of the Amended Proposed Development is considered to be not significant.

8. Summary and Conclusions.

This amended air quality assessment describes the potential air quality impacts associated with the construction and operation of the Amended Proposed Development, located on Manor Road, Richmond.

The Site is for residential uses, therefore the annual mean objective for nitrogen dioxide (NO_2) and Particulate Matter 10 and 2.5 micrometres or less applies (PM_{10} and $PM_{2.5}$).

The impacts of the construction work on dust and ambient PM_{10} concentrations have been assessed and the risk of dust causing a loss of local amenity and increased exposure to PM_{10} concentrations during construction works has been used to identify appropriate mitigation measures. Provided these are implemented, for example through a planning condition, the residual impacts are considered to be not significant. It is therefore considered that the Amended Proposed Development is consistent with the latest guidance relating to air quality for construction and demolition.

Exposure of future users of the Amended Proposed Development has been modelled using ADMS-Roads and there are predicted to be no exceedances of any relevant objectives for the pollutants modelled, NO_2 , $PM_{2.5}$.

The air quality impacts of the bus layover, located beneath Block E, has been assessed and the emissions associated with its operation do not contribute to any exceedances of the air quality objectives at residential units within the Amended Proposed Development.

There will be no combustion plant onsite and all energy demand will be met by electrical servicing, therefore there will be no energy emissions from the Amended Proposed Development.

The Amended Proposed Development is air quality neutral according to the Greater London Authority's (GLA) benchmarking assessment methodology.

The overall operational air quality impacts of the Amended Proposed Development are judged to be not significant.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

40

9. Glossary of terms.

AADT Annual Average Daily Traffic AQMA Air Quality Management Area

CEMP Construction Environmental Management Plan

Defra Department for Environment, Food and Rural Affairs

DMP Dust Management Plan
EPUK Environmental Protection UK
GIFA Gross Internal Floor Area

HDV Heavy Duty Vehicles (> 3.5 tonnes gross vehicle weight)

HGV Heavy Goods Vehicle

IAQMInstitute of Air Quality ManagementLAQMLocal Air Quality ManagementLLAQMLondon Local Air Quality Management

LLAQM.TG London Local Air Quality Management – Technical Guidance

LBRT London Borough of Richmond upon Thames

Light Duty Vehicles (<3.5 tonnes gross vehicle weight)

LES London Environment Strategy µg/m³ Micrograms per cubic metre

NO₂ Nitrogen dioxide

NO_x Nitrogen oxides (taken to be NO₂ + NO) NPPF National Planning Policy Framework NRMM Non-Road Mobile Machinery

Objectives A nationally defined set of health-based concentrations for nine pollutants, seven of

which are incorporated in Regulations, setting out the extent to which the standards should be achieved by a defined date. There are also vegetation-based objectives for

sulphur dioxide and nitrogen oxides

PM₁₀ Particulate matter with aerodynamic diameter less than 10 micrometres PM_{2.5} Particulate matter with aerodynamic diameter less than 2.5 micrometres

PPG Planning Practice Guidance SPG Supplementary Planning Guidance

Standards A nationally defined set of concentrations for nine pollutants below which health effects

do not occur or are minimal

Trackout The transport of dust and dirt from the construction / demolition site onto the public

road network, where it may be deposited and then re-suspended by vehicles using the

network. This arises when heavy duty vehicles (HDVs) leave the construction /

demolition site with dusty materials, which may then spill onto the road, and/or when HDVs transfer dust and dirt onto the road having travelled over muddy ground on site

ULEZ Ultra Low Emission Zone

AIR QUALITY

REVISED AIR QUALITY ASSESSMENT - REV. 03

41

10. References.

1 Defra (2007) The Air Quality Strategy for England, Scotland, Wales and Northern Ireland, Defra

2 Mayor of London - London Local Air Quality Management (LLAQM) Technical Guidance 2016 (TG.16)

3 The Stationary Office (2000) Statutory Instrument 2000, No 921, The Air Quality (England) Regulations 2000, London

4 The Stationary Office (2002) Statutory Instrument 2002, No 304, The Air Quality (England) (Amendment) Regulations 2002, London

5 The Statutory Office (2010) Statutory Instrument 2010, No 1001, The Air Quality Standards Regulations 2010, London

 $6\ Defra\ (2017)\ UK\ plan\ for\ tackling\ roadside\ nitrogen\ dioxide\ concentrations: An\ overview\ -\ [online], (Last\ accessed:\ 02/01/18),\ Available:\ https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/633269/air-quality-plan-overview.pdf$

⁷ The Clean Air Strategy, DEFRA. January 2019.

8 GLA (2010) Clearing the Air: The Mayor's Air Quality Strategy. Greater London Authority – [online], (Last accessed: 02/01/18)

https://www.london.gov.uk/sites/default/files/Air_Quality_Strategy_v3.pdf

⁹ National Planning Policy Framework, Department for Communities and Local Governments, 2019

10 Planning Practice Guidance Notes (PPG)

11 London.gov.uk. (2019). {online} Available at: https://www.london.gov.uk/sites/default/files/Air Quality Strategy v3.pdf

12 London.gov.uk. (2019). {online} Available at: https://www.london.gov.uk/sites/default/files/draft_london_plan_-

showing minor suggested changes july 2018.pdf

 $13 \ London.gov.uk. (2019). \ \{online\} \ Available \ at: \ \underline{https://www.london.gov.uk/what-we-do/planning/implementing-london-plan/supplementary-planning-guidance/control-dust-and}$

14 London.gov.uk. (2019). {online} Available at: https://www.london.gov.uk/sites/default/files/osd34_sustainable_design_construction_spg.pdf_

15 Institute of Air Quality Management (2016), IAQM Guidance on the Assessment of Dust from Demolition and Construction version 1.1 – [Online] (Last accessed: 02/01/18), Available: www.iaqm.co.uk/text/guidance/construction-dust-2014.pdf

16 Environmental Protection UK and Institute of Air Quality Management (2017), Land-Use Planning & Development Control: Planning For Air Quality – [online] (Last accessed: 02/01/18), Available: http://www.iaqm.co.uk/text/guidance/air-quality-planning-guidance.pdf

17 AQC (2014) Air Quality Neutral Planning Support update: GLA 80371.

18 Mayor of London, The control of dust and emissions during construction and demolition SPG, 2014.

19 Defra (2014) UK Pollutant Release and Transfer Register, Defra - [online], (Last accessed: 02/01/18), Available:

https://www.gov.uk/guidance/uk-pollutant-release-and-transfer-register-prtr-data-sets

 $20 \ \mathsf{Defra} \ (\mathsf{n.d.}) \ \mathsf{Magic} \ \mathsf{Map} \ \mathsf{Application} - [\mathsf{online}], \\ (\mathsf{Last} \ \mathsf{accessed:} \ \mathsf{02/01/18}), \ \mathsf{Available:}$

http://www.natureonthemap.naturalengland.org.uk/MagicMap.aspx

 $21\, {\sf Defra}\ (2017)\ {\sf Background\ Pollution\ Maps-[online], (Last\ accessed:\ 02/01/18),\ Available:\ http://laqm.defra.gov.uk/review-and-assessment/tools/background-maps.html}$

22 Environment Agency (2016) Pollution Inventory – [online], (Last accessed: 28/06/18), Available: https://data.gov.uk/dataset/cfd94301-a2f2-48a2-9915-e477ca6d8b7e/pollution-inventory

23 Greater London Authority (GLA) LAEI Air Quality Focus Areas - [online], (Last accessed: 02/01/18), Available:

https://data.london.gov.uk/dataset/laei-2013-london-focus-areas

 $24\ Greater\ London\ Authority\ (GLA)\ Concentration\ Maps\ -\ [online],\ (Last\ accessed:\ 02/01/18),\ Available:\ https://data.london.gov.uk/dataset/london-atmospheric-emissions-inventory-2013$

25 London Borough of Richmond upon Thames Council (2018), Air Quality Annual Status Report for 2017

Appendix 1 – Amended Proposed Development Plans.

Figure 8 Proposed site plan (indicative only). Manor Road, Richmond. Source document: Assael. Drawing No.: MNR-ASA-ZZ-XX-SK-A-0980 Date: October 2019 Rev: P1

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

Appendix 2 - IAQM and GLA Methodology.

Table 12 IAQM guidance¹⁵ and GLA SPD⁸ on the sensitivity of the area to dust soiling effects on people and property ^{ab}

Receptor Sensitivity	Number of	Distance from the Source (m) ^c					
	Receptors	< 20	< 50	<100	< 350		
High	>100	High	High	Medium	Low		
	10-100	High	Medium	Low	Low		
	1-10	Medium	Low	Low	Low		
Medium	>1	Medium	Low	Low	Low		
Low	>1	Low	Low	Low	Low		

^a The sensitivity of the area should be derived for each of the four activities: demolition, construction, earthworks and trackout. See **STEP 2B**, **Box 6** and **Box 9**.

^b Estimate the total number of receptors within the stated distance. Only the *highest level* of area sensitivity from the table needs to be considered. For example, if there are 7 high sensitivity receptors <20 m of the source and 95 high sensitivity receptors between 20 and 50 m, then the total of number of receptors <50 m is 102. The sensitivity of the area in this case would be high.

^c For trackout, the distances should be measured from the side of the roads used by construction traffic. Without site-specific mitigation, trackout may occur from roads up to 500 m from large sites, 200 m from medium sites and 50 m from small sites, as measured from the site exit. The impact declines with distance from the site, and it is only necessary to consider trackout impacts up to 50 m from the edge of the road.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

Table 13 IAQM guidance¹⁵ and GLA SPD⁸ on sensitivity of the area to human health impacts ^{ab}

Receptor Sensitivity	Annual Mean PM	Number of Receptors ^d	Distance from the Source (m)°					
,	concentration	Receptors	₹20	<50	<100	∢200	<350	
High	>32 μg∕m³	→100	High	High	High	Medium	Low	
	(>18 μg/m³ in	10-100	High	High	Medium	Low	Low	
	Scotland)	1-10	High	Medium	Low	Low	Low	
	28-32 μg/m³	→100	High	High	Medium	Low	Low	
	(16-18 μg/m³ in	10-100	High	Medium	Low	Low	Low	
	Scotland)	1-10	High	Medium	Low	Low	Low	
	24-28 μg/m³	→100	High	Medium	Low	Low	Low	
	(14-16 μg/m³ in	10-100	High	Medium	Low	Low	Low	
	Scotland)	1-10	Medium	Low	Low	Low	Low	
	∢24 μg∕m³	>100	Medium	Low	Low	Low	Low	
	(<14 μg/m³ in	10-100	Low	Low	Low	Low	Low	
	Scotland)	1-10	Low	Low	Low	Low	Low	
Medium	>32 μg/m³	>10	High	Medium	Low	Low	Low	
	(>18 μg/m³ in Scotland)	1-10	Medium	Low	Low	Low	Low	
	28-32 μg/m³ (16-18 μg/m³ in Scotland)	>10	Medium	Low	Low	Low	Low	
		1-10	Low	Low	Low	Low	Low	
	24-28 μg/m³	>10	Low	Low	Low	Low	Low	
	(14-16 μg/m³ in Scotland)	1-10	Low	Low	Low	Low	Low	
	<24 μg/m³	>10	Low	Low	Low	Low	Low	
	(<14 µg∕m³ in Scotland)	1-10	Low	Low	Low	Low	Low	
Low	-	21	Low	Low	Low	Low	Low	

^a The sensitivity of the area should be derived for each of the four activities: demolition, construction, earthworks and trackout. See **STEP 2B**, **Box 7** and **Box 9**.

^b Estimate the total within the stated distance (e.g. the total within 350 m and not the number between 200 and 350 m), noting that only the **highest level** of area sensitivity from the table needs to be considered. For example, if there are 7 high sensitivity receptors <20 m of the source and 95 high sensitivity receptors between 20 and 50 m, then the total of number of receptors <50 m is 102. If the annual mean PM₁₀ concentration is 29 μ g/m³, the sensitivity of the area would be high.

 $^{^{\}circ}$ Most straightforwardly taken from the national background maps, but should also take account of local sources. The values are based on 32 μ g/m³ being the annual mean concentration at which an exceedence of the 24-hour objective is likely in England, Walesand Northern Ireland. In Scotland there is an annual mean objective of 18 μ g/m³.

^d In the case of high sensitivity receptors with high occupancy (such as schools or hospitals) approximate the number of people likely to be present. In the case of residential dwellings, just include the number of properties.

^{*} For trackout, the distances should be measured from the side of the roads used by construction traffic. Without sitespecific mitigation, trackout may occur from roads up to 500 m from large sites, 200 m from medium sites and 50 m from small sites, as measured from the site exit. The impact declines with distance from the site, and it is only necessary to consider trackout impacts up to 50 m from the edge of the road.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

Appendix 3 Road Traffic Model Input Data.

A3.1 Road Traffic Modelling.

A3.2 Traffic Data

AADT flows, vehicle fleet composition data and average traffic speeds have been derived from the 2016 and 2020 data in the London Atmospheric Emissions Inventory (LAEI). The traffic data are shown in Table 15 and the modelled road network is shown in Figure 9.

Based on bus timetables for the 493 and R70 buses it has been assumed that approximately 12 buses will use the bus stop per hour. As a conservative assumption it has been assumed that this flow of buses will remain consistent throughout 24 hours of the day/night.

A3.3 Emissions

Emissions were calculated using the most recent version of the Emissions Factor Toolkit (EFT) v9.0. The traffic data were entered into the EFT in order to calculate a combined emission rate for each of the road links in the modelled network.

A3.4 Meteorological Data

The model has been run using the full year of meteorological data that corresponds with the most recent set of nitrogen dioxide monitoring data (2018). The meteorological data has been taken from the monitoring station located at Heathrow Airport, which is considered suitable for the area.

A3.5 Background Concentrations

Background concentrations have been assumed to be the same as those published by Defra These cover the whole country on a 1 km by 1 km grid and are published for each year from 2017 to 2030. The current maps have been verified against measurements undertaken during 2017.

Background concentrations at the Application Site are provided in Table 14.

Table 14 Annual Mean Background Concentrations at the Application Site (µg/m³)

Grid Square	NO ₂		PM ₁₀	PM _{2.5}
	2018	2022	2022	2022
518500,175500	24.1	20.1	16.5	11.4

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

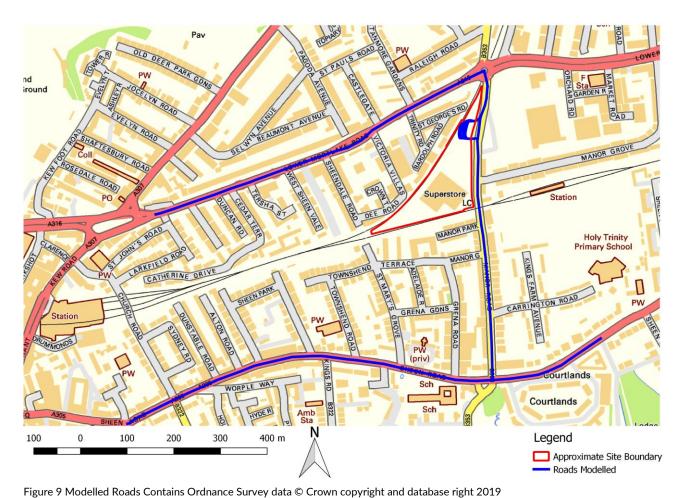


Table 15 Summary of Traffic Data used in the Assessment, traffic flows given in annual average daily traffic (AADT).

Road Name	LDV		HDV		Speed (km/h)
Noau (Vallic	2018	2022	2018	2022	
Lower Mortlake Rd	30125	31783	3384	3531	42
Manor Rd	5947	6162	811	878	20
Sheen Road	11230	11783	845	985	26
Bus Stop Within Application Site	-	-	-	288	10

The average speed along Manor Road takes in to account the level crossing by the North Sheen train station and the build-up of traffic along Manor Road.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

A3.6 Verification

A3.2.1 Background Concentrations

The verification process seeks to minimise uncertainties associated with the air quality model by comparing the model output with locally measured concentrations. The verification methodology is described in subsequent sections.

A3.2.2 Background Concentrations

Background concentrations at the monitoring sites in the verification year (2018) have been assumed to be the same as those published by Defra and are shown in Table 16.

Table 16 Annual Mean Background Concentrations at the Monitoring Sites (µg/m³)

Grid Square	NO ₂ 2018
518500,175500	24.1
518500,174500	22.2
519500,175500	23.5

A3.2.3 NO₂

Most NO_2 is produced in the atmosphere by reaction of nitric oxide (NO) with ozone. It is therefore most appropriate to verify the model in terms of primary pollutant emissions of nitrogen oxides (NOx = NO + NO₂). The model has been run to predict the 2018 annual mean NOx concentrations at the diffusion tube monitoring sites DT 18, DT 26, DT 27, DT 44 and DT 67.

The model output of road-NOx has been compared with the 'measured' road-NOx, calculated from the measured annual mean NO_2 concentrations and the background concentrations using the NOx from NO_2 calculator v7.1 published by Defra.

The slope of the best-fit line between the 'measured' road-NOx contribution and the model derived road-NOx contribution, forced through zero, has been used to determine a primary adjustment factor). This factor has then been applied to the modelled road-NOx concentration for each receptor to provide adjusted modelled road-NOx concentrations. The NOx to NO_2 calculator has then been used to determine total NO_2 concentrations from the adjusted modelled road-NOx concentrations and the background NO_2 concentrations.

The following adjustment factor has been applied to all modelled nitrogen dioxide data:

adjustment factor:

2.2504

The results imply that the model has under-predicted the road-NOx contribution. This is a common experience with this and most other models.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

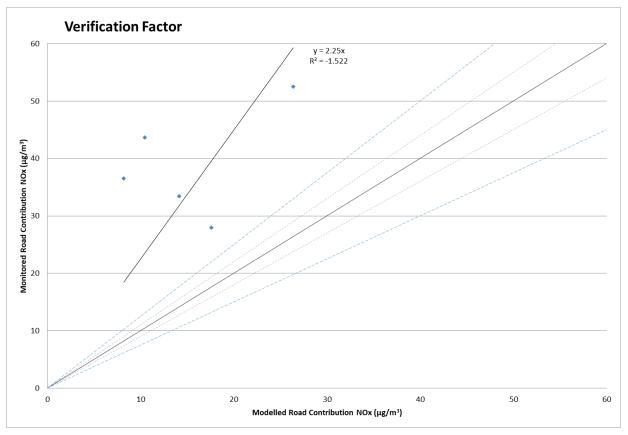


Figure 10 Comparison of Measured Road NOx to Unadjusted Modelled Road NOx Concentrations.

Statistical Analysis of Model Performance

LAQM.TG (16) recommends three statistical procedures that should be applied to evaluate model performance and assess the overall uncertainty. These are:

- Root mean square error (RMSE) defines the average error or uncertainty of the model. Ideally a RMSE within 10% of the air quality objective which is being assessed would be derived (for the annual mean NO₂ objective the ideal RMSE would be < $4 \mu g/m^3$). Where the RMSE is greater than 25% of the objective being assessed (i.e. $10 \mu g/m^3$ for the annual mean NO₂ objective) it is advised to revisit the model parameters and verification;
- Fractional bias identifies whether the model has a tendency to under-predict (positive value) or over-predict (negative value). The ideal value is zero but may range from +2 to -2; and
- Correlation coefficient provides a measure of the linear relationship between modelled and measured data. Values range between zero (no relationship) and 1 (perfect relationship).

The values for each of these methods are provided in Table 17.

Table 17 Statistical analysis of model verification.

Method	Value
RMSE	6.125
Fractional Bias	0.912
Correlation Coefficient	0.494

HOMEBASE, MANOR ROAD AVANTON RICHMOND

DEVELOPMENT LTD

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

49

A3.2.4 PM₁₀ and PM_{2.5}.

There are no PM_{10} or $PM_{2.5}$ monitors within the study area; therefore, the model outputs of road-PM have been adjusted by applying the primary adjustment factor calculated for road NO_x .

A3.7 Sensitivity Analysis.

There is some uncertainty with regard to future reductions in road traffic NOx emissions used in the EFT and the background maps. Therefore, a sensitivity analysis has been undertaken which assumes that there are no reductions in emission factors for road traffic from the base year.

The model inputs are as described above; however, emission factors from the base year (2018) have been used with the future year traffic data to predict 'no emissions reduction' NO_2 concentrations. Background concentrations have also been held at the base year for the sensitivity test.

For PM, there is no strong evidence that Defra's predictions are unrealistic and so the year-specific mapped concentrations have been used.

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

Appendix 4 - Air Quality Neutral.

The methodology report that supports the GLA's SPG on Sustainable Design and Construction provides guidance on the application of the air quality neutral policy.

The developments emissions are compared with the relevant emissions benchmarks to determine whether the Amended Proposed Development is air quality neutral.

10.1 Transport Emissions.

The TEB for the Amended Proposed Development is calculated by multiplying the gross internal floor area of each land use class by the relevant TEB from Table 18, and summing the results.

The transport related emissions (TRE) for each land use category are calculated using the:

- Gross internal floor area (m²) of the Amended Proposed Development (A1-A5, B1), and/or the number of dwellings (C3, C4);
- Amended Proposed Development trip rate (trips/annum);
- Average distance travelled (km) for each land-use class;
- Average road traffic emissions of NOx and PM₁₀,

Table 18 Transport Emissions Benchmarks (TEB)

	NOx			NOx PM ₁₀			
Land Use	TEB (g/m2/Yr)						
	CAZ	Inner	Outer	CAZ	Inner	Outer	
A1	169	219	249	29.3	39.3	42.9	
B1	1.27	11.4	68.5	0.22	2.05	11.8	
TEB (g/Dwelling/Yr)							
C3	234 558 1553 40.7 100 2						

AIR QUALITY
REVISED AIR QUALITY ASSESSMENT
- REV. 03

51

Appendix 5 - Professional Experience.

Kathryn Woolley (Hoare Lea), BSc (Hons), AMIEnvSc, MIAQM

Kathryn is a Principal Air Quality Consultant with Hoare Lea. She's is an associate Member of the Institution of Environmental Sciences and a Full Member of the Institute of Air Quality Management.

She has a diverse portfolio of experience and has worked on a range of projects from initial site feasibility, through planning and development to construction and operation. Kathryn's expertise covers planning, and air quality, specifically in relation to residential developments, industrial fixed installations such as waste management centres and transportation environmental impact on developments including air traffic. Kathryn is involved in the testing and assessment of the impact of indoor air quality and how building design contributes to this.

Andy Day (Hoare Lea), BSc (Hons), MSc, AMIEnvSc, AMIAQM

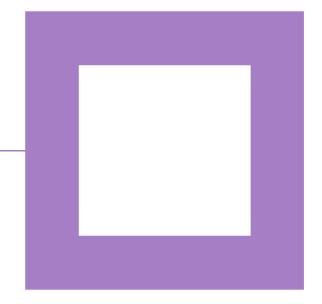
Andy is an Air Quality Consultant with Hoare Lea. He is an Associate Member of the Institute of Environmental Sciences and an Associate Member of the Institute of Air Quality Management. He is a chemistry graduate with a Master's specialising in the catalysed removal of harmful volatile organic compounds (VOCs) often generated from the combustion of fuel in car engines.

Andy provided input to the research for a scientific paper involving the use of catalysts prepared by a low NOx method for the complete removal of propane and naphthalene in lab based experiments. He has contributed to research as part of his degree into the causes and effects of poor outdoor air quality as well as exposure to poor indoor air quality.

Hannah Whalley (Hoare Lea), BSc (Hons), MSc

Hannah is a Graduate Air Quality Consultant with Hoare Lea. She is a BSc Geography Graduate with a MSc in Integrated Environmental Studies from the University of Southampton.

During her MSc, Hannah further developed her skills in GIS and gained experience in methodologies of EIAs. She also acquired an in-depth understanding of environmental law and ways to measure, monitor and remediate air pollution. Within air quality, Hannah's interests lie in air pollution monitoring and management.


ANDY DAY

AIR QUALITY CONSULTANT

+44 20 3668 7289 andyday@hoarelea.com

HOARELEA.COM

Western Transit Shed 12-13 Stable Street London N1C 4AB England

