Input parameters (Volume 3 of the Wallingford Procedure)

M5-60 minute rainfall depth	20
Ratio of M5-60 to M5 2 day	0.40
Average Annual Rainfall	700
Winter Rain Acceptance Potential (WRAP)	0.30
Urban Catchment Wetness Index (UCWI)	70

Time of Concentration

Time of entry (3mins) + Time of flow (2mins) = Time of concentration (5 mins)

Rainfall estimation

(calculated to convert the M5-60 minute rainfall to 5-minute duration rainfall)

Return Period	Rainfall Intensity
1 in 1 year	65.03
1 in 2 year	82.86
1 in 30 year	149.64
1 in 100 year	187.75

The flow rate as given by the Modified Rational Method is:

Q = 2.78 x $C_v x C_r x$ rainfall intensity x impermeable area

 C_v is the volumetric runoff coefficient = Pr / PIMP (percentage runoff / percentage impermeable areas) = 0.47

 C_r is the routing coefficient = 1.3

Impermeable area = 0.015ha

Based on the above, the flow rates from impermeable areas at the existing site are shown to be:

Return Period	Flow Rate (I/s)
1 in 1 year	1.69
1 in 2 year	2.15
1 in 30 year	3.89
1 in 100 year	4.88
1 in 100 year plus 40%	6.83