Greater London Authority - Whole Life-Cycle Carbon (WLC) Assessment template

HOW TO USE THIS SPREADSHEET

This template should be used by planning applicants to fulfil the requirements of the Mayor's Whole Life-Cycle Carbon assessment policy set out in London Plan Policy SI 2. Before completing and submitting this spreadsheet to the GLA, applicants should read the Whole Life-Cycle Carbon Assessment guidance:

 $\frac{\text{https://www.london.gov.uk/what-we-do/planning/implementing-london-plan/planning-guidance/whole-life-cycle-carbon-assessments-guidance-preconsultation-draft}{\text{consultation-draft}}$

Applicants are required to submit WLC information to the GLA at the following three stages: pre-application, outline/detailed planning submission and post-construction. Separate tabs are provided in this spreadsheet for each stage. An outline of the information required at each stage and how to submit it is provided below.

1. Pre-application stage

At pre-application stage, applicants are required to complete the pre-application information tab of this template which requires applicants to confirm various details about the site and to provide details of the WLC principles which are informing the development of the site. This should be submitted to the GLA along with all other pre-application material.

2. Outline/detailed planning submission stage

At this stage, applicants are required to complete the outline or detailed planning stage tab of this template (whichever is relevant) and submit it to the GLA along with their planning application. This stage of the process requires a baseline WLC assessment against each life-cycle module to be undertaken. At outline stage this can be based on default figures from the RICS Professional Statement: Whole Life Carbon assessment for the built environment. At detailed stage this should be based on bespoke building assumptions. Applicants are required to undertake two assessments; the first accounts for the current status of the electricity grid and the second accounts for its expected decarbonisation. Applicants may determine which assessment is to form the basis of design decisions (which should be confirmed in the relevant cell) but both assessments should be completed. This spreadsheet allows for both assessments to be provided.

3. Post-construction stage

At the final stage of the WLC assessment process, applicants should complete the post-construction result tab of this template and submit it to the GLA within three months of practical completion. This will require an update of the information provided at planning submission stage and for the actual WLC carbon emission figures to be reported using actual material quantities and site emissions during construction. Information should be submitted to:

ZeroCarbonPlanning@london.gov.uk

QUERIES

Any queries or feedback on this template should be submitted to: ZeroCarbonPlanning@london.gov.uk

Project details	
Project name	
Planning application reference number (if applicable)	
Use Type	
Brief description of the project	
GIA (m²)	
Authors (organisation or individuals)	
Date of assessment	

	WLC reduction principles	Key benefits	Has this principle been adopted? (Y/N)	If yes provide examples, and if no please provide reasons for this
1	Reuse and retrofit of existing buildings	Significant retention and reuse of structures is carbon efficient and reduces construction costs.		
2	Use recycled or repurposed material	Reduces carbon emissions and reduces waste.		
3	Material selection	Appropriate material choices is key to carbon reduction. Ensuring that there is synchronicity between materials selected and planned life expectancy of the building reduces waste and the need for replacement, thus reducing in use costs.		
4	Minimise operational energy use	A 'fabric first' approach should be prioritised to minimise energy demand and reduce carbon and in-use costs.		
5	Minimise operational water use	Choice of materials and durability of systems, to avoid leakage and subsequent building damage, contribute to reducing the carbon cost of water use.		
6	Disassembly and reuse	Designing for future disassembly ensures that products do not become future waste, and maintain their environmental and economic value.		
7	Building shape and form	Compact efficient shapes help minimise both operational and embodied carbon emissions for a given floor area. This means a more efficient building overall resulting in lower construction and in use costs.		
8	Regenerative design	Removing CO2 from the atmosphere through materials and systems absorbing it makes a direct positive contribution to carbon reduction.		
9	Designing for durability and flexibility	Durability means that repair and replacement is reduced which in turn helps reduce life-time building costs. A building designed for flexibility can respond with minimum environmental impact to future changing requirements and a changing climate, thus avoiding obsolescence which also underwrites future building value.		
10	Optimisation of the relationship between operational and embodied carbon	Optimising the operational/embodied carbon relationship contributes directly to resource efficiency and overall cost reduction.		
11	Building life expectancy	Defining building life expectancy gives guidance to project teams as to the most efficient choices for materials and products. This aids overall resource efficiency, including cost efficiency and helps future proof asset value.		
12	Local sourcing	Sourcing local materials reduces transport distances and supply chain lengths and has associated local social and economic benefits.		
13	Minimising waste	Waste represents an unnecessary and avoidable carbon cost. Buildings should be designed to minimise fabrication and construction waste, and to ease repair and replacement with minimum waste, which helps reduce initial and in-use costs.		
14	Efficient fabrication	Efficient construction methods (e.g. modular systems, precision manufacturing and modern methods of construction) contribute to better build quality, reduce construction phase waste and reduce the need for repairs during post completion and the defects period (snagging).		
15	Lightweight construction	Lightweight construction uses less material which reduces the carbon footprint of the building as there is less material to source, fabricate and deliver to site.		
16	Circular economy	The circular economy principle focusses on a more efficient use of materials which in turn leads to carbon and financial efficiencies.		

stest details	THE PARTY NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PARTY NAMED IN
Parent autodor interior runtier il procuder	CALCADOR CONTRACTOR CO
	LA AL AL AL HIS HIS CONTROL OF THE STATE OF A STATE OF THE STATE OF TH
58.167	
	ALIES DE
	E.V.200
	RE EN HALL, WAS ANALONE DOWN AND ACCUS LINEARING TO STATE OF THE STATE
Februare study ported (first 62 years)	SI years
	OwClub LCA - Cultura assessment, RCB Youl
Tourie d'catour data fur nutreux and youture.	Type II EPON (IDDININGO), Type II EPON (IDDINING), Type II EPON (IDDINING), EPON II CARRA II ED 1820), 1820), 1820), 1820)
BPO delabore soni	One Click LCA generic construction materials distribuse, Encodes, CAPconstrucción, CBC Espana, and AENDR, BADEPO, CENIA, DAP 1966as, EPO Cannada, EPO

Size and MCC activities Newsons II NET This lates the BLC location for the development. The results have Assessment I below are advancinally populated base.											
	Module AT-AS	Module ST-SS	Models \$6.67	Medula C1 C4	Modele D						
TOTAL by CO.	22,638,387 kg CD3+	26,606,633 kg CDD+	30,636,896 kg CCOH	870,762 kg CCOx	-6,907,302 kg C03e						
TOTAL Ng CO, AIM" GIS	DE MA	663.306	773.013	22.116	-126.633						
Comparison with WLC benchmarks (see Appendix 2 of the guidence) if Assessment 1 wax used to believe design											

Estimated WLC embodors (Assessment 2) N.E. The results from Assessment 2 below are automatical										
	Medicle AT-AS	Module ST-85	Module 90-97	Modulo C1-C4	Module D					
TOTAL by CO,e	22,638,387 kg CCO+	26,804,603 kg C00+	0 kg CGS+	879,792 kg CCOe	***********					
70TAL by CO _J AW [*] GM	ETS .	603		33	-126					
The place of the property of the control of the control of the place of the control of the co										

Bay site apportunities and conditation to reducing WLC endocutes	in which give notices a significant size of terms unde, which, it is with property per-dendition shall self are speciment of an elegander or in the Propose integration attains the opinion of the property of								
	Astron	WLC reduction (kg CO _J A/m ² GM ₂							
lummary of terr extress to reduce whole life-cycle carbon									
entations that have informed this assessment, including the									
		- totalestad							
Sansily further assortanties to reduce the development's	Futher potential apportunities	WLC reduction parential (kg CO _a ete							
	Marie Court Court Court of the State								
	control stating between products with only solutions to invention repulsations and meet to income with both product and other products are products and other products are produc	unquanted							

	INNTITY AND END OF LIFE SCHMANOS	Product and Conditionion Stay	pe (Mandada A)	Assumptions made with respect to	Material and of the security Medick Ci	Benefits and loads beyon (Med.	
		Material type Material quantity (kg)		matridenance, repair and replacement cycles (Bledule B)	Material 'end of the scenarios (Medicle C)	Estimated reveable materials (kg)	Estimated recyclal materials (kg)
			######################################	For all primary hubbing systems (blocker, substitution, munique, MEP sensors, intered biologic	Decisive Yeard of 186' accesses as per propert's Circular Sciencety Statement	200	70.0
		as formed	200 Au			130	224
61	Sensition TonoMicardina Contaminated Material Teatment	To Foreign	20.00			- "	
0.2	Major Demoktion Works			1 🗸			
63	Temporary Support to Adjacent Structures				*		
04	Specialist Ground Works			\sim			
- 1	External time			Personni	Recollect Average, start, occur, logis, Zinc & Lead		
2.1	Superstructure: Prane				Recollect Statement stem cooper losses. Zinc & Sead Recollect Controls. Cerestite setting common case!		
22	Superchant Opper Plans				Manyaling of salest Mingrating or common, common, sectors of common, sectors of entition oriented common common, sectors or entition oriented common common, sectors or entition oriented common common, sectors or common, sectors or entition oriented common commo		
23	Expension have Mod				Managing of State Common Common or State Common common or Common o		
24	Expensivolve State and Ramps			3840	epitare primary gisel Recycling of sales Recycling of sales Recycling or sales are sales are sales are passes recognitions.		
2.5	Superstructure: Enternal Walls Superstructure: Windows and External Disess			260	Receive of alumnum, steel Receive of alumnum, steel		
17	Superstructure: Windows and External Doors. Superstructure: External Walls and Facilities.				Requiring stratements, seen Requiring stratements require primary gases Wood encloses to bene increased for eventy recovery		
- 11	Superstantian Herné Dans			40 for administrated 25 for equation disease.	Wood products to being increased for every recovery		
3	Finales			15 years for paint			
4	Pilings, fareshings & equipment (PPE)			20:03 peak	Recycling of Fundam, Chloria, panel to replace jumpy grade. Recycling of aluminum, steel, copper, brins, Zho & Lead Wood products to ben'ne transmissed the review recovery.		
	Environ (MEP)			20 years for sections 20 years for sadiators and other heat entities	Recycling for Abrandum, Steel, Standard steel, Copper coated, Copper uncoated, State, Zinc, Lead		
	Prefedenciated Eurology, and Building Units				-		
7	Work to Existing Building			100	-		
	Extend solts.			63 years	Recycling of Concrete, Centent, Brishs, Stone, Cecanos, Stone, Aughlat to epitace primary glase!		
		101AL	0.12			dag	Oxe
		Material Intensity (bg/m2 CM)	0 kg/m2 G/A			Daying Gill.	G kg/k/2 GM

Confirm here whether Assessment 1 or Assessment 2 (see below) is to form the basis of design decisions

	POTENTIAL FOR ALL LIPS CYCLE MODILES!																	
-	(hg COD): Zequesdated (in Malgariti) carbon (ingstine single (hg CODs)) Product single (hg CODs) Construction process single (hg CODs)						Use size (sp(CCOH)						Bind of Life (BuL) stage (NgCDDe)				TOTAL Worlden A-C	Benefits and loads keyon the spitem boundary (kgC03e)
				Module A					Module II					Mad	ale C		MgCO,e	Module IV
Multiding when	sent category		Dartim best	(ME)	pag	(81)	lest.	(MOL)	lest.	best	led	(87)	led	lal	lcsi	tod		
61	Semilian Toro Halardon Contempoled Material Teatment												0 kg 003 k	0 kg CCSh	0 kg CCDe	0 kg CCC+	0 kg CC0#	64g COOr
62	Major Demailion Walks												6 kg CC2+	0 kg CCSh	0 kg CCDe	0 kg CCC+	0 kg CC0#	64g COOr
0.3	Temporary Support to Adjacent Structures	0 kg CCDe	0 kg CCDe	0 kg 000a	0 kg CCDe	0 kg 000a	0 kg CCDe	0 kg C00a	0 kg CCSh	0 kg CCSH			0 kg 003 w	d kg CO3+	d kg CCD+	0 kg 000a	0 kg CCOe	64g 000a
0.4	Epeciatric Crisinal Works	0 kg CCDe	0 kg CCDe	0 kg CD2e	0 kg CCDe	0 kg 000e	0 kg CCDe	0 kg C00a	0 kg CC3k	0 kg CCSH		/	0 kg 003 w	d kg CO3+	d kg CCD+	0 kg 000a	0 kg CCOe	64g 000a
68	Temporary Chercius Works	0 kg CCOv	0 kg CCDe	G kg CCOe	0 kg CCDe	0 kg 000w	0 kg CCDe	0 kg C00#	0 kg CC2a	0 kg CCDe			6 kg CC2+	0 kg CCSh	0 kg CCDe	0 kg CCC+	0 kg CC0#	66g CO2r
- 1	Exhibitation	0 kg CCDe	3,284,002 kg CCD+	80,169 kg CX32e	1,165,665 kg CCD+	0 kg 000e	0 kg CCDe	0 kg C00a	138,021 kg C00+	0 kg CCSH			73,588 kg CCD+	d kg CO3+	d kg CCD+	0 kg 000a	4,738,888 kg CCOx	-799,300 kg CDOr
2.1	Eigenstructure: Plane	0 kg CCOv	1,008,384 kg CCD+	41,392 kg C03e	0 kg CCDe	0 kg 000w	0 kg CCDe	0 kg C00#	0 kg CC2a	0 kg CCDe		/	SR,569 kg CCD+	0 kg CCSh	0 kg CCDe	0 kg CCC+	1,199,235 kg CCOx	.000,101g CDOr
22	Bujershucture, Upper Places	0 kg CCDe	3,016,361 kg CCD+	165,362 kg CX3a	0 kg CCDe	0 kg 000e	0 kg CCDe	0 kg C00a	2,636 kg CG0+	0 kg CCSH	1 \ /		***************************************	d kg CO3+	d kg CCD+	0 kg 000a	3,430,304 kg CCOx	64g 000a
23	Eugenstructure Moof	0 kg CCOv	917,229 kg C02a	28,871 kg C02e	0 kg CCDe	0 kg 000w	0 kg CCDe	0 kg C00#	65,003 kg 003+	0 kg CCDe	1		64,776 kg CCD+	0 kg CCSh	0 kg CCDe	0 kg CCC+	1,657,668 kg CCOx	64g COOr
2.4	Expensionary State and Kamps	0 kg CCDe	189,083 kg C03a	10,983 kg C03le	0 kg CCDe	0 kg 000e	0 kg CCDe	0 kg C00a	0 kg CCSh	0 kg CCSH	1		16,717 kg CCD+	d kg CO3+	d kg CCD+	0 kg 000a	225,794 kg CI32e	64g C03r
2.6	Esperatucium Esterus Walls	0 kg CCOv	865,125 kg C03a	7,396 kg CCDe	0 kg CCDe	0 kg 000w	0 kg CCDe	0 kg C00#	90,664 kg 003w	0 kg CCDe	_ / \		13,883 kg CGS+	0 kg CCSh	0 kg CCSe	0 kg CCC+	965,966 kg CC3+	ADLITTING COO.
2.6	Superstructure: Windows and External Doors	0 kg CCDe	661,306 kg C02+	787 kg C02a	0 kg CCDe	0 kg 000e	0 kg CCDe	0 kg C00a	672,1683g-C00e	0 kg CCSH	1 / '	\	127 kg (000)	d kg CO3+	d kg CCD+	0 kg 000a	1,336,368 kg CCOr	-DEDUING COD-
3.7	Superstructure. Internal Mode and Partitions.	0 kg CCDe	976,676 kg C02e	4,881 kg CCOv	0 kg CCDe	0 kg 000e	0 kg CCDe	0 kg C00a	627,291 kg C00+	0 kg CCSH	1 /		83,831 kg CCD+	d kg CO3+	d kg CCD+	0 kg 000a	1,662,779 kg CCOx	64g 000a
2.8	Bujerstructure: Bierral Daws	0 kg CCOv	866,109 kg C03a	1,865 kg CCOw	0 kg CCDe	0 kg 000w	0 kg CCDe	0 kg C00#	1,136,218 kg C03a	0 kg CCDe			SE, SSS Ng CCCH	0 kg CCSh	0 kg CCSe	0 kg CCC+	1,752,677 kg CCOx	64g COOr
3.	Finishes	0 kg CCDe	695,036 kg C03a	3,222 kg CC0+	0 kg CCDe	0 kg 000e	0 kg CCDe	0 kg C00a	1,116,687 kg C03h	0 kg CCSH	1 /		53,654 kg CCD+	d kg CO3+	d kg CCD+	0 kg 000a	1,867,198 kg CCOx	-216,610 kg (100s
4	Pillings, fumbbings & equipment	0 kg CCOv	BS, 600 kg CCOx	183 kg CG2e	0 kg CCDe	0 kg 000w	0 kg CCDe	0 kg C00#	85,600 kg 000w	0 kg CCDe	\vee	/	1,687 kg C00+	0 kg CCSh	0 kg CCSe	0 kg CCC+	173,080 kg CI33e	.7923 kg CODe
	Services (NEP)	0 kg CCOv	8,661,668 kg CCD+	10,366 kg C03ae	0 kg CCDe	8,307,177 kg/000e	0 kg CCDe	0 kg C00#	13,808,230 kg C00a	0 kg CCDe	15,101,786 kg 000+ 13,165,616 kg 000+	2,165,256 kg CCD+	***************************************	0 kg CCSh	0 kg CCSe	G kg CCCor	88,800,712 kg C02e	-1,000,600 kg (TSSs
- 6	Prefatorizated Buildings and Building Drifts	0 kg CCDw	0 kg CCOe	G kg CCOe	0 kg CC0+	0 kg 000w	d kg CCS+	0 kg C00w	6 kg CC2w	0 kg C03#	1		0 kg 003#	0 kg CO3e	0 kg CCDe	d kg CCOs	0 kg CCO#	esg con-
7	Work to Existing Building	0 kg CCDw	0 kg CCDw	d kg CCOe	0 kg CC0+	0 kg COOk	0 kg CCDe	0 kg C00e	6 kg CC2+	G kg CCDe	· ><		0 kg CC2+	0 kg CO3e	0 kg CCDe	G kg CCOs	0 kg CCOx	64g CODs
	External works	0 kg CCDe	3,111,615 kg CCD+	37,165 kg C03e	0 kg CCDe	0 kg 000e	0 kg CCDe	0 kg C00a	63,899 kg CC2+	0 kg CCSH	·	_	13,7V1 kg CCD+	d kg CO3+	d kg CCD+	0 kg 000a	3,236,210 kg CCOx	JOHNSTN COO.
	TOTAL by CODE	0 kg CCOv	21,081,864 kg C03+	363,600 kg C03+	1,183,045 kg CCOv	8,327,177 kg C00s	0 kg CO2e	Bay Cook	17,877,396 kg C00w	0 kg CO2+	38,371,381 kg C00+	3,165,256 kg CCOv	***************************************	0 kg CO3e	0 kg CO3e	0 kg CD3e	80,850,177 kg C03+	-6,807,302 kg C03k
	TOTAL - Ng COOKING GA	0 kg CCOwles DIA	SSS by COOking GIA	9 kg CD3wlw3 GM	30 kg CCOwled GIA	237 kg CCOx/m2 GIA	0 by CO2+in2 GIA	Bing COOMING GIA	ARE NO CODE/WO CLA	0 by CO2+in2 GIA	THE NA CODWING ON	SS by CCOwled GIA	***************************************	***************************************	****************	***************************************	2,813 by COSe/e/2 GIA	-120 kg CODe/w2 GIA
Materia																		

on.	Department for ALL UPS CITIZE SECULES (0) CITIZE (0) Experimental for integrating leading in page in the control of integrating leading in the				sage (kgCCOH)		One stage (MgCDDs)						Brief of Life (Bob.) stage (bgC00be)				TOTAL Mediates InC IngCO,e	Benefits and loads beyon the option boundary (kgC03a)
				Module A					Module II				Module C			400,0	Module IV	
dig ek	next category		Date milital	hwi,	940	(81)	lest.	(Mod.	lest.	bot	int	(10)	lesi	[0]	(CI)	908		
61	Senditor Sun/Yourston Curtaminated Material Teamers												6 kg CC2+	0 kg CCOa	0 kg CCD+	0 kg CCC+	d kg CDDe	69g C00s
6.2	Major Dematition Walks												0 kg 002w	d kg CCSH	0 kg CCDe	0 kg CCO#	d kg CCOs	64g C00s
	Temporary Euggont to Adjacent Etractures	0 kg CCDe	0 kg CCOw	0 kg CCOa	0 kg C00w	0 kg 000e	d kg CCDe	0 kg C00e	0 kg CCC2e	d kg CCDe			0 kg CC24	0 kg CO3e	0 kg CCDe	0 kg CCO#	0 kg 000a	66g CCC2r
64	Specialist Ground Works	0 kg CCDe	0 kg CCOw	0 kg CCOa	0 kg C00w	0 kg 000e	d kg CCDe	0 kg C00e	0 kg CCC2e	d kg CCDe		/	0 kg CC2+	0 kg CO3e	0 kg CCDe	0 kg CCO#	0.69.000#	68g COO
68	Temporary Cherson Works	0 kg CCDe	0 kg CCDe	0 kg CCO#	0 kg CC0#	0 kg 000a	d by CODe	0 kg C00e	0 kg CC2+	0 kg CCDe			0 kg CC2+	0 hg C03h	0 kg CCDe	0 kg CD3+	0 kg 000e	64,000
-1	Identos	0 kg CCDe	3,384,002 kg CCO+	50, 169 kg CCD+	1,165,045 kg CCDe	0 kg 000a	d kg CCDe	0 kg C00e	138,831 kg CD2+	d kg CCDe		/	73,568 kg CCD+	0 kg CO3e	0 kg CCDe	0 kg CCO#	4,728,885 kg CCOx	.799,301 kg (000s
2.1	Sujercitudium Plane	0 kg CCDe	1,088,384 kg CCO+	41,382 kg C02e	0 kg CC0#	0 kg 000a	d by CODe	0 kg C00e	0 kg CC2a	0 kg CCDe		/	ss,ses s ₄ cco+	0 kg (003e	0 kg CCDe	0 kg CD3+	1,168,235 kg CCOr	.000,103g (DO)
3.2	Superstructure Upper Places	0 kg CCDe	3,015,261 kg CCOv	165,382 kg C03a	0 kg CCD+	0 kg 000a	0 kg CCD+	01gC00r	2,635 kg CG0+	0 kg CCDe	\ /		***************************************	d kg CO3+	0 kg C03e	0 kg 000a	3,429,304 kg CD0e	64g C03r
2.3	Superstructure Mont	0 kg CCDe	917,229 kg C03e	29,871 kg C02+	0 kg C00w	0 kg 000e	d kg CCDe	0 kg C00e	65,003 kg CC2+	d kg CCDe			64,775 kg CCD+	0 kg CO3e	0 kg CCDe	0 kg CCO#	1,687,868 kg C00w	66gCD3r
2.4	Experimentary State and Kamps	0 kg CCDe	199,093 kg CICDe	10,983 kg C03e	0 kg CC0#	0 kg 000a	d by CODe	0 kg C00e	0 kg CC2a	0 kg CCDe			18,717 kg 000+	0 kg (003e	0 kg CCDe	0 kg CD3+	225,794 kg CCO#	64g CO2s
2.6	Egenholus Edena/Walk	0 kg CCDH	868,125 kg CCDe	7,3% kg C00#	0 kg CC0#	0 kg 000e	d by CODe	0140000	90,866 kg C00v	0 kg CCDe	/ \		13,883 kg CGS+	0 kg 003e	0 kg CCDe	0 kg CCO#	868,866 kg CCOr	ADLITTE COD
24	Superchanture Windows and External Doors	0 kg CCDe	661,306 kg C03e	787 kg C03a	0 kg C00w	0 kg 000a	d kg CCDe	0 kg C00e	673,146 kg CD2+	d kg CCDe		\	127 kg 000a	0 kg CO3e	0 kg CCDe	0 kg CCO#	1,334,368 kg CCOx	-DELATING COOP
3.7	Superstructure. Internet Walls and Parlitions	0 kg CCDe	BIN, EIN by CICLIe	6,881 kg CCDw	0 kg C00w	0 kg 000e	d kg CCDe	0 kg C00e	627,291 kg CD2+	d kg CCDe			83,831 kg CGS+	0 kg CO3e	0 kg CCDe	0 kg CCO#	1,662,779 kg C00e	64g COOr
2.8	Superstructure: Menul Diors	0 kg CCDe	868,109 kg CX3a	1,866 kg C00w	0 kg CC0#	0 kg 000a	d by CODe	0 kg C00e	1,136,210 kg 003e	0 kg CCDe			66,505 kg CCD+	0 kg (003e	0 kg CCDe	0 kg CD3+	1,782,877 kg CCOe	65g CODe
	Finishes	0 kg CCDH	695,036 kg CI33e	3,322 kg C00w	0 kg CC0#	01g 000r	d by CODe	0140000	1,110,687 kg 003e	0 kg CCDe			83,684 kg CCD+	0 kg (333)	0 kg CCDe	0 kg CCO#	1,867,198 kg CCOe	294494g CDGs
4	Fillings, fumbbings & equipment	0 kg CCDe	MS,600 kg CCOx	193 kg C03a	0 kg CCD#	0 kg 000e	0 kg CCD+	Oxecco	85,600 kg CC2+	0 kg CCDe	/	_	1,687 kg C00+	d kg CO3+	0 kg CO3e	0 kg 000a	173,000 kg CCOe	-7912 kg CCOr
	Services (MEP)	0 kg CCDe	5,661,668 kg CCDv	15,364 kg C03le	0 kg CC0e	8,337,177 kg/C03e	0 kg CCDe	01g C03e	13,808,200 kg C00w	0 kg CCDe			***************************************	0 kg CO3e	0 kg CCDe	0 kg 000a	88,801,712 kg CCOx	.1,000,600 kg (TD2s
4	Prefedenceded Buildings and Building Shifts	0 kg CCDe	0 kg CCDe	0 kg 000a	0 kg CC0e	0 kg 000a	0 kg CCDe	01gC00e	Chy CCOn	0 kg CCDe	_		0 kg CC2+	d kg CCSa	0 kg CCDe	0 kg CCO#	0 kg C00e	64g (100ar
,	Work to Exhibing Building	0 kg CCOx	0 kg CCDe	0 kg 000a	0 kg CC0e	0 kg 000e	0 kg CCDe	01gC00e	0 kg CC2a	0 kg CCDe	\sim	_	6 kg CC2+	0 kg 003e	0 kg CCDe	0 kg CCO#	0 kg C00e	6%g C00ar
1	Rainval works	0 kg CCOw	3,111,615 kg-C00w	37,165 kg C03e	0 kg CC0+	0 kg 000e	0 kg CCDe	01g C00e	63,899 kg CCDv	0 kg CCDe			13,761 kg C00w	0 kg C03a	0 kg CCDe	d kg CCOe	3,336,313 kg CCOx	ANALOTE COO.
	TOTAL Na COOM	0 kg CCOe	21,081,864 bg C03e	363,600 kg C03a	1,183,048 kg CCOe	8,307,177 kg C00e	0 kg CCDe	eng cook	17,877,356 kg COOk	0 kg CODe	0 kg CODe	0 kg CCOs		0 kg C03e	0 kg C03e	0 kg C03e	80,850,177 kg C03e	-6,607,302 kg C03k
	TOTAL - Ng COOKING GA	0 kg CCOwled GIA	ESS by COOMING GIA	9 kg CD3e/e/3 GIA	30 No CCOwing GIA	237 No CODe/no GIA	0 he CODered GIA	Disa CODE/NO GIA	66 Na CODWING GIA	0 ha COZerna GIA	6 kg C03win2 GIA	Disc COOKING GIA				***************************************	2,813 by CO3e/e/2 GIA	-120 ha CODWING ON

Project details	
Project name	
Planning application reference number (if applicable)	
	RG.AT, 81 RK.
Birlef description of the project	
GA (n°)	
Authors (organisation or individual)	
Date of assessment	
Nationally recognised assessment method used	R.G. BS LIN 15WE, WITH ADDROVED GUIDENCE FOR RELS PROBESORS SERVING
Reference study period (if not 60 years)	This call found only to filled in this effection analyzed of it. In a susmed building the expectacy, accept on it is set than 60 years. Applicates should state the submission study product in the call. While it is assessment of their distribution sets of places any Chapter of the submission study and present on the call and the call of the set of places and distribution study. Per of the calcular inference study period by copying and pasting an additional CMVP potentiar for all the cycle modules' table, see below.
Software tool used	[This should align with the software tool used at outline/detailed planning stage]
Source of carbon-data for materials and products	[See guidance for acceptable sources]
EPO database used	If using more than one database please list all

WLC emissions baseline (Assessment 1) (submarically populated from the 'detailed planning stage' tab)												
	Module A1-A5	Module B1-B5	Module SG-S7	Module C1-C4	Module D							
TOTAL kg CO ₂ e	22,638,397 kg CO2e	26,904,433 kg CC0s	30,436,595 kg CO2e	870,752 kg CO2e								
TOTAL kg CO ₃ alm ³ GIA	574.958	680.305	773.013	22.115	-124.633							

Post-construction WLC emissions (Assessment 1)											
	Module A1-A5	Module B1-B5	Module DG-D7	Module C1-C4	Module D						
TOTAL kg CO ₂ e	0 kg CO2e	0 kg CO2e	PVALUE	0 kg CO2e	0 kg CC0s						
TOTAL kg CO ₂ e/m² GIA	HDM/01	HD1/101	#VALUE!	10,000	NOV/01						
Commentary comparing the post-construction results against the WLC emissions baseline (Assessment f) above	(Explain the reasons for any divergences for	om assessment 1 result against the WLC em	issions baseline above)								
Commentary comparing the post-construction results against the WLC benchmarks (see Appendix 2)	Explain the reasons for any divergences to	aplain the reasons for any diseignance from MLC benchmarks, including against the MLC aspirational benchmarks)									

WLC emissions baseline (Assessment 2) (submarically populated from the 'detailed planning stage' tab)					
		Module B1-BS	Module 86-87	Module C1-C4	
TOTAL kg CO _c e	22,638,397 kg CO2e	26,904,433 kg CO2e	0 kg CO2e	870,752 kg CO2e	-4,907,302 kg CODs
TOTAL kg CO _J elm ² GIA	574.958	683.305	0.000	22.115	-124.633

Post-construction WLC emissions (Assessment 2)	(submedically populated from Assessment 2 below)								
	Module A1-AS	Module B1-BS	Module 86-87	Module C1-C4	Module D				
TOTAL kg CO _j e	0 kg CO2e	0 kg CC0s	WALUE	0 kg C02e	0 kg CO2e				
TOTAL kg CO _{jelm} GIA	101/01	#D1//01	WALUE	HOMON	#DN/01				
Commercary comparing the post-construction results against the WLC emissions baseline (Assessment 2) above	[Cipitals the reasons for any divergences from assessment 2 nexult against the WLC emissions baseline above]								
Commentary comparing the post-construction results against the WLC benchmarks (see Appendix 2)	(Explain the reasons for a note that grid decarboniss	ny divergences from WLC be alon has not been accounted	enchmarks, including against for in the benchmarks)	the WLC aspirational	berchmarks. Please				

Confirm here whethe	r Asses	smen	:1 or
Assessment 2 fe	ormed t	he bas	is of

Summary of key actions undertaken to reduce whole life-cycle	Action undertaken	WLC reduction achieved (kg					
carbon emissions, including the reductions achieved	This set does not need to be exhaustive out should identify the accord with the biggest implacts, traint more tries it needed;						
	Le. Design cotions or materials that could be used, design orinciples that could be applied.						
Lessons learnt from the process of undertaking a WLC	Inset more lines if needed						

MATERIAL QU.	ANTITY AND END OF LIFE SCENARIOS	Product and Construc	tion Stage (Module A)	Assumptions made with respect to		Benefits and load boundary	s beyond the system (Module D)
Building eleme	nt category	Material type	Material quantity (kg)	maintenance, repair and replacement cycles (Module II)	Material 'end of life' scenarios (Module C)	Estimated reusable materials (kg)	Estimated recyclable materials (kg)
Notalesamph		e.g. Concrete	45000 kg	For all primary building systems (structure, substructure, envelope, MSP sendons, internal finishes)	Declare 'and of life' acerrario as per project's Circular Economy Statement	Alex	95 km
		e n Seinforement e o Formack	5000an 950an	4		0 km	0 km
	Demolition: Toxic Hazardous Contaminated	e o Fortwood	200 80	_		910	040
0.1	Material Transport			\sim			
0.2	Major Demolifion Works			· ×			
- 43	Tomorrow Control to Advant Chartens			_			
0.4	Specialist Ground Works						
-	Substructure						
- 24	Superstructure Frame.						
2.2	Superstructure: Liboer Fixors						
	Supureto et are: Stales and Dames						
	Superior of the Esternal Walls						
- 26	Superstanting Windows and External Doors						
	Construction of the Constr						
2.6	Consideration between Constant						
- 1	Cirishee						
	Fitings funishings & equipment (FFS)						
٠.	Cantinus (MED)						
6	Prefabricated Buildings and Building Units						
7	Work to Existing Building						
	External works						
		TOTAL	0 kg			0 kg	Okg
		Material intensity (kg/m2 GIA)	101/01			101/108	NOV/OI

ASSESSMENT 1 - current status of the electricity grid

GM	IP POTENTIAL FOR ALL LIFE-CYCLE MODULES ¹ (kgCO3k)	Product stage (kgC02e) Construction process stage (kgC02e) Sequestreed for biosenici carbon			Use stage (kgCO2e)						End of Life (EoL)				TOTAL	Benefits and loads beyon the system boundary (kgC02e)		
		(negative value) (kgC02e)	Module A							odule B				Module	Modules A-C kgCOje	Module D*		
Sing eleme	ant category		[A1] to [A3]	[84]	[AS]	[01]	[8:2]*	[83]-	(0.4)*	last.	(B6)	[87]	(01)	[C2]	(0.0)	[C4]		
0.1	Demolition ToxioHazardous/Contaminated Material Treatment																0 kg CQ2a	
	Major Demoition Works																0 kg CO2e	
0.3	Temporary Support to Adjacent Structures											$\overline{}$					0 kg CO2e	
0.4	Specialist Ground Works																0 kg CO2e	
0.5	Temporary Diversion Works																0 kg CQ2a	
1	Substructure											/					0 kg CO2e	
2.1	Superstructure: Frame																0 kg CO2e	
22	Superstructure: Upper Fibors																0 kg CO2e	
13	Superstructure: Roof																0 kg CO2e	
2.4	Superstructure: Stairs and Ramps														1		0 kg CQ2e	1
2.5	Superstructure: External Walls																0 kg CQ2a	
2.6	Superstructure: Windows and External Doors																0 kg CO2e	
2.7	Superstructure: Internal Walls and Partitions										`	\					0 kg CO2e	
1.0	Superstructure: Internal Doors																0 kg CO2e	
3	Firithes																0 kg CO2e	
4	Fittings, furnishings & equipment										/						0 kg CO2e	
s	Services (MEP)										Regulated emissions Unregulated emissions						0 kg CO2e	
6	Prefabricated Buildings and Building Units																0 kg CQ2a	
7	Work to Existing Building										\rightarrow						0 kg CO2e	
1	External vertex											_					0 kg CO2e	
	TOTAL kg CO2e TOTAL - kg CO2e/tr2 GW	9 kg CO2e eDividi	9 ko C02e #DIV01	0 ka CO2e #DIVØI	0 ks CO2s #DWXII	0 kg C02e	0 kg CO2e #DRIRD!	0 kg CO2e #DRV01	0 kg CO2e #DIVID!	0 ko CO2e #DIVI01	WALUE	0 kg CO2e #DRIRD!	0 kg CO2s #D6VX01	0 kg COSe #DIVIGI	0 kg CO2e #DIV/01	9 kg CO2s #DN/91	0 ko CO2e #DRVIDI	9 ks CO2e

ASSESSMENT 2 - expected decarbonisation of the electricity grid

GM	AP POTENTIAL FOR ALL LIFE-CYCLE MODULES' (kgCOSk)	Product stage (kgCO2e) Construction process stage (kgCO2e) Sequestered (or biogenic) carbon					Use stage (kgCC2k)						End	of Life (Ect.) at	age (kgC02e)		TOTAL Modules A-C	Benefits and loads bey the system boundar (kgC02e)
		(regative value) (kgCO2e)		Module A					16	odule B				Module	c			
g electre	nent category		[A1] or [1A]	[84]	[AS]	[81]	[8:2]*	(B3)-	[0.4]*	insl.	[B6]	[87]	[01]	[C2]	(03)	[C4]		Module D*
1.1	Demoition: ToxicHazardous Contaminated Material Treatment																0 kg CQ2a	
12	Major Demolition Works																0 kg CO2a	
i à	Temporary Support to Adjacent Structures																0 kg CO2e	
14	Specialist Ground Works																0 kg CO2a	
15	Temporary Diversion Works											/					0 kg CO2e	
1	Substructure											/					0 kg CQ2a	
1.1	Superstructure: Frame										1 \ /						0 kg CQ2a	
12	Superstructure: Upper Fixors										\ /						0 kg CO2a	
13	Superstructure: Roof																0 kg CQ2e	
14	Superstructure: Stairs and Ramps																0 kg CO2e	
1.5	Superstructure: External Walts										/ \						0 kg CO2e	
1.6	Superstructure: Windows and External Doors										/ \						0 kg CO2e	
1.7	Superstructure: Internal Walls and Partitions											\					0 kg CO2e	
	Superstructure: Internal Doors											/					0 kg CQ2e	
3	Frishes										/	/					0 kg CO2a	
4	Fittings, funishings & equipment										/						0 kg CO2e	
5	Services (MEP)										Regulated emissions Unregulated emissions						0 kg CQ2e	
	Prefabricated Buildings and Building Units																0 kg CO2e	
7	Work to Exesting Building										\sim						0 kg C02a	
	External works																0 kg CO2a	
	TOTAL kg CO2e TOTAL - kg CO2em2 GH	0 kg CO2e #70000	6 kg C02e	0 kg CO2e eDIVAL	0 kg CO2e eOWN	0 kg CO2e	0 kg C02e	9 kg CO2e	0 kg CO2e #DMM	0 kg CO2e	WALUE	0 kg CO2e	0 kg CO2e	0 kg CO3s	0 kg CO2e	9 kg CO2e	0 kg CO2e	0 kg CO2s

Assessment no.	WLC reduction principles adopted
Assessment 1	Υ
Assessment 2	N