

Manor Road / Richmond Energy Strategy

SUSTAINABILITY
REVISED ENERGY STRATEGY REV. 03

2

Audit sheet.

Rev.	Date	Description of change / purpose of issue	Prepared	Reviewed	Authorised
01	17/07/2020	Draft planning report for team comments	L. Wille	-	-
02	27/07/2020	Updated draft – following initial comments	L. Wille/ R. Garcia	-	-
03	30/07/2020	Issued for revised planning application	L. Wille/ R. Garcia	O. Boswell	T. Spurrier

This document has been prepared for Avanton Richmond Development Ltd only and solely for the purposes expressly defined herein. We owe no duty of care to any third parties in respect of its content. Therefore, unless expressly agreed by us in signed writing, we hereby exclude all liability to third parties, including liability for negligence, save only for liabilities that cannot be so excluded by operation of applicable law. The consequences of climate change and the effects of future changes in climatic conditions cannot be accurately predicted. This report has been based solely on the specific design assumptions and criteria stated herein.

Project number: 23/23145

Document reference: REP-2323145-5A-LFW-20200715-Energy Strategy-Rev 03

SUSTAINABILITY REVISED ENERGY STRATEGY -REV. 03

Contents.

Audit sheet.	2				
1. Executive Summary	4				
1.1 Be Lean – Passive Design & Energy Efficient Measures	4				
1.2 Be Clean – Infrastructure & Low-Carbon Supply of Energy	4				
1.3 Be Green – On-site Renewable Energy Generation					
1.4 Overall Carbon Dioxide Emissions Reduction	4				
1.5 Dwellings	5				
1.6 Non-residential areas	5				
1.7 Environmental Assessment Methods	5				
2. Introduction	6				
2.1 The Application	6				
2.2 Development Description and Site Context - Amended Scheme Summary	6				
2.3 Approach	6				
2.4 Definitions and Limitations	6				
2.5 Limitations	6				
3. Regulatory and Policy Context	7				
3.1 The Building Regulations	7				
3.2 Planning Policy	7				
4.	8				
5. Part L Approach and Methodology	9				
5.1 Approach	9				
5.2 Methodology	9				
6. Energy Strategy	10				
6.1 Be Lean - Passive Design Strategy	10				
6.2 Be Lean - Limiting the Effect of Heat Gains in Summer Months	10				
6.3 Be Lean - Energy Efficiency Measures	11				
6.4 Be Clean	15				
6.5 Summary of district energy assessment	16				
6.6 Be Green	17				
6.7 Summary	19				
7. Operational Cost	20				

8. Summary of Results	21
8.1 Dwellings	21
8.2 Flexible Commercial Areas	21
9. Overheating Risk (TM59)	22
9.1 Basis of the Assessment	22
9.2 Mitigation Strategy	22
9.3 Part L heat gain check	23
9.4 CIBSE TM59 Overheating risk assessment	23
10. Conclusion	24
Appendix A: Regulatory & Policy Context	25
National Policy	25
Building Regulations Part L 2013	25
GLA Planning Policy	25
London Borough of Richmond upon Thames Local Plan	28
Appendix B: GLA Overheating Checklist	30
Appendix C: CIBSE TM59 Results	31
Appendix D: External Services Layout	33
Appendix E: Concept LTHW/CHW Schematic	34
Appendix F: Grid Decarbonisation.	35
Appendix G: Roof area appraisal.	38
Appendix H: SAP worksheets.	40
Be Lean example data sheet - DER & TER	40
Be Green example data sheet - DER & TER	44
Appendix I: BRUKL summary	48
Be lean BRUKL	48
Be green BRUKL	49
Appendix J: Boiler and ASHP operational cost analysis	50
Appendix K: Centralised vs decentralised analysis	51

3

AVANTON RICHMOND DEVELOPMENT LTD SUSTAINABILITY

REVISED ENERGY STRATEGY - REV 03

1. Executive Summary

The Application

This Revised Energy Strategy has been prepared by Hoare Lea on behalf of Avanton Richmond Development Ltd ('the Applicant') following further amendments to the proposed scheme for the redevelopment of the Homebase store at 84 Manor Road, North Sheen ('the Site').

Policies & Drivers

This document summarises the pertinent policies and requirements applicable to the Amended Proposed Development. Of these, the principal target is to achieve 'zero carbon' for the new build residential aspects, corresponding to a 100% reduction in regulated CO_2 emissions beyond the requirements of the Building Regulations Part L (2013), and a 35% reduction for commercial areas, as set out in the London Plan (2016) and set out in the LBRuT Local Plan (2018). The commercial areas are required to meet BREEAM New Construction 'Excellent' standard (where feasible).

Further, it is targeted to achieve a 10% carbon emission reduction for residential areas at the Be Lean stage, exceeding the target set within the Draft London Plan (2019) for residential developments.

Approach

A sample of dwellings of the Amended Proposed Development have been assessed using Part L1A approved SAP methodology. Non-residential spaces have been modelled using Part L compliant software. This has provided the basis for the analysis of the designed building and the consideration of all applicable passive design, energy efficiency and Low or Zero Carbon (LZC) technologies.

The assessment makes use of the Mayor of London's Energy Hierarchy Be lean – Be Clean – Be Green, and the cooling hierarchy from the London Plan (2016).

In line with current GLA guidance, carbon emission reductions have been calculated using the carbon factors set out in the draft SAP10 guidance.

This energy strategy sets out how the highest standards of sustainable design and construction are proposed for the development.

1.1 Be Lean - Passive Design & Energy Efficient Measures

Passive design measures to be implemented at the Amended Proposed Development include:

- Efficient building fabric and airtight construction, minimising heat losses and heat gains
- Optimised glazing performance to ensure good daylight to the spaces whilst limiting solar gains.
- Efficient space heating systems with zonal, programmable and thermostatic controls, with separate programmer for hot water.
- Efficient low-energy lighting throughout all dwellings. External and communal lighting will be coupled to daylight and presence detection sensors to minimise unnecessary use.
- Efficient mechanical ventilation with heat recovery which will limit the need for space heating, aid the mitigation of high internal temperatures in summer months, and maintain good indoor air quality.
- Appropriately insulated pipework and ductwork (and air sealing to ductwork) to minimise losses and gains.
- Variable speed pumps and fans to minimise energy consumption for distribution of services
- Thermally broken lintels and balconies

These measures are expected to lead to a 10.2% carbon emission reductions prior to the implementation of low or Zero Carbon technologies.

This represents an improvement on the Original Proposed Development, and the Amended Proposed Development is expected to meet the draft London Plan policy target for carbon reduction at the 'Be Lean' stage.

1.2 Be Clean – Infrastructure & Low-Carbon Supply of Energy

The "Be Clean" stage encourages developments to supply energy as cleanly as possible. An assessment of the energy networks in the area has been undertaken but has shown there are no networks in close vicinity to the site.

An assessment has been carried out to determine likely implications of centralised energy distribution at the development.

It is proposed to include full trenching between all buildings, with space allocation made for future district heating pipework. Space allocation has also been made for future plate heat exchangers at the ground floor to each building, and the pipework in all risers has been sized to be able to serve each building bottom-up in future, in addition to the current top-down arrangement. A further space allocation has been made for a plate heat exchanger at the ground floor near to the site entrance, so that a future potential district energy network would only require one connection point. Pipework sleeves will be included through the building envelope at the location of each future plate heat exchanger to ease future connection, should a viable option become available in the vicinity of the site in future.

It is expected there would be limited benefit from the increased diversity that would arise from combining the heating plant in one location, due to the modular nature of Air Source Heat Pump plant. Moreover, the combined amount of Air Source Heat Pumps required would not fit in one single rooftop location on-site.

Full distribution pipework is not proposed to be installed for the following reasons:

- Increased energy losses related to the distribution between buildings would be estimated to result in an additional 23.6 tonnes CO₂ emission per annum
- Capped pipework provided, if never used, will result in additional embodied carbon spent at no additional benefit to the scheme. It is also difficult to stop the pipework corroding/ deteriorating over time.
- The embodied carbon content of installing 700m of pipework would be significant as well, and with no certainty this will ever be required, this additional use of resources cannot be justified.

This proposed upgrade to the futureproofing for a potential future distribution network has been made in response to GLA policy, and in discussion with energy officers.

Please refer to Appendix K for further detail.

1.3 Be Green – On-site Renewable Energy Generation

The inclusion of on-site renewable energy generation has been assessed, and it is proposed to implement Air Source Heat Pumps (ASHP) and PVs in the design. This is expected to result in significant carbon emission reductions of approx. 45.7% compared to the Part L 'gas boiler baseline'.

ASHP are proposed to provide a proportion of heating and hot water to dwellings, with top-up provided by direct electric energy.

A PV array of 380m² (approx. 60kWp) is also proposed as part of this strategy, providing an estimated 10.6 tonnes of carbon savings to the site per annum. Please refer to Appendix G for further information on this.

1.4 Overall Carbon Dioxide Emissions Reduction

The development as proposed will deliver buildings which are very energy efficient, resulting in a reduction in energy and carbon consumed by the site. It will target improvements over what is required by the Building Regulations, and the London Plan targets set for on-site carbon emission reductions.

The CO₂ emissions reductions are presented separately for residential and non-residential areas, as outlined in section 9 of the GLA guidance on preparing energy assessments.

1.5 Dwellings

Table 1 below outlines the anticipated CO₂ emissions reductions and carbon offset payment. The combined onsite savings and zero carbon target shortfall is used to calculate the carbon offset payment.

New build dwellings	Regulated Carbon Dioxide Emission Savings (tonnes CO ₂ /yr)		
G	Regulated	Unregulated	
Baseline: Part L 2013 Building Regulations with SAP 10 carbon factors	433	217	
After energy demand reduction (Be Lean)	390	217	
After heat network / CHP (Be Clean)	390	217	
After renewable energy (Be Green)	235	217	
	Regulated domestic carbon dioxide savings		
	(tonnes CO ₂ /yr)	(%)	
Savings from energy demand reduction	43	10%	
Savings from heat network / CHP	0	0%	
Savings from renewable energy	155	35.8%	
Cumulative on-site savings	198	45.8%	
Annual savings from offset payment	235	-	
Offset Payment Rate (£/tCO ₂)	£1,800		
Total Offset Payment	£ 422,885		

Table 1: Dwellings Summary of regulated carbon emissions saving and carbon offset payment.

1.6 Non-residential areas

Table 2 below outlines the anticipated CO₂ emissions reductions and carbon offset payment. The on-site target is used to confirm that no carbon offset payment is expected for these retail areas.

New build Flexible Commercial Areas	Regulated Carbon Dioxide Emission Savings (tonnes CO ₂ /yr)		
	Regulated	Unregulated	
Baseline: Part L 2013 Building Regulations with SAP 10 carbon factors	11	2	
After energy demand reduction (Be Lean)	8	2	
After heat network / CHP (Be Clean)	8	2	
After renewable energy (Be Green)	6	2	
	Regulated non-domestic carbon dioxide savings		
	(tonnes CO ₂ /yr)	(%)	
Savings from energy demand reduction	2	22.4%	
Savings from heat network / CHP	0	0%	
Savings from renewable energy	2	20.3%	
Cumulative on site savings	5	42.7%	
Total target savings	4	35 %	
Shortfall	N/A	-	
Offset Payment Rate (£/tCO ₂)	£1,800		
Total Offset Payment	£0		

Table 2: Retail Summary of regulated carbon emissions saving and carbon offset payment.

Figure 1: Comparison of regulated carbon emissions saving site-wide.

1.7 Environmental Assessment Methods

In line with LBRuT Local Plan (2018) Policy 22, proposals for commercial areas will be required to meet BREEAM New Construction (NC) 'Excellent' standard (where feasible). It is the intention of the design team to meet the minimum standards for 'Excellent'. Please refer to the Sustainability Statement, submitted in support of this planning application, for further information.

1.8 Conclusions and improvements on Original Proposed Development

Using the Mayor's energy hierarchy, the strategy has been developed to ensure that the Amended Proposed Development is efficient and economical, and the highest standards of sustainable design and construction are proposed.

As shown in Figure 1, the Amended Proposed Development is expected to achieve an overall carbon emission reduction of 45.7% compared to a Part L Baseline, in line with the requirements of the London Plan Energy Hierarchy. This carbon emission reduction is achieved through a combination of energy efficiency measures and on-site low and zero carbon technologies in the form of air source heat pumps and PV panels. It is expected that a carbon offset payment made to the local authority will be required. The current estimated offset payment is given in Table 1.

Key changes since the Original Proposed Development submission have been:

- Improvement to the carbon emission reductions expected to be achieved at the 'Be Lean' stage. This improvement has been achieved chiefly from improvements to thermal bridging inputs. This has resulted in an improved estimated carbon emission reduction at the Be Lean stage of the energy hierarchy, meeting the draft London Plan (2019) target for carbon reductions at the 'Be Lean' stage.
- Improvement to the carbon emission reductions expected to be achieved at the 'Be Green' stage. This improvement has been achieved chiefly from further detailed estimates of the distribution losses expected to result from energy distribution from the centralised supply from building-by-building air source heat pumps. Additionally, the provision of PV panels has been increased to maximise the PV installation throughout the available suitable roof areas. This has resulted in an improved estimated carbon emission reduction at the Be Green stage of the energy hierarchy, exceeding the draft London Plan (2019) target for on-site carbon reductions.

In summary, as an improvement on the Original Proposed Development, the Amended Proposed Development meets the draft London Plan policy target for carbon reduction at the 'Be Lean' stage and shows expected improvement at the 'Be Green' stage of the energy hierarchy, resulting in an increase in the site-wide regulated carbon emission savings from 35.5% to 45.7%.

SUSTAINABILITY

REVISED ENERGY STRATEGY
REV 03

2. Introduction

2.1 The Application

This Revised Energy Strategy is submitted in support of an application for planning permission concerning the Amended Proposed Development at Manor Road, Richmond.

2.2 Development Description and Site Context - Amended Scheme Summary

This Revised Energy Strategy has been prepared by Hoare Lea on behalf of Avanton Richmond Development Ltd ('the Applicant') following further amendments to the proposed scheme for the redevelopment of the Homebase store at 84 Manor Road, North Sheen ('the Site'). A planning application for the redevelopment of the Site was submitted to London Borough of Richmond Upon Thames (LBRuT) in February 2019 (ref. 19/0510/FUL) (the 'Original Proposed Development'), and was considered at LBRuT Planning Committee on 3 July 2019. The Planning Committee resolved that they were minded to refuse the Application, however on 29 July 2019 it was confirmed that the Mayor of London would act as the local planning authority for the purposes of determining the application.

Proposed Amendments

Following review of LBRuT's reasons for refusal and discussions with Officers at the Greater London Authority (GLA) and Transport for London (TfL), the Applicant sought to review the scheme, with the principle aim of increasing the delivery of affordable housing through additional density and addressing other issues raised in the Mayor's Stage 2 Report. Initial scheme amendments were submitted in November 2019 ('the November 2019 Amendments') and increased the overall number of units by 48, primarily through the introduction of a new residential building known as Block E.

Following further discussions with TfL and the GLA, it was subsequently agreed that further revisions should be explored in order to deliver an improved scheme, without the need for this additional block.

The proposed changes are described in detail in the accompanying Design and Access Statement Addendum, however, of particular note is the increase in residential units from 385 within the Original Proposed Development to 453 within the Amended Proposed Development. This increases the total number of affordable units by 39 to a total of 173 affordable homes (40% by habitable room taking account of grant funding, increased from 35% as originally submitted). This increase in units and the higher affordable housing provision has been principally achieved through amendments to the height and internal layout in appropriate locations across the Site.

The proposed changes necessitate an amendment to the Application's description of development. The revised description of development (hereafter referred to as the 'Amended Proposed Development') is as follows:

Demolition of existing buildings and structures and comprehensive phased residential-led redevelopment to provide 453 residential units (of which 173 units will be affordable), flexible retail, community and office uses, provision of car and cycle parking, landscaping, public and private open spaces and all other necessary enabling works

As a result of the proposed changes, this Revised Energy Strategy has been updated in order to assess the Amended Proposed Development.

2.3 Approach

This Energy Strategy follows the Mayor's energy hierarchy: 'Be Lean, Be Clean, Be Green'. This hierarchy shall be the guiding ethos behind decisions regarding the energy performance of the building, and targets remain unchanged from previous applications.

The Amended Proposed Development is assessed as follows:

- New build residential areas - Building Regulations Part L1A 2013: Conservation of Fuel and Power in New Dwellings. These elements have been modelled using SAP methodology (software: NHER v. 6.3.4).

- In line with current GLA guidance, and forthcoming draft GLA guidance, carbon emission reductions have been calculated using the carbon factors set out in the draft SAP10 guidance.

Specifically, to address expected the forthcoming changes to the London Plan, further information is provided to address the following elements, as set out in the Draft London Plan (intend to publish) dated December 2019:

- Whole Life Carbon Assessment (submitted separately, in support of this Planning Amendment)
- Circular Economy Statement (submitted separately, in support of this Planning Amendment)

This documentation has been issued separately in support of this planning application amendment.

2.4 Definitions and Limitations

Definitions

The following definitions should be understood throughout this statement:

- **Energy demand** the 'room-side' amount of energy which must be inputted to a space to achieve comfortable conditions. In the context of space heating for example, this is the amount of heat which is emitted by a radiator, or other heat delivery mechanism.
- **Energy requirement** the 'system-side' requirement for energy (fuel). In the context of a space heating system using a gas boiler, this is the amount of energy combusted (e.g. gas) to generate useful heat (i.e. to meet the energy demand).
- Regulated CO₂ emissions the CO₂ emissions resulting from the combustion of fuel, or 'consumption' of
 electricity from the grid, associated with regulated energy uses (those covered by Part L of the Building
 Regulations).

2.5 Limitations

The appraisals within this strategy are based on Part L calculation methodology and should not be understood as a predictive assessment of likely future energy requirements or otherwise. Occupants may occupy or operate their buildings differently, and / or the weather may differ from the inputs used in Part L approved calculation methods, leading to differing energy requirements.

SUSTAINABILITY REVISED ENERGY STRATEGY -

3. Regulatory and Policy Context

3.1 The Building Regulations

Building Regulations Part L1A and L2A 2013 edition, incorporating 2016 amendments

Part L1A applies to new dwellings, and Part L2A applies to new buildings other than dwellings.

The requirements are:

Criterion One of the Building Regulations Part L (2013) requires that the building as designed is not anticipated to generate CO_2 emissions in excess of that set by a Target Emission Rate (TER) calculated in accordance with the approved National Calculation Methodology (NCM).

Criterion Two places upper limits on the efficiency of controlled fittings and services.

Criterion Three requires that dwellings limit the effect of heat gains in summer, and that non-dwellings are not subject to excessive solar gains. This is demonstrated using the procedure given in the National Calculation Methodology.

3.2 Planning Policy

National Planning Policy Framework, June 2019

The Revised NPPF came into force in June 2019 and replaces the previous NPPF. It sets out the government's strategy on the delivery of sustainable development through the planning system. It places responsibility for policy making with the Local Authority, who shall communicate their policies through local core strategy documents and other supplementary planning guidance documents. Updates focus on:

- Promoting high quality design of new homes and places
- Stronger protection for the environment
- Building the right number of homes in the right places
- Greater responsibility and accountability for housing delivery from councils and developers.

The NPPF states a presumption in favour of sustainable development, defined as:

"Plans should positively seek opportunities to meet the development needs of their area, and be sufficiently flexible to adapt to rapid change and strategic policies should, as a minimum provide for objectively assessed needs for housing and other uses, as well as any needs that cannot be met within neighbouring areas."

London Borough Richmond upon Thames Local Plan, July 2018

The LBRuT Local Plan details local policies which are applicable to the Amended Proposed Development.

Policy LP 22 states:

- "Development of 1 dwelling unit or more, or 100sqm or more of non-residential floor space (including extensions) will be required to complete the Sustainable Construction Checklist SPD. A completed Checklist has to be submitted as part of the planning application.
- Proposals for commercial areas greater than 100 sqm will be required to meet BREEAM New Construction 'Excellent' standard (where feasible).
- All new major residential developments (10 units or more) should achieve zero carbon standards in line with London Plan policy."

The London Plan, March 2015 (subsequent minor updates in 2016)

The London Plan is the overall strategic plan for London, and it sets out a fully integrated economic, environmental, transport and social framework for the development of the capital to 2031. It forms part of the development plan for Greater London. The first London Plan was published in 2004 with the latest version published in March 2015. One of the main objectives of the London Plan is to improve the environment and reduce climate change by reducing CO₂ emissions and heat loss from new developments

Policy 5.2 Minimising carbon dioxide emissions sets a 'Zero Carbon' target reduction in CO_2 emissions for new build 'Residential Buildings'. The energy assessment SPG defines 'Zero Carbon' homes as those where the residential element of the application achieves at least 35% CO_2 emissions reduction on-site, with the remainder achieved by a

combination of off-site measures and a cash in lieu payment (currently set at £1,800 per tonne of CO_2 of remaining emissions to achieve a total reduction of 100%).

The London Plan - Draft 'intend to publish' December 2019

The draft London Plan was launched for consultation originally in December 2017. It was laid before the London Assembly on the 6th February 2020. The final London Plan was expected to be adopted in March 2020. However, on 13th March 2020, exercising his powers to direct changes, the Secretary of State issued a letter to the Mayor of London in which he set out his consideration of the Mayor's 'Intend to Publish' London Plan. As a next step, the Mayor will have to consider the Secretary of State's response and take the statutory steps to finalise the Plan. It is, therefore, expected that this may lead to further delays to the publishing of the New London Plan.

The policies are yet to be adopted, and as such have not been incorporated into the proposals laid out within this document, however due regard has been had to these where relevant. The notable policy carbon emission changes include non-residential

target will be uplifted to 'zero carbon' – i.e. 100% reduction in CO_2 emissions for regulated energy uses. Of this target, 35% reduction should be achieved from on-site measures, and 10-15% from passive design and energy efficiency measures (residential and non-residential areas respectively). Any shortfall is still expected to be made up by a cash-in-lieu payment. The plan also sets targets and policies for further sustainability measures such as:

- Improving Air Quality
- Energy infrastructure
- Managing heat risk
- Water infrastructure
- Reducing waste
- Aggregates.

In addition, requirements are made for developments to report on two separate new elements. Separate reports have been issued in support of this planning application amendment to address these elements:

- Whole Life Carbon: Teams should report the estimated whole life carbon of the development, i.e. the estimated embodied carbon for the materials used, added to the estimated total operational carbon emissions over a 60 year period, with methodology set out in separate draft GLA guidance, and a spreadsheet tool for reporting developed as well. Results are to be reported against current (SAP10) carbon factors, as well as future carbon factors.
- Circular economy: Separate reporting is required regarding circular economy, setting out the
 measures implemented to reduce the impact of the development in terms of materials use and
 waste produced, using cradle to cradle thinking. Separate draft guidance is also made available for
 this.

REVISED ENERGY STRATEGY - REV. 03

GLA Energy Assessment Guidance, October 2018; and draft Energy Assessment Guidance, April 2020

mu Assessment Cuiden

The GLA's guidance to preparing energy assessments sets out a methodology to follow for all developments submitted for planning applications in London. Headline targets are:

- Buildings are compared to a 'gas boiler baseline' with set efficiencies for plant - As of January 2019, new development applications have been encouraged to use the updated carbon emission factors set out in the draft SAP10 documentation. The GLA state: 'This will ensure that the assessment of new developments better reflects the actual carbon emissions associated with their expected operation. This approach will remain in place until Government adopts new Building Regulations with updated emission factors.'

See section 5 for further details.

The guidance further confirms developments should target compliance with overheating risk criteria in line with CIBSE TM59 under weather file DSY1, and that results for DSY2&3 should be reported as well.

LBRuT Climate Emergency Strategy, 2019

The LBRuT Climate Emergency Strategy sets our 6 key focus areas for responding to climate change within the borough:

- 1. Our council: Becoming carbon neutral as an organisation by 2030
- 2. Our legacy: Climate Change Mitigation and Energy Efficiency
- 3. Our waste: Waste and Plastics and the Circular Economy
- 4. Our air: Improving Air Quality
- 5. Our nature: Green Infrastructure and Biodiversity
- 6. Our water: Water Management and Flood Abatement

Of these, item 1 regards to the council's own assets and management. Item 2 is dealt with in the detail set out in this report, whereas information regarding items 4-6 is provide din the Sustainability Strategy, submitted in support of this Planning Application.

4. Part L Approach and Methodology

4.1 Approach

This strategy outlines how the Amended Proposed Development could have a reduced effect on climate change by reducing CO₂ emissions associated with energy use in buildings.

Figure 3 outlines the route followed by the Amended Proposed Development when reducing CO₂ emissions and defines the structure of this statement.

Figure 3 The Energy Hierarchy

The strategic approach to the design of the Amended Proposed Development has been to maximise the energy efficiency of the development through the incorporation of passive design led solutions during the construction process, with the integration of low carbon technology to maximise reduction of carbon emissions from the development.

Further reductions are ensured through the specification of high-efficiency building services to limit losses in energy supply, storage and distribution.

After the inclusion of passive design and energy efficiency measures, various options have been investigated to reduce CO_2 emissions associated with energy supply. The feasibility of LZC technologies has been investigated in line with the policy aspirations.

4.2 Methodology

Calculations demonstrating the energy requirements and associated CO₂ emissions have been modelled as follows:

- New Build Residential Building Regulations Part L1A 2013: Conservation of Fuel and Power in New Dwellings. A sample of dwellings have been modelled using SAP methodology (software: NHER v. 6.3.4).
- New build commercial areas. Building Regulations Part L2A 2013: Conservation of Fuel and Power in New Buildings other than Dwellings. These elements have been modelled using IES v. 2019.2.
- In line with current GLA guidance, carbon emission reductions have been calculated using the carbon factors set out in the draft SAP10 guidance.

The following carbon factors were used to convert the energy consumption figures into CO₂ emissions for the Amended Proposed Development, in line with current GLA Energy Assessment Guidance.

Fuel	Emissions Factor (kgCO ₂ /kWh)
Gas	0.210
Electricity	0.233

Table 3 Draft SAP 10 CO₂ Emission Factors.

10

AVANTON RICHMOND DEVELOPMENT LTD SUSTAINABILITY

REVISED ENERGY STRATEGY
REV 03

5. Energy Strategy

The following sections outline considerations of the passive design and energy efficiency measures that have been proposed at Manor Road, Richmond. The measures are described as follows:

Figure 4: The Amended Proposed Development at Manor Road.

5.1 Be Lean - Passive Design Strategy

Passive design measures are those which reduce the demand for energy within buildings, without consuming energy in the process.

These are the most effective and robust measures for reducing CO_2 emissions as the performance of the solutions, for example wall insulation, is unlikely to deteriorate significantly with time, or be subject to change by future property owners.

The following passive design measures will be incorporated in the Amended Proposed Development design:

Thermal Insulation

To minimise the demand for space heating, where new build elements are incorporated these will target an improvement upon the Part L 2013 minimum standards.

Thermal Bridging Minimisation

It is proposed to incorporate proprietary products with thermal breaks into the design of the Amended Proposed Development. Options that are being considered include thermally broken lintels and balconies. SAP

calculations currently include for reduced thermal bridging for these elements, compared to the SAP 'default' input. Inputs used have been based on manufacturer's documentation for example products. The improvements made to the thermal bridges result in a better fabric efficiency, thus lowering the total energy consumption of the development. Overall, this has led to a 10% carbon emission reduction on the Be Lean stage (i.e. prior to the inclusion of low and zero carbon technologies), which is an improvement over the Original Proposed Development which achieved a 7% carbon emission reduction. Please refer to section 5.3.1 for further detail.

Fabric Air Permeability

Fabric air permeability is a measure of the volume of air that can penetrate through the fabric of a building, leading to ventilation heat loss and gain. High air permeability can lead to uncomfortable drafts and increase the demand for space heating in winter, and space cooling in summer, when the air-flow works in reverse i.e. cool air escaping from the building.

The development will target an air permeability rate of 3m³/h.m² at 50Pa for all buildings. This is a 70% reduction beyond that required by Building Regulations Part L 2013.

Glazing - Energy & Light Transmittance

The apartments will have glazing which will be high specification. Solar gains are beneficial in winter months as a means of reducing the need for active heating to maintain comfortable internal temperatures. However, in summer months excessive solar gains can, if not properly managed, lead to overheating and increased cooling load. Details on glazing design are further elaborated in section 5.2.

The glazed area as a proportion of façade area (from the inside looking out) ranges from 29% to 68% for the various apartment types tested.

5.2 Be Lean - Limiting the Effect of Heat Gains in Summer Months

Cooling Hierarchy

The London Plan Policy 5.9 (Overheating and Cooling) requests that developments should reduce potential overheating risks and reliance on air conditioning systems. A 'cooling hierarchy' is provided and the Amended Proposed Development has sought to follow this hierarchy. This is also in line with LBRuT Local Plan LP 20.

The London Plan cooling hierarchy has been followed to limit the effects of heat gains in summer, prior to the incorporation of active cooling. Please refer to section 7 for further detail of this assessment.

Summary of Mitigation Measures

The following mitigation methods will be implemented at the Amended Proposed Development.

Reduction of internal heat gains

Internal heat gains will be reduced by energy efficient design measures such as:

- Use of energy efficient lighting (such as LED or compact fluorescent) with low heat output.
- Reduced water circulation temperatures, and insulation added to pipework to minimise circulation heat loss
- High levels of insulation and low fabric air permeability which will retain cool air during the summer months

Reduction of solar ingress

Glazing g-value is linked to light transmittance. For lower g-values, it is likely that the visible light transmittance of the glass is reduced, due to the inclusion of reflective outer surfaces or tints to control solar energy transmittance.

The g-values for the windows will be set based on a combination of aesthetic properties and overall building performance. It is currently expected that a g-value of 0.4 will be used for all glazing.

Managing heat

It is being assessed to incorporate thermal mass to living ceilings in the form of phase change plasterboard which, coupled with windows opened at night, will help to reduce high temperatures in the daytime, as the

11

AVANTON RICHMOND DEVELOPMENT LTD

SUSTAINABILITY REVISED ENERGY STRATEGY -REV 03

phase change material acts as a 'coolth-sink'. This approach will be firmed up in the coming design stages, to assess which apartments will gain the greatest benefit from this approach (preference given to those apartments that are not provided with cooling, and which are showing failure to comply with TM59 Criterion 1).

Ventilation and cooling

All apartments will have openable windows to enable occupants to purge air from apartments, in line with Building Regulations Part F. A sample of apartments have been tested using the CIBSE TM59 methodology, and are expected to meet the criteria in the naturally ventilated scenario, using the DSY1 weather file.

Cooling will also be implemented to a proportion of apartments, with preference given to those apartments at risk of experiencing excessive noise from external sources.

Please refer to section 8 for further detail.

5.3 Be Lean - Energy Efficiency Measures

Energy efficiency measures are those which seek to service the demand for energy (i.e. the remaining demand after implementation of passive design measures) in the most efficient way.

All areas will be conditioned using building-by-building systems.

Heating

Heating of the Amended Proposed Development will be served by Air Source Heat Pumps (ASHP) on a blockby-block basis.

The dwellings within each building will connect to the rooftop ASHPs via Heat Interface Units (HIU) (Figure 5).

Figure 5: Indicative sketch showing servicing strategy for this type of system.

HIUs will be insulated in accordance with the guidelines in the Building Regulations and the Mayor of London's District Heating Manual for London (2013). This will maximise system efficiency by reducing as far as practically possible the heat loss from the pipework.

A means to connect the heat networks for each building to a wider district heat network will also be provided to allow for future connection should this be technically, economically and legally viable to do. Please refer to section 5.4 and Appendix K for further detail.

All Low Temperature Hot Water (LTHW) network and primary pipework will be insulated to maximise system efficiency and guard against excessive distribution heat loss.

For commercial areas, whilst capped connections to the energy centre will be provided, the fit-out of the commercial areas will be the responsibility of the incoming tenants. The tenants will be required to implement highly efficient systems in line with the standards outlined in the Non-Domestic Building Services Compliance Guide (2013) as a minimum. Sufficient plant space will be provided for each tenant to install their own plant. Commercial tenants will be required to achieve four credits under BREEAM 2018 Ene 01 'Reduction of energy' use and carbon emissions', in order to achieve the target rating of 'Excellent, and thus it is expected that improvements over the Part L minimum standards will be required.

Hot Water

Hot water for the dwellings will be delivered via the ASHPs, with electric immersion top-up provided in a tank in each apartment.

For retail units, it is anticipated that point of use electric water heaters will be used, and these areas have been modelled based on this assumption. The point of use system will minimise the heat losses in distribution pipework. It also means that, storage losses will be minimal compared with large stored volumes of water at high temperatures.

The Amended Proposed Development will feature water efficient fixtures and fittings including WCs with low flush volume and flow reducers in the taps of wash hand basins and on showers and as a minimum, meet the optional performance stipulations within the Building Regulations Part G (2013), as required by LBRuT Local Plan Policy LP 22, which requires all dwellings to achieve maximum water consumption of 110 litres per person per day (including allowances of 5 litres or less per day for external water consumption).

Space Cooling

Space cooling is proposed for a proportion of apartments at the Amended Proposed Development. It is proposed that a cooling coil will be implemented into the MVHR system where necessary. Comfort cooling will also be implemented to a proportion of apartments to meet market expectation. The design will be further developed in the detailed design stages, and preference for these solutions will be given to those apartments at risk of experiencing excessive noise from external sources.

It is anticipated that the fit-out of the commercial units will incorporate cooling, and these have been modelled as such, however this will ultimately be a tenant design specification.

Lighting

High-efficiency lighting systems will be installed wherever possible, and as a minimum meet the performance stipulations within the Non-Domestic Building Services Compliance Guide (2013). In addition, the use of lighting controls such as occupancy detection shall be installed in communal areas where possible, to further reduce the use of electric lighting.

The implementation of efficient lighting will not only reduce energy requirement and CO₂ emissions associated with lighting, but will also aid in minimising the energy requirement associated with cooling.

Ventilation

The Amended Proposed Development will be provided with high-efficiency localised mechanical ventilation with heat recovery. Mechanical ventilation is an important addition to the building services to maintain good indoor air quality by providing fresh air to all spaces and extracting stale air. Coupled to a heat exchanger, the

SUSTAINABILITY
REVISED ENERGY STRATEGY REV. 03

warmth in extracted air can be recovered and delivered to the supply air. In this mode, the ventilation system reduces space heating and cooling demand.

To reduce the electrical energy associated with fans, for areas in the Amended Proposed Development with supply and extract, low specific fan powers will be targeted. It is recommended that boosted ventilation and summer bypass will also be incorporated.

Pipework & Ductwork Insulation

All distribution pipework will be insulated in accordance with the requirements of the Building Regulations, as a minimum.

This will serve to minimise heat gains and losses to / from distribution pipework, and maximise system efficiency. Careful attention will be paid to insulating joints, valves and knuckles to minimise standing heat losses. Ductwork will also be insulated to minimise heat gains and losses, and will be of suitable construction to minimise air leakage. Rigid duct work will be used as preference, to avoid inefficiencies from convoluted flexible duct runs.

Due to the nature of ASHP system design, the distribution temperatures will be lower than would be the case for a 'conventional' gas-fired boiler system. This will in turn help to reduce energy losses from distribution.

Operation & Maintenance Manuals

In accordance with the requirements of the Building Regulations detailed Operation and Maintenance (O&M) manuals will be provided to managers of the Amended Proposed Development.

The guides will provide both an overview of the systems and their intended operation, and relevant engineering details of the installations.

Unregulated Energy

Unregulated energy includes small power electricity use (computers, plug in devices, washing machines, refrigeration) and catering energy consumption.

It is anticipated that the proportion of unregulated energy would gain in significance when compared to regulated energy as each revision of Building Regulations Part L comes into force and regulated energy is reduced.

It is therefore foreseeable that energy efficiency and the rising cost of energy would play an increasing role when future building users are deciding which appliances to purchase and the frequency of their use. However, it is not possible at present to quantify the extent of this potential reduction.

Given the uncertainty, measures to educate the future building users on how they can reduce their equipment energy use would be encouraged. This can be provided in the form of building user guides and tenant fit-out guides. The guidance measures detailed within these types of documents would consider:

- Use of A / A+ rated white goods
- Energy star rated computers and flat screen monitors, and Voltage optimization and power factor correction.

12

Figure 6: Regulated Energy and Unregulated Emissions Summary.

SUSTAINABILITY
REVISED ENERGY STRATEGY REV. 03

13

Summary of Passive Design & Energy Efficiency Measures

Table 4 summarises the passive design and energy efficiency measures for the Amended Proposed Development. As the commercial units are being developed to shell only, but targeting BREEAM excellent (i.e. 4 credits under Ene O1, BREEAM NC 2018) the inputs in Table 4 are aligned to an estimate of what would be required in terms of the tenant fit-out for these spaces. These estimates have been based on previous, similar schemes.

	Parameter Dwellings		Commercial areas	
	Roof U-value (W/m².K)	0.16	-	
	External Wall U-value (W/m².K)	0.15	0.15	
	Floor U-value (W/m².K)	0.13	0.13	
	Party Wall U-value (W/m².K)	0.00 (fully filled cavity with effective edge sealing)	-	
	Sheltered Wall U-value (W/m².K)	O (fully filled cavity with effective edge sealing)	N/A	
esign	Window U-value (W/m².K)	1.4	1.4	
e D	Glazing g-value	0.4	0.4-0.6	
Passive Design	Fabric Air Permeability ((m³/m².h) at 50 Pa)	3.0	3.0	
	Thermal Bridging	Default values used everywhere except for lintels, where a ψ -value of 0.06 W/m.K was used based on example product manufacturer data. Balcony thermal bridges have been input as 'wall insulation continuous', with a ψ -value of 0.04 W/m.K (default). However, a similar value may also be achieved by use of proprietary, thermally broken product.	10% addition made	
	Other measures	N/A	Awning included over all glazed areas: - 1.5m depth - 45 degree angle	
Energy Efficiency	Space Heating	Building-by-building ASHP system (total 180% efficiency) with Heat Interface Units (HIU) per dwelling coupled to hot water systems and radiators.	Variable Refrigerant Flow (VRF) system with COP = 5	
Ener	Hot Water	Served from ASHP, with electric topup.	Electric point of use 10% distribution losses.	

Parameter		Dwellings	Commercial areas
		Water efficient fixtures and fittings to minimise water demand. HIU with minimal heat loss	
Space Cooling	0.0	Cooling provided by ASHP in a proportion of apartments, with preference given to those apartments at risk of experiencing excessive noise from external sources. Cooling SEER = 4.05; SCOP = 3.5	SEER 5.0
Lighting		High efficiency lighting. Daylight and presence detection in common areas.	Target efficacy of 90 luminaire lumens per circuit Watt. Display Lighting is 80 lamp lumens per circuit Watt.
Ventilation		MVHR with specific fan power 0.55 W/l.s (average) with Heat Recovery of 90% or better.	Target SFP of 1.6W/I/s and HR of 80%
Metering & C	Controls	Zonal, programmable thermostatic controls for heating. Separate programmable control for hot water. Electricity meter and heat meter with potential link to energy display device.	To be provided in accordance with the requirements of the Building Regulations.
Pipework & E Insulation	Ductwork	To be provided in accordance with the requirements of the Building Regulations.	To be provided in accordance with the requirements of the Building Regulations.
Variable Spee	ed	To be provided.	To be provided.
O&M Manua	ls	Systems overview and detailed descriptions in plain and clear English.	To be provided in accordance with the requirements of the Building Regulations.

Table 4: Summary of Passive Design & Energy Efficiency Measures.

5.3.1 Be Lean - Energy Requirement & CO₂ Emissions appraisal

The following is an appraisal of the anticipated energy requirements and resultant CO₂ emissions that could arise as a result of the Amended Proposed Development, after the inclusion of the passive design and energy efficiency measures described above.

The appraisal has been based on the Government's approved calculation methodology and should not be understood as a predictive assessment as occupants may operate their systems differently, and / or the weather may be different from the assumptions made within the calculations. The appraisal simply reflects the regulated energy consumption and carbon emissions based on the design inputs at this stage and the Building Regulations Part L calculation methodology.

Regulated sources of energy requirement are those controlled by the Building Regulations, as follows:

- space heating
- hot water
- space cooling
- lighting
- auxiliary (combining fans, pumps and controls)

SUSTAINABILITY

REVISED ENERGY STRATEGY -

As outlined in Figure 7 the majority of the regulated energy demand, approximately 86%, is as a result of thermal energy demand (domestic hot water and space heating), of which hot water is the most significant contributor.

Figure 7: A breakdown of the anticipated annual regulated energy demand (left) and CO₂ emissions (right) by service and space use for the development.

The results presented below are based on Building Regulations Part L1A 2013 compliance modelling carried out on a sample of new build dwellings. The results have been applied to all the residential areas of the Amended Proposed Development. The calculations demonstrating the energy requirements and associated CO_2 emissions for dwellings have been carried out using Building Regulations Part L1A approved SAP 2012 v9.92 methodology.

The results demonstrate that, based on the measures listed in section 4.3 above, before the implementation of 'be clean' or 'be green' measures, the development is expected to meet the requirements of the Part L2013 'baseline'.

The annual regulated energy requirement of the new build elements of the Amended Proposed Development is summarised in Table 5.

The Amended Proposed Development is expected to achieve 10.2% improvement over Part L 2013 compliance via Be Lean measures, i.e. prior to the consideration of any LZC technologies. As such, the Amended Proposed Development meets the draft London Plan policy target for carbon reduction at the 'Be Lean' stage. This is an improvement over the original planning application submission (where a 7% saving was proposed at the Be Lean stage). This improvement has been made chiefly from further detailing the thermal bridging inputs.

Tables 6&7 provide an indicative breakdown of anticipated energy requirements and CO₂ emissions by service for each space use.

Table 8 provides a comparison of the notional and actual building cooling requirements for the non-domestic areas modelled at this stage, showing that the anticipated cooling requirement is lower than the notional cooling requirement.

Parameters

Energy Demand Regulated CO₂ Emissions

MWh/yr % Reduction tCO₂/yr % Reduction

Part L 2013 'Gas Boiler Baseline' 1,889 - 444 -

10.9%

398

1.684

14

10.2%

Table 5: Summary of Be Lean Regulated Energy Requirements and Associated CO₂ Emissions.

		Regulated Energy Demand					Unregulated
	Heating	Cooling	Auxiliary	Lighting	Hot Water	Total	
Space Use	kWh/yr	kWh/yr	kWh/yr	kWh/yr	kWh/yr	kWh/yr	kWh/yr
Residential areas (C3)	558,500	52,500	77,600	129,600	817,300	1,635,500	933,400
Commercial areas (A1/A3/B1)	5,200	15,600	8,200	18,200	900	48,100	9,800
Total	563,700	68,100	85,800	147,800	818,200	1,683,600	943,200

Table 6: Anticipated Regulated Energy Requirements - Be Lean

		Regulated Carbon Emissions					Unregulated
	Heating	Cooling	Auxiliary	Lighting	Hot Water	Total	
Space Use	kgCO ₂ /yr	kgCO ₂ /yr	kgCO ₂ /yr	kgCO ₂ /yr	kgCO ₂ /yr	kgCO ₂ /yr	kgCO ₂ /yr
Residential areas (C3)	137,600	3,000	18,100	30,200	201,400	390,300	217,500
Commercial areas (A1/A3/B1)	1,200	700	1,900	4,300	200	8,200	2,300
Total	138,800	3,700	20,000	34,500	201,600	398,500	219,800

Table 7: Anticipated Regulated CO₂ Emissions - Be Lean

Commercial areas (A1/A3/B1)	Area weighted average non-domestic cooling demand	Total area weighted non-domestic cooling demand
	MJ/m ²	MJ/year
Actual Building Cooling	93	46,035
Notional Building Cooling	120.4	59,598

Table 8: Summary of Anticipated Cooling Requirement

	Target Fabric Energy Efficiency (kWh/m².year)	Design Fabric Energy Efficiency (kWh/m².year)	Improvement (%)
Residential units area-weighted average Fabric Energy performance	38.32	42.26	9.32%

Table 9: Residential units area-weighted average Design Fabric Energy performance (DFEES) against target (TFEES)

SUSTAINABILITY
REVISED ENERGY STRATEGY REV. 03

15

5.4 Be Clean

The following sections detail considerations of the infrastructure and low-carbon energy supply measures that have been considered.

Off-site Decentralised Energy Networks (DEN)

The Amended Proposed Development is not within an 'Opportunity Area' for the implementation of a decentralised energy network, but does lie within an area of moderate to high heat density, as identified by the London Heat Map (http://www.londonheatmap.org.uk). The nearest "Potential Network" is a significant distance away (cannot be seen in overview below), and so is not thought to represent a viable energy source for this scheme.

Figure 8 Extract from London Heat Map

Technology Appraisal

This section considers the relative merits of providing a stand-alone on-site DEN served by a dedicated energy centre with centralised plant.

Combined Heat and Power (CHP)

Changes to the carbon factors of grid electricity have meant that previously favoured systems such as Combined Heat and Power (CHP) are becoming much less carbon efficient. In fact, CHP systems are now expected to lead to greater carbon emissions than conventional gas-fired boilers due to their lower efficiency. Electric systems are far more likely to achieve substantial carbon emission savings. Please refer to Figure 9.

Further, CHP engines are an on-site source of pollutants which may adversely affect the local air quality. CHP is therefore not proposed for this development.

Figure 9 Changes in grid electricity carbon factors

SUSTAINABILITY

REVISED ENERGY STRATEGY
REV 03

Centralised energy distribution on-site

An assessment has been carried out to determine likely implications of centralised energy distribution at the development. Since the original planning application, work has been undertaken to further detail the implications of this potential connection.

It is expected that there would be limited benefit from the increased diversity that would arise from combining the heating plant in one location, due to the modular nature of Air Source Heat Pump plant.

Further, it has been assessed whether a centralised location for the ASHP systems could be allocated, and it is found that none of the roof spaces are large enough on their own to host the ASHP equipment in one place. Appendix D shows the indicative layout of the proposed plant.

Therefore, the current amended proposed strategy includes space allocation which has been made for future plate heat exchangers at the ground floor to each building, and the pipework in all risers appropriately sized to be able to serve each building bottom-up in future, in addition to the current top-down arrangement. It is further proposed to include full trenching between all buildings, with space allocation made for future district heating pipework. A further space allocation has been made for a plate heat exchanger at the ground floor near to the site entrance, so that a future potential district energy network would only require one connection point. Pipework sleeves will be included through the building envelope at the location of each future plate heat exchanger to further ease future connection, should a viable option become available in the vicinity of the site in future. Please refer to Appendix K for further detail.

This proposed upgrade to the future proofing for a potential future distribution network has been made in response to GLA policy, and in discussion with energy officers.

Estimated distribution loss factors have been calculated for the development (See Table 10). The value that would be expected for site-wide distribution (20%) presents a significant increase compared to existing Part L guidelines (5%). Please refer to Appendix K for further details on the inputs and results of this assessment.

	Building-by-building distribution	Site-wide distribution
Distribution loss factor	9%	20%

Table 10: Estimated distribution loss factors based on the current design.

It is estimated that an additional ~ 20 tonnes CO₂/year could be lost if a centralised energy centre is implemented. Please refer to Figure 10. This would be equivalent to a carbon emission reduction $\sim 4.6\%$ worse than the current estimate.

16

Figure 10 Expected reduction in carbon emissions for residential areas with various energy strategy inputs

In summary, full 'live' distribution pipework is not proposed to be installed for the following reasons:

- Increased energy losses related to the distribution between buildings would be estimated to result in an additional 20 tonnes CO₂ emission per annum
- Capped pipework provided, if never used, will result in additional embodied carbon spent at no additional benefit to the scheme. It is also difficult to stop the pipework corroding/ deteriorating over time.
- The embodied carbon content of installing 700m of pipework would be significant as well, and with no certainty this will ever be required, this additional use of resources cannot be justified.

Please refer to appendices for further details, as follows:

- Appendix D: External Services Layout
- Appendix E: Concept LTHW/CHW Schematic
- Appendix K: Centralised vs decentralised energy strategy analysis

5.5 Summary of district energy assessment

It is clear from the above sections that building-by-building ASHP is be the most suitable solution from a carbon reduction perspective at day 1. Incorporating district energy pipework would not only add to the capital cost of the development but would also be expected to add increased operational cost due to increased distribution losses in district pipework, resulting in increased carbon emissions as well.

As there is no existing or planned district energy network in the vicinity of the site, and due to the site constraints (railways against two of the three boundaries) it is considered that the probability of a district energy network arriving at the one available site boundary is small. It is further expected that a connection would only be feasible if the potential future connection has a lower carbon content than the site systems. Given that the site systems are running on electricity, linked to a decreasing grid electricity carbon factor, this is also considered to have a low probability.

Nevertheless, the Amended Proposed Development has been future-proofed for connection to district energy as described in this section.

Please refer to Appendix K for further detail.

SUSTAINABILITY

REVISED ENERGY STRATEGY -REV. 03

5.6 Be Green

The following sections outline considerations of the renewable energy generation measures that have been considered, and those which will be implemented at the Amended Proposed Development.

Renewable Technology Appraisal

Renewable technologies harness energy from the environment and convert this to a useful form. Many renewable technologies are available. However, not all these are commercially viable, suitable for conservation areas or appropriate for the Amended Proposed Development.

Technologies considered for the Amended Proposed Development include:

Photovoltaics

Solar thermal panels

Biomass boilers

Heat pumps (closed and open Wind turbines loop ground-source/ water source open loop/ air-source)

Where calculations are provided, these are representative of improvements over the new building dwellings only.

Photovoltaic (PVs) Panels

The potential areas suitable for PVs are limited given the location of the development in a

However, an appraisal of roof space available for PV has been undertaken, taking into consideration the following:

- Overshading
- Area allocated for plant space
- Area required for access

Considering the roof space available, as shown in Figure 11, it is estimated that 239 PV panels, equivalent to approx. 380m² PV panel area could be incorporated on roofs of the Amended Proposed Development. Please refer to Appendix G for an indicative roof layout drawing.

Based on the solar irradiance data for London, an array of this size would generate approximately 45,400kWh of electricity per annum, reducing CO₂ emissions by 10.6 tonnes per annum. This is equivalent to a reduction in regulated CO₂ emissions of 2.4% beyond the GLA Gas boiler 'baseline'.

It is proposed to allocate PVs in the locations shown in the adjacent Figure 11. The PV layouts will be further developed in the detailed design stages.

Roof area allocated for plant, communal terraces or overshaded area

Green / brown roof / PVs

Roof area deemed too small for PV panel array

MANOR ROAD

AVANTON RICHMOND DEVELOPMENT LTD

SUSTAINABILITY

REVISED ENERGY STRATEGY -REV 03

Solar Thermal Panels

Solar thermal panels operate by capturing solar energy and transferring this via a fluid (e.g. glycol) to a thermal store to generate hot water. These systems can operate at efficiencies up to ~75% thus a high yield of energy can be derived from small collector areas.

The appraisal of solar thermal panels has been undertaken with the same approach as for PV. Considering the available roof space, and allowing for access and maintenance requirements, a total solar thermal system size of 155kW could be installed at the Amended Proposed Development.

Based on the solar irradiance data for London, an array of this size would generate approximately 140,000kWh of heat per annum. This level of thermal generation is equivalent to 17% of the annual hot water demand, reducing CO₂ emissions by 34 tonnes per annum. This is equivalent to a reduction in regulated CO₂ emissions of 7.6% beyond the Building Regulations Part L (2013) 'baseline'.

However, as roof area has already been allocated for PVs, and since the electrical output from PV panels will be more suitable for implementation with the energy strategy, a solar thermal system is not proposed for this development.

Biomass Boilers

Biomass boilers burn wood fuel or other bio-fuel sources to generate heat. These boilers can operate at high efficiencies, comparable to condensing gas boilers.

However, they require a large fuel store to maintain continuous operation during the winter months. Spatially this would be very difficult to accommodate at the Amended Proposed Development.

High numbers of fuel deliveries are required to keep the fuel store topped up during the peak heating season. The carbon associated with the delivery vehicles and their journeys reduces the net carbon saving gained from using a renewable fuel.

The reasons listed above alongside high maintenance implications and air quality implications mean that biomass boilers are not considered a suitable technology for the scheme.

18

Air / Water / Ground Source Heat Pumps

Ground Source systems work to extract heat or cooling energy from the ground. They are generally more efficient than air source systems, as the ground temperature is more stable over the course of the year relative to air temperature. There are four common varieties of ground source systems:

- Vertical, open loop, with heat pump
- Horizontal, closed loop, with heat pump - Vertical, closed loop, with heat pump

Regardless of the type of ground source heat loop used, all would require new below ground works to bury and install the system on site. This would incur substantial cost to the development. Further Ground Source Heat Pumps require a balanced heating and cooling load ion order to ensure heat and coolth is exchanges in balance to the aquifer. Due to the heating-led energy profile of this development, Ground Source Heat Pumps are not proposed for Manor Road.

Water source heat pumps use bodies of water, such as rivers, lakes or oceans to provide heating or cooling energy to a building. However, there are no such bodies of water local to site, therefore this technology could not be used.

Air source heat pumps use thermodynamic principles to convert heat from the air into useable heat within the building. Unlike some other sources of renewable energy, heat pumps do require energy (typically electricity or gas) to pump and compress refrigerant through the system. However, under the Renewable Energy Directive 2009/28/EC they are classified as renewable technologies provided that the final energy output significantly exceeds the primary energy input required to drive the heat pump.

Due to the changes in carbon factors for grid electricity, it is expected that carbon emission reductions from ASHP is greatly improved compared to previous iterations of SAP. In order to serve a proportion of heating and hot water for the Amended Proposed Development, an ASHP system size of 4.3MW will be installed at the Amended Proposed Development to generate a proportion of heating and cooling for the scheme. Please refer to section 5.3 where this approach is described in further detail.

This system is expected to result in regulated CO₂ emission reductions of 34.9% beyond the Building Regulations Part L (2013) 'baseline' on a site-wide basis.

Air Source Heat Pumps are proposed for the development.

Micro Wind Turbines

For efficient operation and to yield high energy output, wind turbines require a smooth laminar flow of air.

Mounting wind turbines on the roof of the building could result in unacceptable vibration and resonance being felt within occupied spaces. The turbines are also likely to generate noise which may be a nuisance to neighbouring residential properties. This scenario is likely to result in the turbines being switched off.

Therefore, given the complexities of installing this technology, the use of micro wind turbines is not proposed at the Amended Proposed Development.

SUSTAINABILITY REVISED ENERGY STRATEGY -REV. 03

19

5.7 Summary

Preferred Strategy for Implementation
Table 11 provides a summary of the technologies assessed above.

	Pros	Cons	Suitability
Solar Photovoltaic Panels (PV)	Generates electricity from solar energy	Cost implications.	✓
Solar Thermal Panels	Generates hot water from solar energy	Roof space has been allocated for PV, which is better suited in interaction with the energy strategy as a whole.	×
Wood Pellet Biomass Boiler	Uses a renewable fuel source to generate hot water	Large fuel stores required High number of fuel deliveries required High maintenance required Negative impacts on local air quality	×
Ground Source Heat Pumps	Uses heat/coolth from the ground to provide usable heating or cooling to the building	Requires an auxiliary energy source to drive system Great cost implication to drill the required bore holes to feed system	×
Air Source Heat Pumps	Uses heat/coolth from the air to provide usable heating or cooling to the building. Same technology can deliver the heating and cooling requirements of the building. Use of the refrigerant cycle delivers high energy efficiencies	Requires an energy source to drive system (can be fed in part by PVs). Roof space allocation required.	√
Micro Wind Turbines	Generates electricity from wind energy	Potential noise and vibration impacts on the Amended Proposed Development and neighbouring properties	×

Table 11: Renewable Technologies Appraisal.

6. Operational Cost

Operational costs for end users are an important consideration when appraising energy strategy options. Focussing solely on carbon emissions can lead to unintended consequences in the form of higher than expected occupant energy bills if capital and operation expenditure of the energy systems and networks are passed on to end users.

This section provides an appraisal of potential end user costs for both boiler-led communal heating, and communal heat-pump strategies.

A summary of the appraisal is shown below in Table 12. An overview of inputs and results is provided in Appendix J.

The applicability of Renewable Heat Incentive payments relies specifically on two inputs: The efficiency of the ASHP in heating mode, and whether or not the ASHP is designed to provide cooling.

For this assessment, it has been assumed that the minimum efficiency (2.9) in heating mode can be achieved.

It should be noted here that funding for the Renewable Heat Incentive is currently confirmed by the government to be available for installations made prior to March 2022. This was confirmed by the chancellor, Rishi Sunak, in the recent budget. This is an extension by one year compared to the previous confirmed date of March 2021. It is currently not confirmed whether installations made after this date will be able to make use of this grant. Consumer cost estimates with and without DHI are given below.

System:	Estimated Cost per Unit of Heat (pence/kWh)	Notes / Basis of Assessment:
Communal gas boiler (for comparison)	4.0p / kWh	District heating network, no local thermal storage.
ASHP with Renewable Heat Incentive (RHI) included	2.4p / kWh	ASHP system + local storage with immersion. Renewable Heat Incentive (RHI) included.
ASHP with no Renewable Heat Incentive (RHI)	5.2p / kWh	ASHP system + local storage with immersion. Renewable Heat Incentive (RHI) not included.

Table 12: Operational Cost Appraisal Summary

As it is expected that some cooling will be provided for Manor Road, and therefore not all ASHP installations will be eligible for RHI payments, it is expected that the actual cost to consumers will fall between the two estimated costs calculated in Table 12 above, provided the Renewable Heat Incentive is still available to the scheme at the time of project completion.

Details of the cost assessment for each scenario, including assumptions, are shown below.

Global inputs		
Commercial gas	p/kWh	2.57
Commercial electricity	p/kWh	11.04
Commercial electricity exported	p/kWh	4.00
Dwelling gas	p/kWh	4.38
Dwelling electricity	p/kWh	16.48
ASHP RHI	p/kWh	2.69
Communal riser air temperature	С	20
Cold water temperature	С	10

Table 13: Cost Assessment Global Inputs

7. Summary of Results

The following tables demonstrate the relative carbon emission savings of the Amended Proposed Development, compared to Part L 2013 baseline for the Be Lean, Be Clean and Be Green stages of the Mayor's energy hierarchy.

In line with GLA Energy Strategy guidelines, the results are presented separately for the residential and retail areas.

7.1 Dwellings

Table 14 below outlines the anticipated CO_2 emissions reductions and carbon offset payment. The combined on-site savings and zero carbon target shortfall is used to calculate a total carbon offset payment.

New Build Dwellings	Regulated Carbon Dioxide Emission Savings (tonnes CO ₂ /yr)	
<u> </u>	Regulated	Unregulated
Baseline: Part L 2013 Building Regulations with SAP 10 carbon factors	433	217
After energy demand reduction (Be Lean)	390	217
After heat network / CHP (Be Clean)	390	217
After renewable energy (Be Green)	235	217
	Regulated domestic carbon dioxide savings	
	(tonnes CO ₂ /yr)	(%)
Savings from energy demand reduction	43	10%
Savings from heat network / CHP	0	0%
Savings from renewable energy	155	35.8%
Cumulative on-site savings	198	45.8%
Annual savings from offset payment	235	-
Offset Payment Rate (£/tCO ₂)	£1,800	
Total Offset Payment	£ 422,885	

Table 14: Dwellings Summary of regulated carbon emissions saving and carbon offset payment.

7.2 Flexible Commercial Areas

Table 15 below outlines the anticipated CO_2 emissions reductions and carbon offset payment for the flexible commercial areas. The on-site target is used to confirm that no carbon offset payment is expected for these areas.

New Build Flexible Commercial Areas	Regulated Carbon Dioxide Emission Savings (tonnes CO ₂ /yr)	
	Regulated	Unregulated
Baseline: Part L 2013 Building Regulations with SAP 10 carbon factors	11	2
After energy demand reduction (Be Lean)	8	2
After heat network / CHP (Be Clean)	8	2
After renewable energy (Be Green)	6	2
	Regulated non-domestic carbon dioxide savings	
	(tonnes CO ₂ /yr)	(%)
Savings from energy demand reduction	2	22.4%
Savings from heat network / CHP	0	0%
Savings from renewable energy	2	20.3%
Cumulative on site savings	5	42.7%
Total target savings	4	35 %
Shortfall	N/A	-
Offset Payment Rate (£/tCO ₂)	£1,800	
Total Offset Payment	£0	

Table 15: Commercial Summary of regulated carbon emissions saving and carbon offset payment.

SUSTAINABILITY
REVISED ENERGY STRATEGY -

Figure 12: Summary of regulated carbon emissions savings site-wide.

7.3 Improvements on Original Proposed Development

Table 16 below summarises the site-wide carbon emission savings at each stage of the Energy Hierarchy of the Amended Proposed Development compared to the Original Proposed Development, showing an increase in the site-wide regulated carbon emission savings from 35.5% to 45.7%.

Cumulative on site savings	45.7%	35.5%
Be Green	35.5%	28.3%
Be Clean	0%	0%
Be Lean	10.2%	7.3%
	Amended Proposed Development	Original Proposed Development
	Regulated site-wide ca	arbon dioxide savings (%)

Table 16: Comparison of site-wide carbon emission savings of the Amended Proposed Development and the Original Proposed Development.

22

8. Overheating Risk (TM59)

In tandem with the energy and CO_2 emissions appraisal, an assessment has been undertaken to determine the risk of summertime overheating and consider measures for the minimisation of cooling demand.

8.1 Basis of the Assessment

The London Plan policy 5.9 (Overheating and Cooling) requests that Developments should reduce potential overheating risk and reliance on air conditioning systems. A 'cooling hierarchy' is provided and the Development has sought to follow this hierarchy.

The following cooling hierarchy has been followed to limit the effects of heat gains in summer:

Figure 13: Mayor of London's cooling hierarchy

8.2 Mitigation Strategy

The following mitigation methods will be implemented at the Amended Proposed Development.

Minimising internal heat generation through energy efficient design

The following mitigation methods will be implemented to minimise the internal heat generation through energy efficient design at the Amended Proposed Development:

- Energy efficient lighting (such as LED or CFL) with low heat output
- Insulation to heating and hot water pipework and ductwork and minimisation of dead-legs to avoid standing heat loss (from pipework to dwellings)
- Energy efficient white goods with low heat output
- Low temperature hot water from air source heat pump to further reduce heat gain in communal pipework and risers

Reducing the amount of heat entering the building in summer

The following mitigation methods will be implemented at the Amended Proposed Development to reduce the amount of heat entering the building in summer:

- Suitable glazing ratio responding to orientation and space use
- Low g-value glazing to limit solar heat gains (where appropriate)
- High levels of insulation and low fabric air permeability which will retain cool air during summer months

Passive ventilation

All dwellings will be fitted with fully openable windows, which allow passive solar heating and natural ventilation. Balconies will also provide shading. Windows will have a tilt/turn setting to ensure secure opening, should the resident prefer to use this option (e.g. at night).

Mechanical ventilation

All dwellings will also be provided with ventilation at rate in accordance with Part F through Mechanical Ventilation with Heat Recovery (MVHR).

MANOR ROAD

AVANTON RICHMOND DEVELOPMENT LTD

SUSTAINABILITY

REVISED ENERGY STRATEGY -

MVHR units are an important addition to the building services to maintain good indoor air quality, by providing fresh air to living rooms and bedrooms and extracting vitiated air from bathrooms and kitchens. Providing fresh air minimises the risk of stale and stagnant air and limits the risk of condensation and mould growth. The heat recovery mechanism will be provided with a bypass to avoid returning hot air to the dwellings in summer.

It is anticipated that the MVHR units will be capable of delivering fresh air at a rate of 75 litres per second (I/s), which will aid the mitigation of high internal temperatures in summer months where required. Ductwork would be rigid type, circular wherever possible, with minimal flexible ductwork (for connections only).

Guidance for occupants

Guidance will be produced for occupants in line with the cooling hierarchy, in order to assist with reducing high temperatures in summer. This could include, but will not be limited to, the following items:

- 1. Suggestions to minimise internal heat gains:
 - Reduce cooking on hob and in oven over summer, and keep appliances off when not in use
 - Turn off lighting when not in use
 - Turn off other appliances when not in use (TV, computers etc)
 - Reduce shower temperatures
- 2. Suggestions to reduce solar ingress:
 - Keep blinds / curtains closed whilst away from dwelling, especially if windows are closed
- 3. Suggestions to manage heat
 - Keep all windows open on the tilt/turn setting (or fully open) overnight to cool down apartment when outside temperatures allow
- 4. Utilise passive ventilation
 - Keep windows open while occupying the rooms, especially when temperatures outside are cooler than inside
- 5. Utilise mechanical ventilation
 - If residents are still feeling too warm, they can make use of the boost function on the MVHR
 - Ensure the 'summer bypass' function on the MVHR is activated

8.3 Part L heat gain check

It is anticipated that the Amended Proposed Development will achieve compliance with the Building Regulations Part L 2013 Criterion 3 and limit the effects of heat gains in summer months and reduce the need for comfort cooling/air-conditioning. It is proposed that active cooling is provided to a proportion of dwellings, based on an assessment of site background noise, risk of overheating, and market expectations. It is anticipated that cooling will be provided as top-up cooling only to allow rooms to cool to 26 degrees, rather than full comfort cooling. In terms of commercial areas, it is likely that these will be actively cooled as part of the tenant fit-out.

Summary of SAP reports attached in Appendix H, and summary BRUKL reports attached in Appendix I.

8.4 CIBSE TM59 Overheating risk assessment

An overheating risk assessment was undertaken on a sample of dwellings across the Amended Proposed Development. This is in line with the guidance set out under Policy SI4 in the draft London Plan. The dwellings selected for assessment accounted for a range of orientations, lavouts, and external acoustic environments.

The CIBSE TM59 guidance stipulates that modelling must be undertaken with the weather file most appropriate to the location for the project, for the 2020s, high emissions scenario 50th percentile. The most appropriate file for the location of the Manor Road Development is London Heathrow.

The set of weather file used for this assessment is the design summer years (DSY) for London Heathrow, for the 2020s high emissions scenario 50th percentile.

23

- DSY1: Moderately warm summer
- DSY2: Short, intense warm spell
- DSY3: Long, less intense warm spell

With regards to external acoustic environment, the acoustic consultant has advised the site is exposed to moderate noise levels, with required sound reduction achieved through acoustic double glazing. Railway noise is the primary influencer on the acoustic environment and is most apparent on the south and west elevations. Exposure to noise levels reduce with height.

The building has been assessed against the predominantly naturally ventilated criteria. This is representative of 'free running' type buildings where people expect internal temperature to track external temperature, hence can adapt and tolerate in accordance with the adaptive comfort model. Please refer to Appendix C for further

All tested apartments are expected to meet TM59 requirements by passing the natural ventilation scenario under the DSY 1 weather file. (see Table 17 overleaf).

Tests have also been undertaken for the DSY2 and DSY3 weather files, and these are presented in the same table. In line with the draft GLA guidance for preparing energy strategies, it is acknowledged that achieving compliance with these two weather files is difficult, however a proportion of the tested rooms do meet the requirements nonetheless

All dwellings will be provided with mechanical ventilation with heat recovery and openable windows, allowing the occupant to adapt their internal environment according to their own needs.

Results have also been presented for the mechanical ventilation scenario, where it is assumed that windows are closed (see table overleaf).

As the external ambient temperatures in the London DSY1 weather file exceed 26°C for 2.7% of annual hours. there is very little margin (0.3% of annual hours) left as flexibility. Once unavoidable internal heat gains are included in the model (cooking, lighting, people, small power equipment), it can therefore be expected that rooms will quickly exceed the threshold in a dynamic model. Nevertheless, a number of rooms are expected to pass the criterion on the mechanical ventilation scenario (see table below).

An assessment has been made of the fresh air rate that could be delivered to apartments by mechanical means, and the impact this is expected to have on temperatures achieved. As a result of this assessment, it is proposed to increase the ventilation rate in some apartments from 75 l/s to 90 l/s which will further aid the mitigation of high internal temperatures in summer months.

The fresh air will be tempered by implementation of a cooling coil into the supply ductwork when necessary. This will enable a supply air temperature of 14°C to be achieved for the intake air, as listed in Table 18 overleaf. Comfort cooling will also be implemented to a proportion of apartments to meet market expectation. The design will be further developed in the detailed design stages, and preference for these solutions will be given to those apartments at risk of experiencing excessive noise from external sources.

SUSTAINABILITY REVISED ENERGY STRATEGY REV. 03

	TM59 Criterion 1 - % pass Living rooms and bedrooms	TM59 Criterion 2 - % pass Bedrooms only	Communal Corridors – 28°C operative temperature
Natural Ventilation – pass rates			
DSY1	100% of tested rooms	100% of tested rooms	
DSY2	82% of tested rooms	29% of tested rooms	Meets target
DSY3	50% of tested rooms	0% of tested rooms	

Table 17: Summary of CIBSE TM59 assessment results.

Flow rate (I/s)	Air supply temperature	Living rooms and bedrooms	Communal Corridors – 28°C operative temperature
Mechanical Ventilation - pass rates			
75	14°C	50% of tested rooms	Mosts torget
90	14°C	71% of tested rooms	Meets target

Table 18: Summary of CIBSE TM59 assessment results.

9. Conclusion

This report has shown that the Amended Proposed Development will result in a highly efficient, low-carbon scheme. New, high efficiency servicing equipment and efficient façades will minimise the energy usage of the building. Using the Mayor's energy hierarchy, the strategy has been developed to ensure that the Amended Proposed Development is efficient and economical.

The carbon emissions from regulated energy uses at the proposed development have been compared with the GLA London Plan emissions targets. It is expected that a carbon offset payment made to the local authority will be required. The current estimated offset payment is given in Table 14 and Table 15.

In line with LBRuT Local Plan (2018) Policy 22, proposals for new commercial areas will be required to meet BREEAM New Construction (NC) 'Excellent' standard (where feasible). It is the intention of the design team to meet the minimum standards for 'Excellent'. Please refer to the Sustainability Statement, submitted in support of this planning application, for further information.

Key changes since the Original Proposed Development submission have been:

- Improvement to the carbon emission reductions expected to be achieved at the 'Be Lean' stage. This improvement has been achieved chiefly from improvements to thermal bridging inputs. This has resulted in an improved estimated carbon emission reduction at the Be Lean stage of the energy hierarchy, exceeding the draft London Plan (2019) target for carbon reductions at the 'Be Lean' stage.
- Improvement to the carbon emission reductions expected to be achieved at the 'Be Green' stage. This improvement has been achieved chiefly from further detailed estimates of the distribution losses expected to result from energy distribution from the centralised supply from building-by-building air source heat pumps. Additionally, the provision of PV panels has been increased to maximise the PV installation throughout the available suitable roof areas. This has resulted in an improved estimated carbon emission reduction at the Be Green stage of the energy hierarchy, exceeding the draft London Plan (2019) target for on-site carbon reductions.

In summary, as an improvement on the Original Proposed Development, the Amended Proposed Development meets the draft London Plan policy target for carbon reduction at the 'Be Lean' stage and shows expected improvement at the 'Be Green' stage of the energy hierarchy.

This energy strategy has thus set out how the highest standards of sustainable design and construction are proposed for the development.

Appendix A: Regulatory & Policy Context

The following outlines the regulatory and planning policy requirements applicable to the Amended Proposed Development.

National Policy

Current Policy Framework

The Amended Proposed Development is not considered to be preferable to the Mayor of London. The policies considered when preparing this strategy are contained in the London Plan (GLA, 2016) and the Local Development Plan of LBRuT (2018). The Supplementary Planning Guidance (SPG) has also been reviewed and taken into consideration in the Energy Strategy.

Building Regulations Part L 2013

Approved Document Part L

Part L of the Building Regulations is the mechanism by which government is driving reductions in the regulated CO_2 emissions from new buildings.

Current Requirements: Part L 2013

Part L has five key criteria which must be satisfied as follows:

- a. Criterion 1 Achieving the Target Emission Rate (TER)
- **b.** Criterion 2 Limits on design flexibility
- c. Criterion 3 Limiting the effects of solar gains in summer
- d. Criterion 4 Building performance consistent with the Dwelling Emission Rate (DER)
- e. Criterion 5 Provision for energy efficient operation of the dwelling

Criteria one, two and three are addressed within this strategy.

Criterion one requires that the building as designed is not predicted to generate CO_2 emissions in excess of that set by the Target Emission Rate (TER) calculated in accordance with the approved Standard Assessment Procedure (SAP) 2012. Part L (2013) requires the following reductions:

- **a.** A 6% aggregate reduction in CO₂ emissions beyond the requirements of Part L 2010 for dwellings; and
- **b.** A 9% aggregate reduction in CO₂ emissions beyond the requirements of Part L 2010 for non-domestic buildings.

Criterion two places upper limits on the efficiency of controlled fittings and services for example, an upper limit to an external wall U-value of 0.30W/m².K (dwellings).

A Fabric Energy Efficiency Standard (FEES) has been introduced for new dwellings although no definitive targets have been set in this regard. Part L 2013 requires the following Fabric Energy Efficiency performance targets to be met:

a. Target Fabric Energy Efficiency (TFEE). The TFEE is calculated independently for each dwelling, based upon an elemental recipe of efficiency parameters, applied to the geometry of the dwelling in question. This would generate a notional value which would then be relaxed by 15% to generate the TFEE

Criterion three requires that dwellings are not at 'high' likelihood of high internal temperatures in summer months (June, July & August) and that zones in commercial buildings are not subject to excessive solar gains. This is demonstrated using the procedure given in SAP 2012 Appendix P for dwellings, and Simplified Building Energy Model (SBEM) or Dynamic Simulation Method (DSM) for non-residential buildings.

GLA Planning Policy

The London Plan (March 2016) Consolidated with Alterations Since 2011

The regional policies of the GLA are contained within the London Plan (2016), and the relevant SPGs.

The latest version of the consolidated London Plan (2016) was published and adopted in March 2016 and is current for any Stage 1 submissions to the GLA. This constitutes the London Plan 2011 consolidated with:

- Revised Early Minor Alterations to the London Plan (October 2013)
- Further Alterations to the London Plan (March 2015)
- Housing Standards Minor Alterations to the London Plan (March 2016)
- Parking Standards Minor Alterations to the London Plan (March 2016)

The target reduction in CO_2 emissions for Residential Buildings is to achieve 'zero carbon homes' for Stage 1 applications. The definition of this is clarified in the GLA's publication Guidance on Preparing Energy Assessments. The target for 'Non-Domestic Buildings' is to achieve 35% reduction in CO_2 emissions.

Energy Planning - Greater London Authority guidance on preparing energy assessments (March 2016)

This document was produced by the GLA to provide further detail on how to prepare an energy assessment to accompany strategic planning applications. Within this, the definition of 'zero carbon homes' is made as follows:

'Zero carbon' homes are homes forming part of major development applications where the residential element of the application achieves at least a 35 per cent reduction in regulated carbon dioxide emissions (beyond Part L 2013) on-site. The remaining regulated carbon dioxide emissions, to 100 per cent, are to be off-set through a cash in lieu contribution to the relevant borough to be ring fenced to secure delivery of carbon dioxide savings elsewhere (in line with policy 5.2E).

The cash in lieu payment is currently set at £1,800 per tonne of CO_2 (equivalent to £60 per tonne per year over 30 year period).

Use Type	CO ₂ Reduction Target (beyond Part L 2013)	
	2013 - 2016	2016 - 2019 (1 st October 2016)
Residential Buildings	35%	'Zero Carbon'
Non-Domestic Buildings	35%	35%

Table A1: Uplift in CO₂ emissions targets

London Plan Policy

Development within LBRuT is subject to the policy requirements of the London Plan 2016. The following policies of the London Plan (2016) have informed this strategy.

Policy 5.2: Minimising CO₂ Emissions

Policy 5.2 sets out the target CO₂ emission reductions as described above.

Policy 5.6: Decentralised Energy in Development Proposals

Policy 5.6 requires development proposals to evaluate the feasibility of Combined Heat & Power (CHP) systems and where a new CHP system is appropriate, examine opportunities to extend the system beyond the Site boundary. Developments should select energy systems on the following hierarchy:

- **a.** connection to existing heating or cooling networks
- b. site wide CHP network
- c. communal heating and cooling

Where future network opportunities are identified, proposals should be designed to connect to these networks.

SUSTAINABILITY REVISED ENERGY STRATEGY -

REVISED ENERGY

Policy 5.7: Renewable Energy

Policy 5.7 requires that developments should provide a reduction in expected CO₂ emissions through the use of on-site renewable energy generation, where feasible.

Policy 5.9: Overheating and Cooling

The GLA have produced a 'Domestic Overheating Checklist' (Appendix 5 of the 'Energy Planning' guidance) for use early in the design process to identify potential overheating risks and to trigger the incorporation of passive measures within the building envelope. The 'Energy Planning' guidance document also includes an update to the guidance on compliance with overheating policy that design teams should be aware of when undertaking risk analysis and thermal comfort modelling for dwellings.

It is the GLA's expectation that dynamic thermal modelling should be undertaken to determine overheating risk and demonstrate compliance with London Plan Policy 5.9. This should be in addition to the Building Regulations 'Criterion 3' assessment of heat gains in summer months.

The GLA has set out that dynamic modelling should be carried out in accordance with the guidance and data sets in CIBSE TM49 'Design Summer Years' for London (2014) using the three design weather years as follows:

- 1976: a year with a prolonged period of sustained warmth.
- 1989: a moderately warm summer (current design year for London).
- 2003: a year with a very intense single warm spell.

For developments in high density urban areas (e.g. Canary Wharf) and the 'Central Activity Zone' the 'London Weather Centre' data set should be used. In lower density urban and suburban areas the 'London Heathrow' dataset should be used. These data sets have been adjusted to account for future climate effects.

The modelling should also consider the additional guidance contained in CIBSE TM52 'The Limits of Thermal Comfort: Avoiding Overheating in European Buildings'.

The London Plan - Draft with Consolidated Changes, July 2019

A draft of the proposed new London Plan has been published for consultation. The following policies are yet to be adopted but the changes pertinent to an energy strategy for residential and non-residential developments are set to shift substantially if adopted. The notable policy carbon emission targets are as follows:

For residential developments:

- Target zero-carbon (annual regulated energy)
- 10% carbon saving must be from energy efficiency measures
- 35% carbon saving must be from on-site reduction measures

For non-residential developments:

- Target zero-carbon (annual regulated energy)
- 15% carbon saving must be from energy efficiency measures
- 35% carbon saving must be from on-site reduction measures

Any carbon emissions shortfall will need to be offset by making a carbon offset payment to the Local Authority and the carbon offset price is under review and expected to be updated

The proposed policy targets have not been used to determine the energy efficiency and carbon offset payment calculations reported in this energy strategy.

26

Draft London Plan 'intend to publish', December 2019

Policy GG6 Increasing Efficiency and resilience

- Improve energy efficiency, movement toward low carbon, circular economy. Target of zero carbon city by 2050.
- Buildings/infrastructure resilient against a changing climate, efficient use of water, reduction of impact from natural hazards such as flooding and heatwaves
- Avoid contribution to the heat island effect.
- Safe and secure environments, resilient against impacts such as fire/terrorism etc.
- Stakeholder contributions taken from all relevant public, private, community sectors.

Policy D1 London's form and characteristics

- Developments should optimise density and connectivity, be inclusive and use street spaces that have well defined public and private realm, provide outlook, privacy and amenity, be safe and secure, provide spaces for social interaction, play relaxation and physical activity.
- Provide and facilitate active travel with convenient and inclusive pedestrian and cycling routes.
- Mitigate or prevent the impacts of noise and poor air quality.
- Development design should respond to local context by delivering developments of appropriate scale, appearance and shape that responds successfully to the character of the local area.
- Be of high quality architecture that includes flexibility and appropriate building lifespan, delivering attractive robust materials that will mature well.
- Respect/enhance the heritage assets
- Maximise opportunities for urban greening to create attractive resilient places that effectively manage surface water.
- Achieve comfortable indoor and outdoor environments.

Policy E1 Offices

- New office developments of varying sizes in new, refurbished and mixed us development types to be supported. This should be based on the anticipated demand for office floorspace to 2041 (100% increase by 2041).
- Spatial development areas should be supported by development works for offices.

Policy SI2 Minimising Greenhouse Gas Emissions

A. Major development should be net zero-carbon. This means reducing carbon dioxide emissions from construction and operation, and minimising both annual and peak energy demand in accordance with the following energy hierarchy:

- 1. Be lean: use less energy and manage demand during construction and operation.
- 2. Be clean: exploit local energy resources (such as secondary heat) and supply energy efficiently and cleanly. Development in Heat Network Priority Areas should follow the heating hierarchy in Policy SI3 Energy infrastructure.
- 3. Be green: generate, store and use renewable energy on-site.

As a minimum, energy strategies should contain the following information:

a. A calculation of the energy demand and carbon dioxide emissions covered by Building Regulations and, separately, the energy demand and carbon dioxide emissions from any other part of the development, including plant or equipment, that are not covered by the Building Regulations (i.e. the unregulated emissions), at each stage of the energy hierarchy.

SUSTAINABILITY
REVISED ENERGY STRATEGY -

27

- b. Proposals to reduce carbon dioxide emissions beyond Building Regulations through the energy efficient design of the site, buildings and services, whether it is categorised as a new build, a major refurbishment or a consequential improvement.
- c. Proposals to further reduce carbon dioxide emissions through the use of zero or low-emission decentralised energy where feasible, prioritising connection to district heating and cooling networks and utilising local secondary heat sources. (Development in Heat Network Priority Areas should follow the heating hierarchy in Policy SI3 Energy infrastructure).
- d. Proposals to further reduce carbon dioxide emissions through the generation and use of on-site renewable energy, utilising storage technologies where appropriate.
- e. Proposals to address air quality risks (see Policy SI1 Improving air quality). Where an air quality assessment has been undertaken, this could be referenced instead.
- f. The results of dynamic overheating modelling which should be undertaken in line with relevant Chartered Institution of Building Services Engineers (CIBSE) guidance, along with any mitigating actions (see Policy SI4 Managing heat risk).
- g. Proposals for demand-side response, specifically through installation of smart meters, minimising peak energy demand and promoting short-term energy storage, as well as consideration of smart grids and local micro grids where feasible.
- h. Proposals for how energy demand and carbon dioxide emissions post-construction will be monitored annually (for at least five years).
- i. Proposals explaining how the site has been future-proofed to achieve zero-carbon on-site emissions by 2050.
- j. Confirmation of offsetting arrangements, if required.
- k. Proposals to minimise the embodied carbon in construction.
- I. Analysis of the expected cost to occupants associated with the proposed energy strategy.
- B. Major development should include a detailed energy strategy to demonstrate how the zero-carbon target will be met within the framework of the energy hierarchy and will be expected to monitor and report on energy performance.

C. In meeting the zero-carbon target a minimum on-site reduction of at least 35 per cent beyond Building Regulations is expected. Residential development should aim to achieve 10 per cent, and non-residential development should aim to achieve 15 per cent through energy efficiency measures. Where it is clearly demonstrated that the zero-carbon target cannot be fully achieved on-site, any shortfall should be provided:

- 4. Through a cash in lieu contribution to the relevant borough's carbon offset fund, and/or
- 5. Off-site provided that an alternative proposal is identified and delivery is certain.
- D. Boroughs must establish and administer a carbon offset fund. Offset fund payments must be ring-fenced to implement projects that deliver greenhouse gas reductions. The operation of offset funds should be monitored and reported on annually.

Policy SI3 Energy Infrastructure

A. Boroughs and developers should engage at an early stage with relevant energy companies and bodies to establish the future energy requirements and infrastructure arising from large-scale development proposals such as Opportunity Areas, Town Centres, other growth areas or clusters of significant new development.

- B. Energy masterplans should be developed for large-scale development locations which establish the most effective energy supply options. Energy masterplans should identify:
- 1. major heat loads (including anchor heat loads, with particular reference to sites such as universities, hospitals and social housing)

- 2. heat loads from existing buildings that can be connected to future phases of a heat network
- 3. major heat supply plant
- 4. possible opportunities to utilise energy from waste
- 5. secondary heat sources
- 6. opportunities for low temperature heat networks
- 7. possible land for energy centres and/or energy storage
- 8. possible heating and cooling network routes
- 9. opportunities for future proofing utility infrastructure networks to minimise the impact from road works
- 10. Infrastructure and land requirements for electricity and gas supplies
- 11. Implementation options for delivering feasible projects, considering issues of procurement, funding and risk, and the role of the public sector.
- C. Development Plans should:
- 1. Identify the need for, and suitable sites for, any necessary energy infrastructure requirements including upgrades to existing infrastructure
- 2. Identify existing heating and cooling networks and opportunities for expanding existing networks and establishing new networks.
- D. Major development proposals within Heat Network Priority Areas should have a communal heating system
- 1. The heat source for the communal heating system should be selected in accordance with the following heating hierarchy:
 - a. connect to local existing or planned heat networks
 - b. use available local secondary heat sources (in conjunction with heat pump, if required, and a lower temperature heating system)
 - c. generate clean heat and/or power from zero-emission sources
 - d. use fuel cells (if using natural gas in areas where legal air quality limits are exceeded all development proposals must provide evidence to show that any emissions related to energy generation will be equivalent or lower than those of an ultra-low NOx gas boiler)
 - e. use low emission combined heat and power (CHP) (in areas where legal air quality limits are exceeded all development proposals must provide evidence to show that any emissions related to energy generation will be equivalent or lower than those of an ultra-low NOx gas boiler)
 - f. use ultra-low NOx gas boilers.
- 2. CHP and ultra-low NOx gas boiler communal or district heating systems should be designed to ensure that there is no significant impact on local air quality.
- 3. Where a heat network is planned but not yet in existence the development should be designed for connection at a later date.

Policy SI4 Managing heat risk

A. Development proposals should minimise internal heat gain and the impacts of the urban heat island through design, layout, orientation and materials.

- B. Major development proposals should demonstrate through an energy strategy how they will reduce the potential for overheating and reliance on air conditioning systems in accordance with the following cooling hierarchy:
- 4. minimise internal heat generation through energy efficient design

SUSTAINABILITY
REVISED ENERGY STRATEGY -

28

- 5. reduce the amount of heat entering a building through orientation, shading, albedo, fenestration, insulation and the provision of green roofs and walls
- 6. manage the heat within the building through exposed internal thermal mass and high ceilings
- 7. provide passive ventilation
- 8. provide mechanical ventilation
- 9. provide active cooling systems.

Policy SI7 Reducing waste and supporting the circular economy

- 1. Resource conservation, waste reduction, increases in material re-use and recycling, and reductions in waste going for disposal will be achieved by the Mayor, waste planning authorities and industry working in collaboration to:
 - a. promote a more circular economy that improves resource efficiency and innovation to keep products and materials at their highest use for as long as possible
 - b. encourage waste minimisation and waste prevention through the reuse of materials and using fewer resources in the production and distribution of products
 - c. ensure that there is zero biodegradable or recyclable waste to landfill by 2026
 - d. meet or exceed the municipal waste recycling target of 65 per cent by 2030
 - e. meet or exceed the targets for each of the following waste and material streams:
 - i. construction and demolition 95 per cent reuse/recycling/recovery
 - ii. excavation 95 per cent beneficial use
 - f. design developments with adequate, flexible, and easily accessible storage space and collection systems that support, as a minimum, the separate collection of dry recyclables (at least card, paper, mixed plastics, metals, glass) and food.
- 2. Referable applications should promote circular economy outcomes and aim to be net zero-waste. A Circular Economy Statement should be submitted, to demonstrate:
 - a. how all materials arising from demolition and remediation works will be re-used and/or recycled
 - b. how the proposal's design and construction will reduce material demands and enable building materials, components and products to be disassembled and re-used at the end of their useful life
 - c. opportunities for managing as much waste as possible on site
 - d. adequate and easily accessible storage space and collection systems to support recycling and re-use
 - e. how much waste the proposal is expected to generate, and how and where the waste will be managed in accordance with the waste hierarchy
 - f. how performance will be monitored and reported.

Development Plans that apply circular economy principles and set local lower thresholds for the application of Circular Economy Statements for development proposals are supported.

GLA Sustainable Design and Construction SPG (April 2014)

This SPG provides more detailed guidance to aid implementation that cannot be covered in the London Plan. It updates the standards that were developed for the Mayor's SPG on Sustainable Design and Construction in 2006 and identifies these as priorities for the Mayor. The SPG provides guidance and practical advice for those designing schemes including architects, developers and engineers as well as those developing planning policy and neighbourhood plans.

To support the policies in the London Plan, the Sustainable Design and Construction SPG includes guidance on:

- energy efficient design
- meeting the carbon dioxide reduction targets
- decentralised energy
- how to offset carbon dioxide where the targets set out in the London Plan are not met
- retro-fitting measures
- support for monitoring energy use during occupation
- an introduction to resilience and demand side response
- air quality neutral
- resilience to flooding
- urban greening
- pollution control
- basements policy and developments
- local food growing

London Borough of Richmond upon Thames Local Plan

Local Plan (2018)

LBRuT's Local Plan was adopted in July 2018. The Local Plan replaces the previous Local Plan as well as the Local Development Management policies. Key policies relating to energy and sustainability are summarised below.

Policy LP 1 Local Character and Design Quality

The council will require all development to be of high architectural and urban design quality. The high quality character and heritage of the borough and its Villages will need to be maintained and enhanced where opportunities arise. Development proposals will have to demonstrate a thorough understanding of the site and how it relates to its existing context, including character and appearance, and take opportunities to improve the quality and character of buildings, spaces and the local area.

Policy LP 8 Amenity and Living Conditions

Design and layout of buildings enables good standards of daylight and sunlight to be achieved in new development and in existing properties affected by new development.

Policy LP 10 Local Environmental Impacts, Pollution and Land Contamination

Development proposals should not lead to detrimental effects on the health, safety and amenity of existing and new users or occupiers of the development site, or the surrounding land. These potential impacts can include, but are not limited to, air pollution, noise and vibration, light pollution, odours and fumes, solar glare, solar dazzle and land contamination.

Policy LP 17 Green Roofs and Walls

Green/brown roofs should be incorporated into new major developments with roof plate areas of 100sqm or more where technically feasible and subject to considerations of visual impact. If it is not feasible to incorporate a green/brown roof, then a green wall should be incorporated.

Policy LP 20 Climate Change Adaptation

Developments will be encouraged to be fully resilient to the future impacts of climate change in order to minimise vulnerability of people and property.

New developments should minimise the effects of overheating in accordance with the cooling hierarchy.

SUSTAINABILITY

REVISED ENERGY STRATEGY REV 03

Policy LP 22 Sustainable Design and Construction

LP22A Sustainable Design and Construction

- 1. Developments of 1 dwelling or more, or 100sqm or more of non-residential floor space (including extensions) will be required to comply with the Sustainable Construction Checklist SPD.
- 2. Developments with new dwellings must achieve a water consumption of 110l per person per day for homes.
- 3. New non-residential buildings over 100sqm must achieve BREEAM "Excellent"
- 4. Change of use residential should meet BREEAM Domestic Refurbishment "Excellent", where feasible.

LP22B Reducing Carbon Dioxide Emissions

- 1. All new major residential developments should achieve zero carbon standards in line with London Plan policy.
- 2. All other new residential buildings should achieve 35% reduction
- 3. All major non-residential buildings should achieve a 35% reduction. From 2019 all major non-residential should achieve zero carbon standards in line with London Plan Policy.

LP22D Decentralised Energy Networks

- 1. All new development required to connect to existing DE network where feasible (including planned DE networks operational within 5 years of development completion).
- 2. Major developments will need to provide an assessment of the provision of on-site DE networks and CHP.
- 3. Where feasible, major developments will need to provide on-site DE and CHP. Provision for future connection should be incorporated where required.

Policy LP 23 Water Resources and Infrastructure

Water resources and supplies will be protected by resisting proposals that would pose an unacceptable threat. Proposals that seek to increase water availability or protect and improve water quality will be encouraged.

Policy LP 30 Health and Wellbeing

Developments that support the following will be encouraged:

- Sustainable modes of travel
- Access to green infrastructure
- Access to local community facilities, services and shops
- Access to local healthy food
- Access to toilet facilities open to all
- Inclusive public realm layout

Climate Emergency Strategy (2019)

The strategy builds on existing progress and plans and acts as a framework to drive forward the delivery of the actions already identified in those plans as well as additional ones identified in the strategy.

Six key areas of focus are identified that will need to be addressed to meet legislative requirements as well as contributing to reducing carbon emissions and mitigating the impacts of climate change.

Implementation of the strategy is scheduled to take place from the beginning of 2020 through to 2024.

29

1. Our council: Becoming carbon neutral as an organisation by 2030 – We will embark on a radical change programme that encompasses our buildings, services and staff and ensure that we will become carbon neutral as an organisation by 2030. We will reduce the energy demands from our estate, generate our own renewable energy, minimise waste and eliminate single use plastics from our operations. We will purchase goods and services in a responsible and sustainable way, minimising the carbon impact of the money we spend and ensure that our staff have the knowledge, skills and resources needed to go about their work in a low carbon and sustainable way.

Our key target is to become carbon neutral as an organisation by 2030.

- 2. Our legacy: Climate Change Mitigation and Energy Efficiency We will work with our residents, communities, businesses and partners to engage, involve and support them in tackling the climate emergency. We will share knowledge and approaches with them, ensure that the built environment is sustainable and can support them as climate change occurs and that they can live their lives in ways that reduce carbon emissions. We will ensure Richmond is able to plan, measure and respond proactively to the effects of climate change and the implications of resource scarcity.
 Our key target is to create an environment where Richmond is able to be sustainable and low carbon by default.
- 3. Our waste: Waste and Plastics and the Circular Economy We will embed reduce, reuse, recycle into everything Richmond does around waste. We will work with our residents, businesses and schools to reduce the overall amount of waste generated in the borough and will aim to be one of the top performing boroughs in London for recycling. We are committed to supporting residents to reduce the amount of single use plastic they consume and to promote the Circular Economy across the borough. Our key target is to reduce the amount of waste generated in the borough
- 4. Our air: Improving Air Quality We will develop and deliver an ambitious air quality plan that will make a meaningful change to air quality in the borough with an emphasis on reducing air pollution particularly around schools and town centres. By 2024, we aim to have less polluting traffic on our roads, contributing to an improvement in air quality across the borough.

 Our key target is to improve the air quality in the borough.
- 5. Our nature: Green Infrastructure and Biodiversity We will improve and protect the biodiversity and ecology of our green spaces and protect them against the negative impacts of climate change. We will facilitate and support quality networks of green infrastructure capable of supporting biodiversity and resilience against climate change and ensure the consideration of biodiversity both in policy and practice across the Council's services. We will maintain the parks and open spaces of Richmond as centres of excellence, make them fully accessible, ensuring high standards across all parks and opens spaces managed by the Council.

Our key target is to plant more trees.

6. Our water: Water Management and Flood Abatement – We will ensure that development across Richmond addresses flood risks and promotes sustainable drainage. We will promote and encourage development to be fully resilient to the future impacts of climate change in order to minimise vulnerability of people and property, including risks of flooding, water shortages and the effects of overheating.

Our key target is to be fully prepared for flooding

SUSTAINABILITY REVISED ENERGY STRATEGY -REV. 03

30

Appendix B: GLA Overheating Checklist

Section 1 – Site Features affecting vulnerability to overheating		Please respond Yes or No
Cita Lagaritan	Urban – within central London or high density conurbation	No
Site Location	Peri-urban – on the suburban fringes of London	Yes
Air Quality and /ar Naisa	Busy roads / A roads	Yes
Air Quality and/or Noise sensitivity – are any of the	Railways / Overground / DLR	Yes
following in the vicinity of	Airport / Flight Path	Yes
buildings?	Industrial uses / waste facility	No
Proposed building use	Will any buildings be occupied by vulnerable people (e.g. elderly, disabled, young children)?	Yes, possibly elderly.
	Are residents likely to be at home during the day (e.g. students)?	Yes
Dwelling aspect	Are there any single aspect units?	Yes
Claring ratio	Is the glazing ratio (glazing : internal floor area) greater than 25%?	No
Glazing ratio	If yes, is this to allow acceptable levels of daylighting?	N/A
	Single storey ground floor units	Yes
Security – Are there any security issues that could limit opening of windows	Vulnerable areas identified by the Police Architectural Liaison Officer	No
for ventilation?	Other	

Table 19: GLA Overheating checklist – Section 1

Section 2 – Design Features Implemented to Mitigate Overheating Risk		Please Respond
	Will deciduous trees be provided for summer shading (to windows and pedestrian routes)?	Yes
Landscaping	Will green roofs be provided?	Yes
	Will other green or blue infrastructure be provided around buildings for evaporative cooling?	Yes Roof terraces and soft landscaping around buildings
Materials	Have high albedo (light colour) materials been specified?	Yes White stone material specified on three building blocks

Section 2 – Design Features	Implemented to Mitigate Overheating Risk	Please Respond	
Dwelling Aspect	% of total units that are single aspect	39%	
	% of single aspect with N/NE/NW orientation	5%	
	% single aspect with E orientation	15%	
	% single aspect with S/SE/SW orientation	6%	
	% single aspect with W orientation	13%	
	North/ Northeast/ Northwest	23%	
Glazing Ratio – What is the glazing ratio (glazing:	South/ Southeast/ Southwest	23%	
internal floor area) on each	East	20%	
façade?	West	19%	
Daylighting	What is the average daylight factor range	TBC	
	Are windows openable?	Yes	
Window Opening	What is the average percentage of openable area for the windows?	100% (all are openable doors)	
NA/in days On anina such at in	Fully openable	Yes (part)	
Window Opening – what is the extent of the opening?	Limited (e.g. for security, safety, wind loading reasons)	Yes (part)	
Security	Where there are security issues (e.g. ground floor flats) has an alternative night-time natural ventilation method been provided (e.g. ventilation grates)?	Windows are provided with tiltand-turn function to enable secure opening.	
	Is there any external shading?	No	
Shading	Is there any internal shading?	Yes – blinds	
Glazing Specification	Is there any solar control glazing?	Yes – g-value of 0.4 throughout	
	Natural - background	No	
	Natural – purge	Yes	
Ventilation strategy	Mechanical – background (MVHR)	Yes	
	Mechanical – purge	No	
	What is the average design air change rate?	In line with part F requirements	
Heating System	Is communal heating present?	Yes	
	Flow/return temperature	55/30	
	Have horizontal pipe runs been minimized?	Yes	
<i>、</i>	Do the specifications include insulation levels in line with the London Heat Network Manual?	Yes	

Table 20: GLA Overheating checklist - Section 2

SUSTAINABILITY
REVISED ENERGY STRATEGY REV. 03

31

Appendix C: CIBSE TM59 Results

Summary of Input Parameters

The following table provides an overview of the input parameters/ modelling assumptions.

Software	IESve 2019	Window Covering (SF = Shading Factor)	None
Weather Data	Design Summer Year (DSY1,2,3) London Heathrow 2020 High Emissions Scenario 50 th Percentile	Window opening type	90° opening angle, side hung, with 85% openable area 10° opening angle at night
Assessment Criteria	CIBSE TM59	Occupancy	Bedrooms/Studio: 24/7 Living room/Kitchen: 9am-10pm
Wall U-Value	0.15 W/m ² .K	Max. Occupancy Density	1Bed – 2 People 2 Bed – 4 People 3 Bed – 6 People
Window Averaged U-value	1.4 W/m ² .K	Occupancy Heat Gains	75W / person (Sensible) 55W / person (Latent)
Window g-Value	0.4	Communal Corridor Internal Gains	12 W/m² (Initial estimation based upon improved pipework insulation)
Roof U-Value	0.16 W/m².K	Lighting Gains	2 W/m² (All areas)
Floor (ground) U-value	0.13 W/m².K	Max. Equipment Gains – Kitchen & Living	450 W (as per CIBSE TM59)
Floor (exposed) U- value	0.13 W/m².K	Max. Equipment Gains - Bedroom	80 W (as per CIBSE TM59)
Infiltration	0.25 ACH	Heat Interface Unit	20W – continuous output

Table 21: Summary of input parameters used in the TM59 assessment

Mechanical ventilation in dwellings	75 l/s, 90 l/s
Supply temperature with cooling coil	14°C
Communal corridor ventilation	200 l/s
Communal corridor ventilation temperature	External air

Results summary

Summary of TM59 results in the following tables. Both natural ventilation and mechanical ventilation scenarios have been included.

All tested apartments meet TM59 requirements by passing the natural ventilation scenario under the DSY 1 weather file.

Results for DSY2 and DSY3 weather files are presented as well, in line with GLA requirements. As can be seen, the overheating risk increases with these more extreme heatwave scenarios. It should be noted that for DSY2 and DSY3 represent heatwave scenarios, and as such provide challenging conditions for the assessment of

CIBSE overheating criteria. The DSY3 weather file contains a prolonged period of sustained warmth, with maximum daily temperatures ranging from 30-35°C. The DSY2 weather file contains a very intense single warm spell, with maximum daily temperatures in excess of 35°C.

All dwellings will be provided with mechanical ventilation with heat recovery and openable windows, allowing the occupant to adapt their internal environment according to their own needs.

As the external ambient temperatures in the London DSY1 weather file exceed 26°C for 2.7% of annual hours, there is very little margin (0.3% of annual hours) left as flexibility. Once unavoidable internal heat gains are included in the model (cooking, lighting, people, small power equipment), it can therefore be expected that rooms will quickly exceed the threshold in a dynamic model. Nevertheless, a number of rooms are expected to pass the criterion on the mechanical ventilation scenario.

An assessment has been made of the fresh air rate that could be delivered to apartments by mechanical means, and the impact this is expected to have on temperatures achieved. As a result of this assessment, it is proposed to increase the ventilation rate in some apartments from 75 l/s to 90 l/s which will further aid the mitigation of high internal temperatures in summer months.

The fresh air will be tempered by implementation of a cooling coil into the supply ductwork where necessary, with initial cooling capacities tested as listed in Table 23 below. Comfort cooling will also be implemented to a proportion of apartments to meet market expectation. The design will be further developed in the detailed design stages, and preference for these solutions will be given to those apartments at risk of experiencing excessive noise from external sources.

Table 22: Natural ventilation analysis results

	TM59 Criterion 1 % pass Living rooms and bedrooms	TM59 Criterion 2 % pass Bedrooms only	Communal Corridors – 28°C operative temperature	
Natural Ventilation				
DSY1	100% of tested rooms	100% of tested rooms		
DSY2	82% of tested rooms	29% of tested rooms	Meets target	
DSY3	50% of tested rooms	0% of tested rooms		

Table 23: Mechanical ventilation/ sealed façade analysis results

Flow rate (I/s)	Supply air temperature with cooling coil	% pass	Communal Corridors – 28°C operative temperature	
Mechanical Ventilation - pass rates				
75	14°C	50% of tested rooms	Mosts torget	
90	14°C	71% of tested rooms	Meets target	

SUSTAINABILITY REVISED ENERGY STRATEGY -REV. 03

32

Figure 14: Sample of apartments tested. All 'upper floor' tested apartments are located on the top-most floor of the respective building

SUSTAINABILITY REVISED ENERGY STRATEGY -REV. 03

Appendix D: External Services Layout

SUSTAINABILITY REVISED ENERGY STRATEGY -REV. 03

Appendix E: Concept LTHW/CHW Schematic

SUSTAINABILITY

REVISED ENERGY STRATEGY -

Appendix F: Grid Decarbonisation.

Historic progress

The carbon factor of the National Grid – the amount of carbon dioxide released per kilowatt hour of electricity produced and distributed – is recognised in current Building Regulations as being 0.519 kgCO₂/kWh. However, the national mix of electricity generation methods is progressing towards greener solutions with renewable sources accounting for 29.4% of the electricity generated in the UK in 2017; up from 24.5% in 2016 [3].

As a consequence, the Building Regulations Part L 2013 value of the National Grid carbon factor has been shown to be substantially higher than how the grid is performing in reality. This severely impacts the calculated emissions produced by all heat raising plant which use electricity directly or generate it to offset other emissions. The figure below shows how the mix of generation techniques serving the National Grid, as well as the associated carbon factor, has varied over the past six years – encouragingly, the carbon intensity of the grid has reduced to less than half its value in 2012 [HM Government, "Green Book supplementary guidance: valuation of energy use and greenhouse gas emissions for appraisal", 02 January 2018].

Figure 15: Historic mix of generation methods and associated carbon factor for the National Grid. 8% transmission and distribution losses are included. Sources: *electricityinfo.org* (generation mix); *BEIS Green Book* (historic carbon factors).

Future projections

The Future Energy Scenarios (FES) document, produced by the National Grid, discusses how the UK's energy landscape is changing. In this year's report, FES 2018, the carbon factor of the National Grid is projected to be less than $0.170 \text{ kgCO}_2/\text{kWh}$ by the end of this year, meaning the actual carbon emissions associated with electricity consumption are much lower than reported in Building Regulations. This means that, under the Part L 2013 methodology the CO_2 emissions associated with electrically-driven plant are being overestimated by over 200%. FES 2018 makes projections of how the mix of generation in the grid is likely to change between now and 2050 – the year by which the Climate Change Act 2008 set the target of reducing the UK's CO_2 emissions by 80% from 1990 levels.

FES discusses these projections in one of four scenarios with the best and worst-case scenarios (from an emissions perspective) being Two Degrees and Steady State respectively. Two Degrees describes a situation where a combination of drastic policy intervention and innovation pushes an ambitious agenda with a focus on long-term environmental goals – it is described as the 'cost optimal pathway to meet the UK's 2050 carbon

emissions reduction target'. In contrast, Steady State is a 'business as usual' situation, where society is focussed on the short term and ensuring the security of the UK's energy supply.

The figure below combines these future trajectories with the actual carbon intensity of the National Grid over the past seven years. The reported emissions associated with electricity generation have fallen steeply since 2012 and in all cases, the FES 2018 scenarios see the carbon factor of electricity fall below $100gCO_2/kWh$ by 2035.

Figure 16: Historic and future projected carbon factor for the National Grid. 8% transmission and distribution losses are included. Sources: BEIS Green Book (historic carbon factors); National Grid Future Energy Scenarios (FES) 2018 (future projected carbon factors).

Shifting focus

As the carbon emissions associated with the generation of electricity continue to reduce, the proportion of the UK's overall greenhouse gas emissions for which the electricity sector is responsible will fall.

The carbon factor of natural gas is likely to remain relatively static. With 85% of homes in the UK relying on gas to supply their heating and hot water, as well as a significant proportion of commercial buildings, heating buildings and industry represents an ever-greater proportion of UK emissions – 32% in 2015 [HM Government, "Clean Growth Strategy," October 2017].

In order for the UK to maintain a trajectory sufficient to meet the 2050 Paris Agreement decarbonisation target of an 80% reduction in annual greenhouse gas emissions over 1990 levels, focus must necessarily shift to other contributors. The BEIS Clean Growth Strategy provides an indication of the direction the UK's energy policy is likely to take and "...sets out [the government's] proposals for decarbonising all sectors of the UK economy through the 2020s." This includes investing in infrastructure and mechanisms to facilitate a transition to low emission vehicles and strengthening the energy performance requirements of new and existing buildings.

As engineers and specialists in the built environment, staying abreast of this dynamism across all sectors is essential for Hoare Lea.

Updates to the Standard Assessment Procedure (SAP10)

In July 2018, the BRE released an update to the Standard Assessment Procedure (SAP) – used to assess dwellings' compliance with Building Regulations – for consultation. The following represents a brief summary of the changes to carbon factors over the current methodology, SAP2012.

MANOR ROAD

AVANTON RICHMOND

DEVELOPMENT LTD

SUSTAINABILITY
REVISED ENERGY STRATEGY REV. 03

Carbon factors

Many of the fuel types recognised in SAP have had their fuel types, carbon factors and primary energy factors amended following the decarbonisation of the grid and other national infrastructure changes. The table below shows the changes in carbon factor from SAP 2012 to SAP 10. It is worth noting the significant improvement for the electricity carbon factor (almost half of that used in 2012).

It is likely that that the next update to Building Regulations Part L will specify the SAP 10 carbon factors associated with natural gas and electricity.

Table 24: Current (SAP2012) and proposed (SAP10) carbon factors for natural gas and grid-supplied electricity.

Fuel	SAP 2012 Carbon Factor (kgCO ₂ /kWh)	SAP 10 Carbon Factor (kgCO ₂ /kWh)
Main Gas	0.216	0.210
Electricity	0.519	0.233

GLA Policy

This difference between national policy and reality means the emissions savings offered by all heat-raising plant are misrepresentative.

Figure 17 shows the percentage reduction in emissions over the GLA baseline for a variety of development types and servicing strategies using both the Part L 2013 and SAP10 carbon factors. Using the Part L 2013 carbon factor CHP offers substantial emissions savings in all scenarios (over 20%) whilst heat pumps offer a benefit in certain applications but a detriment in others. Direct electric is calculated to cause a net increase in emissions in all examples, over 60% in some circumstances.

However, using the SAP10 carbon factor, now specified within GLA energy assessment guidance (October 2018), the situation is markedly different. Heat pumps offer a significant benefit in all cases, with a minimum of a 20% reduction in regulated CO_2 . CHP, on the other hand, now offer significantly less benefit, and actually cause over a 30% increase in net emissions in some applications where formerly they were strong. Direct electric is now better from an emissions perspective that the GLA gas boiler baseline in all scenarios.

However, whilst the updated SAP10 carbon factor is far closer to how the grid has been performing in recent years, the rate of progress is such that is may already be out of date. The Future Energy Scenarios 2018 report anticipated a carbon factor of $0.170 \text{kgCO}_2/\text{kWh}$ by the end of 2018; a 28% reduction compared to the SAP10 carbon factor. Figure 18 shows how this difference affects the calculated emissions of a large-scale, mixed-use development for a variety of servicing strategies.

Improvement over Part L assuming a carbon factor for electricity of 519gCO2/kWh

36

Improvement over Part L assuming a carbon factor for electricity of 233gCO₂/kWh

Figure 17: Percentage improvement over the baseline for a variety of development types and servicing strategies using both the current Part L 2013 carbon factor (top) and the updated SAP10 carbon factor (bottom) for electricity.

MANOR ROAD SUSTAINAB

AVANTON RICHMOND REVISED DEVELOPMENT LTD REV. 03

SUSTAINABILITY
REVISED ENERGY STRATEGY -

37

Figure 18: Net annual emissions for a large scale, mixed-use development for a variety of servicing strategies under Part L 2013, using the updated SAP10 carbon factor, and the projected carbon factor for the end of 2018 respectively.

Appendix G: Roof area appraisal.

Proposed Development Roof Plan (source: Assael Architecture)

Annual solar irradiance on roofs

MANOR ROAD AVANTON RICHMOND DEVELOPMENT LTD

SUSTAINABILITY REVISED ENERGY STRATEGY -

Legend:

Roof area allocated for plant, shared communal terraces or, or overshaded area

Green / brown roof / PVs

Roof area deemed too small for PV panel array

Total indicative PV panel area:

239 panels = approx. 380m² gross panel area

(PV layout to be further developed in the detailed design stages)

SUSTAINABILITY
REVISED ENERGY STRATEGY REV. 03

Appendix H: SAP worksheets.

Be Lean example data sheet – DER & TER

property as constructed.	been carrie	ed out using	Approved	SAP softwa	are. It has b	een prepa	red from pl	ans and spe	cifications a	and may not	reflect the
Assessor name	Miss Mic	chelle Wang					As	sessor num	ber	2018	
Client							La	st modified		27/07/20	20
Address	Manor R	toad Richmo	nd Block 1	, Richmond	l, TW9						
1. Overall dwelling dimer	nsions										
2. Overall awening aimer	1310113			A	rea (m²)		Aver	age storey		Volun	ne (m³)
							he	eight (m)			
Lowest occupied					61.30	(1a) x		2.60	(2a) =	159	9.38 (3
Total floor area	(1a)) + (1b) + (1c	;) + (1d)(1n) =	61.30	(4)					
Dwelling volume							(3a)	+ (3b) + (3c) + (3d)(3	n) = 159	9.38 (5
2. Ventilation rate											
										m³ pe	r hour
Number of chimneys								0	x 40 =		0 (6
Number of open flues								0	x 20 =		0 (6
Number of intermittent fa	ns							0	x 10 =) (7
Number of passive vents								0	x 10 =		0 (7
Number of flueless gas fire	:5							0	x 40 =		0 (7
											nges per our
nfiltration due to chimney	s. flues. fan	is. PSVs		(6a)	+ (6b) + (7a	a) + (7b) + (7c) =	0	÷ (5) =	0.	00 (8
f a pressurisation test has			ntended, pr						- (-)		,
Air permeability value, q50), expressed	in cubic me	etres per h	our per squ	are metre	of envelope	e area			3.	00 (1
f based on air permeabilit	y value, the	n (18) = [(17	') ÷ 20] + (8), otherwis	e (18) = (16	5)				0.	15 (1
Number of sides on which	the dwelling	g is sheltere	d								2 (1
Shelter factor								1 -	(0.075 x (19)] = 0.	85 (2
nfiltration rate incorporat									(18) x (2	0) = 0.	13 (2
nfiltration rate modified f											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Monthly average wind spe 5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70 (2
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70 (2
Mind factor (22)m ÷ 4	1.25	1.23	1.10	1.08	0.95	0.95	0.93	1.00	1.08	1.13	1.18 (2
		2120	2.20		0.00	0.00	0.00	2.00	2.00	2.10	
1.28		shelter and	wind facto	or) (21) x (2	2a)m					0.14	0.15 (2
1.28		shelter and 0.16	0.14	or) (21) x (2 0.14	2a)m 0.12	0.12	0.12	0.13	0.14	0.14	0.13
1.28 Adjusted infiltration rate (a 0.16	0.16	0.16	0.14			0.12	0.12	0.13	0.14	0.14	0.13
1.28 Adjusted infiltration rate (a 0.16	0.16 nge rate for	0.16 the applicab	0.14 ole case:	0.14		0.12	0.12	0.13	0.14		50 (2
1.28 Adjusted infiltration rate (a 0.16 Calculate effective air char	0.16 nge rate for	0.16 the applicat ge rate throu	0.14 ole case: ugh system	0.14	0.12		0.12	0.13	0.14	0.	
1.28 Adjusted infiltration rate (a 0.16 Calculate effective air char If mechanical ventilation	0.16 nge rate for on: air changecovery: effi	0.16 the applicab ge rate throu iciency in %	0.14 ole case: ugh system allowing fo	0.14 or in-use fac	0.12	able 4h		0.13	0.14	0.	50 (2
1.28 Adjusted infiltration rate (a 0.16 Calculate effective air char if mechanical ventilation if balanced with heat rotal if balanced mechanical 0.28	0.16 nge rate for on: air change ecovery: efficial ventilation 0.28	0.16 the applicate rate throus iciency in % on with heat 0.27	0.14 ble case: ugh system allowing for recovery	0.14 or in-use fac (MVHR) (22 0.25	0.12	able 4h		0.13	0.14	0.	50 (2
Adjusted infiltration rate (a 0.16 Calculate effective air char If mechanical ventilatio If balanced with heat re a) If balanced mechanic	0.16 nge rate for on: air change ecovery: efficial ventilation 0.28	0.16 the applicate rate throus iciency in % on with heat 0.27	0.14 ble case: ugh system allowing for recovery	0.14 or in-use fac (MVHR) (22 0.25	0.12 ctor from T b)m + (23b	able 4h o) x [1 - (23	c) ÷ 100]			0. 76	50 (2

3. Heat losses and heat loss parameter								
Element	Gross area, m²	Openings m ²	Net area A, m²	U-value W/m²K	A x U W/K	к-value, kJ/m².К	Α×κ, kJ/K	
Window			9.93	1.33	= 13.16			(27)
Door			1.89	1.00	= 1.89			(26)
External wall			23.17	0.15	= 3.48			(29a)
Party wall			56.50	0.00	= 0.00			(32)
External wall			27.11	0.01	= 0.27			(29a
Total area of external elements ∑A, m²			62.10					(31)
Fabric heat loss, $W/K = \sum (A \times U)$					(26)((30) + (32) =	18.80	(33)
Heat capacity Cm = Σ(A x κ)				(28)	(30) + (32) + (32	2a)(32e) =	N/A	(34)
Thermal mass parameter (TMP) in kJ/m²K							100.00	(35)
Thermal bridges: $\Sigma(L \times \Psi)$ calculated using App	pendix K						9.62	(36)
Total fabric heat loss						(33) + (36) =	28.42	(37)
Jan Feb Ma	r Apr	May	Jun Jul	Aug	Sep	Oct Nov	Dec	
Ventilation heat loss calculated monthly 0.33	x (25)m x (5)							
14.73 14.56 14.3	9 13.56	13.39	12.55 12.55	5 12.38	12.89 1	3.39 13.72	14.06	(38)
Heat transfer coefficient, W/K (37)m + (38)m								
43.15 42.98 42.8	1 41.98	41.81	40.97 40.93	7 40.80	41.30 4	1.81 42.14	42.48]
					Average = ∑(39)112/12 =	41.93	(39)
Heat loss parameter (HLP), W/m²K (39)m ÷ (4	1)							
0.70 0.70 0.70	0.68	0.68	0.67 0.67	0.67	0.67	0.69	0.69]
					Average = ∑(40)112/12 =	0.68	(40)
Number of days in month (Table 1a)								
31.00 28.00 31.0	00.00	31.00	30.00 31.00	31.00	30.00 3	1.00 30.00	31.00	(40)
A Water backing and a second								
4. Water heating energy requirement								
Assumed occupancy, N		(DE 11)				F	2.02	(42)
Annual average hot water usage in litres per of		= (25 x N) + : May	Jun Jul	A	f	Ort Nov	82.13 Dec	(43)
Hot water usage in litres per day for each mo		,		Aug	Sep	OCT NOV	Dec	
90.34 87.06 83.7		77.20	73.92 73.93	2 77.20	80.49 8	3.77 87.06	90.34	1
90.34 87.06 83.7	7 80.49	//.20	/3.92 /3.9	2 //.20			985.57]]
Franciscontact of hot water wood - 4.18 u Vd	T /	acoo lawb/m.	outh food Tables	16 1 - 1 - 1	2	(44)112 =	985.57	(44)
Energy content of hot water used = 4.18 x Vd,					02.02	00.45 440.40	1 120 75	1
133.98 117.18 120.9	92 105.42	101.15	87.29 80.88	92.81		09.46 119.48]
Distribution loss 0.15 x (45)m					Σ	(45)112 =	1292.24	(45)
	4 15.81	15.17	13.09 12.1	3 13.92	14.09 1	6.42 17.92	10.46	LAC!
				13.92	14.09 1	0.42 17.92	19.46	(46)
Storage volume (litres) including any solar or Water storage loss:	www.storag	e within sam	e vessei				194.00	[47]
water storage loss: a) If manufacturer's declared loss factor is kno	own (kWh /d)						1.61	(48)
	own (kwn/day)	,				H		,
Temperature factor from Table 2b	(48) (40)					H	0.60	(49)
Energy lost from water storage (kWh/day)	(48) x (49)					H		(50)
Enter (50) or (54) in (55) Water storage loss calculated for each month	/EE\ = /A1>						0.97	(55)
		20.05	20.00	20.00	20.00	0.05 36.00	30.05	1 (5.5)
29.95 27.05 29.9		29.95	28.98 29.99		28.98 2	9.95 28.98	29.95	(56)
If the vessel contains dedicated solar storage					20.00		7 20 05	1
29.95 27.05 29.9	5 28.98	29.95	28.98 29.9	29.95	28.98 2	9.95 28.98	29.95	(57)
							N: B1-A02-E	
			D 2			NHER Plan A	Assessor vers	
			Page 2				SAP ver	sion 9.

Primary circuit loss for each month fro	om Table 3					
23.26 21.01		23.26 22.51	23.26 23.26	22.51	23.26 22.51	1 23.26 (59)
Combi loss for each month from Table	3a, 3b or 3c	•	•		•	
0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 (61)
Total heat required for water heating	calculated for each month	0.85 x (45)m + (4	6)m + (57)m + (59)m	+ (61)m		
187.19 165.24	174.13 156.91 1	54.36 138.78	134.09 146.02	145.42	162.67 170.9	7 182.96 (62)
Solar DHW input calculated using App	endix G or Appendix H					
0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 (63)
Output from water heater for each me	onth (kWh/month) (62)m	+ (63)m				
187.19 165.24	174.13 156.91 1	54.36 138.78	134.09 146.02	145.42	162.67 170.9	7 182.96
					∑(64)112 =	1918.72 (64)
Heat gains from water heating (kWh/r	month) 0.25 × [0.85 × (45)m + (61)m] + 0.8 ×	((46)m + (57)m + (5	9)m]		
87.11 77.41	82.77 76.25	76.20 70.22	69.46 73.43	72.42	78.96 80.92	2 85.71 (65)
5. Internal gains						
Jan Feb	Mar Apr	May Jun	Jul Aug	Sep	Oct Nov	Dec
Metabolic gains (Table 5)						
100.91 100.91		00.91 100.91	100.91 100.91	100.91	100.91 100.9	1 100.91 (66)
Lighting gains (calculated in Appendix						
15.76 14.00		6.44 5.44	5.88 7.64	10.25	13.02 15.20	16.20 (67)
Appliance gains (calculated in Append		<u> </u>				
176.21 178.04		51.24 139.60	131.83 130.00	134.61	144.42 156.8	0 168.44 (68)
Cooking gains (calculated in Appendix						
33.09 33.09	33.09 33.09	33.09 33.09	33.09 33.09	33.09	33.09 33.09	33.09 (69)
Pump and fan gains (Table 5a)						
0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 (70)
Losses e.g. evaporation (Table 5)						
-80.73 -80.73	-80.73 -80.73 -	80.73 -80.73	-80.73 -80.73	-80.73	-80.73 -80.73	3 -80.73 (71)
Water heating gains (Table 5)	L					
117.09 115.19		02.42 97.52	93.36 98.69	100.59	106.13 112.3	9 115.20 (72)
Total internal gains (66)m + (67)m + (1		
362.34 360.51	349.34 331.41 3	13.38 295.84	284.34 289.60	298.72	316.84 337.6	6 353.11 (73)
6. Solar gains						
	Access factor	Area Sol	ar flux	g	FF	Gains
	Table 6d	m² W		ecific data Table 6b	specific data or Table 6c	w
North			0.63 x 0.9 x	0.40 x	0.90 =	18.04 (74)
South	0.77 x	3.13 x 4	6.75 x 0.9 x	0.40 x	0.90 =	36.51 (78)
Solar gains in watts ∑(74)m(82)m	L					10.50 (00)
54.55 94.26		16.45 222.02	211.03 182.42	149.99	105.53 65.53	3 46.58 (83)
Total gains - internal and solar (73)m -						
416.88 454.77	484.08 511.58 5	29.83 517.85	495.37 472.02	448.71	422.37 403.1	9 399.69 (84)
7. Mean internal temperature (heat	ing season)					
Temperature during heating periods in		e 9, Th1(°C)			Г	21.00 (85)
Jan Feb		May Jun	Jul Aug	Sep	Oct Nov	Dec
Utilisation factor for gains for living ar	ea n1,m (see Table 9a)					
0.94 0.91		0.65 0.49	0.36 0.39	0.59	0.80 0.91	0.94 (86)
					•	
						RN: B1-A02-E version 1 Assessor version 6.3.4
		Page 3			THILL FIGH	SAP version 9.92

SUSTAINABILITY

DEVISED ENERGY STRATEGY

41

SUSTAINABILITY REVISED ENERGY STRATEGY -REV. 03

∕lean internal	temp of livin												
	19.86	20.05	20.31	20.63	20.85	20.96	20.99	20.99	20.93	20.66	20.23	19.84	(87)
emperature d	during heatin	g periods in	the rest of	f dwelling f	rom Table	9, Th2(*C)							
	20.34	20.34	20.34	20.35	20.36	20.37	20.37	20.37	20.36	20.36	20.35	20.35	(88)
Jtilisation fact	or for gains t	for rest of d	welling n2.	m									
	0.93	0.90	0.86	0.76	0.62	0.44	0.31	0.34	0.54	0.77	0.89	0.94	(89)
Mean internal								0.54	0.54	0.77	0.05	0.54	(05)
ivicali iliterriai	18.80	19.06	19.44	19.89	20.19	20.33	20.36	20.36	20.29	19.94	19.34	18.77	(90)
		19.06	19.44	19.89	20.19	20.33	20.36	20.36					(50)
Living area frac									Liv	ving area ÷	(4) =	0.54	(91)
Mean internal													,
	19.37	19.59		20.29	20.55	20.67	20.70	20.70	20.63	20.33	19.82	19.34	(92)
Apply adjustme	ent to the m	ean internal	l temperati	ure from Ta	able 4e wh	ere appropr	riate						
	19.37	19.59	19.91	20.29	20.55	20.67	20.70	20.70	20.63	20.33	19.82	19.34	(93)
8. Space heat													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation fact	or for gains,	ηm											
	0.92	0.89	0.85	0.76	0.63	0.46	0.34	0.37	0.56	0.77	0.88	0.93	(94)
Useful gains, η	mGm, W (9	4)m x (84)m	1										
	382.77	405.54	409.75	388.82	333.85	240.44	166.15	172.80	252.24	326.46	355.90	370.14	(95)
Monthly averag	ge external t	emperature	e from Tabl	e U1									
	4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20	(96)
Heat loss rate f	for mean int	ernal tempe	erature, Lm	, W [(39)m	x ((93)m -	(96)m]						•	
	650.44	L 624.54		478.12	260.91	248.85	168.04	175.44	269.79	406.85	536.24	643.32	(97)
												0.0.02	
Snace heating							100.01						
Space heating	requirement	, kWh/mon	th 0.024 x	[(97)m - (9	5)m] x (41))m			0.00	F0.01	L 420.0F	202.25	1
Space heating			th 0.024 x				0.00	0.00	0.00	59.81	129.85	203.25]
Space heating	requirement	, kWh/mon	th 0.024 x	[(97)m - (9	5)m] x (41))m		0.00		59.81 3)15, 10		203.25 957.31] (98)
	requirement 199.15	, kWh/mon 151.87	122.33	[(97)m - (9	5)m] x (41))m		0.00		3)15, 10] (98)] (99)
Space heating	requirement 199.15 requirement	151.87 t kWh/mon	122.33	[(97)m - (9	5)m] x (41))m		0.00		3)15, 10	.12 =	957.31	, , ,
	199.15 requirement	t, kWh/mon 151.87 t kWh/m²/ye	122.33 122.33	((97)m - (9 64.30	5)m] x (41) 26.76	0.00	0.00		Σ(38	(98)	.12 = ÷ (4)	957.31 15.62	, , ,
Space heating (requirement 199.15 requirement lling requires Jan	151.87 t kWh/mon	122.33	[(97)m - (9	5)m] x (41))m		0.00 Aug		3)15, 10	.12 =	957.31	, , ,
Space heating of the second sec	requirement 199.15 requirement ling require Jan Lm	t, kWh/mon 151.87 t kWh/m²/ye ment Feb	nth 0.024 x 122.33	((97)m - (9 64.30 Apr	5)m] x (41) 26.76 May	0.00 Jun	0.00 Jul	Aug	Σ(98 Sep	(98) Oct	.12 = ÷ (4) Nov	957.31 15.62 Dec	(99)
Space heating 8c. Space coo	requirement 199.15 requirement ling requirer Jan Lm 0.00	t, kWh/mon 151.87 t kWh/m²/ye ment Feb	122.33 122.33	((97)m - (9 64.30	5)m] x (41) 26.76	0.00	0.00		Σ(38	(98)	.12 = ÷ (4)	957.31 15.62	, , ,
Space heating 8c. Space coo	requirement 199.15 requirement ling requirer Jan Lm 0.00	t, kWh/mon 151.87 t kWh/m²/ye ment Feb	nth 0.024 x 122.33	((97)m - (9 64.30 Apr	5)m] x (41) 26.76 May	0.00 Jun	0.00 Jul	Aug	Σ(98 Sep	(98) Oct	.12 = ÷ (4) Nov	957.31 15.62 Dec	(99)
Space heating 8c. Space coo	requirement 199.15 requirement ling requirer Jan Lm 0.00	t, kWh/mon 151.87 t kWh/m²/ye ment Feb	nth 0.024 x 122.33	((97)m - (9 64.30 Apr	5)m] x (41) 26.76 May	0.00 Jun	0.00 Jul	Aug	Σ(98 Sep	(98) Oct	.12 = ÷ (4) Nov	957.31 15.62 Dec	(99)
Space heating and a second sec	requirement 199.15 requirement ling require Jan Lm 0.00 cor for loss qu 0.00	k, kWh/mon 151.87	Mar 0.00 0.00	(97)m - (9 64.30 Apr	5)m] x (41) 26.76 May	Jun 385.11	Jul 303.17	Aug 310.09	Σ(98 Sep	(98) Oct	.12 = ÷ (4) Nov	957.31 15.62 Dec	(100)
Space heating and a second sec	requirement 199.15 requirement ling require Jan Lm 0.00 cor for loss qu 0.00	k, kWh/mon 151.87	Mar 0.00 0.00	(97)m - (9 64.30 Apr	5)m] x (41) 26.76 May	Jun 385.11	Jul 303.17	Aug 310.09	Σ(98 Sep	(98) Oct	.12 = ÷ (4) Nov	957.31 15.62 Dec	(100)
Space heating (8c. Space coo Heat loss rate I Utilisation fact Useful loss nml	requirement 199.15 requirement Jan Lm 0.00 0.00 0.00 Lm (watts) (t, kWh/mon 151.87 t kWh/m²/y/ ment Feb 0.00 m 0.00 100)m x (10	Mar 0.00 0.00 0.00 0.00	(97)m - (9 64.30 Apr 0.00	5)m] x (41) 26.76 May 0.00	Jun 385.11	Jul 303.17	Aug 310.09 0.96	Σ(98 Sep 0.00	(98) Oct 0.00	.12 =	957.31 15.62 Dec 0.00] (99)] (100)] (101)
Space heating (8c. Space coo Heat loss rate I Utilisation fact Useful loss nml	requirement 199.15 requirement Jan Lm 0.00 0.00 Lm (watts) (0.00	kWh/mon 151.87	Mar 0.00 0.00 0.00 0.00	Apr 0.00 0.00	May 0.00 0.00	Jun 385.11 0.94 363.12	Jul 303.17 0.97 293.40	Aug 310.09 0.96 298.08	Σ(98 Sep 0.00 0.00	0.00 0.00	.12 =	957.31 15.62 Dec 0.00] (100)] (101)] (102)
Space heating Bc. Space coo Heat loss rate I Utilisation fact: Useful loss qml	requirement 199.15 requirement Jan Lm 0.00 0.00 Lm (watts) (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	151.87	Mar 0.00 0.00 0.00 0.00 0.00	Apr 0.00 0.00	May 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47	Jul 303.17 0.97 293.40 640.96	Aug 310.09 0.96 298.08 614.53	Σ(98 Sep 0.00	(98) Oct 0.00	.12 =	957.31 15.62 Dec 0.00] (99)] (100)] (101)
Space heating i Space heating i Space heating i Sc. Space cool Heat loss rate I Utilisation fact Useful loss nml Gains Space cooling r	requirement 199.15 requirement Jan Lm 0.00 0.00 0.00 0.00 0.00 con for loss ni 0.00 0.00 0.00 0.00 0.00 con for loss ni 0.00 0.00 0.00 0.00 0.00 con for loss ni 0.00 0.00 0.00 con for loss ni 0.00 0.00 0.00 con for loss ni 0.00 0.00 con for loss ni 0.00 con for	k, kWh/mon 151.87 151.87 kWh/m²/y/ ment Feb 0.00 m 0.00 (100)m x (10 0.00 0.00 , whole dwe	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Apr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	May 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 [(103)m - (1	Jul 303.17 0.97 293.40 640.96 [002]m] x (4:	Aug 310.09 0.96 298.08 614.53	Sep 0.00 0.00 0.00	Oct 0.00 0.00 0.00	.12 =	957.31 15.62 Dec 0.00 0.00] (100)] (101)] (102)
Space heating Bc. Space coo Heat loss rate I Utilisation fact: Useful loss qml	requirement 199.15 requirement Jan Lm 0.00 0.00 Lm (watts) (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	151.87	Mar 0.00 0.00 0.00 0.00 0.00	Apr 0.00 0.00	May 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47	Jul 303.17 0.97 293.40 640.96	Aug 310.09 0.96 298.08 614.53	Σ(98 Sep 0.00 0.00	0.00 0.00 0.00	Nov 0.00 0.00 0.00 0.00	957.31 15.62 Dec 0.00 0.00] (100)] (101)] (102)] (103)
Space heating (8c. Space coo Heat loss rate I Utilisation fact Useful loss nml Gains Space cooling r	requirement 199.15 requirement Jan Lm 0.00 or for loss ni 0.00 Lm (watts) (0.00 requirement 0.00	k, kWh/mon 151.87 151.87 kWh/m²/y/ ment Feb 0.00 m 0.00 (100)m x (10 0.00 0.00 , whole dwe	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Apr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	May 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 [(103)m - (1	Jul 303.17 0.97 293.40 640.96 [002]m] x (4:	Aug 310.09 0.96 298.08 614.53	Sep 0.00 0.00 0.00 0.00	0.00 0.00 0.00 Σ(104)6	Nov 0.00 0.00 0.00 0.00 0.00 0.00	957.31 15.62 Dec 0.00 0.00 0.00 0.00] (99)] (100)] (101)] (102)] (103)
Space heating (8c. Space coo Heat loss rate I Utilisation fact Useful loss nml Gains Space cooling r	requirement 199.15 requirement Jan Lm 0.00 or for loss ni 0.00 Lm (watts) (0.00 0.00 requirement 0.00	k. kWh/mon 151.87 151.8	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Apr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	May 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 [(103)m - (1	Jul 303.17 0.97 293.40 640.96 [002]m] x (4:	Aug 310.09 0.96 298.08 614.53	Sep 0.00 0.00 0.00 0.00	0.00 0.00 0.00	Nov 0.00 0.00 0.00 0.00 0.00 0.00	957.31 15.62 Dec 0.00 0.00] (100)] (101)] (102)] (103)
Space heating (8c. Space coo Heat loss rate I Utilisation fact Useful loss nml Gains Space cooling r	requirement 199.15 requirement Jan Lm 0.00 or for loss ni 0.00 Lm (watts) (0.00 0.00 requirement 0.00	k. kWh/mon 151.87 151.8	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Apr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	May 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 [(103)m - (1	Jul 303.17 0.97 293.40 640.96 [002]m] x (4:	Aug 310.09 0.96 298.08 614.53	Sep 0.00 0.00 0.00 0.00	0.00 0.00 0.00 Σ(104)6	Nov 0.00 0.00 0.00 0.00 0.00 0.00	957.31 15.62 Dec 0.00 0.00 0.00 0.00] (99)] (100)] (101)] (102)] (103)
Space heating (8c. Space coo Heat loss rate I Utilisation fact Useful loss nml Gains Space cooling r	requirement 199.15 requirement Jan Lm 0.00 or for loss ni 0.00 Lm (watts) (0.00 0.00 requirement 0.00	k. kWh/mon 151.87 151.8	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Apr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	May 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 [(103)m - (1	Jul 303.17 0.97 293.40 640.96 [002]m] x (4:	Aug 310.09 0.96 298.08 614.53	Sep 0.00 0.00 0.00 0.00	0.00 0.00 0.00 Σ(104)6	Nov 0.00 0.00 0.00 0.00 8 =	957.31 15.62 Dec 0.00 0.00 0.00 0.00] (99)] (100)] (101)] (102)] (103)
Space heating (8c. Space coo Heat loss rate I Utilisation fact Useful loss nml Gains Space cooling r	requirement 199.15 requirement Jan Lm 0.00 0.00 0.00 0.00 0.00 crequirement 0.00 n factor (Table	151.87 1	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Apr 0.00 0.00 0.00 0.00 0.00 0.00 0.00	May 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 ((103)m - (1 219.85	0.00 Jul 303.17 0.97 293.40 640.96 102)m] x (4.1 258.58	Aug 310.09 0.96 298.08 614.53 1)m 235.44	Sep 0.00 0.00 0.00 0.00	Oct 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ(104)6 oled area ÷	8 = (4) = 0.00	957.31 15.62 Dec 0.00 0.00 0.00 0.00 0.00 0.00 713.88 0.54] (99)] (100)] (101)] (102)] (103)
Space heating Bc. Space coo Heat loss rate I Utilisation fact: Useful loss qml	requirement 199.15 requirement Jan Lm 0.00 0.00 Lm (watts) (0.00 requirement 0.00 0.00 requirement 0.00 requirement 0.00 0.00 requirement 0.00 0.00	., kWh/mon 151.87 kWh/m²/yd kWh/m²/yd kWh/m²/yd kWh/m²/yd	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Apr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	May 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 ((103)m - (1 219.85	0.00 Jul 303.17 0.97 293.40 640.96 102)m] x (4.1 258.58	Aug 310.09 0.96 298.08 614.53 1)m 235.44	Sep 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8 = (4) = 0.00	957.31 15.62 Dec 0.00 0.00 0.00 0.00 0.00 713.88 0.54] (100)] (101)] (102)] (103)] (104)] (105)
Space heating of the state of t	requirement 199.15 requirement Jan Lm 0.00 0.00 Lm (watts) (0.00 requirement 0.00 0.00 requirement 0.00 requirement 0.00 0.00 requirement 0.00 0.00	., kWh/mon 151.87 kWh/m²/yd kWh/m²/yd kWh/m²/yd kWh/m²/yd	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Apr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	May 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 ((103)m - (1 219.85	0.00 Jul 303.17 0.97 293.40 640.96 102)m] x (4. 258.58	Aug 310.09 0.96 298.08 614.53 1)m 235.44	Sep 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8 = (4) = 0.00	957.31 15.62 Dec 0.00 0.00 0.00 0.00 0.00 713.88 0.54] (100)] (101)] (102)] (103)] (104)] (105)
Space heating of the state of t	requirement 199.15 requirement Jan Lm 0.00 0.00 Lm (watts) (0.00 requirement 0.00 requirement 0.00 requirement 0.00 requirement 0.00 requirement	., kWh/mon 151.87 151.87 .; kWh/m²/ye ment Feb 0.00 0.00 100)m x (10 0.00 0.00 0.00 0.00 0.00 100)m x (10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Apr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	May 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 ((103)m - (1 219.85 0.25	0.00 Jul 303.17 0.97 293.40 640.96 102)m] x (4.1 258.58	Aug 310.09 0.96 298.08 614.53 1)m 235.44	Sep 0.00 0.00 0.00 0.00 0.00	Oct 0.00 0.00 0.00 0.00 Σ(104)6 area +	12 =	957.31 15.62 Dec 0.00 0.00 0.00 0.00 0.00 713.88 0.54] (100)] (101)] (102)] (103)] (104)] (105)
Space heating of the state of t	requirement 199.15 requirement Jan Lm 0.00 0.00 Lm (watts) (0.00 requirement 0.00 requirement 0.00 requirement 0.00 requirement 0.00 requirement	., kWh/mon 151.87 151.87 .; kWh/m²/ye ment Feb 0.00 0.00 100)m x (10 0.00 0.00 0.00 0.00 0.00 100)m x (10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Apr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	May 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 ((103)m - (1 219.85 0.25	0.00 Jul 303.17 0.97 293.40 640.96 102)m] x (4. 258.58	Aug 310.09 0.96 298.08 614.53 1)m 235.44	Sep 0.00 0.00 0.00 0.00 0.00	Oct 0.00 0.00 0.00 0.00 Σ(104)6 area +	12 =	957.31 15.62 Dec 0.00 0.00 0.00 0.00 0.00 713.88 0.54] (100)] (101)] (102)] (103)] (104)] (105)
Space heating of the second sec	requirement 199.15 requirement Jan Lm 0.00 0.00 Lm (watts) (0.00 requirement 0.00 requirement 0.00 requirement 0.00 requirement 0.00 requirement	., kWh/mon 151.87 151.87 .; kWh/m²/ye ment Feb 0.00 0.00 100)m x (10 0.00 0.00 0.00 0.00 0.00 100)m x (10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Apr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	May 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 ((103)m - (1 219.85 0.25	0.00 Jul 303.17 0.97 293.40 640.96 102)m] x (4. 258.58	Aug 310.09 0.96 298.08 614.53 1)m 235.44	Sep 0.00 0.00 0.00 0.00 0.00	Oct 0.00 0.00 0.00 0.00 Σ(104)6 area +	12 =	957.31 15.62 Dec 0.00 0.00 0.00 0.00 0.00 713.88 0.54] (100)] (101)] (102)] (103)] (104)] (105)
Space heating of the state of t	requirement 199.15 requirement Jan Lm 0.00 0.00 Lm (watts) (0.00 requirement 0.00 requirement 0.00 requirement 0.00 requirement 0.00 requirement	., kWh/mon 151.87 151.87 .; kWh/m²/ye ment Feb 0.00 0.00 100)m x (10 0.00 0.00 0.00 0.00 0.00 100)m x (10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Apr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	May 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 ((103)m - (1 219.85 0.25	0.00 Jul 303.17 0.97 293.40 640.96 102)m] x (4. 258.58	Aug 310.09 0.96 298.08 614.53 1)m 235.44	Sep 0.00 0.00 0.00 0.00 0.00	Oct 0.00 0.00 0.00 0.00 Σ(104)6 olded area ÷ 0.00 Σ(106)6	8 =	957.31 15.62 Dec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	[(100) [(101) [(102) [(103) [(104) [(105
8c. Space cool 8c. Space cool Heat loss rate I Utilisation fact Judy Space cooling rate Cooled fraction ntermittency f	requirement 199.15 requirement Jan Lm 0.00 0.00 Lm (watts) (0.00 requirement 0.00 requirement 0.00 requirement 0.00 requirement 0.00 requirement	., kWh/mon 151.87 151.87 .; kWh/m²/ye ment Feb 0.00 0.00 100)m x (10 0.00 0.00 0.00 0.00 0.00 100)m x (10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Apr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	May 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 ((103)m - (1 219.85 0.25	0.00 Jul 303.17 0.97 293.40 640.96 102)m] x (4. 258.58	Aug 310.09 0.96 298.08 614.53 1)m 235.44	Sep 0.00 0.00 0.00 0.00 0.00	Oct 0.00 0.00 0.00 0.00 Σ(104)6 olded area ÷ 0.00 Σ(106)6	8 =	957.31 15.62 Dec 0.00	[(100) [(100) [(101) [(102) [(103) [(104) [(105

\(\Sigma(107)68 = (107) \div (4) = (107) \div (4) = (107) \div (5) \div	
1 - (301) =	1.00 (30
	1.00 (30
(302) x (303a) =	1.00 (30
	1.00 (30
	1.00 (30
	1.05 (30
957.31	(98
(98) x (304a) x (305) x (306) =	1005.18 (30
1918.72	(64
	30.20 (31
0.01. ((30.4)(30.4) ((3104)(3104))	30.20
	4.05 (31
(107) ÷ (314)	23.79 (31
133.68	(33
	133.68 (33
	278.36 (33
+ (310) + (312) + (315) + (331) + (332)(337b) =	3455.68 (33
1100011.	
Fuel price	Fuel cost £/year
x 4 24 x 0.01 =	42.62 (34
	85.42 (34
	3.14 (34
	17.63 (34
	36.72 (35
X 13:13	120.00 (35
(340a)(342e) + (345)(354) =	
	0.42 (35
	1.21 (35
	83.16
	83 (35
	B (35
	D
Emission factor	Emissions
	(98) x (304a) x (305) x (306) = 1918.72 (64) x (303a) x (305a) x (306) = 0.01 x [(307a)(307e) + (310a)(310e)] = (107) + (314) 133.68 + (310) + (312) + (315) + (331) + (332)(337b) = Fuel price x 4.24 x 0.01 =

Emissions from other sources (space heating)						
Efficiency of boilers	89.50				(3	367a
CO2 emissions from boilers [(307a)+(310a)] x 100 ÷ (367a) :	3374.12	×	0.216	=	728.81 (3	367)
Electrical energy for community heat distribution	30.20	×	0.519	=	15.67 (3	372)
Total CO2 associated with community systems						373)
Total CO2 associated with space and water heating						376)
	23.79		0.519			377)
Space cooling		×		=		
Pumps and fans	133.68	×	0.519	=		378)
Electricity for lighting	278.36	×	0.519	=		379)
Total CO ₂ , kg/year				(376)(382)	= 970.68 (3	383)
Dwelling CO ₂ emission rate				(383) ÷ (4)	= 15.83 (3	384)
El value					87.76	
El rating (section 14)					88 (3	385)
El band					В	
		dis				
13b. Primary energy - community heating scheme						
	Energy kWh/year		Primary factor		Primary energy (kWh/year)	
Primary anarry from other courses (bti)	kwii/year				(Kwii/year)	
Primary energy from other sources (space heating)						
Efficiency of boilers	89.50					367a
Primary energy from boilers [(307a)+(310a)] x 100 ÷ (367a)	3374.12	×	1.22	=	4116.43 (3	367)
Electrical energy for community heat distribution	30.20	×	3.07	=	92.71 (3	372)
Total primary energy associated with community systems					4209.14 (3	373)
Total primary energy associated with space and water heating					4209.14 (3	376)
Space cooling	23.79	×	3.07	=	73.05 (3	377)
Pumps and fans	133.68	×	3.07	_		378)
Electricity for lighting	278.36	Ŷ	3.07	_		,,,,, 379)
	278.36	*	3.07	-		
Primary energy kWh/year						383)
Dwelling primary energy rate kWh/m2/year					90.49 (3	384)
						_
	D 5			NHER	URN: B1-A02-E vers Plan Assessor version	

INABILITY 42

SUSTAINABILITY REVISED ENERGY STRATEGY -REV. 03

TER Workshe Design - Draf											NHE
This design submission property as constructed		ed out using	g Approved	d SAP softw	are. It has I	oeen prepa	red fro	m plans and sp	ecifications a	ind may r	ot reflect the
Assessor name	Miss Mi	helle Wang						Assessor nun	nber	2018	
Client								Last modified	1	27/07	/2020
Address	Manor R	oad Richmo	ond Block :	1, Richmond	d, TW9						
				,	,						
1. Overall dwelling dir	nensions										
				Α	rea (m²)			Average storey height (m)	•	Vo	lume (m³)
						1	_				
Lowest occupied				<u> </u>	61.30](1a) x	L	2.60	(2a) =		159.38
Total floor area	(1a)	+ (1b) + (1a	c) + (1d)((1n) =	61.30	(4)		(2-) - (2-) - (2	-) - (2-1) (2		150.20
Dwelling volume								(3a) + (3b) + (3	c) + (3d)(3	n) = [159.38
2. Ventilation rate											
										m	per hour
Number of chimneys								0	x 40 =		0 (
Number of open flues								0	x 20 =		0 (
Number of intermittent	fans							2	x 10 =		20 (
Number of passive vent	s							0	x 10 =		0 (
Number of flueless gas	fires							0	x 40 =		0 (
										Air	hanges per hour
Infiltration due to chimi	nove fluor form	e DCVe		(6 a)	. /6h\ . /7	a) + (7b) + (7e) - [20	÷ (5) =		0.13
If a pressurisation test h			ntended n] +(3)-		0.15
Air permeability value,								(3) 10 (10)			5.00 (
If based on air permeab							e area			H	0.38
Number of sides on whi				o, otherwis	1) - (10) - (1	5)				H	2 (
Shelter factor	err erre aweinn	g is silencere						1.	(19 (19 (19 (19)] = [0.85
Infiltration rate incorpo	rating shelter f	actor							(18) x (2)		0.32
Infiltration rate modifie			:						,,,-	,	,
Jan	Feb	Mar	Apr	May	Jun	Jul	Au	g Sep	Oct	Nov	Dec
Monthly average wind	speed from Tal	ole U2									
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.7	0 4.00	4.30	4.50	4.70 (
Wind factor (22)m ÷ 4											
1.2	3 1.25	1.23	1.10	1.08	0.95	0.95	0.9	3 1.00	1.08	1.13	1.18
Adjusted infiltration rat	e (allowing for	shelter and	wind fact	or) (21) x (2	!2a)m						
0.4	1 0.40	0.39	0.35	0.34	0.30	0.30	0.3	0 0.32	0.34	0.36	0.38
Calculate effective air c	hange rate for	the applical	ble case:								
If mechanical ventila	ition: air chang	e rate throu	ugh systen	n							N/A (
If balanced with hea						able 4h					N/A (
d) natural ventilation											
0.5		0.58	0.56	0.56	0.55	0.55	0.5	4 0.55	0.56	0.56	0.57
Effective air change rate											
0.58	8 0.58	0.58	0.56	0.56	0.55	0.55	0.5	4 0.55	0.56	0.56	0.57

	3. Heat losses and heat loss parameter
● NHER	Element Gross Openings Net area U-value A x U W/K κ-value, A x κ, area, m² m² A, m² W/m²K kJ/m².K kJ/K
	Window 9.93 x 1.33 = 13.16 (27)
ns and may not reflect the	Door 1.89 x 1.00 = 1.89 (26)
	External wall
2018	Party wall 56.50 x 0.00 = 0.00 (32)
	Total area of external elements ΣA, m ² 62.10 (31)
27/07/2020	Fabric heat loss, W/K = Σ (A × U) (26)(30) + (32) = 24.11 (33)
	Heat capacity Cm = $\sum (A \times K)$ (28)(30) + (32) + (32a)(32e) = N/A (34)
	Thermal mass parameter (TMP) in kJ/m²K 250.00 (35)
	Thermal bridges: $\Sigma(L x \Psi)$ calculated using Appendix K
Volume (m³)	Total fabric heat loss (33) + (36) = 28.88 (37)
	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
159.38 (3a)	Ventilation heat loss calculated monthly 0.33 x (25)m x (5)
(3n) = 159.38 (5)	30.65 30.48 30.32 29.54 29.39 28.72 28.72 28.59 28.98 29.39 29.69 30.00 (38 Heat transfer coefficient, W/K (37)m + (38)m
m³ per hour	59.53 59.36 59.20 58.42 58.27 57.59 57.59 57.47 57.86 58.27 58.57 58.88
	Average = Σ(39)112/12 = 58.42 (39)
= 0 (6a)	Heat loss parameter (HLP), W/m²K (39)m ÷ (4)
= 0 (6b)	0.97 0.97 0.95 0.95 0.94 0.94 0.94 0.94 0.95 0.96 0.96
= 20 (7a)	Average = $\sum (40)112/12 = 0.95$ (40)
= 0 (7b)	Number of days in month (Table 1a)
= 0 (7c)	31.00 28.00 31.00 30.00 31.00 30.00 31.00 31.00 30.00 31.00 30.00 31.00 30.00 31.00 (40
Air changes per hour	4. Water heating energy requirement
= 0.13 (8)	Assumed occupancy, N 2.02 (42
- 0.15 (8)	Annual average hot water usage in litres per day Vd, average = (25 x N) + 36
5.00 (17)	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0.38 (18)	Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)
2 (19)	90.34 87.06 83.77 80.49 77.20 73.92 73.92 77.20 80.49 83.77 87.06 90.34
19)] = 0.85 (20)	Σ(44)112 = 985.57 (44)
(20) = 0.32 (21)	Energy content of hot water used = 4.18 x Vd,m x nm x Tm/3600 kWh/month (see Tables 1b, 1c 1d)
(20) - 0.52 (21)	133.98 117.18 120.92 105.42 101.15 87.29 80.88 92.81 93.92 109.46 119.48 129.75
Nov Dec	[153.36] 117.16 120.92 103.42 101.15 67.29 60.86 92.61 93.92 103.46 119.46 129.75 [154.61] 129.24 (45.61) (45.61) (45.61
NOV DEC	Distribution loss 0.15 x (45)m
4.50 4.70 (22)	20.10 17.58 18.14 15.81 15.17 13.09 12.13 13.92 14.09 16.42 17.92 19.46 (46
4.50 4.70 (22)	Storage volume (litres) including any solar or WWHRS storage within same vessel 194.00 (47
1.13 1.18 (22a)	Storage volume (litres) including any solar or WWHKS storage within same vessel 194.00 (4/
1.13 1.18 (22a)	
0.25 0.20 (271)	
0.36 0.38 (22b)	
10-1	Energy lost from water storage (kWh/day) (48) x (49) 0.88 (50
N/A (23a)	Enter (50) or (54) in (55) 0.88 (55)
N/A (23c)	Water storage loss calculated for each month (55) x (41)m
	27.16 24.54 27.16 26.29 27.16 26.29 27.16 27.16 26.29 27.16 26.29 27.16 (56
0.56 0.57 (24d)	If the vessel contains dedicated solar storage or dedicated WWHRS (56)m x [(47) - Vs] ÷ (47), else (56)
	27.16 24.54 27.16 26.29 27.16 26.29 27.16 27.16 26.29 27.16 26.29 27.16 (57
0.56 0.57 (25)	Primary circuit loss for each month from Table 3
URN: B1-A02-E version 1	URN: B1-A02-E versic
HER Plan Assessor version 6.3.4	NHER Plan Assessor version 6
SAP version 9.92	Page 2 SAP version 9

23.26 Combi loss for each month fr	21.01 23.2	6 22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26 (59)
		_	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26 (59)
0.00	0.00 0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 (61)
Total heat required for water										
184.40	162.72 171.			136.09	131.31	143.24	142.72	159.89	168.28	180.18 (62)
Solar DHW input calculated u	ising Appendix G	or Appendix F	1							
0.00	0.00 0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 (63)
Output from water heater fo	r each month (k	Wh/month) (6	i2)m + (63)n	n						
184.40	162.72 171.	34 154.22	151.58	136.09	131.31	143.24	142.72	159.89	168.28	180.18
								∑(64)1	12 = 1	.885.98 (64)
Heat gains from water heatin	g (kWh/month)	0.25 × [0.85 ×	(45)m + (61	l)m] + 0.8 ×	[(46)m + (57)m + (59)	m]			
84.89	75.40 80.5	5 74.09	73.97	68.06	67.24	71.20	70.27	76.74	78.77	83.48 (65)
5. Internal gains										
Jan	Feb Ma	r Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Metabolic gains (Table 5)										
100.91	100.91 100.	91 100.91	100.91	100.91	100.91	100.91	100.91	100.91	100.91	100.91 (66)
Lighting gains (calculated in A	Appendix L, equa	tion L9 or L9a)	, also see Ta	able 5					7	
16.35	14.52 11.8		6.68	5.64	6.10	7.92	10.64	13.51	15.76	16.80 (67)
Appliance gains (calculated in										,,
176.21	178.04 173.		151.24	139.60	131.83	130.00	134.61	144.42	156.80	168.44 (68)
Cooking gains (calculated in A		_			131.03	130.00	134.01	144.42	150.60	108.44 (08)
					22.00		22.00		22.00	33.09 (69)
33.09	33.09 33.0	9 33.09	33.09	33.09	33.09	33.09	33.09	33.09	33.09	33.09 (69)
Pump and fan gains (Table 5a										
3.00	3.00 3.0	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00 (70)
Losses e.g. evaporation (Tabl	e 5)									
-80.73	-80.73 -80.7	73 -80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73 (71)
Water heating gains (Table 5))									
Water heating gains (Table 5	112.20 108.	26 102.91	99.43	94.53	90.37	95.70	97.60	103.14	109.40	112.21 (72)
	112.20 108.				90.37	95.70	97.60	103.14	109.40	112.21 (72)
114.10	112.20 108.	(69)m + (70)m			90.37	95.70 289.90	97.60	103.14	109.40 338.24	112.21 (72) 353.72 (73)
Total internal gains (66)m +	112.20 108. (67)m + (68)m +	(69)m + (70)m	+ (71)m + (72)m						
Total internal gains (66)m +	112.20 108. (67)m + (68)m +	(69)m + (70)m	+ (71)m + (72)m						
114.10 Total internal gains (66)m+	112.20 108. (67)m + (68)m + 361.04 349.	(69)m + (70)m 78 331.74 ess factor	+ (71)m + (313.63	72)m 296.05 Sol:	284.57 ar flux	289.90	299.11 g	317.34	338.24	353.72 (73) Gains
114.10 Total internal gains (66)m+	112.20 108. (67)m + (68)m + 361.04 349.	(69)m + (70)m 78 331.74	+ (71)m + (313.63	72)m 296.05 Sol:	284.57	289.90 spec	299.11 g ific data	317.34 FF specific d	338.24	353.72 (73)
114.10 Total internal gains (66)m + (362.93) 6. Solar gains	112.20 108. (67)m + (68)m + 361.04 349.	(69)m + (70)m 78 331.74 ess factor able 6d	+ (71)m + (313.63 Area m²	72)m 296.05 Sol. W	284.57 ar flux //m²	289.90 spec or T	g ific data able 6b	317.34 FF specific of or Table	338.24	353.72 (73) Gains W
114.10 Total internal gains (66)m + (362.93) 6. Solar gains	112.20 108. (67)m + (68)m + 361.04 349.	(69)m + (70)m 78 331.74 ess factor able 6d	+ (71)m + (313.63 Area m² 6.80	72)m 296.05 Sol: W	284.57 ar flux //m²	289.90 spec or T	g gific data able 6b	FF specific d or Table	338.24	353.72 (73) Gains W 22.10 (74)
114.10 Total internal gains (66)m + (362.93) 6. Solar gains North South	112.20 108. (67)m+(68)m+ 361.04 349.	(69)m + (70)m 78 331.74 ess factor able 6d	+ (71)m + (313.63 Area m²	72)m 296.05 Sol: W	284.57 ar flux //m²	289.90 spec or T	g ific data able 6b	317.34 FF specific d or Table	338.24	353.72 (73) Gains W
114.10 Total internal gains (66)m + 1 362.93 6. Solar gains North South Solar gains in watts ∑(74)m	112.20 108. (67)m+(68)m+ 361.04 349. Acc T	(69)m + (70)m 78 331.74 ess factor able 6d 0.77 x [0.77 x [+ (71)m + (313.63 Area m² 6.80 3.13	72)m 296.05 Sol: W x 1 x 4	284.57 ar flux //m² 0.63 × 6.75 ×	289.90 spec or T 0.9 x (g iffic data able 6b 0.63	FF specific d or Table 0.70	338.24	353.72 (73) Gains W 22.10 (74) 44.72 (78)
114.10 Total internal gains (66)m + (362.93	112.20 108. (67)m + (68)m + 361.04 349. Acc T (82)m 115.47 165.	(69)m + (70)m 78 331.74 ess factor able 6d 0.77 x [0.77 x [+ (71)m + (313.63 Area m² 6.80	72)m 296.05 Sol: W	284.57 ar flux //m²	289.90 spec or T	g gific data able 6b	FF specific d or Table	338.24	353.72 (73) Gains W 22.10 (74)
114.10 Total internal gains (66)m + 362.93 6. Solar gains North South Solar gains in watts ∑(74)m	112.20 108. (67)m + (68)m + 361.04 349. Acc T (82)m 115.47 165.	(69)m + (70)m 78 331.74 ess factor able 6d 0.77 x [0.77 x [+ (71)m + (313.63 Area m² 6.80 3.13	72)m 296.05 Sol: W x 1 x 4	284.57 ar flux //m² 0.63 × 6.75 ×	289.90 spec or T 0.9 x (g iffic data able 6b 0.63	FF specific d or Table 0.70	338.24	353.72 (73) Gains W 22.10 (74) 44.72 (78)
114.10 Total internal gains (66)m + 362.93 6. Solar gains North South Solar gains in watts ∑(74)m 66.82	112.20 108. (67)m + (68)m + 361.04 349. Acc T (82)m 115.47 165.	(69)m + (70)m 78 331.74 ess factor able 6d 0.77 x [0.77 x [0.6 220.71	+ (71)m + (313.63 Area m² 6.80 3.13	72)m 296.05 Sol: W x 1 x 4	284.57 ar flux //m² 0.63 × 6.75 ×	289.90 spec or T 0.9 x (g iffic data able 6b 0.63	FF specific d or Table 0.70	338.24	353.72 (73) Gains W 22.10 (74) 44.72 (78)
114.10 Total internal gains (66)m + (362.93 6. Solar gains North South Solar gains in watts Σ(74)m 66.82 Total gains - internal and sola 429.75	112.20 108. (67)m + (68)m + 361.04 349. Acc T (82)m 115.47 165. 1r (73)m + (83)m 476.51 514.	(69)m + (70)m 8 331.74 ess factor able 6d 0.77 x [0.77 x [0.6 220.71	+ (71)m + (313.63 Area m² 6.80 3.13	72)m 296.05 Sol. W 1 x 1 x 4	284.57 ar flux //m² 0.63 x 6.75 x	spec or T 0.9 x (0	g fific data able 6b 0.63	FF specific d or Table (0.70 0.70 129.27	338.24 lata 6c = = = = 80.27	353.72 (73) Gains W 22.10 (74) 44.72 (78) 57.07 (83)
114.10 Total internal gains (66)m + (362.93 6. Solar gains North South Solar gains in watts Σ(74)m 66.82 Total gains - internal and sola 429.75 7. Mean internal temperature	112.20 108. (67)m + (68)m + 361.04 349. Acc T 115.47 165. 117.47 165. 117.47 165. 117.47 165. 118.47 165. 119.47 165. 119.47 165. 119.47 165.	(69)m + (70)m 78 331.74 ess factor able 6d 0.77 x [0.77 x [0.6 220.71 84 552.45	Area m² 6.80 3.13 265.15	72)m 296.05 Sol. W x 1 x 4 271.97	284.57 ar flux //m² 0.63 x 6.75 x	spec or T 0.9 x (0	g fific data able 6b 0.63	FF specific d or Table (0.70 0.70 129.27	338.24 lata 6c = [80.27	353.72 (73) Gains W 22.10 (74) 44.72 (78) 57.07 (83) 410.79 (84)
114.10 Total internal gains (66)m + 1 362.93 6. Solar gains North South Solar gains in watts Σ(74)m 66.82 Total gains - internal and sola 429.75 7. Mean internal temperature during heating	112.20 108. (67)m + (68)m + 361.04 349. Acc T (82)m 115.47 165. 17 (73)m + (83)m 476.51 514. are (heating seaseperiods in the live	(69)m + (70)m 78 331.74 ess factor able 6d 0.77 x (0.77 x (0.6 220.71 84 552.45 on) ing area from	Area m² 6.80 3.13 265.15 578.78	72)m 296.05 Sol W x 1 x 4 271.97 568.02	284.57 ar flux //m² 0.63 x 6.75 x 258.51	spec or T 0.9 x (0 0.9 x (1 223.46	g fific data able 6b 0.63 > 0.63 > 183.74	FF specific d or Table (0.70 (0.70 129.27 1446.60)	338.24 lata 6c = [80.27	353.72 (73) Gains W 22.10 (74) 44.72 (78) 57.07 (83) 410.79 (84)
114.10 Total internal gains (66)m + 362.93 6. Solar gains North South Solar gains in watts Σ(74)m 66.82 Total gains - internal and sola 429.75 7. Mean internal temperature during heating Jan	112.20 108. (67)m + (68)m + 361.04 349. Acc T 115.47 165. ar (73)m + (83)m + 476.51 514. are (heating seasperiods in the live reb Mai	(69)m + (70)m 78 331.74 ess factor able 6d 0.77 x 0.77 x 0.6 220.71 84 552.45 con) ing area from r Apr	Area m² 6.80 3.13 265.15 578.78 Table 9, Th2 May	72)m 296.05 Sol. W x 1 x 4 271.97	284.57 ar flux //m² 0.63 x 6.75 x	spec or T 0.9 x (0	g fific data able 6b 0.63	FF specific d or Table (0.70 0.70 129.27	338.24 lata 6c = [80.27	353.72 (73) Gains W 22.10 (74) 44.72 (78) 57.07 (83) 410.79 (84)
114.10 Total internal gains (66)m + 1 362.93 6. Solar gains North South Solar gains in watts Σ(74)m 66.82 Total gains - internal and sola 429.75 7. Mean internal temperature during heating	112.20 108. (67)m + (68)m + 361.04 349. Acc T 115.47 165. ar (73)m + (83)m + 476.51 514. are (heating seasperiods in the live reb Mai	(69)m + (70)m 78 331.74 ess factor able 6d 0.77 x 0.77 x 0.6 220.71 84 552.45 con) ing area from r Apr	Area m² 6.80 3.13 265.15 578.78 Table 9, Th2 May	72)m 296.05 Sol W x 1 x 4 271.97 568.02	284.57 ar flux //m² 0.63 x 6.75 x 258.51	spec or T 0.9 x (0 0.9 x (1 223.46	g fific data able 6b 0.63 > 0.63 > 183.74	### SPECIFIC OF TABLE 1	338.24 lata 6c = [80.27	353.72 (73) Gains W 22.10 (74) 44.72 (78) 57.07 (83) 410.79 (84)
114.10 Total internal gains (66)m + 362.93 6. Solar gains North South Solar gains in watts Σ(74)m 66.82 Total gains - internal and sola 429.75 7. Mean internal temperature during heating Jan	112.20 108. (67)m + (68)m + 361.04 349. Acc T 115.47 165. ar (73)m + (83)m + 476.51 514. are (heating seasperiods in the live reb Mai	(69)m + (70)m 78 331.74 ess factor able 6d 0.77 x [0.77 x [0.6 220.71 84 552.45 con) ing area from r Apr 0 (see Table 9a	Area m² 6.80 3.13 265.15 578.78 Table 9, Th2 May	72)m 296.05 Sol W x 1 x 4 271.97 568.02	284.57 ar flux //m² 0.63 x 6.75 x 258.51	spec or T 0.9 x (0 0.9 x (1 223.46	g fific data able 6b 0.63 > 0.63 > 183.74	FF specific d or Table (0.70 (0.70 129.27 1446.60)	338.24 lata 6c = [80.27	353.72 (73) Gains W 22.10 (74) 44.72 (78) 57.07 (83) 410.79 (84)
114.10 Total internal gains (66)m + 1 362.93 6. Solar gains North South Solar gains in watts Σ(74)m 66.82 Total gains - internal and solar 429.75 7. Mean internal temperature during heating Jan Utilisation factor for gains for	112.20 108. (67)m + (68)m + 361.04 349. Acc T 115.47 165. or (73)m + (83)m 476.51 514. ore (heating seare periods in the live reb Mar I living area n1,n 0.99 0.99 0.99	(69)m + (70)m 78	+ (71)m + (313.63 Area m² 6.80 3.13 265.15 578.78 Table 9, Th: May 0.82	72)m 296.05 Soli X 1 X 4 271.97 568.02 L('C) Jun	284.57 ar flux //m² 0.63 x 6.75 x 258.51 543.08	spec or T 0.9 x (0.9 x (1.2) (g fific data able 6b 0.63) 0.63) 183.74 482.85	### SPECIFIC OF TABLE 1	338.24 lata 6c = [80.27 418.51	353.72 (73) Gains W 22.10 (74) 44.72 (78) 57.07 (83) 410.79 (84) 22.10 (85) Dec
114.10 Total internal gains (66)m + 362.93 6. Solar gains North Solar gains in watts ∑(74)m 66.82 Total gains - internal and solated the solated temperature during heating Jan Utilisation factor for gains for 1.00	112.20 108. (67)m + (68)m + 361.04 349. Acc T 115.47 165. or (73)m + (83)m 476.51 514. ore (heating seare periods in the live reb Mar I living area n1,n 0.99 0.99 0.99	(69)m + (70)m 78	+ (71)m + (313.63 Area m² 6.80 3.13 265.15 578.78 Table 9, Th: May 0.82	72)m 296.05 Soli X 1 X 4 271.97 568.02 L('C) Jun	284.57 ar flux //m² 0.63 x 6.75 x 258.51 543.08	spec or T 0.9 x (0.9 x (1.2) (g fific data able 6b 0.63) 0.63) 183.74 482.85	### SPECIFIC OF TABLE 1	338.24 lata 6c = [80.27 418.51	353.72 (73) Gains W 22.10 (74) 44.72 (78) 57.07 (83) 410.79 (84) 21.00 (85) Dec
114.10 Total internal gains (66)m + 362.93 6. Solar gains North Solar gains in watts ∑(74)m 66.82 Total gains - internal and solated the solated temperature during heating Jan Utilisation factor for gains for 1.00	112.20 108. (67)m + (68)m + 361.04 349. Acc T 115.47 165. or (73)m + (83)m 476.51 514. ore (heating seare periods in the live reb Mar I living area n1,n 0.99 0.99 0.99	(69)m + (70)m 78	+ (71)m + (313.63 Area m² 6.80 3.13 265.15 578.78 Table 9, Th: May 0.82	72)m 296.05 Soli X 1 X 4 271.97 568.02 L('C) Jun	284.57 ar flux //m² 0.63 x 6.75 x 258.51 543.08	spec or T 0.9 x (0.9 x (1.2) (g fific data able 6b 0.63) 0.63) 183.74 482.85	### SPECIFIC OF TABLE 1	338.24 lata 6c = [80.27 418.51	Gains W 22.10 (74) 44.72 (78) 57.07 (83) 410.79 (84) 21.00 (85) Dec 1.00 (86)
114.10 Total internal gains (66)m + 362.93 6. Solar gains North Solar gains in watts ∑(74)m 66.82 Total gains - internal and solated the solated temperature during heating Jan Utilisation factor for gains for 1.00	112.20 108. (67)m + (68)m + 361.04 349. Acc T 115.47 165. or (73)m + (83)m 476.51 514. ore (heating seare periods in the live reb Mar I living area n1,n 0.99 0.99 0.99	(69)m + (70)m 78	+ (71)m + (313.63 Area m² 6.80 3.13 265.15 578.78 Table 9, Th: May 0.82	72)m 296.05 Soli X 1 X 4 271.97 568.02 L('C) Jun	284.57 ar flux //m² 0.63 x 6.75 x 258.51 543.08	spec or T 0.9 x (0.9 x (1.2) (g fific data able 6b 0.63) 0.63) 183.74 482.85	317.34 FF specific d or Table (0.70 (0.70) 129.27 446.60 Oct	338.24 lata 6c	353.72 (73) Gains W 22.10 (74) 44.72 (78) 57.07 (83) 410.79 (84) 21.00 (85) Dec
114.10 Total internal gains (66)m + 362.93 6. Solar gains North Solar gains in watts ∑(74)m 66.82 Total gains - internal and solated the solated temperature during heating Jan Utilisation factor for gains for 1.00	112.20 108. (67)m + (68)m + 361.04 349. Acc T 115.47 165. or (73)m + (83)m 476.51 514. ore (heating seare periods in the live reb Mar I living area n1,n 0.99 0.99 0.99	(69)m + (70)m 78	+ (71)m + (313.63 Area m² 6.80 3.13 265.15 578.78 Table 9, Th: May 0.82	72)m 296.05 Soli X 1 X 4 271.97 568.02 L('C) Jun	284.57 ar flux //m² 0.63 x 6.75 x 258.51 543.08	spec or T 0.9 x (0.9 x (1.2) (g fific data able 6b 0.63) 0.63) 183.74 482.85	317.34 FF specific d or Table (0.70 (0.70) 129.27 446.60 Oct	338.24 lata 6c	353.72 (73) Gains W 22.10 (74) 44.72 (78) 57.07 (83) 410.79 (84) 21.00 (85) Dec 1.00 (86)

SUSTAINABILITY REVISED ENERGY STRATEGY -REV. 03

	20.10	20.23	20.44	20.70	20.90	20.98	21.00	21.00	20.95	20.71		20.08	(87)
Temperature du	ring heatin	g periods in	the rest of	f dwelling fr	rom Table 9	9, Th2(°C)							-
	20.11	20.11	20.11	20.12	20.12	20.13	20.13	20.14	20.13	20.12	20.12	20.12	(88)
Utilisation factor	r for gains f	or rest of d	welling n2,	m									_
	0.99	0.99	0.97	0.92	0.78	0.55	0.37	0.42	0.69	0.93	0.99	1.00	(89)
Mean internal te	emperature	in the rest	of dwelling	T2 (follow	steps 3 to	7 in Table 9	9c)						
	18.92	19.11	19.40	19.78	20.03	20.12	20.13	20.13	20.09	19.80	19.31	18.89	(90)
Living area fracti	ion								Li	ving area ÷	(4) =	0.54	(91)
Mean internal te	emperature	for the wh	ole dwellin	g fLA x T1 +	(1 - fLA) x	T2							-
	19.56	19.72	19.96	20.27	20.50	20.59	20.60	20.60	20.56	20.29	19.88	19.53	(92)
Apply adjustmer	nt to the me	ean interna	l temperati	ure from Ta	ble 4e whe	ere appropr	iate		1000	•			-
	19.56	19.72	19.96	20.27	20.50	20.59	20.60	20.60	20.56	20.29	19.88	19.53	(93)
8. Space heatin								.00000000					
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation factor													
	0.99	0.99	0.97	0.92	0.80	0.59	0.42	0.47	0.73	0.93	0.98	0.99	(94)
Useful gains, ηm							A						,
		470.09		508.47	461.83	337.59	229.55	239.89	351.17	417.18	412.22	408.49	(95)
Monthly average													
	4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20	(96)
Heat loss rate fo													,
	908.26	879.49	796.89	664.46	- 100	344.85	230.38	241.34	373.55	564.75	748.39	902.68	(97)
Space heating re	equirement	, kWh/mon	th 0.024 x	[(97)m - (95	5)m] x (41)	m			1977				
					_						1		٦.
				112.31	37.80	0.00	0.00	0.00	0.00 Σ(9	109.79 8)15, 10 (98)		367.68 1724.23 28.13] (98)] (99)
9a. Energy requ	equirement	kWh/m²/y	ear				0.00	0.00		8)15, 10	.12 =	1724.23	
9a. Energy requ	equirement uirements -	kWh/m²/yı individual	ear heating sy	stems inclu	ding micro	э-СНР	0.00	0.00		8)15, 10	.12 =	1724.23 28.13	(99)
9a. Energy requ Space heating Fraction of space	equirement uirements - e heat from	kWh/m²/yı individual secondary	ear heating sy /suppleme	stems inclu	ding micro	э-СНР	0.00	0.00		8)15, 10 (98)	.12 = + (4)	1724.23 28.13	(99)
9a. Energy requestions Space heating Fraction of space	equirement uirements e heat from	kWh/m²/yı individual secondary main syste	ear heating sy /suppleme em(s)	stems inclu	ding micro	э-СНР	0.00	0.00		8)15, 10 (98)	.12 =	0.00 1.00	(99) (201) (202)
9a. Energy requirements Space heating Fraction of space Fraction of space	equirement uirements e heat from e heat from e heat from	kWh/m²/yı individual secondary main syste main syste	ear heating sy /suppleme em(s) em 2	stems inclu	ding micro	э-СНР	0.00	0.00	Σ(9	1 - (2	.12 =	0.00 1.00 0.00	(99) (201) (202) (202)
9a. Energy requirements Space heating Fraction of space Fraction of space Fraction of total	equirements - e heat from e heat from e heat from space heat	kWh/m²/yı individual secondary main syste main syste from main	heating sy /suppleme em(s) em 2 system 1	stems inclu	ding micro	э-СНР	0.00	0.00	Σ(9	1 - (2 02) x [1- (20	.12 =	0.00 1.00 0.00 1.00	(99) (201) (202) (202) (204)
9a. Energy requirements Space heating Fraction of space Fraction of space Fraction of total Fraction of total	equirements e heat from e heat from e heat from space heat	kWh/m²/yı individual secondary main syste main syste from main from main	heating sy /suppleme em(s) em 2 system 1	stems inclu	ding micro	э-СНР	0.00	0.00	Σ(9	1 - (2	.12 =	0.00 1.00 0.00 1.00 0.00	(99) (201) (202) (202) (204) (205)
9a. Energy requests Space heating Fraction of space Fraction of space Fraction of total Fraction of total	e heat from e heat from e heat from e heat from space heat in system 1	kWh/m²/yı individual secondary main syste main syste from main from main (%)	heating sy /suppleme em(s) em 2 system 1 system 2	stems inclu	ding micro	o-chp			Σ(9	1 - (2 (202) x [1- (20 (202) x (2	.12 =	1724.23 28.13 0.00 1.00 0.00 1.00 0.00 93.50	(99) (201) (202) (202) (204)
9a. Energy requirements of space heating Fraction of space Fraction of space Fraction of space Fraction of total Fraction of total Efficiency of mail	equirement uirements e heat from e heat from s heat from s pace heat is space heat in system 1 Jan	kWh/m²/yı individual secondary main syste main syste from main from main (%) Feb	heating sy /suppleme em(s) em 2 system 1 system 2 Mar	stems inclu	ding micro	э-СНР	Jul	Aug	Σ(9	1 - (2 02) x [1- (20	.12 =	0.00 1.00 0.00 1.00 0.00	(99) (201) (202) (202) (204) (205)
9a. Energy requirements of space heating Fraction of space Fraction of space Fraction of space Fraction of total Fraction of total Efficiency of mail	e heat from e heat from e heat from le heat from space heat space heat in system 1 Jan usel (main sy	kWh/m²/yu individual secondary main syste from main from main (%) Feb	heating sy /suppleme em(s) em 2 system 1 system 2 Mar Vh/month	stems inclu ntary system Apr	ding micro m (table 11	Jun	Jul	Aug	Σ(9 (20 Sep	1 - (2 02) x [1- (20 (202) x (2	.12 =	1724.23 28.13 28.13 0.00 1.00 0.00 1.00 0.00 93.50 Dec	(99) (201) (202) (202) (204) (205)
9a. Energy requirements of space heating Fraction of space Fraction of space Fraction of space Fraction of total Fraction of total Efficiency of mail	equirement uirements e heat from e heat from s heat from s pace heat is space heat in system 1 Jan	kWh/m²/yu individual secondary main syste from main from main (%) Feb	heating sy /suppleme em(s) em 2 system 1 system 2 Mar	stems inclu	ding micro	o-chp			Σ(9 (20 Sep	1 - (2 22) × [1- (2C (202) × (2 Oct	.12 =	1724.23 28.13 0.00 1.00 0.00 1.00 0.00 93.50 Dec	(99) (201) (202) (202) (204) (205) (206)
9a. Energy requires Space heating Fraction of space Fraction of space Fraction of total Fraction of total Efficiency of mai	e heat from e heat from e heat from le heat from space heat space heat in system 1 Jan usel (main sy	kWh/m²/yu individual secondary main syste from main from main (%) Feb	heating sy /suppleme em(s) em 2 system 1 system 2 Mar Vh/month	stems inclu ntary system Apr	ding micro m (table 11	Jun	Jul	Aug	Σ(9 (20 Sep	1 - (2 02) x [1- (20 (202) x (2	.12 =	1724.23 28.13 28.13 0.00 1.00 0.00 1.00 0.00 93.50 Dec	(99) (201) (202) (202) (204) (205)
9a. Energy requ Space heating Fraction of space Fraction of space Fraction of space Fraction of total Fraction of total Efficiency of mai Space heating fu	e heat from e heat from e heat from e heat from space heat is space heat in system 1 Jan uel (main sy 383.18	kWh/m²/yu individual secondary main syste from main from main (%) Feb	heating sy /suppleme em(s) em 2 system 1 system 2 Mar Vh/month	stems inclu ntary system Apr	ding micro m (table 11	Jun	Jul	Aug	Σ(9 (20 Sep	1 - (2 22) × [1- (2C (202) × (2 Oct	.12 =	1724.23 28.13 0.00 1.00 0.00 1.00 0.00 93.50 Dec	(99) (201) (202) (202) (204) (205) (206)
9a. Energy requ Space heating Fraction of space Fraction of space Fraction of space Fraction of total Fraction of total Efficiency of mai Space heating fu	e heat from e heat from e heat from e heat from i space heat is space heat in system 1 Jan uel (main sy 383.18	individual secondary main syste from main from main (%) Feb stem 1), kV	heating sy /suppleme em(s) em 2 system 1 system 2 Mar Vh/month 236.60	Apr	ding micro m (table 11 May 40.43	Jun 0.00	Jul 0.00	Aug 0.00	Σ(9 {20 Sep 0.00 Σ(21	8}15, 10 (98) 1 - (2 02) × [1 - (20 (202) × (2 Oct 117.43	.12 =	0.00 1.00 0.00 1.00 0.00 93.50 Dec 393.24	[(99) [(201) [(202) [(204) [(205) [(206) [(211) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [
9a. Energy requests Space heating Fraction of space Fraction of space Fraction of space Fraction of total Fraction of total Efficiency of mai Space heating fur Water heating Efficiency of water	e heat from e heat from e heat from e heat from space heat is space heat is system 1 Jan uel (main sy 383.18	kWh/m²/yi Individual secondary main syste main syste from main (%) Feb stem 1), kW 294.24	heating sy /suppleme em(s) em 2 system 1 system 2 Mar Vh/month	stems inclu ntary system Apr	ding micro m (table 11	Jun	Jul	Aug	Σ(9 (20 Sep	1 - (2 22) × [1- (2C (202) × (2 Oct	.12 =	1724.23 28.13 0.00 1.00 0.00 1.00 0.00 93.50 Dec	(99) (201) (202) (202) (204) (205) (206)
9a. Energy requests Space heating Fraction of space Fraction of space Fraction of space Fraction of total Fraction of total Efficiency of mai Space heating fur Water heating Efficiency of water	e heat from e heat from e heat from e heat from space heat space heat in system 1 Jan uel (main sy 383.18 ter heater 86.56 uel, kWh/m	kWh/m²/yi Individual secondary main syste main syste from main from main (%) Feb stem 1), kV 294.24	heating sy /suppleme em(s) em 2 system 1 system 2 Mar Vh/month 236.60	Apr 120.12	May 40.43	Jun 0.00	Jul 0.00	Aug 0.00	Σ(9 (26 Sep 0.00 Σ(21 79.80	1 - (2 22) × [1 - (2 (202) × (2 Oct 117.43 1)15, 10	.12 =	0.00 1.00 0.00 1.00 0.00 1.00 0.00 93.50 Dec 393.24 1844.10	[(99) [(201) [(202) [(204) [(205) [(206) [(211) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [
9a. Energy required Space heating Fraction of space Fraction of space Fraction of space Fraction of total Efficiency of mai Space heating further water heating Efficiency of water heating Efficiency Office Heating Efficiency O	e heat from e heat from e heat from e heat from space heat is space heat is system 1 Jan uel (main sy 383.18	kWh/m²/yi Individual secondary main syste main syste from main (%) Feb stem 1), kW 294.24	heating sy /suppleme em(s) em 2 system 1 system 2 Mar Vh/month 236.60	Apr	ding micro m (table 11 May 40.43	Jun 0.00	Jul 0.00	Aug 0.00	Σ(9 {20 Sep 0.00 Σ(21	1 - (2 02) × [1 - (2 02) × (2 0ct 117.43 115, 10	.12 =	0.00 1.00 0.00 1.00 0.00 1.00 0.00 93.50 Dec 393.24 1844.10	(201) (202) (202) (202) (204) (205) (206) (211)
9a. Energy required Space heating Space heating Fraction of space Fraction of space Fraction of space Fraction of total Fraction of total Efficiency of mai Space heating fur Water heating Efficiency of wat Water heating for	e heat from e heat from e heat from e heat from space heat space heat in system 1 Jan uel (main sy 383.18 ter heater 86.56 uel, kWh/m	kWh/m²/yi Individual secondary main syste main syste from main from main (%) Feb stem 1), kV 294.24	heating sy /suppleme em(s) em 2 system 1 system 2 Mar Vh/month 236.60	Apr 120.12	May 40.43	Jun 0.00	Jul 0.00	Aug 0.00	Σ(9 (26 Sep 0.00 Σ(21 79.80	1 - (2 22) × [1 - (2 (202) × (2 Oct 117.43 1)15, 10	.12 =	0.00 1.00 0.00 1.00 0.00 1.00 0.00 93.50 Dec 393.24 1844.10	[(99) [(201) [(202) [(204) [(205) [(206) [(211) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [(21) [
Space heating Fraction of space Fraction of space Fraction of space Fraction of total Fraction of total Efficiency of mai Space heating fu Water heating Efficiency of wat Water heating for	e heat from e heat from e heat from e heat from space heat space h	kWh/m²/yu individual secondary main syste main syste from main (%) Feb stem 1), kV 294.24	heating sy /suppleme em(s) em 2 system 1 system 2 Mar Vh/month 236.60	Apr 120.12	May 40.43	Jun 0.00	Jul 0.00	Aug 0.00	Σ(9 (26 Sep 0.00 Σ(21 79.80	1 - (2 02) × [1 - (2 02) × (2 0ct 117.43 115, 10	.12 =	0.00 1.00 0.00 1.00 0.00 0.00 93.50 Dec 393.24 1844.10	(201) (202) (202) (202) (204) (205) (206) (211)
9a. Energy required Space heating Fraction of space Fraction of space Fraction of space Fraction of total Fraction of total Efficiency of mai Space heating fur Water heating Efficiency of wat Water heating for Mater heating for Material Material Mater heating for Material	e heat from e heat from e heat from e heat from space heat space h	kWh/m²/yu individual secondary main syste main syste from main (%) Feb stem 1), kV 294.24	heating sy /suppleme em(s) em 2 system 1 system 2 Mar Vh/month 236.60	Apr 120.12	May 40.43	Jun 0.00	Jul 0.00	Aug 0.00	Σ(9 (26 Sep 0.00 Σ(21 79.80	1 - (2 02) × [1 - (2 02) × (2 0ct 117.43 115, 10	.12 =	0.00 1.00 0.00 1.00 0.00 1.00 0.00 93.50 Dec 393.24 1844.10	(201) (202) (202) (202) (204) (205) (206) (211)
9a. Energy required Space heating Space heating Fraction of space Fraction of space Fraction of space Fraction of total Fraction of total Efficiency of mai Space heating fur Water heating Efficiency of wat Water heating for	e heat from e heat from e heat from e heat from space heat space h	kWh/m²/yu individual secondary main syste main syste from main (%) Feb stem 1), kV 294.24	heating sy /suppleme em(s) em 2 system 1 system 2 Mar Vh/month 236.60	Apr 120.12	May 40.43	Jun 0.00	Jul 0.00	Aug 0.00	Σ(9 (26 Sep 0.00 Σ(21 79.80	1 - (2 02) × [1 - (2 02) × (2 0ct 117.43 115, 10	.12 =	0.00 1.00 0.00 1.00 0.00 0.00 93.50 Dec 393.24 1844.10	(201) (202) (202) (202) (204) (205) (206) (211)
9a. Energy required Space heating Fraction of space Fraction of space Fraction of space Fraction of total Fraction of total Efficiency of mai Space heating fur Water heating Efficiency of wat Water heating for Mater heating for Material Mater heating for Mater heating for Material	e heat from e heat from e heat from e heat from space heat space h	kWh/m²/yu individual secondary main syste main syste from main (%) Feb stem 1), kV 294.24	heating sy /suppleme em(s) em 2 system 1 system 2 Mar Vh/month 236.60	Apr 120.12	May 40.43	Jun 0.00	Jul 0.00	Aug 0.00	Σ(9 (26 Sep 0.00 Σ(21 79.80	1 - (2 02) × [1 - (2 02) × (2 0ct 117.43 115, 10	.12 =	0.00 1.00 0.00 1.00 0.00 1.00 0.00 93.50 Dec 393.24 1844.10] (99)] (201)] (202)] (202)] (204)] (205)] (206)] (211)] (217)] (219)
9a. Energy required Space heating Fraction of space Fraction of space Fraction of space Fraction of total Fraction of total Efficiency of mai Space heating fur Water heating Efficiency of wat Water heating for Mater heating for Material Mater heating for Mater heating for Material	e heat from e heat from e heat from e heat from space heat space h	kWh/m²/yu individual secondary main syste main syste from main (%) Feb stem 1), kV 294.24	heating sy /suppleme em(s) em 2 system 1 system 2 Mar Vh/month 236.60	Apr 120.12	May 40.43	Jun 0.00	Jul 0.00	Aug 0.00	Σ(9 (26 Sep 0.00 Σ(21 79.80	8)15, 10 (98) 1 - (2 02) × (1- (20 (202) × (2 0ct 117.43 1)15, 10 83.84 190.71 ∑(219a)1	.12 =	0.00 1.00 0.00 1.00 0.00 0.00 93.50 Dec 393.24 1844.10	[(201) [(202) [(202) [(204) [(205) [(206) [(211) [(217) [(219
9a. Energy requirements of space pace pace pace pace pace pace pace	e heat from e heat from e heat from e heat from space heat space h	kWh/m²/yu individual secondary main syste main syste from main (%) Feb stem 1), kV 294.24	heating sy /suppleme em(s) em 2 system 1 system 2 Mar Vh/month 236.60	Apr 120.12	May 40.43	Jun 0.00	Jul 0.00	Aug 0.00	Σ(9 (26 Sep 0.00 Σ(21 79.80	8)15, 10 (98) 1 - (2 02) × (1- (20 (202) × (2 0ct 117.43 1)15, 10 83.84 190.71 ∑(219a)1	.12 =	0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00	[(201) [(202) [(202) [(204) [(205) [(206) [(211) [(217) [(219
9a. Energy requisions of space Fraction of space Fraction of total Fraction of total Fraction of total Efficiency of mai Space heating fur Water heating fur Water heating fur Water heating fur Manual totals	e heat from e heat from e heat from e heat from space heat space h	kWh/m²/yu individual secondary main syste main syste from main (%) Feb stem 1), kV 294.24	heating sy /suppleme em(s) em 2 system 1 system 2 Mar Vh/month 236.60	Apr 120.12	May 40.43	Jun 0.00	Jul 0.00	Aug 0.00	Σ(9 (26 Sep 0.00 Σ(21 79.80	8)15, 10 (98) 1 - (2 02) × (1 - (20 (202) × (2 Oct 117.43 1)15, 10 83.84 190.71 ∑(219a)1	.12 =	0.00 1.00 0.00 1.00 0.00 1.00 0.00 93.50 Dec 393.24 1844.10	[(201) [(202) [(202) [(204) [(205) [(206) [(211) [(217) [(219

Water heating fuel			2259.51
Electricity for pumps, fans and electric keep-hot (Table	4f)		
central heating pump or water pump within warm a	ir heating unit	30.00	(230c)
boiler flue fan		45.00	(230e)
Total electricity for the above, kWh/year			75.00 (231)
Electricity for lighting (Appendix L)			288.74 (232)
Total delivered energy for all uses		(211)(221) + (231) + (232)(2	(238) = 4467.35
10a. Fuel costs - individual heating systems including			
	Fuel	Fuel price	Fuel
	kWh/year		cost £/year
Space heating - main system 1	1844.10	x 3.48 x 0.0	
Water heating	2259.51	x 3.48 x 0.0	
Pumps and fans	75.00	x 13.19 x 0.0	
Electricity for lighting	288.74	x 13.19 x 0.0	01 = 38.09 (250)
Additional standing charges			120.00 (251)
Total energy cost		(240)(242) + (245)	(254) = 310.78 (255)
44 CAB and a ladicidual banking contains lack disc	and an action		
11a. SAP rating - individual heating systems including	micro-CHP	Annual	(0.10
Energy cost deflator (Table 12)			0.42 (256)
Energy cost factor (ECF)			1.23 (257)
SAP value			82.87
SAP rating (section 13)			83 (258)
SAP band			В
12a. CO ₂ emissions - individual heating systems include	ding micro-CHP		
6-7	Energy	Emission factor	Emissions
	kWh/year	kg CO₂/kWh	kg CO₂/year
Space heating - main system 1	1844.10	x 0.216 =	398.32 (261)
Water heating	2259.51	x 0.216 =	488.05 (264)
Space and water heating		(261) + (262) + (263) +	(264) = 886.38 (265)
Pumps and fans	75.00	x 0.519 =	38.93 (267)
Electricity for lighting	288.74	x 0.519 =	149.86 (268)
Total CO ₂ , kg/year		(265)	(271) = 1075.16 (272)
Dwelling CO₂ emission rate			÷ (4) = 17.54 (273)
El value		()	86.45
El rating (section 14)			86 (274)
El band			B (274)
El bullo			
13a. Primary energy - individual heating systems inclu	uding micro-CHP		
	Energy	Primary factor	Primary Energy
	kWh/year		kWh/year
Space heating - main system 1	1844.10	x 1.22 =	2249.80 (261)
Water heating	2259.51	x 1.22 =	2756.60 (264)
Space and water heating		(261) + (262) + (263) +	(264) = 5006.40 (265)
Pumps and fans	75.00	x 3.07 =	230.25 (267)
Electricity for lighting	288.74	x 3.07 =	886.44 (268)
Primary energy kWh/year			6123.09 (272)
Dwelling primary energy rate kWh/m2/year			99.89 (273)
			URN: B1-A02-E version 1
			NHER Plan Assessor version 6.3.4
	Page 5		SAP version 9.92

Be Green example data sheet – DER & TER

This design submission has b property as constructed.	een carrie	d out usin	Approved	SAP softwa	are. It has b	een prepa	red from pl	ans and spe	cifications	and may not r	eflect the
Assessor name	Miss Mic	helle Wang	Į.				As	sessor num	ber	2018	
Client							La	st modified		28/07/202	20
Address	Manor R	oad Richm	ond Block 1	, Richmond	i, TW9						
1. Overall dwelling dimensi	ons			A	rea (m²)			age storey		Volum	e (m³)
				_		,	he	ight (m)			
owest occupied					61.30	(1a) x		2.60	(2a) =	159	.38 (3a)
Total floor area	(1a)	+ (1b) + (1	c) + (1d)(1	ln) =	61.30	(4)	(0-1		1 - (a D - (a	in) = 159	
Owelling volume							(3a)	+ (3b) + (3d	:) + (3d)(3	in) = 159	.38 (5)
2. Ventilation rate											
							$\setminus \angle$			m³ pe	
lumber of chimneys								0	x 40 =		
Number of open flues								0	x 20 =		
Number of intermittent fans								0	x 10 =		
lumber of passive vents								0	x 10 =		
Number of flueless gas fires								0	x 40 =	(
										Air chan	
nfiltration due to chimneys,	flues, fans	s, PSVs		(6a)	+ (6b) + (7a	a) + (7b) + (7c) =	0	÷ (5) =	0.0	00 (8)
f a pressurisation test has be	en carrie	d out or is i	ntended, pr	oceed to (1	17), otherw	ise continu	e from (9) t	o (16)			
Air permeability value, q50,	expressed	in cubic m	etres per ho	our per squ	are metre	of envelope	e area			3.0	00 (17)
f based on air permeability v	alue, ther	18) = [(1	7) ÷ 20] + (8), otherwis	se (18) = (16	5)				0.:	15 (18)
Number of sides on which th	e dwelling	is shelter	ed							2	(19)
Shelter factor								1-	[0.075 x (19	9)] = [(9	85 (20)
nfiltration rate incorporating	shelter f	actor							(18) x (2	(0) = 0.1	13 (21)
nfiltration rate modified for	monthly v	vind speed	:								
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Monthly average wind speed							0.70				170 (170
5.10 Vind factor (22)m ÷ 4	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70 (22)
1.28	1.25	1.23	1.10	1.08	0.95	0.95	0.93	1.00	1.08	1.13	1.18 (22a
Adjusted infiltration rate (all						0.55	0.55	1.00	1.00	1.13	1.10 (220
0.16	0.16	0.16	0.14	0.14	0.12	0.12	0.12	0.13	0.14	0.14	0.15 (22)
Calculate effective air change											,,
If mechanical ventilation:	air chang	e rate thro	ugh system							0.5	50 (23a
If balanced with heat reco	very: effi	ciency in %	allowing fo	or in-use fac	ctor from T	able 4h				76.	
a) If balanced mechanical							c) ÷ 100]				
0.28	0.28	0.27	0.26	0.25	0.24	0.24	0.24	0.25	0.25	0.26	0.27 (24a
	ter (24a) o	or (24b) or	(24c) or (24	ld) in (25)							
ffective air change rate - en											

				Gross rea, m²	Opening: m²	Net A,		U-value W/m²K	AxUW		alue, /m².K	Axk, kJ/K	
Window						9.9	93 x	1.33	= 13.16	i			(
Door						1.3	89 x	1.00	= 1.89				(
External wall						23.	17 x	0.15	= 3.48				(
Party wall						56.	50 x	0.00	= 0.00				(
External wall						27.	11 x	0.01	= 0.27				(
Total area of ext	ternal eleme	ents ∑A, m²				62.	10						(
Fabric heat loss,	, W/K = ∑(A :	× U)							(2)	5)(30) + (3	32) = [18.80	
Heat capacity Cr	m = ∑(A x κ)							(28)	(30) + (32)	+ (32a)(32	2e) =	N/A	
Thermal mass p	arameter (T	MP) in kJ/m	²K									100.00	
Thermal bridges	s: Σ(L x Ψ) ca	lculated usi	ng Appen	dix K								9.62	
Total fabric heat	t loss									(33) + (3	36) =	28.42	Ī
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	_
Ventilation heat	loss calcula	ted monthly	y 0.33 x (2	25)m x (5)									
	14.73	14.56	14.39	13.56	13.39	12.55	12.55	12.38	12.89	13.39	13.72	14.06	
Heat transfer co	efficient, W	/K (37)m+	(38)m										
	43.15	42.98	42.81	41.98	41.81	40.97	40.97	40.80	41.30	41.81	42.14	42.48	
									Average = 3	(39)112/	12 =	41.93	Ħ٥
Heat loss param	eter (HLP), \	W/m²K (39)	m ÷ (4)								_		_
	0.70	0.70	0.70	0.68	0.68	0.67	0.67	0.67	0.67	0.68	0.69	0.69	٦
									Average = 2	(40)112/	12 =	0.68	Ħ٥
Number of days	in month (T	able 1a)									_		_
	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	٦
												'	_
4 141-4	ng onorgy re												
4. Water heati	ing energy re	equirement											
4. Water heati Assumed occupa		equirement										2.02	
	ancy, N			Vd,average	: = (25 x N) +	36						2.02 82.13	≓ `
Assumed occupa Annual average	ancy, N hot water u Jan	sage in litre:	s per day '	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov		≓ `
Assumed occupa	ancy, N hot water u Jan e in litres per	sage in litre Feb r day for eac	s per day ' Mar th month	Apr Vd,m = fact	May	Jun ole 1c x (43						82.13 Dec	≓ `
Assumed occupa Annual average	ancy, N hot water u Jan	sage in litre:	s per day '	Apr	May	Jun		Aug 77.20	Sep 80.49	Oct 83.77	Nov 87.06	82.13 Dec	≓ `
Assumed occupa Annual average	ancy, N hot water u Jan e in litres per	sage in litre Feb r day for eac	s per day ' Mar th month	Apr Vd,m = fact	May tor from Tal	Jun ole 1c x (43					87.06	82.13 Dec	
Assumed occupa Annual average	ancy, N hot water u Jan e in litres per 90.34	sage in litre Feb r day for eac 87.06	Mar ch month	Apr Vd,m = fact 80.49	May tor from Tal 77.20	Jun ole 1c x (43 73.92	73.92	77.20		83.77	87.06 12 =	90.34 985.57	
Assumed occupi Annual average Hot water usage	ancy, N hot water u Jan e in litres per 90.34	sage in litre Feb r day for eac 87.06	Mar ch month	Apr Vd,m = fact 80.49	May tor from Tal 77.20	Jun ole 1c x (43 73.92	73.92	77.20		83.77	87.06	90.34 985.57	
Assumed occupi Annual average Hot water usage	ancy, N hot water u Jan e in litres per 90.34 of hot water	sage in litre: Feb r day for eac 87.06	s per day ' Mar th month ' 83.77	Apr Vd,m = fact 80.49	May tor from Tab 77.20 3600 kWh/n	Jun ple 1c x (43 73.92 month (see	73.92 Tables 1b,	77.20	80.49	83.77 Σ(44)1	87.06 12 = 119.48	90.34 985.57	
Assumed occupi Annual average Hot water usage	hot water u Jan in litres per 90.34 of hot water	sage in litre: Feb r day for eac 87.06 r used = 4.18	s per day ' Mar th month ' 83.77	Apr Vd,m = fact 80.49	May tor from Tab 77.20 3600 kWh/n	Jun ple 1c x (43 73.92 month (see	73.92 Tables 1b,	77.20	80.49	83.77 Σ(44)1	87.06 12 = 119.48	82.13 Dec 90.34 985.57	
Assumed occupion Annual average Hot water usage Energy content	hot water u Jan in litres per 90.34 of hot water	sage in litre: Feb r day for eac 87.06 r used = 4.18	s per day ' Mar th month ' 83.77	Apr Vd,m = fact 80.49	May tor from Tab 77.20 3600 kWh/n	Jun ple 1c x (43 73.92 month (see	73.92 Tables 1b,	77.20	80.49	83.77 Σ(44)1	87.06 12 = 119.48	82.13 Dec 90.34 985.57	
Assumed occupion Annual average Hot water usage Energy content	ancy, N hot water u Jan e in litres per 90.34 of hot water 133.98 s 0.15 x (45)	sage in litrer Feb r day for eac 87.06 117.18 m 17.58	Mar th month 83.77 8 x Vd,m x 120.92	Apr Vd,m = fact 80.49 nm x Tm/3 105.42	May tor from Tat 77.20 8600 kWh/n 101.15	Jun ple 1c x (43 73.92 nonth (see 87.29	73.92 Tables 1b, 80.88	77.20 . 1c 1d) 92.81	93.92	83.77 Σ(44)1 109.46 Σ(45)1	87.06 12 = 119.48 12 =	82.13 Dec 90.34 985.57 3 129.75 1292.24	
Assumed occup: Annual average Hot water usage Energy content	ancy, N hot water u Jan e in litres per 90.34 of hot water 133.98 s 0.15 x (45) 20.10 (litres) inclu	sage in litrer Feb r day for eac 87.06 117.18 m 17.58	Mar th month 83.77 8 x Vd,m x 120.92	Apr Vd,m = fact 80.49 nm x Tm/3 105.42	May tor from Tat 77.20 8600 kWh/n 101.15	Jun ple 1c x (43 73.92 nonth (see 87.29	73.92 Tables 1b, 80.88	77.20 . 1c 1d) 92.81	93.92	83.77 Σ(44)1 109.46 Σ(45)1	87.06 12 = 119.48 12 =	82.13 Dec 90.34 985.57 1292.24	
Assumed occup. Annual average Hot water usage Energy content Distribution loss Storage volume	ancy, N hot water u Jan e in litres per 90.34 of hot water 133.98 s 0.15 x (45) 20.10 (litres) incluoss:	r used = 4.18 17.18 m 17.58	s per day ' Mar th month' 83.77 8 x Vd,m x 120.92 18.14	Apr Vd,m = fact 80.49 nm x Tm/3 105.42 15.81	May tor from Tat 77.20 77.20 3600 kWh/n 101.15 15.17 ge within sai	Jun ple 1c x (43 73.92 nonth (see 87.29	73.92 Tables 1b, 80.88	77.20 . 1c 1d) 92.81	93.92	83.77 Σ(44)1 109.46 Σ(45)1	87.06 12 = 119.48 12 =	82.13 Dec 90.34 985.57 1292.24	
Assumed occup: Annual average Hot water usage Energy content Distribution loss Storage volume Water storage le	ancy, N hot water u Jan e in litres per 90.34 of hot water 133.98 s 0.15 x (45) 20.10 (litres) inclusess: eer's declare-	r used = 4.18 117.18 m 17.58 d loss factor	s per day ' Mar th month' 83.77 8 x Vd,m x 120.92 18.14	Apr Vd,m = fact 80.49 nm x Tm/3 105.42 15.81	May tor from Tat 77.20 77.20 3600 kWh/n 101.15 15.17 ge within sai	Jun ple 1c x (43 73.92 nonth (see 87.29	73.92 Tables 1b, 80.88	77.20 . 1c 1d) 92.81	93.92	83.77 Σ(44)1 109.46 Σ(45)1	87.06 12 = 119.48 12 =	82.13 Dec 90.34 985.57 3 129.75 1292.24 19.46 194.00	
Assumed occup: Annual average Hot water usage Energy content Distribution loss Storage volume Water storage le a) If manufactur	ancy, N hot water u Jan e in litres per 90.34 of hot water 133.98 s 0.15 x (45) 20.10 (litres) inclu oss: er's declaree	r used = 4.18 117.18 m 17.58 d loss factorn Table 2b	Mar ch month 83.77 8 x Vd,m x 120.92 18.14 lar or WW	Apr Vd,m = fact 80.49 nm x Tm/3 105.42 15.81 (kWh/day)	May tor from Tat 77.20 77.20 3600 kWh/n 101.15 15.17 ge within sai	Jun ple 1c x (43 73.92 nonth (see 87.29	73.92 Tables 1b, 80.88	77.20 . 1c 1d) 92.81	93.92	83.77 Σ(44)1 109.46 Σ(45)1	87.06 12 = 119.48 12 =	82.13 Dec 90.34 985.57 3 129.75 1292.24 19.46 194.00 1.61	
Assumed occupion Annual average Hot water usage Energy content of the second of the se	ancy, N hot water u Jan e in litres per 90.34 of hot water 133.98 s 0.15 x (45) 20.10 ((litres) incluoss: ere's declaree	r used = 4.18 117.18 m 17.58 d loss factorn Table 2b	Mar ch month 83.77 8 x Vd,m x 120.92 18.14 lar or WW	Apr Vd,m = fact 80.49 nm x Tm/3 105.42 15.81 (kWh/day)	May tor from Tat 77.20 77.20 3600 kWh/n 101.15 15.17 ge within sai	Jun ple 1c x (43 73.92 nonth (see 87.29	73.92 Tables 1b, 80.88	77.20 . 1c 1d) 92.81	93.92	83.77 Σ(44)1 109.46 Σ(45)1	87.06 12 = 119.48 12 =	82.13 Dec 90.34 985.57 3 129.75 1292.24 19.46 194.00 1.61 0.60	
Assumed occupion Annual average Hot water usage Energy content of the second of the se	ancy, N hot water u Jan e in litres per 90.34 of hot water 133.98 s 0.15 x (45) 20.10 (litres) inclusoss: erer's declarere factor from rom water s' 4) in (55)	r used = 4.18 17.18 m 17.58 diding any sol d loss factor a Table 2b torage {kWh	s per day '	Apr Vd,m = fact 80.49 nm x Tm/3 105.42 15.81 /HRS storage (kWh/day) 8) x (49)	May tor from Tat 77.20 77.20 3600 kWh/n 101.15 15.17 ge within sai	Jun ple 1c x (43 73.92 nonth (see 87.29	73.92 Tables 1b, 80.88	77.20 . 1c 1d) 92.81	93.92	83.77 Σ(44)1 109.46 Σ(45)1	87.06 12 = 119.48 12 =	82.13 Dec 90.34 985.57 3 129.75 1292.24 194.00 1.61 0.60 0.97	
Assumed occup. Annual average Hot water usage Energy content: Distribution loss Storage volume Water storage k a) If manufactur Temperature Energy lost fi Enter (50) or (54	ancy, N hot water u Jan e in litres per 90.34 of hot water 133.98 s 0.15 x (45) 20.10 (litres) inclusoss: erer's declarere factor from rom water s' 4) in (55)	r used = 4.18 17.18 m 17.58 diding any sol d loss factor a Table 2b torage {kWh	s per day '	Apr Vd,m = fact 80.49 nm x Tm/3 105.42 15.81 /HRS storage (kWh/day) 8) x (49)	May tor from Tat 77.20 77.20 3600 kWh/n 101.15 15.17 ge within sai	Jun ple 1c x (43 73.92 nonth (see 87.29	73.92 Tables 1b, 80.88	77.20 . 1c 1d) 92.81	93.92	83.77 Σ(44)1 109.46 Σ(45)1	87.06 12 = 119.48 12 =	82.13 Dec 90.34 985.57 129.75 1292.24 194.60 1.61 0.60 0.97 0.97	
Assumed occup. Annual average Hot water usage Energy content: Distribution loss Storage volume Water storage k a) If manufactur Temperature Energy lost fi Enter (50) or (54	ancy, N hot water u Jan e in litres per 90.34 of hot water 133.98 s 0.15 x (45) 20.10 (litres) incluoss: rer's declarere e factor from rom water s 4) in (55) oss calculate 29.95	r used = 4.18 117.18 m 17.58 diding any sol torage (kWr) defor each r 27.05	s per day 1 Mar ch month 83.77 8 x Vd,m x 120.92 18.14 lar or WW r is known h/day) (48 month (55) 29.95	Apr Vd,m = fact 80.49 nm x Tm/3 105.42 15.81 /HRS storag (kWh/day) 3) x (49) 5) x (41)m 28.98	May tor from Tat 77.20 3600 kWh/n 101.15 15.17 ge within sat	Jun ble 1c x (43 73.92 nonth (see 87.29 13.09 me vessel	73.92 Tables 1b, 80.88	77.20 1c 1d) 92.81 13.92	93.92	83.77 Σ(44)1 109.46 Σ(45)1 16.42	87.06 12 = 119.48 12 =	82.13 Dec 90.34 985.57 129.75 1292.24 194.60 1.61 0.60 0.97 0.97	
Assumed occup. Annual average Hot water usage Energy content Distribution loss Storage volume Water storage k a) If manufactur Temperature Energy lost fi Enter (50) or (54) Water storage k	ancy, N hot water u Jan e in litres per 90.34 of hot water 133.98 s 0.15 x (45) 20.10 (litres) incluoss: rer's declarere e factor from rom water s 4) in (55) oss calculate 29.95	r used = 4.18 117.18 m 17.58 diding any sol torage (kWr) defor each r 27.05	s per day 1 Mar ch month 83.77 8 x Vd,m x 120.92 18.14 lar or WW r is known h/day) (48 month (55) 29.95	Apr Vd,m = fact 80.49 nm x Tm/3 105.42 15.81 /HRS storag (kWh/day) 3) x (49) 5) x (41)m 28.98	May tor from Tat 77.20 3600 kWh/n 101.15 15.17 ge within sat	Jun ble 1c x (43 73.92 nonth (see 87.29 13.09 me vessel	73.92 Tables 1b, 80.88	77.20 1c 1d) 92.81 13.92	93.92	83.77 Σ(44)1 109.46 Σ(45)1 16.42	87.06 12 = 119.48 12 =	82.13 Dec 90.34 985.57 129.75 1292.24 194.60 1.61 0.60 0.97 0.97	
Assumed occup. Annual average Hot water usage Energy content Distribution loss Storage volume Water storage k a) If manufactur Temperature Energy lost fi Enter (50) or (54) Water storage k	ancy, N hot water u Jan in litres per 90.34 of hot water 133.98 s 0.15 x (45) 20.10 (litres) inclusoss: rer's declarere factor from rom water s' 4) in (55) oss calculate 29.95	r used = 4.18 117.18 m 17.58 d loss factor n Table 2b torage (kWH 27.05 tted solar states	s per day \(\text{Mar} \) Mar th month \(83.77 \) 8 x Vd,m x 120.92 18.14 lar or WW r is known h/day) (48 month (55 29.95 orage or d	Apr Vd,m = fact 80.49 nm x Tm/3 105.42 15.81 /HRS storag (kWh/day) 3) x (49) 28.98 ledicated V	May tor from Tal 77.20 77.20 86600 kWh/n 101.15 15.17 ge within said	Jun ole 1c x (43 73.92 nonth (see 87.29 13.09 me vessel 28.98 m x [(47) -	73.92 Tables 1b, 80.88 12.13	77.20 1c 1d) 92.81 13.92 29.95 else (56)	93.92	83.77 Σ(44)1 109.46 Σ(45)1 16.42	87.06 112 = 119.44 112 = 17.92	82.13 Dec 90.34 985.57 8 1297.75 1292.24 194.00 1.61 0.60 0.97 0.97	
Assumed occup. Annual average Hot water usage Energy content Distribution loss Storage volume Water storage k a) If manufactur Temperature Energy lost fi Enter (50) or (54) Water storage k	ancy, N hot water u Jan in litres per 90.34 of hot water 133.98 s 0.15 x (45) 20.10 (litres) inclusoss: rer's declarere factor from rom water s' 4) in (55) oss calculate 29.95	r used = 4.18 117.18 m 17.58 d loss factor n Table 2b torage (kWH 27.05 tted solar states	s per day \(\text{Mar} \) Mar th month \(83.77 \) 8 x Vd,m x 120.92 18.14 lar or WW r is known h/day) (48 month (55 29.95 orage or d	Apr Vd,m = fact 80.49 nm x Tm/3 105.42 15.81 /HRS storag (kWh/day) 3) x (49) 28.98 ledicated V	May tor from Tal 77.20 77.20 86600 kWh/n 101.15 15.17 ge within said	Jun ole 1c x (43 73.92 nonth (see 87.29 13.09 me vessel 28.98 m x [(47) -	73.92 Tables 1b, 80.88 12.13	77.20 1c 1d) 92.81 13.92 29.95 else (56)	93.92	83.77 Σ(44)1 109.46 Σ(45)1 16.42	87.066 12 = 119.44 112 = 17.92 28.98	82.13 Dec 90.34 985.57 8 1297.55 1292.24 194.00 1.61 0.60 0.97 0.97 29.95	
Assumed occup: Annual average Hot water usage Energy content Distribution loss Storage volume Water storage k a) If manufactur Temperature Energy lost fi Enter (50) or (54) Water storage k	ancy, N hot water u Jan in litres per 90.34 of hot water 133.98 s 0.15 x (45) 20.10 (litres) inclusoss: rer's declarere factor from rom water s' 4) in (55) oss calculate 29.95	r used = 4.18 117.18 m 17.58 d loss factor n Table 2b torage (kWH 27.05 tted solar states	s per day \(\text{Mar} \) Mar th month \(83.77 \) 8 x Vd,m x 120.92 18.14 lar or WW r is known h/day) (48 month (55 29.95 orage or d	Apr Vd,m = fact 80.49 nm x Tm/3 105.42 15.81 /HRS storag (kWh/day) 3) x (49) 28.98 ledicated V	May tor from Tal 77.20 77.20 86600 kWh/n 101.15 15.17 ge within said	Jun ole 1c x (43 73.92 nonth (see 87.29 13.09 me vessel 28.98 m x [(47) -	73.92 Tables 1b, 80.88 12.13	77.20 1c 1d) 92.81 13.92 29.95 else (56)	93.92	83.77 Σ(44)1 109.46 Σ(45)1 16.42 29.95	87.065 112 = 119.44 112 = 17.922 17.922 28.98	82.13 Dec 90.34 985.57 8 1297.75 1292.24 194.00 1.61 0.60 0.97 0.97	

Primary circuit	oss for each	month fror	m Table 3										
	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59)
Combi loss for e	each month f	rom Table	3a, 3b or 3	c									
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(61)
Total heat requ	ired for wate	r heating c	alculated f	or each mo	nth 0.85 x	(45)m + (4	6)m + (57)n	n + (59)m +	(61)m				
	187.19	165.24	174.13	156.91	154.36	138.78	134.09	146.02	145.42	162.67	170.97	182.96	(62)
Solar DHW inpu					251150	250170	251105	210.02	215112	102.07	210151	202:50	(02)
Solar STITE III po	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(63)
Output from wa	$\overline{}$			0.00		•	0.00	0.00	0.00	0.00	0.00	0.00	(03)
Output from wa					, , ,		124.00	146.00	145.42	162.67	170.07	102.05	1
	187.19	165.24	174.13	156.91	154.36	138.78	134.09	146.02	145.42	162.67	170.97	182.96	
										∑(64)1:	.2 =1	1918.72	(64)
Heat gains from													,
	87.11	77.41	82.77	76.25	76.20	70.22	69.46	73.43	72.42	78.96	80.92	85.71	(65)
5. Internal gain	ne												
J. Internal gan	Jan	Feb	Mar	Ann	May	Jun	Jul	Aug	Com	Oct	Nov	Dec	
14-1-b-lii	2011	reb	IVIAI	Apr	May	Jun	Jui	Aug	Sep	oci	NOV	Dec	
Metabolic gains													1
	100.91	100.91	100.91	100.91	100.91	100.91	100.91	100.91	100.91	100.91	100.91	100.91	(66)
Lighting gains (
	15.76	14.00	11.39	8.62	6.44	5.44	5.88	7.64	10.25	13.02	15.20	16.20	(67)
Appliance gains	(calculated	in Appendix	L, equation	on L13 or L1	.3a), also s	ee Table 5							
	176.21	178.04	173.43	163.62	151.24	139.60	131.83	130.00	134.61	144.42	156.80	168.44	(68)
Cooking gains (calculated in	Appendix L	, equation	L15 or L15	a), also see	e Table 5							
	33.09	33.09	33.09	33.09	33.09	33.09	33.09	33.09	33.09	33.09	33.09	33.09	(69)
Pump and fan g	ains (Table 5	a)											
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(70)
Losses e.g. evap	oration (Tab	le 5)					V						
	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	(71)
Water heating g	gains (Table 5	5)											
	117.09	115.19	111.25	105.90	102.42	97.52	93.36	98.69	100.59	106.13	112.39	115.20	(72)
Total internal ga													1 -1
Total internal g	362.34	360.51	349.34	331.41	313.38	295.84	284.34	289.60	298.72	316.84	337.66	353.11	(73)
	302.34	300.31	343.34	331,41	313.30	255.04	204.54	205.00	250.72	310.04	337.00	333.11	(75)
6. Solar gains													
			Access f		Area		lar flux		g	FF		Gains	
			Table	6d	m²	V	V/m²		ific data able 6b	specific da or Table		w	
								_					,
North			0.7	_ =	6.80	_ ×	.0.63 x		0.40 x	0.90	⊣ ⁼ ⊨	18.04	(74)
South			0.7	7 x L	3.13	x 4	16.75 x	0.9 x	0.40 x	0.90	=	36.51	(78)
Solar gains in w	atts ∑(74)m.	(82)m											
	54.55	94.26	134.74	180.17	216.45	222.02	211.03	182.42	149.99	105.53	65.53	46.58	(83)
Total gains - int	ernal and sol	ar (73)m +	(83)m										
	416.88	454.77	484.08	511.58	529.83	517.85	495.37	472.02	448.71	422.37	403.19	399.69	(84)
7. Mean inter	nal temperat	ure (heatin	g season)										
Temperature di	uring heating	periods in	the living a	area from T	able 9, Th	1(°C)						21.00	(85)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation facto	or for gains fo	or living are	a n1,m (se	e Table 9a)									
	0.94	0.91	0.87	0.78	0.65	0.49	0.36	0.39	0.59	0.80	0.91	0.94	(86)
											Lines	D1 403 =	orelen C
										NHF		: B1-A02-E v sessor versi	
						Page 3						SAP vers	

45

SUSTAINABILITY REVISED ENERGY STRATEGY – REV. 03

Mean internal t	emp of livin	g area T1 (steps 3 to 7	7 in Table 9	c)								
	19.86	20.05	20.31	20.63	20.85	20.96	20.99	20.99	20.93	20.66	20.23	19.84	(87)
Temperature du	uring heating	g periods i	n the rest o	f dwelling t	from Table	9, Th2(°C)							
	20.34	20.34	20.34	20.35	20.36	20.37	20.37	20.37	20.36	20.36	20.35	20.35	(88)
Utilisation facto	r for gains f	or rest of d	lwelling n2,	,m									
	0.93	0.90	0.86	0.76	0.62	0.44	0.31	0.34	0.54	0.77	0.89	0.94	(89)
Mean internal t													,,,,,,
	18.80	19.06	19.44	19.89	20.19	20.33	20.36	20.36	20.29	19.94	19.34	18.77	(90)
Living area fract		15.00	15.44	15.05	20.13	20.55	20.50	20.30		ving area ÷		0.54	(91)
_		f		-0.4	. (0. (0.0)				L	ving area ÷	(4) =	0.54	(91)
Mean internal t													
	19.37	19.59	19.91	20.29	20.55	20.67	20.70	20.70	20.63	20.33	19.82	19.34	(92)
Apply adjustme													
	19.37	19.59	19.91	20.29	20.55	20.67	20.70	20.70	20.63	20.33	19.82	19.34	(93)
8. Space heati													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation facto	r for gains,	ηm											
	0.92	0.89	0.85	0.76	0.63	0.46	0.34	0.37	0.56	0.77	0.88	0.93	(94)
Useful gains, ηn	nGm, W (94	I)m x (84)n	1										
	382.77	405.54	409.75	388.82	333.85	240.44	166.15	172.80	252.24	326.46	355.90	370.14	(95)
Monthly averag	e external t	emperatur	e from Tab	le U1	•	•					•	•	
,	4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20	(96)
Heat loss rate fo							20.00	20110	21120	20.00	7120		(50)
ricacioss rate it			574.17			248.85	168.04	175.44	269.79	406.85	536.24	643.32	(97)
							168.04	1/5.44	209.79	406.85	530.24	643.32	(97)
Space heating r													,
	199.15	151.87	122.33	64.30	26.76	0.00	0.00	0.00	0.00	59.81	129.85	203.25	1
	200.20	202.07	222.00			0.00	0.00	0.00					4
	200.20	252.07	222.00			0.00	0.00	0.00		3)15, 10		957.31	(98)
Space heating re						0.00	0.00	0.00		3)15, 10			(98) (99)
	equirement	kWh/m²/y				0.00	0.00	0.00		3)15, 10	.12 =	957.31	
Space heating re	equirement	kWh/m²/y nent	ear						Σ(9	(98)	.12 = ÷ (4)	957.31 15.62	
8c. Space cool	equirement ing requiren Jan	kWh/m²/y		Apr	May	Jun	Jul	Aug		3)15, 10	.12 =	957.31	
	equirement ing requiren Jan m	kWh/m²/y nent Feb	ear Mar			Jun	Jul		Σ(9)	(98) Oct	.12 = ÷ (4)	957.31 15.62 Dec	
8c. Space cool	equirement ing requiren Jan	kWh/m²/y nent	ear	Apr 0.00	May 0.00				Σ(9	(98)	.12 = ÷ (4)	957.31 15.62	(99)
8c. Space cool	equirement ing requiren Jan m	kWh/m²/y ment Feb	ear Mar			Jun	Jul	Aug	Σ(9)	(98) Oct	.12 = ÷ (4)	957.31 15.62 Dec	(99)
8c. Space cool	equirement ing requiren Jan m	kWh/m²/y ment Feb	ear Mar			Jun	Jul	Aug	Σ(9)	(98) Oct	.12 = ÷ (4)	957.31 15.62 Dec	(100)
8c. Space cool	equirement ing requirer Jan m 0.00 or for loss nn	kWh/m²/y ment Feb 0.00 n	Mar 0.00	0.00	0.00	Jun 385.11	Jul 303.17	Aug 310.09	∑(9: Sep	(98) Oct	.12 = ÷ (4) Nov	957.31 15.62 Dec	(100)
8c. Space cool Heat loss rate L Utilisation factor	equirement ing requirer Jan m 0.00 or for loss nn 0.00 m (watts) (:	kWh/m²/y nent Feb 0.00 n 0.00 100)m x (10	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00	0.00	Jun 385.11	Jul 303.17	Aug 310.09 0.96	Σ(98 Sep 0.00	(98) Oct 0.00	.12 = ÷ (4)	957.31 15.62 Dec 0.00	(100)
8c. Space cool Heat loss rate L Utilisation facto Useful loss ηmL	equirement ing requirer Jan m 0.00 or for loss nn	kWh/m²/y ment Feb 0.00 n	Mar 0.00	0.00	0.00	Jun 385.11	Jul 303.17	Aug 310.09	∑(9: Sep	(98) Oct	.12 = ÷ (4) Nov	957.31 15.62 Dec	(100)
8c. Space cool Heat loss rate L Utilisation factor	equirement Jan m 0.00 or for loss nn 0.00 m (watts) (:	kWh/m²/y ment Feb 0.00 n 0.00 100)m x (1	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00	0.00	Jun 385.11 0.94 363.12	Jul 303.17 0.97 293.40	Aug 310.09 0.96 298.08	Σ(9) Sep 0.00 0.00	0.00 0.00	12 =	957.31 15.62 Dec 0.00	(100) (101) (102)
8c. Space cool Heat loss rate Li Utilisation facto Useful loss nmL	equirement Jan m 0.00 or for loss nm 0.00 m (watts) (:	kWh/m²/y nent Feb 0.00 n 0.00 100)m x (1	Mar 0.00 0.00 0.00 0.00 0.00 0.00	0.00	0.00	Jun 385.11 0.94 363.12 668.47	Jul 303.17 0.97 293.40 640.96	Aug 310.09 0.96 298.08	Σ(98 Sep 0.00	(98) Oct 0.00	.12 = ÷ (4)	957.31 15.62 Dec 0.00	(100) (101) (102)
8c. Space cool Heat loss rate L Utilisation facto Useful loss ηmL	equirement Jan m 0.00 0.00 o.00 m (watts) (: 0.00 0.00 equirement,	0.00	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 elling, cont	0.00 0.00 0.00 0.00 inuous (kW	0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 [(103)m - {1	Jul 303.17 0.97 293.40 640.96 02)m] x (4	Aug 310.09 0.96 298.08 614.53 1)m	Σ(9) Sep 0.00 0.00 0.00	0.00 0.00 0.00	12 =	957.31 15.62 Dec 0.00 0.00	(100) (101) (102)
8c. Space cool Heat loss rate Li Utilisation facto Useful loss nmL	equirement Jan m 0.00 or for loss nm 0.00 m (watts) (:	kWh/m²/y nent Feb 0.00 n 0.00 100)m x (11 0.00	Mar 0.00 0.00 0.00 0.00 0.00 0.00	0.00	0.00	Jun 385.11 0.94 363.12 668.47	Jul 303.17 0.97 293.40 640.96	Aug 310.09 0.96 298.08	Σ(9) Sep 0.00 0.00	0ct 0.00 0.00 0.00 0.00	.12 =	957.31 15.62 Dec 0.00 0.00 0.00 0.00	(100) (100) (101) (102)
8c. Space cool Heat loss rate Li Utilisation facto Useful loss nmL	equirement Jan m 0.00 0.00 o.00 m (watts) (: 0.00 0.00 equirement,	0.00	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 elling, cont	0.00 0.00 0.00 0.00 inuous (kW	0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 [(103)m - {1	Jul 303.17 0.97 293.40 640.96 02)m] x (4	Aug 310.09 0.96 298.08 614.53 1)m	Σ(9) Sep 0.00 0.00 0.00	0.00 0.00 0.00	.12 =	957.31 15.62 Dec 0.00 0.00	(100) (100) (101) (102)
8c. Space cool Heat loss rate Li Utilisation facto Useful loss nmL	equirement Jan m 0.00 0.00 o.00 m (watts) (: 0.00 0.00 equirement,	0.00	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 elling, cont	0.00 0.00 0.00 0.00 inuous (kW	0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 [(103)m - {1	Jul 303.17 0.97 293.40 640.96 02)m] x (4	Aug 310.09 0.96 298.08 614.53 1)m	Σ(9) Sep 0.00 0.00 0.00 0.00	0ct 0.00 0.00 0.00 0.00	12 =	957.31 15.62 Dec 0.00 0.00 0.00 0.00	(100) (100) (101) (102) (103)
Bc. Space cool Heat loss rate Li Utilisation facto Useful loss ηmL Gains Space cooling re	equirement Jan m 0.00 or for loss nn 0.00 m (watts) (0.00 0.00 equirement, 0.00	kWh/m²/y nent Feb 0.00 n 0.00 100)m x (10 0.00 whole dw 0.00	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 elling, cont	0.00 0.00 0.00 0.00 inuous (kW	0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 [(103)m - {1	Jul 303.17 0.97 293.40 640.96 02)m] x (4	Aug 310.09 0.96 298.08 614.53 1)m	Σ(9) Sep 0.00 0.00 0.00 0.00	Oct 0.00 0.00 0.00 Σ(104)6.	12 =	957.31 15.62 Dec 0.00 0.00 0.00 0.00 713.88	(100) (100) (101) (102) (103)
Bc. Space cool Heat loss rate L Utilisation facto Useful loss nmL Gains Space cooling re	equirement Jan m 0.00 or for loss nn 0.00 m (watts) (0.00 0.00 equirement, 0.00	kWh/m²/y nent Feb 0.00 n 0.00 100)m x (10 0.00 whole dw 0.00	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 elling, cont	0.00 0.00 0.00 0.00 inuous (kW	0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 [(103)m - {1	Jul 303.17 0.97 293.40 640.96 02)m] x (4	Aug 310.09 0.96 298.08 614.53 1)m	Σ(9) Sep 0.00 0.00 0.00 0.00	Oct 0.00 0.00 0.00 Σ(104)6.	12 =	957.31 15.62 Dec 0.00 0.00 0.00 0.00 713.88	(100) (100) (101) (102) (103)
Bc. Space cool Heat loss rate L Utilisation facto Useful loss nmL Gains Space cooling re	equirement Jan m 0.00 or for loss nn 0.00 m (watts) (0.00 0.00 could be co	kWh/m²/y nent Feb 0.00 n 0.00 100)m x (10 0.00 whole dw 0.00	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 [(103)m - (1) 219.85	Jul 303.17 0.97 293.40 640.96 02)m] x (4 258.58	Aug 310.09 0.96 0.96 298.08 614.53 1)m 235.44	Σ(9) Sep 0.00 0.00 0.00 0.00 con	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	12 =	957.31 15.62 Dec 0.00 0.00 0.00 0.00 0.00 713.88 0.54	(100) (100) (101) (102) (103) (104) (105)
Bc. Space cool Heat loss rate Li Utilisation facto Useful loss nml. Gains Space cooling re Cooled fraction Intermittency fa	equirement Jan m 0.00 or for loss nn 0.00 m (watts) (: 0.00 equirement, 0.00 sector (Table	kWh/m²/y ment Feb 0.00 n 0.00 100)m x (1: 0.00 whole dw 0.00 10) 0.00	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 [(103)m - (1) 219.85	Jul 303.17 0.97 293.40 640.96 02)m] x (4 258.58	Aug 310.09 0.96 0.96 298.08 614.53 1)m 235.44	Σ(9) Sep 0.00 0.00 0.00 0.00 con	Oct (98) Oct 0.00 0.00 0.00 Σ(104)6. oled area ÷	12 =	957.31 15.62 Dec 0.00 0.00 0.00 0.00 0.00 713.88 0.54	(100) (101) (102) (103) (104) (105)
Bc. Space cool Heat loss rate L Utilisation facto Useful loss nmL Gains Space cooling re	equirement Jan m 0.00 r for loss nn 0.00 m (watts) (: 0.00 equirement, 0.00 actor (Table	kWh/m²/y nent Feb 0.00 n 0.00 100)m x (1 0.00 whole dw 0.00 10) 0.00 (104)m x (1	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 ((103)m - (1) 219.85	Jul 303.17 0.97 293.40 640.96 002)m] x (4 258.58	Aug 310.09 0.96 298.08 614.53 1)m 235.44	Sep 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ(104)6.	12 =	957.31 15.62 Dec 0.00 0.00 0.00 0.00 0.00 0.54	(100) (100) (101) (102) (103) (104) (105)
Bc. Space cool Heat loss rate Li Utilisation facto Useful loss nml. Gains Space cooling re Cooled fraction Intermittency fa	equirement Jan m 0.00 or for loss nn 0.00 m (watts) (: 0.00 equirement, 0.00 sector (Table	kWh/m²/y ment Feb 0.00 n 0.00 100)m x (1: 0.00 whole dw 0.00 10) 0.00	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 [(103)m - (1) 219.85	Jul 303.17 0.97 293.40 640.96 02)m] x (4 258.58	Aug 310.09 0.96 0.96 298.08 614.53 1)m 235.44	Σ(9) Sep 0.00 0.00 0.00 0.00 con	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	12 =	957.31 15.62 Dec 0.00 0.00 0.00 0.00 0.00 713.88 0.54	(100) (101) (102) (103) (104) (105)
Bc. Space cool Heat loss rate Li Utilisation facto Useful loss nml. Gains Space cooling re Cooled fraction Intermittency fa	equirement Jan m 0.00 r for loss nn 0.00 m (watts) (: 0.00 equirement, 0.00 actor (Table	kWh/m²/y nent Feb 0.00 n 0.00 100)m x (1 0.00 whole dw 0.00 10) 0.00 (104)m x (1	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 ((103)m - (1) 219.85	Jul 303.17 0.97 293.40 640.96 002)m] x (4 258.58	Aug 310.09 0.96 298.08 614.53 1)m 235.44	Sep 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ(104)6.	12 =	957.31 15.62 Dec 0.00 0.00 0.00 0.00 0.00 0.54	(100) (100) (101) (102) (103) (104) (105)
Bc. Space cool Heat loss rate Li Utilisation facto Useful loss nml. Gains Space cooling re Cooled fraction Intermittency fa	equirement Jan m 0.00 r for loss nn 0.00 m (watts) (: 0.00 equirement, 0.00 actor (Table	kWh/m²/y nent Feb 0.00 n 0.00 100)m x (1 0.00 whole dw 0.00 10) 0.00 (104)m x (1	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 ((103)m - (1) 219.85	Jul 303.17 0.97 293.40 640.96 002)m] x (4 258.58	Aug 310.09 0.96 298.08 614.53 1)m 235.44	Sep 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ(104)6.	Nov 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	957.31 15.62 Dec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54	(100) (101) (102) (103) (104) (105)
Bc. Space cool Heat loss rate Li Utilisation facto Useful loss nml. Gains Space cooling re Cooled fraction Intermittency fa	equirement Jan m 0.00 r for loss nn 0.00 m (watts) (: 0.00 equirement, 0.00 actor (Table	kWh/m²/y nent Feb 0.00 n 0.00 100)m x (1 0.00 whole dw 0.00 10) 0.00 (104)m x (1	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 ((103)m - (1) 219.85	Jul 303.17 0.97 293.40 640.96 002)m] x (4 258.58	Aug 310.09 0.96 298.08 614.53 1)m 235.44	Sep 0.00 0.00 0.00 0.00 0.00 0.00	Oct (98) Oct (0.00) 0.00 0.00 0.00 Σ(104)6. 0.00 Σ(106)6.	8 =	957.31 15.62 Dec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.00 0.75	(100) (101) (102) (103) (104) (105)
Bc. Space cool Heat loss rate Li Utilisation facto Useful loss nml. Gains Space cooling re Cooled fraction Intermittency fa	equirement Jan m 0.00 r for loss nn 0.00 m (watts) (: 0.00 equirement, 0.00 actor (Table	kWh/m²/y nent Feb 0.00 n 0.00 100)m x (1 0.00 whole dw 0.00 10) 0.00 (104)m x (1	Mar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Jun 385.11 0.94 363.12 668.47 ((103)m - (1) 219.85	Jul 303.17 0.97 293.40 640.96 002)m] x (4 258.58	Aug 310.09 0.96 298.08 614.53 1)m 235.44	Sep 0.00 0.00 0.00 0.00 0.00 0.00	Oct (98) Oct (0.00) 0.00 0.00 0.00 Σ(104)6. 0.00 Σ(106)6.	8 =	957.31 15.62 Dec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54	(100) (101) (102) (103) (104) (105) (106)

	(107) ÷ (4) = 1.57 (108)
9b. Energy requirements - community heating scheme	
Fraction of space heat from secondary/supplementary system (table 11)	'0' if none 0.00 (301)
Fraction of space heat from community system	1 - (301) = 1.00 (302)
Fraction of community heat from heat pump	1.00 (303a)
Fraction of total space heat from community heat pump	(302) x (303a) = 1.00 (304a)
Factor for control and charging method (Table 4c(3)) for community space heating	
Factor for charging method (Table 4c(3)) for community water heating	1.00 (305a)
Distribution loss factor (Table 12c) for community heating system	1.09 (306)
Space heating	
Annual space heating requirement	957.31 (98)
Space heat from heat pump	(98) x (304a) x (305) x (306) = 1043.47 (307a)
Water heating	
Annual water heating requirement	1918.72 (64)
Water heat from heat pump	(64) x (303a) x (305a) x (306) = 2091.41 (310a)
Electricity used for heat distribution	0.01 × [(307a)(307e) + (310a)(310e)] = 31.35 (313)
Cooling System Energy Efficiency Ratio	4.05 (314)
Space cooling (if there is a fixed cooling system, if not enter 0)	(107) + (314) 23.79 (315)
Electricity for pumps, fans and electric keep-hot (Table 4f)	
mechanical ventilation fans - balanced, extract or positive input from outside	133.68 (330a)
Total electricity for the above, kWh/year	133.68 (331)
Electricity for lighting (Appendix L)	
	278.36 (332)
Energy saving/generation technologies	278.36 (332)
	278.36 (332) -96.58 (333)
Energy saving/generation technologies electricity generated by PV (Appendix M)	
Energy saving/generation technologies electricity generated by PV (Appendix M)	96.58 (333)
Energy saving/generation technologies electricity generated by PV (Appendix M) Total delivered energy for all uses (307) + (309) 10b. Fuel costs - community heating scheme	-96.58 (333) + (310) + (312) + (315) + (331) + (332)(337b) = 3474.14 (338) Fuel price Fuel
Energy saving/generation technologies electricity generated by PV (Appendix M) Total delivered energy for all uses (307) + (309) 10b. Fuel costs - community heating scheme Fuel kWh/year	-96.58 (333) + (310) + (312) + (315) + (331) + (332)(337b) = 3474.14 (338) Fuel price Fuel cost £/year
Energy saving/generation technologies electricity generated by PV (Appendix M) Total delivered energy for all uses 10b. Fuel costs - community heating scheme Fuel kWh/year Space heating from heat pump 1043.47	-96.58 (333) + (310) + (312) + (315) + (331) + (332)(337b) = 3474.14 (338) Fuel price Fuel cost £/year x 4.24 x 0.01 = 44.24 (340a)
Energy saving/generation technologies electricity generated by PV (Appendix M) Total delivered energy for all uses 10b. Fuel costs - community heating scheme Fuel kWh/year Space heating from heat pump 1043.47 Water heating from heat pump 2091.41	Fuel price Fuel cost £/year x 4.24 x 0.01 = 44.24 (340a) x 4.24 x 0.01 = 88.68 (342a)
Energy saving/generation technologies electricity generated by PV (Appendix M) Total delivered energy for all uses 10b. Fuel costs - community heating scheme Fuel kWh/year Space heating from heat pump 1043.47 Water heating from heat pump Space cooling 23.79	Fuel price Fuel cost E/year x 4.24 x 0.01 = 44.24 (340a) x 4.24 x 0.01 = 88.68 (342a) x 13.19 x 0.01 = 3.14 (348)
Energy saving/generation technologies electricity generated by PV (Appendix M) Total delivered energy for all uses 10b. Fuel costs - community heating scheme Fuel kWh/year Space heating from heat pump Water heating from heat pump 2091.41 Space cooling Pumps and fans 133.68	Fuel price Fuel cost E/year x
Energy saving/generation technologies electricity generated by PV (Appendix M) Total delivered energy for all uses 10b. Fuel costs - community heating scheme Fuel kWh/year Space heating from heat pump 1043.47 Water heating from heat pump 2091.41 Space cooling 23.79 Pumps and fans 133.68 Electricity for lighting	Fuel price Fuel cost E/year x
Energy saving/generation technologies electricity generated by PV (Appendix M) Total delivered energy for all uses 10b. Fuel costs - community heating scheme Fuel kWh/year Space heating from heat pump Water heating from heat pump 2091.41 Space cooling 23.79 Pumps and fans 133.68 Electricity for lighting Additional standing charges	Fuel price Fuel cost E/year x
Energy saving/generation technologies electricity generated by PV (Appendix M) Total delivered energy for all uses 10b. Fuel costs - community heating scheme Fuel kWh/year Space heating from heat pump Water heating from heat pump 2091.41 Space cooling 23.79 Pumps and fans 133.68 Electricity for lighting Additional standing charges Energy saving/generation technologies	Fuel price Fuel cost £/year x
Energy saving/generation technologies electricity generated by PV (Appendix M) Total delivered energy for all uses 10b. Fuel costs - community heating scheme Fuel kWh/year Space heating from heat pump Water heating from heat pump 2091.41 23.79 Pumps and fans 133.68 Electricity for lighting Additional standing charges Energy saving/generation technologies pv savings -96.58	Fuel price Fuel cost £/year x
Energy saving/generation technologies electricity generated by PV (Appendix M) Total delivered energy for all uses 10b. Fuel costs - community heating scheme Fuel kWh/year Space heating from heat pump Water heating from heat pump Pumps and fans Electricity for lighting 278.36 Additional standing charges Energy saving/generation technologies pv savings -96.58	Fuel price Fuel cost £/year x
Energy saving/generation technologies electricity generated by PV (Appendix M) Total delivered energy for all uses 10b. Fuel costs - community heating scheme Fuel kWh/year Space heating from heat pump Water heating from heat pump 2091.41 23.79 Pumps and fans 133.68 Electricity for lighting Additional standing charges Energy saving/generation technologies pv savings -96.58	Fuel price Fuel cost £/year x
Energy saving/generation technologies electricity generated by PV (Appendix M) Total delivered energy for all uses 10b. Fuel costs - community heating scheme Fuel kWh/year Space heating from heat pump 1043.47 Water heating from heat pump 2091.41 Space cooling 23.79 Pumps and fans 133.68 Electricity for lighting Additional standing charges Energy saving/generation technologies pv savings 105.88 106.58 107.58 108.79 109.58 109.58 109.58 109.58 100.50 100.79 10	Fuel price Fuel cost £/year x
Energy saving/generation technologies electricity generated by PV (Appendix M) Total delivered energy for all uses 10b. Fuel costs - community heating scheme Fuel kWh/year Space heating from heat pump 1043.47 Water heating from heat pump 2091.41 Space cooling 23.79 Pumps and fans 133.68 Electricity for lighting Additional standing charges Energy saving/generation technologies pv savings Total energy cost 11b. SAP rating - community heating scheme	Fuel price Fuel cost E/year x
Energy saving/generation technologies electricity generated by PV (Appendix M) Total delivered energy for all uses 10b. Fuel costs - community heating scheme Fuel kWh/year Space heating from heat pump Water heating from heat pump Space cooling 23.79 Pumps and fans Electricity for lighting Additional standing charges Energy saving/generation technologies pv savings Total energy cost 11b. SAP rating - community heating scheme Energy cost deflator (Table 12)	Fuel price Fuel cost £/year x

SAP band					В	
12b. CO ₂ emissions - community heating scheme						
	Energy		Emission factor		Emissions	
	kWh/year				(kg/year)	
Emissions from other sources (space heating)						
Efficiency of heat pump	180.00					(367a
CO2 emissions from heat pump $[(307a)+(310a)] \times 100 \div (367a) =$	1741.60	×	0.519	=	903.89	(367)
Electrical energy for community heat distribution	31.35	x	0.519	=	16.27	(372)
Total CO2 associated with community systems					920.16	(373)
Total CO2 associated with space and water heating					920.16	(376)
Space cooling	23.79	×	0.519	=	12.35	(377)
Pumps and fans	133.68	x	0.519	=	69.38	(378)
Electricity for lighting	278.36	×	0.519	-	144.47	(379)
Energy saving/generation technologies						
pv savings	-96.58	x	0.519	=	-50.13	(380)
Total CO ₂ , kg/year				(376)(382) =		(383)
Dwelling CO ₂ emission rate				(383) ÷ (4) =		(384)
El value					86.18	_
El rating (section 14)					86	(385)
El band					В	J
13b. Primary energy - community heating scheme			19881119119000			
	Energy		Primary factor		Primary energy	,
	kWh/year				(kWh/year)	
Primary energy from other sources (space heating)						
Efficiency of heat pump	180.00					(367a)
Primary energy from heat pump [(307a)+(310a)] x 100 ÷ (367a) =		х	3.07	=	5346.71	(367)
Electrical energy for community heat distribution	31.35	x	3.07	=	96.24	(372)
Total primary energy associated with community systems					5442.95	(373)
Total primary energy associated with space and water heating					5442.95	(376)
Space cooling	23.79	х	3.07	=	73.05	(377)
Pumps and fans	133.68	×	3.07	=	410.40	(378)
Electricity for lighting	278.36	х	3.07	=	854.58	(379)
Energy saving/generation technologies	-96.58		3.07		200 54	(380)
Electricity generated - PVs	-96.58	х	3.07	=	-296.51 6484.47	(383)
Primary energy kWh/year Dwelling primary energy rate kWh/m2/year					105.78	(384)
Dwelling primary energy rate kwil/m2/year					105.76	(304)
					URN: B1-A02-E	version
				NHER P	lan Assessor vers	ion 6.3.
	Page 6				SAP ver	sion 9.9

46

SUSTAINABILITY REVISED ENERGY STRATEGY -REV. 03

roperty as constructed.	een carrie	d out using	g Approved	SAP softwa	are. It has b	een prepa	red from pla	ins and spe	cifications a	and may r	ot reflect ti	he
Assessor name	Miss Mic	helle Wang	3				Ass	essor num	ber	2018		
Client							Las	t modified		28/07	/2020	
Address	Manor Ro	oad Richmo	ond Block 1	, Richmond	i, TW9							
1. Overall dwelling dimens	ions											
				Ai	rea (m²)			ige storey ight (m)		Vo	lume (m³)	
owest occupied					61.30] (1a) x		2.60	(2a) =		159.38	(3a
otal floor area	(1a)	+ (1b) + (1	c) + (1d)(1		61.30	(4)		2.00	(20)		133.30	(56
welling volume	()	, , , , , ,	-, , ,,,	,			(3a)	+ (3b) + (3d	:) + (3d)(3	n) =	159.38	(5)
2. Ventilation rate												
										m ²	per hour	
lumber of chimneys								0	x 40 =		0	(6a
lumber of open flues								0	x 20 =		0	(6b
lumber of intermittent fans	i							2	x 10 =		20	(7a
lumber of passive vents								0	x 10 =		0	(7b
lumber of flueless gas fires								0	x 40 =		0	(7c
										Air	hanges per hour	
nfiltration due to chimneys,	flues fans	s PSVs		(6a)	+ (6h) + (7:	a) + (7b) + (7c) =	20	÷ (5) =		0.13	(8)
f a pressurisation test has b			ntended, pr						. (5) -		0.13	(0)
ir permeability value, q50,								,			5.00	(17
based on air permeability											0.38	(18
lumber of sides on which th	ne dwelling	g is sheltere	ed								2	(19
helter factor								1-	[0.075 x (19)] =	0.85	(20
nfiltration rate incorporatin	g shelter fa	actor							(18) x (2	0) =	0.32	(21
nfiltration rate modified for			l:									
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly average wind speed												1
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	(22
Vind factor (22)m ÷ 4										1.13	1.18	1 (22
· · ·	1.25	1 22	1 10	1.08	0.95	0.95	0.93	1.00			1.10	1/21
1.28	1.25 lowing for	1.23 shelter and	1.10 wind facto	1.08 er) (21) x (2	0.95 2a)m	0.95	0.93	1.00	1.08			
1.28						0.95	0.93	0.32	0.34	0.36	0.38	(2:
djusted infiltration rate (all	owing for:	shelter and	wind facto 0.35	or) (21) x (2	2a)m					0.36	0.38	(22
1.28 djusted infiltration rate (all	0.40 e rate for t	o.39 the applica	0.35 ble case:	or) (21) x (2 0.34	2a)m					0.36	0.38 N/A	
djusted infiltration rate (all 0.41 alculate effective air chang	0.40 e rate for t	o.39 the applica	0.35 ble case: ugh system	or) (21) x (2 0.34	2a)m 0.30	0.30				0.36		(23
1.28 djusted infiltration rate (all 0.41 alculate effective air chang If mechanical ventilation:	0.40 e rate for t air change overy: effic	shelter and 0.39 the applica e rate thro ciency in %	0.35 ble case: ugh system allowing fo	0.34 0.34 or in-use fac	2a)m 0.30 ctor from T	0.30				0.36	N/A	(23
djusted infiltration rate (all 0.41 alculate effective air chang if mechanical ventilation:	0.40 e rate for t air change overy: effic	shelter and 0.39 the applica e rate thro ciency in %	0.35 ble case: ugh system allowing fo	0.34 0.34 or in-use fac	2a)m 0.30 ctor from T	0.30				0.36	N/A] (22] (23] (23
djusted infiltration rate (all 0.41 alculate effective air chang if mechanical ventilation: if balanced with heat rec d) natural ventilation or	0.40 e rate for t air change overy: effic whole hous	shelter and 0.39 the applica e rate thro ciency in % se positive 0.58	0.35 ble case: ugh system allowing fo input ventil	or) (21) x (2 0.34 or in-use fac lation from 0.56	2a)m 0.30 ctor from T	0.30 able 4h	0.30	0.32	0.34		N/A N/A] (23] (23

			Gross ea, m²	Openings m ²	Net a		U-value W/m²K	A x U W/		alue, m².K	Αxκ, kJ/K	
Window			cu,		9.9			= 13.16	٦,		ю	(27
Door					1.8	9 x	=	= 1.89	าี			(26)
External wall					50.2	=	0.18	= 9.05	าี			(29
Party wall					56.5	=	0.00	= 0.00	i i			(32)
Total area of external eler	ments \(\sigma\) m ²				62.1	= '	0.00	0.00	_			(31)
Fabric heat loss, W/K = ∑(02			(26)	(30) + (3:	21 =	24.11	(33)
Heat capacity Cm = Σ(A x							(28)	(30) + (32) +			N/A	(34)
Thermal mass parameter	-	² K					(20)	30) (32)	(320)(32		250.00	(35)
Thermal bridges: Σ(L x Ψ)			liv K							H	4.77	36
Total fabric heat loss	calculated us	iiig Appellu	IIX K						(33) + (3	61	28.88	(37)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(37)
Ventilation heat loss calcu				iviay	Juli	Jui	Aug	зер	occ	NOV	Dec	
30.65		30.32	29.54	29.39	28.72	28.72	28.59	28.98	29.39	29.69	30.00	(38)
Heat transfer coefficient,			29.54	29.39	20.72	20.72	20.59	20.90	29.39	29.09	30.00	(30)
59.53	59.36	59.20	58.42	58.27	57.59	57.59	57.47	57.86	58.27	58.57	58.88	7
39.53	59.30	59.20	30.42	30.27	37.39	57.59		Average = ∑(58.42	
Heat loss parameter (HLP	/ W//m²v 120	lm ÷ (4)						verage = >(30.42	_ (39)
0.97	0.97	0.97	0.95	0.95	0.94	0.94	0.94	0.94	0.95	0.96	0.96	7
0.97	0.97	0.97	0.95	0.95	0.94	0.94		Verage = Σ(0.95	∟ (40
Number of days in month	(Table 1a)							4verage = 2(40)112/1	.2 =	0.95	(40)
31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	(40)
31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	(40)
4. Water heating energy	requirement	t										
4. Water heating energy Assumed occupancy, N	requirement	t									2.02	(42)
			d,average	= (25 x N) +	36						2.02	(42)
Assumed occupancy, N			d,average	= (25 x N) + May	36 Jun	Jul	Aug	Sep	Oct	Nov		Ξ'
Assumed occupancy, N Annual average hot water	usage in litre Feb	es per day V Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	82.13	Ξ'
Assumed occupancy, N Annual average hot water Jan	usage in litre Feb	es per day V Mar	Apr	May	Jun	Jul 73.92	Aug 77.20	Sep 80.49	Oct 83.77	Nov 87.06	82.13	Ξ'
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres p	r usage in litre Feb per day for ea	es per day V Mar ch month V	Apr /d,m = facto	May or from Tab	Jun le 1c x (43)					87.06	82.13 Dec	(43)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres p	r usage in litre Feb per day for ea 87.06	es per day V Mar ch month V 83.77	Apr /d,m = facto 80.49	May or from Tab 77.20	Jun le 1c x (43) 73.92	73.92	77.20		83.77	87.06	82.13 Dec	Ξ'
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres p 90.34	rusage in litre Feb per day for ea 87.06 ter used = 4.1	Mar ch month V 83.77	Apr /d,m = facto 80.49	May or from Tab 77.20	Jun le 1c x (43) 73.92	73.92	77.20		83.77	87.06	82.13 Dec 90.34 985.57	(43)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres p 90.34 Energy content of hot wal	rusage in litre Feb per day for ea 87.06 ter used = 4.1	Mar ch month V 83.77	Apr /d,m = facto 80.49	May or from Tab 77.20	Jun le 1c x (43) 73.92 onth (see 1	73.92 ables 1b	77.20 , 1c 1d)	80.49	83.77 Σ(44)11	87.06 12 =	82.13 Dec 90.34 985.57	(43)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres p 90.34 Energy content of hot wal	r usage in litre Feb per day for ea 87.06 ter used = 4.1 117.18	Mar ch month V 83.77	Apr /d,m = facto 80.49	May or from Tab 77.20	Jun le 1c x (43) 73.92 onth (see 1	73.92 ables 1b	77.20 , 1c 1d)	80.49	83.77 ∑(44)11	87.06 12 =	82.13 Dec 90.34 985.57	(43)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres p 90.34 Energy content of hot wal 133.98 Distribution loss 0.15 x (4	r usage in litre Feb per day for ea 87.06 ter used = 4.1 117.18	Mar ch month V 83.77	Apr /d,m = facto 80.49	May or from Tab 77.20	Jun le 1c x (43) 73.92 onth (see 1	73.92 ables 1b	77.20 , 1c 1d)	80.49	83.77 ∑(44)11	87.06 12 =	82.13 Dec 90.34 985.57	(43)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres p 90.34 Energy content of hot wal 133.98 Distribution loss 0.15 x (4	r usage in litre	ss per day V Mar ch month V 83.77 8 x Vd,m x 120.92	Apr /d,m = factor 80.49 nm x Tm/3 105.42	May or from Tab 77.20 600 kWh/m 101.15	Jun 1e 1c x (43) 73.92 onth (see T 87.29 13.09	73.92 ables 1b 80.88	77.20 , 1c 1d) 92.81	93.92	83.77 Σ(44)11 109.46 Σ(45)11	87.06 12 = 119.48 12 = 12	82.13 Dec 90.34 985.57 129.75 1292.24	(43)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres i 90.34 Energy content of hot wal 133.98 Distribution loss 0.15 x (4	r usage in litre	ss per day V Mar ch month V 83.77 8 x Vd,m x 120.92	Apr /d,m = factor 80.49 nm x Tm/3 105.42	May or from Tab 77.20 600 kWh/m 101.15	Jun 1e 1c x (43) 73.92 onth (see T 87.29 13.09	73.92 ables 1b 80.88	77.20 , 1c 1d) 92.81	93.92	83.77 Σ(44)11 109.46 Σ(45)11	87.06 12 = 119.48 12 = 12	82.13 Dec 90.34 985.57 129.75 1292.24	(43)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres i 90.34 Energy content of hot wal 133.98 Distribution loss 0.15 x (4 20.10 Storage volume (litres) inc	r usage in litre Feb per day for ea 87.06 117.18 117.18 17.58	83.77 8 x Vd,m x 120.92 18.14 blar or WWF	Apr /d,m = fact 80.49 nnm x Tm/3 105.42 15.81	May 77.20 77.20 6600 kWh/m 101.15 15.17 e within sam	Jun 1e 1c x (43) 73.92 onth (see T 87.29 13.09	73.92 ables 1b 80.88	77.20 , 1c 1d) 92.81	93.92	83.77 Σ(44)11 109.46 Σ(45)11	87.06 12 = 119.48 12 = 12	82.13 Dec 90.34 985.57 129.75 1292.24	(43)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres if 90.34 Energy content of hot wat 133.98 Distribution loss 0.15 x (4 20.10 Storage volume (litres) inc Water storage loss:	r usage in litre Feb ser day for ea 87.06 ter used = 4.1 117.18 17.58 17.58 cluding any so	83.77 8 x Vd,m x 120.92 18.14 blar or WWF	Apr /d,m = fact 80.49 nnm x Tm/3 105.42 15.81	May 77.20 77.20 6600 kWh/m 101.15 15.17 e within sam	Jun 1e 1c x (43) 73.92 onth (see T 87.29 13.09	73.92 ables 1b 80.88	77.20 , 1c 1d) 92.81	93.92	83.77 Σ(44)11 109.46 Σ(45)11	87.06 12 = 119.48 12 = 12	82.13 Dec 90.34 985.57 129.75 1292.24 194.00	(43)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres i 90.34 Energy content of hot wat 133.98 Distribution loss 0.15 x (4 20.10 Storage volume (litres) inc Water storage loss: a) If manufacturer's decla	r usage in litre Feb ser day for ea 87.06 ter used = 4.1 117.18 17.58 17.58 cluding any so red loss facto om Table 2b	ss per day V Mar ch month V 83.77 8 x Vd,m x 120.92 18.14 Jalar or WWi	Apr /d,m = factor 80.49 nm x Tm/3 105.42 15.81 HRS storago (kWh/day)	May 77.20 77.20 6600 kWh/m 101.15 15.17 e within sam	Jun 1e 1c x (43) 73.92 onth (see T 87.29 13.09	73.92 ables 1b 80.88	77.20 , 1c 1d) 92.81	93.92	83.77 Σ(44)11 109.46 Σ(45)11	87.06 12 = 119.48 12 = 12	82.13 Dec 90.34 985.57 129.75 1292.24 19.46 194.00 1.62	(43) (44) (45) (46) (47) (48)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres i 90.34 Energy content of hot wat 133.98 Distribution loss 0.15 x (4 20.10 Storage volume (litres) inc Water storage loss: a) If manufacturer's decla Temperature factor for	r usage in litre Feb ser day for ea 87.06 ter used = 4.1 117.18 17.58 17.58 cluding any so red loss facto om Table 2b	ss per day V Mar ch month V 83.77 8 x Vd,m x 120.92 18.14 Jalar or WWi	Apr /d,m = factor 80.49 nm x Tm/3 105.42 15.81 HRS storago (kWh/day)	May 77.20 77.20 6600 kWh/m 101.15 15.17 e within sam	Jun 1e 1c x (43) 73.92 onth (see T 87.29 13.09	73.92 ables 1b 80.88	77.20 , 1c 1d) 92.81	93.92	83.77 Σ(44)11 109.46 Σ(45)11	87.06 12 = 119.48 12 = 12	82.13 Dec 90.34 985.57 129.75 1292.24 19.46 194.00 1.62 0.54	(43) (44) (45) (45) (46) (47) (47) (48) (49)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres i 90.34 Energy content of hot wat 133.98 Distribution loss 0.15 x (4 20.10 Storage volume (litres) inc Water storage loss: a) If manufacturer's decla Temperature factor fro Energy lost from water	r usage in litre Feb ser day for ea 87.06 ter used = 4.1 117.18 17.58 17.58 cluding any so red loss facto m Table 2b r storage (kW	ss per day V	Apr /d,m = fact 80.49 nm x Tm/3 105.42 15.81 HRS storage (kWh/day)) x (49)	May 77.20 77.20 6600 kWh/m 101.15 15.17 e within sam	Jun 1e 1c x (43) 73.92 onth (see T 87.29 13.09	73.92 ables 1b 80.88	77.20 , 1c 1d) 92.81	93.92	83.77 Σ(44)11 109.46 Σ(45)11	87.06 12 = 119.48 12 = 12	82.13 Dec 90.34 985.57 129.75 1292.24 194.60 1.62 0.54 0.88	(43) (44) (45) (46) (47) (48) (49) (50)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres p 90.34 Energy content of hot wat 133.98 Distribution loss 0.15 x (4 20.10 Storage volume (litres) ind Water storage loss: a) If manufacturer's decla Temperature factor fro Energy lost from water Enter (50) or (54) in (55)	r usage in litre Feb Der day for ea 87.06 ter used = 4.1 117.18 17.58 17.58 cluding any so red loss facto Table 2b r storage (kW sted for each	ss per day V Mar ch month V 83.77 8 x Vd,m x 120.92 18.14 blar or WWi r is known (h/day) (48) month (55)	Apr /d,m = fact 80.49 nm x Tm/3 105.42 15.81 HRS storage (kWh/day)) x (49)) x (41)m	May or from Tab 77.20 6600 kWh/m 101.15 15.17 e within sam	Jun le 1c x (43) 73.92 onth (see 1 87.29 13.09 ne vessel	73.92 ables 1b 80.88	77.20 , 1c 1d) 92.81	93.92	83.77 Σ(44)11 109.46 Σ(45)11 16.42	87.06 12 = 119.48 12 = 12	82.13 Dec 90.34 985.57 129.75 1292.24 194.00 1.62 0.54 0.88 0.88	(43) (44) (45) (46) (47) (48) (49) (50)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres if 90.34 Energy content of hot wal 133.98 Distribution loss 0.15 x (4 20.10 Storage volume (litres) ind Water storage loss: a) If manufacturer's decla Temperature factor for Energy lost from water Enter (50) or (54) in (55) Water storage loss calculate 27.16	r usage in litre Feb oer day for ea 87.06 ter used = 4.1 117.18 17.58 17.58 cluding any so orred loss facto om Table 2b or storage (kW oted for each	ss per day V Mar ch month V 83.77 8 x Vd,m x 120.92 18.14 lolar or WWR r is known (h/day) (48) month (55) 27.16	Apr /d,m = facts 80.49 nm x Tm/3 105.42 15.81 HRS storage (kWh/day)) x (49)) x (41)m 26.29	May or from Tab 77.20 6600 kWh/m 101.15 15.17 e within sam	Jun le 1c x (43) 73.92 onth (see 1 87.29 13.09 ne vessel	73.92 ables 1b 80.88 12.13	77.20 ,1c1d) 92.81 13.92	93.92	83.77 Σ(44)11 109.46 Σ(45)11	87.06 12 = 119.48 12 = 17.92	82.13 Dec 90.34 985.57 129.75 1292.24 194.60 1.62 0.54 0.88	(43) (44) (44) (45) (46) (46) (47) (48) (50) (55)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres if 90.34 Energy content of hot wal 133.98 Distribution loss 0.15 x (4 20.10 Storage volume (litres) inc Water storage loss: a) If manufacturer's decla Temperature factor for Energy lost from water Enter (50) or (54) in (55) Water storage loss calcula 27.16 If the vessel contains dedi	r usage in litre Feb aer day for ea 87.06 ter used = 4.1 117.18 17.58 17.58 cluding any so red loss facto om Table 2b r storage (kW sted for each 24.54	ss per day V Mar ch month V 83.77 8 x Vd,m x 120.92 18.14 lolar or WW8 r is known (h/day) (48) month (55) 27.16 torage or de	Apr /d,m = facts 80.49 nm x Tm/3 105.42 15.81 HRS storage (kWh/day)) x (49)) x (41)m 26.29 edicated W	May or from Tab 77.20 6600 kWh/m 101.15 15.17 e within sam 27.16 PWHRS (56)n	Jun le 1c x (43) 73.92 onth (see Table 1	73.92 ables 1b 80.88 12.13	77.20 77.20 77.20 77.20 77.20 77.20 77.20 77.20 77.20	93.92	83.77 Σ(44)11 109.46 Σ(45)11 16.42 27.16	87.06 119.48 12 =	82.13 Dec 90.34 985.57 129.75 1292.24 19.46 194.00 1.62 0.54 0.88 0.88	(43) (44) (44) (45) (46) (46) (47) (48) (50) (55)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres if 90.34 Energy content of hot wal 133.98 Distribution loss 0.15 x (4 20.10 Storage volume (litres) inc Water storage loss: a) If manufacturer's decla Temperature factor frc Energy lost from water Enter (50) or (54) in (55) Water storage loss calcula 17.16 If the vessel contains dedi	r usage in litre Feb aer day for ea 87.06 ter used = 4.1 117.18 17.58 17.58 17.58 cluding any so red loss facto Table 2b r storage (kW sted for each 24.54 icated solar st 24.54	18.14 120.92 18.14 19.14	Apr /d,m = facts 80.49 nm x Tm/3 105.42 15.81 HRS storage (kWh/day)) x (49)) x (41)m 26.29	May or from Tab 77.20 6600 kWh/m 101.15 15.17 e within sam	Jun le 1c x (43) 73.92 onth (see 1 87.29 13.09 ne vessel	73.92 ables 1b 80.88 12.13	77.20 ,1c1d) 92.81 13.92	93.92	83.77 Σ(44)11 109.46 Σ(45)11 16.42	87.06 12 = 119.48 12 = 17.92	82.13 Dec 90.34 985.57 129.75 1292.24 194.00 1.62 0.54 0.88 0.88	(44) (44) (45) (46) (47) (48) (49) (50) (55)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres if 90.34 Energy content of hot wal 133.98 Distribution loss 0.15 x (4 20.10 Storage volume (litres) inc Water storage loss: a) If manufacturer's decla Temperature factor for Energy lost from water Enter (50) or (54) in (55) Water storage loss calcula 27.16 If the vessel contains dedi	r usage in litre Feb aer day for ea 87.06 ter used = 4.1 117.18 17.58 17.58 17.58 cluding any so red loss facto Table 2b r storage (kW sted for each 24.54 icated solar st 24.54	18.14 120.92 18.14 19.14	Apr /d,m = facts 80.49 nm x Tm/3 105.42 15.81 HRS storage (kWh/day)) x (49)) x (41)m 26.29 edicated W	May or from Tab 77.20 6600 kWh/m 101.15 15.17 e within sam 27.16 PWHRS (56)n	Jun le 1c x (43) 73.92 onth (see Table 1	73.92 ables 1b 80.88 12.13	77.20 77.20 77.20 77.20 77.20 77.20 77.20 77.20 77.20	93.92	83.77 Σ(44)11 109.46 Σ(45)11 16.42 27.16	87.06 119.48 12 =	82.13 Dec 90.34 985.57 129.75 1292.24 19.46 194.00 1.62 0.54 0.88 0.88	(44) (44) (45) (46) (47) (48) (49) (50) (55)
Assumed occupancy, N Annual average hot water Jan Hot water usage in litres if 90.34 Energy content of hot wal 133.98 Distribution loss 0.15 x (4 20.10 Storage volume (litres) inc Water storage loss: a) If manufacturer's decla Temperature factor frc Energy lost from water Enter (50) or (54) in (55) Water storage loss calcula 17.16 If the vessel contains dedi	r usage in litre Feb aer day for ea 87.06 ter used = 4.1 117.18 17.58 17.58 17.58 cluding any so red loss facto Table 2b r storage (kW sted for each 24.54 icated solar st 24.54	18.14 120.92 18.14 19.14	Apr /d,m = facts 80.49 nm x Tm/3 105.42 15.81 HRS storage (kWh/day)) x (49)) x (41)m 26.29 edicated W	May or from Tab 77.20 6600 kWh/m 101.15 15.17 e within sam 27.16 PWHRS (56)n	Jun le 1c x (43) 73.92 onth (see Table 1	73.92 ables 1b 80.88 12.13	77.20 77.20 77.20 77.20 77.20 77.20 77.20 77.20 77.20	93.92	83.77 Σ(44)11 109.46 Σ(45)11 16.42 27.16	87.06 119.48 119.48 12.2 = 17.92 26.29	82.13 Dec 90.34 985.57 129.75 1292.24 19.46 194.00 1.62 0.54 0.88 0.88	(44) (44) (45) (45) (46) (47) (48) (49) (50) (55) (55)

23.26												
	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59)
Combi loss for each mont	h from Table	3a, 3b or 3d	С									
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(61)
Total heat required for wa	ter heating o	alculated fo	or each mo	onth 0.85 x	(45)m + (4	6)m + (57)r	m + (59)m +	(61)m				
184.40	162.72	171.34	154.22	151.58	136.09	131.31	143.24	142.72	159.89	168.28	180.18	(62)
Solar DHW input calculate	ed using Appe	ndix G or A	ppendix H									
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(63)
Output from water heate						0.00	0.00	0.00	0.00	0.00	0.00	(00)
184.40		171.34	154.22	151.58	136.09	131.31	143.24	142.72	159.89	168.28	180.18	1
184.40	162.72	1/1.34	154.22	151.58	136.09	131.31	143.24	142./2]]
									∑(64)1	.12 =1	885.98	(64)
Heat gains from water he												
84.89	75.40	80.55	74.09	73.97	68.06	67.24	71.20	70.27	76.74	78.77	83.48	(65)
5. Internal gains												
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabolic gains (Table 5)												
100.91	100.91	100.91	100.91	100.91	100.91	100.91	100.91	100.91	100.91	100.91	100.91	(66)
Lighting gains (calculated	in Appendix I	, equation	L9 or L9a),	also see Ta	able 5							
16.35	14.52	11.81	8.94	6.68	5.64	6.10	7.92	10.64	13.51	15.76	16.80	(67)
Appliance gains (calculate	d in Appendi	x L, equatio	n L13 or L1	13a), also s	ee Table 5							
176.21	178.04	173.43	163.62	151.24	139.60	131.83	130.00	134.61	144.42	156.80	168.44	(68)
Cooking gains (calculated												
33.09	33.09	33.09	33.09	33.09	33.09	33.09	33.09	33.09	33.09	33.09	33.09	(69)
		33.09	33.03	33.03	33.09	33.09	33.03	33.03	33.03	33.03	33.09	(63)
Pump and fan gains (Tabl												1
3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	(70)
Losses e.g. evaporation (1	able 5)											
-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	(71)
-80.73 Water heating gains (Tab		-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	-80.73	(71)
	e 5)	-80.73 108.26	-80.73 102.91	-80.73 99.43	-80.73 94.53	-80.73 90.37	-80.73 95.70	-80.73 97.60	-80.73 103.14	-80.73 109.40	-80.73 112.21	(71)
Water heating gains (Tabl	e 5)	108.26	102.91	99.43	94.53							, , , ,
Water heating gains (Table 114.10 Total internal gains (66)n	e 5) 112.20 n + (67)m + (6	108.26 8)m + (69)n	102.91 m + (70)m +	99.43 + (71)m + (94.53 72)m	90.37	95.70	97.60	103.14	109.40	112.21	, , , ,
Water heating gains (Tabl	e 5) 112.20 n + (67)m + (6	108.26	102.91	99.43	94.53 72)m							(72)
Water heating gains (Table 114.10 Total internal gains (66)n	e 5) 112.20 n + (67)m + (6	108.26 8)m + (69)n	102.91 m + (70)m +	99.43 + (71)m + (94.53 72)m	90.37	95.70	97.60	103.14	109.40	112.21	(72)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93	e 5) 112.20 n + (67)m + (6	108.26 88)m + (69)m 349.78	102.91 m + (70)m + 331.74	99.43 + (71)m + (313.63	94.53 72)m 296.05	90.37 284.57 ar flux	95.70	97.60 299.11	103.14 317.34	109.40	112.21 353.72 Gains	(72)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93	e 5) 112.20 n + (67)m + (6	108.26 8)m + (69)n 349.78	102.91 m + (70)m + 331.74	99.43 + (71)m + (313.63	94.53 72)m 296.05	90.37	95.70 289.90 spec	97.60 299.11 g ific data	103.14 317.34 FF specific o	109.40 338.24	112.21 353.72	(72)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93 6. Solar gains	e 5) 112.20 n + (67)m + (6	108.26 8)m + (69)n 349.78 Access fa Table	102.91 m + (70)m + 331.74 actor 6d	99.43 + (71)m + (313.63 Area m²	94.53 72)m 296.05	90.37 284.57 ar flux J/m²	95.70 289.90 spec	97.60 299.11 g ific data able 6b	103.14 317.34 FF specific cor Table	109.40 338.24	112.21 353.72 Gains W	(72) (73)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93	e 5) 112.20 n + (67)m + (6	108.26 8)m + (69)m 349.78 Access fa Table	102.91 m + (70)m + 331.74 actor 6d	99.43 + (71)m + (313.63 Area m ² 6.80	94.53 72)m 296.05 Sol	90.37 284.57 ar flux J/m²	95.70 289.90 spec or T	97.60 299.11 g iffic data able 6b 0.63 x	317.34 FF specific or Table 0.70	109.40 338.24	353.72 Gains W	(72)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93 6. Solar gains	e 5) 112.20 n + (67)m + (6	108.26 8)m + (69)n 349.78 Access fa Table	102.91 m + (70)m + 331.74 actor 6d	99.43 + (71)m + (313.63 Area m²	94.53 72)m 296.05 Sol	90.37 284.57 ar flux J/m²	95.70 289.90 spec or T	97.60 299.11 g ific data able 6b	103.14 317.34 FF specific cor Table	109.40 338.24	112.21 353.72 Gains W	(72) (73)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93 6. Solar gains	e 5)	108.26 8)m + (69)m 349.78 Access fa Table	102.91 m + (70)m + 331.74 actor 6d	99.43 + (71)m + (313.63 Area m ² 6.80	94.53 72)m 296.05 Sol	90.37 284.57 ar flux J/m²	95.70 289.90 spec or T	97.60 299.11 g iffic data able 6b 0.63 x	317.34 FF specific or Table 0.70	109.40 338.24	353.72 Gains W	(72)
Water heating gains (Table 114.10 Total internal gains (66)n 362.93 6. Solar gains North South	e 5)	108.26 8)m + (69)m 349.78 Access fa Table	102.91 m + (70)m + 331.74 actor 6d	99.43 + (71)m + (313.63 Area m ² 6.80	94.53 72)m 296.05 Sol	90.37 284.57 ar flux J/m²	95.70 289.90 spec or T	97.60 299.11 g iffic data able 6b 0.63 x	317.34 FF specific or Table 0.70	109.40 338.24	353.72 Gains W	(72)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93 6. Solar gains North South Solar gains in watts ∑(74)	e 5) 112.20 n+(67)m+(6 361.04 m(82)m 115.47	108.26 88m + (69)m + (69)m 349.78 Access fa Table 0.777 0.77	102.91 m + (70)m + 331.74 actor 6d 7 x 7	99.43 + (71)m + (313.63 Area m ² 6.80 3.13	94.53 72)m 296.05 Sol W x 1 x 4	90.37 284.57 ar flux y/m² 0.63 x 6.75 x	95.70 289.90 spec or T 0.9 x	97.60 299.11 g ific data able 6b 0.63 x 0.63 x	317.34 FF specific c or Table 0.70 0.70	338.24 data - 6c = = =	353.72 Gains W 22.10 44.72	(72)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93 6. Solar gains North South Solar gains in watts ∑(74) 66.82 Total gains - internal and	e 5) 112.20 1+(67)m+(66)m+(67)m+(6	108.26 88m + (69)m + (69)m 349.78 Access fa Table 0.777 0.77	102.91 m + (70)m + 331.74 actor 6d 7 x 7	99.43 + (71)m + (313.63 Area m ² 6.80 3.13	94.53 72)m 296.05 Sol W x 1 x 4	90.37 284.57 ar flux y/m² 0.63 x 6.75 x	95.70 289.90 spec or T 0.9 x	97.60 299.11 g ific data able 6b 0.63 x 0.63 x	317.34 FF specific c or Table 0.70 0.70	338.24 data - 6c = = =	353.72 Gains W 22.10 44.72	(72) (73) (74) (78)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93 6. Solar gains North South Solar gains in watts \$\(\gamma\)(74) 66.82	e 5) 112.20 1+(67)m+(66)m+(67)m+(6	108.26 88)m + (69)n 349.78 Access frable 0.77 0.77 165.06 (83)m	102.91 m + (70)m + 331.74 actor 6d 7 x [220.71	99.43 + (71)m + (313.63 Area m ² 6.80 3.13	94.53 72)m 296.05 Sol V x 1 x 4	90.37 284.57 ar flux y/m² 0.63 x 6.75 x	95.70 289.90 spec or T 0.9 x 0.9 x	97.60 299.11 g gfifc data able 6b 0.63 x 183.74	103.14 317.34 FF specific c or Table 0.70 0.70	109.40 338.24 state 66c = [= [80.27]	353.72 Gains W 22.10 44.72	(72) (73) (74) (78) (83)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93 6. Solar gains North South Solar gains in watts ∑(74) 66.82 Total gains - internal and	e 5) 112.20 a + (67)m	108.26 108	102.91 m + (70)m + 331.74 actor 6d 7 x [220.71	99.43 + (71)m + (313.63 Area m ² 6.80 3.13	94.53 72)m 296.05 Sol V x 1 x 4	90.37 284.57 ar flux y/m² 0.63 x 6.75 x	95.70 289.90 spec or T 0.9 x 0.9 x	97.60 299.11 g gfifc data able 6b 0.63 x 183.74	103.14 317.34 FF specific c or Table 0.70 0.70	109.40 338.24 state 66c = [= [80.27]	353.72 Gains W 22.10 44.72	(72) (73) (74) (78) (83)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93 6. Solar gains North South Solar gains in watts ∑(74) 66.82 Total gains - internal and 429.75	m(82)m 115.47 solar (73)m + 4651 115.47 solar (73)m + 476.51	108.26 i8)m + (69)m	102.91 m + (70)m + 331.74 actor 6d 7 x [7 x [220.71]	99.43 +(71)m+(313.63 Area m ² 6.80 3.13 265.15	94.53 72)m 296.05 Sol W x 1 x 4 271.97	90.37 284.57 ar flux y/m² 0.63 x 6.75 x	95.70 289.90 spec or T 0.9 x 0.9 x	97.60 299.11 g gfifc data able 6b 0.63 x 183.74	103.14 317.34 FF specific c or Table 0.70 0.70	109.40 338.24 data 6c = 80.27	353.72 Gains W 22.10 44.72	(72) (73) (74) (78) (83)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93 6. Solar gains North South Solar gains in watts \(\(\sigma\)(74)\) 6.82 Total gains - internal and 429.75 7. Mean internal tempes	m(82)m 115.47 solar (73)m + 4651 115.47 solar (73)m + 476.51	108.26 i8)m + (69)m	102.91 m + (70)m + 331.74 actor 6d 7 x 220.71 552.45	99.43 + (71)m + (313.63 Area m² 6.80 3.13 265.15 578.78	94.53 72)m 296.05 Sol W x 1 x 4 271.97	90.37 284.57 ar flux //m² 0.63 x 6.75 x 258.51	95.70 289.90 spec or T 0.9 x 0.9 x 223.46	97.60 299.11 g fific data able 6b 0.63 x 183.74 482.85	103.14 317.34 FF specific c or Table 0.70 0.70 129.27	109.40 338.24 data 6c = 80.27	353.72 Gains W 22.10 44.72 57.07 410.79	(72) (73) (74) (78) (83) (84)
Water heating gains (Table 114.10 Total internal gains (66)n 362.93 6. Solar gains North South Solar gains in watts \$\(\gamma\)(74) 66.82 Total gains - internal and 429.75 7. Mean internal tempe Temperature during heat Jan	m(82)m 115.47 115.47 1476.51 140.61 170.6	108.26 88)m + (69)n 349.78 Access fa Table 0.77 0.77 0.77 165.06 (83)m 514.84 ng season) the living a Mar	102.91 m + (70)m + 331.74 actor 6d 7 x 2 220.71 552.45	99.43 + (71)m + (313.63 Area m ² 6.80 3.13 265.15 578.78	94.53 72)m 296.05 Sol V 271.97 568.02	90.37 284.57 ar flux y/m² 0.63 x 6.75 x	95.70 289.90 spec or T 0.9 x 0.9 x	97.60 299.11 g gfifc data able 6b 0.63 x 183.74	103.14 317.34 FF specific c or Table 0.70 0.70	109.40 338.24 data 6c = 80.27	353.72 Gains W 22.10 44.72 57.07	(72) (73) (74) (78) (83) (84)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93 6. Solar gains North South Solar gains in watts Σ(74) 66.82 Total gains - internal and 429.75 7. Mean internal tempe Temperature during heat Jan Utilisation factor for gains	m(82)m 115.47 150lar (73)m + 46.51 476.51 ature (heating periods in Feb. for living are	108.26 88)m + (69)n 349.78 Access fa Table 0.77 0.77 165.06 (83)m 514.84 mg season) the living a Mar an 1,m (see	102.91 m + (70)m + 331.74 actor 6d 7	99.43 + (71)m + (313.63 Area m ² 6.80 3.13 265.15 578.78	94.53 72)m 296.05 Sol V x 1 x 4 271.97 568.02	90.37 284.57 ar flux //m² 0.63 x 6.75 x 258.51	95.70 289.90 spec or T 0.9 x 0.9 x 223.46 513.36	97.60 299.11 8 iffic data able 6b 0.63 x 183.74 482.85	103.14 317.34 FF specific c or Table 0.70 0.70 129.27 446.60	109.40 338.24 iata 66c = [80.27 418.51	353.72 Gains W 22.10 44.72 57.07 410.79	(72) (73) (74) (78) (83) (84)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93 6. Solar gains North South Solar gains in watts Σ(74) 66.82 Total gains - internal and 429.75 7. Mean internal tempe Temperature during heat Jan Utilisation factor for gains 1.00	m(82)m 115.47 solar (73)m + 476.51 reture (heating periods in Feb for living are 0.99	108.26 108	102.91 m + (70)m + (70)m + (331.74 actor 6d 7	99.43 + (71)m + (313.63 Area m ² 6.80 3.13 265.15 578.78 Fable 9, Th1 May	94.53 72)m 296.05 Sol V 271.97 568.02	90.37 284.57 ar flux //m² 0.63 x 6.75 x 258.51	95.70 289.90 spec or T 0.9 x 0.9 x 223.46	97.60 299.11 g fific data able 6b 0.63 x 183.74 482.85	103.14 317.34 FF specific c or Table 0.70 0.70 129.27	109.40 338.24 data 6c = 80.27	353.72 Gains W 22.10 44.72 57.07 410.79	(72) (73) (74) (78) (83) (84)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93 6. Solar gains North South Solar gains in watts Σ(74) 66.82 Total gains - internal and 429.75 7. Mean internal tempe Temperature during heat Jan Utilisation factor for gains	m(82)m 115.47 solar (73)m + 476.51 reture (heating periods in Feb for living are 0.99	108.26 108	102.91 m + (70)m + (70)m + (331.74 actor 6d 7	99.43 + (71)m + (313.63 Area m ² 6.80 3.13 265.15 578.78 Fable 9, Th1 May	94.53 772)m 296.05 Sol V x 1 x 4 271.97 568.02	90.37 284.57 ar flux //m² 0.63 x 6.75 x 258.51	95.70 289.90 spec or T 0.9 x 0.9 x 223.46 513.36	97.60 299.11 8 iffic data able 6b 0.63 x 183.74 482.85	103.14 317.34 FF specific c or Table 0.70 0.70 129.27 446.60	109.40 338.24 iata 66c = [80.27 418.51	112.21 353.72 Gains W 22.10 44.72 57.07 410.79	(72) (73) (74) (78) (83) (84)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93 6. Solar gains North South Solar gains in watts Σ(74) 66.82 Total gains - internal and 429.75 7. Mean internal tempe Temperature during heat Jan Utilisation factor for gains 1.00	m(82)m 115.47 solar (73)m + 476.51 reture (heating periods in Feb for living are 0.99	108.26 108	102.91 m + (70)m + (70)m + (331.74 actor 6d 7	99.43 + (71)m + (313.63 Area m ² 6.80 3.13 265.15 578.78 Fable 9, Th1 May	94.53 772)m 296.05 Sol V x 1 x 4 271.97 568.02	90.37 284.57 ar flux //m² 0.63 x 6.75 x 258.51	95.70 289.90 spec or T 0.9 x 0.9 x 223.46 513.36	97.60 299.11 8 iffic data able 6b 0.63 x 183.74 482.85	103.14 317.34 FF specific c or Table 0.70 0.70 129.27 446.60	109.40 338.24 iata 66c = [80.27 418.51	112.21 353.72 Gains W 22.10 44.72 57.07 410.79	(72) (73) (74) (78) (83) (84)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93 6. Solar gains North South Solar gains in watts Σ(74) 66.82 Total gains - internal and 429.75 7. Mean internal tempe Temperature during heat Jan Utilisation factor for gains 1.00	m(82)m 115.47 solar (73)m + 476.51 reture (heating periods in Feb for living are 0.99	108.26 108	102.91 m + (70)m + (70)m + (331.74 actor 6d 7	99.43 + (71)m + (313.63 Area m ² 6.80 3.13 265.15 578.78 Fable 9, Th1 May	94.53 772)m 296.05 Sol V x 1 x 4 271.97 568.02	90.37 284.57 ar flux //m² 0.63 x 6.75 x 258.51	95.70 289.90 spec or T 0.9 x 0.9 x 223.46 513.36	97.60 299.11 8 iffic data able 6b 0.63 x 183.74 482.85	103.14 317.34 FF specific c or Table 0.70 0.70 129.27 446.60	109.40 338.24 data 66c = [80.27 418.51	353.72 Gains W 22.10 44.72 57.07 410.79 21.00 Dec 1.00	(72) (73) (73) (74) (78) (83) (84) (85)
Water heating gains (Tabl 114.10 Total internal gains (66)n 362.93 6. Solar gains North South Solar gains in watts Σ(74) 66.82 Total gains - internal and 429.75 7. Mean internal tempe Temperature during heat Jan Utilisation factor for gains 1.00	m(82)m 115.47 solar (73)m + 476.51 reture (heating periods in Feb for living are 0.99	108.26 108	102.91 m + (70)m + (70)m + (331.74 actor 6d 7	99.43 + (71)m + (313.63 Area m ² 6.80 3.13 265.15 578.78 Fable 9, Th1 May	94.53 772)m 296.05 Sol V x 1 x 4 271.97 568.02	90.37 284.57 ar flux //m² 0.63 x 6.75 x 258.51	95.70 289.90 spec or T 0.9 x 0.9 x 223.46 513.36	97.60 299.11 8 iffic data able 6b 0.63 x 183.74 482.85	103.14 317.34 FF specific c or Table 0.70 0.70 129.27 446.60 Oct	109.40 338.24 3414 66c = [80.27 418.51 Nov 0.99	112.21 353.72 Gains W 22.10 44.72 57.07 410.79	(72) (73) (74) (78) (83) (84) (85)

SUSTAINABILITY REVISED ENERGY STRATEGY -

REV. 03

AVANTON RICHMOND DEVELOPMENT LTD

Utilisation factor for gains for rest of dwelling n2,m

Living area fraction

Useful gains, nmGm, W (94)m x (84)m

Space heating requirement kWh/m²/year

Fraction of space heat from secondary/suppl

Fraction of space heat from main system(s)

Fraction of space heat from main system 2

Efficiency of main system 1 (%)

Fraction of total space heat from main system 1

Fraction of total space heat from main system 2

Space heating fuel (main system 1), kWh/month

Jan Feb Mar

Space heating

Water heating

Annual totals

Efficiency of water heater

Water heating fuel, kWh/montl

Space heating fuel - main system 1

47

20.10 20.23 20.44 20.70 20.90 20.98 21.00 21.00 20.95 20.71 20.36 20.08 (87) 2259.51 Water heating fuel Temperature during heating periods in the rest of dwelling from Table 9, Th2(°C) Electricity for pumps, fans and electric keep-hot (Table 4f) 30.00 20.11 20.11 20.11 20.12 20.12 20.13 20.13 20.14 20.13 20.12 20.12 20.12 (88) central heating pump or water pump within warm air heating unit (230c) 45.00 (230e) 0.99 0.99 0.97 0.92 0.78 0.55 0.37 0.42 0.69 0.93 0.99 1.00 (89) 75.00 (231) Total electricity for the above, kWh/year Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) Electricity for lighting (Appendix L) 288.74 (232) 18.92 19.11 19.40 19.78 20.03 20.12 20.13 20.13 20.09 19.80 19.31 18.89 (90) Total delivered energy for all uses (211)...(221) + (231) + (232)...(237b) = 4467.35 Living area ÷ (4) = 0.54 (91) Mean internal temperature for the whole dwelling fLA \times T1 +(1 - fLA) \times T2 Fuel price Fuel cost £/year 19.56 19.72 19.96 20.27 20.50 20.59 20.60 20.60 20.56 20.29 19.88 19.53 (92) kWh/year Apply adjustment to the mean internal temperature from Table 4e where appropriate 1844.10 3.48 x 0.01 = 64.17 (240) Space heating - main system 1 19.56 19.72 19.96 20.27 20.50 20.59 20.60 20.60 20.56 20.29 19.88 19.53 (93) Water heating 3.48 x 0.01 = 78.63 (247) 2259.51 Pumps and fans 75.00 13.19 x 0.01 = 9.89 x 0.01 = 38.09 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Additional standing charges 120.00 Total energy cost (240)...(242) + (245)...(254) = 310.78 0.99 0.99 0.97 0.92 0.80 0.59 0.42 0.47 0.73 0.93 0.98 0.99 (94) 11a. SAP rating - individual heat 426.71 470.09 499.55 508.47 461.83 337.59 229.55 239.89 351.17 417.18 412.22 408.49 (95) Energy cost deflator (Table 12) 0.42 (256) rage external temperature from Table U1 Energy cost factor (ECF) 1.23 (257) 4.30 4.90 6.50 8.90 11.70 14.60 16.60 16.40 14.10 10.60 7.10 4.20 (96) SAP value Heat loss rate for mean internal temperature, Lm, W [(39)m x [(93)m - (96)m] SAP rating (section 13) 83 (258) 908.26 879.49 796.89 664.46 512.63 344.85 230.38 241.34 373.55 564.75 748.39 902.68 (97) SAP band В Space heating requirement, kWh/month 0.024 x [(97)m - (95)m] x (41)m 358.28 275.11 221.22 112.31 37.80 0.00 0.00 0.00 0.00 109.79 242.04 367.68 12a, CO₂ emissions - individual he ∑(98)1...5, 10...12 = 1724.23 (98) Energy kWh/year Emissions (98) ÷ (4) 28.13 (99) Space heating - main system 1 1844.10 0.216 398.32 (261) 2259.51 0.216 488.05 (261) + (262) + (263) + (264) = 886.38 (265) Space and water heating 0.00 (201) 38.93 Pumps and fans 75.00 0.519 (267)1 - (201) = 1.00 (202) Electricity for lighting 288.74 0.519 149.86 0.00 (202) Total CO₂, kg/year (265)...(271) = 1075.16 (272) (202) x [1- (203)] = (272) ÷ (4) = 25.49 Dwelling CO₂ emission rate (202) x (203) = 0.00 (205) El value 86.45 93.50 (206) El rating (section 14) 86 (274) Nov Dec El band В 383.18 294.24 236.60 120.12 40.43 0.00 0.00 0.00 0.00 117.43 258.87 393.24 Energy kWh/year Primary factor Primary Energy Σ(211)1...5, 10...12 = 1844.10 (211) 1.22 Space heating - main system 1 1844.10 2249.80 Water heating 2259.51 1.22 2756.60 86.56 86.20 85.50 83.98 81.73 79.80 79.80 79.80 79.80 83.84 85.78 86.68 (217) Space and water heating (261) + (262) + (263) + (264) = 5006.40 (265) 230.25 (267) Pumps and fans 75.00 3.07 213.05 188.77 200.41 183.63 185.47 170.53 164.55 179.50 178.85 190.71 196.17 207.87 Electricity for lighting 288.74 3.07 886.44 $\Sigma(219a)1...12 = 2259.51$ (219) Primary energy kWh/year 6123.09 (272) Dwelling primary energy rate kWh/m2/year 99.89 (273) 1844.10 URN: B1-A02-E version 4 URN: B1-A02-E version 4 NHER Plan Assessor version 6.3.4 SAP version 9.92 NHER Plan Assessor version 6.3.4 SAP version 9.92 Page 4 Page 5

AVANTON RICHMOND DEVELOPMENT LTD

SUSTAINABILITY REVISED ENERGY STRATEGY -REV. 03

Appendix I: BRUKL summary

Be lean BRUKL

BRUKL Output Document ₩ HM Government Compliance with England Building Regulations Part L 2013

Project name

Manor Road - Retail A1 (Lean)

As designed

Date: Fri Jan 25 17:34:01 2019

Administrative information

Building Details

Address: Richmond, London, TW9

Name: Avanton Richmond Development Ltd. Telephone number:

Certification tool

Calculation engine: Apache

Calculation engine version: 7.0.10

Interface to calculation engine: IES Virtual Environment

Interface to calculation engine version: 7.0.10

BRUKL compliance check version: v5.4.b.0

Certifier details

Owner Details

Address: , ,

Telephone number Address: , ,

Criterion 1: The calculated CO₂ emission rate for the building must not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	43.8
Target CO ₂ emission rate (TER), kgCO ₃ /m ² .annum	43.8
Building CO ₂ emission rate (BER), kgCO ₂ /m ² .annum	33.6
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	Ua-Limit	Ua-Calc	Ui-Calc	Surface where the maximum value occurs*
Wall**	0.35	0.15	0.15	00000001:Surf[2]
Floor	0.25	0.13	0.13	00000001:Surf[0]
Roof	0.25	0.16	0.16	00000001:Surf[1]
Windows***, roof windows, and rooflights	2.2	1.4	1.4	00000001:Surf[3]
Personnel doors	2.2	1.4	1.4	00000001:Surf[4]
Vehicle access & similar large doors	1.5	-	-	No Vehicle access doors in building
High usage entrance doors	3.5	-	-	No High usage entrance doors in building
$U_{a\text{-Line}}$ = Limiting area-weighted average U-values [V $U_{a\text{-Calc}}$ = Calculated area-weighted average U-values			Ukasa = C	Calculated maximum individual element U-values [W/(m²K)]
* There might be more than one surface where the n ** Automatic U-value check by the tool does not app	ly to curtai	n walls wi	ose limitir	ng standard is similar to that for windows.

Display windows and similar glazing are excluded from the U-value check.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m³/(h.m²) at 50 Pa	10	3

Page 1 of 6

Technical Data Sheet (Actual vs. Notional Building)

	Actual	Notional
Area [m²]	434.5	434.5
External area [m²]	965.6	965.6
Weather	LON	LON
Infiltration [m³/hm²@ 50Pa]	3	3
Average conductance [W/K]	311.82	399.49
Average U-value [W/m²K]	0.32	0.41
Alpha value* [%]	10	10

į	all the second	 	

-	100	A1/A2 Datail/Einancial and Professional convices
	% Area	Building Type

B1 Offices and Workshop businesses

B8 Storage or Distribution

C2 Residential Institutions: Hospitals and Care Homes

C2 Residential Institutions: Residential schools

C2 Residential Institutions: Universities and colleges C2A Secure Residential Institutions

Residential spaces

D1 Non-residential Institutions: Community/Day Centre

D1 Non-residential Institutions: Libraries, Museums, and Galleries

D1 Non-residential Institutions: Education

D1 Non-residential Institutions: Primary Health Care Building D1 Non-residential Institutions: Grown and County Courts

D2 General Assembly and Leisure, Night Clubs, and Theatres

Others: Passenger terminals Others: Emergency services

Others: Miscellaneous 24hr activities

Others: Car Parks 24 hrs

Others: Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	11.55	13.15
Cooling	5.88	8.82
Auxiliary	16.97	17.66
Lighting	37.77	53.7
Hot water	1.86	1.86
Equipment*	20.26	20.26
TOTAL**	74.04	95.19

^{*} Energy used by equipment does not count towards the total for consumption or calculating emissions ** Total is not of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO, Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m ²]	127.99	161.17
Primary energy* [kWh/m²]	197.83	258.32
Total emissions [kg/m²]	33.6	43.8

^{*} Printery energy is net of any electrical energy displaced by CHP generators, if applicable.

Page 4 of 6

AVANTON RICHMOND DEVELOPMENT LTD REVISED ENERGY STRATEGY -REV. 03

Be green BRUKL

BRUKL Output Document

HM Government

Compliance with England Building Regulations Part L 2013

Project name

Manor Road - Retail A1 (Green)

As designed

Date: Fri Jan 25 17:39:38 2019

Administrative information

Building Details

Owner Details

Address: Richmond, London, TW9

Name: Avanton Richmond Development Ltd.

Certification tool Addr

Telephone number: Address: , ,

Calculation engine: Apache

Certifier details

Calculation engine version: 7.0.10

Certifier details

Interface to calculation engine: IES Virtual Environment

Telephone number

Interface to calculation engine version: 7.0.10
BRUKL compliance check version: v5.4.b.0

Address: , ,

Criterion 1: The calculated CO₂ emission rate for the building must not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	36
Target CO _z emission rate (TER), kgCO _z /m ² .annum	36
Building CO ₂ emission rate (BER), kgCO ₂ /m ² .annum	27.3
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Air Permeability

m3/(h.m2) at 50 Pa

Building labric				
Element	U _{a-Limit}	Ua-Calc	Ul-Calc	Surface where the maximum value occurs*
Wall**	0.35	0.15	0.15	00000001:Surf[2]
Floor	0.25	0.13	0.13	00000001:Surf[0]
Roof	0.25	0.16	0.16	00000001:Surf[1]
Windows***, roof windows, and rooflights	2.2	1.4	1.4	00000001:Surf[3]
Personnel doors	2.2	1.4	1.4	00000001:Surf[4]
Vehicle access & similar large doors	1.5	-	-	No Vehicle access doors in building
High usage entrance doors	3.5	-	-	No High usage entrance doors in building
Uscale = Limiting area-weighted average U-values [V Uscale = Calculated area-weighted average U-values		1	U-cate = C	alculated maximum individual element U-values [W/(m²K)]
*There might be more than one surface where the n **Automatic U-value check by the tool does not app **Display windows and similar glazing are excluded N.B.: Neither roof ventilators (inc. smoke vents) nor se	y to curtai from the	n walls wh U-value cl	ose limitin heck.	g standard is similar to that for windows. elled or checked against the limiting standards by the tool.

Worst acceptable standard This building

Technical Data Sheet (Actual vs. Notional Building)

	Actual	Notional
Area [m²]	434.5	434.5
External area [m²]	965.6	965.6
Weather	LON	LON
Infiltration [m³/hm²@ 50Pa]	3	3
Average conductance [W/K]	311.82	399.49
Average U-value [W/m²K]	0.32	0.41
Alpha value* [%]	10	10

Building Global Parameters

* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

				7
				ı

لتقتطنعك	Danaing Type
0	A1/A2 Retail/Financial and Professional services
	A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways
	B1 Offices and Workshop businesses
	B2 to B7 General Industrial and Special Industrial Groups
	B8 Storage or Distribution
	C1 Hotels
	C2 Residential Institutions: Hospitals and Care Homes
	C2 Residential Institutions: Residential schools
	C2 Residential Institutions: Universities and colleges

Residential spaces D1 Non-residential Institutions: Community/Day Centre

D1 Non-residential Institutions: Libraries, Museums, and Galleries

C2A Secure Residential Institutions

D1 Non-residential Institutions: Education

D1 Non-residential Institutions: Primary Health Care Building D1 Non-residential Institutions: Crown and County Courts

D2 General Assembly and Leisure, Night Clubs, and Theatres Others: Passenger terminals

Others: Emergency services

Others: Miscellaneous 24hr activities

Others: Car Parks 24 hrs

Others: Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	1.98	4.43
Cooling	5.32	8.82
Auxiliary	7.13	3.06
Lighting	37.77	53.7
Hot water	1.7	1.86
Equipment*	20.26	20.26
TOTAL**	53.9	71.88

^{*} Energy used by equipment does not count towards the total for consumption or calculating emissions.
** Total is net of any electrical energy displaced by CHP generators, it applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m ²]	127.99	161.17
Primary energy* [kWh/m²]	167.27	224.88
Total emissions [kg/m²]	27.3	36

^{*} Primary energy is not of any electrical energy displaced by CHP generators, if applicable.

Page 4 of 6

	Communal gas boiler			ASHP + local storage with immersion			ASHP + local storage with immersion		
***************************************	Communal gas boiler			Building-by-building ASHP			Building-by-building ASHP		
	Equivalent heat price	p/kWh	4.0	Equivalent heat price (inc. RHI)	p/kWh	2.4	Equivalent heat price (excl. RHI)	p/kWh	5.2
	Tenant heat demand	kWh/yr	1	Tenant heat demand	kWh/yr	1	Tenant heat demand	kWh/yr	1
	Proportion of demand is space heat	-	0.50	Proportion of demand is space heat	-	0.33	Proportion of demand is space heat	-	0.33
	Proportion of demand is DHW	-	0.50	Proportion of demand is DHW	-	0.67	Proportion of demand is DHW	-	0.67
	Communal distribution heat losses	-	0.30	Building by Building distribution heat losses	-	0.11	Building by Building distribution heat losses	-	0.11
	Communal storage heat losses	-	0.00	Communal storage heat losses	-	0.00	Communal storage heat losses	-	0.00
	Gas boiler efficiency	-	0.95	Gas boiler efficiency	-	-	Gas boiler efficiency	-	-
System Inputs	Pumping energy % of heat generated	-	0.01	Pumping energy % of heat generated	-	0.01	Pumping energy % of heat generated	-	0.01
	Cold water flow temp	С	10	Cold water flow temp	С	10	Cold water flow temp	С	10
	Hot water storage temp	С	-	Hot water storage temp	С	60	Hot water storage temp	С	60
	Communal distribution flow temp	С	70	Communal distribution flow temp	С	55	Communal distribution flow temp	С	55
	Communal distribution return temp	С	40	Communal distribution return temp	С	30	Communal distribution return temp	С	30
				Electric heating efficiency	-	1.00	Electric heating efficiency	-	1.00
				ASHP heating efficiency	-	2.90	ASHP heating efficiency	-	2.90
	Heat generated	kWh/yr	1.429	Percentage of communal hot water	-	0.90	Percentage of communal hot water	-	0.90
				Percentage of local storage hot water	-	0.10	Percentage of local storage hot water	-	0.10
Calculation				ASHP heat generated	kWh/yr	1.049	ASHP heat generated	kWh/yr	1.049
				Electric heat generated	kWh/yr	0.067	Electric heat generated	kWh/yr	0.067
	Landlord gas consumption	kWh/yr	1.504	Landlord gas consumption	kWh/yr	0.000	Landlord gas consumption	kWh/yr	0.000
	Landlord electricity consumption	kWh/yr	0.014	Landlord electricity consumption	kWh/yr	0.372	Landlord electricity consumption	kWh/yr	0.372
Output (heat system)	Tenant electricity consumption	kWh/yr	0.000	Tenant electricity consumption	kWh/yr	0.067	Tenant electricity consumption	kWh/yr	0.067
	Total net energy consumption	kWh/yr	1.518	Total net energy consumption	kWh/yr	0.439	Total net energy consumption	kWh/yr	0.439
	Landlord gas consumption	n	3.865	Landlord gas consumption	n	0.000	Landlord gas consumption	p	0.000
	Landlord electricity consumption	р	0.158	Landlord electricity consumption	D	4.108	Landlord electricity consumption	p	4.108
	Landlord RHI	n	0.000	Landlord RHI	n	-2.821	Landlord RHI	p	0.000
	Tenant gas consumption	n	0.000	Tenant gas consumption	D	0.000	Tenant gas consumption	n	0.000
	Tenant electricity consumption	n	0.000	Tenant electricity consumption	р	1.099	Tenant electricity consumption	b	1.099
	Total energy consumption	р	4.022	Total energy cost	n	2.386	Total energy cost	p	5.207
	Total chergy consumption	ΙΥ	7.022	Total chicky cost	14	2.000	Total Charge Cost	P	5.207

Table 25: Boiler & ASHP operational cost analysis inputs and results

MANOR ROAD AVANTON RICHMOND DEVELOPMENT LTD SUSTAINABILITY REVISED ENERGY STRATEGY -REV. 03

Appendix K: Centralised vs decentralised analysis

Centralised vs decentralised energy strategy analysis. Manor Road, Richmond.

Introduction.

This report has been produced on behalf of Avanton Richmond Development Ltd to assess the implications of providing a centralised district heating network for the proposed development at Manor Road, Richmond.

The energy strategy is based upon a number of decentralised air source heat pumps, which are utilised to generate the heating and hot water for the residential elements of the development.

This report assesses the approximate additional heat losses and power consumption involved in providing a district network, and discusses how a future district heating network could be planned for within the development.

Development proposals.

The proposal for the development is to provide a decentralised energy strategy, with a 'bank' of heat pumps per core. This is primarily due to the absence of a single roof area which can accommodate the heating requirements for the whole development. This is demonstrated in Figure 1. In addition, centralising the heating generation would have other planning implications, including massing, views and acoustics. The heat pump configuration is generally modular, and as such limited benefit is gained from utilising larger central plant.

Therefore, the current proposed strategy includes space allocation which has been made for future plate heat exchangers at the ground floor to each building, and the pipework in all risers appropriately sized to be able to serve each building bottom-up in future, in addition to the current top-down arrangement. It is further proposed to include full trenching between all buildings, with space allocation made for future district heating pipework. A further space allocation has been made for a plate heat exchanger at the ground floor near to the site entrance, so that a future potential district energy network would only require one connection point. Pipework sleeves will be included through the building envelope at the location of each future plate heat exchanger to further ease future connection, should a viable option become available in the vicinity of the site in future. This is shown in Figure 2.

Figure 1: Approximate centralised ASHP plant space requirements

Figure 2: Indicative trench route for future district heating pipework

District network assessment.

This section assesses the viability and the implications of providing a district heating network at day one.

Inter-connectivity

A route has been planned through the development which would allow inter-connectivity between each of the blocks, which would facilitate connection to a district heating network.

A pre-built trench has been planned and safeguarded from the site boundary which allows a single point of connection from a future district heat network to a central future plate heat exchanger. Trenching has been allowed between each of the future district heating plate heat exchangers, which would allow interconnectivity of the blocks in the event of a district network coming on line. Additionally, builderswork has been considered at the boundary of each building, and it is proposed that pre-cast/ pre-installed sleeves will be provided, to allow the pipework to enter the building with minimal disruption, and minimum additional cost incurred to a future network energy provider.

Hydraulic considerations.

It has been considered whether connecting capped pipework between all buildings could be provided at day one. However, this option has been disregarding for the following reasons:

- the risk that the pipework may never be used, therefore the embodied carbon associated with the installed pipework would be spent at no additional benefit to the scheme
- the difficulty in stopping the pipework corroding/ deteriorating over time
- potential warranty issues with connecting to the pipework when it has been left unused for a period of time.

Additional energy consumption

It has also been considered whether connecting, 'live' distribution pipework between all buildings could be provided at day one. However, this option has been disregarding for the following reasons:

Owing to the nature of air source heat pumps being located locally at roof level of each building, for the reasons outlined in the previous section, providing interconnecting pipework at day one will not yield a saving in terms of energy or carbon emissions. The below summary table shows the approximate additional heat and energy demand to the scheme that would be expected to result from inter-connecting the buildings.

Also, given there is very limited non-domestic uses at this development, there is little likelihood of achieving an energy-sharing scenario.

In summary, this would mean that the additional energy lost in the distribution pipework would not be expected to be made up for by any savings from a sitewide connection.

Building Distribution Heat Losses		
Estimated Heat Loss per metre (vertical pipework)	6	W
Estimated Heat Loss per metre (lateral pipework)	4	W
Estimated Annual Heat Loss per core	12089	kWh
Estimated Annual Heat Loss		kWh
District Network Distribution Heat Losses		
Estimated Buried Pipework Length	600	m
Estimated Heat Loss per metre	15	W
Estimated Heat Loss per PHX	750	W
Total Annual Heat Loss	111690	kWh
Estimated additional pump power	5000	W
Total Annual Energy Loss	155490	kWh
Estimated annual total heat demand	1355000	kWh
Estimated district heating distribution losses (without centralised network)		
Estimated district heating distribution losses (with centralised network)		

Table 1: Summary of energy losses in centralised and decentralised distribution networks

Summary

In summary, it is expected that the operational energy lost in any installed distribution pipework would not be counter-acted by any savings resulting from such a sitewide connection.

It is also not proposed to install capped pipework on day one, as it is known from experience that such pipework often is not fit for purpose once it may come to be used. Further, additional embodied carbon would be expected to result from installing such district energy pipework.

Instead it is proposed to make allocations for heat exchangers, full trenching, and pipework sleeves as described above, in order to facilitate a future energy network connection at minimal disruption to residents, and minimal cost to the installer.

LOUISE WILLE

PRINCIPAL SUSTAINABILITY CONSULTANT

+44 20 3668 7290 louisewille@hoarelea.com

HOARELEA.COM

Western Transit Shed 12-13 Stable Street London N1C 4AB England

