Turing House School

Nursery Car Park -Drainage Strategy Addendum

Curtins Ref: FS0316-CUR-00-XX-RP-D-002 Revision: V03 Issue Date: 07 August 2020

Client Name: Bowmer and Kirkland Ltd

Client Address: High Edge Court, Heage, Belper, Derbyshire, DE56 2BW Site Address: Hospital Bridge Road, Twickenham, TW2 6LH

Curtins 56 The Ropewalk, Nottingham, NG1 5DW Tel: 0115 941 5551

CIVILS & STRUCTURES • TRANSPORT PLANNING • ENVIRONMENTAL • INFRASTRUCTURE • GEOTECHNICAL • CONSERVATION & HERITAGE • PRINCIPAL DESIGNER Birmingham • Bristol • Cambridge • Cardiff • Douglas • Dublin • Edinburgh • Glasgow • Kendal • Leeds • Liverpool • London • Manchester • Nottingham

Nursery Car Park - Drainage Strategy Addendum

Rev	Description	Issued by	Checked	Date
V01	First Issue	RV	ID	14.05.20
V02	Planning Issue	ID	ID	19.05.20
V03	Planning Issue	ID	ID	07.08.20

This report has been prepared for the sole benefit, use, and information for the client. The liability of Curtins Consulting Limited with respect to the information contained in the report will not extend to any third party.

Author	Signature	Date
Ricardo Vendone Student Engineer	Allerdone	14.05.20

Reviewed	Signature	Date
Ivayla Dimitrov MSc Senior Engineer	P	14.05.20

Authorised	Signature	Date
Ivayla Dimitrov MSc Senior Engineer	P	14.05.20

Nursery Car Park - Drainage Strategy Addendum

Table of contents

1.0	Introduction	. 1
2.0	Existing Site Details	2
3.0	Drainage Strategy	3
4.0	Appendices	8

Figures

Figure 6.8-1: Pollution Hazard indices for land use classification (Table 26.2 the CIBIA SuDS Manual 2015)	6
Figure 6.8-2 Indicative SuDS Mitigation Indices (Table 26.3 the CIBIA SuDS Manual 2015)	7

Nursery Car Park - Drainage Strategy Addendum

1.0 Introduction

1.1 Project Background

- 1.1.1 Curtins has been appointed by Bowmer & Kirkland (B&K) to provide an addendum to the Drainage Strategy of the proposed Turing House School development on Hospital Bridge Road, Twickenham, TW2 6LH. This will be used in support of the full FRA & Drainage Strategy previously provided for the development planning application.
- 1.1.2 Proposals contained in, or forming part of, this report represent the updated design intent following the detailed design for this project. Where such adjustments are undertaken as part of the detailed design and are deemed a material deviation from the contents of this document, an approval shall be obtained from the relevant authority in advance of commencing such works.
- 1.1.3 Where the proposed works to which this report refers to are undertaken more than twelve months following the issue of this report, Curtins shall reserve the right to re-evaluate the findings and conclusions by undertaking appropriate further considerations at no cost to Curtins.

1.2 Proposed Development

- 1.2.1 It is understood that the proposal includes the construction of new buildings, associated landscaping, car park and sports pitches.
- 1.2.2 The updated drainage catchment for the site includes the redevelopment of 0.039ha existing car parking area (comprising 16 spaces with permeable paving) and approximately 2.24 ha of sports pitches.
- 1.2.3 The surface water drainage from site is proposed to discharge to the public surface water sewers at the average annual greenfield run-off rate, Qbar, calculated for the total contributing area of 4.75ha. This has resulted in a proposed discharge rate of 7.3l/s.
- 1.2.4 The net impermeable area that will be accommodated within a new surface water drainage system is estimated to be 1.557 ha.
- 1.2.5 The proposed site layout is included in **Appendix A.**

Nursery Car Park - Drainage Strategy Addendum

2.0 Existing Site Details

2.1 History and Current Use

- 2.1.1 The site is located in Whitton, south-west London, land off Hospital Bridge Road. A site location plan is provided in *Figure 2.1-1*. The site currently comprises of a large open field and a small area which is thought to be used for storage by the adjacent garden centre and nursery.
- 2.1.2 The approximate Ordnance Survey (OS) grid reference is 513521, 173666 (TQ1352173666).
- 2.1.3 A topographical survey was completed in June 2017, the topographical survey confirms that the site is relatively flat with levels ranging between approximately 20m AOD 18.7m AOD falling towards the north-east boundary. There is an artificial bund along the eastern boundary with a maximum level of approximately 22.7m AOD.
- 2.1.4 A copy of the topographical survey is included in **Appendix B**.
- 2.1.5 The total area of the site is estimated to be approximately 6.5ha, with a developable area of approximately 4.75ha.

Figure 2.1-1 Site Location (source OS Open Data)

Nursery Car Park - Drainage Strategy Addendum

3.0 Drainage Strategy

3.1 National Planning Policy Framework Requirements

- 3.1.1 The NPPF requires that the proposed development will not flood and will not increase flood risk elsewhere. This includes surface water runoff generated by the development. Runoff generated by the development must be naturally drained within the site if possible, or captured and attenuated by a suitable drainage system. This system will require sufficient storage capacity to prevent it surcharging during extreme rainfall events, potentially flooding adjacent areas.
- 3.1.2 NPPF requires that sustainable drainage systems (SuDS) should be provided in new developments, unless it is demonstrated that they are inappropriate (for example, development related to mineral extraction). The Planning Practice Guidance notes that SuDS are designed to control surface water runoff close to source and mimic natural drainage as much as possible. SuDS provide opportunities to:
 - Mitigate the causes and impacts of surface water flooding;
 - Treat urban surface water runoff at source, by removing pollutants; and,
 - Combine water management with additional benefits for amenity, recreation and biodiversity.
- 3.1.3 General national guidance for the design of the surface water drainage systems include the following:
 - National Planning Policy Framework (NPPF)
 - Non-Statutory Technical Standards for Sustainable Drainage Systems, DEFRA, March 2015
 - Written Ministerial Statement regarding Sustainable Drainage (HCWS161)
 - The SUDS Manual C753, CIRIA Industry Best Practice Guidance
 - Flood Risk Planning Practice Guidance
 - Building Regulations Part H

3.2 Drainage Hierarchy

- 3.2.1 The NPPF stipulates the drainage hierarchy as follows:
 - Discharge into the ground;
 - Discharge to a surface water body;
 - Discharge to a surface water sewer;
 - Discharge to a combined sewer.

Nursery Car Park - Drainage Strategy Addendum

3.3 Discharge into the ground (Infiltration)

- 3.3.1 A Phase II GI has been undertaken including 3 no. infiltration tests. At two locations the infiltration rate was too poor to complete the tests. At the third location the test was completed, however the calculated infiltration rate was relatively poor (6.9x10⁻⁶ m/s).
- 3.3.2 Based on the above, soakaways are deemed unviable for the scheme. The test results are included in **Appendix C** of this report.

3.4 Discharge to a surface water body

3.4.1 The nearest watercourse to the site is an ordinary watercourse east of Hospital Bridge Road. The distance to the river and the fact that a connecting sewer would have to cross the public highway and 3rd party land mean that discharging to a watercourse is not viable.

3.5 Discharge into a surface water public sewer

- 3.5.1 The nearest public surface water sewer, shown on the Thames Water records, lie within Hospital Bridge Road. With the closest manhole (the head of the run) being approximately 35m south east of the proposed site access.
- 3.5.2 Based on the above, a connection to the public surface water sewer is deemed to be the most viable method of discharge.
- 3.5.3 Due to level differences, surface water flows will be pumped from the development into the public sewer. In the pre-development enquiry response from Thames Water they have confirmed that this approach is acceptable.
- 3.5.4 As the proposed connection is to the existing public sewer it will be subject to a Section 106 Agreement with Thames Water.

3.6 Discharge into a combined sewer

3.6.1 There are no public combined sewers in the immediate vicinity of the site.

3.7 Surface Water Drainage Calculations

3.7.1 The total area of the site is estimated to be approximately 6.5ha, with a developable area of approximately 4.75ha. The post development impermeable area used for the calculations will be approximately 1.557ha including 20% run-off from the grassed sports pitches. The 4.75ha of developable area will be used for the greenfield runoff calculations.

Nursery Car Park - Drainage Strategy Addendum

- 3.7.2 The Qbar has been calculated as 1.53l/s/ha using the HR Wallingford's Greenfield Runoff Estimation Toolkit. The proposed contributing area of total 4.75ha has been calculated to generate greenfield discharge rate of 7.3l/s. The calculation sheet is included within **Appendix D**.
- 3.7.3 The total impermeable area on site is approximately 1.557ha. The MicroDrainage Network Module has been used to establish the overall attenuation volume required for the 100 years plus 40% climate change event. This has been calculated to be approximately 1,241m³ and is to be accommodated in two interconnected underground attenuation tanks, permeable MUGA, rain gardens and permeable car park spaces.
- 3.7.4 The total proposed impermeable area for the new nursery car park is 0.038ha. The drainage proposal for the car park is to accommodate lined permeable block paving car parking spaces with attenuation sub-base and orifice plate flow controls to control the run-off. The nursery car park drainage is to be connected to the proposed main attenuation tank on site and ultimately discharge to the public sewers.
- 3.7.5 A summary of the calculations for the 1 year, 30 years, and 100 years plus 40% climate chance scenarios are included in **Appendix E**.
- 3.7.6 An underground drainage system, with two attenuation tanks, has been proposed for the site, connecting (via a pump) to the existing public surface water sewer within Hospital Bridge Road. The design also incorporates subgrade attenuation beneath the parking areas, rain gardens and filter drains which will provide additional attenuation and treatment to surface water runoff.
- 3.7.7 Separate systems for the foul water drainage and the surface water drainage are proposed. The strategy proposes to control the runoff to the above greenfield discharge rate via vortex flow control chambers downstream of the underground tanks.
- 3.7.8 A pre-developer's enquiry was submitted to Thames Water to confirm the existing capacity in the public surface water sewers and they confirmed that there is sufficient capacity to accommodate the proposed 7.3l/s discharge from site. The response to the pre-development enquiry can be found in **Appendix F.**
- 3.7.9 The surface water drainage layout for the site and proposed nursery car park is included in **Appendix G**.

3.8 Surface Water Management Train

- 3.8.1 The principles of the SuDS management train are to replicate the natural catchment drainage process as much as possible. This concept is core to the successful design and implementation of a SuDS scheme, where drainage techniques are used in series to incrementally reduce pollution, flow rates and volumes. The SuDS scheme should be integrated into the landscape proposals, to enhance amenity and biodiversity, whilst protecting and/or enhancing water quality.
- 3.8.2 SuDS features should be designed in accordance with CIRIA C753 SuDS Manual 2015'.

Nursery Car Park - Drainage Strategy Addendum

- 3.8.3 Source control should be the first recourse of any pollutant management, followed by conveyance measures and finally site control. Using the simple index approach contained within the SuDS Manual, Table 26.2, the car parking area would be classified as having a medium pollutant hazard level. The associated pollution hazard indices are Total Suspended Solids (TSS) of 0.7, Metals of 0.6 and Hydrocarbons of 0.7.
- 3.8.4 Any new car parking area should have permeable paving and sub-base. Permeable paving would provide 0.7, 0.6 and 0.7 mitigation respectively, and so thus covering the main source of pollution, parked cars (see figures below taken from the SuDS Manual). These ratings apply to both surface water and groundwater receptors and will offer a significant improvement to water quality of the runoff from these areas.
- 3.8.5 Runoff from the building perimeter footpath will be subject to pedestrian use, with very occasional maintenance vehicles, and as such contain negligible to low levels of pollution.
- 3.8.6 Catch-pit manholes have been proposed upstream of the underground tanks for silt collection.

Figure 6.8-1: Pollution Hazard indices for land use classification (Table 26.2 the CIRIA SuDS Manual 2015)

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons
Residential roofs	Very low	0.2	0.2	0.05
Other roofs (typically commercial/ industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways!	Medium	0.7	0.6	0.7
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk mads and motorways ¹	High	0.82	0.82	0.9°

Nursery Car Park - Drainage Strategy Addendum

	1	Mitigation Indices	
Type of SuDS component	TSS	Metals	Hydrocarbons
Filter strip	0.4	0.4	0.5
Filter drain	0.42	0.4	0.4
Swale	0.5	0.6	0.6
Bioretention system	0.8	0.8	0.8
Permeable pavement	0.7	0.6	0.7
Detention basin	0.5	0.5	0.6
Pond*	0.7*	0.7	0.5
Wetland	0.8*	0.8	0.8
Proprietary treatment systems ⁵⁵	These must demonstrate that they can address each of the contaminant types to acceptable levels for frequent events up to approximately the 1 in 1 year return redict event influe concentration reduced to the contributing decisions are as a contribution of the second secon		

Figure 3.8-2 Indicative SuDS Mitigation Indices (Table 26.3 the CIRIA SuDS Manual 2015)

4.0 Addendum

- It is acknowledged that the submission drawings and report detail attenuation for both the application site and nursery site. However, the latter does not have a consent for such works and is unrelated to this application for the purpose of discharging conditions.
- For the purpose of discharging condition NS10, revised calculations are identified below, relating to the application site only.
- The updated drainage catchment for the application site includes approximately 2.24ha of sports pitches.
- The surface water drainage from the application site is proposed to discharge to the public surface water sewers at the average annual greenfield run-off rate, Qbar, calculated for the total contributing area of 4.711ha, resulting in a proposed discharge rate of 7.2l/s.
- The net impermeable area that will be accommodated within the surface water drainage system for the application site only is estimated to be 1.520ha.
- The overall attenuation volume for the application site only which is required for the 100 years plus 40% CC has been calculated to be approximately 1,220m³.

Nursery Car Park - Drainage Strategy Addendum

5.0 Appendices

Appendix A	Proposed Site Layout
Appendix B	Topographical Survey
Appendix C	Infiltration Tests Results
Appendix D	Greenfield Runoff Rate Calculations
Appendix E	MicroDrainage Network Calculations
Appendix F	Pre-Development Enquiry Response
Appendix G	Surface Water Drainage Layouts

Nursery Car Park - Drainage Strategy Addendum

Appendix A Proposed Site Layout

Notes

drawings

 Drawing not to be scaled for construction or setting out purposes'.
 To be read in conjunction with Project Risk Register REF: XXX 3. To be read in conjunction with all other Landscape Architect"s

KEY

A	Entrance Plaza	
---	----------------	--

- B Car Parking 45no. Total Spaces 3 Disabled Bays 10 Active Electric Charging Points 10 Passive Electric Charging Points Deliveries / Coach Bay
- **C** New Site Entrance
- **D** Deliveries and Maintenance Gate
- **E** Habitat Area Planting species designed to encourage insect and bird habitats and enhance the ecological corridor
- (F) Pedestrian Boulevard
- **(G)** Hard Informal Social Area
- (H) 6th Form External Social Space
- **External Canopy**
- J Cycle Parking 136no. Pupil Spaces 10no. Visitor Spaces 10no. Staff Spaces
- **K** 3 Court MUGA
- Playing/Sports Field
 A Space design to maximise the amount of sports
 played by the school. The North/South orientation results in 3no. pitches
- Boundary Fence a 2.4m boundary fence with hedge planting to provide screening
- **N** Grassland & Habitat Creation Area seeded with species rich grass and planting with trees to create habitat zones and habitat creation
- O Habitat Corridor The existing avenue of trees retained and grassland managed to reinforce the habitat corridor, providing habitat corridor between the rail line, cemetary and retained fallow land
- P Pupil Access Propsoed pupil access from Heathfield Recreation Ground. A low lit self bind gravel path weaving through the habitat area to the school.

Turing House School

DRAWING TITLE : Illustrative Masterplan

A1

DRAWING SCALE : DRAWN BY :

EC 1:1000 PAPER SIZE : APPROVED BY :

DRAWN DATE : 02.03.2018

DRAWING NUMBER : SUITABILITY : REVISION : EFATH-ALA-00-XX-DR-L-0003 S2 P02

LA

KEY	Extent of Works
Soft La	ndscape
Planting S	Strategy for planting detail
•	Existing tree retained Refer to FS0316-ALA-00-XX-DR-L-0009 Tree Retention and Removal Plan for details
	Existing tree to be removed
+	Proposed tree
	Proposed Grass Seed
	Proposed Acid Grassland
	Proposed Planting
Hard La	ndscape
_P1	Bitumous macadam (vehicular) Refer to engineer's specification.
P2	Bitumous macadam (pedestrian) Refer to engineer's specification.
P3	Bitumous macadam (MUGA) Refer to engineer's specification.
P4	Permeable Block Paving (vehicular)
	Manufacturer: Marshalls or similar. Product: Priora or similar. Size: 240L x 160W x 60D mm. Colour/Finish: Graphitem, light or dark. Bond: 90 degree herringbone. Q24/110B
P5	Permeable Block Paving (pedestrian) Colour: Mix A Manufacturer: Marshalls or similar. Product: Priora or similar. Size: 240L x 160W x 60D mm. Colour/Finish: Graphitem, light or dark.
P6	Q24/110A Permeable Block Paving (pedestrian) Colour: Mix B
- P7	Manufacturer: Marshalls or similar. Product: Priora or similar. Size: 240L x 160W x 60D mm. Colour/Finish: Graphitem, light or dark. Bond: Running. Q24/110A Self Binding Gravel
	Manufacturer: DCM Surfaces. Product: Self Binding Gravel. Size: 50-100D mm. Colour/Finish: Gold. Q23/110A Hazard Warning Paying
P8	Type: Blister, Precast Manufacturer: Marshalls or similar. Product: Contractor's choice. Size: 400L x 400W mm. Colour/Finish: Grey. Q25/320
P9	Concrete Surface To Cycle Parking and Bin Store
Furnitur	Refer to engineer's specification. 'e
S1	Cycle Shelter & Hoops 1no. Shelter
	5no. Hoops Shelter
	Manufacturer: Broxap or similar. Product: New Sheffield Cycle Shelter. Size: 4100L x 2140W x 2150H mm Materials: Steel frame, plastics and
	composite panel. Method of Fixing: Base plates bolted to concrete base.
	B91/340 <u>Hoops</u> Manufacturer: Kensington Systems Ltd.
	or similar. Product: Elk Ervine Traditional style Sheffield type Stand.
	Size: 700W x 1100H mm. Materials: Stainless steel. Method of Fixing: Root fixed. Ref
52	ELK90009. Q50/210C Door Protection Hoops
52	Manufacturer: Kensington Systems Ltd. or similar.
	ELK90068. Size: 1020mm Above Ground x 500mm
	Materials: Steel. Method of Fixing: Rooted in concrete
S 3	pase. 300mm below ground. Q50/210D Concrete Bench without Back
	Rest Manufacturer: Artform Urban or similar.
	Product: Loop Line. Colour: Grey. Size: Refer to Ares detail drawings.
S4	Q50/220E Electric Charging Point
S5	Table Tennis (Legacy
S 6	Equipment) Dining Table (Legacy
Fencing	Equiptment)
Refer to El Fencina G	FATH-ALA-00-XX-DR-L-0005 eneral Arrangement for fencing details.
	- Existing Fencing
	Proposed Fencing &
I V I	Jaico

Do not scale from this drawing
 Residual risks to be read in conjunction with Ares Landscape Architects risk register - XXX

Specification and details of build ups to paving, kerbs, edges and structures to be advised by Civil Engineers.
 To be read in conjunction with Civil Engineers's NBS

documents. 5. The contractor is to check all levels and dimensions
 before construction. Any discrepancies are to be brought to
 the attention of Ares Landscape Architects before commencing on site. 6. All sub bases and concrete specification to Engineer's

details.

ID	RISK	MITIGATION	Date Mitigated
	RECIDOA		

)5/02/2020	P05	Block paving added to nursery car park	LA	
25/10/2019 18/10/2019	P04 P03	Issued for review and comments.		LA -
DATE	REV	DESCRIPTION OF REVISION	DRAWN BY	APPROVED BY
		REVISIONS		

SUITABILITY

S3 - CONTRACTORS PROPOSALS

Ares Landscape Architects LTD Gatecrasher, 51 Eyre Lane Sheffield S1 4RB

t: 0114 276 2000 e: hello@ares.eu.com w: ares.eu.com

Bowmer + Kirkland

CLIENT :

PROJECT TITLE : Turning House School

ares

L A N D S C A P E A R C H I T E C T S

DRAWING TITLE : Landscape General Arrangement 1 of 3 DRAWN DATE : DRAWING SCALE 10/01/2018 1:200 KH PAPER SIZE : APPROVED B ALA PROJECT CODE: ALA456 A1 LA

DRAWING NUMBER : FS0316-ALA-00-XX-DR-L-0016 S4

SUITABILITY : REVISION : P05

Nursery Car Park - Drainage Strategy Addendum

Appendix B Topographical Survey

correct scale. Only written dimensions should be used. 3. This drawing should be read in drawings and specifications. NOTES GENERAL NOTES :-ALL LEVELS ARE IN METRES DERIVED FROM GPS TRANSFORMATION. GRID COORDINATES ARE ORDNANCE SURVEY NATIONAL GRID DERIVED FROM GPS TRANSFORMATION. GPS COORDINATES AND LEVELS SET AT ST03 (NO SCALE FACTOR APPLIED) THIS DRAWING HAS BEEN PRODUCED WITH A PLOT SCALE ACCURACY OF 1:200 SERVICE COVERS INDICATED WHERE VISIBLE. PIPE INVERTS / DETAILS SURVEYED FROM SURFACE INSPECTION ONLY. GENERALLY DAMAGED COVERS AND COVERS WITHIN HIGHWAYS WILL NOT BE LIFTED TREE SPECIES SHOULD BE CONFIRMED BY TREE SPECIALIST IF CRITICAL. OVERHEAD CABLES ARE INDICATED USING REMOTE SURVEY METHODS AND ARE SUBJECT TO SEASONAL VARIATION, AND SHOULD BE TREATED AS APPROXIMATE. SERVICE COVERS LOCATED UNDER PARKED VEHICLES/MOBILE STRUCTURES MAYBE OMITTED. BURIED SERVICE COVERS WILL NOT BE INDICATED. TOPOGRAPHICAL SURVEY/UTILITY KEY :ol - off let osa - off survey area OSBM - ordnance survey bench mark p & r fence - post & rail fence pd - pit depth pr - pipe to ground pts - pipe to ground pts - pipe to surface re - rodding eye ret wall - retaining wall rs - road sign rwp - rain water pipe s/birch - silver birch s/p - safety paving sop - sapling sec fence - security fence sfc - soil filled chamber st - stop tap sv - stop tap sv - stop valve swp - soil vent pipe sws - stop water sewer TBM - temporary bench mark tfr - taken from records tl - threshold level toc - top of cap top - top of pipe tot - top of tank tp - telecom pole ts - traffic signal t/s - trench scar u/s - unable to lift utr - unable to survey utt - unable to survey utt - unable to trace vp - vent pipe wfc - water filled chamber wf - water level wm - water riser SURVEY CONTROL :-<u>SHEET LAYOUT :--</u> STATION EASTINGS NORTHINGS LEVEL
 STATION
 EASTINGS
 NORTHINGS
 LEVEL

 ST01
 513586.844
 173601.307
 19.932

 ST02
 513580.224
 173595.177
 19.262

 ST03
 513563.722
 173621.003
 19.539

 ST04
 513485.419
 173646.001
 19.181

 ST05
 513553.693
 173672.464
 18.991

 ST06
 513426.840
 173672.286
 18.993

 ST07
 513366.021
 173693.123
 18.877

 ST08
 513424.612
 173693.123
 18.877

 ST09
 513266.310
 173620.547
 19.410
 JKK9139_02 JKK9139_03 JKK9139_05

 N
 N
 ELECTRIC CABLE

 W
 WATER PIPE

 STORM SEWER

 STORM SEWER

 COMBINED SEWER

 D
 D

 TV
 TV

 CABLE TELEVISION

 COM
 COM

 COM
 DATA CABLE

 G
 G

 G
 G

 CCTV
 CCTV

 V
 V

 V
 V

 F
 F

 GL
 GL

 GL
 GL

 GL
 GL

 GL
 GL

 AR
 ASUMED ROUTE

 TFR
 TFR

 UTILITY SURVEY KEY :-HATCHED AREA -BOREHOLE -CPT TRIAL PIT HAND PIT -DISCLAIMER :-Electromagnetic techniques have been used in the location of underground services. The results are not infallible and trial excavations should be carried out to confirm service identification, positions and particularly depths, where these are critical. The completeness of the underground services information cannot be guaranteed. This method of survey does not differentiate between live and dead services, and as such all services should be treated as live. This drawing may not include the location of all public services that may cross the site, therefore the relevant service drawings should be obtained from the appropriate utility company and used in conjunction with this drawing. Private service pipes and cables in highways are not shown, but there presence should be anticipated. Additional below ground structures or obstructions not shown on this drawing may be present. Reference should be made to historical plans and as-built drawings. Excavations in the vicinity of services should be carried out with due diligence ref: HSG47 document avoiding dangers from underground services Please note that factors such as ground conditions, proximity of other utilities, material and method of construction have an influence on the quality of the data collected on site. TSA Standards — "Even an appropriate and professionally executed survey may not be able to achieve a 100% detection rate." UTILITY NOTES MAINS GAS,ELEC AND WATER ENTER TIMBER BUILDING AT THE REAR, OF SURVEY AREA. 2X ANOMALIES LOCATED IN ENTRANCE ROAD AND CAR PARK AREA WITH GPR. 1X METALLIC SERVICE TRACED ACROSS THE FIELD. POSSIBLE GAS OR WATER. UNABLE TO TRACE CUT CABLE RISER IN FIELD. ANOMALIES ALSO LOCATED WITHIN FIELD AREA WITH GPR, POSSIBLE VOIDS OR PROMINENT GROUND CHANGE. UNABLE TO TRACE GAS VIA GAS VALVES WITHIN PAVEMENT. A ORIGINAL DRAWING ISSUE MSL AHP 29.06.17 By Ckd Date Description RPS Noble House, Capital Drive, Linford Wood, Milton Keynes, MK14 6QP T: 01908 669 898 E: rpsmks@rpsgroup.com F: 01908 302 625 Client TURNER & TOWNSEND Project TURING HOUSE SCHOOL, HOSPITAL BRIDGE ROAD, HOUNSLOW, TW2 6LH

> Title TOPOGRAPHICAL & UTILITY SURVEY

Status FINAL Project Leader NB

JKK9319 - 03

Project Number Originator - Zone - Level - Type - Role - Drawing Number

Document Number

Scale 1:200 @A0 Drawn By MSL

Date Created 29.06.17 Checked by AHP

A

<u>____</u>_ST01

bt

Revision Suitability

<mark>,</mark> 19.64

<mark>+</mark>19.67

19.63

<mark>,</mark> 19.66

<mark>,</mark> 19.69

<mark>,</mark> 19.66

<mark>,</mark>19.66

19.69

<mark>+</mark> 19.74

<mark>,</mark> 19.63

<mark>,</mark> 19.60

<mark>+</mark> 19.59

<mark>,</mark> 19.63

<mark>,</mark> 19.75

<mark>,</mark> 19.78

1<u>73500N_173500</u>N +

<mark>,</mark> 19.66

<mark>+</mark>19.68

<mark>,</mark> 19.70

<mark>,</mark> 19.75

19.92

<mark>+</mark>19.63

19.77

<mark>,</mark> 19.83

<mark>,</mark> 19.63

<mark>,</mark> 19.63

<mark>,</mark> 19.67

<mark>,</mark> 19.65

<mark>,</mark> 19.69 <mark>,</mark> 19.69

<mark>,</mark> 19.69

19.69 <mark>,</mark> 19.72

<mark>,</mark> 19.72

<mark>,</mark> 19.78

1<u>73450N 173450</u>N

20.00

19.77

<mark>+</mark> 19.41 <mark>+</mark>19.38 1<u>73600N_173600</u>N <mark>,</mark> 19.48 <mark>,</mark> 19.50 <mark>,</mark> 19.42 <mark>,</mark> 19.48 <mark>+</mark>19.44 19.53 **19.47 19.46** <mark>_</mark> 19.64 <mark>,</mark> 19.60 **19.65** <mark>+</mark>19.77 eoti (located with gpr) to <mark>+</mark>19.75 <mark>,</mark> 19.72 19.83 <mark>,</mark> 19.78 <mark>+</mark>19.62 <mark>+</mark>19.65 <mark>,</mark> 19.63 **19.64** 19.67 <mark>+</mark>19.63 <mark>+</mark> 19.65 <mark>+</mark>19.66 <mark>,</mark> 19.71 19.67 <mark>,</mark> 19.69 19.67 <mark>,</mark> 19.73 <mark>,</mark> 19.69 _____ 1<u>73500N_173500</u>N <mark>,</mark> 19.69 19.63 <mark>+</mark>19.71 <mark>,</mark> 19.69 <mark>,</mark> 19.72 <mark>,</mark> 19.66 <mark>,</mark> 19.71 <mark>,</mark> 19.69 <mark>+</mark>19.72 <mark>,</mark> 19.75 <mark>,</mark> 19.79 <mark>,</mark> 19.78 <mark>,</mark> 19.77

20.00 173450N 173450

+

Noble House, Capital Drive, Linford Wood, Milton Keynes, MK14 6QP T: 01908 669 898 E: rpsmks@rpsgroup.com F: 01908 302 625

Client TURNER & TOWNSEND Project TURING HOUSE SCHOOL, HOSPITAL BRIDGE ROAD, HOUNSLOW, TW2 6LH Title TOPOGRAPHICAL & UTILITY SURVEY Status Scale Date Created FINAL 1:200 @A0 29.06.17 Project Leader Drawn By Checked by NB MSL AHP

Document Number

JKK9319 - 05

Project Number Originator - Zone - Level - Type - Role - Drawing Number

A

Revision Suitability

(ht 16.0) 19.54 19.49 **19.4**7 <mark>,</mark>19.38 <mark>,</mark> 19.45 <mark>,</mark> 19.37 <mark>,</mark> 19.36 <mark>,</mark> 19.53 19.46 <mark>,</mark> 19.48 <mark>+</mark>19.58 **19.57** <mark>,</mark> 19.54 <mark>+</mark> 19.59 <mark>+</mark> 19.61 **19.63** <mark>,</mark> 19.57 <mark>+</mark>19.68 <mark>,</mark> 19.69 <mark>,</mark> 19.72 <mark>,</mark> 19.65 <mark>,</mark> 19.76

+^{19.76}

*19.78 *19.81 *19.79

+19.80 +19.85 +19.88 +19.88 +20.12

+ 20.19 + 20.19 eotr(located with gpr)teot + 19.81

19.86

,19.85 ,19.85

<mark>,</mark> 19.68

<mark>,</mark>19.66

<mark>,</mark> 19.69

, 19.82

<mark>+</mark>19.72

+19.70
 +19.64

<mark>,</mark> 19.75

<mark>+</mark>19.68

<mark>,</mark> 19.68

<mark>,</mark> 19.73

_ 20.01

¹9.46 ¹9.46 ¹9.46 ¹9.46 ¹9.46 ¹9.50 ¹9.2850N 172850N

<mark>+</mark> 19.31

, 19.3 , 19.4 , 19.4 , 19.2 , 19.2 , 19.2 , 19.2 , 19.2 , 19.2 , 19.2 , 19.2

19.29

**⊕**ST09

+ 19.35 + 19.32 + 19.39

, 19.44 , 19.38 , 19.45

+19.50 +19.38 +19.47 +19.54

*19.54 *19.50 *19.42 *19.56

* 19.57 * 19.48 * 19.53

> *19.55 *19.47 *19.53

, 19.63 , 19.63 , 19.63

+19.63 +19.65

+ 19.59 + 19.67

19.60

Nursery Car Park - Drainage Strategy Addendum

Appendix C Infiltration Test Results

Nursery Car Park - Drainage Strategy Addendum

Appendix D Greenfield Run-Off Rate Calculations

Calculated by:	
Site name:	
Site location:	

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the SuDS Manual, C753 (Ciria, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Greenfield runoff estimation for sites

www.uksuds.com | Greenfield runoff tool

Site coordinates

Latitude:	51.45006° N
Longitude:	0.36935° W
Reference:	
Date:	2019-09-02 14:40

Methodology	IH124											
Site characteristics												
Total site area (ha) 4.75												
Methodology												
Qbar estimation metho	bc	Calculate fro	om SPR ar	nd SAAR								
SPR estimation metho	Calculate fro	om SOIL ty	/pe									
		Default	Edited									
SOIL type			2	2								
HOST class												
SPR/SPRHOST			0.3	0.3								
Hydrological charact	eristic	s	Default	Edited								
SAAR (mm)			600	600								
Hydrological region			6	6								
Growth curve factor: 1	year		0.85	0.85								
Growth curve factor: 3	0 yea	r	2.3	2.3								
Growth curve factor: 1	00 ye	ar	3.19	3.19								

Notes:

(1)	ls	Q	<	2.0) I/s	/ha?
	• /		~ 0 ^ 0				

Normally limiting discharge rates which are less than 2.0 l/s/ha are set at 2.0 l/s/ha.

(2) Are flow rates < 5.0 l/s?

(3) Is SPR/SPRHOST ≤ 0.3 ?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite may be a requirement for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Qbar (l/s)	7.23	7.23
1 in 1 year (l/s)	6.14	6.14
1 in 30 years (l/s)	16.62	16.62
1 in 100 years (l/s)	23.06	23.06

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for use of this data in the design or operational characteristics of any drainage scheme.

Nursery Car Park - Drainage Strategy Addendum

Appendix E MicroDrainage Network Calculations

Curtins Consulting Ltd			Page 0									
· · ·			Micro									
Date 07/08/2020 09:54	Designed by di	mitrov_i	Drainage									
File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Checked by		brainage									
Innovyze	Network 2018.1	.1										
STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Surface Network 1												
Pipe Sizes STANDARD Manhole Sizes STANDARD												
FSR Rain Return Period (years) 1 M5-60 (mm) 20.000 Vo Ratio R 0.403 Maximum Rainfall (mm/hr) 50 Add Flo Maximum Time of Concentration (mins) 30 Minin Des <u>Time Area</u>	fall Model - Engla Foul Sewage (1/ olumetric Runoff C PIM ow / Climate Chang num Backdrop Heigh signed with Level Diagram for Sur	and and Wales s/ha) 0.000 Maximum Bac oeff. 0.750 Min Design Depth for P (%) 100 Min Vel for Auto D e (%) 0 Min Slope for Op t (m) 0.200 Soffits <u>face Network 1</u>	kdrop Height (m) 1.500 Optimisation (m) 1.200 esign only (m/s) 1.00 timisation (1:X) 500									
Time A	area Time Area	Time Area										
(mins) ((ha) (mins) (ha)	(mins) (ha)										
0-4 0	.650 4-8 0.866	8-12 0.003										
Total A	rea Contributing.	(ha) = 1.519										
Tota	l Pipe Volume (m³)	= 39.091										
Network Desi	<u>qn Table for S</u>	arface Network 1										
« - In	dicates pipe capa	city < flow										
(©198 <mark>2-</mark> 2018 Innc	vyze										

Curtins Consulting Ltd											Page 1
Date 07/08/2020 09:54				Desig	ned by dir	nitrov	7 i				Micro
File FS0316-CUR-00-00-M3-C-9	200-V10	SW NET	WORK	Check	ed by		_				urainage
Innovyze				Netwo	rk 2018.1	. 1					
PN I	Length Fa	all Slop m) (1:X	e I.Area :) (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)	HYD D SECT (1	IA Seo mm)	ction Typ	e Auto Design	
1 000	3 600 0	293 12	3 0 206	5 00	0.0	0 600	0		e/Condui	+ •	
1.000 1	L3.668 0.	280 48.	8 0.013	0.00	0.0	0.600	0	150 Pip	pe/Condui	t 🔒	
2.000 4 2.001	49.800 0. 1.741 0.	332 150. 012 145.	0 0.000 1 0.440	5.00 0.00	0.0	0.600 0.600	0	L50 Pir L50 Pir	pe/Condui pe/Condui	t 🤮 t 🔒	
1.002 3 1.003 1	31.852 O. 14.506 O.	228 139. 104 139.	7 0.040 5 0.000	0.00	0.0	0.600	0	L50 Pip L50 Pip	be/Condui be/Condui	t 🤒 t 🔒	
			<u>N</u>	etwork	Results :	able					
PN	Rain (mm/hr)	T.C. (mins)	US/IL Σ (m)	I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Fl (l/s)	ow Ve (m/	l Cap s) (1/s)	Flow (l/s)	
1.00	0 50.00	5.01	17.841	0.206	0.0	0.0	0	.0 4.	51 318.7	27.9	
1.00	1 50.0	5.17	17.629	0.219	0.0	0.0	0	.0 1.	44 25.5«	29.7	
2.00	0 50.0	6.01	17.694	0.000	0.0	0.0	0	.0 0.	82 14.5	0.0	
2.00	1 50.0	6.05	17.362	0.440	0.0	0.0	0	.0 0.	83 14.7«	59.6	
1.00	2 48.03 3 47.03	L 6.68 3 6.96	17.335 17.108	0.699 0.699	0.0	0.0	0 0	.0 0. .0 0.	85 15.0« 85 15.0«	90.9 90.9	
				©1982-	2018 Innov	yze					

Curtins Consulting Ltd														Page 2
• • •														Mirm
Date 07/08/2020 09:54						Desig	ned by dir	nitro	v_i					Dcainago
File FS0316-CUR-00-00-	M3-C-	9200-1	/10_S	W_NETW	VORK	Check	ed by							Diamage
Innovyze Network 2018.1.1														
<u>Network Design Table for Surface Network 1</u>														
	PN	Length (m)	Fall (m)	Slope (1:X)	e I.Area) (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Secti	lon Type	e Auto Design	
	3.000	18.726	0.16	5 113.	5 0.017	5.00	0.0	0.600	0	150	Pipe/	'Condui	t 🔒	
	3.001	10.798	0.13	3 81.	3 0.000	0.00	0.0	0.600	0	150	Pipe/	Conduit	t 🧕	
	3.002	40.400	0.47	6 84.	9 0.025	0.00	0.0	0.600	0	225	Pipe/	Conduit	t 🔒	
	4.000	13.623	0.22	2 61.	4 0.000	5.00	0.0	0.600	0	150	Pipe/	'Condui	t 👌	
	5.000	13.611	0.09	3 146.	4 0.000	5.00	0.0	0.600	0	150	Pipe/	'Conduit	t 🔒	
	5.001	3.704	0.06	3 58.	8 0.000	0.00	0.0	0.600	0	150	Pipe/	'Conduit	t 💣	
	4.001	13.105	0.19	9 65.	9 0.000	0.00	0.0	0.600	0	150	Pipe/	'Condui	t 🔒	
					<u>N</u>	etwork	Results 1	<u>able</u>						
	Pl	N Ra	in	T.C.	US/IL Σ	I.Area	Σ Base	Foul	Add	Flow	Vel	Cap	Flow	
		(mm	/hr) ((mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/	′s)	(m/s)	(l/s)	(1/s)	
	3 0	00 5	0 0 0	5 33	18 030	0 017	0 0	0 0		0 0	0 94	167	23	
	3.0	01 5	0.00	5.49	17.946	0.017	0.0	0.0		0.0	1.12	19.7	2.3	
	3.0	02 5	00.0	5.97	17.746	0.042	0.0	0.0		0.0	1.42	56.5	5.7	
	4.0	00 5	00.0	5.18	18.227	0.000	0.0	0.0		0.0	1.29	22.7	0.0	
	5.0	00 5	0.00	5.27	18.155	0.000	0.0	0.0		0.0	0.83	14.6	0.0	
	5.0	01 5	00.0	5.32	18.062	0.000	0.0	0.0		0.0	1.31	23.2	0.0	
	4.0	01 5	0.00	5.50	18.000	0.000	0.0	0.0		0.0	1.24	21.9	0.0	
						©1982-	2018 Innov	vyze						

Curtins Consulting Ltd	l												Page 3
· ·													Mirco
Date 07/08/2020 09:54						Desig	ned by di	Dcainago					
File FS0316-CUR-00-00-	МЗ-С-	9200-V	10_SI	W_NETV	NORK	Check	ed by			Diamage			
Innovyze						Netwo	rk 2018.1	.1					
<u>Network Design Table for Surface Network 1</u>													
	PN	Length (m)	Fall (m)	Slope	e I.Area) (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD DIA SECT (mm)	Secti	on Type	e Auto Design	
	6.000	4.970	0.21	4 23.2	2 0.029	5.00	0.0	0.600	o 150) Pipe/	Conduit	: A	
	4.002	10.059	0.45	6 22.3	1 0.000	0.00	0.0	0.600	o 150) Pipe/	Conduit	•	
	7.000	19.601	0.33	5 58.	5 0.000	5.00	0.0	0.600	o 150) Pipe/	Conduit	: 🔒	
	7.001	10.805	0.34	6 31.2	2 0.000	0.00	0.0	0.600	o 150) Pipe/	Conduit	- -	
	3.003	16.483	0.33	3 49.	5 0.039	0.00	0.0	0.600	o 225	Pipe/	Conduit	•	
					N	etwork	Results :	<u>[able</u>					
	PI	N Ra (mm,	in /hr) (T.C. (mins)	US/IL Σ (m)	I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
	6.0	00 50	0.00	5.04	18.000	0.029	0.0	0.0	0.0	2.10	37.1	3.9	
	4.0	02 50	0.00	5.57	17.776	0.029	0.0	0.0	0.0	2.15	38.1	3.9	
	7.0 7.0	00 50 01 50	0.00 0.00	5.25 5.35	<mark>18.000</mark> 17.665	0.000	0.0	0.0 0.0	0.0	1.32 1.81	23.3 32.0	0.0 0.0	
	3.0	03 50	0.00	6.11	17.245	0.109	0.0	0.0	0.0	1.86	74.1	14.7	
						©1982-	2018 Innov	/yze					
								-					

Curtins Consulting Ltd														Page 4
Date 07/08/2020 09:54	~					Desig	ned by dir	nitrov	v_i					Micro Drainage
File FS0316-CUR-00-00-M3-	C-920	0-01	LO_SW	_NETV	WORK	Check	ed by	-						
Innovyze						Netwo	rk 2018.1	.1						
Network Design Table for Surface Network 1														
PI	l Ler (:	ngth m)	Fall (m)	Slope	e I.Area) (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Secti	on Typ	e Auto Design	
1.0	04 15.	.764	0.092	2 171.3	3 0.053	0.00	0.0	0.600	0	375	Pipe/	Condui	t 🤒	
8.0	00 24.	.025	0.411	58.	5 0.000	5.00	0.0	0.600	0	150	Pipe/	Condui	t 🔒	
8.0	01 5.	.353	0.092	58.2	2 0.000	0.00	0.0	0.600	0	150	Pipe/	Condui	t 🕜	
1.0	05 48.	.879	0.092	531.3	3 0.000	0.00	0.0	0.600	0	375	Pipe/	Condui	t 🦀	
9.0	00 35.	.349	0.153	231.0	0 0.028	5.00	0.0	0.600	0	150	Pipe/	Condui	t 🔒	
9.0	01 5.	.290	0.153	34.0	6 0.000	0.00	0.0	0.600	0	150	Pipe/	Condui	t 💣	
	02 57.	.007	0.200	100.	2 0.000	0.00	0.0	0.000	0	100	i they	COlluur		
					<u>N</u>	etwork	Results 1	<u>able</u>						
	PN	Rai (mm/ł	n '	T.C. mins)	US/IL Σ (m)	I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add (1/	Flow (s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
:	1.004	46.	.40	7.15	16.756	0.861	0.0	0.0		0.0	1.38	152.6	108.1	
8	8.000	50.	.00	5.30	18.000	0.000	0.0	0.0		0.0	1.32	23.3	0.0	
8	8.001	50.	.00	5.37	17.589	0.000	0.0	0.0		0.0	1.32	23.3	0.0	
:	1.005	43.	.24	8.20	16.589	0.861	0.0	0.0		0.0	0.78	86.1«	108.1	
	9.000	50.	.00	5.90	18.500	0.028	0.0	0.0		0.0	0.66	11.6	3.8	
	9.001	50.	.00	5.95	18.347	0.028	0.0	0.0		0.0	1.72	30.4	3.8	
	9.002	47.	.71	6.76	18.195	0.028	0.0	0.0		0.0	0.80	14.2	3.8	
						©1982-	2018 Innov	vyze						

Curtins Consulting Ltd											I	Page 5
Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9 Innovyze)200-V	LO_SW	_NETW	ORK	Design Checke Networ	ned by dim ed by ck 2018.1.	itrov 1	_i_				Micro Drainage
Network Design Table for Surface Network 1												
PN	Length (m)	Fall (m)	Slope	e I.Area) (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design	
9.003	2.946	1.147	2.	6 0.000	0.00	0.0	0.600	0	150	Pipe/Condui	:	
1.006 1.007	19.837 17.823	0.109 0.064) 182. 278.	0.094 5 0.000	0.00	0.0	0.600 0.600	0	375 375	Pipe/Condui Pipe/Condui	⊑ ⊕ 5 ⊕	
10.000 10.001 10.002 10.003 10.004	12.185 34.692 10.654 14.037 1.346	0.192 0.154 0.047 0.075 0.021	2 63.3 225.0 225.0 5 187.3 64.3	5 0.000 0 0.037 0 0.036 2 0.000 1 0.000	5.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0	0.600 0.600 0.600 0.600 0.600		225 225 225 225 300	Pipe/Condui Pipe/Condui Pipe/Condui Pipe/Condui Pipe/Condui	2 ⊕ 5 ⊕ 2 ⊕ 2 ⊕	
				Ne	etwork	Results T	<u>able</u>				-	
PN	Ra (mm/	in 'hr) (1	T.C. mins)	US/IL Σ (m)	I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add 1 (1/	Flow s)	Vel Cap (m/s) (l/s)	Flow (l/s)	
9.0	03 47	.69	6.77	17.945	0.028	0.0	0.0		0.0	6.34 112.0	3.8	
1.0	06 42 07 41	.57	8.44 8.72	16.573 16.464	0.983 0.983	0.0	0.0		0.0	1.34 148.0 1.08 119.4	113.3 113.3	
10.0 10.0 10.0 10.0 10.0	00 50 01 50 02 50 03 49 04 49	0.00 0.00 0.00 0.61 0.57	5.12 5.79 5.99 6.24 6.25	18.355 18.163 18.009 17.948 17.796	0.000 0.037 0.073 0.073 0.073	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0	1.64 65.4 0.87 34.5 0.87 34.5 0.95 37.9 1.97 139.0	0.0 5.0 9.9 9.9 9.9	
				(D1982-2	2018 Innov	yze					

Curtins Consulting Ltd												Page 6
· ·												Mirco
Date 07/08/2020 09:54				Design	ned by dim	itrov	_i					Drainago
File FS0316-CUR-00-00-M3-C-92	200-V10_3	SW_NETW	ORK	Checke	ed by							Diamage
Innovyze	Network 2018.1.1											
	<u>Network Design Table for Surface Network 1</u>											
PN I	length Fa (m) (n	ll Slope	e I.Area) (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section	on Type	e Auto Design	
10.005 5 10.006	59.827 0.3 7.145 0.0	22 185.9 41 173.2	9 0.027	0.00	0.0	0.600	0	300 300	Pipe/	Conduit Conduit	⊕ ≜	
10.007 1 10.008 3	4.226 0.0 39.489 0.2	79 181.2 38 165.7	2 0.000 7 0.127	0.00	0.0	0.600 0.600	0 0	300 300	Pipe/ Pipe/	Conduit Conduit	∂ ∂	
11.000 4 11.001 3	40.628 0.2 80.063 0.1	29 177.4	4 0.043 8 0.000	5.00 0.00	0.0	0.600	0	150 150	Pipe/	Conduit Conduit	A	
12.000	30.553 0.2	09 146.2	2 0.111	5.00	0.0	0.600	0	225	Pipe/	Conduit	•	
12.001	0.0/1 0.1	.// 45.0	0.000	0.00	Deculte T	0.000	0	223	Pipe/	Conduit	· 🙂	
			<u>100</u>	LEWOIK	INCOULCO I							
PN	Rain (mm/hr)	T.C. (mins)	US/IL Σ (m)	I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add F (1/s	low s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
10.00	5 46.50 6 46.17	7.12 7.22	17.756 17.423	0.100 0.100	0.0	0.0		0.0	1.15 1.19	81.3 84.2	12.6 12.6	
10.00 10.00	7 45.52 8 43.90	7.42 7.96	17.371 17.295	0.100 0.227	0.0	0.0	1	0.0	1.16 1.22	82.3 86.1	12.6 27.0	
11.00 11.00	0 50.00 1 48.43	5.90 6.56	17.950 17.721	0.043 0.043	0.0	0.0		0.0	0.75 0.76	13.3 13.5	5.8 5.8	
12.00	0 50.00 1 50.00	5.47 5.54	17.950 17.741	0.111 0.111	0.0	0.0		0.0	1.08 1.94	42.9 77.2	15.0 15.0	
			(D1982-2	2018 Innov	yze						

Curtins Consulting Ltd											Page 7
• •											Mirco
Date 07/08/2020 09:54				Design	ned by dim	itrov	_i				Drainago
File FS0316-CUR-00-00-M3-C-92	00-V10_S	SW_NETM	IORK	Checke	ed by						Diamage
Innovyze	Network 2018.1.1										
	Network Design Tal								1		
PN Le	ength Fai (m) (m	ll Slop a) (1:X	e I.Area) (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	e Auto Design	
13.000 3 13.001	1.863 0.2 6.231 0.0	34 136. 76 82.	2 0.047 0 0.000	5.00 0.00	0.0	0.600	0	150 150	Pipe/Conduit Pipe/Conduit	•	
12.002	2.728 0.0	83 32.	9 0.000	0.00	0.0	0.600	0	225	Pipe/Conduit		
14.000 1	1.038 0.0	74 149.	2 0.017	5.00	0.0	0.600	0	150	Pipe/Conduit	. 🔒	
14.001 23	8.039 0.4	54 61.	8 0.020	0.00	0.0	0.600	0	150	Pipe/Conduit	. 🧕	
12.003	8.018 0.1	00 80.	2 0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	•	
			Ne	etwork	Results T	<u>able</u>					
PN	Rain (mm/hr)	T.C. (mins)	US/IL Σ (m)	l.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add F (1/s	low 3)	Vel Cap (m/s) (l/s)	Flow (l/s)	
13.000	50.00	5.62	17.950	0.047	0.0	0.0		0.0	0.86 15.2	6.4	
13.001	50.00	5.71	17.716	0.047	0.0	0.0		0.0	1.11 19.6	6.4	
12.002	50.00	5.73	17.564	0.158	0.0	0.0		0.0	2.29 91.1	21.4	
14.000	50.00	5.22	18.098	0.017	0.0	0.0		0.0	0.82 14.5	2.3	
14.001	50.00	5.59	18.024	0.037	0.0	0.0		0.0	1.28 22.7	5.0	
12.003	50.00	5.82	17.481	0.195	0.0	0.0		0.0	1.46 58.1	26.4	
			(D1982-2	2018 Innov	yze					

Curtins Consulting Ltd									Page 8
<pre> Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-920</pre>	00-V10 SW	NETWORK.	Desig	ned by din	itrov	_i			Micro Drainage
Innovyze	ovyze Network 2018.1.1								
PN Le	ngth Fall (m) (m)	. Slope I.A (1:X) (ha	cea T.E. a) (mins)	Base Flow (l/s)	k (mm)	HYD DIA SECT (mm)	Section Type	e Auto Design	
15.000 29	.842 0.510	0 58.5 0.0	072 5.00	0.0	0.600	o 150	Pipe/Condui	t 💣	
1.008 5 1.009 18	.461 0.050	0 109.2 0.0 2 114.2 0.0	0.00 0.00 0.00	0.0	0.600 0.600	o 375 o 375	Pipe/Condui Pipe/Condui	t 🔒 t 🔒	
			<u>Network</u>	Results I	<u>able</u>				
PN	Rain (mm/hr) (T.C. US/II (mins) (m)	Σ I.Area (ha)	a ΣBase Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel Cap (m/s) (l/s)	Flow (l/s)	
15.000	50.00	5.38 17.50	0 0.072	2 0.0	0.0	0.0	1.32 23.3	9.8	
1.008	41.71 41.27	8.77 16.40 8.95 16.35	0 1.51 0 1.51	9 0.0 9 0.0	0.0	0.0 0.0	1.73 191.4 1.69 187.2	171.6 171.6	
			©1982-	2018 Innov	yze				
Curtins Consulting Ltd									Page 9
---	-------------------	----------------	----------------	------------------	------------------	----------------	----------------------------------	-----------------------	--------
• • • Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V Innovyze	Micro Drainage								
				Upst	cream M	anhole			
PN	Hyd Sect	Diam (mm)	MH (Name	C.Level : (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)	
1.000	0	300 150 :	SW01 SW02A	19.300 19.308	17.841 17.629	1.159 1.529	Open Manhole Open Manhole	1200 600	
2.000 2.001	0	150 150	SW09 SW10	19.300 19.300	17.694 17.362	1.456 1.788	Open Manhole Open Manhole	450 600	
1.002	0	150 150	SW02B SW03	19.276 19.166	17.335 17.108	1.791 1.908	Open Manhole Open Manhole	600 1200	
				Downs	stream	Manhole	2		
PN I	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Deptl (m)	n MH Connection	MH DIAM., L*W (mm)	
1.000	3.600 13.668	12.3 48.8	SW02A SW02B	19.308 19.276	17.548 17.348	1.460) Open Manhole 3 Open Manhole	e 600 e 600	
2.000 4	49.800 1.741	150.0 145.1	SW10 SW02B	19.300 19.276	17.362 17.350	1.78	8 Open Manhole 6 Open Manhole	e 600 e 600	
1.002 3 1.003 1	31.852 14.506	139.7 139.5	SW03 SW04	19.166 19.125	17.107 17.004	1.90 1.97	9 Open Manhole 1 Open Manhole	e 1200 e 1350	
				©1982	-2018]	Innovyz	e		

Curtins Consulting Ltd	Page 10								
Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V Innovyze	710_SM	V_NET	WORK.	Des Che	igned b cked by work 20	y dimit 18.1.1	trov_i		Micro Drainage
				Ups	tream M	lanhole			
PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)	
3.000 3.001 3.002	0	150 150 225	SW11 8 SW12	19.050 19.040 19.350	18.030 17.946 17.746	0.870 0.944 1.379	Open Manhole Open Manhole Open Manhole	600 1050 600	
4.000	0	150	10	19.020	18.227	0.643	Open Manhole	1050	
5.000 5.001	0	<mark>150</mark> 150	11 12	19.020 19.020	18.155 18.062	0.715 0.808	Open Manhole Open Manhole	1050 1050	
				<u>Down</u>	stream	<u>Manhol</u>	<u>e</u>		
PN	Length (m)	Slope	e MH Name	C.Level e (m)	. I.Level (m)	D.Depti (m)	h MH Connection	MH DIAM., L*W (mm)	
3.000 3.001 3.002	18.726 10.798 40.400	113.5 81.3 84.9	5 8 3 SW12 9 SW13	19.040 19.350 19.100	17.865 17.813 17.270	1.02 1.38 1.60	5 Open Manhole 7 Open Manhole 5 Open Manhole	e 1050 e 600 e 1200	
4.000	13.623	61.4	1 SW14	19.098	18.005	0.94	3 Open Manhole	e 450	
5.000 5.001	13.611 3.704	146.4 58.8	1 12 3 SW14	19.020 19.098	18.062 17.999	0.80 0.94	8 Open Manhole 9 Open Manhole	e 1050 e 450	
				©1982	2-2018	Innovyz	ze		

<pre> Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK Checked by Innovyze Network 2018.1.1 PIPELINE SCHEDULES for Surface Network 1 Upstream Manhole FN Hyd Diam MH C.Level I.Level D.Depth MH MH DIAM., L*W Sect (mm) Name (m) (m) (m) Connection (mm) </pre>	
PIPELINE SCHEDULES for Surface Network 1 Upstream Manhole PN Hyd Diam MH C.Level I.Level D.Depth MH MH DIAM., L*W Sect (mm) Name (m) (m) Connection (mm)	D
<u>Upstream Manhole</u> PN Hyd Diam MH C.Level I.Level D.Depth MH MH DIAM., L*W Sect (mm) Name (m) (m) Connection (mm)	
PN Hyd Diam MH C.Level I.Level D.Depth MH MH DIAM., L*W Sect (mm) Name (m) (m) (m) Connection (mm)	
4.001 o 150 SW14 19.098 18.000 0.948 Open Manhole 450	
6.000 o 150 14 19.100 18.000 0.950 Open Manhole 1050	
4.002 o 150 SW15 19.066 17.776 1.140 Open Manhole 1200	
7.00001501519.05018.0000.900Open Manhole10507.00101501619.05017.6651.235Open Manhole1050	
Downstream Manhole	
PN Length Slope MH C.Level I.Level D.Depth MH MH DIAM., L*W (m) (1:X) Name (m) (m) (m) Connection (mm)	
4.001 13.105 65.9 SW15 19.066 17.801 1.115 Open Manhole 1200	
6.000 4.970 23.2 SW15 19.066 17.786 1.130 Open Manhole 1200	
4.002 10.059 22.1 SW13 19.100 17.320 1.630 Open Manhole 1200	
7.00019.60158.51619.05017.6651.235Open Manhole10507.00110.80531.2SW1319.10017.3191.631Open Manhole1200	
©1982-2018 Innovyze	

Curtins Consulting Ltd									Page 12
Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-	v10_SI	N_NET	WORK.	Des: Cheo	igned b cked by	y dimit	trov_i		Micro Drainage
Innovyze				Net	work 20	18.1.1			
		<u>pipi</u>	ELINE	SCHEDU	LES for	Surfa	.ce Network	1	
				<u>Ups</u>	tream M	<u>lanhole</u>	1		
PN	Hyd Sect	Diam (mm)	MH Name	C.Level : (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)	
3.00	3 о	225	SW13	19.100	17.245	1.630	Open Manhole	1200	
1.00	4 o	375	SW04	19.125	16.756	1.994	Open Manhole	1350	
8.00) 0	150	20	19.050	18.000	0.900	Open Manhole	1050	
8.00	1 o	150	21	19.050	17.589	1.311	Open Manhole	1050	
1.00	ōo	375	20	19.100	16.589	2.136	Open Manhole	1350	
				<u>Down</u>	stream	Manhol	<u>e</u>		
PN	Length (m)	Slope	e MH) Name	C.Level e (m)	I.Level (m)	D.Dept (m)	h MH Connection	MH DIAM., L*W (mm)	
3.003	16.483	49.	5 SW04	4 19.125	16.912	1.98	8 Open Manhole	e 1350	
1.004	15.764	171.	3 20	0 19.100	16.664	2.06	1 Open Manhole	e 1350	
8.000	24.025	58.	5 21	1 19.050	17.589	1.31	1 Open Manhole	e 1050	
8.001	5.353	58.	2 20	0 19.100	17.497	1.45	3 Open Manhole	e 1350	
1.005	48.879	531.	3 SW05	5 19.100	16.497	2.22	8 Open Manhole	e 1350	
				©1982	2-2018	Innovy:	ze		
						4			

Curtins Consulting Ltd									Page 13
Date 07/08/2020 09:54				Desi	igned by	/ dimit	rov i		
File FS0316-CUR-00-00-M3-C-9200-V	Diamaye								
Innovyze									
		PIPE	LINE	SCHEDU	LES for	Surfac	e Network 1	-	
				Ups	tream M	anhole			
PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)	
9.000	0	150 150	SW16 20	19.130 19.000	18.500 18.347	0.480	Open Manhole Open Manhole	450 1050	
9.002	0	150	SW17	19.060	18.195	0.715	Open Manhole	600	
9.003	0	150	SW18	19.050	17.945	0.955	Open Manhole	600	
1.006	0	375	SW05	19.100	16.573	2.152	Open Manhole	1350	
1.007	0	375	SW06	19.060	16.464	2.221	Open Manhole	1350	
10.000	0	225	SW19	19.100	18.355	0.520	Open Manhole	450	
				Down	stream 1	Manhole	2		
PN	Length	Slope	e MH	C.Level	I.Level	D.Depth	n MH	MH DIAM., L*W	
	(m)	(1:X)	Name	e (m)	(m)	(m)	Connection	(mm)	
9.000	35.349	231.0) 20	19.000	18.347	0.503	3 Open Manhole	e 1050	
9.001	5.290	34.6	5 SW17	19.060	18.194	0.716	6 Open Manhole	e 600	
9.002	39.057	156.2	2 SW18	19.050	17.945	0.955	5 Open Manhole	600	
9.003	2.946	2.6	5 SW05	5 19.100	16.798	2.152	2 Open Manhole	1350	
1.006	19.837	182.0) SW06	5 19.060	16.464	2.221	l Open Manhole	1350	
1.007	17.823	278.5	5 TANF	18.941	16.400	2.166	6 Open Manhole	1350	
10.000	12.185	63.5	5 19	9 19.100	18.163	0.712	2 Open Manhole	e 1050	
				©1982	2-2018 I	nnovyz	e		

Curtins Consulting Ltd						
• •		Micco				
Date 07/08/2020 09:54	Designed by dimitrov_i	Dcainago				
<pre>File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK</pre>	Checked by	Diamage				
Innovyze	Network 2018.1.1	1				

PIPELINE SCHEDULES for Surface Network 1

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
10.001	0	225	19	19.100	18.163	0.712	Open Manhole	1050
10.002	0	225	20	19.100	18.009	0.866	Open Manhole	1050
10.003	0	225	SW20	19.100	17.948	0.927	Open Manhole	600
10.004	0	300	SW21	19.100	17.796	1.004	Open Manhole	600
10.005	0	300	SW22	19.100	17.756	1.044	Open Manhole	600
10.006	0	300	SW24	19.100	17.423	1.377	Open Manhole	600
10.007	0	300	SW25	19.100	17.371	1.429	Open Manhole	600
10.008	0	300	SW26	19.100	17.295	1.505	Open Manhole	1200

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
10.001	34.692	225.0	20	19.100	18.009	0.866	Open Manhole	1050
10.002	10.654	225.0	SW20	19.100	17.961	0.914	Open Manhole	600
10.003	14.037	187.2	SW21	19.100	17.873	1.002	Open Manhole	600
10.004	1.346	64.1	SW22	19.100	17.775	1.025	Open Manhole	600
10.005	59.827	185.9	SW24	19.100	17.435	1.365	Open Manhole	600
10.006	7.145	173.2	SW25	19.100	17.382	1.418	Open Manhole	600
10.007	14.226	181.2	SW26	19.100	17.292	1.508	Open Manhole	1200
10.008	39.489	165.7	TANK	18.941	17.057	1.585	Open Manhole	1350

©1982-2018 Innovyze

Curtins Consulting Ltd									Page 15
• • •									Micro
Date 07/08/2020 09:54	Drainago								
File FS0316-CUR-00-00-M3-C-9200-V	Diamage								
Innovyze									
		<u>pipe</u>	LINE	SCHEDU	LES for	Surfac	e Network	1	
				<u>Ups</u>	tream M	anhole			
PN	Hyd Sect	Diam (mm)	MH (Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)	
11.000) 0	150	SW33	19.300	17.950	1.200	Open Manhole	450	
11.001	L O	150	SW34	19.110	17.721	1.239	Open Manhole	450	
12.000) 0	225	SW27	18.849	17.950	0.674	Open Manhole	600	
12.001	L o	225	SW28	18.857	17.741	0.891	Open Manhole	600	
13.000		150	SW31	18.840	17.950	0.740	Open Manhole	600	
13.001	L o	150	SW32	18.861	17.716	0.995	Open Manhole	1200	
				<u>Down</u>	stream	Manhole	2		
PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	. I.Level (m)	D.Depth (m)	n MH Connection	MH DIAM., L*W (mm)	
11.000	40.628	177.4	SW34	19.110	17.721	1.239) Open Manhol	e 450	
11.001	30.063	171.8	TANK	18.941	17.546	1.245	5 Open Manhol	e 1350	
12.000	30.553	146.2	SW28	18.857	17.741	0.891	l Open Manhol	e 600	
12.001	8.071	45.6	SW29	19.175	17.564	1.380	6 Open Manhol	e 1200	
13.000 13.001	31.863 6.231	136.2 82.0	SW32 SW29	18.861 19.175	17.716 17.640	0.995	0 Open Manhol 0 Open Manhol	e 1200 e 1200	
				©1982	2-2018	Innovvz	e		
				-		7			

Curtins Consulting Ltd									Page 16
• • Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-VI	 10_sw	_NETW	ORK.	Desi Chec	.gned by	y dimit	rov_i		Micro Drainage
Innovyze				Netw	ork 201	8.1.1			
		<u>PIPE</u>	LINE	SCHEDUI <u>Ups</u> t	LES for tream M	Surfac anhole	e Network 1	-	
PN	Hyd Sect	Diam (mm) 1	MH Name	C.Level : (m)	I.Level 1 (m)	D.Depth (m)	MH I Connection	MH DIAM., L*W (mm)	
12.002	0	225	SW29	19.175	17.564	1.386	Open Manhole	1200	
14.000 14.001	0 0	150 150	SW35 SW36	19.380 19.320	18.098 18.024	1.132 1.146	Open Manhole Open Manhole	600 600	
12.003	0	225	SW30	19.175	17.481	1.469	Open Manhole	1200	
15.000	0	150	53	19.000	17.500	1.350	Open Manhole	1050	
				Downs	stream 1	Manhole	<u>.</u>		
PN I	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)	
12.002	2.728	32.9	SW30	19.175	17.481	1.469	Open Manhole	e 1200	
14.000 1 14.001 2	L1.038 28.039	149.2 61.8	SW36 SW30	19.320 19.175	18.024 17.570	1.146 1.455	0pen Manhole 0pen Manhole	e 600 e 1200	
12.003	8.018	80.2	TANK	18.941	17.381	1.335	Open Manhole	e 1350	
15.000 2	29.842	58.5	TANK	18.941	16.990	1.801	. Open Manhole	e 1350	
				©1982	-2018 I	innovyz	9		

Curtins Consulting Ltd								Page 17
Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-920	0-V10_S	W_NETWO	RK Cł	esigned b hecked by	y dimit	trov_i		Micro Drainage
Innovyze			INE	etwork 20	18.1.1			
		PIPEL	INE SCHE	DULES for	Surfa	<u>ce Network 1</u>	-	
			U	ps <u>tream</u> M	<u>anhole</u>			
			_	<u> </u>	-			
:	N Hyd Sect	Diam M (mm) Na	IH C.Leve me (m)	l I.Level (m)	D.Depth (m)	MH MH M	MH DIAM., L*W (mm)	
1.	008 o 009 o	375 TA 375 SW	NK 18.94 107 19.12	1 16.400 6 16.350	2.166 2.401	Open Manhole Open Manhole	1350 1350	
			Do	wnstream	Manhol	<u>e</u>		
PN	Lengtl (m)	n Slope (1:X) 1	MH C.Lev Name (m)	el I.Level (m)	D.Deptl (m)	h MH Connection	MH DIAM., L*W (mm)	
1.0	08 5.461 09 18.504	109.2 s 114.2 s	SW07 19.1 SW08 19.5	26 16.350 69 16.188	2.402 3.000	1 Open Manhole 6 Open Manhole	1350 1350	
			©19	82-2018	Innovyz	ze		

Curtins Consulting Ltd	Page 18	
· · · · · · · · · · · · · · · · · · ·		Micro
Date 07/08/2020 09:54	Designed by dimitrov_i	Dcainago
File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Checked by	Diamaye
Innovyze	Network 2018.1.1	

<u>Area Summary for Surface Network 1</u>

Ріре	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
1.000	User	-	100	0.206	0.206	0.206
1.001	User	-	100	0.013	0.013	0.013
2.000	-	-	100	0.000	0.000	0.000
2.001	-	-	100	0.440	0.440	0.440
1.002	User	-	100	0.040	0.040	0.040
1.003	-	-	100	0.000	0.000	0.000
3.000	User	-	100	0.017	0.017	0.017
3.001	-	-	100	0.000	0.000	0.000
3.002	User	-	100	0.025	0.025	0.025
4.000	-	-	100	0.000	0.000	0.000
5.000	-	-	100	0.000	0.000	0.000
5.001	-	-	100	0.000	0.000	0.000
4.001	-	-	100	0.000	0.000	0.000
6.000	User	-	100	0.029	0.029	0.029
4.002	-	-	100	0.000	0.000	0.000
7.000	-	-	100	0.000	0.000	0.000
7.001	-	-	100	0.000	0.000	0.000
3.003	User	-	100	0.039	0.039	0.039
1.004	User	-	100	0.011	0.011	0.011
	User	-	100	0.013	0.013	0.024
	User	-	100	0.029	0.029	0.053
8.000	-	-	100	0.000	0.000	0.000
8.001	-	-	100	0.000	0.000	0.000
1.005	-	-	100	0.000	0.000	0.000
9.000	User	-	100	0.010	0.010	0.010
	User	-	100	0.018	0.018	0.028
9.001	-	-	100	0.000	0.000	0.000

Curtins Consulting Ltd	Page 19	
· · · · · · · · · · · · · · · · · · ·		Mirro
Date 07/08/2020 09:54	Designed by dimitrov_i	Desinado
File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Checked by	Diamaye
Innovyze	Network 2018.1.1	

<u>Area Summary for Surface Network 1</u>

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total	
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)	
9.002	-	-	100	0.000	0.000	0.000	
9.003	-	-	100	0.000	0.000	0.000	
1.006	User	-	100	0.094	0.094	0.094	
1.007	-	-	100	0.000	0.000	0.000	
10.000	-	-	100	0.000	0.000	0.000	
10.001	User	-	100	0.037	0.037	0.037	
10.002	User	-	100	0.036	0.036	0.036	
10.003	-	-	100	0.000	0.000	0.000	
10.004	-	-	100	0.000	0.000	0.000	
10.005	User	-	100	0.027	0.027	0.027	
10.006	-	-	100	0.000	0.000	0.000	
10.007	-	-	100	0.000	0.000	0.000	
10.008	User	-	100	0.127	0.127	0.127	
11.000	User	-	100	0.043	0.043	0.043	
11.001	-	-	100	0.000	0.000	0.000	
12.000	User	-	100	0.111	0.111	0.111	
12.001	-	-	100	0.000	0.000	0.000	
13.000	User	-	100	0.047	0.047	0.047	
13.001	-	-	100	0.000	0.000	0.000	
12.002	-	-	100	0.000	0.000	0.000	
14.000	User	-	100	0.017	0.017	0.017	
14.001	User	-	100	0.020	0.020	0.020	
12.003	-	-	100	0.000	0.000	0.000	
15.000	User	-	100	0.072	0.072	0.072	
1.008	-	-	100	0.000	0.000	0.000	
1.009	-	-	100	0.000	0.000	0.000	
				Total	Total	Total	
		©1	982-	2018 Inn	ovvze		

Curtins Consulting Ltd		Page 20			
• • • Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK.	Designed by dimitrov_i Checked by	Micro Drainage			
Innovyze	Network 2018.1.1				
<u>Area S</u> Pipe PIMP I Number Type N	Summary for Surface Network 1 PIMP PIMP Gross Imp. Pipe Total Name (%) Area (ha) Area (ha) (ha)				
	1.519 1.519 1.519				
	©1982-2018 Innovyze				
	<u>a</u>				

Curtins Consulting Ltd										Page 21
Date 07/08/2020 09:54				Desig	ned by dimi	trov	_i			Micro Drainago
File FS0316-CUR-00-00-M3-C-92	200-V1	0 SW	NETWORK	Check	ed by					Diamage
Innovyze				Netwo	ork 2018.1.1					
Network Classifications for Surface Network 1										
PN	USMH Name	Pipe Dia (mm)	Min Cover Ma Depth (m)	x Cover Depth (m)	Ріре Туре	MH Dia (mm)	MH Width (mm)	MH Ring Depth (m)	МН Туре	
1.000	SW01	300	1.159	1.460	Unclassified	1200	0	1.159	Unclassified	
2 000	SWUZA	150	1.529	1 788	Unclassified	450	0	1 456	Unclassified	
2.000	SW10	150	1.776	1.788	Unclassified	600	0	1.788	Unclassified	
1.002	SW02B	150	1.791	1.909	Unclassified	600	0	1.791	Unclassified	
1.003	SW03	150	1.908	1.971	Unclassified	1200	0	1.908	Unclassified	
3.000	SW11	150	0.870	1.025	Unclassified	600	0	0.870	Unclassified	
3.001	8	150	0.944	1.387	Unclassified	1050	0	0.944	Unclassified	
3.002	SW12	225	1.379	1.605	Unclassified	600	0	1.379	Unclassified	
4.000	10	150	0.643	0.943	Unclassified	1050	0	0.643	Unclassified	
5.000	11	150	0.715	0.808	Unclassified	1050	0	0.715	Unclassified	
5.001	12	150	0.808	0.949	Unclassified	1050	0	0.808	Unclassified	
4.001	SW14	150	0.948	1.115	Unclassified	450	0	0.948	Unclassified	
6.000	14	150	0.950	1.130	Unclassified	1050	0	0.950	Unclassified	
4.002	SW15	150	1.140	1.630	Unclassified	1200	0	1.140	Unclassified	
7.000	15	150	0.900	1.235	Unclassified	1050	0	0.900	Unclassified	
7.001	16	150	1.235	1.631	Unclassified	1200	0	1 620	Unclassified	
5.003	SWIS	220	1.030	2 061	Unclassified	1250	0	1 004	Unclassified	
1.004	20	150	1.994	1 311	Unclassified	1050	0	1.994	Unclassified	
8.000	20	150	1 311	1 /53	Unclassified	1050	0	1 311	Unclassified	
1 005	21	375	2 136	2 228	Unclassified	1350	0	2 136	Unclassified	
9.000	SW16	150	0.480	0.503	Unclassified	450	0	0.480	Unclassified	
9.001	20	150	0.503	0.716	Unclassified	1050	0 0	0.503	Unclassified	
9.002	SW17	150	0.715	0.955	Unclassified	600	0	0.715	Unclassified	
				©1982-	2018 Innovy	70				
				21202						

	Curtins Consulting Ltd										Page 22
Image: State of the state	•										
Image Designed by dimitrov_i Date 07/08/2020 09:54 Designed by dimitrov_i Checked by Innovyze Network 2018.1.1 Designed by dimitrov_i Innovyze Network 2018.1.1 Network 2018.1.1 Designed by dimitrov_in (mn) (mn) (mn) (mn) (mn) (mn) (mn) (mn											
Date 07/08/2020 09:54 Designed by dimitrov_i Operation File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK Checked by Network 2018.1.1 Innovyze Network 2018.1.1 Not switch 2018.1.1 Network 2018.1.1											Micco
Date Softwork Consist Designed by diminitor_1 Designed by diminitor_1 Tinovyze Network 2018.1.1 Deckéd by Decket by	$D_{2} = 0.7/0.8/2020 0.09.54$				Desig	ned by dimi	trov	i			
Pile PS0315-004-00-00-03-00-9200-910_SM_NETWORK Network 2018.1.1 Network 2018.1.1 Network Classifications for Surface Network 1 Name Dia Dopth oppth (m) Mit Mit Mit Mit Ring Mit Type Dia Wicht Dopth (m) 9.003 SW18 150 0.955 2.152 Unclassified 1500 0 2.55 Unclassified 1.000 SW19 225 0.520 0.712 Unclassified 1500 0 2.152 Unclassified 1.000 SW19 225 0.520 0.712 Unclassified 1500 0 0.212 Unclassified 1.000 SW19 225 0.520 0.712 Unclassified 1050 0 0.520 Unclassified 1.000 SW19 225 0.866 0.914 Unclassified 1050 0 0.686 Unclassified 10.000 SW19 225 0.927 1.022 Unclassified 1050 0 0.686 Unclassified 10.000 SW19 230 1.004 1.025 Unclassified 600 0 0.277 Unclassified 10.003 SW16 230 1.004 1.025 Unclassified 600 1.004 Unclassified 10.003 SW26 230 1.644 1.355 Unclassified 600 1.377 Unclassified 10.007 SW25 300 1.505 Unclassified 600 1.505 Unclassified 11.000 Unclassified 10.005 SW26 230 1.245 Unclassified 600 1.239 Unclassified 11.000 SW33 150 1.239 1.245 Unclassified 600 0 1.239 Unclassified 11.000 SW33 150 1.239 1.245 Unclassified 600 0.635 Unclassified 11.000 SW33 150 1.330	Date 0770072020 09:54	00 771	0 014		Desig		CIOV_	_ [_]			Drainage
Innovyze Network 2018.1.1 Network Classifications for Surface Network 1 PR USMH Pipe Min Cover Max Cover Pipe Type Dia Wickth Depth Name Dia Depth (mm) Depth (mm) MH MH MH Ring MH Type Dia Wickth Depth (mm) 9.003 SW18 150 0.955 2.152 0.153 Unclassified 1.006 SW05 375 2.152 2.221 Unclassified 1350 0 2.152 Unclassified 1.000 SW06 375 2.152 0.221 Unclassified 1050 0 0.955 Unclassified 10.000 SW19 225 0.520 0.712 Unclassified 1050 0 0.927 Unclassified 10.001 SW06 375 2.066 0.414 Unclassified 1050 0 0.466 Unclassified 10.002 20 225 0.466 0.414 Unclassified 600 0 1.044 Unclassified 10.003 SW20 225 0.466 1.305 Unclassified 600 0 1.429 Unclassified 10.004 SW21 300 1.004 1.355 Unclassified 600 0 1.429 Unclassified 10.005 SW23 150 1.429 1.585 Unclassified 100 0 1.429 Unclassified 10.005 SW31 150 1.429 1.585 Unclassified 100 0	File FS0316-CUR-00-00-M3-C-92	00-01	U_SW_	NETWORK	Check	ea by					
Nume Dia Name	Innovyze				Netwo	ork 2018.1.1					
Network Classifications for Surface Network 1 Name Dia Depth Depth Pipe Type (m) Mill Mill Mill Mill Mill Type Dis 9.003 SW18 150 0.955 2.152 Unclassified 00 0.955 Unclassified 1.006 SW05 375 2.152 2.221 Unclassified 1350 0 2.152 Unclassified 1.007 SW06 375 2.166 2.221 Unclassified 150 0 2.152 Unclassified 10.001 19 225 0.520 0.712 Unclassified 1050 0 2.721 Unclassified 10.002 20 225 0.520 0.712 Unclassified 1050 0 2.927 Unclassified 10.003 SW21 20 1.004 1.325 Unclassified 00 0 0.927 Unclassified 10.005 SW22 300 1.025 Inclassified 100 1.375 Unclassified <td></td>											
PN USMH Pipe Min Output (m) Pipe Pipe Pipe Min Min Min Mi Ring (m) Min Type 9.003 SW18 150 0.955 2.152 Unclassified 0 0.955 Unclassified 1.006 SW05 375 2.152 2.211 Unclassified 1350 0 2.152 Unclassified 1.007 SW06 375 2.166 2.221 Unclassified 0 0.952 Unclassified 10.001 19 225 0.520 0.712 Unclassified 050 0 0.712 Unclassified 10.004 SW21 300 1.004 Unclassified 0 0 0.967 Unclassified 10.003 SW22 225 0.866 Unclassified 0 0 1.429 Unclassified 10.004 SW21 300 1.377 1.418 Unclassified 0 0 1.429 Unclassified 10.005 SW24			Net	work Class	ificat	<u>ions for Su</u>	rface	e Netw	<u>vork 1</u>		
PN USMB Pipe Min Cover Pipe Pype Min M M M M M M Pype Min M M Type Min M <											
Name Dia Depth (m) Depth (m) Dia With (m) Depth (m) Dia With (m) Depth (m) 9.003 SW18 150 0.955 2.152 Unclassified 0.0 0 9.555 Unclassified 1.006 SW06 375 2.152 2.221 Unclassified 1350 0 2.2152 Unclassified 1.007 SW06 375 2.152 0.712 Unclassified 0 0.520 Unclassified 10.001 19 225 0.712 Unclassified 0 0 0.712 Unclassified 10.003 SW21 200 1.004 Unclassified 0 0 0.927 Unclassified 10.005 SW24 300 1.377 1.418 Unclassified 0 0 1.437 Unclassified 10.006 SW26 300 1.505 1.585 Unclassified 0 1.209 Unclassified 10.008 SW31 150 1.23	PN	USMH	Pipe	Min Cover Max	Cover	Pipe Type	MH	MH	MH Ring	МН Туре	
(mm) (m) (m) (mm) (mm) (m) 9.003 SW18 150 0.955 2.152 Unclassified 0.0 0.955 Unclassified 1.007 SW06 375 2.162 2.221 Unclassified 1350 0 2.221 Unclassified 10.000 SW19 225 0.520 0.712 Unclassified 1050 0 5.220 Unclassified 10.001 19 225 0.712 0.666 Unclassified 1050 0 5.20 Unclassified 10.002 20 225 0.727 1.066 Unclassified 00 0 9.27 Unclassified 10.004 SW21 300 1.044 1.265 Unclassified 600 0 1.047 Unclassified 10.006 SW24 300 1.377 1.418 Unclassified 600 0 1.429 Unclassified 10.007 SW25 300 1.209 Inclassified		Name	Dia	Depth D	epth		Dia	Width	Depth		
9.003 SW18 150 0.955 2.152 Unclassified 00 0.955 Unclassified 1.006 SW05 375 2.152 2.221 Unclassified 1350 0 2.152 Unclassified 10.000 SW19 225 0.520 0.712 Unclassified 1050 0 0.520 Unclassified 10.001 19 225 0.712 Unclassified 1050 0 0.560 Unclassified 10.002 225 0.666 0.914 Unclassified 00 0 0.927 Unclassified 10.003 SW20 225 0.927 1.002 Unclassified 00 0 1.044 Unclassified 10.004 SW21 300 1.044 1.365 Unclassified 00 1.429 Unclassified 10.005 SW22 300 1.429 1.508 Unclassified 0 1.429 Unclassified 10.005 SW26 300 1.505 1.585 Unclassified 0 1.230 Unclassified 10.005			(mm)	(m)	(m)		(mm)	(mm)	(m)		
1.006 SW05 375 2.152 2.221 Unclassified 1350 0 2.152 Unclassified 1.007 SW06 375 2.166 2.221 Unclassified 1350 0 2.152 Unclassified 10.000 SW12 255 0.520 0.712 Unclassified 1050 0 0.722 Unclassified 10.001 19 225 0.712 0.866 Unclassified 1050 0 0.742 Unclassified 10.002 20 225 0.866 0.914 Unclassified 100 0 0.866 Unclassified 10.004 SW21 300 1.004 1.025 Unclassified 600 0 1.044 Unclassified 10.005 SW24 300 1.377 1.418 Unclassified 600 0 1.429 Unclassified 10.007 SW32 300 1.429 1.508 Unclassified 0 0 1.429 Unclassified 10.008 SW33 150 1.200 I.239 Unclassified 0	9,003	SW18	150	0.955	2.152	Unclassified	600	0	0.955	Unclassified	
1.007 SW06 375 2.166 2.221 Unclassified 1350 0 2.221 Unclassified 10.000 SW19 225 0.520 0.712 Unclassified 0 0.520 Unclassified 10.001 19 225 0.712 0.866 Unclassified 0 0.721 Unclassified 10.002 20 225 0.866 0.914 Unclassified 0 0.927 Unclassified 10.003 SW20 225 0.927 1.002 Unclassified 0 0 0.927 Unclassified 10.004 SW21 300 1.044 1.255 Unclassified 0 0 1.044 Unclassified 10.005 SW22 300 1.441 1.365 Unclassified 0 0 1.444 Unclassified 10.007 SW25 300 1.429 1.508 Unclassified 0 1.200 Unclassified 10.008 SW34 150 1.203 1.203 Unclassified 0 1.200 Unclassified 11.000 SW31 150 1.239 1.245 Unclassified 0 0.674 Unclassified 12.000 SW27 225 0.674 0.891 Unclassified 0 0.891 Unclassified 12.000 SW31 150 1.239 1.245 Unclassified 0 0.495 Unclassified 12.000 SW31 150 </td <td>1.006</td> <td>SW05</td> <td>375</td> <td>2.152</td> <td>2.221</td> <td>Unclassified</td> <td>1350</td> <td>0</td> <td>2.152</td> <td>Unclassified</td> <td></td>	1.006	SW05	375	2.152	2.221	Unclassified	1350	0	2.152	Unclassified	
10.000 SW19 225 0.520 0.712 Unclassified 450 0 0.520 Unclassified 10.001 19 225 0.712 0.866 Unclassified 1050 0 0.712 Unclassified 10.002 20 225 0.927 1.002 Unclassified 600 0 0.927 Unclassified 10.004 SW21 300 1.004 1.025 Unclassified 600 0 1.004 Unclassified 10.005 SW22 300 1.477 1.418 Unclassified 600 0 1.429 Unclassified 10.006 SW24 300 1.477 1.418 Unclassified 600 0 1.429 Unclassified 10.007 SW25 300 1.429 1.505 Unclassified 1200 1.505 Unclassified 11.001 SW34 150 1.200 1.239 Unclassified 0 1.239 Unclassified 12.000 SW27 225 0.674 0.891 Unclassified 0 0 0.674 Unclassified 12.000 SW31 150 0.740 0.995 Unclassified 0 0 0.740 Unclassified 12.001 SW22 225 0.891 1.385 Unclassified 0 0	1.007	SW06	375	2.166	2.221	Unclassified	1350	0	2.221	Unclassified	
10.001 19 225 0.712 0.866 Unclassified 1050 0 0.712 Unclassified 10.002 20 225 0.866 0.914 Unclassified 00 0 0.866 Unclassified 10.003 SW20 225 0.927 1.002 Unclassified 00 0 0.927 Unclassified 10.004 SW21 300 1.004 1.025 Unclassified 00 0 1.004 Unclassified 10.005 SW22 300 1.444 1.365 Unclassified 00 1.429 Unclassified 10.007 SW25 300 1.429 1.508 Unclassified 00 1.429 Unclassified 10.008 SW26 300 1.505 1.585 Unclassified 1200 Unclassified 11.001 SW34 150 1.239 Unclassified 600 0 0.674 Unclassified 12.001 SW32 225 0.674 0.891 Unclassified 00 0.740 Unclassified 12.002	10.000	SW19	225	0.520	0.712	Unclassified	450	0	0.520	Unclassified	
10.002 20 225 0.866 0.914 Unclassified 1050 0 0.866 Unclassified 10.003 SW21 300 1.004 1.025 Unclassified 600 0 0.927 Unclassified 10.004 SW21 300 1.044 1.365 Unclassified 600 0 1.044 Unclassified 10.005 SW22 300 1.044 1.365 Unclassified 600 0 1.449 Unclassified 10.006 SW24 300 1.377 1.418 Unclassified 600 0 1.424 Unclassified 10.007 SW35 300 1.429 1.508 Unclassified 100 1.373 Unclassified 11.001 SW34 150 1.239 Unclassified 100 1.239 Unclassified 1200 1.200 Unclassified 12.000 SW27 225 0.674 0.891 Unclassified 600 0 0.674 Unclassified 12.001 SW28 150 0.740 0.995 Unclassified	10.001	19	225	0.712	0.866	Unclassified	1050	0	0.712	Unclassified	
10.003 SW20 225 0.927 1.002 Unclassified 600 0 0.927 Unclassified 10.004 SW21 300 1.004 1.025 Unclassified 600 0 1.004 Unclassified 10.005 SW22 300 1.377 1.418 Unclassified 600 0 1.424 Unclassified 10.007 SW25 300 1.429 1.585 Unclassified 600 0 1.429 Unclassified 10.007 SW26 300 1.505 1.585 Unclassified 600 0 1.209 Unclassified 11.001 SW33 150 1.200 1.239 Unclassified 600 0 0.740 Unclassified 12.001 SW27 225 0.674 0.891 Unclassified 600 0 0.740 Unclassified 600 0 0.891 Unclassified 13.000 SW31 150 0.740 0.995 Unclassified 600 0 0.740 Unclassified 1.020 0 1.385 Unclassifi	10.002	20	225	0.866	0.914	Unclassified	1050	0	0.866	Unclassified	
10.004 SW21 300 1.004 1.025 Unclassified 600 0 1.004 Unclassified 10.005 SW22 300 1.044 1.365 Unclassified 600 0 1.044 Unclassified 10.006 SW24 300 1.377 1.418 Unclassified 600 0 1.429 Unclassified 10.007 SW25 300 1.505 1.585 Unclassified 600 0 1.429 Unclassified 10.008 SW26 300 1.505 1.585 Unclassified 1200 0 1.505 Unclassified 11.001 SW33 150 1.209 1.239 Unclassified 600 0 1.239 Unclassified 12.000 SW27 225 0.674 0.891 Unclassified 600 0 0.674 Unclassified 13.001 SW32 150 0.740 0.995 Unclassified 600 0 0.995 Unclassified 13.001 SW32 150 0.740 0.995 Unclassified 1200 0 1.386 Unclassified 14.000 SW35 150 1.132 1.146 Unclassified 1200 0 1.386 Unclassified 12.002 SW29 225 1.386 1.469 Unclassified 1200	10.003	SW20	225	0.927	1.002	Unclassified	600	0	0.927	Unclassified	
10.005 SW22 300 1.044 1.365 Unclassified 600 0 1.044 Unclassified 10.006 SW24 300 1.377 1.418 Unclassified 600 0 1.377 Unclassified 10.007 SW25 300 1.429 1.508 Unclassified 600 0 1.429 Unclassified 11.000 SW33 150 1.200 1.239 Unclassified 450 0 1.200 Unclassified 11.001 SW34 150 1.239 Unclassified 600 0 0.674 Unclassified 12.001 SW28 225 0.891 1.386 Unclassified 600 0 0.674 Unclassified 13.001 SW31 150 0.740 0.995 Unclassified 600 0 0.995 Unclassified 13.001 SW32 150 0.995 Unclassified 600 0 1.386 Unclassified 14.000 SW35 150 1.132 1.469 Unclassified 600 0 1.386	10.004	SW21	300	1.004	1.025	Unclassified	600	0	1.004	Unclassified	
10.006 SW24 300 1.377 1.418 Unclassified 600 0 1.377 Unclassified 10.007 SW25 300 1.429 1.508 Unclassified 600 0 1.429 Unclassified 10.008 SW26 300 1.505 1.585 Unclassified 600 0 1.429 Unclassified 11.000 SW34 150 1.200 1.239 Unclassified 450 0 1.200 Unclassified 12.000 SW27 225 0.674 0.891 Unclassified 600 0 0.674 Unclassified 12.001 SW28 225 0.891 1.386 Unclassified 600 0 0.674 Unclassified 13.001 SW32 150 0.740 0.995 Unclassified 1200 0 0.995 Unclassified 12.002 SW29 225 1.386 1.469 Unclassified 1200 0 1.386 Unclassified 13.001 SW32 150 1.132 1.146 Unclassified 12	10.005	SW22	300	1.044	1.365	Unclassified	600	0	1.044	Unclassified	
10.007 SW25 300 1.429 1.508 Unclassified 600 0 1.429 Unclassified 10.008 SW26 300 1.505 1.585 Unclassified 1200 0 1.505 Unclassified 11.000 SW33 150 1.200 1.239 Unclassified 450 0 1.200 Unclassified 11.001 SW34 150 1.239 1.245 Unclassified 450 0 1.239 Unclassified 12.000 Sw27 225 0.674 0.891 Unclassified 600 0 0.674 Unclassified 12.001 SW28 225 0.891 1.386 Unclassified 600 0 0.740 Unclassified 13.000 SW31 150 0.740 0.995 Unclassified 1200 0 0.995 Unclassified 12.002 SW29 225 1.386 1.469 Unclassified 1200 0 0.995 Unclassified 14.000 SW35 150 1.132 1.146 Unclassified 1200 0 1.386 Unclassified 14.001 SW36 150 1.146 1.455 Unclassified 600 0 1.142 Unclassified 12.003 SW30 225 1.335 1.469 Unclassified 1200 0 1.360 Unclassified 12.003 SW30 225 1.335 1.469 Unclassified 1050 0 1.469 Unclassified 12.003 SW30 225 1.335 1.469 U	10.006	SW24	300	1.377	1.418	Unclassified	600	0	1.377	Unclassified	
10.008 SW26 300 1.505 1.585 Unclassified 1200 0 1.505 Unclassified 11.000 SW33 150 1.200 1.239 Unclassified 450 0 1.200 Unclassified 11.001 SW34 150 1.239 Unclassified 450 0 1.239 Unclassified 12.000 SW27 225 0.674 0.891 Unclassified 600 0 0.674 Unclassified 12.001 SW28 225 0.891 1.386 Unclassified 600 0 0.891 Unclassified 13.000 SW31 150 0.740 0.995 Unclassified 1200 0 0.995 Unclassified 12.002 SW29 225 1.386 1.469 Unclassified 1200 0 0.995 Unclassified 14.000 SW35 150 1.132 1.146 Unclassified 600 0 1.136 Unclassified 14.001 SW36 150 1.132 1.146 Unclassified 1200 0 1.132 Unclassified 12.003 SW30 225 1.335 1.469 Unclassified 1200 0 1.469 Unclassified 14.001 SW36 150 1.132 1.146 1.455 Unclassified 00 1.146 Unclassified 15.000 53 150 <td< td=""><td>10.007</td><td>SW25</td><td>300</td><td>1.429</td><td>1.508</td><td>Unclassified</td><td>600</td><td>0</td><td>1.429</td><td>Unclassified</td><td></td></td<>	10.007	SW25	300	1.429	1.508	Unclassified	600	0	1.429	Unclassified	
11.000 SW33 150 1.200 1.239 Unclassified 450 0 1.200 Unclassified 11.001 SW34 150 1.239 1.245 Unclassified 450 0 1.239 Unclassified 12.000 SW27 225 0.674 0.891 Unclassified 600 0 0.674 Unclassified 12.001 SW28 225 0.674 0.891 Unclassified 600 0 0.674 Unclassified 13.000 SW31 150 0.740 0.995 Unclassified 600 0 0.740 Unclassified 13.001 SW32 150 0.995 1.385 Unclassified 1200 0 0.995 Unclassified 12.002 SW29 225 1.386 1.469 Unclassified 1200 0 1.320 Unclassified 14.000 SW35 150 1.132 1.146 Unclassified 600 0 1.132 Unclassified 14.001 SW36 150 1.146 1.455 Unclassified 600 0 1.146 Unclassified 12.003 SW30 225 1.335 1.469 Unclassified 1200 0 1.469 Unclassified 12.003 SW30 225 1.350 1.801 Unclassified 1200 0 1.469 Unclassified 12.003 SW30 225 1.350 1.801 Unclassified 1200 0 1.469 Unclassified 15.000 53 150 1.350 1.801 Unclassified 1350 0	10.008	SW26	300	1.505	1.585	Unclassified	1200	0	1.505	Unclassified	
11.001 SW34 150 1.239 1.245 Unclassified 450 0 1.239 Unclassified 12.000 SW27 225 0.674 0.891 Unclassified 600 0 0.674 Unclassified 12.001 SW28 225 0.891 1.386 Unclassified 600 0 0.891 Unclassified 13.000 SW31 150 0.740 0.995 Unclassified 600 0 0.740 Unclassified 13.001 SW32 150 0.740 0.995 Unclassified 1200 0 0.995 Unclassified 12.002 SW29 225 1.386 Unclassified 1200 0 1.386 Unclassified 14.000 SW35 150 1.132 1.146 Unclassified 00 1.132 Unclassified 14.001 SW36 150 1.146 1.455 Unclassified 1200 1.469 Unclassified 12.003 SW30 225 1.335 1.469 Unclassified 150 1.469 Unclassified	11.000	SW33	150	1.200	1.239	Unclassified	450	0	1.200	Unclassified	
12.000 SW27 225 0.674 0.891 Unclassified 600 0 0.674 Unclassified 12.001 SW28 225 0.891 1.386 Unclassified 600 0 0.891 Unclassified 13.000 SW31 150 0.740 0.995 Unclassified 600 0 0.740 Unclassified 13.001 SW32 150 0.995 1.385 Unclassified 1200 0 0.995 Unclassified 12.002 SW29 225 1.386 1.469 Unclassified 1200 0 1.386 Unclassified 14.000 SW35 150 1.132 1.146 Unclassified 600 0 1.132 Unclassified 14.001 SW36 150 1.142 1.469 Unclassified 600 0 1.146 Unclassified 12.003 SW30 225 1.335 1.469 Unclassified 00 1.469 Unclassified 12.003 SW30 225 1.335 1.469 Unclassified 1050 1.350 Unclassified 15.000 53 150 1.350 1.801 Unclassified 1050 1.350 Unclassified 1.008 TANK 375 2.166 2.401 Unclassified 1350 2.401 Unclassified </td <td>11.001</td> <td>SW34</td> <td>150</td> <td>1.239</td> <td>1.245</td> <td>Unclassified</td> <td>450</td> <td>0</td> <td>1.239</td> <td>Unclassified</td> <td></td>	11.001	SW34	150	1.239	1.245	Unclassified	450	0	1.239	Unclassified	
12.001 SW28 225 0.891 1.386 Unclassified 600 0 0.891 Unclassified 13.000 SW31 150 0.740 0.995 Unclassified 600 0 0.740 Unclassified 13.001 SW32 150 0.995 1.385 Unclassified 1200 0 0.995 Unclassified 12.002 SW29 225 1.386 1.469 Unclassified 1200 0 1.386 Unclassified 14.000 SW35 150 1.132 1.146 Unclassified 600 0 1.132 Unclassified 14.001 SW36 150 1.146 1.455 Unclassified 600 0 1.146 Unclassified 12.003 SW30 225 1.335 1.469 Unclassified 1200 0 1.469 Unclassified 15.000 53 150 1.350 1.801 Unclassified 1350 1.350 Unclassified 1.008 TANK 375 2.166 2.401 Unclassified 1350	12.000	SW27	225	0.674	0.891	Unclassified	600	0	0.674	Unclassified	
13.000 SW31 150 0.740 0.995 Unclassified 600 0 0.740 Unclassified 13.001 SW32 150 0.995 1.385 Unclassified 1200 0 0.995 Unclassified 12.002 SW29 225 1.386 1.469 Unclassified 1200 0 1.386 Unclassified 14.000 SW35 150 1.132 1.146 Unclassified 600 0 1.132 Unclassified 14.001 SW36 150 1.146 1.455 Unclassified 600 0 1.146 Unclassified 12.003 SW30 225 1.335 1.469 Unclassified 1200 0 1.469 Unclassified 15.000 53 150 1.350 1.801 Unclassified 1050 0 1.350 Unclassified 1.008 TANK 375 2.166 2.401 Unclassified 1350 0 2.401 Unclassified 1.009 SW07 375 2.401 3.006 Unclassified 1350 0 2.401 Unclassified 1.009 SW07 375 2.401 3.006 Unclassified 1350 0 2.401 Unclassified © © ©	12.001	SW28	225	0.891	1.386	Unclassified	600	0	0.891	Unclassified	
13.001 SW32 150 0.995 1.385 Unclassified 1200 0 0.995 Unclassified 12.002 SW29 225 1.386 1.469 Unclassified 1200 0 1.386 Unclassified 14.000 SW35 150 1.132 1.146 Unclassified 600 0 1.132 Unclassified 14.001 SW36 150 1.146 1.455 Unclassified 600 0 1.146 Unclassified 12.003 SW30 225 1.335 1.469 Unclassified 1200 0 1.469 Unclassified 15.000 53 150 1.350 1.801 Unclassified 1050 0 1.350 Unclassified 1.008 TANK 375 2.166 2.401 Unclassified 1350 0 2.166 Unclassified 1.009 SW07 375 2.401 3.006 Unclassified 1350 0 2.401 Unclassified ©1982-2018 Innovyze	13.000	SW31	150	0.740	0.995	Unclassified	600	0	0.740	Unclassified	
12.002 SW29 225 1.386 1.469 Unclassified 1200 0 1.386 Unclassified 14.000 SW35 150 1.132 1.146 Unclassified 600 0 1.132 Unclassified 14.001 SW36 150 1.146 1.455 Unclassified 600 0 1.146 Unclassified 12.003 SW30 225 1.335 1.469 Unclassified 1200 0 1.469 Unclassified 12.003 SW30 225 1.335 1.469 Unclassified 1200 0 1.469 Unclassified 15.000 53 150 1.350 1.801 Unclassified 1050 0 1.350 Unclassified 1.008 TANK 375 2.166 2.401 Unclassified 1350 0 2.166 Unclassified 1.009 SW07 375 2.401 3.006 Unclassified 1350 0 2.401 Unclassified ©1982-2018 Innovyze	13.001	SW32	150	0.995	1.385	Unclassified	1200	0	0.995	Unclassified	
14.000 SW35 150 1.132 1.146 Unclassified 600 0 1.132 Unclassified 14.001 SW36 150 1.146 1.455 Unclassified 600 0 1.146 Unclassified 12.003 SW30 225 1.335 1.469 Unclassified 1200 0 1.469 Unclassified 15.000 53 150 1.350 1.801 Unclassified 1050 0 1.350 Unclassified 1.008 TANK 375 2.166 2.401 Unclassified 1350 0 2.166 Unclassified 1.009 SW07 375 2.401 3.006 Unclassified 1350 0 2.401 Unclassified	12.002	SW29	225	1.386	1.469	Unclassified	1200	0	1.386	Unclassified	
14.001 SW36 150 1.146 1.455 Unclassified 00 1.146 Unclassified 12.003 SW30 225 1.335 1.469 Unclassified 1200 0 1.469 Unclassified 15.000 53 150 1.350 1.801 Unclassified 1050 0 1.350 Unclassified 1.008 TANK 375 2.166 2.401 Unclassified 1350 0 2.166 Unclassified 1.009 SW07 375 2.401 3.006 Unclassified 1350 0 2.401 Unclassified ©1982-2018 Innovyze	14.000	SW35	150	1.132	1.146	Unclassified	600	0	1.132	Unclassified	
12.003 SW30 225 1.335 1.469 Unclassified 1200 0 1.469 Unclassified 15.000 53 150 1.350 1.801 Unclassified 1050 0 1.350 Unclassified 1.008 TANK 375 2.166 2.401 Unclassified 1350 0 2.166 Unclassified 1.009 SW07 375 2.401 3.006 Unclassified 1350 0 2.401 Unclassified ©1982-2018 Innovyze	14.001	SW36	150	1.146	1.455	Unclassified	600	0	1.146	Unclassified	
15.000 53 150 1.350 1.801 Unclassified 1050 0 1.350 Unclassified 1.008 TANK 375 2.166 2.401 Unclassified 1350 0 2.166 Unclassified 1.009 SW07 375 2.401 3.006 Unclassified 1350 0 2.401 Unclassified 	12.003	SW30	225	1.335	1.469	Unclassified	1200	0	1.469	Unclassified	
1.008 TANK 375 2.166 2.401 Unclassified 1350 0 2.166 Unclassified 1.009 SW07 375 2.401 3.006 Unclassified 1350 0 2.401 Unclassified ©1982-2018 Innovyze	15.000	53	150	1.350	1.801	Unclassified	1050	0	1.350	Unclassified	
1.009 SW07 375 2.401 3.006 Unclassified 1350 0 2.401 Unclassified ©1982-2018 Innovyze	1.008	TANK	375	2.166	2.401	Unclassified	1350	0	2.166	Unclassified	
©1982-2018 Innovyze	1.009	SW07	375	2.401	3.006	Unclassified	1350	0	2.401	Unclassified	
©1982-2018 Innovyze											
				(D1982-	2018 Innovy	ze				

Curtins Consulting Ltd		Page 23						
• • • Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK Innovyze	Designed by dimitrov_i Checked by Network 2018.1.1	Micro Drainage						
Free Flowing Outfall Details for Surface Network 1								
Outfall Outfa Pipe Number Name	ll C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)							
1.009 Sw	1.009 SW08 19.569 16.188 0.000 1350 0							
Simulation Criteria for Surface Network 1								
<pre>Volumetric Runoff Coeff 0.750 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficcient 0.800 Areal Reduction Factor 1.000 Foul Sewage per hectare (1/s) 0.000 Flow per Person per Day (1/per/day) 0.000 Hot Start (mins) 0 Additional Flow - % of Total Flow 0.000 Run Time (mins) 60 Hot Start Level (mm) 0 MADD Factor * 10m³/ha Storage 2.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 9 Number of Storage Structures 9 Number of Real Time Controls 0</pre>								
Synt	hetic Rainfall Details							
Rainfall Model Return Period (years) Region England and	FSR M5-60 (mm) 20.000 Cv (Summer) 0.750 1 Ratio R 0.403 Cv (Winter) 0.840 Wales Profile Type Summer Storm Duration (mins) 30							
(©1982-2018 Innovyze							

Curtins Consulting Ltd			Page 24					
<pre> Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK</pre>	Designed by dimitrov_i Checked by		– Micro Drainage					
Innovyze	Network 2018.1.1							
Online Controls for Surface Network 1								
Orifice Manhole: S	W02A, DS/PN: 1.001, Volum	<u>ne (m³): 0.7</u>						
Diameter (m) 0.030 Disch	Diameter (m) 0.030 Discharge Coefficient 0.600 Invert Level (m) 17.629							
<u>Hydro-Brake® Optimum Man</u>	hole: SW10, DS/PN: 2.001,	Volume (m³): 1.4						
Unit Reference MD-SHE-0061-18 Design Head (m) Design Flow (l/s) Flush-Flo™ Objective Minimise upst Application	00-1200-1800 1.200 1.8 Calculated Minimum Outlet P ream storage Suggested Manh Surface	Sump Available Yes Diameter (mm) 61 Invert Level (m) 17.362 ipe Diameter (mm) 75 ole Diameter (mm) 1200						
Control Points Head (m)	Flow (l/s) Control Point	ts Head (m) Flow (l/s)						
Design Point (Calculated) 1.200 Flush-Flo™ 0.265	1.8 Ki 1.5 Mean Flow over Hea	ck-Flo® 0.542 1.3 d Range - 1.4						
The hydrological calculations have been based on the Head another type of control device other than a Hydro-Brake Op	/Discharge relationship for th ptimum® be utilised then these	he Hydro-Brake® Optimum as spec e storage routing calculations	vified. Should will be invalidated					
Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m)	Flow (l/s) Depth (m) Flow (l/	s) Depth (m) Flow (l/s) Depth	(m) Flow (1/s)					
0.1001.30.5001.41.2000.2001.50.6001.31.4000.3001.50.8001.51.6000.4001.51.0001.71.800	1.8 2.000 2 1.9 2.200 2 2.0 2.400 2 2.2 2.600 2	3.000 2.7 5 3.500 2.9 5 4.000 3.1 6 4.500 3.3 6	.0003.5.5003.6.0003.8.5003.9					
	01982-2018 Innovyze							

Curtins Consulting Ltd						F	age 25	5
· ·	Designed	by dimit					Mit	
Et lo EC0216-CUD-00-M2-C-0200-V10 CM NETWORK	Checked h	υγ ατιπτυ	100_1				Dra	ninage
FILE F30310-COR-00-00-M3-C-9200-VI0_3W_NEIWORA	Network 2	Y 018 1 1						_
Hydro-Brake® Optimum Ma	nhole: SW10), DS/PN:	2.001, 1	Jolume (m	1 ³): 1.4			
Depth (m) Flow $(1/s)$ Depth (m) Flow $(1/s)$ Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m) Flow	(1/s)
	110" (1/0)		1100 (1707		110# (1/0/		.,	(1)07
7.000 4.1 7.500 4.2 8.000	4.3	8.500	4.4	9.000	4.6	9.50	0	4.7
Orifice Manhole:	12, DS/PN	: 5.001,	Volume (m³): 1.1				
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~							
Diameter (m) 0.020 Disch	harge Coeffic	cient 0.60	0 Invert Le	evel (m) 18	3.062			
Orifice Manhole:	16, DS/PN	: 7.001,	Volume (m³): 1.5				
Diameter (m) 0.020 Discl	narge Coeffic	cient 0.60	0 Invert Le	evel (m) 1'	7.665			
Orifice Manhole:	21, DS/PN	: 8.001,	Volume (m³): 1.7				
Diameter (m) 0.020 Discl	harge Coeffic	cient 0.60	0 Invert Le	evel (m) 1'	7.589			
Orifice Manhole:	SW34, DS/PN	N: 11.001	, Volume	(m ³): 0.	9			
Diameter (m) 0.080 Discl	harge Coeffic	cient 0.60	0 Invert Le	evel (m) 1'	7.721			
Orifice Manhole:	SW28, DS/PN	N: 12.001	, Volume	(m³): 1.	5			
Diameter (m) 0.130 Disch	narge Coeffic	cient 0.60	0 Invert Le	evel (m) 1'	7.741			
	©1982-2018	Innovyz	e					

Curtins Consulting 3	Ltd								Page	e 26
Date 07/08/2020 09: File FS0316-CUB-00-0	54 10-M3-C-92	00-V10 SW NF	TWORK	Designed	by dimitro	ov_i				Micro Drainage
Innowyze Network 2018 1 1										
Orifice Manhole: SW32, DS/PN: 13.001, Volume (m³): 1.8 Diameter (m) 0.070 Discharge Coefficient 0.600 Invert Level (m) 17.716										
Hydro-Brake® Optimum Manhole: TANK, DS/PN: 1.008, Volume (m³): 9.4Unit Reference MD-SHE-0122-7200-1200-7200Sump AvailableYesDesign Head (m)1.200Diameter (mm)122Design Flow (l/s)7.2Invert Level (m)16.400Flush-Flo™Calculated Minimum Outlet Pipe Diameter (mm)150ObjectiveMinimise upstream storageSuggested Manhole Diameter (mm)1200ApplicationSurface										
	Contr	ol Points	Head (m)	Flow (l/s)	Contro	l Points	Head (m)	Flow (l/s)		
	Design Poir	t (Calculated) Flush-Flo ^r	1.200 ™ 0.350	7.2 7.2	Mean Flow o	Kick-Fl ver Head Ran	o® 0.755 ge -	5.8		
The hydrological calc another type of contr Depth (m) Flow (0.100 0.200	ulations have ol device of (1/s) Depth (4.4 0.6 6.8 0.8	re been based of ther than a Hyo m) Flow (1/s) 00 6.8 00 6.0	on the Head dro-Brake O Depth (m) 1.600 1.800	/Discharge : ptimum® be r Flow (1/s) 8.2 8.7	relationship utilised the Depth (m) F 2.600 3.000	for the Hyd n these stor low (1/s) De 10.4 11.1	age routing pth (m) Fl 5.000 5.500	<pre>pptimum as sp calculation pw (1/s) Dep 14.1 14.8</pre>	pecified ns will k oth (m) F 7.500 8.000	. Should be invalidated Ylow (1/s) 17.2 17.7
0.300	7.2 1.0	00 6.6	2.000	9.1	3.500	11.9	6.000	15.4	8.500	18.2
0.400	7.2 1.2	00 7.2	2.200	9.6	4.000	12.7	6.500	16.0	9.000	18.7
0.500	/.0 1.4		2.400	10.0 01982-2018	4.500	13.4	7.000	10.0	9.500	19.2

Curtins Consulting Ltd		Page 27						
· · ·		Micro						
Date 07/08/2020 09:54	Date 07/08/2020 09:54 Designed by dimitrov_i							
File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Checked by	Diamage						
Innovyze	Network 2018.1.1							
<u>Storage Str</u>	ructures for Surface Network 1							
Porous Car Pa	rk Manhole: SW02A, DS/PN: 1.001							
Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.30 Slope (1:X) 500.0 Membrane Percolation (mm/hr) 1000 Invert Level (m) 18.950 Depression Storage (mm) 5 Max Percolation (1/s) 557.6 Width (m) 36.5 Evaporation (mm/day) 3 Safety Factor 2.0 Length (m) 55.0 Membrane Depth (mm) 0 Cellular Storage Manhole: SW10, DS/PN: 2.001								
Invert Level (m) 17. Infiltration Coefficient Base (m/hr) 0.00 Depth (m) Area (m ²) Inf. Area (m ²) Depth	362 Infiltration Coefficient Side (m/hr) 0.00000 Porosity 0 0000 Safety Factor 2.0 (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area	.95 (m²)						
0.000 290.0 0.0 1.	200 290.0 0.0 1.201 0.0	0.0						
Porous Car	Park Manhole: 12, DS/PN: 5.001							
Infiltration Coefficient Base (m/hr) 0 Membrane Percolation (mm/hr) Max Percolation (l/s) Safety Factor	.00000 Porosity 0.30 Slope (1:X) 60.0 1000 Invert Level (m) 18.061 Depression Storage (mm) 5 23.5 Width (m) 6.5 Evaporation (mm/day) 3 2.0 Length (m) 13.0 Cap Volume Depth (m) 0.350							
	©1982-2018 Innovyze							

Curtins Consulting Ltd						Page 28			
Date 07/08/2020 09:54	Desig	gned by dimitro	ov_i			Micro			
File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	. Checl	ked by				Diamage			
Innovyze									
Porous Car Park Manhole: 16, DS/PN: 7.001									
Infiltration Coefficient Base (m/hr) Membrane Percolation (mm/hr) Max Percolation (l/s) Safety Factor	0.00000 1000 42.2 2.0	Porosity Invert Level (m) Width (m) Length (m)	0.30 17.665 7.6 20.0	Slope (1:X) Depression Storage (mm) Evaporation (mm/day) Cap Volume Depth (m)	16.0 5 3 0.350				
Porous Car	Park N	Manhole: 21, DS	/PN: 8	.001					
Infiltration Coefficient Base (m/hr) Membrane Percolation (mm/hr) Max Percolation (l/s) Safety Factor	0.00000 1000 26.9 2.0	Porosity Invert Level (m) Width (m) Length (m)	0.30 17.589 5.7 17.0	Slope (1:X) Depression Storage (mm) Evaporation (mm/day) Cap Volume Depth (m)	70.0 5 3 0.350				
Porous Car B	ark Ma	nhole: SW34, DS	S/PN: 1	11.001					
Infiltration Coefficient Base (m/hr) Membrane Percolation (mm/hr) Max Percolation (l/s) Safety Factor	0.00000 1000 54.7 2.0	Porosity Invert Level (m) Width (m) Length (m)	0.30 18.900 4.8 41.0	Slope (1:X) Depression Storage (mm) Evaporation (mm/day) Cap Volume Depth (m)	151.0 5 3 0.350				
Porous Car E	ark Ma	nhole: SW28, DS	S/PN: 2	12.001					
Infiltration Coefficient Base (m/hr) Membrane Percolation (mm/hr) Max Percolation (l/s) Safety Factor	0.00000 1000 43.3 2.0	Porosity Invert Level (m) Width (m) Length (m)	0.30 17.741 4.8 32.5	Slope (1:X) Depression Storage (mm) Evaporation (mm/day) Cap Volume Depth (m)	500.0 5 3 0.350				
	©1982-	-2018 Innovyze							

Curtins Consulting Ltd		Page 29					
• • • Date 07/08/2020 09:54	Designed by dimitrov_i	- Micro Drainage					
File FS0316-COR-00-00-M3-C-9200-VI0_SW_NETWORK							
Innovyze	NetWork 2018.1.1						
Porous Car Pa	ark Manhole: SW32, DS/PN: 13.001						
Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.30 Slope (1:X) 500.0 Membrane Percolation (mm/hr) 1000 Invert Level (m) 17.716 Depression Storage (mm) 5 Max Percolation (1/s) 48.0 Width (m) 4.8 Evaporation (mm/day) 3 Safety Factor 2.0 Length (m) 36.0 Cap Volume Depth (m) 0.350 <u>Cellular Storage Manhole: TANK, DS/PN: 1.008</u> Invert Level (m) 16.400 Infiltration Coefficient Side (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Base (m/hr) 0.00000 Safety Factor 2.0							
Depth (m) Area (m ²) Inf. Area (m ²) Depth	(m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area	(m²)					
0.000 560.0 0.0 1.	200 560.0 0.0 1.201 0.0	0.0					
	©1982-2018 Innovyze						

Curtins Consulting Ltd				Page 30				
	Deci	and by di	mituor i	Micro				
Date 07/08/2020 09:54	Desi	gnea by ai	mitrov_1	Drainage				
File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Chec	ked by		Brainage				
Innovyze	Netw	ork 2018.1	.1					
Volume Summary (Static)								
Pine	TISMH	Manhole	Total					
Number	Name	Volume (m ³)	Volume (m ³)					
1 000	SW01	1 650	1 650					
1.001	SW02A	0.475	0.475					
2.000	SW09	0.255	0.255					
2.001	SW10	0.548	0.548					
1.002	SW02B	0.549	0.549					
1.003	SW03	2.327	2.327					
3.000	SW11	0.288	0.288					
3.001	8	0.948	0.948					
3.002	SW12	0.454	0.454					
4.000	10	0.687	0.687					
5.000	11	0.749	0.749					
5.001	12	0.830	0.830					
4.001	SW14	0.175	0.175					
6.000	14	0.952	0.952					
4.002	SW15	1.459	1.459					
7.000	15	0.909	0.909					
7.001	16	1.199	1.199					
3.003	SW13	2.098	2.098					
1.004	SW04	3.391	3.391					
8.000	20	0.909	0.909					
8.001	21	1.265	1.265					
1.005	20	3.594	3.594					
9.000	20 DWL0	0.100	0.100					
9.001	∠∪ SW17	0.305	0.303					
9.002	SW1/	0.245	0.240					
	©1982	-2018 Inno	vyze					

Curtins Consulting Ltd				Page 31
Date 07/08/2020 09:54	Desi	gned by di	mitrov_i	Micro
File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Chec	cked by		brainage
Innovyze	Netv	vork 2018.1	.1	
<u>Vo</u>	lume	Summary (S	tatic)	
Pipe	USMH	Manhole	Total	
Number	Name	Volume (m³)	Volume (m³)	
0.002	CM1 0	0 212	0 212	
9.003	SWIO	3 617	3 617	
1.000	SW05	3 716	3 716	
10,000	SW19	0 118	0 118	
10.001	19	0.811	0.811	
10.002	20	0.945	0.945	
10.003	SW20	0.326	0.326	
10.004	SW21	0.369	0.369	
10.005	SW22	0.380	0.380	
10.006	SW24	0.474	0.474	
10.007	SW25	0.489	0.489	
10.008	SW26	2.042	2.042	
11.000	SW33	0.215	0.215	
11.001	SW34	0.221	0.221	
12.000	SW27	0.254	0.254	
12.001	SW28	0.316	0.316	
13.000	SW31	0.252	0.252	
13.001	SW32	1.295	1.295	
12.002	SW29	1.822	1.822	
14.000	SW35	0.362	0.362	
14.001	SW36	0.366	0.366	
12.003	SW30	1.915	1.915	
1.000	53	1.299	1.299	
1.008	TANK SM07	3.038	3.038	
1.009	SWU /	3.915	3.913	
Total		56.148	56.148	
	©1982	2-2018 Inno	vyze	

Curtins Consulting Ltd				Page 32					
Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Desi Chec	gned by din ked by ork 2018 1	nitrov_i	Micro Drainage					
	110 0 11	0111 2010.1	• -						
Volume Summary (Static)									
Length Ca	lculat	ions based o	n True Length						
Pipe	USMH	Manhole	Total						
Number	Name	Volume (m³)	Volume (m³)						
1.000	SW01	1.650	1.650						
1 001	SW02A	0 475	0 475						
2.000	SW09	0.255	0.255						
2.001	SW10	0.548	0.548						
1.002	SW02B	0.549	0.549						
1.003	SW03	2.327	2.327						
3.000	SW11	0.288	0.288						
3.001	8	0.948	0.948						
3.002	SW12	0.454	0.454						
4.000	10	0.687	0.687						
5.000	11	0.749	0.749						
5.001	12	0.830	0.830						
4.001	SW14	0.175	0.175						
6.000	14	0.952	0.952						
4.002	SW15	1.459	1.459						
7.000	15	0.909	0.909						
7.001	16	1.199	1.199						
3.003	SW13	2.098	2.098						
1.004	SW04	3.391	3.391						
8.000	20	0.909	0.909						
8.001	21	1.265	1.265						
1.005	20	3.594	3.594						
9.000	SW16	0.100	0.100						
9.001	20	0.565	0.565						
9.002	SW17	0.245	0.245						
	01982	-2018 Innor	vyze						

Curtins Consulting Ltd				Page 33				
• • • Date 07/08/2020 09:54	Desi	gned by di	mitrov_i	Micro Drainage				
File F30510-C0R-00-00-M5-C-9200-V10_5W_NE1WORK	Net		1					
Innovyze	Netw	ork 2018.1	• 1					
Volume Summary (Static)								
Pipe	USMH	Manhole	Total					
Number	Name	Volume (m³)	Volume (m³)					
0.002	0.571.0	0 210	0 010					
9.003	SW18	0.312	0.312					
1.000	SWUS	3.61/	3.61/					
1.007	SWU6	3./16	3./L6 0.119					
10.000	SW19 10	0.110	0.110					
10.001	20	0.011	0.011					
10.002	SW20	0.326	0.326					
10.003	SW20	0.320	0.369					
10.005	SW22	0.380	0.380					
10.006	SW24	0.474	0.474					
10.007	SW25	0.489	0.489					
10.008	SW26	2.042	2.042					
11.000	SW33	0.215	0.215					
11.001	SW34	0.221	0.221					
12.000	SW27	0.254	0.254					
12.001	SW28	0.316	0.316					
13.000	SW31	0.252	0.252					
13.001	SW32	1.295	1.295					
12.002	SW29	1.822	1.822					
14.000	SW35	0.362	0.362					
14.001	SW36	0.366	0.366					
12.003	SW30	1.915	1.915					
15.000	53	1.299	1.299					
1.008	TANK	3.638	3.638					
1.009	SW07	3.973	3.973					
Total		56.148	56.148					
	©1982	-2018 Inno	vyze					

Date 07/08/2020 09:54 Designed by dimitrov_i Date 07/08/2020 09:54 Checked by Innovyze Network 2018.1.1 Innovyze Innovyze Network 2018.1.1 Innovyze	Curtins Consulting Ltd		Page 34						
Innovyze Network 2018.1.1 I year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1 Simulation Criteria Areal Reduction Factor 1.000 Manhole Headloss Coeff Global) 0.500 MADD Factor * 10m ³ /ha Storage 2.000 Hot Start (mins) 0 Foul Sewage per heater (1/a) 0.000 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Additional Flow - % of Total Flow 0.000 Flow per Person per Day (1/per/day) 0.000 Number of Input Hydrographs 0 Number of Stringe Structures 9 Number of Time/Area Biagrams 0 Number of Online Controls 9 Number of Stringe Structures 9 Number of Time/Area Biagrams 0 Number of Online Controls 9 Number of Stringe Structures 9 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 20.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.404 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DTS Status OFF Inertia Status ON Analysis Timestep Fine DVD Status ON Frofile(s) Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4220, 5760, 7200, 8640, 10080 I, 30, 100 I (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 420, 5760, 7200, 8640, 10080 I, 30, 100 I (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 420, 5760, 7200, 8640, 10080 I, 30, 100 I (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, Aralysis Timestep Fine DVD Status ON Name Storm Period Change Surcharge Flood I, 30, 100 I (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, I, 30, 100 I (mins) 15, 90, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, II (mins) 15, 700, 720, 960, 1440, 2160, 2880, II (mins) 15, 700, 720, 960, 1440, 2160, 2880, II (mins) 15, 700, 600, 100, 100 I (mins) 15, 700, 720, 960, 1400, 720, 960, 1400, 720, 720, 960, 1400, 720, 720, 960, 1400, 720, 720, 960, 1400, 720, 720, 960, 1400, 720, 720, 960, 1400, 720, 720, 960, 1400, 720, 720, 960, 1400, 720, 720, 960, 1400, 720, 720, 960, 1400, 720, 720,	Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORP	Designed by dimitrov_i C Checked by	Micro Drainage						
1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1 Simulation Criteria Areal Reduction Factor 1.000 Manhole Headloss Coeff (Global) 0.500 MADD Factor * 10m*/ha Storage 2.000 Not Start (mins) 0 Foul Sewage per heater (L/s) 0.500 Inlet Coefficients 0.800 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Storage Structures 9 Number of Storage 0.000 Number of Online Controls 9 Number of Storage Structures 9 Number of Storage 0.750 Region England and Wales Ratio R 0.400 CV (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DTS Status OFF Inertia Status ON Analysis Timestep Fine DVD Status ON Summer and Winter 1.30, 100 Profile(s) Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 1, 30, 100 Name Storm Priod Change Surcharge First (X) First (X) First (X) First (X) First (X) First (X) Overflow Act. May Depth Volume Flow / Overflow Flow Name Storm Period Change Surcharge Flood Overflow Act. Max Max No No No No No No No<	Innovyze	Network 2018.1.1	1						
Simulation Criteria Simulation Criteria Areal Reduction Factor 1.000 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficient 0.800 Namber of Start (mins) 0 Additional Flow - % of Total Flow 0.000 Flow per Person per Day (1/per/day) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 9 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model PSR M5-60 (mm) 20.000 Cv (Summer) 0.750 Region England and Wales Ratic R 0.404 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DTS Status OFF Inertia Status ON Analysis Timestep Fine DVD Status ON Profile(s) Summer and Winter 1, 30, 100 O SyMH Return Climate First (X) First (X) First (Z) Overflow Act. Mare Depth Volume Flow 0.000 Point (m) Control S (1/s) (1/s) 10.000 SW01 180 Winter 1 +0% 1/15 Summer 10/15 Winter 19.017 1.238 0.000 0.05 7.1	<u>1 year Return Period Summary of Cri</u>	tical Results by Maximum Level (Ra	nk 1) for Surface Network 1						
Sunthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 20.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.404 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DTS Status OFF Inertia Status ON Summer and Winter Profile(s) Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) I, 30, 100 I, 30, 100 Climate Change (%) First (Y) First (Z) Overflow Keter Surcharged Flooded Pipe M Name Storm Return Climate First (X) First (Y) First (Z) Overflow Act. Margin Margin Margin Climate Flood Volume Flooded Pipe M Name Storm Period Change Surcharge Flood Marcin 19.017 0.876 0.000 0.05 7.1 1.001 SW02 180 Winter 1 +0% 1/15 Summer 100/15 Winter 19.017 0.876 0.000 0.09 2.2 BUS2-0218 Innovyze	Areal Reduction Factor 1.000 Manhole Hot Start (mins) 0 Foul S Hot Start Level (mm) 0 Additional Number of Input Hydrographs 0 Number of Online Controls 9	Simulation Criteria Headloss Coeff (Global) 0.500 MADD ewage per hectare (1/s) 0.000 Flow - % of Total Flow 0.000 Flow per Pe Number of Offline Controls 0 Number of Number of Storage Structures 9 Number of	Factor * 10m³/ha Storage 2.000 Inlet Coefficcient 0.800 erson per Day (l/per/day) 0.000 Time/Area Diagrams 0 Real Time Controls 0						
Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 1, 30, 100 Water Surcharged Flooded First (1) PN Name Storm Period Change Surcharge First (Y) First (Z) Overflow Act. (m) (m) (m³) Cap. (1/s) 1.000 SW01 180 Winter 1 1 +0% 1/15 Summer 100/15 Winter 19.017 0.876 0.000 0.05 7.1 1.001 SW02A 180 Winter 1 +0% 1/15 Summer 100/15 Winter 19.017 1.238 0.000 0.09 2.2 BU82-2018 Innovyze Surcharge Surcharge Surcharge Surcharge Surcharge	Rainfall Model Region Eng Margin for Flood Risk	Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 20.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.404 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DTS Status OFF Inertia Status ON							
VS/MH Return Climate First (X) First (Y) First (Z) Overflow Act. Depth Depth Volume Flow / Overflow Pioe Name Storm Storm 1 +0% 1/15 Summer 100/15 Winter 1 +0% 1/15 Summer 100/15 Winter 19.017 0.876 0.000 0.05 7.1 1.001 SW02A 180 Winter 1 +0% 1/15 Summer 100/15 Winter 19.017 1.238 0.000 0.09 2.2	Analysis Timestep Fine DVD Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 40								
1.000 SW01 180 Winter 1 +0% 1/15 Summer 100/15 Winter 19.017 0.876 0.000 0.05 7.1 1.001 SW02A 180 Winter 1 +0% 1/15 Summer 19.017 1.238 0.000 0.09 2.2 ©1982-2018 Innovyze	US/MH Return Climate First (X) PN Name Storm Period Change Surcharge	Water First (Y) First (Z) Overflow Level Flood Overflow Act. (m)	Surcharged FloodedPipeDepthVolume Flow / Overflow Flow(m)(m³)Cap.(l/s)						
©1982-2018 Innovyze	1.000 SW01 180 Winter 1 +0% 1/15 Summer 1.001 SW02A 180 Winter 1 +0% 1/15 Summer	100/15 Winter 19.017 19.017	0.876 0.000 0.05 7.1 1.238 0.000 0.09 2.2						
		©1982-2018 Innovyze							

Curtins Consulting Ltd		Page 35
• • • Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Designed by dimitrov_i Checked by	Micro Drainage
	Network 2010.1.1	
<u>l year Return Period Summary of Critica</u> PN 1.000 1.001	l Results by Maximum Level (Rank 1) for Surface Ne US/MH Level Name Status Exceeded SW01 FLOOD RISK 1 SW02A FLOOD RISK	<u>twork 1</u>
	01982-2018 Innovvze	

Curtins Consulting Ltd					
· ·		Mirco			
Date 07/08/2020 09:54	Designed by dimitrov_i	Desinado			
File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Checked by	Diamaye			
Innovyze	Network 2018.1.1				

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1

	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Water Level	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)
2.000	SW09	360 Winter	1	+0%	30/180 Winter				17.694	-0.150	0.000	0.00		0.0
2.001	SW10	600 Winter	1	+0%	1/60 Winter				17.583	0.071	0.000	0.14		1.5
1.002	SW02B	15 Winter	1	+0%	30/15 Summer				17.408	-0.077	0.000	0.47		6.7
1.003	SW03	15 Winter	1	+0%	30/15 Summer				17.182	-0.076	0.000	0.49		6.7
3.000	SW11	15 Winter	1	+0%					18.069	-0.111	0.000	0.15		2.3
3.001	8	15 Winter	1	+0%					17.982	-0.114	0.000	0.13		2.3
3.002	SW12	15 Winter	1	+0%					17.793	-0.178	0.000	0.10		5.2
4.000	10	360 Winter	1	+0%					18.227	-0.150	0.000	0.00		0.0
5.000	11	360 Winter	1	+0%					18.155	-0.150	0.000	0.00		0.0
5.001	12	360 Winter	1	+0%					18.061	-0.151	0.000	0.00		0.0
4.001	SW14	360 Winter	1	+0%					17.999	-0.151	0.000	0.00		0.0
6.000	14	15 Winter	1	+0%					18.037	-0.113	0.000	0.14		4.0
4.002	SW15	15 Winter	1	+0%					17.810	-0.116	0.000	0.12		3.9
7.000	15	360 Winter	1	+0%					18.000	-0.150	0.000	0.00		0.0
7.001	16	360 Winter	1	+0%					17.665	-0.150	0.000	0.00		0.0
3.003	SW13	15 Winter	1	+0%	100/15 Summer				17.315	-0.155	0.000	0.21		13.7
1.004	SW04	15 Winter	1	+0%	100/15 Summer				16.875	-0.256	0.000	0.22		26.4
8.000	20	360 Winter	1	+0%					18.000	-0.150	0.000	0.00		0.0
8.001	21	360 Winter	1	+0%					17.589	-0.150	0.000	0.00		0.0
1.005	20	15 Winter	1	+0%	30/480 Winter				16.761	-0.203	0.000	0.31		24.9
9.000	SW16	15 Winter	1	+0%	100/15 Summer				18.562	-0.088	0.000	0.34		3.8
9.001	20	15 Winter	1	+0%					18.386	-0.111	0.000	0.16		3.8
9.002	SW17	15 Winter	1	+0%	100/15 Summer				18.249	-0.096	0.000	0.27		3.7
9.003	SW18	15 Winter	1	+0%					17.968	-0.127	0.000	0.05		3.7
1.006	SW05	15 Winter	1	+0%	30/480 Winter				16.715	-0.233	0.000	0.30		37.8
						©1982-2	01 <mark>8 Innov</mark>	vyze						

Designed by dimitrov_i Designed by dimitrov_i Date 07/08/2020 09:54 Designed by dimitrov_i Decked by Innovyze Network 2018.1.1 Decked by Innovyze Network 2018.1.1 Network 2018.1.1 VS/Mi Level (Rank 1) for Surface Network 1 000 5000 5000 5000 5000 5000 5000 5000	Curtins Consulting Ltd				Page 37
Innovyze Network 2018.1.1 1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1 2.000 SN09 0 2.000 SN09 0 2.000 SN09 0 2.000 SN09 0 3.001 SN1 0 3.001 SN1 0 3.001 SN1 0 3.001 SN1 0 4.000 10 5.001 11 0x 5.001 12 0x 4.000 10 0x 5.001 11 0x 5.001 12 0x 4.000 16 0x 5.001 12 0x 4.000 10 0x 5.001 12 0x 6.000 14 0x 6.000 12 0x 7.000 15 0x 7.000 15 0x 8.000 20 0x <tr< th=""><th>Date 07/08/2020 09:54</th><th>Desig</th><th>med by di</th><th>mitrov_i</th><th>Micro Drainage</th></tr<>	Date 07/08/2020 09:54	Desig	med by di	mitrov_i	Micro Drainage
Timovyze Network 2018.1.1 1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1 Name Status 2.000 SK09 2.001 SK10 1.002 SW028 1.002 SW028 1.002 SW028 3.000 SW11 3.000 SW12 3.000 SW12 3.000 SW11 3.001 8 3.002 SW12 3.001 0 3.001 N 3.002 SW12 3.001 N 3.002 SW12 3.001 N 3.002 SW14 4.001 SW4 5.000 11 0 X 7.000 16 3.003 SW13 3.003 SW13 3.003 SW13 3.003 SW13 3.003 SW13 3.003 SW14	FILE FS0316-CUR-00-00-M3-C-9200-VI0_SW_NETWORK	Спеск	ea by		
Lycar Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1 V/MB Level PN Name Status 2.000 SN09 K 2.001 SN09 K 2.002 SN09 K 2.001 SN09 K 2.002 SN09 K 2.002 SN03 K 3.003 SN1 K 3.001 8 K 3.001 8 K 3.001 10 K 5.001 12 K 4.001 SN14 K 6.001 14 K 6.001 14 K 6.001 15 K 7.001 15 K 7.001 16 K 8.001 21 K 8.001 21 K 8.001 21 K 8.001 21 K 8.001 21 <th>Innovyze</th> <th>Netwo</th> <th>rk 2018.1</th> <th>.1</th> <th></th>	Innovyze	Netwo	rk 2018.1	.1	
US/MI Lavel Name Status Exceeded 2.000 SW05 OK 2.001 SW02 SW02 1.002 SW02 OK 3.000 SW1 SW04 3.001 SW03 OK 3.002 SW12 OK 3.001 SW1 OK 3.001 SW1 OK 3.002 SW12 OK 3.000 SW11 OK 3.001 SW1 OK 3.002 SW12 OK 4.000 SW14 OK 5.001 11 OK 4.001 SW15 OK 7.001 15 OK 3.003 SW13 OK 3.003 SW13 OK 3.004 SW04 OK 3.003 SW13 OK 3.004 SW04 OK 3.005 SW16 OK 3.006	<u>l year Return Period Summary of Critica</u>	l Resi	<u>ilts by Ma</u>	aximum Level (Rank 1)	for Surface Network 1
PN Name Status Exceeded 2.000 SW0 OK 2.001 SW0 SUCHARGED 1.002 SW02 OK 1.003 SW03 OK 3.001 SW11 OK 3.002 SW12 OK 3.001 8 OK 3.002 SW12 OK 3.001 10 OK 3.002 SW12 OK 3.001 12 OK 3.002 SW13 OK 3.001 12 OK 4.001 SW14 OK 4.002 SW15 OK 7.001 16 OK 3.003 SW13 OK 3.004 SW04 OK 3.005 SW15 OK 3.006 20 OK 3.007 SW16 OK 3.008 SW16 OK 3.009 SW16 OK		US/MH		Level	
2.000 SW09 OK 2.001 SW10 SURCHARGED 1.002 SW03 OK 3.000 SW11 OK 3.000 SW11 OK 3.001 8 OK 3.001 8 OK 3.001 10 OK 5.000 11 OK 5.000 11 OK 5.001 12 OK 4.001 SW14 OK 6.000 14 OK 4.002 SW15 OK 7.000 15 OK 7.001 16 OK 3.003 SW13 OK 1.004 SW04 OK 8.001 20 OK 8.001 21 OK 8.001 20 OK 9.000 SW16 OK 9.001 SOK	PN	Name	Status	Exceeded	
2.000 SW10 SURCHARGED 1.002 SW02B OK 1.002 SW03 OK 3.000 SW11 OK 3.001 8 OK 3.002 SW12 OK 4.000 10 OK 5.000 11 OK 5.001 12 OK 4.001 SW14 OK 6.000 14 OK 4.002 SW15 OK 7.001 15 OK 7.001 15 OK 7.001 16 OK 3.003 SW13 OK 1.004 SW04 OK 8.001 21 OK 1.005 20 OK 8.001 21 OK 1.005 20 OK 9.001 Z0 OK 9.001 Z0 OK	2 000) <u>SW</u> 09	OK		
1.002 SW02B OK 1.003 SW11 OK 3.000 SW11 OK 3.001 8 OK 3.002 SW12 OK 4.000 10 OK 5.000 11 OK 5.001 12 OK 4.001 SW14 OK 6.000 14 OK 4.002 SW15 OK 7.000 15 OK 7.001 16 OK 3.003 SW13 OK 1.004 SW04 OK 8.000 20 OK 8.001 21 OK 1.005 20 OK 9.001 20 OK 9.001 20 OK	2.000	SW09	SURCHARGED		
1.003 SW03 OK 3.000 SW11 OK 3.001 8 OK 3.002 SW12 OK 4.000 10 OK 5.000 11 OK 5.001 12 OK 4.001 SW14 OK 4.001 SW14 OK 4.002 SW15 OK 7.001 16 OK 3.003 SW13 OK 1.004 SW04 OK 8.001 21 OK 1.005 20 OK 9.002 SW17 OK 9.002 SW17 OK 9.002 SW17 OK	1.002	2 SW02B	OK		
3.000 SW11 OK 3.001 8 OK 3.002 SW12 OK 4.000 10 OK 5.000 11 OK 5.001 12 OK 4.001 SW14 OK 6.000 14 OK 4.002 SW15 OK 7.001 15 OK 7.001 16 OK 3.003 SW13 OK 1.004 SW04 OK 8.001 21 OK 1.005 20 OK 8.001 21 OK 1.005 20 OK 9.000 SW16 OK 9.001 20 OK 9.002 SW17 OK 9.002 SW17 OK	1.003	3 SW03	OK		
3.001 8 OK 3.002 SW12 OK 4.000 10 OK 5.000 11 OK 5.001 12 OK 4.001 SW14 OK 6.000 14 OK 4.002 SW15 OK 7.000 15 OK 7.000 15 OK 7.001 16 OK 3.003 SW13 OK 1.004 SW04 OK 8.000 20 OK 8.000 20 OK 8.001 21 OK 1.005 20 OK 9.000 SW16 OK 9.001 SW17 OK 9.002 SW17 OK 9.002 SW17 OK	3.000) SW11	OK		
3.002 SW12 OK 4.000 10 OK 5.000 11 OK 5.001 12 OK 4.001 SW14 OK 6.000 14 OK 4.002 SW15 OK 7.000 15 OK 7.001 16 OK 3.003 SW13 OK 1.004 SW04 OK 8.000 20 OK 8.001 21 OK 1.005 20 OK 9.001 20 OK 9.002 SW17 OK 9.003 SW18 OK	3.001	. 8	OK		
4.000 10 OK 5.000 11 OK 5.001 12 OK 4.001 SW14 OK 6.000 14 OK 4.002 SW15 OK 7.000 15 OK 7.001 16 OK 3.003 SW13 OK 1.004 SW04 OK 8.000 20 OK 8.001 21 OK 1.005 20 OK 9.000 SW16 OK 9.000 SW16 OK 9.001 20 OK 9.001 20 OK	3.002	2 SW12	OK		
5.000 11 OK 5.001 12 OK 4.001 SW14 OK 6.000 14 OK 4.002 SW15 OK 7.000 15 OK 7.001 16 OK 3.003 SW13 OK 1.004 SW04 OK 8.000 20 OK 8.001 21 OK 1.005 20 OK 9.000 SW16 OK 9.001 20 OK 9.001 20 OK	4.000) 10	OK		
5.001 12 OK 4.001 SW14 OK 6.000 14 OK 4.002 SW15 OK 7.000 15 OK 7.001 16 OK 3.003 SW13 OK 1.004 SW04 OK 8.000 20 OK 8.001 21 OK 1.005 20 OK 9.000 SW16 OK 9.000 SW16 OK 9.001 20 OK 9.001 20 OK	5.000) 11	OK		
4.001 SW14 OK 6.000 14 OK 4.002 SW15 OK 7.000 15 OK 7.001 16 OK 3.003 SW13 OK 1.004 SW04 OK 8.000 20 OK 8.001 21 OK 1.005 20 OK 9.000 SW16 OK 9.001 SW16 OK 9.001 20 OK 9.002 SW17 OK 9.002 SW17 OK	5.001	. 12 or:14	OK		
4.002 SW15 OK 4.002 SW15 OK 7.000 15 OK 7.001 16 OK 3.003 SW13 OK 1.004 SW04 OK 8.000 20 OK 8.001 21 OK 1.005 20 OK 9.000 SW16 OK 9.000 SW16 OK 9.001 20 OK 9.001 20 OK	4.00	. SW14	OK		
7.000 15 0K 7.001 16 0K 3.003 SW13 0K 1.004 SW04 0K 8.000 20 0K 8.001 21 0K 1.005 20 0K 9.000 SW16 0K 9.001 20 0K 9.001 20 0K 9.001 20 0K 9.001 20 0K 9.002 SW17 0K 9.003 SW18 0K	4 000	> SW15	OK OK		
7.001 16 OK 3.003 SW13 OK 1.004 SW04 OK 8.000 20 OK 8.001 21 OK 1.005 20 OK 9.000 SW16 OK 9.001 20 OK 9.001 20 OK 9.002 SW17 OK 9.003 SW18 OK	7.000) 15	OK OI		
3.003 SW13 OK 1.004 SW04 OK 8.000 20 OK 8.001 21 OK 1.005 20 OK 9.000 SW16 OK 9.001 20 OK 9.002 SW17 OK 9.003 SW18 OK	7.001	16	OK		
1.004 SW04 OK 8.000 20 OK 8.001 21 OK 1.005 20 OK 9.000 SW16 OK 9.001 20 OK 9.002 SW17 OK 9.003 SW18 OK	3.003	3 SW13	OK		
8.000 20 OK 8.001 21 OK 1.005 20 OK 9.000 SW16 OK 9.001 20 OK 9.002 SW17 OK 9.003 SW18 OK	1.004	sw04	OK		
8.001 21 OK 1.005 20 OK 9.000 SW16 OK 9.001 20 OK 9.002 SW17 OK 9.003 SW18 OK	8.000	20	OK		
1.005 20 OK 9.000 SW16 OK 9.001 20 OK 9.002 SW17 OK 9.003 SW18 OK	8.001	. 21	OK		
9.000 SW16 OK 9.001 20 OK 9.002 SW17 OK 9.003 SW18 OK	1.005	5 20	OK		
9.001 20 OK 9.002 SW17 OK 9.003 SW18 OK	9.000) SW16	OK		
9.002 SW17 OK 9.003 SW18 OK	9.001	20	OK		
	9.002	SWL/	OK		
	9.00	01000	0010 7		

Curtins Consulting Ltd		Page 38
<pre> Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK Innovyze <u>1 year Return Period Summary of Critica</u></pre>	Designed by dimitrov_i Checked by Network 2018.1.1 1 Results by Maximum Level (Rank 1) for Surface Ne	Micro Drainage
PN 1.006	US/MH Level Name Status Exceeded SW05 OK	
	01982-2018 Innovyze	

Curtins Consulting Ltd					
•					
•					
•		Mirro			
Date 07/08/2020 09:54	Designed by dimitrov_i	Dcainago			
File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Checked by	Diamage			
Innovyze	Network 2018.1.1				

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1

									Water	Surcharged	Flooded			Pipe
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	Flow /	Overflow	Flow
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)
1.007	SW06	600 Winter	1	+0%	30/120 Winter				16.638	-0.201	0.000	0.08		8.1
10.000	SW19	360 Winter	1	+0읭					18.355	-0.225	0.000	0.00		0.0
10.001	19	15 Winter	1	+0%	100/15 Summer				18.218	-0.170	0.000	0.13		4.3
10.002	20	15 Winter	1	+0읭	100/15 Summer				18.092	-0.142	0.000	0.29		8.5
10.003	SW20	15 Winter	1	+0읭	100/15 Summer				18.025	-0.148	0.000	0.26		8.5
10.004	SW21	15 Winter	1	+0읭	100/15 Summer				17.873	-0.224	0.000	0.15		8.5
10.005	SW22	15 Winter	1	+0읭	100/15 Summer				17.834	-0.223	0.000	0.15		11.2
10.006	SW24	15 Winter	1	+0읭	100/15 Summer				17.509	-0.214	0.000	0.18		11.1
10.007	SW25	15 Winter	1	+0읭	100/15 Summer				17.453	-0.218	0.000	0.16		11.2
10.008	SW26	15 Winter	1	+0읭	100/15 Summer				17.410	-0.185	0.000	0.31		24.6
11.000	SW33	15 Winter	1	+0읭	30/15 Summer	100/15 Summer			18.022	-0.078	0.000	0.45		5.7
11.001	SW34	15 Winter	1	+0%	1/15 Summer				17.902	0.031	0.000	0.39		5.0
12.000	SW27	15 Winter	1	+0읭	100/15 Summer				18.047	-0.128	0.000	0.38		15.2
12.001	SW28	30 Winter	1	+0%	30/15 Winter	100/15 Winter			17.864	-0.102	0.000	0.11		6.6
13.000	SW31	15 Winter	1	+0읭	30/15 Summer				18.021	-0.079	0.000	0.44		6.5
13.001	SW32	30 Winter	1	+0읭	30/30 Winter				17.796	-0.070	0.000	0.11		1.9
12.002	SW29	30 Winter	1	+0%	100/30 Winter				17.633	-0.156	0.000	0.21		8.5
14.000	SW35	15 Winter	1	+0읭	100/15 Winter				18.141	-0.107	0.000	0.18		2.3
14.001	SW36	15 Winter	1	+0읭	100/15 Summer				18.071	-0.103	0.000	0.22		4.7
12.003	SW30	30 Winter	1	+0읭					17.556	-0.150	0.000	0.25		11.0
15.000	53	15 Winter	1	+0읭	30/15 Summer				17.571	-0.079	0.000	0.45		9.9
1.008	TANK	600 Winter	1	+0읭	30/60 Winter				16.635	-0.140	0.000	0.06		6.9
1.009	SW07	600 Winter	1	+0%					16.401	-0.324	0.000	0.04		6.9
						©1982-2018	3 Innovyz	ze						

Curtins Consulting Ltd				Page 40				
Date 07/08/2020 09:54	Design	ned by dim	itrov_i	Micro				
File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	FSU316-CUR-UU-UU-M3-C-92UU-V10_SW_NETWORK Checked by							
Innovyze								
<u>1 year Return Period Summary of Critical</u>	Resu	lts by Max	ximum Level (Rank 1) f	or Surface Network 1				
	US/MH		Level					
PN	Name	Status	Exceeded					
1 007	OFIO C	07						
1.007	SWU6	OK						
10.000	19	OK						
10.002	20	OK						
10.003	SW20	OK						
10.004	SW21	OK						
10.005	SW22	OK						
10.006	SW24	OK						
10.007	SW25	OK						
10.008	SW26	OK						
11.000	SW33	OK	4					
11.001	SW34	SURCHARGED						
12.000	SW27	OK						
12.001	SW28	OK						
13.000	SW31	OK						
12.002	SWJ2 SWJ29	OK						
14 000	SW29	OK						
14.000	SW36	OK OK						
12.003	SW30	OK						
15.000	53	OK						
1.008	TANK	OK						
1.009	SW07	OK						
0	1982-2	2018 Innov	yze					

Curtins Consulting Ltd		Page 41							
• • • Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Designed by dimitrov_i Checked by	Micro Drainage							
Innovyze	Network 2018.1.1								
<u>30 year Return Period Summary of Critic</u>	al Results by Maximum Level (Rank 1) for Surface Ne	twork 1							
Areal Reduction Factor 1.000 Manhole Head Hot Start (mins) 0 Foul Sewage Hot Start Level (mm) 0 Additional Flow Number of Input Hydrographs 0 Nu	Simulation Criteria Areal Reduction Factor 1.000 Manhole Headloss Coeff (Global) 0.500 MADD Factor * 10m ³ /ha Storage 2.000 Hot Start (mins) 0 Foul Sewage per hectare (1/s) 0.000 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Additional Flow - % of Total Flow 0.000 Flow per Person per Day (1/per/day) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0								
Number of Online Controls 9 Numb	er of Storage Structures 9 Number of Real Time Controls 0								
<u>S</u> Rainfall Model Region England	<u>ynthetic Rainfall Details</u> FSR M5-60 (mm) 20.000 Cv (Summer) 0.750 and Wales Ratio R 0.404 Cv (Winter) 0.840								
Margin for Flood Risk War Analysis	ning (mm) 300.0 DTS Status OFF Inertia Status ON Timestep Fine DVD Status ON								
Profile(s) Duration(s) (mins) 15, 30, 60 Return Period(s) (years) Climate Change (%)	Summer and Winter , 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 1, 30, 100 0, 0, 40								
US/MH Return Climate First (X) Fi PN Name Storm Period Change Surcharge	Water Surcharged Flooded Arst (Y) First (Z) Overflow Level Depth Volume Flow Flood Overflow Act. (m) (m) (m ³) Cap.	Pipe / Overflow Flow (l/s) (l/s)							
1.000 SW01 30 Winter 30 +0% 1/15 Summer 100,	/15 Winter 19.212 1.071 0.000 0.4	54.6							
1.001 SW02A 180 Winter 30 +0% 1/15 Summer	19.082 1.304 0.000 0.1	.0 2.3							
	©1982-2018 Innovyze								

Curtins Consulting Ltd		Page 42
Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Designed by dimitrov_i Checked by	Micro Drainage
Innovyze	Network 2018.1.1	
2 <u>30 year Return Period Summary of Critica</u> PN 1.000 1.001	US/MH Level Name Status Exceeded SW01 FLOOD RISK 1 SW02A FLOOD RISK	twork 1
C	01982-2018 Innovyze	

Curtins Consulting Ltd	Page 43		
· · ·		Micro	
Date 07/08/2020 09:54	Designed by dimitrov_i	Desinado	
File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Checked by	Diamage	
Innovyze	Network 2018.1.1		

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1

	US/MH	Storm	Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Water Level	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow
PIN	Name	Storm	Period	Change	Surcharge	F100a	Overiiow	ACL.	(111)	(111)	(Cap.	(1/5)	(1/5)
2.000	SW09	720 Winter	30	+0%	30/180 Winter				17.929	0.085	0.000	0.00		0.0
2.001	SW10	720 Winter	30	+0%	1/60 Winter				17.929	0.417	0.000	0.14		1.5
1.002	SW02B	15 Winter	30	+0%	30/15 Summer				17.537	0.052	0.000	1.08		15.6
1.003	SW03	15 Winter	30	+0%	30/15 Summer				17.271	0.013	0.000	1.09		15.1
3.000	SW11	15 Winter	30	+0%					18.093	-0.087	0.000	0.36		5.7
3.001	8	15 Winter	30	+0%					18.005	-0.091	0.000	0.32		5.7
3.002	SW12	15 Winter	30	+0%					17.826	-0.145	0.000	0.27		14.3
4.000	10	360 Winter	30	+0%					18.227	-0.150	0.000	0.00		0.0
5.000	11	360 Winter	30	+0%					18.155	-0.150	0.000	0.00		0.0
5.001	12	360 Winter	30	+0%					18.061	-0.151	0.000	0.00		0.0
4.001	SW14	360 Winter	30	+0%					17.999	-0.151	0.000	0.00		0.0
6.000	14	15 Winter	30	+0%					18.060	-0.090	0.000	0.34		9.8
4.002	SW15	15 Winter	30	+0%					17.831	-0.095	0.000	0.29		9.7
7.000	15	360 Winter	30	+0%					18.000	-0.150	0.000	0.00		0.0
7.001	16	360 Winter	30	+0%					17.665	-0.150	0.000	0.00		0.0
3.003	SW13	15 Winter	30	+0%	100/15 Summer				17.369	-0.101	0.000	0.57		37.7
1.004	SW04	600 Winter	30	+0%	100/15 Summer				16.971	-0.160	0.000	0.09		10.1
8.000	20	360 Winter	30	+0%					18.000	-0.150	0.000	0.00		0.0
8.001	21	360 Winter	30	+0%					17.589	-0.150	0.000	0.00		0.0
1.005	20	600 Winter	30	+0%	30/480 Winter				16.968	0.004	0.000	0.13		10.0
9.000	SW16	15 Winter	30	+0%	100/15 Summer				18.608	-0.042	0.000	0.84		9.4
9.001	20	15 Winter	30	+0%					18.411	-0.086	0.000	0.38		9.4
9.002	SW17	15 Winter	30	+0%	100/15 Summer				18.286	-0.059	0.000	0.66		9.1
9.003	SW18	15 Winter	30	+0%					17.981	-0.114	0.000	0.14		9.1
1.006	SW05	600 Winter	30	+0%	30/480 Winter				16.964	0.016	0.000	0.11		13.0
						©1982-2	018 Innov	vyze						

Curtins Consulting Ltd				Page 44
• • • Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Desig Check	med by di ed by	mitrov_i	Micro Drainage
Innovyze	Netwo	rk 2018.1	.1	
30 year Return Period Summary of Critica	l Res US/MH Name	ults by M Status	aximum Level (Rank 1) for Sur: Level Exceeded	<u>face Network 1</u>
2.000	SW09	SURCHARGED		
2.001	SWIU	SURCHARGED		
1.002	SWUZB	SURCHARGED		
3.000	SW03	OK		
3.000	3WII 8	OK OK		
3.002	SW12	OK OK		
4.000	10	OK OK		
5.000	11	OK		
5.001	12	OK		
4.001	SW14	OK		
6.000	14	OK		
4.002	SW15	OK		
7.000	15	OK		
7.001	16	OK		
3.003	SW13	OK		
1.004	SW04	OK		
8.000	20	OK		
8.001	21	OK		
1.005	20	SURCHARGED		
9.000	SW16	OK		
9.001	20 CW17	OK		
9.002	SW1/ SW19	OK OV		
9.003	1000	0010 -		
(C	т 982-	2018 Inno	vyze	
Curtins Consulting Ltd		Page 45		
--	---	-------------------		
• • • Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Designed by dimitrov_i Checked by	Micro Drainage		
Innovyze	Network 2018.1.1			
<u>30 year Return Period Summary of Critic</u>	al Results by Maximum Level (Rank 1) for Surface No	etwork 1		
PN	Name Status Exceeded			
1.004				
1.000	5 SW05 SURCHARGED			
	©1982-2018 Innovyze			

Curtins Consulting Ltd		Page 46
• • •		Micro
Date 07/08/2020 09:54	Designed by dimitrov_i	Dcainago
File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Checked by	Diamage
Innovvze	Network 2018.1.1	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1

				61 · · ·				o 61	Water	Surcharged	Flooded			Pipe
	US/MH	C b c c c c c c c c c c	Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	Flow /	Overflow	FLOW
PN	Name	Storm	Period	Change	Surcharge	Flood	Overilow	Act.	(m)	(m)	(m ³)	Cap.	(1/s)	(1/s)
1.007	SW06	600 Winter	30	+0%	30/120 Winter				16.961	0.122	0.000	0.13		12.7
10.000	SW19	360 Winter	30	+0%					18.355	-0.225	0.000	0.00		0.0
10.001	19	15 Winter	30	+0읭	100/15 Summer				18.264	-0.124	0.000	0.41		13.2
10.002	20	15 Winter	30	+0읭	100/15 Summer				18.176	-0.058	0.000	0.88		25.6
10.003	SW20	15 Winter	30	+0%	100/15 Summer				18.098	-0.075	0.000	0.78		25.7
10.004	SW21	15 Winter	30	+0%	100/15 Summer				17.936	-0.160	0.000	0.44		25.6
10.005	SW22	15 Winter	30	+0%	100/15 Summer				17.896	-0.160	0.000	0.42		32.6
10.006	SW24	15 Winter	30	+0%	100/15 Summer				17.579	-0.144	0.000	0.54		32.8
10.007	SW25	15 Winter	30	+0%	100/15 Summer				17.548	-0.123	0.000	0.48		33.1
10.008	SW26	15 Winter	30	+0%	100/15 Summer				17.518	-0.077	0.000	0.88		70.6
11.000	SW33	15 Winter	30	+0%	30/15 Summer	100/15 Summer			18.671	0.571	0.000	0.89		11.4
11.001	SW34	15 Winter	30	+0%	1/15 Summer				18.489	0.618	0.000	0.88		11.4
12.000	SW27	15 Winter	30	+0%	100/15 Summer				18.124	-0.051	0.000	0.93		37.2
12.001	SW28	30 Winter	30	+0%	30/15 Winter	100/15 Winter			17.990	0.024	0.000	0.25		15.1
13.000	SW31	15 Winter	30	+0읭	30/15 Summer				18.137	0.037	0.000	1.07		15.6
13.001	SW32	30 Winter	30	+0%	30/30 Winter				17.869	0.003	0.000	0.21		3.5
12.002	SW29	30 Winter	30	+0%	100/30 Winter				17.671	-0.118	0.000	0.46		18.6
14.000	SW35	15 Winter	30	+0%	100/15 Winter				18.168	-0.080	0.000	0.44		5.7
14.001	SW36	15 Winter	30	+0%	100/15 Summer				18.108	-0.066	0.000	0.60		12.9
12.003	SW30	15 Winter	30	+0%					17.606	-0.100	0.000	0.59		26.3
15.000	53	15 Winter	30	+0%	30/15 Summer				17.709	0.059	0.000	1.06		23.7
1.008	TANK	600 Winter	30	+0%	30/60 Winter				16.958	0.183	0.000	0.07		7.2
1.009	SW07	1440 Winter	30	+0%					16.401	-0.324	0.000	0.05		7.2
						©1982-2018	3 Innovvz	e						

Curtins Consulting Ltd				Page 47
•				
				Mirro
Date 07/08/2020 09:54	Desig	ned by dim	itrov_i	Desinado
File FS0316-CUR-00-00-M3-C-9200-V10 SW NETWORK	Check	ed by		Diamaye
 Innovyze	Netwo	- rk 2018.1.	1	
<u>30 year Return Period Summary of Critica</u>	al Resu	ults by Ma	ximum Level (Rank 1) for Surfa	<u>.ce Network 1</u>
	US/MH		Level	
PN	Name	Status	Exceeded	
1.00	SW06	SURCHARGED		
10.000) SW19	OK		
10.00	. 19	OK		
10.002	20	OK OV		
10.00	5WZU	OK		
10.00	SW21	OK OK		
10.00	5 SW24	OK OK		
10.00	SW25	OK OK		
10.008	3 SW26	OK		
11.000) SW33	SURCHARGED	4	
11.002	SW34	SURCHARGED		
12.000) SW27	OK		
12.003	SW28	SURCHARGED		
13.000) SW31	SURCHARGED		
13.002	SW32	SURCHARGED		
12.002	2 SW29	OK		
14.000) SW35	OK		
14.001	SW36	OK		
12.003	3 SW30	OK		
15.000) 53	SURCHARGED		
1.008	3 TANK	SURCHARGED		
1.009	9 SW07	OK		
	01982-2	2018 Innov	yze	

Curtins Consulting Ltd	Page 48												
Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Designed by dimitrov_i Checked by												
nnovyze Network 2018.1.1													
100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1													
Areal Reduction Factor 1.000 Manhole Headlo Hot Start (mins) 0 Foul Sewage Hot Start Level (mm) 0 Additional Flow Number of Input Hydrographs 0 Num Number of Online Controls 9 Numbe	Simulation Criteria SS Coeff (Global) 0.500 MADD Factor * 10m³/ha Storage 2.000 per hectare (1/s) 0.000 Inlet Coefficient 0.800 - % of Total Flow 0.000 Flow per Person per Day (1/per/day) 0.000 ber of Offline Controls 0 Number of Time/Area Diagrams 0 r of Storage Structures 9 Number of Real Time Controls 0												
Svi	nthetic Rainfall Details												
Rainfall Model Region England a	FSR M5-60 (mm) 20.000 Cv (Summer) 0.750 nd Wales Ratio R 0.404 Cv (Winter) 0.840												
Margin for Flood Risk Warn: Analysis 1	ing (mm) 300.0 DTS Status OFF Inertia Status ON Fimestep Fine DVD Status ON												
Profile(s) Duration(s) (mins) 15, 30, 60, Return Period(s) (years) Climate Change (%)	Summer and Winter 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 1, 30, 100 0, 0, 40												
US/MH Return Climate First (X) Fir PN Name Storm Period Change Surcharge F	Water Surcharged FloodedPipe:st (Y) First (Z) Overflow Level Depth Volume Flow / Overflow FlowFloodOverflow Act. (m) (m) (m³) Cap. (1/s) (1/s)												
1.000 SW01 15 Winter 100 +40% 1/15 Summer 100/1 1.001 SW02A 180 Winter 100 +40% 1/15 Summer	.5 Winter 19.300 1.159 0.072 0.92 125.1 19.177 1.398 0.000 0.10 2.3												
(6)1982-2018 Innovyze												

Curtins Consulting Ltd		Page 49
• • • Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Designed by dimitrov_i Checked by	Micro Drainage
Innovyze	Network 2018.1.1	4
<u>100 year Return Period Summary of Critic</u>	al Results by Maximum Level (Rank 1) for Surface N	<u>etwork 1</u>
DN	US/MH Level	
1.000) SW01 FLOOD 1 1 SW02A FLOOD RISK	
	©1982-2018 Innovyze	

Curtins Consulting Ltd							
• • •		Micro					
Date 07/08/2020 09:54	Designed by dimitrov_i	Desinado					
File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Checked by	Diamaye					
Innovvze	Network 2018.1.1						

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1

	US/MH	0 h a ann	Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Water Level	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow
PN	Name	Storm	Period	Change	Surcharge	Flood	Overiiow	Act.	(m)	(m)	(m ³)	Cap.	(1/s)	(1/s)
2.000	SW09	960 Winter	100	+40%	30/180 Winter				18.502	0.658	0.000	0.00		0.0
2.001	SW10	960 Winter	100	+40%	1/60 Winter				18.502	0.990	0.000	0.15		1.6
1.002	SW02B	15 Winter	100	+40%	30/15 Summer				18.218	0.732	0.000	1.64		23.7
1.003	SW03	15 Winter	100	+40%	30/15 Summer				17.667	0.409	0.000	1.63		22.6
3.000	SW11	15 Winter	100	+40%					18.121	-0.059	0.000	0.66		10.3
3.001	8	15 Winter	100	+40%					18.029	-0.066	0.000	0.59		10.4
3.002	SW12	15 Winter	100	+40%					17.859	-0.112	0.000	0.49		26.0
4.000	10	360 Winter	100	+40%					18.227	-0.150	0.000	0.00		0.0
5.000	11	360 Winter	100	+40%					18.155	-0.150	0.000	0.00		0.0
5.001	12	360 Winter	100	+40%					18.061	-0.151	0.000	0.00		0.0
4.001	SW14	360 Winter	100	+40%					17.999	-0.151	0.000	0.00		0.0
6.000	14	15 Winter	100	+40%					18.086	-0.064	0.000	0.61		17.8
4.002	SW15	15 Winter	100	+40%					17.854	-0.072	0.000	0.52		17.6
7.000	15	360 Winter	100	+40%					18.000	-0.150	0.000	0.00		0.0
7.001	16	15 Winter	100	+40%					17.666	-0.149	0.000	0.00		0.0
3.003	SW13	15 Winter	100	+40%	100/15 Summer				17.676	0.206	0.000	0.92		60.2
1.004	SW04	960 Winter	100	+40%	100/15 Summer				17.555	0.424	0.000	0.10		11.4
8.000	20	360 Winter	100	+40%					18.000	-0.150	0.000	0.00		0.0
8.001	21	360 Winter	100	+40%					17.589	-0.150	0.000	0.00		0.0
1.005	20	960 Winter	100	+40%	30/480 Winter				17.552	0.588	0.000	0.14		11.1
9.000	SW16	15 Winter	100	+40%	100/15 Summer				18.847	0.197	0.000	1.47		16.4
9.001	20	15 Winter	100	+40%					18.470	-0.027	0.000	0.63		15.5
9.002	SW17	15 Winter	100	+40%	100/15 Summer				18.409	0.064	0.000	1.12		15.3
9.003	SW18	15 Winter	100	+40%					17.994	-0.101	0.000	0.23		15.4
1.006	SW05	960 Winter	100	+40%	30/480 Winter				17.548	0.600	0.000	0.13		15.7
						©1982-2	018 Innov	vyze						

Curtins Consulting Ltd				Page 51
	Desig	med by di	mitrov_i	Micro Drainage
FILE FS0516-COR-00-00-MS-C-9200-VI0_SW_NEIWORK	Lueck	led by	_	
Innovyze	Netwo	ork 2018.1	.1	
<u>100 year Return Period Summary of Critic</u>	al Res	sults by M	laximum Level (Rank 1) for Su Level	urface Network 1
PN	Name	Status	Exceeded	
2.000) SW09	SURCHARGED		
2.001	. SW10	SURCHARGED		
1.002	SWUZB	SURCHARGED		
3.000) SWU3	SURCHARGED		
3.000	8	OK OK		
3.002	2 SW12	OK		
4.000) 10	OK		
5.000) 11	OK		
5.001	. 12	OK		
4.001	. SW14	OK		
6.000) 14	OK		
4.002	SW15	OK		
7.000	15	OK		
7.001	. 16	OK		
3.003	/ SWL3	SUKCHARGED		
2.004) 20	SUKCHARGED		
8.000	20	0K OV		
1.005	5 2.0	SURCHARGED		
9.000) SW16	FLOOD RISK		
9.001	. 20	OK		
9.002	2 SW17	SURCHARGED		
9.003				
	3 SW18	OK		

Curtins Consulting Ltd		Page 52
Date 07/08/2020 09:54 File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Designed by dimitrov_i Checked by	Micro Drainage
Innovyze	Network 2018.1.1	
100 year Return Period Summary of Critic	al Results by Maximum Level (Rank 1) for Surface N	etwork 1
PN	US/MH Level Name Status Exceeded	
1.000		
1.008	SWUS SURCHARGED	
(©1982-2018 Innovyze	

Curtins Consulting Ltd		Page 53
· · ·		Micro
Date 07/08/2020 09:54	Designed by dimitrov_i	Dcainago
File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Checked by	Diamaye
Innovyze	Network 2018.1.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1

DN	US/MH	Storm	Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Water Level	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow
EN	Name	SCOIM	Ferrou	change	Surcharge	FICCU	Overiiow	ACC.	(111)	(111)	()	cap.	(1/5)	(1/5)
1.007	SW06	960 Winter	100	+40%	30/120 Winter				17.545	0.706	0.000	0.16		15.6
10.000	SW19	15 Winter	100	+40%					18.416	-0.164	0.000	0.00		0.1
10.001	19	15 Winter	100	+40%	100/15 Summer				18.428	0.040	0.000	0.66		21.5
10.002	20	15 Winter	100	+40%	100/15 Summer				18.392	0.159	0.000	1.44		41.9
10.003	SW20	15 Winter	100	+40%	100/15 Summer				18.313	0.140	0.000	1.25		41.2
10.004	SW21	15 Winter	100	+40%	100/15 Summer				18.224	0.128	0.000	0.65		37.6
10.005	SW22	15 Winter	100	+40%	100/15 Summer				18.151	0.095	0.000	0.65		50.3
10.006	SW24	15 Winter	100	+40%	100/15 Summer				17.994	0.272	0.000	0.92		56.4
10.007	SW25	15 Winter	100	+40%	100/15 Summer				17.913	0.242	0.000	0.82		56.5
10.008	SW26	15 Winter	100	+40%	100/15 Summer				17.807	0.212	0.000	1.34		107.1
11.000	SW33	15 Winter	100	+40%	30/15 Summer	100/15 Summer			19.301	1.201	1.486	1.26		16.2
11.001	SW34	15 Winter	100	+40%	1/15 Summer				18.983	1.112	0.000	1.09		14.1
12.000	SW27	30 Winter	100	+40%	100/15 Summer				18.812	0.637	0.000	1.27		50.9
12.001	SW28	30 Winter	100	+40%	30/15 Winter	100/15 Winter			18.740	0.774	0.000	0.54		31.9
13.000	SW31	15 Winter	100	+40%	30/15 Summer				18.699	0.599	0.000	1.84		26.9
13.001	SW32	60 Winter	100	+40%	30/30 Winter				17.989	0.123	0.000	0.30		5.0
12.002	SW29	30 Winter	100	+40%	100/30 Winter				17.799	0.010	0.000	0.88		35.6
14.000	SW35	15 Winter	100	+40%	100/15 Winter				18.259	0.011	0.000	0.79		10.3
14.001	SW36	15 Winter	100	+40%	100/15 Summer				18.214	0.040	0.000	1.04		22.5
12.003	SW30	30 Winter	100	+40%					17.695	-0.011	0.000	1.00		44.6
15.000	53	15 Winter	100	+40%	30/15 Summer				18.719	1.069	0.000	1.75		39.1
1.008	TANK	960 Winter	100	+40%	30/60 Winter				17.542	0.767	0.000	0.07		7.2
1.009	SW07	2160 Summer	100	+40%					16.401	-0.324	0.000	0.05		7.2
						©1982-2018	Innovyz	е						

Curtins Consulting Ltd					Page 54
	Decim	and by dim	itaan i		Micro
Date 07/08/2020 09:54	Designed by dimitrov_1				Drainage
File FS0316-CUR-00-00-M3-C-9200-V10_SW_NETWORK	Checked by				brainage
Network 2018.1.1					
100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1					
	US/MH		Level		
PN	Name	Status	Exceeded		
1.007	SW06	SURCHARGED			
10.000	SW19	OK			
10.001	19	SURCHARGED			
10.002	20	SURCHARGED			
10.003	SW20	SURCHARGED			
10.004	SW21	SURCHARGED			
10.005	SW22	SURCHARGED			
10.006	SW24	SURCHARGED			
10.007	SW25	SURCHARGED			
10.008	SW26	SURCHARGED			
11.000	SW33	FLOOD	4		
11.001	SW34	FLOOD RISK			
12.000	SW27	FLOOD RISK			
12.001	SW28	FLOOD RISK			
13.000	SW31	FLOOD RISK			
13.001	SW32	SURCHARGED			
12.002	SW29	SURCHARGED			
14.000	SW35	SURCHARGED			
14.001	SW36	SUKCHARGED			
12.003	5030	UK			
1 008	TANK	SURCHARGED			
1.000	SW07	OK			
C	1982-2	2018 Innov	yze		

FS0316-CUR-00-XX-RP-D-002 Turing House School

Nursery Car Park - Drainage Strategy Addendum

Appendix F Pre-Development Enquiry Response

MS A Smolen 56 The Ropewalk Nottingham NG1 5DW

24th April 2018

Pre-planning enquiry: Capacity check

Dear Ms Smolen

Thank you for providing information on your development at Turing Hse School Hospital Bridge rd TW2 6LH dated Apr' 18.

Foul

If your proposals progress in line with the details you've provided, we're pleased to confirm that there will be sufficient sewerage capacity to serve your foul discharges from your development.

Surface Water

In considering your surface water needs, we support the use of sustainable drainage on development sites.

The surface water drainage strategy should follow policy 5.13 of the London Plan. Typically greenfield run off rates of 5l/s/ha should be aimed for using the drainage hierarchy. The hierarchy lists the preference for surface water disposal as follows; Store Rainwater for later use > Use infiltration techniques, such as porous surfaces in non-clay areas > Attenuate rainwater in ponds or open water features for gradual release > Discharge rainwater direct to a watercourse > Discharge rainwater direct to a surface water sewer/drain > Discharge rainwater to the combined sewer.

Please refer to the attached document titled "Planning your wastewater" attached to this letter, specifically to notes relating to surface water. Also I would advise you to liaise with the LA and discuss their criteria regarding surface water discharges in that area and adhere to their stipulation. If you adhere to LA stipulation then TW will be able to accommodate that agreed discharge.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

Please note that you must keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient sewerage capacity.

What happens next?

Please make sure you submit your connection application, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you've any further questions, please contact me.

Yours sincerely

Siva Sivarajan

Developer Services- Wastewater Adoptions Engineer Office:0203 577 7752 Mobile: 07747842608 sivarajan@thameswater.co.uk

Thames Water Utilities Ltd, Clearwater Court, Vastern Road, Reading, Berkshire, RG1 8DB Find us online at <u>developers.thameswater.co.uk</u>

TW internal ref: DTS57768

We've put together some information on sewerage to help you plan your new development.

How long does it take to get consent to connect to a sewer?

If you're applying for consent to connect to a sewer under Section 106 of the Water Industry Act 1991, you'll need to give us 21 days' notice.

I think I'll need to connect to a trunk sewer - is that possible?

Connecting directly to trunk sewers can be complex and dangerous, and we won't permit this at all in London. If you're considering a trunk sewer as a point of connection, please contact us as soon as possible to discuss.

How do I handle trade effluent and groundwater discharges?

You mustn't discharge non-domestic waste to our sewers without a valid trade effluent consent - doing this is an offence under Section 109(1) of the Water Industry Act 1991. You can call our trade effluent team on 0203 577 9200 to get help with trade effluent consents and ground water discharge permits.

Where can I discharge surface water?

The Lead Local Flood Authority, or if you are in a London Borough, 'The London Plan', advises that your development should utilise sustainable drainage systems (SuDS) unless there are practical reasons for not doing so. You should aim to achieve greenfield run-off rates and ensure you manage surface water run-off as close to its source as possible in line with the following drainage hierarchy:

- 1 Store rainwater for later use.
- 2 Use infiltration techniques, such as porous surfaces in non-clay areas.
- 3 Attenuate rainwater in ponds or open water features for gradual release.
- 4 Attenuate rainwater by storing in tanks or sealed water features for gradual release.
- 5 Discharge rainwater direct to a watercourse.
- 6 Discharge rainwater to a surface water sewer or drain.
- 7 Discharge rainwater to a combined sewer.

Please note that if you're discharging surface water anywhere other than to a public sewer – such as to a watercourse – you'll need approval from the relevant authority, for example the Environment Agency, the local authority or the Canals and Rivers Trust.

If you don't follow the surface water hierarchy you may not be granted planning permission, and Thames Water may seek to put conditions on the planning application.

There's no right of discharge of highway drainage into the public sewerage system, and we'd need to agree this with the relevant highway authority under Section 115 of the Water Industry Act 1991. You can contact us to discuss this further.

What can I do about redundant sewers and rising mains on my site?

On brownfield sites where existing sewers or rising mains need to be made redundant or diverted, the developer will need to fund the work, as set out in Section 185 of the Water Industry Act. If there's no practical way of making a diversion, we'll apply the standoff distances in Sewers for Adoption 7th edition to assess the width of easement required.

FS0316-CUR-00-XX-RP-D-002 Turing House School

Nursery Car Park - Drainage Strategy Addendum

Appendix G Surface Water Drainage Layouts

Our Locations

Birmingham

2 The Wharf Bridge Street Birmingham B1 2JS T. 0121 643 4694 birmingham@curtins.com

Bristol

Quayside 40-58 Hotwell Road Bristol BS8 4UQ T. 0117 302 7560 bristol@curtins.com

Cambridge

50 Cambridge Place Cambridge CB2 1NS T. 01223 631 799 cambridge@curtins.com

Cardiff

3 Cwrt-y-Parc Earlswood Road Cardiff CF14 5GH T. 029 2068 0900 cardiff@curtins.com

Douglas

Varley House 29-31 Duke Street Douglas Isle of Man IM1 2AZ T. 01624 624 585 douglas@curtins.com

Dublin

39 Fitzwilliam Square Dublin 2 Ireland T. 00353 1 507 9447 dublin@curtins.com

Edinburgh

1a Belford Road Edinburgh EH4 3BL T. 0131 225 2175 edinburgh@curtins.com

Glasgow

Queens House 29 St Vincent Place Glasgow G1 2DT T. 0141 319 8777 glasgow@curtins.com

Kendal

28 Lowther Street Kendal Cumbria LA9 4DH T. 01539 724 823 kendal@curtins.com

Leeds

Rose Wharf Ground Floor Leeds L29 8EE T. 0113 274 8509 leeds@curtins.com

Liverpool

Curtin House Columbus Quay Riverside Drive Liverpool L3 4DB T. 0151 726 2000 liverpool@curtins.com

London

40 Compton Street London EC1V 0BD T. 020 7324 2240 Iondon@curtins.com

Manchester

Merchant Exchange 17-19 Whitworth Street West Manchester M1 5WG T. 0161 236 2394 manchester@curtins.com

Nottingham

56 The Ropewalk Nottingham NG1 5DW T. 0115 941 5551 nottingham@curtins.com