
10k Raster Mapping **Published 2006** Source map scale - 1:10,000

The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan which replaced the old 1:10,000 maps originally published in 1970. The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district, civil parish and constituency.

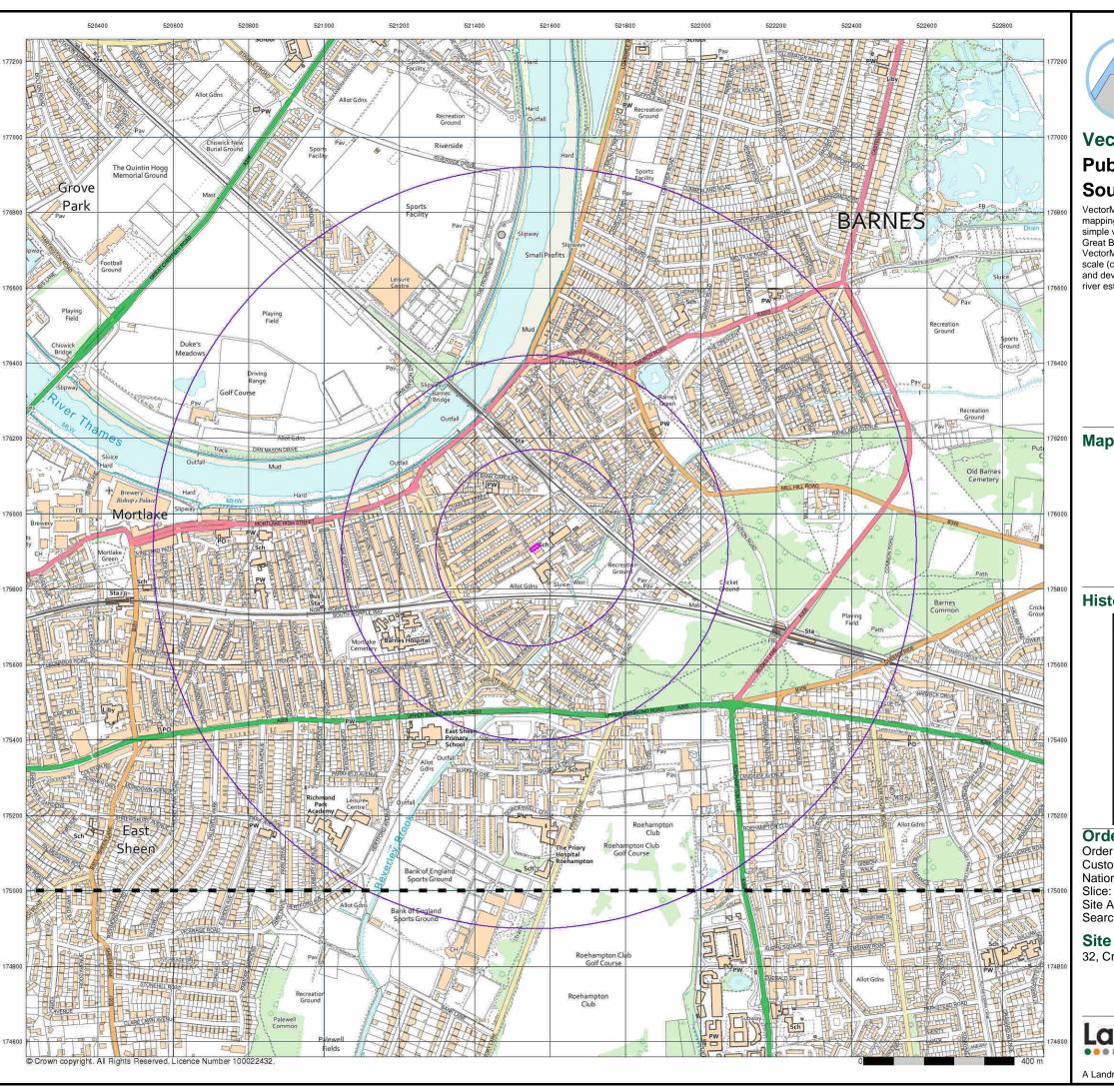
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 250006383_1_1 Customer Ref: 20/11891/GO National Grid Reference: 521560, 175910

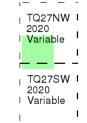
Site Area (Ha): Search Buffer (m): 0.03 1000

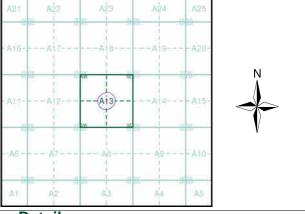

Site Details

32, Cross Street, London, SW13 0PD

0844 844 9952

A Landmark Information Group Service v50.0 28-Jul-2020 Page 24 of 25




VectorMap Local Published 2020 Source map scale - 1:10,000

VectorMap Local (Raster) is Ordnance Survey's highest detailed 'backdrop' mapping product. These maps are produced from OS's VectorMap Local, a simple vector dataset at a nominal scale of 1:10,000, covering the whole of Great Britain, that has been designed for creating graphical mapping. OS VectorMap Local is derived from large-scale information surveyed at 1:1250 scale (covering major towns and cities),1:2500 scale (smaller towns, villages and developed rural areas), and 1:10 000 scale (mountain, moorland and river estuary areas).

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 250006383_1_1 Customer Ref: 20/11891/GO National Grid Reference: 521560, 175910

Site Area (Ha): Search Buffer (m): 0.03 1000

Site Details

32, Cross Street, London, SW13 0PD

0844 844 9952 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 28-Jul-2020 Page 25 of 25

APPENDIX 2

EXPLORATORY RECORDS

ALBURY S.I. L' Miltons Yard, Petworth R		BOREHOLE		BH1				
Contract	Cross Street, Barn	es			Report Ref			891/GO
Client	McBains Ltd				Ground Level			
Site Address	32 Cross Street, Ba	arnes, London SW	/13 OPD		Date Commenced 03/08/2020 Date Completed 05/08/2020			
Type & Diameter of Boring	Light Cable Percussi	on: 150mm diamet	er		Sheet No		1 of 3	
Water Strikes, m			Water levels	recorded during b	oring, m			
1 7.00	Date	03/08/2020	03/08/2020					
2	Hole Depth	7.00	25.00					
3	Casing Depth	7.00	GL					
4	Water Level	7.00	6.00					

Excavation of hand dug starter pit to clear buried services

	1 hour chiselling techniques to advance borehole from 1.2m to 2m through brick and concrete obstructions						ough brick and concrete obstructions
	ples or Tests		ndard Penetration 1	ests	Depth	Legend	Strata Description
Туре	Depth, m	Seat	Test Drive	N	m	zegena	
D	0.30						Grass over MADE GROUND (dark brown silty SAND with occasional
В	0.50				0.50		gravel and brick fragments)
							MADE GROUND (recovered as cobble and coarse gravel sized
							fragments of brick and concrete in a sandy matrix)
В	1.20-1.65	8, 19	20, 8, 12, 20	60			magnetics of brick and consisted in a sandy matrix)
		-, -	-, -, , -				
					l F		
D	1.75						
D	2.00-2.45	4, 4	5, 5, 8, 11	29			
	0.75				2.60	$-\triangle\triangle$	Madi wadaaa haasa ah CDAVEL
D	2.75	2.4	F C 7 7	25		000.	Medium dense brown sandy GRAVEL
В	3.00-3.45	3, 4	5, 6, 7, 7	25			[KEMPTON PARK GRAVEL MEMBER]
						000	
						. 000	
D	4.00					-00.	
В	4.50-4.95	4, 5	6, 7, 7, 6	26		000	
Ь	4.30-4.33	4, 3	0, 7, 7, 0	20	l E	. 000	
						— ુલ્ઇ.	
D	5.50					0000	
В	6.00-6.45	4, 5	6, 7, 7, 8	28			
		,	. , ,				
					-		
						─	
D	7.00						
В	7.50-7.95	3, 4	4, 4, 5, 6	19		300	
						— 000 ·	
D	8.50					0000	~with lenses of greyish brown clayey silt at 8.5m
						%)·	
						— °°°	(Continued on next sheet)

Asi	ALBURY (TD oad, Witley, Surrey GU	Sheet 2 of 3	BOREHOLE	BH1 (Sheet 2 of 3)			
Con	tract	Cross	Cross Street, Barnes Report Ref 20/11891/GO						20/11891/GO
	ples or Tests	Standard Penetration Tests Depth Legend Strata Description						on	
Type D	Depth, m	Seat	Test Drive	N 17	m 9.10		Madium dansa hu	own sandy GRAVEL (co	
	9.00-9.45	2, 3	4, 4, 4, 5	17	9.10	— ×		ark brownish grey silty	
						∄., ∣	[LONDON CLAY FO		
D	10.00					×			
	10.00					×			
U	10.50-10.95					×			
						×			
						×			
D	11.50					×			
D	12.00-12.45	3, 4	4, 5, 5, 5	19]×			
						×			
D	13.00								
						×			
U	13.50-13.95					×			
						- ×			
	14.50					×			
D	14.50								
D	15.00-15.45	4, 4	5, 5, 6, 6	22					
		,, .	3, 3, 3, 3			×			
						×			
D	16.00					×			
						×			
D	16.50-16.95	4, 5	5, 6, 7, 7	25		×			
						1 ~ —			
						×			
D	17.50					×			
	27.00								
D	18.00-18.45	5, 6	7, 7, 8, 8	30		×			
						×			
						1 ×			
]			
D	19.00					×			
_	40 50 40 05	F .	7.00.00			×			
D	19.50-19.95	5, 6	7, 8, 9, 10	34		1 × —			
						<u> </u>		(Continued on next s	sheet)
						I		(Continued off field S	meetj

ALBURY S.I. LTD Sheet 3 of 3 BH1 **BOREHOLE** Miltons Yard, Petworth Road, Witley, Surrey GU8 5LH (Sheet 3 of 3) Contract Cross Street, Barnes **Report Ref** 20/11891/GO **Samples or Tests Standard Penetration Tests** Depth Legend **Strata Description** m Type Depth, m Seat **Test Drive** N Very stiff dark brownish grey silty CLAY (continued...) [LONDON CLAY FORMATION] D 20.50 7, 8, 10, 10 D 21.00-21.45 4, 6 35 D 22.00 D 22.50-22.95 5, 6 8, 9, 10, 11 38 D 23.50 D 24.00 D 24.55-25.00 4, 6 8, 9, 10, 12 39 25.00 END OF BOREHOLE

V/ LDLU	Y S.I. LTD d, Petworth Road, Witley, S	BOREHOLE	WS1	
Contract	Cross Street, Barnes		Report Ref	20/11891/GO
Client	McBains Ltd		Date	07/08/2020
Site Address	32 Cross Street, Barnes,	London SW13 OPD	Ground Level	
Type of excavator:	Window Sampler	Water level after completion, m	dry	
Water strikes, m	Dimensions, m	Ease of excavation, m		
1 none	Diameter 0.06	Very easy	Difficult	
2		Moderate GL-2.00	Very hard 2.00-3	3.10

Standpipe installed to 3m - Return monitoring on 14/08/2020 instrument dry

Sample	s or tests	Shear Strength	Depth	Legend	Strata Description
Туре	Depth, m	kPa	Берин	Legena	Strata Description
D	0.20		0.15	\times	MADE GROUND (concrete) MADE GROUND (brown silty SAND with brick and concrete
D	0.50		0.40		fragments) MADE GROUND (brown silty SAND with brick fragments)
D	1.00		1.35		
D	1.50		1.55		Brown silty SAND with occasional gravel, clayey partings and dark mottling (possible distrubed or MADE GROUND?)
D	2.00		2.05	· × ·	Brown silty SAND with occasional gravel [KEMPTON PARK GRAVEL MEMBER]
D	2.50			· × · · · · · · · · · · · · · · · · · ·	
D	3.00		3.10	×. ·	END OF BOREHOLE

Sample Code: B - Large Disturbed D - Small Distur

V/ LS1 U	Y S.I. LTD d, Petworth Road, Witley, S	BOREHOLE	WS2	
Contract	Cross Street, Barnes		Report Ref	20/11891/GO
Client	McBains Ltd		Date	07/08/2020
Site Address	32 Cross Street, Barnes,	London SW13 0PD	Ground Level	
Type of excavator:	Window Sampler	Water level after completion, m	dry	
Water strikes, m	Dimensions, m	Ease of excavation, m		
1 none	Diameter 0.06	Very easy	Difficult	
2		Moderate	Very hard	

Committee		Shear			
	or tests	Strength	Depth	Legend	Strata Description
Type D	Depth, m 0.10	kPa			MADE CROUND /grace over brown eiltre CAND with ground and
				$\times \times 1$	MADE GROUND (grass over brown silty SAND with gravel and roots)
D	0.30			(XX)	.000,
			0.50	X X	
				, ,	CONCRETE SLAB - END OF BOREHOLE
			ł		

Sample Code: B - Large Disturbed D - Small Disturbed W - Water Sample

R-Root Sample

T - Tube Liner

	Y S.I. LTD d, Petworth Road, Witley, S	BOREHOLE	WS2a	
Contract	Cross Street, Barnes		Report Ref	20/11891/GO
Client	McBains Ltd		Date	07/08/2020
Site Address	32 Cross Street, Barnes,	London SW13 0PD	Ground Level	
Type of excavator:	Window Sampler	Water level after completion, m	dry	
Water strikes, m	Dimensions, m	Ease of excavation, m		
1 none	Diameter 0.06	Very easy	Difficult GL-1.	50
2		Moderate	Very hard 1.50-3	3.10

Standpipe installed to 3m - Return monitoring 14/08/20 instrument dry

Samples	s or tests	Shear Strength	Depth	Legend	Strata Description
Туре	Depth, m	kPa	Бери	Legena	Strata Description
D D	0.10 0.30				MADE GROUND (grass over greyish brown silty SAND with occasional gravel, roots and occasional brick fragments)
В	0.50				
D	1.00		1.40		
D	1.50			× · · ·	Brown silty SAND with clayey partings and rare gravel; grading to gravelly SAND below 2m
D	2.00			· · ×	[KEMPTON PARK GRAVEL MEMBER]
D	2.50				
D	3.00		3.10		END OF BOREHOLE

Sample Code: B - Large Disturbed D - Small Disturbed W - Water Sample R-Root Sample T - Tube Liner

V/ LSUV	Y S.I. LTD d, Petworth Road, Witley, S	TRIAL PIT	1	
Contract	Cross Street, Barnes		Report Ref	20/11891/GO
Client	McBains Ltd		Date	07/08/2020
Site Address	32 Cross Street, Barnes,	London SW13 0PD	Ground Level	
Type of excavator:	Manual	Water level after completion, m	dry	
Water strikes, m	Dimensions, m	Ease of excavation, m		
1 none	Length 0.45	Very easy	Difficult GL-1.	30
2	Breadth 0.45	Moderate	Very hard	

Samples	s or tests	Shear Strength	Depth Legend			Strata Description
Туре	Depth, m	kPa			regena	
D	0.20		0.10			MADE GROUND (paving slab) MADE GROUND (dark brown silty SAND with occasional gravel and roots)
D	0.50					una roots)
D	1.00					
D D	1.50 1.60		1.60		· · · ·	Brown SAND with rare gravel
			1.80			
						END OF TRIAL PIT
				Н		

V/ LSUV	Y S.I. LTD d, Petworth Road, Witley, S	TRIAL PIT	2	
Contract	Cross Street, Barnes		Report Ref	20/11891/GO
Client	McBains Ltd		Date	07/08/2020
Site Address	32 Cross Street, Barnes,	London SW13 0PD	Ground Level	
Type of excavator:	Manual	Water level after completion, m	dry	
Water strikes, m	Dimensions, m	Ease of excavation, m		
1 none	Length 0.45	Very easy	Difficult GL-1.	30
2	Breadth 0.45	Moderate	Very hard	

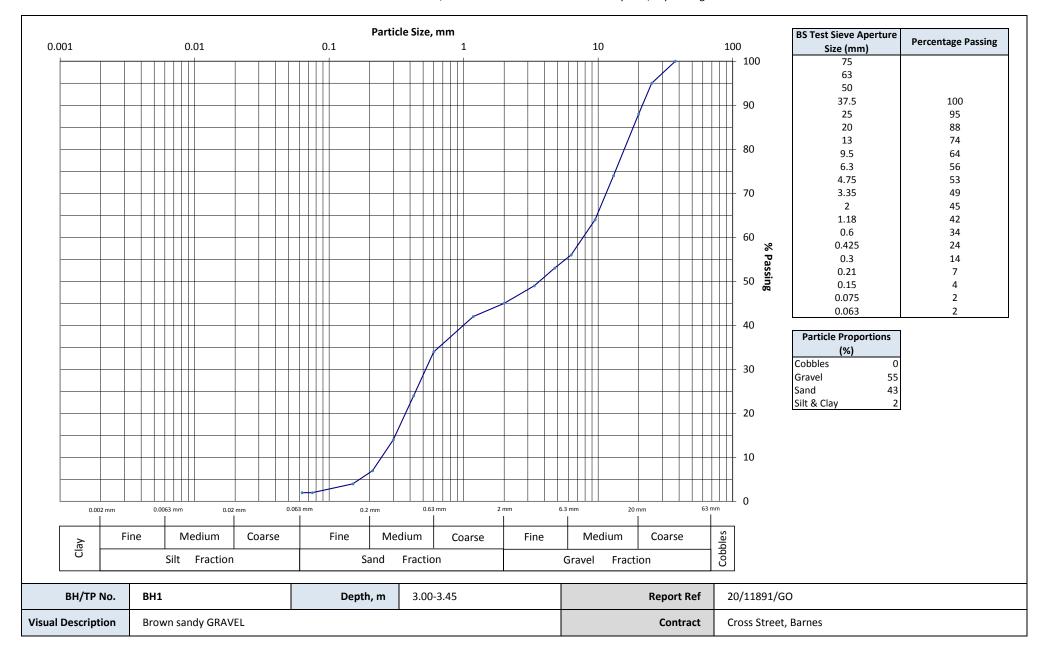
Samples	s or tests	Shear	Depth	Legend	Strata Description
Туре	Depth, m	Strength kPa	Depth	Legend	Strata Description
D	0.30		0.15		MADE GROUND (paving slab over sand) MADE GROUND (dark brown silty SAND with occasional gravel
D	0.50				and brick fragments)
D	1.00		1.10		Brown silty SAND with rare flint gravel and brick particles
D	1.20		1.35		(possible disturbed or MADE GROUND)
					END OF TRIAL PIT

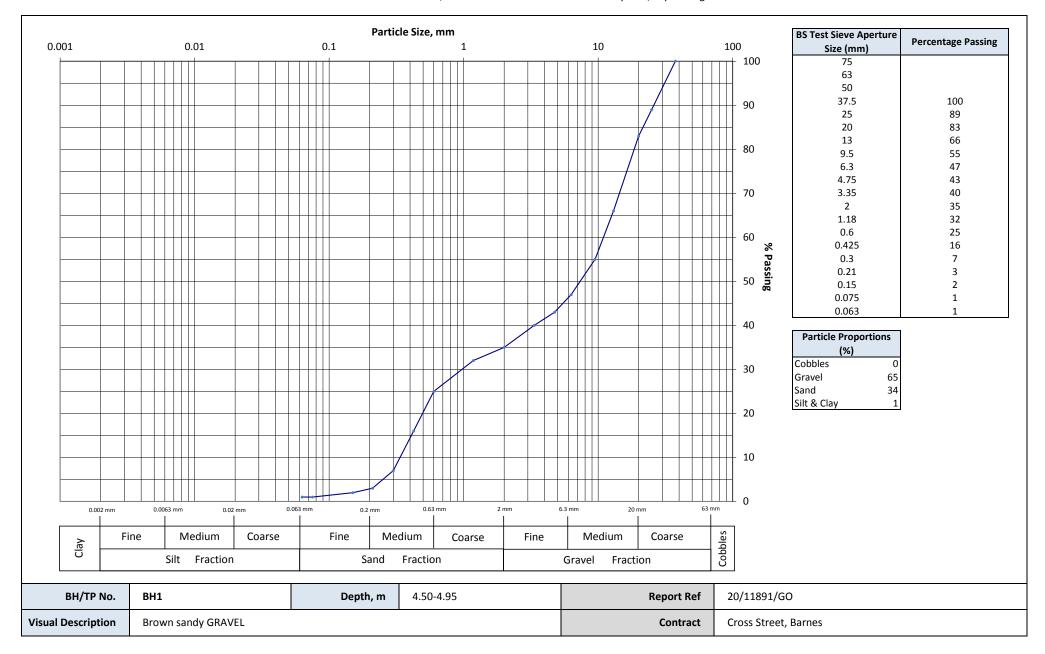
	Y S.I. LTD d, Petworth Road, Witley, S	urrey GU8 5LH	TRIAL PIT	3
Contract	Cross Street, Barnes		Report Ref	20/11891/GO
Client	McBains Ltd		Date	07/08/2020
Site Address	32 Cross Street, Barnes,	London SW13 0PD	Ground Level	
Type of excavator:	Manual	Water level after completion, m	dry	
Water strikes, m	Dimensions, m	Ease of excavation, m		
1 none	Length 0.45	Very easy	Difficult GL-0.	90
2	Breadth 0.35	Moderate 0.90-1.40	Very hard	

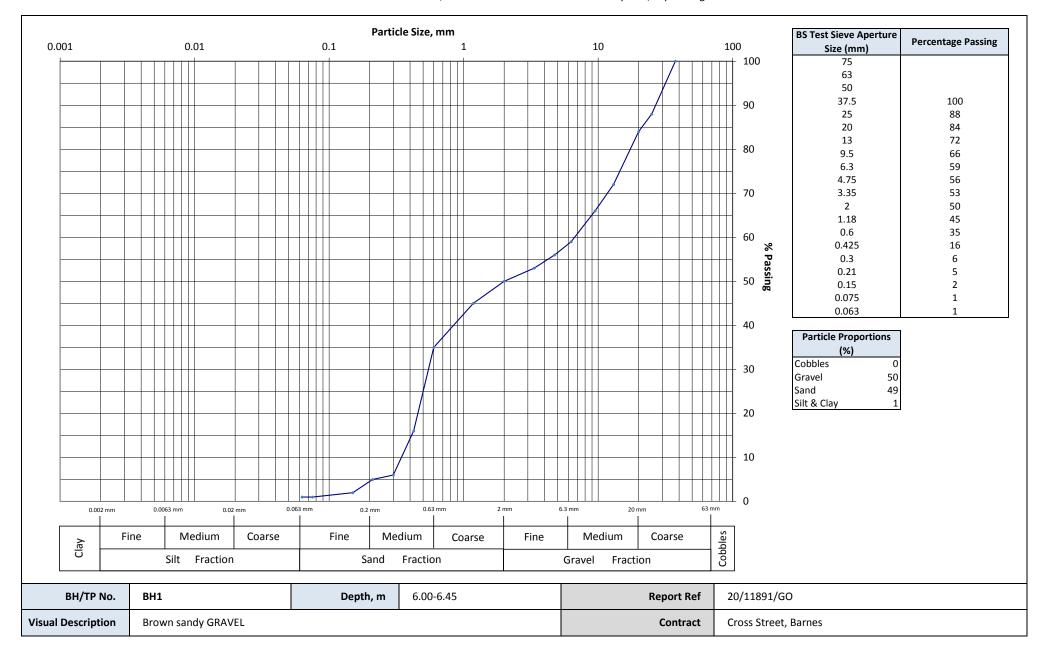
		Shear			
		Strength	Depth	Legend	Strata Description
Samples Type D D D	Depth, m 0.10 0.30 0.50	Shear Strength kPa	Depth	Legend	Strata Description MADE GROUND (dark brown silty SAND with gravel, brick and concrete fragments and large roots) END OF TRIAL PIT

Sample Code: B - Large Disturbed D - S.

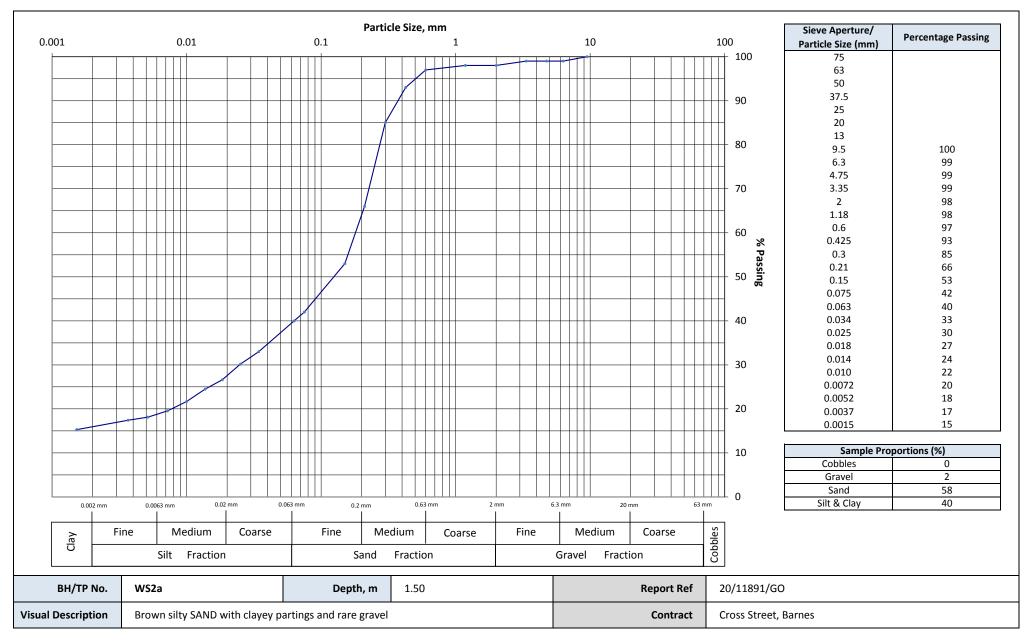
D - Small Disturbed

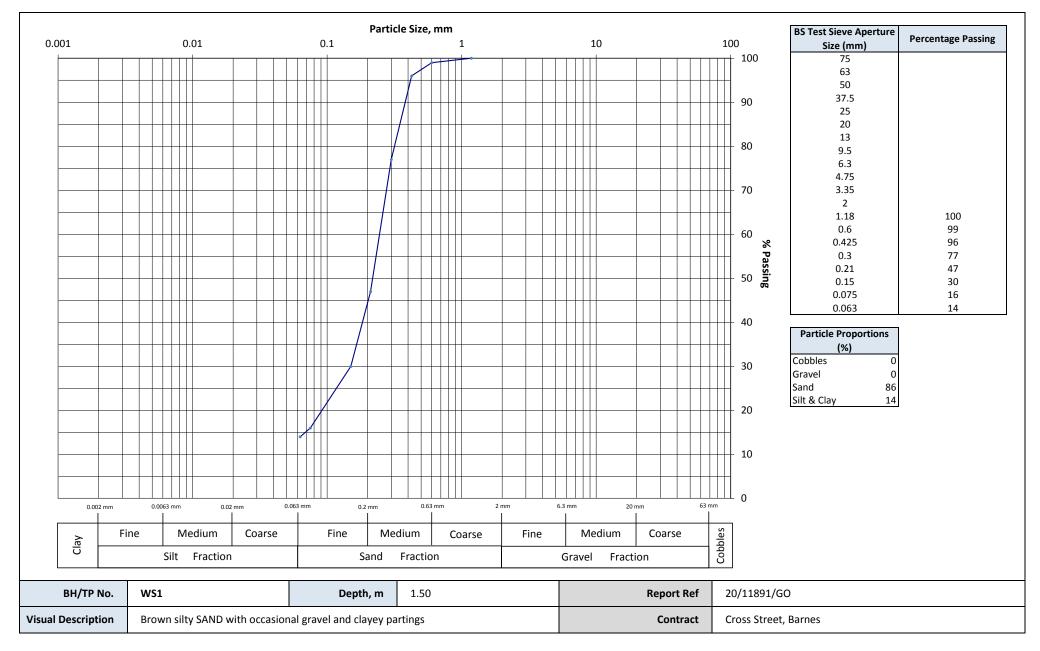

W - Water Sample


R-Root Sample


T - Tube Liner

APPENDIX 3


LABORATORY TEST RESULTS



BS 1377: Part 2: Clauses 9.2 and 9.5: 1990 Particle Size Distribution by Wet Sieving & Sedimentation by Hydrometer Method

INDEX PROPERTIES & TRIAXIAL COMPRESSION TESTS

BS 1377: Parts 2 & 7: 1990

 Report Ref
 20/11891/GO
 Contract
 Cross Street, Barnes

		Sample			INDEX PR	OPERTIES					TRIAXI	AL COMPRI	ESSION			
BH No.	Depth m	Description	Liquid Limit %	Plastic Limit %	Plasticity Index %	% Passing 425micron Sieve	Corrected Plasticity Index IP %	Soil Plasticity	Code	Lateral Pressure kPa	Compressive Strength kPa	Cohesion kPa	Angle of Friction	Bulk Density kg/cu.m	Water Content % dry wt	Remarks
BH1	10.50- 11.00	Dark brownish grey silty CLAY	72	26	46	100	46	CV	U100	220	280	140	0	2235	25.6	
	13.50- 13.95	Dark brownish grey silty CLAY							U100	280	390	195	0	2230	26.7	
KEY:	Code:	38 - 38mm nominal diameter s	necimen	100	- 100mm n	nminal diam	eter specimo	an .	D	- Remoulde	-d		r	- Functional		LV - Laboratory Vane
KEY:	coue:	U - Undrained	pecimen	ecimen 100 - 100mm nominal diameter specimen CD - Consolidated Drained				R - RemouldedCU - Consolidated Undrained							S - Single Stage	
	Soil Type:	C - Clay			- Silt	rea Diailiea			O - Organic				M - Multi StageNP - Non Plastic			3 - Siligie Stage
	Plasticity:	L - Low			- Intermedi	ate				- High				- Very High	•	E - Extremely High

LABORATORY CALIFORNIA BEARING RATIO TEST

BS 1377: Part 4: 1990

 Report Ref
 20/11891/GO
 Contract
 Cross Street, Barnes

		Sample		Natural (Condition	Labo	ratory	CI	3R	
BH No.	Depth m	Description	% retained on 20mm sieve	Bulk Density kg/cu.m	Water Content %	Dry Density kg/cu.m	Water Content %	Top %	Base %	Remarks
BH1	0.50	MADE GROUND (dark brown silty sand with occasional gravel and brick fragments)	12		5.7	1680	6.0	25	19	
WS2a	0.50	MADE GROUND (greyish brown silty SAND with occasional gravel, roots and occasional brick fragments)	3		7.5	1650	7.7	28	27	

SUMMARY OF CHEMICAL ANALYSES

Determination of Soluble Sulphate Contents of Soil and Groundwater, Organic Matter Content and pH Value

 Report Ref
 20/11891/GO
 Contract
 Cross Street, Barnes

ВН		Sample			n of Sulphates ed as SO ₄	рН	Organic
No.	Depth m	Soil Type	% passing 2mm sieve	2:1 Water:Soil Extract mg/l	Groundwater mg/l	Value	Content %
BH1	0.50	MADE GROUND	77	<250		7.3	
	1.20-1.65	MADE GROUND	43	2979		7.3	
	3.00-3.45	SAND and GRAVEL	45	<250		7.9	
	6.00-6.45	SAND and GRAVEL	50	<250		7.3	
	10.50-10.95	CLAY	100	650		7.7	
	13.50-13.95	CLAY	100	502		8.1	
	16.50-16.95	CLAY	100	<250		6.9	
	21.00-21.45	CLAY	100	<250		7.4	
WS2a	0.50	MADE GROUND	90	<250		7.5	
	1.50	SAND with rare gravel	98	<250		7.7	

George Owens

Albury SI Ltd Miltons Yard Petworth Road Witley Surrey GU8 5LH

e: george.owens@alburysi.co.uk

Your order number:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-24191

Project / Site name: Cross Street, Barnes Samples received on: 11/08/2020

Your job number: 20-11891-GO Samples instructed on/

Analysis started on:

Analysis completed by: 18/08/2020

11/08/2020

Report Issue Number: 1 **Report issued on:** 19/08/2020

Samples Analysed: 3 soil samples

Signed:

Rachel Bradley Deputy Quality Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

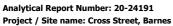
Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.



Analytical Report Number: 20-24191 Project / Site name: Cross Street, Barnes

Lab Sample Number				1589611	1589612	1589613
Sample Reference				WS1	WS2a	TP2
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.10	0.30
Date Sampled				07/08/2020	07/08/2020	07/08/2020
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
	1	_		_		
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	4.5	4.3	9.6
Total mass of sample received	kg	0.001	NONE	1.1	0.9	0.7
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
General Inorganics		N/C	MOFERTO	11.4	0.5	0.4
pH - Automated	pH Units	N/A	MCERTS	11.1	8.6	8.4
Total Cyanide	mg/kg	1 50	MCERTS	< 1	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	4800	560	880
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	660	33	33
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale		0.00125	MCERTS	0.33	0.016	0.016
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale		1.25	MCERTS	329	16.4	16.3
Sulphide	mg/kg	1	MCERTS	22	1.1	2.5
Elemental Sulphur	mg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.3	1.9	1.4
Total Phenois						
Total Phenois (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
(,)	5,5				. = 10	
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	0.6	< 0.05	0.22
Acenaphthylene	mg/kg	0.05	MCERTS	0.54	0.22	0.44
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	3.4	1.4	3.2
Anthracene	mg/kg	0.05	MCERTS	1.1	0.36	0.78
Fluoranthene	mg/kg	0.05	MCERTS	11	3.5	8.5
Pyrene	mg/kg	0.05	MCERTS	9.6	2.9	7.4
Benzo(a)anthracene	mg/kg	0.05	MCERTS	6.2	2.3	4.9
Chrysene	mg/kg	0.05	MCERTS	4.8	1.8	4.1
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	6.2	2.7	6.1
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	2.6	0.93	1.7
Benzo(a)pyrene	mg/kg	0.05	MCERTS	5.3	2	4.6
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	2.9	1.3	3.1
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.83	0.35	0.7
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	3.1	1.5	3.7
Total PAH						
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	57.8	21.3	49.3
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	13	19
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.75	0.88	0.89
Boron (water soluble)	mg/kg	0.2	MCERTS	1.3	0.6	0.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.5	0.9
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	20	24	24
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	21	24	24
	519					
	ma/ka	1	MCERTS	33	47	54
Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	33 220	47 320	54 300

Lab Sample Number				1589611	1589612	1589613
Sample Reference				WS1	WS2a	TP2
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.10	0.30
Date Sampled				07/08/2020	07/08/2020	07/08/2020
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	0.7	0.9
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	19	17	22
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	33	36	38
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	82	230	380
Monoaromatics & Oxygenates						
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Toluene	μg/kg 	1	MCERTS	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
o-xylene MTBE (Methyl Tertiary Butyl Ether)	µg/kg µg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
Petroleum Hydrocarbons						
TPH C6 - C40	mg/kg	10	NONE	130	540	160
1111 60 610	mg/kg	10	HONE	130	310	100
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic > EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic > EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic > EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic > EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic > EC16 - EC21	mg/kg	8	MCERTS	< 8.0	12	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	84	< 8.0
TPH-CWG - Aliphatic >EC21 - EC40	mg/kg	10	NONE	< 10	130	< 10
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	100	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	96	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	200	< 10
				L	L	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	3.4	6.1	4.6
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	7.4	11	8
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	49	82	31
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	67	260	94
TPH-CWG - Aromatic >EC21 - EC40	mg/kg	10	NONE	74	290	110
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	63	44
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	130	350	140
Titlewe /womade (Les Less)	1119/119					

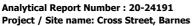
 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Analytical Report Number : 20-24191 Project / Site name: Cross Street, Barnes

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1589611	WS1	None Supplied	0.2	Brown loam and sand with gravel and vegetation.
1589612	WS2a	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
1589613	TP2	None Supplied	0.3	Brown loam and clay with gravel and vegetation.

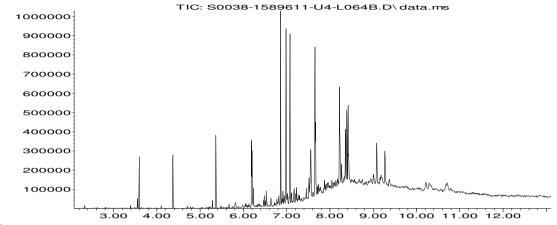

Environmental Science

Analytical Report Number : 20-24191 Project / Site name: Cross Street, Barnes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

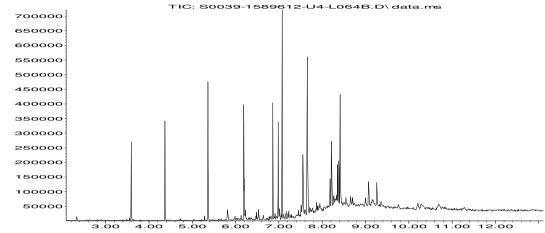
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method	Wet / Dry	Accreditation
Alialytical Test Name	Analytical Method Description	Analytical Method Reference	number	Analysis	Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in acetonitrile followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.		L080-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCI followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

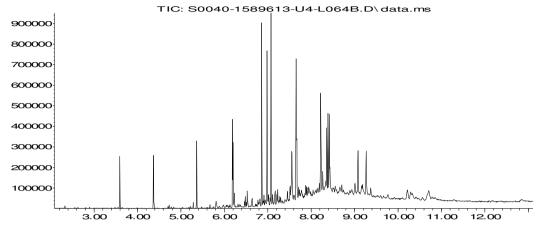

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.


Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Abundance


Time-->

Abundance

Time-->

Abundance

Time-->

George Owens

Albury SI Ltd Miltons Yard Petworth Road Witley Surrey GU8 5LH

e: george.owens@alburysi.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-24193

Project / Site name: Cross Street, Barnes Samples received on: 11/08/2020

Your job number: 20-11891-GO Samples instructed on/ 11/08/2020

Analysis started on:

Your order number: Analysis completed by: 18/08/2020

Report Issue Number: 1 **Report issued on:** 18/08/2020

Samples Analysed: 10:1 WAC sample

Signed: M. Cherwinska

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Location							
Location							
Location					Oli I		
Location					Client:	ALBURYSIL	
Location		Cross St	reet, Barnes				
					Landfill	Waste Acceptance	e Criteria
Lab Reference (Sample Number)			5 / 1589626			Limits	
Sampling Date			08/2020		Stable Non- reactive		
Sample ID		V	VS2a		Inert Waste	HAZARDOUS	Hazardous
Depth (m)		1	0.50	Landfill	waste in non- hazardous Landfill	Waste Landfill	
olid Waste Analysis							
OC (%)**	1.4				3%	5%	6%
oss on Ignition (%) **	3.2						10%
TEX (µg/kg) **	< 10				6000		
um of PCBs (mg/kg) **	< 0.007		1	1	1		
lineral Oil (mg/kg)	< 10		1	1	500		
otal PAH (WAC-17) (mg/kg)	34.8				100		
H (units)**	7.8					>6	
cid Neutralisation Capacity (mol / kg)	4.5					To be evaluated	To be evaluated
luate Analysis	10:1			10:1	Limit valu	es for compliance l	eaching test
BS EN 12457 - 2 preparation utilising end over end leaching rocedure)	mg/l			mg/kg	using BS EN	I 12457-2 at L/S 10	l/kg (mg/kg)
rsenic *	0.0064			0.0605	0.5	2	25
arium *	0.0342			0.322	20	100	300
admium *	< 0.0001			< 0.0008	0.04	1	5
rhromium *	0.0015			0.014	0.5	10	70
Copper *	0.014			0.13	2	50	100
lercury *	< 0.0005			< 0.0050	0.01	0.2	2
lolybdenum *	0.0038			0.0359	0.5	10	30
lickel *	0.0020			0.019	0.4	10	40
ead *	0.0073			0.069	0.5	10	50
ntimony *	< 0.0017			< 0.017	0.06	0.7	5
elenium *	< 0.0040			< 0.040	0.1	0.5	7
inc *	0.016			0.15	4	50	200
hloride *	1.3			13	800	15000	25000
luoride	0.85			8.0	10	150	500
ulphate *	4.9			46	1000	20000	50000
DS*	64			610	4000	60000	100000
henol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
ос	7.24			68.1	500	800	1000
each Test Information							
tone Content (%)	< 0.1						
ample Mass (kg)	2.0						
ry Matter (%)	96						
loisture (%)	4.1			1			
			1	1			
			+	+			
esults are expressed on a dry weight basis, after correction for	1		_1		# 1074 P	ted (liquid eluate an	<u> </u>

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Analytical Report Number : 20-24193 Project / Site name: Cross Street, Barnes

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1589625	WS2a	None Supplied	0.5	Brown loam and sand with gravel and vegetation.

Environmental Science

Analytical Report Number : 20-24193 Project / Site name: Cross Street, Barnes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance"	L046-PL	w	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025

Analytical Report Number : 20-24193 Project / Site name: Cross Street, Barnes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
	by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX 4

WASTE

WASTE CLASSIFICATION

The European Waste Framework Directive is implemented in the UK by the 2002 Landfill Regulations, together with a number of other acts and regulations. A key part of this process is to establish the hazardous properties of potential waste. The classification and definition of hazardous waste is interpreted within the Environment Agency guidance WM3 and all wastes require classifying in accordance with the European Waste Catalogue [EWC]. The EWC is a detailed list of typical industry waste types and each has a 6 digit code. Typically the appropriate EWC codes for excavated soil being disposed off site are:

17 05 03* soil and stones containing dangerous substances, or 17 05 04 soil and stones other than those mentioned in 17 05 03

If excavated soils are to be discarded or exported from site then they would be considered controlled waste and require classification. However, if soils can be re-used on site then they are not considered to be controlled waste. A Desk Study, soil descriptions, laboratory chemical analysis and risk assessment can all contribute to basic waste characterisation. Depending upon the chemical composition or levels of contaminants in the waste (e.g. metals, TPH, asbestos), soil and stones can either be hazardous or non-hazardous. Waste Acceptance Criteria [WAC] test results are used to determine the suitability of the waste intended for disposal against the acceptance criteria for a particular class of landfill site. WAC tests are not used for the classification of waste soils and are only required for inert or hazardous excavated material which is destined for landfill.

Wastes containing asbestos with a concentration of >0.10% weight/weight (w/w) are generally considered to be hazardous. While waste with <0.10% w/w of asbestos are considered non-hazardous. Where free fibres or fibrous asbestos is present at concentrations of >0.001% then these are considered to pose a risk to human health and are deemed hazardous waste. These waste materials also require a suitably licensed company to handle them.

Waste Treatment

It is a requirement of the 2002 Landfill Regulations that all wastes must undergo some form of pre-treatment prior to disposal at an appropriately licensed landfill. Treatment is defined using a 'three-point test' and can include physical, chemical, biological or thermal processes, which must change the characteristics of the waste in order to:

- reduce its volume, or
- · reduce its hazardous nature, or
- facilitate its handling, or
- enhance its recovery.

The exceptions to this are:

- inert waste for which treatment is not technically feasible.
- it is waste other than inert waste and treatment would not reduce its quantity or its hazards to human health or the environment.

The waste producer should either treat their own waste or ensure that the waste will be treated by a subsequent handler. The waste producer should record the type and amount of pre-treatment undertaken prior to disposal.

Examples of treatment include mechanical segregation or sorting, compositing, soil treatment hubs and incineration. This can include physical sorting of waste soil types into separate stockpiles at the producer site, e.g. topsoil, made ground and natural clay, sand or gravels.

Site Name	32 Cross Street					
Location	Barnes					
Site ID						
Job Number	20/11891/GO					
Date	26/08/2020					
User Name						
Company Name	Albury S.I Ltd					

			-															
		Hazardous Waste																
Hole ID	Sample Depth	Y/N	HP1	HP2	HP3	HP4	HP5	HP6	HP7	HP8	HP9	HP10	HP11	HP12	HP13	HP14	HP15	HP16
WS1	0.20	N	No	No	No	No	No	No	No									
WS2a	0.10	N	No	No	No	No	No	No	No									
TP2	0.30	N	No	No	No	No	No	No	No									
																		<u> </u>
																		
																		
																		
																		
																		-
																		
																		
																		
																		ĺ
																		<u> </u>
																		
																		<u> </u>
																		
																		
		 																
		 																
																		—
		1		1														——
 		 																
		 																
	1	1	l	l .	l		l	l		l		l		l	l			

Site Name	32 Cross Street
Location	Barnes
Site ID	
Job Number	20/11891/GO
Date	26/08/2020
User Name	
Company Name	Albury S.I Ltd

Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
WS1	0.20	рН	0.00000	N				
WS1	0.20	Benzene	0.00010	N				H225 test
WS1	0.20	Toluene	0.00010	N				H225 test
WS1	0.20	Ethylbenzene	0.00010	N				H225 test
WS1	0.20	m,p-xylene	0.00010	N				H226 test
WS1	0.20	o-xylene	0.00000	N				H226 test
WS1	0.20	Naphthalenene	0.00006	N				H228 test
WS1	0.20	Acenaphthylene	0.00005	N				
WS1	0.20	Acenaphthene	0.00001	N				
WS1	0.20	Fluorene	0.00001	N				
WS1	0.20	Phenanthrene	0.00034	N				
WS1	0.20	Anthracene	0.00011	N				
WS1	0.20	Fluoranthene	0.00110	N				
WS1	0.20	Pyrene	0.00096	N				
WS1	0.20	Benzo(a)anthracene	0.00062	N				
WS1	0.20	Chrysene	0.00048	N				
WS1	0.20	Benzo(b)fluoranthene	0.00048	N				
WS1	0.20	Benzo(k)fluoranthene	0.00026	N N				
WS1	0.20	Benzo(a)pyrene	0.00020	N				
WS1	0.20	Indeno(1,2,3-cd)pyrene	0.00039	N N				
WS1	0.20	Di-benz(a,h,)anthracene	0.00029	N N				
WS1	0.20	Benzo(q,h,i)perylene	0.00031	N N				
		Unknown hydrocarbon/oil						
WS1	0.20	with marker compound	0.01300	N				H225 test
WS1	0.20	Arsenic	0.00230	N				
WS1	0.20	Boron	0.00301	N				
WS1	0.20	Cadmium	0.00004	N				
WS1	0.20	Hexavalent Chromium	0.00012	N				
WS1	0.20	Chromium (Total)	0.00289	N				
WS1	0.20	Copper	0.00829	N				
WS1	0.20	Lead	0.00000	N				
WS1	0.20	Leadx	0.02200	N				
WS1	0.20	Manganese	0.08796	N				
WS1	0.20	Mercury	0.00003	N				
WS1	0.20	Nickel	0.00501	N				
WS1	0.20	Selenuim	0.00038	N				
WS1	0.20	Zinc	0.00000	N				
WS1	0.20	Zincx	0.02025	N				İ
WS1	0.20	Vanadium	0.00589	N N				İ
WS2a	0.10	pH	0.00000	N			İ	
WS2a	0.10	Benzene	0.00010	N				H225 test
WS2a	0.10	Toluene	0.00010	N				H225 test
WS2a	0.10	Ethylbenzene	0.00010	N N				H225 test
WS2a	0.10	m,p-xylene	0.00010	N N			 	H226 test
WS2a	0.10	o-xylene	0.00000	N N				H226 test
WS2a	0.10	Naphthalenene	0.00001	N N				H228 test
	0.10		0.00001	N N			-	11220 (65)
WS2a		Acenaphthylene					-	
WS2a	0.10	Acenaphthene	0.00001	N				
WS2a	0.10	Fluorene	0.00001	N				
WS2a	0.10	Phenanthrene	0.00014	N				
WS2a	0.10	Anthracene	0.00004	N				
WS2a	0.10	Fluoranthene	0.00035	N				
WS2a	0.10	Pyrene	0.00029	N				

Site Name	32 Cross Street
Location	Barnes
Site ID	
Job Number	20/11891/GO
Date	26/08/2020
User Name	
Company Name	Albury S.I Ltd

Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
WS2a	0.10	Benzo(a)anthracene	0.00023	N				
WS2a	0.10	Chrysene	0.00018	N				
WS2a	0.10	Benzo(b)fluoranthene	0.00027	N				
WS2a	0.10	Benzo(k)fluoranthene	0.00009	N				
WS2a	0.10	Benzo(a)pyrene	0.00020	N				
WS2a	0.10	Indeno(1,2,3-cd)pyrene	0.00013	N				
WS2a	0.10	Di-benz(a,h,)anthracene	0.00004	N				
WS2a	0.10	Benzo(g,h,i)perylene	0.00015	N				
		Unknown hydrocarbon/oil						
WS2a	0.10	with marker compound	0.05400	N				H225 test
WS2a	0.10	Arsenic	0.00199	N				
WS2a	0.10	Boron	0.00139	N				
WS2a	0.10	Cadmium	0.00009	N				
WS2a	0.10	Hexavalent Chromium	0.00012	N	<u> </u>			
WS2a	0.10	Chromium (Total)	0.00333	N				
WS2a	0.10	Copper	0.01181	N				
WS2a	0.10	Lead	0.00000	N				
WS2a	0.10	Leadx	0.03200	N				
WS2a	0.10	Manganese	0.08796	N				
WS2a	0.10	Mercury	0.00007	N				
WS2a	0.10	Nickel	0.00448	N				
WS2a	0.10	Selenuim	0.00038	N				
WS2a	0.10	Zinc	0.00000	N				
WS2a	0.10	Zincx	0.05679	N				
WS2a	0.10	Vanadium	0.00643	N				
TP2	0.30	pН	0.00000	N				
TP2	0.30	Benzene	0.00000	N				H225 test
TP2	0.30	Toluene	0.00000	N				H225 test
TP2	0.30	Ethylbenzene	0.00000	N				H225 test
TP2	0.30	m,p-xylene	0.00000	N				H226 test
TP2	0.30	o-xylene	0.00000	N				H226 test
TP2	0.30	Naphthalenene	0.00002	N				H228 test
TP2	0.30	Acenaphthylene	0.00004	N				
TP2	0.30	Acenaphthene	0.00001	N				
TP2	0.30	Fluorene	0.00001	N				
TP2	0.30	Phenanthrene	0.00032	N				
TP2	0.30	Anthracene	0.00008	N				
TP2	0.30	Fluoranthene	0.00085	N				
TP2	0.30	Pyrene	0.00074	N				
TP2	0.30	Benzo(a)anthracene	0.00049	N				
TP2	0.30	Chrysene	0.00041	N				
TP2	0.30	Benzo(b)fluoranthene	0.00061	N				
TP2	0.30	Benzo(k)fluoranthene	0.00017	N				
TP2	0.30	Benzo(a)pyrene	0.00046	N				
TP2	0.30	Indeno(1,2,3-cd)pyrene	0.00031	N				
TP2	0.30	Di-benz(a,h,)anthracene	0.00007	N				
TP2	0.30	Benzo(g,h,i)perylene	0.00037	N				
		Unknown hydrocarbon/oil						
TP2	0.30	with marker compound	0.01600	N				H225 test
TP2	0.30	Arsenic	0.00291	N				
TP2	0.30	Boron	0.00185	N				
TP2	0.30	Cadmium	0.00017	N				

Site Name	32 Cross Street
Location	Barnes
Site ID	
Job Number	20/11891/GO
Date	26/08/2020
User Name	
Company Name	Albury S.I Ltd

Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
TP2	0.30	Hexavalent Chromium	0.00012	N				
TP2 TP2	0.30	Chromium (Total)	0.00333	N				
TP2	0.30	Copper	0.01356	N				
TP2 TP2	0.30	Lead	0.00000	N				
TP2	0.30	Leadx	0.03000	N				
TP2	0.30	Manganese	0.06872	N				
TP2	0.30	Mercury	0.00072	N N				
TP2	0.30	Nickel	0.00580	N N				
TP2	0.30	Selenuim	0.0038	N N				
TP2	0.30	Zinc	0.00000	N N				
TP2								
IP2	0.30	Zincx	0.09383	N				
TP2	0.30	Vanadium	0.00678	N				
								
	İ							
	†				1			
1	+							
——	 							

Notes - Additional Information on Hazard Properties

	1	11010	s - Additional information on Hazard Properties
Hazardous Property	Description	Hazard Statement	Note
HP1	Explosive	H200, H201, H202, H203, H204, H240 and H241	A waste is assessed for HP1 via test methods, rather than a concentration limit. If you have substances or a mixture containing explosive properties the waste should be tested in accordance with the European Chemical Agency's guidance on the application of the CLP Criteria.
HP2	Oxidising	H270, H271, H272	A waste is assessed for HP2 via test methods, rather than a concentration limit. If you have substances or a mixture containing oxidising properties the waste should be tested in accordance with the European Chemical Agency's guidance on the application of the CLP Criteria.
HP3	Flammable	H220 to H226, H228, H242, H250, H251m H252, H260, H261	A waste is assessed for HP3 via test methods, rather than a concentration limit. If you have substances or a mixture containing flammable properties the waste should be tested in accordance with the European Chemical Agency's guidance on the application of the CLP Criteria. If a waste contains either H220, H221, H260 or H261 a calculation can be performed to identify the minimum amount of that substance that will trigger HP3.
HP5	Specific Target Organ Toxicity (STOT)	H304	Should a waste contain two or more compounds displaying H304 (Asp. Tox 1) and equal or exceed its specific concentration limit of 10%, then a waste will be hazardous by HP5 if its kinematic viscosity exceeds 20.5 mm ² /s. Guidance should be sought from the CLP Criteria.
HP9	Infectious	N/A	A waste is assessed for HP9 via further testing, rather than a concentration limit. In cases where there is the potential for toxins to be present, further testing will be required. For healthcare waste reference should be made to the Department of health guidance: Safe management of healthcare waste.
HP12	Release of acute toxic gas	EUH029, EUH031, EUH032, H260 or H261	A waste is assessed for HP12 via test methods, rather than a concentration limit. If you have substances or a mixture that may release acute toxic gas the waste should be tested in accordance with the European Chemical Agency's guidance on the application of the CLP Criteria.
HP15	Explosive or explosive properties	H205, EUH001, EUH019 or EUH044	A waste is assessed for HP15 via test methods, rather than a concentration limit. If you have substances or a mixture that may exhibit explosive or explosive properties the waste should be tested in accordance with the European Chemical Agency's guidance on the application of the CLP Criteria.
HP16	Persistent organic pollutants	N/A	A waste is considered hazardous if the concentration of one or more compound (persistent organic pollutant) as listed in Appendix C of Environment Agency guidance WM3 is above its assigned concentration limit. For reference for dioxins and furans, this assessment incorporates the use of specific toxicity equivalent factors.

APPENDIX 5

MONITORING DATA

GROUND GAS AND GROUNDWATER MONITORING									
Contract	Cross Street, Barnes		Report Ref	20/11891/GO					
Date	14/08/2020		Visit	1					
Engineer	DH		Check	GO					
Weather	Cloudy		Page	1					
Atmospharis Drossu		Before	1013						
Atmospheric Pressure		After	1013						
Published Pressure	Frend	High (steady/rising)							

	Flow	(I/hr)		Common	Gases (%)			voc	Groundy	vater (m)	
Position	High	Low	Time	CO ₂	CH ₄	O ₂	H ₂ S	(ppm)	Water	Base	Remarks
			15s	0.4	0.0	20.4		/			
			30s	0.7	0.0	19.8		/			
			45s	1.2	0.0	19.4					
			1m	1.8	0.0	18.9					
			1m 15s	1.9	0.0	18.8		/			
WS1	0.0	0.0	1m 30s	1.9	0.0	18.7	0	/	dry	2.70	
W31	0.0	0.0	1m 45s	1.9	0.0	18.8	Ů	/	ury	2.70	
			2m	1.9	0.0	18.8		/			
			2m 15s	1.9	0.0	18.8		/			
			2m 30s	1.9	0.0	18.8					
			2m 45s	1.9	0.0	18.8		/			
			3m	1.9	0.0	18.8		/			
			15s	0.1	0.0	20.9					
			30s	0.1	0.0	20.8		/			
			45s	0.1	0.0	20.7					
			1m	0.2	0.0	20.6					
			1m 15s	0.6	0.0	20.4					
WS2a	0.0	0.0	1m 30s	0.7	0.0	20.3	0	/	dry	2.70	
VV3Zd	0.0	0.0	1m 45s	0.8	0.0	20.1	0	/	ury	2.70	
			2m	1.0	0.0	19.9		/			
			2m 15s	0.9	0.0	20.0		/			
			2m 30s	0.9	0.0	20.0					
			2m 45s	0.9	0.0	20.0		/			
			3m	0.9	0.0	20.0		/			

	GROUND GAS AND GROUNDWATER MONITORING									
Contract	Cross Street, Barnes		Report Ref	20/11891/GO						
Date	04/09/2020		Visit	2						
Engineer	JH		Check	GO						
Weather	Cloudy		Page	1						
Atmospharis Brossu		Before	1021							
Atmospheric Pressure		After	1021							
Published Pressure 1	rend	High								

Tiger PID

Kemarks	F1	IIgel FID		C	Gases (%)					Ct-		
Position		(I/hr)	Time			T 0	H₂S		VOC (ppm)	Water	vater (m) Base	Remarks
	High	Low	Time	CO ₂	CH ₄	02			(PP)	water	Dase	
			150	0.0	0.0	10 5						
			15s	0.9	0.0	195						
			30s	1.3	0.0	19.2						
			45s	1.5	0.0	19.3						
			1m	1.5	0.0	19.3						
			1m 15s	1.6	0.0	19.3						
WS1	0.0	0.0	1m 30s	1.7	0.0	19.3	0		0	dry	2.70	
			1m 45s	1.7	0.0	19.4						
			2m	1.7	0.0	19.4						
			2m 15s	1.7	0.0	19.3						
			2m 30s	1.7	0.0	19.3						
			2m 45s	1.7	0.0	19.3						
			3m	1.7	0.0	19.3						
			15s	0.3	0.0	21.1						
			30s	0.4	0.0	21.0						
			45s	0.6	0.0	20.9						
			1m	0.6	0.0	21.0						
			1m 15s	0.6	0.0	21.0						
WS2a	0.0	0.0	1m 30s	0.6	0.0	21.0	0		0	dry	2.70	
VVJZa	0.0	0.0	1m 45s	0.6	0.0	21.0				uly	2.70	
			2m	0.6	0.0	21.0						
			2m 15s	0.6	0.0	21.0						
			2m 30s	0.6	0.0	21.0						
			2m 45s	0.5	0.0	21.0						
			3m	0.5	0.0	21.0						
							1					
							1					
							1					
							1					
							1					
							1					
							}					
			1		[1	[J	[[[

	GROUND GAS AND GROUNDWATER MONITORING									
Contract	Cross Street, Barnes	Cross Street, Barnes		20/11891/GO						
Date	18/09/2020		Visit	3						
Engineer	DH		Check	GO						
Weather	Sunny		Page	1						
Atmacubaria Drace		Before	1023							
Atmospheric Press	ure	After	1023							
Published Pressure	Trend	High								
		•								

	Flow	(I/hr)		Common	Gases (%)			voc	Groundy	vater (m)	
Position	High	Low	Time	CO ₂	CH ₄	O ₂	H ₂ S	(ppm)	Water	Base	Remarks
			15s	0.6	0.0	20.1		\			
			30s	0.8	0.0	19.7		\			
			45s	1.4	0.0	19.3		\			
			1m	1.5	0.0	19.0		\			
			1m 15s	1.7	0.0	18.9		\			
WS1	0.0	0.0	1m 30s	1.7	0.0	18.9	0	\	dry	2.70	
W31	0.0	0.0	1m 45s	1.7	0.0	18.9	Ů	\	ury	2.70	
			2m	1.6	0.0	19.0		\			
			2m 15s	1.6	0.0	18.9		\			
			2m 30s	1.6	0.0	18.9		\			
			2m 45s	1.6	0.0	18.9		\			
			3m	1.6	0.0	18.9		\			
			15s	0.7	0.0	20.3		\			
			30s	0.9	0.0	19.9		\			
			45s	1.0	0.0	19.8		\			
			1m	0.9	0.0	19.9		\			
			1m 15s	0.8	0.0	19.8		\			
WS2a	0.0	0.0	1m 30s	0.8	0.0	19.9	0	\	dry	2.70	
11020	0.0	0.0	1m 45s	1.2	0.0	19.8		\	ω. γ	2.70	
			2m	0.9	0.0	20.0		\			
			2m 15s	0.9	0.0	19.9		\			
			2m 30s	0.9	0.0	19.9		\			
			2m 45s	0.9	0.0	19.9		\			
			3m	0.9	0.0	19.9		\			

	GROUND GAS AND GROUNDWATER MONITORING								
Contract	Cross Street, Barnes		Report Ref	20/11891/GO					
Date	05/10/2020		Visit	4					
Engineer	JH .		Check	GO					
Weather	Cloudy		Page	1					
Atmosphania Ducasa		Before	995						
Atmospheric Pressur	re	After	995						
Published Pressure T	Trend	Low - following a period of significantly falling pressure trend							
Atmospheric Pressur Published Pressure T		After	995	trend					

	Flow	(I/hr)		Common	Gases (%)			voc	Groundy	vater (m)	
Position	High	Low	Time	CO ₂	CH ₄	O ₂	H₂S	(ppm)	Water	Base	Remarks
			15s	0.9	0.0	19.4		\			
			30s	1.1	0.0	19.4		\			
			45s	1.2	0.0	19.4		\			
			1m	1.3	0.0	19.6		\			
			1m 15s	1.2	0.0	19.6		\			
WS1	0.0	0.0	1m 30s	1.2	0.0	19.7	0	\	dry	2.70	
W31	0.0	0.0	1m 45s	1.2	0.0	19.5	Ü	\	ury	2.70	
			2m	1.2	0.0	19.5		\			
			2m 15s	1.2	0.0	19.5		\			
			2m 30s	1.4	0.0	19.5		\			
			2m 45s	1.4	0.0	19.5		\			
			3m	1.3	0.0	19.6		\			
			15s	0.8	0.0	20.5		\			
			30s	0.8	0.0	20.3		\			
			45s	1.0	0.0	20.2		\			
			1m	1.2	0.0	20.2		\			
			1m 15s	1.0	0.0	20.1		\			
WS2a	0.0	0.0	1m 30s	1.0	0.0	20.2	0	\	dry	2.70	
			1m 45s	0.9	0.0	20.2		\	,		
			2m	1.2	0.0	20.1		\			
			2m 15s	1.1	0.0	20.1		\			
			2m 30s	1.1	0.0	20.1		\			
			2m 45s	1.1	0.0	20.1		\			
			3m	1.1	0.0	20.1		\			
<u> </u>											

TEST DATE AND CO	NDITIONS
Date	29/01/20
Atmospheric Pressure	981mB
Ambient Temp	24.4°C
Environics Serial No.	2518/3268

GAS DATA LTD

Pegasus House Seven Stars Estate

Wheler Rd

Coventry

CV3 4LB

Tel 02476303311 Fax 02476307711

GFM436-1 FINAL INSPECTION & CALIBRATION CHECK CERTIFICATE

INSTRUMENT DETAILS							
Serial No	Customer						
11158	Gas Data Hire Fleet	1000					

INSTRUMENT CHECKS									
Keyboard	✓	Pump Flow	500cc/min						
Display Contrast	√	Pump Flow @ -200mB	325cc/min						
Clock Set / Running	√	S/W Version	G436.0027/0010						
Labels Fitted	✓	Recalibration Date	29/01/21						

	GAS CHECKS										
Calibrati	ion Gas	Instrument Gas Channels Read									
Gas Type	Applied	CH4	tol.	CO2	tol.	O2	tol.				
	Conc.	(%)	(% vol.)	(%)	(% vol.)	(%)	(% vol.)				
N2	100%	0.0	0.0	0.0	0.0	0.0	+/-0.1				
CITA	5%	4.9	+/-0.3	0.0	0.0	0.0	+/-0.1				
CH4	60%	59.9	+/-3.0	0.0	0.0	0.0	+/-0.1				
CO2	5%	0.0	0.0	5.0	+/-0.3	0.0	+/-0.1				
CO2	40%	0.0	0.0	39.8	+/-3.0	0.0	+/-0.1				
O2	20.9%	0.0	0.0	0.0	+0.1	20.9	+/-0.5				

		W. W.	OPTI	ONAL GAS	CHECKS			
Calibrat	tion Gas			Instrun	nent Gas Channels Read			
Gas Type	Applied	Label	(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	Conc.	Range	5000ppm	2000ppm		2.00%	(% vol.)	
N2	100%		0	0		0.000	+/- 5.0	
H2S	1500ppm		1500	0			+/- 5.0	
CO	1000ppm		80	995			+/- 5.0	
Hexane	2.00%					2.127	+/- 10.0	

		PRESS	SURE CH	ECKS					
Calibratio	n Pressure	Instrument Pressure Channels Read							
Pressure @	Applied	Atmospheric	tol.						
	Pressure	[Ap] (mB)	(mB)						
All Ports	Current Atmospheric	983	+/-2.0						
Ap Port	+800mB(a)	798	+/-5.0						
(Internal)	+1200mB(a)	1201	+/-5.0		10.0				

TEST DATE	TEST DATE AND CONDITIONS							
Date	Date 25							
Atmospheric Pres	sure	975	mB					
Ambient Tempera	iture	22.2	°C					
Environics Serial	5089							

GFM436 Final Inspection & Calibration Check Certificate

Customer	Albury S.I.
Certificate Number	121963
Order Number	326503

Serial Number	12733
Software Version	G436-00.0027/0010

GAS DATA LTD Unit 4, Fairfield Court Seven Stars Estate Wheler Rd Coventry CV3 4LJ Tel 02476303311 Fax 02476307711

Recalibration DUE Date
25/08/21

		Instrume	ent Checks				
Keyboard	1		Display Contrast		1		
Pump Flow In	400	Accept > 200 cc/min	Pump Flow @ -200mB	200 Accept > 200 cc/min			
Clock Set / Running	/		Labels Fitted	1			

			Gas Checks				
	CH ₄		CO 2		02		
	Instrument Gas	True Gas	True Gas Instrument Gas Tr		Instrument Gas	True Gas	
	Readings %	Value %	Readings %	Value %	Readings %	Value %	
Sensor	60	60	40	40	20.9	20.9	
	Accept ±3.0	00	Accept ±3.0	40	Accept ±0.5		
	5	-	5	-	6		
	Accept ±0.3	5	Accept ±0.3	5	Accept ±0.3	6	
Zero	0	0	0	0	0	0	
Reading 100% N2	Accept ±0.0	0	Accept ±0.0	0	Accept ±0.1	0	

Optional Gas Checks								
Applied Gas & Range Concentration Tested @				Instrument Readings (ppm)				
Gas Type	Range (ppm)			Instrument Gas Reading				
H2S	5000			Accept ±0.0	1500	Accept ±5.0		
со	2000	1000	0	Accept ±0.0	1000	Accept ±5.0		
Hexane	2.0%	2.0%	0	Accept ±0.0	1.99	Accept ±10.0		

				Cross Gas	Effects				
Applied	d Gas (ppm)	was north	Instrument Readings (ppm)						
Gas Type	Concentration	Toxic 1:	H2S	Toxic 2:	со	Toxic 3:	нех	11. 0	
H2S	1500	1500		0		0			
со	1000	70		1000		0			
Hexane	2.0%	0		0	0		1.99		

	Pressu	ire Checks	
	Atmospheric F	ressure [AP] (mB)	
Current Atmospheric	Pressure (mB)	Instrument Atmospher	ic Pressure Reading (mB)
AP Open P	AP Open Ports		Accept ±2.0
400 AG	+800 mB	800	Accept ±5.0
AP Port (Internal)	+1200mb	1200	Accept ±5.0

		Flow	Checks			
Borehole Flow			Diffe	rential Press	ure	
Applied Reading (l/h)	Instrum	ent Reading (l/h)	Applied Pressure (Pa)	Instrument Reading (Pa		
-30	-29.7	Accept ±3.0	-411	-409	Accept ±50	
-3	-3	Accept ±1.0	-20	-20	Accept ±6.0	
0	0	Accept ±0.0	0	0	Accept ±0.5	
3	3	Accept ±0.5	18	18	Accept ±3.0	
30	30	Accept ±3.0	349	346	Accept ±50	
60	60.7	Accept ±6.0	1046	1049	Accept ±130	
90	90.4	Accept ±9.0	2046	>>>>	Accept ±250	

Temper	Temperature Checks					
Calibration Temperature						
Applied Temperature ⁰ C	Instrument Temperature Reading ⁰					
-10	-10	Accept ±2.0				
0	0	Accept ±1.0				
30	30	Accept ±1.0				
60	60	Accept ±1.0				
100	100	Accept ±1.0				

Technician:	Date Tested:
Jack Rutland	26/08/2020

The instrument identified by the serial number stated above has been tested by Gas Data personnel for calibration accuracy on the date and under the ambient conditions stated. Gas Data Ltd internal BS EN ISO9001:2015 compliant workshop procedures were followed to apply known calibration test gases, gas flow rates, pressures and temperatures of the values stated. The results displayed on the instrument at each stage are recorded above.