

Energy Statement

Harrods Wharf

Client: Jamie Waller

Author: Sophie Beesley

Revision History

Version	Date Issued	Issued by	QA Check
1	13.01.2021	Sophie Beesley	Michael Woodbridge
2	22.01.2021	Sophie Beesley	Michael Woodbridge

About Environmental Economics

Our team of experienced consultants specialise in construction and building energy. We have qualifications in sustainability, energy, engineering, building physics and construction as well as environmental, quality management and auditing.

Over the last decade, we have provided assessments and consultancy for some of the largest UK house builders, including Barratt Developments, David Wilson Homes, Bellway Homes, Abbey New Homes and Davidsons. We develop flexible, practical, cost-effective specifications for our clients through identifying solutions and delivering design advice. This includes the following disciplines:

- Overheating Analysis (dynamic thermal modelling)
- Daylighting / Sunlight Simulations
- Energy Reports
- Compliance assessments and advice covering
 - Part L (SAP)
 - Part F (ventilation)
 - Part G (water)
- BREEAM
- SBEM (existing and new build)
- Minimum Energy Efficiency Standards (MEES)
- Thermal Bridging (Psi value calculations)

Contents

1.	Executive Summary				
2.	Int	troduction	4		
3.	Pla	anning Requirements	6		
4.	En	ergy Efficiency Assessment	8		
4	1.1.	Non-domestic Assessment Methodology	8		
5.	De	sign Philosophy	9		
Į	5.1.	Be Lean	9		
į	5.2.	Be Clean	11		
į	5.3.	Be Green	13		
į	5.4.	Monitoring	13		
6.	Re	sults	14		
Аp	pen	dix A	15		
Аp	pen	dix B	39		
Аp	pen	dix C	41		
Аp	pen	dix D	45		
Аp	pen	dix E	46		
Аp	pen	dix F	48		
Аp	pen	dix G	51		

1. Executive Summary

- 1.1.1. This Energy Assessment has been prepared by Environmental Economics Ltd to support a planning application for a proposed development on Harrods Wharf, in The London Borough of Richmond upon Thames.
- 1.1.2. The Assessment is presented with reference to the requirements set out in the London Plan 2016 (LP2016), Intend to Publish London Plan 2020 (LP2020) and the London Borough of Richmond upon Thames, Sustainable Construction Checklist.
- 1.1.3. The main objective of the assessment is to indicate the performance of the development in relation to Policy SI 2, which sets an objective of reducing carbon emissions resulting from regulated energy use by 35% in comparison to the 2013 Building Regulations. No offset payment is required for minor developments, nor is the zero carbon target.
- 1.1.4. As per the recommendations set out in the sustainable construction checklist, this report uses the updated SAP 10 emission factors to demonstrate performance against planning policy targets. See figure 1.
- 1.1.5. The strategy has been designed as a combined approach for both buildings. As a result all figures shown are applicable to the whole site.

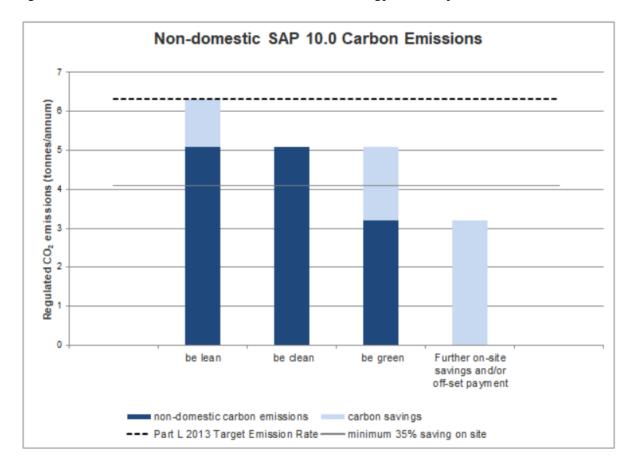


Figure 1 – Non-domestic Carbon Emissions from the Energy Hierarchy

1.1.6. The following table summarises the reductions achieved at each stage of the energy hierarchy.

Table 1 -Non-domestic carbon emissions after each stage of the Energy Hierarchy

	Carbon Dioxide Emissions for non-domestic buildings (Tonnes CO₂ per annum)		
	Regulated	Unregulated	
Baseline: Part L 2013 of the Building Regulations Compliant Development	6.3	9.0	
After energy demand reduction (be lean)	5.1	9.0	
After heat network connection (be clean)	5.1	9.0	
After renewable energy (be green)	3.2	9.0	

Table 2 – Non-domestic regulated carbon savings from each stage of the Energy Hierarchy

	Regulated non-domestic carbon dioxide savings		
	(Tonnes CO ₂ per annum)	(%)	
Be lean: savings from energy demand reduction	1.2	19%	
Be clean: savings from heat network	0.0	0%	
Be green: savings from renewable energy	1.9	30%	
Total Cumulative Savings	3.1	49%	

2. Introduction

2.1.1. The site is located in the London Borough of Richmond upon Thames. The immediate vicinity is shown in Figure 2 below, with the red outline indicating the development area.

Figure 2 – Site Location Plan

- 2.1.2. The client proposes 2 single storey units with 138m² GEA floor space each, under Sui Generis. For the purpose of this assessment, the units have been assessed under classes A1-A5.
- 2.1.3. The proposed development is classified as a "Minor Development" and therefore a detailed energy assessment has been carried out in compliance with the relevant applicable policies.
- 2.1.4. This report undertakes an energy demand analysis using a UK Government accredited software tools to model the non-domestic space. The energy demand is converted into carbon emissions within the software tool, with a separate spreadsheet issued by the GLA –being used to calculate the corresponding SAP10 figures.
- 2.1.5. As required by the Sustainable Construction Checklist the incremental effects of each stage of the energy hierarchy are identified and tabulated.

3. Planning Requirements

3.1.1. The development is required to comply with the technical requirements set out on the LP2020. The individual criteria are set out below (taken directly from LP2020 SI 2):

Policy SI 2 Minimising greenhouse gas emissions

- A. Major development should be net zero-carbon. This means reducing greenhouse gas emissions in operation and minimising both annual and peak energy demand in accordance with the following energy hierarchy:
- 1) be lean: use less energy and manage demand during operation
- 2) be clean: exploit local energy resources (such as secondary heat) and supply energy efficiently and cleanly
- 3) be green: maximise opportunities for renewable energy by producing, storing and using renewable energy on-site
- 4) be seen: monitor, verify and report on energy performance.
- B. Major development proposals should include a detailed energy strategy to demonstrate how the zero-carbon target will be met within the framework of the energy hierarchy.
- C. A minimum on-site reduction of at least 35 per cent beyond Building Regulations is required for major development. Residential development should achieve 10 per cent, and non-residential development should achieve 15 per cent through energy efficiency measures. Where it is clearly demonstrated that the zero-carbon target cannot be fully achieved on-site, any shortfall should be provided, in agreement with the borough, either:
- 1) through a cash in lieu contribution to the borough's carbon offset fund, or
- 2) off-site provided that an alternative proposal is identified and delivery is certain.
- D Boroughs must establish and administer a carbon offset fund. Offset fund payments must be ring-fenced to implement projects that deliver carbon reductions. The operation of offset funds should be monitored and reported on annually.
- E Major development proposals should calculate and minimise carbon emissions from any other part of the development, including plant or equipment that are not covered by Building Regulations, i.e. unregulated emissions.
- F Development proposals referable to the Mayor should calculate whole life-cycle carbon emissions through a nationally recognised Whole Life-Cycle Carbon Assessment and demonstrate actions taken to reduce life-cycle carbon emissions.

3.1.2. The development is expected to meet the following requirements for a minor development, as stated in the Sustainable Construction Checklist. The applicable policy has been highlighted in green.

Type of development	Standards to be met
Major residential development (10 units or more)	• Zero carbon standards
	 Submit energy statement
	• National water standards - 110 l/p/d
	 Submit Sustainable Construction Checklist
All development that results in a new residential	• 35% reduction in CO2 emissions over
dwelling or unit including conversions, reversions,	Building Regulations (2013)
change of use and extensions that create one or	 Submit energy statement
more new dwellings	• National water standards - 110 l/p/d
	 Submit Sustainable Construction Checklist
Change of use or conversion to residential and	BREEAM Domestic Refurbishment 'Excellent'
residential extensions which do not result in a	(where feasible)
new dwelling	 Submit Sustainable Construction Checklist
New non-residential buildings, including	• BREEAM 'Excellent'
extensions, over 100sqm floor space. Including	• 35% reduction in CO2 emissions over
change of use or conversion to non-residential	Building Regulations (2013)
and between non-residential use classes.	 Submit energy statement
	Submit Sustainable Construction Checklist
	 BREEAM refurbishment and fit out if one or
	more of the Parts are applicable as laid out in
	the Scope of the technical manual
Major new non-residential buildings, including	• Zero carbon standards from 2019
extensions, over 1,000sqm floor space	• BREEAM 'Excellent'
	 Submit energy statement
	Submit Sustainable Construction Checklist

4. Energy Efficiency Assessment

4.1. Non-domestic Assessment Methodology

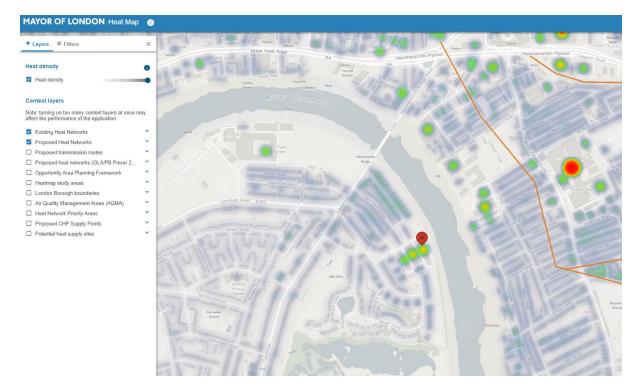
- 4.1.1. Environmental Economics have modelled the proposed units using Design Builder V6.1.8.021. The software provides a number of outputs which can be used to assess and compare the improvements from any number of build specifications in terms of:
 - 1. Building regulations compliance
 - 2. Energy usage per year (kWh/annum)
 - 3. Carbon emissions as a measure of building regulations compliance $(kgCO_2m^2/year)$
 - 4. More detailed breakdowns by type of end use
 - 5. Overheating risk
- 4.1.2. Each of these outputs can be used in different ways to analyse the performance of a non-domestic unit. The requirement for this project, as set out in the previous section, relates to a reduction in CO₂ emissions. The analysis, therefore, evaluated the CO₂ emissions rate per year for each of the properties on site. The total CO₂ emissions rate for each unit is based upon the regulated energy use for:
 - 1. Heating
 - 2. Cooling
 - 3. *Auxiliary*
 - 4. *Lighting*
 - 5. Hot Water
- 4.1.3. The energy calculation for the space heating and cooling, water heating, as well as the auxiliary electricity and lighting electricity were all assessed using the National Calculation Methodology modelling guide (for buildings other than dwellings in England) 2013.
- 4.1.4. For reporting purposes the unregulated emissions are also required, therefore the additional energy demand for equipment has been used from the BRUKL calculation output document.
- 4.1.5. The BRUKL calculation output documents can be found in Appendix A, for each step of the energy hierarchy
- 4.1.6. The drawings the assessment has been based on can be found in Appendix B.

5. Design Philosophy

5.1. Be Lean

- 5.1.1. In order to reduce the residual carbon emissions a number of improvements were made to the standard material and product specification.
- 5.1.2. The fabric of the buildings was improved from basic compliance with Part L 2013 to an enhanced specification. These fabric improvements reduce the energy demand resulting from normal occupation of a property. Improvements to the U-Value of external elements are shown below.

Table 3 - Non-domestic Fabric Specification


Element	Minimum Standard	Enhanced Specification
-	W/m²k	W/m²k
External Walls	0.35	0.182
Roof	0.25	0.15
Ground Floors	0.25	0.193
Glazing	2.20	1.1 Frame Factor: 10% T Solar: 0.45 L Solar: 0.73
Air Permeability	10 m ³ /hm ²	5.00 m ³ /hm ²

- 5.1.3. Due to the unique structure of the units, being pre-fabricated storage containers. Enhanced thermal specification data has been taken from a study providing examples on appropriate construction build-ups. See Appendix C.
- 5.1.4. As the units are sufficiently glazed, the strategy proposes high performing double glazing. An example datasheet is provided in Appendix D demonstrating thermal performance.
- 5.1.5. The development has proposed the use of a Green roof on Pavilion 01 and a BioSolar on Pavilion 02. An example datasheet is provided in Appendix E demonstrating thermal performance.
- 5.1.6. Highly efficient lighting LED has been specified to all zones.
- 5.1.7. To comply with the Be Lean specification, the HVAC system was modelled with a gas boiler for the heating. No cooling has been proposed for the development.
- 5.1.8. Criterion 3 of Part L2a (Limiting the effects of heat gains in the summer) has been addressed through the use of external shading to the south of Pavilion 01, and double glazing to minimise solar gains.

5.2. Be Clean

- 5.2.1. The GLA "Energy Planning" document provides guidance relating to the required hierarchical approach that should be followed when selecting energy systems.
- 5.2.2. As required by the LP2016 the authors have made reference to the London Heat Map to ascertain the potential connection to existing or planned district heating schemes.
- 5.2.3. Utilising the interactive search opportunities, all the potential sources of heat have been selected:
 - 1. Major energy loads
 - 2. Major energy supply plants
 - 3. Networks
 - 4. Opportunities
- 5.2.4. The resulting heat map is reproduced in full in Figure 3. The development is not within the vicinity of the existing heat network, and it is not near a planned future expansion of the existing network.

Figure 3 – London Heat Map extract

- 5.2.5. LP2016 also requires the consideration of site wide heat networks, including Combined Heat and Power (CHP).
- 5.2.6. CHP networks can be appropriate and desirable in situations where there is a large background demand for heat energy across a wide time period. In such cases the central plan benefits from a steady requirement for heat energy and as such can be sized with modular CHP/boiler plant.
- 5.2.7. An example of such a development would be a mixed use development which includes leisure/commercial/hotels and domestic housing. In this example there would be a "base load" for heat energy which could justify the investment in an energy centre.
- 5.2.8. Due to the low heat demand of the development CHP has not been considered a viable option in this instance.

5.3. Be Green

- 5.3.1. This report does not seek to compare the various types of renewable energy systems.
- 5.3.2. The client is fully committed to adopting suitable renewable energy technologies where technically feasible. It is proposed that Air Source Heat Pumps are used to supply heating with an Electric Instantaneous Hot Water for the domestic hot water. See Appendix F for product information and efficiency data for an example ASHP that could be used to fuel the development.
- 5.3.3. The inclusion of 3.0Wp of PV is proposed to Pavilion 02. See Appendix G for PV Layout.

5.4. Monitoring

5.4.1. It is anticipated that the renewable technologies will be installed by professionally certified installation contractors and therefore will benefit from meters which log the energy consumption and generation.

6. Results

- 6.1.1. The annual emissions rate for the baseline TER is 6.3 Tonnes of CO2 per annum. Therefore a reduction of at least 2.205 Tonnes of CO2 per annum is required. The annual emissions rate after application of the energy hierarchy is 3.2 Tonnes of CO2 per annum.
- 6.1.2. In accordance with Sustainable Construction Checklist, the reduction in CO2 emissions for each stage of the energy hierarchy, using SAP10 figures, is as follows:

Be Lean: 19%Be Clean: 0%Be Green: 30%

6.1.3. The total regulated carbon dioxide savings after applying the energy hierarchy is 49% when SAP10 is utilised.

Appendix A

Be Lean BRUKL

BRUKL Output Document

Compliance with England Building Regulations Part L 2013

Project name

Pavillion 1 As designed

Date: Fri Jan 22 09:53:15 2021

Administrative information

Building Details

Address: Harrods Wharf, London,

Certification tool

Calculation engine: SBEM

Calculation engine version: v5.6.b.0

Interface to calculation engine: DesignBuilder SBEM Interface to calculation engine version: v6.1.8

BRUKL compliance check version: v5.6.b.0

Certifier details

Name: Miss Sophie Beesley Telephone number: 01582 544250 Address: 8 Cardiff Road, Luton, LU1 1PP

Criterion 1: The calculated CO2 emission rate for the building must not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m².annum	56.8
Target CO₂ emission rate (TER), kgCO₂/m².annum	56.8
Building CO ₂ emission rate (BER), kgCO ₂ /m².annum	43.7
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	Us-Limit	Ua-Cats	Ui-Calo	Surface where the maximum value occurs*	
Wall**	0.35	0.18	0.18	"Pavillion 1 - Cafe_W_5"	
Floor	0.25	0.19	0.19	*Pavillion 1 - Cafe_S_3*	
Roof	0.25	0.15	0.15	"Pavillion 1 - Cafe_R_4"	
Windows***, roof windows, and rooflights	2.2	1.1	1.1	"Pavillion 1 - Cafe_G_6"	
Personnel doors	2.2	0.81	0.81	"Pavillion 1 - WCs_D_9"	
Vehicle access & similar large doors	1.5	-	-	"No external vehicle access doors"	
High usage entrance doors	3.5	-	-	"No external high usage entrance doors"	
Using = Limiting area-weighted average U-values [Wi/m*K]] Using = Calculated area-weighted average U-values [Wi/m*K)] Using = Calculated maximum individual element U-values [Wi/m*K)]					
* There might be more than one surface where the maximum U-value occurs. *** Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows. **** Display windows and similar glazing are excluded from the U-value check.					

Air Permeability	Worst acceptable standard	This building	
m ⁵ /(h.m ²) at 50 Pa	10	5	

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Page 1 of 6

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with	alarms for out-of-range values	YES
Whole building electric power factor achieved by power factor	correction	>0.95

1- Central Rads with Gas Boiler

Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(l/s)]	HR efficiency		
0.91						
0.91*	N/A	N/A	N/A	N/A		
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES						
	0.91 0.91*	0.91 - 0.91* N/A	0.91	0.91* N/A N/A N/A		

^{*} Standard shown is for gas single boiler systems <-2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

1- Point of Use - Gas

	Water heating efficiency	Storage loss factor [kWh/litre per day]		
This building	0.91			
Standard value 0.9* N/A				
* Standard shown is for gas boilers >30 kW output. For boilers <=30 kW output, limiting efficiency is 0.73.				

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
Α	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
Е	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
Н	Fan coil units
1	Zonal extract system where the fan is remote from the zone with grease filter

Zone name		SFP [W/(l/s)]							UD officiency		
ID of system type	Α	В	С	D	Е	F	G	н	I	HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
Pavillion 1 - Cafe	-	-	-	1	-	-	-	-	-	0.9	0.5
Pavillion 1 - Cafe BOH	-	-	-	1	-	-	-	-	-	0.9	0.5
Pavillion 1 - WCs	0.3										N/A

General lighting and display lighting	Lumino	us effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
Pavillion 1 - Cafe		100	100	133
Pavillion 1 - Cafe BOH	-	100	-	174
Pavillion 1 - WCs	-	100	-	95

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
Pavillion 1 - Cafe	NO (-1.9%)	NO

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?					
Is evidence of such assessment available as a separate submission?	NO				
Are any such measures included in the proposed design?	NO				

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

	Actual	Notional
Area [m²]	109.5	109.5
External area [m²]	359.2	359.2
Weather	LON	LON
Infiltration [m³/hm²@ 50Pa]	5	5
Average conductance [W/K]	108.27	156.66
Average U-value [W/m²K]	0.3	0.44
Alpha value* [%]	33.81	23.75

^{*} Percentage of the building's average heat transfer coefficient which is due to thermal bridging

Building Use

A1/A2 Retail/Financial and Professional services

100 A3/A4/A5 Restaurants and Cafes/Drinking Est./Takesways B1 Offices and Workshop businesses

B2 to B7 General Industrial and Special Industrial Groups

B8 Storage or Distribution

C1 Hotels

% Area Building Type

G2 Residential Institutions: Hospitals and Gare Homes

C2 Residential Institutions: Residential schools

C2 Residential Institutions: Universities and colleges

G2A Secure Residential Institutions

Residential spaces

D1 Non-residential Institutions: Community/Day Centre

D1 Non-residential Institutions: Libraries, Museums, and Galleries

D1 Non-residential Institutions: Education

D1 Non-residential Institutions: Primary Health Care Building

D1 Non-residential Institutions: Crown and County Courts

D2 General Assembly and Leisure, Night Clubs, and Theatres

Others: Passenger terminals Others: Emergency services Others: Miscellaneous 24hr activities

Others: Car Parks 24 hrs. Others: Stand alone utility block

Energy Consumption by End Use [kWh/m2]

	Actual	Notional
Heating	34.04	54.76
Cooling	0	0
Auxiliary	17.69	12.43
Lighting	23.42	44.2
Hot water	71.76	75.53
Equipment*	120.61	120.61
TOTAL**	146.92	186.92

^{*} Energy used by equipment does not count towards the total for consumption or calculating emissions.

"Total is not of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional	
Photovoltaic systems	0	0	_
Wind turbines	0	0	
CHP generators	0	0	
Solar thermal systems	0	0	

Energy & CO, Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m²]	461.49	582.27
Primary energy* [kWh/m²]	252.15	328.46
Total emissions [kg/m²]	43.7	56.8

^{*} Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

Н	HVAC Systems Performance									
Sys	stem Type	Heat dem MJ/m2	Cool dem MJ/m2			Aux con kWh/m2		Cool SSEER	Heat gen SEFF	Cool gen SEER
[ST] Central he	ating using	water: rad	iators, [HS]	LTHW boil	er, [HFT] N	atural Gas,	[CFT] Natu	ral Gas	
	Actual	104.8	356.7	34	0	17.7	0.86	0	0.91	0
	Notional	161.5	420.8	54.8	0	12.4	0.82	0		

Key to terms

Heat dem [MJ/m2] = Heating energy demand Cool dem [MJ/m2] - Cooling energy demand Heat con [kWh/m2] = Heating energy consumption Cool con [kWh/m2] = Cooling energy consumption Aux con [kWh/m2] = Auxiliary energy consumption

Heat SSEFF - Heating system seasonal efficiency (for notional building, value depends on activity glazing class)

 Cooling system seasonal energy efficiency ratio
 Heating generator seasonal efficiency Cool SSEER

Heat gen SSEFF

Cool gon SSEER - Cooling generator seasonal energy efficiency ratio

- System type Heat source
 Heating fuel type HS HFT CFT - Cooling fuel type

Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

Element	U _{i-Typ}	Ui-Min	Surface where the minimum value occurs*
Wall	0.23	0.18	"Pavillion 1 - Cafe_W_5"
Floor	0.2	0.19	"Pavillion 1 - Cafe_S_3"
Roof	0.15	0.15	"Pavillion 1 - Cafe_R_4"
Windows, roof windows, and rooflights	1.5	1.1	"Pavillion 1 - Cafe_G_6"
Personnel doors	1.5	0.81	"Pavillion 1 - WCs_D_9"
Vehicle access & similar large doors	1.5	-	"No external vehicle access doors"
High usage entrance doors	1.5	-	"No external high usage entrance doors"
U. Top = Typical individual element U-values [W/(m*K)	ì		U.u. = Minimum individual element U-values [W/(m*K)]
* There might be more than one surface where the r	ginimum U	value oc	urs.

Air Permeability	Typical value	This building
m ³ /(h.m ³) at 50 Pa	5	5

BRUKL Output Document

Compliance with England Building Regulations Part L 2013

Project name

Pavillion 2 As designed

Date: Fri Jan 22 09:56:01 2021

Administrative information

Building Details

Address: Harrods Wharf, London,

Certification tool

Calculation engine: SBEM

Calculation engine version: v5.6.b.0

Interface to calculation engine: DesignBuilder SBEM

Interface to calculation engine version: v6.1.8

BRUKL compliance check version: v5.6.b.0

Certifier details

Name: Miss Sophie Beesley Telephone number: 01582 544250 Address: 8 Cardiff Road, Luton, LU1 1PP

Criterion 1: The calculated CO2 emission rate for the building must not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	25.9
Target CO₂ emission rate (TER), kgCO₂/m².annum	25.9
Building CO₂ emission rate (BER), kgCO₂/m².annum	22.5
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	Ue-Limit	Ua-Cate	Ul-Cate	Surface where the maximum value occurs*
Wall**	0.35	0.18	0.18	*Pavillion 2 - ACC WC_W_7*
Floor	0.25	0.19	0.19	*Pavillion 2 - ACC WC_S_3*
Roof	0.25	0.15	0.15	"Pavillion 2 - ACC WC_R_4"
Windows***, roof windows, and rooflights	2.2	1.1	1.1	*Pavillion 2 - Entrance Lobby_G_6*
Personnel doors	2.2	0.81	0.81	*Pavillion 2 - Storage_D_6"
Vehicle access & similar large doors	1.5	-	-	"No external vehicle access doors"
High usage entrance doors	3.5	-	-	"No external high usage entrance doors"
Usum = Limiting area-weighted average U-values [V	Ŷ/(m³K)]			

U=col: = Calculated area-weighted average U-values [W/(m²K)]

U_{FGR} = Calculated maximum individual element U-values [W/(m²K)]

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m ³ /(h.m ²) at 50 Pa	10	5

Page 1 of 6

^{*} There might be more than one surface where the maximum ψ -value occurs.

[&]quot;Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

^{***} Display windows and similar glazing are excluded from the U-value check.

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	YES
Whole building electric power factor achieved by power factor correction	>0.95

1- Central Rads with Gas Boiler

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency			
This system	0.91	-	-	-	-			
Standard value	0.91*	N/A	N/A	N/A	N/A			
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES								
	* Standard shown is for gas single boiler systems <=2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.							

1- Point of Use - Gas

	Water heating efficiency	Storage loss factor [kWh/litre per day]					
This building	0.91	-					
Standard value 0.9* N/A							
* Standard shown is for gas boilers >30 kW output. For boilers <=30 kW output, limiting efficiency is 0.73.							

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
Α	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
Е	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
Н	Fan coil units
1	Zonal extract system where the fan is remote from the zone with grease filter

Zone name	SI		FP [W/(I/s)]				UD efficiences				
ID of system type	Α	В	С	D	E	F	G	Н	I	HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
Pavillion 2 - ACC WC	0.3	-	-	-	-	-	-	-	-	-	N/A
Pavillion 2 - ACC WC 1	0.3	-	-	-	-	-	-	-	-	-	N/A
Pavillion 2 - Ticket Office	-	-	-	1	-	-	-	-	-	0.9	0.5
Pavillion 2 - Staff Lounge	-	-		1				-	-	0.9	0.5

General lighting and display lighting	Lumino	us effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
Pavillion 2 - ACC WC	-	100	-	21
Pavillion 2 - Storage 1	100	-	-	5
Pavillion 2 - ACC WC 1	-	100	-	20
Pavillion 2 - Entrance Lobby	-	100	-	10
Pavillion 2 - Ticket Office	-	100	100	156
Pavillion 2 - Staff Lounge	100	-	-	225

General lighting and display lighting	Lumino	us effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
Pavillion 2 - Storage	100	-	-	28

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
Pavillion 2 - Ticket Office	NO (-78.6%)	NO
Pavillion 2 - Staff Lounge	NO (-10.6%)	NO

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?			
Is evidence of such assessment available as a separate submission?	NO		
Are any such measures included in the proposed design?			

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

Building Use

	Actual	Notional
Area [m²]	100.4	100.4
External area [m²]	331.2	331.2
Weather	LON	LON
Infiltration [m³/hm²@ 50Pa]	5	5
Average conductance [W/K]	90.75	131.98
Average U-value [W/m²K]	0.27	0.4
Alpha value* [%]	39.39	21.69

^{*} Percentage of the building's average heat transfer coefficient which is due to thermal bridging

A3/A4/A5 Restaurants and	d Cafes/Drinking Est./Takeaways
--------------------------	---------------------------------

A1/A2 Retail/Financial and Professional services

B1 Offices and Workshop businesses B2 to B7 General Industrial and Special Industrial Groups

B8 Storage or Distribution

% Area Building Type

C2 Residential Institutions: Hospitals and Care Homes

C2 Residential Institutions: Residential schools

G2 Residential Institutions: Universities and colleges

C2A Secure Residential Institutions

Residential spaces

D1 Non-residential Institutions: Community/Day Centre

D1 Non-residential Institutions: Libraries, Museums, and Galleries

D1 Non-residential Institutions: Education

D1 Non-residential Institutions: Primary Health Care Building

D1 Non-residential Institutions: Crown and County Courts

D2 General Assembly and Leisure, Night Clubs, and Theatres

Others: Passenger terminals Others: Emergency services Others: Miscellaneous 24hr activities Others: Car Parks 24 hrs

Others: Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	52.14	62.63
Cooling	0	0
Auxiliary	5.11	3.76
Lighting	16.11	19.81
Hot water	2.11	2.22
Equipment*	21.47	21.47
TOTAL**	75.47	88.42

^{*} Energy used by equipment does not count towards the total for consumption or calculating emissions.
** Total is not of any electrical energy displaced by CHI* generators, it applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO, Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m²]	308.92	326.39
Primary energy* [kWh/m²]	129.7	149.67
Total emissions [kg/m²]	22.5	25.9

^{*} Primary energy is not of any electrical energy displaced by CHP generators, if applicable.

н	HVAC Systems Performance									
Sys	stem Type	Heat dem MJ/m2	Cool dem MJ/m2	Heat con kWh/m2		Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER
[ST	[ST] Central heating using water: radiators, [HS] LTHW boiler, [HFT] Natural Gas, [CFT] Natural Gas									
	Actual	160.5	148.4	52.1	0	5.1	0.86	0	0.91	0
	Notional	184.7	141.7	62.6	0	3.8	0.82	0		****

Key to terms

Heat dem [MJ/m2] = Heating energy demand
Cool dem [MJ/m2] = Cooling energy demand
Heat con [kWh/m2] = Heating energy consumption

 Cooling system seasonal energy efficiency ratio
 Heating generator seasonal efficiency
 Cooling generator seasonal energy efficiency ratio
 System type
 Heat source
 Heating fuel type
 Cooling fuel type Heat gen SSEFF Cool gen SSEER ST HS CFT

Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

Element	Ui-Typ	Ui-Min	Surface where the minimum value occurs*	
Wall	0.23	0.18	"Pavillion 2 - ACC WC_W_7"	
Floor	0.2	0.19	"Pavillion 2 - ACC WC_S_3"	
Roof	0.15	0.15	"Pavillion 2 - ACC WC_R_4"	
Windows, roof windows, and rooflights	1.5	1.1	"Pavillion 2 - Entrance Lobby_G_6"	
Personnel doors	1.5	0.81	"Pavillion 2 - Storage_D_6"	
Vehicle access & similar large doors	1.5	-	"No external vehicle access doors"	
High usage entrance doors	1.5	-	"No external high usage entrance doors"	
U+Typ = Typical individual element U-values [W/(m*K)	j		U-ma = Minimum individual element U-values [W/(m/K)]	
* There might be more than one surface where the minimum U-value occurs.				

Air Permeability	Typical value	This building	
m³/(h.m²) at 50 Pa	5	5	

Be Green BRUKL

Compliance with England Building Regulations Part L 2013

Project name

Pavillion 1 As designed

Date: Fri Jan 22 10:04:16 2021

Administrative information

Building Details

Address: Harrods Wharl, London,

Certification tool

Calculation engine: SBEM

Calculation engine version: v5.6.b.0

Interface to calculation engine: DesignBuilder SBEM Interface to calculation engine version: v6.1.8

Certifier details

Name: Miss Sophie Beesley Telephone number: 01582 544250 Address: 8 Cardiff Road, Luton, LU1 1PP

BRUKL compliance check version: v5.6.b.0

Criterion 1: The calculated CO₂ emission rate for the building must not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m².annum	62.1
Target CO₂ emission rate (TER), kgCO₂/m².annum	62.1
Building CO ₂ emission rate (BER), kgCO ₂ /m².annum	58
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	Uatimit	Ua-Cale	Ulcate	Surface where the maximum value occurs*
Wall**	0.35	0.18	0.18	"Pavillion 1 - Cafe_W_5"
Floor	0.25	0.19	0.19	"Pavillion 1 - Cafe_S_3"
Roof	0.25	0.15	0.15	"Pavillion 1 - Cafe_R_4"
Windows***, roof windows, and rooflights	2.2	1.1	1.1	"Pavillion 1 - Cafe_G_6"
Personnel doors	2.2	0.81	0.81	"Pavillion 1 - WCs_D_9"
Vehicle access & similar large doors	1.5	-	-	"No external vehicle access doors"
High usage entrance doors	3.5	-	-	"No external high usage entrance doors"
Untint - Limiting area-weighted average U-values [V	(/m ⁴ K)]			

Unice: = Calculated area-weighted average U-values [W/(m*K)]

U.c.e = Calculated maximum individual element U-values [W/(m'K)]

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m ^c /(h.m ^c) at 50 Pa	10	5

^{*} There might be more than one surface where the maximum U-value occurs.

^{**} Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

^{***} Display windows and similar glazing are excluded from the U-value check.

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	YES
Whole building electric power factor achieved by power factor correction	>0.95

1- Central Rads with Electric

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(l/s)]	HR efficiency
This system	3.77			-	
Standard value	2.5*	N/A	N/A	N/A	N/A
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES					
* Standard shown is t	for all types >12 kW output	except absorption and par	engine heat pumps. For the	voes <=12 kW outpu	d, refer to EN 14825

^{*} Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 1482 for limiting standards.</p>

1- Point of Use - Electric

	Water heating efficiency	Storage loss factor [kWh/litre per day]
This building	1	-
Standard value	1	N/A

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
Α	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
E	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
Н	Fan coil units
1	Zonal extract system where the fan is remote from the zone with grease filter

Zone name		SFP [W/(l/s)]						UD officionar			
ID of system type	Α	В	С	D	E	F	G	н	1	HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
Pavillion 1 - Cafe	-	-	-	1	-	-	i	-	-	0.9	0.5
Pavillion 1 - Cafe BOH		-	-	1	-			-		0.9	0.5
Pavillion 1 - WCs	0.3	-	-	-	-	-		-	-	-	N/A

General lighting and display lighting	Luminous efficacy [lm/W]			
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
Pavillion 1 - Cafe	-	100	100	133
Pavillion 1 - Cafe BOH	-	100	-	174
Pavillion 1 - WCs	-	100		95

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
Pavillion 1 - Cafe	NO (-1.9%)	NO

Page 2 of 6

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?	NO
Is evidence of such assessment available as a separate submission?	NO
Are any such measures included in the proposed design?	NO

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

	Actual	Notional
Area [m²]	109.5	109.5
External area [m²]	359.2	359.2
Weather	LON	LON
Infiltration [m³/hm²@ 50Pa]	5	5
Average conductance [W/K]	108.27	156.66
Average U-value [W/m²K]	0.3	0.44
Alpha value* [%]	33.81	23.75

^{*} Percentage of the building's average heat transfer coefficient which is due to thermal bridging

Building Use

	% Area	Building Type
		A1/A2 Retail/Financial and Professional services
ı	100	A3/A4/A5 Restaurants and Cafes/Drinking Est/Takesway

B1 Offices and Workshop businesses

B2 to B7 General Industrial and Special Industrial Groups

B8 Storage or Distribution

C1 Hotels

C2 Residential Institutions: Hospitals and Care Homes

C2 Residential Institutions: Residential schools

C2 Residential Institutions: Universities and colleges

C2A Secure Residential Institutions

Residential spaces

D1 Non-residential Institutions: Community/Day Centre

D1 Non-residential Institutions: Libraries, Museums, and Galleries

D1 Non-residential Institutions: Education

D1 Non-residential Institutions: Primary Health Care Building D1 Non-residential Institutions: Grown and County Courts

D2 General Assembly and Leisure, Night Clubs, and Theatres Others: Passenger terminals Others: Emergency services Others: Miscellaneous 24hr activities Others: Car Parks 24 hrs

Others: Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	8.22	18.46
Cooling	0	0
Auxiliary	17.69	12.43
Lighting	23.42	44.2
Hot water	65.3	75.53
Equipment*	120.61	120.61
TOTAL**	114.64	150.62

^{*} Energy used by equipment does not count towards the total for consumption or calculating emissions.
** Total is not of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO, Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m ²]	461.49	582.27
Primary energy* [kWh/m²]	343.13	307.83
Total emissions [kg/m²]	58	62.1

[&]quot; Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

HVAC Systems Performance										
Sys	stem Type	Heat dem MJ/m2	Cool dem MJ/m2			Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER
[ST] Central heating using water: radiators, [HS] Heat pump				(electric):	air source,	[HFT] Elect	tricity, [CFT] Natural G		
	Actual	104.8	356.7	8.2	0	17.7	3.54	0	3.77	0
	Notional	161.5	420.8	18.5	0	12.4	2.43	0		

Key to terms

Heat dem [MJ/m2] = Heating energy demand

Cool dem [MJ/m2] = Cooling energy demand

Heat con [kWh/m2] = Heating energy consumption

Cool con [kWh/m2] = Auxiliary energy consumption

Aux con [kWh/m2] = Auxiliary energy consumption

Heat SSEFF = Cooling system seasonal efficiency (for notional building, value depends on activity glazing class)

Cool gen SSEER = Cooling system seasonal efficiency ratio

Heating system seasonal energy efficiency ratio

ST = System type

HS = Heat source

HFT = Heating fuel type

Cooling fuel type

CFT = Cooling fuel type

Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

Element	Ui-Typ	Ui-Min	Surface where the minimum value occurs*
Wall	0.23	0.18	"Pavillion 1 - Cafe_W_5"
Floor	0.2	0.19	"Pavillion 1 - Cafe_S_3"
Roof	0.15	0.15	"Pavillion 1 · Cafe_R_4"
Windows, roof windows, and rooflights	1.5	1.1	"Pavillion 1 - Cafe_G_6"
Personnel doors	1.5	0.81	"Pavillion 1 - WCs_D_9"
Vehicle access & similar large doors	1.5	-	"No external vehicle access doors"
High usage entrance doors	1.5	-	"No external high usage entrance doors"
U-Typ = Typical individual element U-values [W/(m²K)	1		U-w- = Minimum individual element U-values [W/(m*K)]
* There might be more than one surface where the minimum U-value occurs.			

Air Permeability	Typical value	This building
m ³ /(h.m ²) at 50 Pa	5	5

BRUKL Output Document

Compliance with England Building Regulations Part L 2013

Project name

Pavillion 2 As designed

Date: Fri Jan 22 10:06:18 2021

Administrative information

Building Details

Address: Harrods Wharf, London,

Certification tool

Calculation engine: SBEM

Calculation engine version: v5.6.b.0

Interface to calculation engine: DesignBuilder SBEM Interface to calculation engine version: v6.1.8

BRUKL compliance check version: v5.6.b.0

Certifier details

Name: Miss Sophie Beesley Telephone number: 01582 544250 Address: 8 Cardiff Road, Luton, LU1 1PP

Criterion 1: The calculated CO₂ emission rate for the building must not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	23.3
Target CO ₂ emission rate (TER), kgCO ₃ /m ² .annum	23.3
Building CO ₂ emission rate (BER), kgCO ₂ /m².annum	7
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	Ua-Limit	Ua-Cale	Ui-Cale	Surface where the maximum value occurs*
Wall**	0.35	0.18	0.18	"Pavillion 2 - ACC WC_W_7"
Floor	0.25	0.19	0.19	"Pavillion 2 - ACC WC_S_3"
Roof	0.25	0.15	0.15	"Pavillion 2 - ACC WC_R_4"
Windows***, roof windows, and rooflights	2.2	1.1	1.1	"Pavillion 2 - Entrance Lobby_G_6"
Personnel doors	2.2	0.81	0.81	"Pavillion 2 - Storage_D_6"
Vehicle access & similar large doors	1.5	-	-	"No external vehicle access doors"
High usage entrance doors	3.5	-	-	"No external high usage entrance doors"

Ustan = Limiting area-weighted average U-values [W/(m*K)]

Unicate = Calculated area-weighted average U-values [W/(m²K)] Unicate = Calculated maximum individual element U-values [W/(m²K)]

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

I	Air Permeability	Worst acceptable standard	This building		
1	m ³ /(h.m²) at 50 Pa	10	5		

Page 1 of 6

^{*} There might be more than one surface where the maximum U-value occurs.

[&]quot;" Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

^{***} Display windows and similar glazing are excluded from the U-value check.

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

I	Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	YES
I	Whole building electric power factor achieved by power factor correction	>0.95

1- Central Rads with Electric

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(l/s)]	HR efficiency		
This system	3.77			-			
Standard value	2.5*	N/A	N/A	N/A	N/A		
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES							
Automatic monitoring a targeting with alarms for out-or-range values for this rivac sy							

^{*} Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825 for limiting standards.</p>

1- Point of Use - Electric

	Water heating efficiency	Storage loss factor [kWh/litre per day]		
This building	1	-		
Standard value	1	N/A		

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide					
Α	Local supply or extract ventilation units serving a single area					
В	Zonal supply system where the fan is remote from the zone					
C Zonal extract system where the fan is remote from the zone D Zonal supply and extract ventilation units serving a single room or zone with heating and heat re-						
					Е	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units					
G Fan-assisted terminal VAV unit						
Н	Fan coil units					
1	Zonal extract system where the fan is remote from the zone with grease filter					

Zone name		SFP [W/(l/s)]						UD efficiency			
ID of system type	Α	В	С	D	E	F	G	н	ı	HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
Pavillion 2 - ACC WC	0.3	-	-	-	-	-	-	-	-	-	N/A
Pavillion 2 - ACC WC 1	0.3	-	-	-	-	-	-	-	-	-	N/A
Pavillion 2 - Ticket Office	-	-	-	1	-	-	-	-	-	0.9	0.5
Pavillion 2 - Staff Lounge	-	-	-	1	-	-	-	-	-	0.9	0.5

General lighting and display lighting	Luminous efficacy [lm/W]			
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
Pavillion 2 - ACC WC	-	100	-	21
Pavillion 2 - Storage 1	100	-	-	5
Pavillion 2 - ACC WC 1	-	100	-	20
Pavillion 2 - Entrance Lobby	-	100	-	10
Pavillion 2 - Ticket Office	-	100	100	156
Pavillion 2 - Staff Lounge	100	-	-	225
Pavillion 2 - Storage	100	-	-	28

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
Pavillion 2 - Ticket Office	NO (-78.6%)	NO
Pavillion 2 - Staff Lounge	NO (-10.6%)	NO

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?				
Is evidence of such assessment available as a separate submission?	NO			
Are any such measures included in the proposed design?	NO			

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

Building Use

	Actual	Notional
Area (m²)	100.4	100.4
External area [m²]	331.2	331.2
Weather	LON	LON
Infiltration (m³/hm²@ 50Pa)	5	5
Average conductance [W/K]	90.75	131.98
Average U-value [W/m²K]	0.27	0.4
Alpha value* [%]	39.39	21.69

^{*} Percentage of the building's average heat transfer coefficient which is due to thormal bridging

% Area Building Type 100 A1/A2 Retail/Financial and Professional services

A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways

B1 Offices and Workshop businesses

B2 to B7 General Industrial and Special Industrial Groups

B8 Storage or Distribution

C1 Hotels

C2 Residential Institutions: Hospitals and Care Homes

C2 Residential Institutions: Residential schools

C2 Residential Institutions: Universities and colleges

C2A Secure Residential Institutions

Residential spaces

D1 Non-residential Institutions: Community/Day Centre

D1 Non-residential Institutions: Libraries, Museums, and Galleries

D1 Non-residential Institutions: Education

D1 Non-residential Institutions: Primary Health Care Building

D1 Non-residential Institutions: Crown and County Courts

D2 General Assembly and Leisure, Night Clubs, and Theatres

Others: Passenger terminals Others: Emergency services Others: Miscellaneous 24hr activities

Others: Car Parks 24 hrs Others: Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	12.59	21.11
Cooling	0	0
Auxiliary	5.11	3.76
Lighting	16.11	19.81
Hot water	1.92	2.22
Equipment*	21.47	21.47
TOTAL**	35.73	46.9

⁵ Energy used by equipment does not count towards the total for consumption or calculating emissions.
⁵⁰ Total is not of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	21.34	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO, Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m ²]	308.92	326.39
Primary energy* [kWh/m²]	106.94	136.17
Total emissions [kg/m²]	7	23.3

^{*} Primary energy is not of any electrical energy displaced by CHP generators, if applicable.

Н	HVAC Systems Performance											
System Type		Heat dem MJ/m2		Heat con kWh/m2	Cool con kWh/m2		Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER		
[ST] Central he	ating using	water: rad	iators, [HS]	Heat pump	o (electric):	air source,	[HFT] Elec	tricity, [CFT] Natural G		
	Actual	160.5	148.4	12.6	0	5.1	3.54	0	3.77	0		
	Notional	184.7	141.7	21.1	0	3.8	2.43	0				

Key to terms

Heat dem [MJ/m2] = Heating energy demand

Cool dem [MJ/m2] = Cooling energy demand

Heat con [kWh/m2] = Heating energy consumption

Cool con [kWh/m2] = Cooling energy consumption

Aux con [kWh/m2] = Auxiliary energy consumption

Heat SSEEP = Heating system seasonal efficiency (for notional building, value depends on activity glazing class)

Cool SSEED = Cooling existem seasonal efficiency ratio

Cool SSEER = Cooling system seasonal energy efficiency ratio Heat gen SSEFF = Heating generator seasonal efficiency

Cool gen SSEER ST = Cooling generator seasonal energy efficiency ratio

= System type HS. = Heat source HFT CFT - Heating fuel type - Cooling fuel type

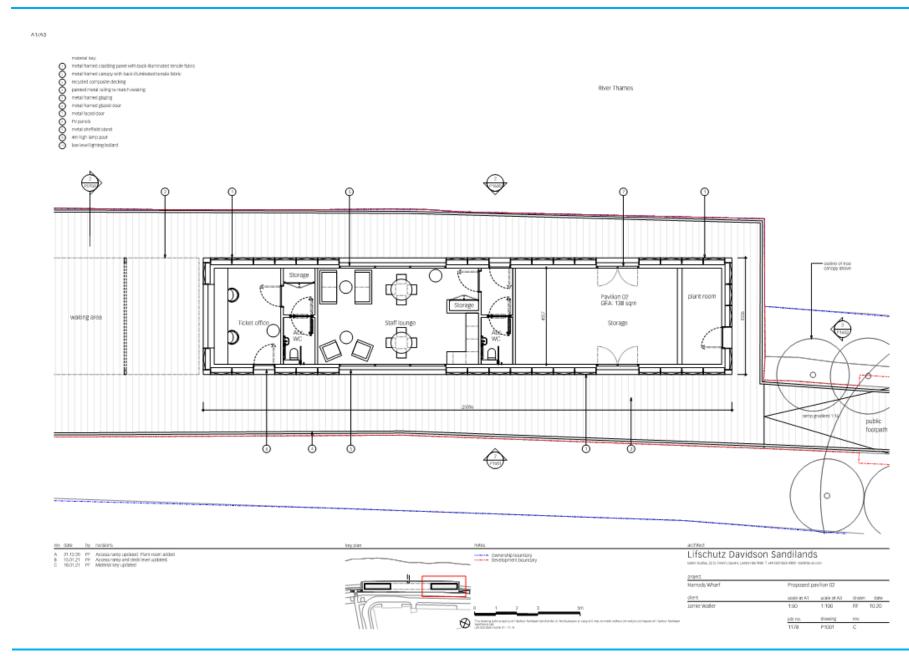
Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

Element	Uнтур	Ui-ttin	Surface where the minimum value occurs*	
Wall	0.23	0.18	"Pavillion 2 - ACC WC_W_7"	
Floor	0.2	0.19	"Pavillion 2 - ACC WC_S_3"	
Roof	0.15	0.15	"Pavillion 2 - ACC WC_R_4"	
Windows, roof windows, and rooflights	1.5	1.1	"Pavillion 2 - Entrance Lobby_G_6"	
Personnel doors	1.5	0.81	"Pavillion 2 - Storage_D_6"	
Vehicle access & similar large doors	1.5	-	"No external vehicle access doors"	
High usage entrance doors	1.5	-	"No external high usage entrance doors"	
U-7 ₆₉ = Typical individual element U-values [W/(m²K)	ì	U _{I-Mn} = Minimum individual element U-values [W/(m²K)]		
A TOTAL CONTRACTOR OF THE CONT	le se a se			

* There might be more than one surface where the minimum U-value occurs.


I	Air Permeability	Typical value	This building		
I	m ^a /(h.m ^a) at 50 Pa	5	5		

Environmental Economics Ltd January 21

Appendix B

metal framed canapy with back-literminated sensite fabric necycled composite decking River Thames gainted metal railing to match existing metal harned gliding metal faced door metal shelfeld stand 4m high lump post: lose level lighting bolland \Rightarrow cycle storage 16 spaces Waiting area 2 212.20 PF Access ramp undered 1 15/12*1 PF Access ramp and sect level updated 1 15/12*1 PF Material levy updated 2 22/31.21 PF Minor amendment on internal layout Lifschutz Davidson Sandilands Development Boundary Photograph Representation of A

Environmental Economics Ltd January 21

Appendix C

Article

Exploring the Potential of Climate-Adaptive Container Building Design under Future Climates Scenarios in Three Different Climate Zones

Jingchun Shen ¹, Benedetta Copertaro ¹, Xingxing Zhang ^{1,*}, Johannes Koke ², Peter Kaufmann ³ and Stefan Krause ³

- Department of Energy and Built Environments, Dalarna University, 791 88 Falun, Sweden; jih@du.se (J.S.); bcp@du.se (B.C.)
- Institut für Duale Studiengänge, Hochschule Osnabrück, 49809 Lingen, Germany; J.Koke@hs-osnabrueck.de
- ³ Institut für Strukturleichtbau und Energieeffizienz gGmbH, 09113 Chemnitz, Germany; p.kaufmann@institut-se.de (P.K.); s.krause@institut-se.de (S.K.)
- Correspondence: xza@du.se

Received: 11 November 2019; Accepted: 18 December 2019; Published: 22 December 2019

Abstract: The deployment of containers as building modules has grown in popularity over the past years due to their inherent strength, modular construction, and relatively low cost. The upcycled container architecture is being accepted since it is more eco-friendly than using the traditional building materials with intensive carbon footprint. Moreover, owing to the unquestionable urgency of climate change, existing climate-adaptive design strategies may no longer respond effectively as they are supposed to work in the previous passive design. Therefore, this paper explores the conceptual design for an upcycled shipping container building, which is designed as a carbon-smart modular living solution to a single family house under three design scenarios, related to cold, temperate, and hot-humid climatic zones, respectively. The extra feature of future climate adaption has been added by assessing the projected future climate data with the ASHRAE Standard 55 and Current Handbook of Fundamentals Comfort Model. Compared with the conventional design, Rome would gradually face more failures in conventional climate-adaptive design measures in the coming 60 years, as the growing trends in both cooling and dehumidification demand. Consequently, the appropriate utilization of internal heat gains are proposed to be the most promising measure, followed by the measure of windows sun shading and passive solar direct gain by using low mass, in the upcoming future in Rome. Future climate projection further shows different results in Berlin and Stockholm, where the special attention is around the occasional overheating risk towards the design goal of future thermal comfort.

Keywords: upcycling container house; future climate scenario; energy-efficient operated living module; empty containers repositioning

1. Introduction

Nowadays, there exist more than 17 million retired shipping containers stacked on the ports worldwide [1]. In the light of substantial trade imbalance between Europe and China, the repositioning of a huge number of stored empty containers could become an evitable problem [2]. In fact, huge expenses are involved in their destruction or transportation to the original country, and their nondegradable construction materials occupy a large landfill space when they are fallen into disuse.

Moreover, most of shipping containers are within the official age or just beyond the "active service" time, making them no longer suitable for transportation purposes [3]. However, this does not mean

Sustainability 2020, 12, 108; doi:10.3390/su12010108

www.mdpi.com/journal/sustainability

Sustainability 2020, 12, 108 4 of 21

The standardized dimension makes it an ideal building component for modular and prefabricated construction projects [5]. The most popular containers used as building components are 2.438 m in width and 6.096 m or 12.192 m in length. In many national regulations, there is a minimum height limitation of 2.4 m for residential buildings. Thereby, in this context, the residential building design only consider the high cube container with total height of 2.9 m to comply with the minimum clear ceiling height building requirement. Meanwhile, the containers' internal dimensions differ from the external ones. In fact, internal walls have a plurality of corrugations, each one 25 mm depth. This narrows the container inner width by 50 mm due to both a concave and a convex corrugation. The backside, the other side without the door, is corrugated too. The doors have a thickness of 50 mm, which results in a total loss of 75 mm in length. The height of the inner dimension is less compared with the outer dimension. Depending on the floor type, this reduction, consisting of floor clearance and thickness, is approximately 177 mm. Since roof material is also corrugated, the internal height is reduced by slightly more than 200 mm in total [5,26].

Size	Width (m)	Length (m)	Height (m)	Floor Area (m ²)	Volume (m ³)	Empty Weight (kg
20 ft equivalent unit	2.438	6.096	2.591	14.86	33.1	2200
20 ft high cube equivalent unit	2.438	6.096	2.9	14.86	43.09	2350
40 ft equivalent unit	2.438	12.192	2.591	29.72	67.5	3800
40 ft high cube equivalent unit	2.438	12.192	2.9	29.72	86.19	3900

Table 1. Basic parameters of the most popular containers [1].

2.3.1. Container Building Structure

The container structure is consisted of (a) bottom structure; (b) front end frame structure; (c) backend frame structure; (d) side wall, and (f) box top structure, as illustrated in Figure 1.

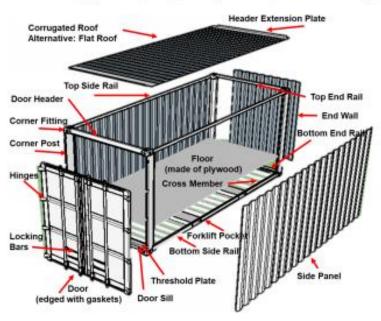
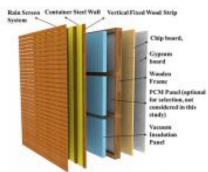



Figure 1. Schematic diagram of a 20 ft standard shipping container.

Sustainability 2020, 12, 108 7 of 21

providing higher thermal resistance and inner space saving with respect to conventional insulation materials. Moreover, the additional use of wood strip and wooden frame can take full advantage of the limited space on the container wall bases, offer adequate protection of vacuum insulation panels, and work as the fixed framework for interior wall panels' installation.

	Envelope configuration	Thickness [mm]	Conductivity [W/(m K)]	Thermal resistance [m ² K/W]	U-value [W/m ³ K]
	Gypsum	5	0.220	0.023	AVELOUS.
	Chip board	10	0.130	0.077	
	VIP within wooden study framing 1	60	0.012	5.000	
Wall	Container steel panel	1.6	42	0.000	0.182
	Air in 30 mm Vent. Gap	30	0.160	0.188	
	Wooden rainscreen	30	0.140	0.214	
	Total	136.6		5.501	

Net: 1.Wooden framing our 15mm*60mm with 600mm spacing and filling with VIP is calculated using OPAQUE 3 it PCM technical data is from Kingston Option-R, which taking account of an aped design value via 2N 12657-2000.

2 Container steel panel in treated as flat steel sheet here, since wooden study \$1 in the corrupted groover.

Figure 4. Conceptual wall configuration with U-value estimation.

	Envelope configuration	Thickness [mm]	Conductivity [W/(m K)]	Thermal resistance [m ² K/W]	U-value [W/m²K]
	Сурэнт сеійід	5	0.220	0.023	
	Chip board	10	0.130	0.077	
Roof	VIP within wooden studs framing	60	0.012	5.000	0.196
	Container steel panel	2	42.000	0.000	
	Total thickness	77		5.100	

Note: 1.Wooden Staning size 15mm*60mm with 600mm spacing and filling with VIP is calculated using OPAQUE 1.0 PCM technical data is from Kingston Optim-R, which taking account of an aged design value via EN 1265*2000;

2 Container steel panel is treated as flat steel sheet here, since wooden study fill in the compated groups.

Figure 5. Conceptual roof configuration with U-value estimation.

Vacuum Insulation
Panel with
Chip Board
underneath
Concrete Foundation

Sustainability 2020, 12, 108 8 of 21

	Envelope configuration	Thickness [mm]	Conductivity [W/(m K)]	Thermal resistance [m ² K/W]	U-value [W/m²K]
	Floor coating	5	0.18	0.028	
	Wooden floor	10	0.13	0.077	
V 1	VIP within wooden studs framing 1	60	0.012	5.000	0.102
Floor	Chip board	10	0.13	0.077	0.193
	Container steel panel ²	2	42.000	0.000	
	Total thickness	87		5.182	

Note: 1 Wooden framing size 15mm*60mm with 60mm spacing and filling with VIP is calculated using OPAQUE 3.0. PCM technical data is from Kingston Optim®, which taking account of an aged design value via EN 12667:2001; 2 Container steel panel is treated as flat steel sheet here, since wooden study fill in the corrugated grooves.

Figure 6. Conceptual floor configuration with U-value estimation.

3.2. Methodology for Thermal Comfort Assessment

In this section, the thermal comfort for the residential building has been assessed in Berlin (Germany), Stockholm (Sweden), and Rome (Italy), respectively. There are several reasons to choose the thermal comfort assessment. Firstly, thermal comfort is one of the major concern in living in a container building. Secondly, the indoor climate in the residential building is imperative in both psychological and physical aspects, where it could affect morale of the inhabitants, but also in its energy consumption holistically and the choices made about both envelope and structure. From another point of view, this method offers an intuitive and efficient initial assessment with graphic representations of hourly climate data compared with the time-consuming building modeling. Thermal comfort assessment is expected to help decision makers to visualize the unique overall patterns and subtle details in adaptive building design measures, characterizing different climate data during a preliminary building design or renovation process.

3.2.1. Investigated Climate Datasets

With the research purposes of building performance investigation under both historical and future climate conditions, the available hourly dependent climate dataset is necessary for a dynamic simulation. The method here has the baseline, which is the typical climate data ASHRAE IWEC from 1982 to 1997 with the ".epw" format (climate file from EnergyPlus website) [34]. After that, the "CCWorldWeatherGen" tool, developed by Energy and Climate Change Division, by University of Southampton, UK, is used. The tool is used to process the "present-day" climate files of the baseline data prepared for the future climate morphing in the next stage [35]. The morphed climate data is under HadCM3 predictions for a "medium-high" emissions scenario (A2) for 2020s, 2050s, and 2080s.

3.2.2. Thermal Comfort Model

The climate analysis is critical in exploring climate-adaptive potential, being an evitable part of climate-adaptive building design procedure. During the preliminary design stage, it enables a series of building design solutions that are especially devoted to human thermal comfort and energy-efficient measures. Usually, the thermal comfort characteristics are denoted with six indicators, which are air temperature, mean radiant temperature, relative humidity, air velocity in the area of environmental factors, clothing insulation, and metabolic heat in the area of personal factors [36]. In order to take

Appendix D

Table 1 - Pilkington Insulight™ Sun - Double Glazing Units

6 mm Pilkington Optifloat™ Clear inner pane and 16 mm argon-filled cavity, unless otherwise indicated.

Solar control with thermal insulation (low-e)

Product Description	escription Light			Solar Radiant Heat				Shading Coefficient		Performance inc. acoustic Light Transmittance / g-value (R _u)		
										Pane t	thickness combin	ations
Outer Pane	Transmittance (LT) %	Reflectance	Direct transmittance	Reflectance	Absorptance	g-value (Total transmittance)	Short wavelength	Total	Argon (90%)	6 mm + 6 mm panes	8 mm + 6 mm panes	10 mm + 6 mm panes
Products available as Pilking	gton Sunc	cool", Pil	kington St	ıncool Oj	otilam" a	nd Pilkingt	on Sunce	ol" Pro T	(toughenable	e) versions, unless	otherwise indicate	1
Pilkington Suncool" - supe	rior solar	control w	ith therma	al insulatio	n (low-e)							
6 mm 70/40	70	0.10	0.38	0.28	0.34	0.42	0.44	0.48	1.1	70/42 (31 dB)	69/41 (36 dB)	68/40 (40 dB)
6 mm 70/35	69	0.16	0.34	0.35	0.31	0.37	0.39	0.43	1.0	69/37 (31 dB)	68/37 (36 dB)	67/36 (40 dB)
6 mm 66/33	65	0.16	0.32	0.35	0.33	0.36	0.37	0.41	1.0	65/36 (31 dB)	64/35 (36 dB)	64/34 (40 dB)
6 mm 60/31	59	0.11	0.28	0.32	0.40	0.32	0.33	0.37	1.0	59/32 (31 dB)	58/31 (36 dB)	57/31 (40 dB)
6 mm Silver 50/30"	49	0.39	0.28	0.43	0.29	0.31	0.32	0.36	1.0	49/31 (31 dB)	49/31 (36 dB)	48/30 (40 dB)
6 mm Blue 50/27	49	0.19	0.25	0.35	0.40	0.28	0.28	0.32	1.1	49/28 (31 dB)	49/28 (36 dB)	48/27 (40 dB)
6 mm 50/25	49	0.18	0.24	0.33	0.43	0.27	0.27	0.31	1.0	49/27 (31 dB)	49/27 (36 dB)	48/26 (40 dB)
6 mm 40/22***	39	0.20	0.19	0.35	0.46	0.23	0.22	0.26	1.1	39/23 (31 dB)	39/22 (36 dB)	38/22 (40 dB)
6 mm 30/17"	30	0.25	0.15	0.37	0.48	0.18	0.18	0.21	1.1	30/18 (31 dB)	29/18 (36 dB)	29/18 (40 dB)
6 mm 30/16***	29	0.27	0.15	0.37	0.48	0.18	0.17	0.21	1.1	29/18 (31 dB)	29/18 (36 dB)	28/18 (40 dB)
Pilkington Suncool* OW* ((low iron)	- superio	r solar cor	ntrol with t	thermal in	sulation (l	ow-e)					
6 mm 70/40	73	0.10	0.44	0.39	0.17	0.45	0.50	0.52	1.1	73/45 (31 dB)	73/45 (36 dB)	73/45 (40 dB)
6 mm 70/35	73	0.16	0.38	0.47	0.15	0.39	0.43	0.45	1.0	73/39 (31 dB)	73/39 (36 dB)	72/39 (40 dB)
6 mm 66/33	69	0.17	0.36	0.47	0.17	0.37	0.42	0.43	1.0	69/37 (31 dB)	69/37 (36 dB)	68/37 (40 dB)
6 mm 60/31	61	0.11	0.30	0.32	0.38	0.32	0.35	0.37	1.0	61/32 (31 dB)	60/31 (36 dB)	59/31 (40 dB)
6 mm Blue 50/27	52	0.20	0.28	0.46	0.26	0.29	0.32	0.33	1.1	52/29 (31 dB)	52/29 (36 dB)	52/29 (40 dB)
6 mm 50/25	52	0.19	0.27	0.44	0.29	0.28	0.31	0.32	1.0	52/28 (31 dB)	52/28 (36 dB)	52/28 (40 dB)
6 mm 40/22***	41	0.21	0.22	0.46	0.32	0.24	0.25	0.28	1.1	41/24 (31 dB)	41/24 (36 dB)	41/23 (40 dB)
6 mm 30/17"	32	0.27	0.17	0.50	0.33	0.19	0.20	0.22	1.1	32/19 (31 dB)	31/19 (36 dB)	31/19 (40 dB)
6mm 30/16***	30	0.28	0.16	0.48	0.36	0.19	0.19	0.22	1.1	30/19 (31 dB)	30/19 (36 dB)	30/19 (40 dB)
Pilkington Activ Suncool*	(self-clear	ning) - su	perior sola	ar control	with them	nal insulat	ion (low-e)				
6 mm 70/40"	66	0.15	0.35	0.32	0.33	0.39	0.41	0.45	1.1	66/39 (31 dB)	64/39 (36 dB)	64/38 (40 dB)
6 mm 70/35"	65	0.21	0.32	0.44	0.24	0.35	0.37	0.40	1.0	65/35 (31 dB)	64/35 (36 dB)	64/34 (40 dB)
6 mm 66/33**	61	0.21	0.30	0.40	0.30	0.33	0.35	0.38	1.0	61/33 (31 dB)	61/33 (36 dB)	60/32 (40 dB)
6 mm 60/31"	56	0.24	0.27	0.41	0.32	0.30	0.31	0.34	1.0	56/30 (31 dB)	55/30 (36 dB)	54/29 (40 dB)
6 mm Silver 50/30"	47	0.42	0.27	0.52	0.21	0.30	0.31	0.34	1.0	47/30 (31 dB)	47/30 (36 dB)	46/29 (40 dB)
6 mm Blue 50/27"	47	0.24	0.23	0.39	0.38	0.27	0.27	0.31	1.1	47/27 (31 dB)	46/26 (36 dB)	46/26 (40 dB)
6 mm 50/25**	47	0.23	0.23	0.42	0.35	0.26	0.26	0.30	1.0	47/26 (31 dB)	46/25 (36 dB)	46/25 (40 dB)
6 mm 30/17"	28	0.30	0.14	0.40	0.46	0.17	0.17	0.20	1.1	28/17 (31 dB)	28/17 (36 dB)	28/17 (40 dB)
Pilkington Suncool ™ One -	mid-range	e solar co	ntrol with	thermal in	sulation (low-e)						
6 mm 60/40	59	0.22	0.35	0.30	0.35	0.40	0.41	0.46	1.0	59/40 (31 dB)	58/39 (36 dB)	N/A
6 mm 30/21	30	0.31	0.17	0.34	0.49	0.21	0.20	0.24	1.0	30/21 (31 dB)	30/20 (36 dB)	29/20 (40 dB)

The above performance data has been determined in accordance with BS EN 410 and BS EN 673.

^{*} With 6 mm Pilkington **Optiwhite**" inner pane ** Annealed version only *** Toughened version only

Appendix E

Solar PV Solutions

Our photovoltaic solutions are innovative, penetration-free systems for use in flat, green and blue roof applications.

Both our systems are extremely quick to install and provide a cost effective and highly efficient solution.

Overview	238
■ Credentials	240
■ BauderSOLAR	242
Bauder BioSOLAR	248
■ Waterproofing Options	254
■ Technical Data	255

8.2

baudenco uk

237

- System manufacturer: Bauder Limited, 70, Landseer Road, Ipswich, Suffolk, IP3 0DH.
 Tel: 01473 257 671. Fax: 01473 230 761. Email: technical@bauder.co.uk
 Web: www.bauder.co.uk
- Primer type and application: Bauder Polymer Primer, applied to the roof substrate and all
 upstands and skirtings. For application method and guidance information, refer clause as
 clause 720B.
- Preliminary local reinforcement: as clause 750.
- Coating reference: Bakor790-11 hot melt rubberised bitumen.
- Application: As clause 722, 760.
- · Reinforcement: Bauder Polyester reinforcing.
- Thickness (nominal): 6 mm in two 3 mm coats, plus protection sheet / surfacing as described below.
- Upstands and details: Upstand detailing to be formed in Bakor 790-11, as clause 770A.
- Coating protection layer to all upstands/details: Bauder AP1, glass tissue based, modified bitumen, sand finished membrane to be used as the access layer on concealed upstand detailing. For any areas of detailing that is exposed, Bauder K4E charcoal grey slate finished membrane must be used. Installation as Clause 770C.
- Coating protection layer: Bauder AP1, glass tissue based, modified bitumen, sand finished membrane. Installation as Clause 780A.
- Insulation: 240mm thick, BauderJFRI(200) Inverted Insulation for flat roofs subject to permanent loads of up to 60KPa, to achieve the required 'U' Value – refer clause 230. This product has zero ODP and a Green guide rating of 'A+'. Installation as Clause 810A.
- Insulation to upstands: To all vertical upstand abutments and changes in level to be
 insulated, including builders kerbs (but excluding proprietary insulated integrated rooflight
 units), use Bauder JFRI HP Inverted Insulation, in combination with 60mm Bauder JFRI HP
 Upstand Insulation GRP facing, colour Slate Grey, to the external face, to make up the total
 thickness required, Installation as clause 811B.
- Vapour Permeable membrane: Bauder JFRI vapour permeable membrane (loose laid).
 Installation as Clause 816A.
- Surfacing: 20-40 mm grade washed stone ballast (supplied by others), as Clause 365.
 Installation as Clause 820.
- Accessories:
- Additional requirements: Refer clauses 210, 310, 410, 411, 412,413, 415A, 910, 920, 930, 940.
- Guarantee information: 950H.

PERFORMANCE

210 ROOF PERFORMANCE

. General: Firmly adhered, free draining and completely weather tight.

230 INSULATION

- Thermal transmittance (U-Value) of roof: 0.15 W/m²K
- Finished Surface: Suitably even, stable and robust to receive roof covering.
- Insulation compliance: To relevant British Standard or Agrément certified.

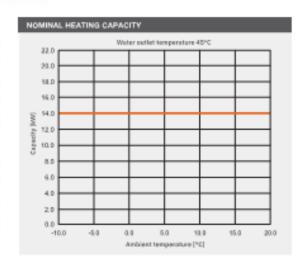
Appendix F

PUZ-HWM140VHA(-BS)

Ecodan R32

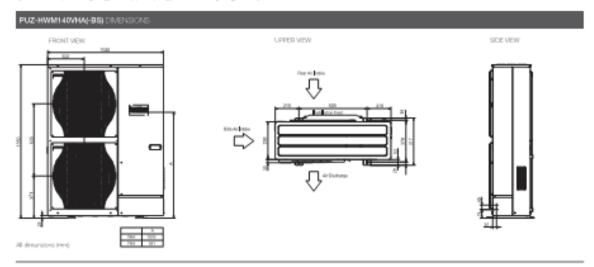
Monobloc Air Source Heat Pump

Key Features: Key Benefits: A+++ high efficiency system Ultra low running cost Compact design Minimal installation space required Confident and quick product selection Maintains full heating capacity at low temperatures Zero carbon solution Help to tackle the climate crisis ■ MELCloud enabled Remote control, monitoring, maintenance and technical support



Product Enformation

PUZ-HWM140VHA(-BS)


Ecodan R32 Monobloc Air Source Heat Pump

OUTDOOR UNIT		PUZ-HWM140VHA(-BS)		
HEXT PUMP SPACE	EIP Rading	Att		
HEATER - 55°C	5-	1315		
	SCDF (MCS)	3.35		
HEXT PUMP SPACE	SP Pating	Atte		
HEATER - 357G	t,	170%		
	SCOP (MCS)	4.48		
HEAT PURP COMERATION	Erit Feling	At-		
HEXTER - Large Profile*	Lo.	130%		
HEXTING:	Carrech 6040	14		
M-7/W35)	Pencr Input 60%	621		
	COP	2.45		
OPERATING AMBIENT TEMPE	RATURE ("C DEE	-26 - +35		
SOUND DATA:	Prossure Level at Tric (IRA)	53		
	Parent Lavel MERG*	- 62		
WATER DATA	Pipewoik Size (net)	28		
	Flow Flots Stroke	46.1		
	Witter Prossure Drap (6Px)	39		
DIMENSIONS (mm)	Widh	1020		
	Goph	330 + 30°T		
	Height	1380		
WEIGHT (so)		130		
ELECTRICAL DATA	Electrical Supply	230-248i, 58F2		
	Proc	Single		
	Sominal Burning Current (MAX) (45%	T8C (95)		
	Face Plating - MCS Stree (ACT	41		
RETRIGERANT CHARGE (AG)	822 GWP 673	3.3		

- where
 Commissions with EMPTrick Optionise
 Commissions with EMPTrick Optionise
 Under recent healting conditions at authors tempo -mrcbits /-dmcWit, surties water tempo dmcC, what water tempo dmcC.
 Under recent healting conditions at authors tempo -mrcbits /-dmcWit, coded maker tempo 50°C, milet water tempo 40°C and tended to 86°EV1-60°1.
 Wholes mode accessors of whatered PMC-GARDE-EMP and ideals for WMA chassis.
 Gound power level stands to 65°EV1-116°1.
 Gound power level stands to 65°EV1-116°1.
 Under receive in the tempo good officer are out accessor tempo 7°C, coulter water tempo 36°C.
 Indian scales also Microson-1 a. Inc. Revisionis-1.

- , it the seasonal space heating energy efficiency (SSHEE) $r_{\rm left}$ is the setter heating energy efficiency

Telephone: 01707 282880 omait heating@meuk.mee.com heating.mitsubishielectric.co.uk

UNITED KINGDOM Mitaubishi Bleckic Europe Living Environment Systems Division, Travelors Lane, Hatfield, Hertodrihie, Al. 10 BKB, England. Telephone: 01707 202880 Tax: 01707 278881 IRELAND Mitaubishi Bleckio Europe, Westgate Susiness Fork, Sellymount, Dublin 24, Ireland. Telephone: 6th

Coarry of origin: United Hingdon - Japan - Trained - Matiguia, diMittability Becals Surge district Nitability and Mittability Becals Surge district Nitability Becals are notice as notice as notice as notice as notice for the coapean representation of solution of the coapean district on the coapean district of the coapean district of the coapean district on the coapean district of the coapean district on the coapean district of the coa

Effective as of September 2020

Environmental Economics Ltd January 21

Flow Temperature	QUHZ-W40VA	PUZ-WM50VHA	PUZ-WM60VAA	PUZ-WM85VAA	PUZ-WM112VAA	PUZ-HWM140VHA	PUZ-HWM140YHA
35	3.63	4.57	4.76	4.79	4.78	4.34	4.30
36	3.59	4.50	4.69	4.72	4.70	4.28	4.25
37	3.56	4.44	4.61	4.66	4.62	4.23	4.19
38	3.52	4.37	4.54	4.59	4.54	4.17	4.14
39	3.49	4.30	4.47	4.52	4.47	4.11	4.08
40	3.45	4.23	4.40	4.45	4.39	4.05	4.02
41	3.42	4.17	4.33	4.38	4.31	4.00	3.97
42	3.39	4.10	4.25	4.31	4.23	3.94	3.91
43	3.35	4.03	4.18	4.25	4.15	3.88	3.85
44	3.32	3.96	4.11	4.18	4.07	3.83	3.80
45	3.28	3.90	4.04	4.11	3.99	3.77	3.74
46	3.25	3.83	3.99	4.05	3.93	3.72	3.69
47	3.21	3.76	3.94	3.98	3.86	3.67	3.64
48	3.17	3.69	3.89	3.92	3.80	3.62	3.59
49	3.13	3.63	3.85	3.85	3.73	3.57	3.54
50	3.10	3.56	3.80	3.79	3.67	3.52	3.49
51	3.06	3.49	3.75	3.73	3.60	3.46	3.44
52	3.02	3.43	3.70	3.66	3.54	3.41	3.39
53	2.98	3.36	3.65	3.60	3.47	3.36	3.34
54	2.94	3.29	3.61	3.53	3.41	3.31	3.29
55	2.91	3.22	3.56	3.47	3.34	3.26	3.24

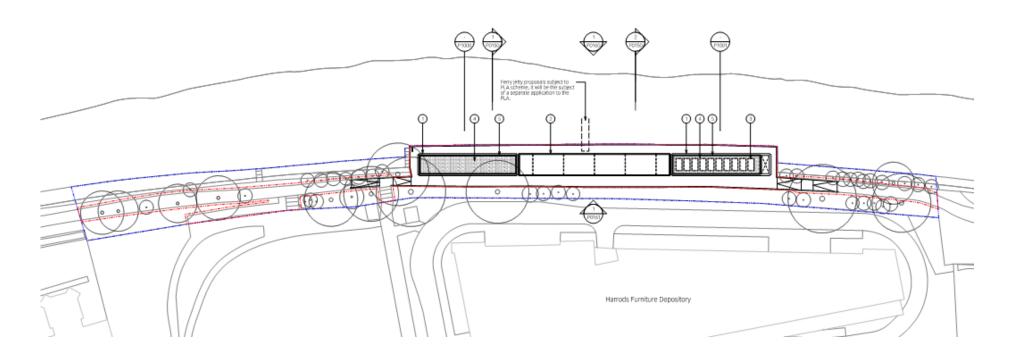
Environmental Economics Ltd January 21

Appendix G

reacens step:

reacens step:

reacens formed cladding panel wifft back-liture/nated tensile labric


reace formed canopy with back-liture/nated tensile fabric

Priparella

green road

sharge odging

River Thames

