Pell Frischmann

Hammersmith Temporary Ferry

Ground Investigation Report

Date: June 2021

Report Ref: 102963-PEF-BAS-ZZZ-REP-GE-00002

Revision: 2

REVISION RECORD						
Rev	Description	Date	Originator	Checked	Approved	
0	Draft for comment	28.07.2020	J Bret	E Roberts	K Stone	
1	For issue	14.08.2020	J Bret	E Roberts	K Stone	
2	Updated	04.06.2021	E Roberts	K Stone	K Stone	

This report is to be regarded as confidential to our Client and is intended for their use only and may not be assigned. Consequently, and in accordance with current practice, any liability to any third party in respect of the whole or any part of its contents is hereby expressly excluded. Before the report or any part of it is reproduced or referred to in any document, circular or statement and before its contents or the contents of any part of it are disclosed orally to any third party, our written approval as to the form and context of such a publication or disclosure must be obtained.

Prepared for: Prepared by:

Transport for London Palestra 197 Blackfriars Road London SE1 8NJ Pell Frischmann 5 Manchester Square London W1U 3PD

Contents

1	Introduction	1
1.1	Scope and Objective of the Report	1
1.2	Description of the Project	1
1.3	Geotechnical Category of the Project	1
2	Existing Information	2
2.1	Desk Studies	2
2.2	Topographical Maps (Historical and Recent)	2
2.3	Geological Maps and Memoirs	3
2.4	Records of Mines and Mineral Deposits	3
2.5	Pollution Events	3
2.6	Historic Ground Investigations	3
2.7	Consultation with Statutory Bodies and Agencies	4
2.8	Hydrogeology	4
2.9	Flood Records	5
2.10	Unexploded Ordnance	5
3	Field and Laboratory Studies	6
3.1	Ground Investigations	6
3.2	In-Situ Testing	8
3.3	Laboratory Testing	8
4	Ground Summary	9
5	Ground Conditions and Material Properties	10
5.1	Made Ground	10
5.2	Alluvium	12
5.3	River Terrace Deposits	15
5.4	London Clay	18
5.5	Ground Aggressivity	24
5.6	Summary of Engineering Properties	25
6	Groundwater Monitoring	26
7	Geotechnical Risk Register	27

Appendices

Appendix A – Drawings

Appendix B – Ground Investigation Factual Report

1 Introduction

1.1 Scope and Objective of the Report

This Ground Investigation Report (GIR) has been prepared for the Hammersmith Temporary Ferry across the river Thames.

The scope of works and content of the GIR have been defined in accordance with HD22/08 'Managing Geotechnical Risk' (2008). This guidance has since been superseded by CD622 'Managing Geotechnical Risk' (2019), which will be referred to where appropriate. The objectives of the GIR are as follows:

- "Describe the findings of the ground investigation works";
- "Define appropriate soil parameters for design"

An assessment of the geo-environmental risks posed by the ground conditions is not a part of the scope of this report, and is covered separately in the Phase II Land Contamination Risk Assessment Report, reference 102963-PEF-BAS-ZZZ-REP-GE-00003.

1.2 Description of the Project

Pell Frischmann Consultants Ltd (PFC) has been appointed by Transport for London (TfL) to undertake detailed design to refurbish the existing Hammersmith Bridge which carries the A306 Hammersmith Bridge Road across the River Thames. The suspension bridge was constructed in the 1880s and due to concerns about its condition, the maximum gross vehicle weight is restricted, the refurbishment project involves upgrading the bridge load carrying capacity.

While the refurbishment works are being undertaken, a new temporary river ferry service is proposed connecting the Land to the south of Queen Caroline Street in the London Borough of Hammersmith and Fulham (LBHF) and the Land to the north east of Riverview Gardens and east of Hammersmith Bridge in the London Borough Richmond (LBR) through the construction of two new piers. Alongside the proposed piers the applications scheme includes new temporary landscaping, public realm and pedestrian walkways. The focus of this report will be interpretation of geotechnical conditions associated with the proposed temporary ferry crossing.

1.3 Geotechnical Category of the Project

At this stage, it is considered that proposals for the scheme detailed above should be classified as Geotechnical Category 2: "Projects which include conventional types of geotechnical structures, earthworks and activities with no exceptional geotechnical risks or unusual, difficult ground conditions".

2 Existing Information

2.1 Desk Studies

Two reports were issued by Mott MacDonald in October 2018, a general desk study report and a qualitative assessment of foundations for the Hammersmith bridge refurbishment scheme. A Phase I Land Contamination Risk Assessment (ref: 102963-PEF-BAS-ZZZ-REP-EN-00010) was undertaken by Pell Frischmann in July 2020. A geotechnical and geo-environmental desk study was initially produced by Pell Frischmann (PFC) in October 2019 for the Hammersmith Bridge scheme as report reference 102963-PEF-BAS-ZZZ-REP-GE-00001 P03 and was subsequently revised in November 2019 and January 2020 to include additional historic borehole information. No significant changes have been made to the project site since the desk studies were undertaken and so these have been used for the assessment of the temporary ferry proposals.

2.2 Topographical Maps (Historical and Recent)

The topographical maps reviewed at the desk study stage are summarised in **Table 2.1**. For copies of the topographical images, refer to the desk study document, reference 102963-PEF-BAS-ZZZ-REP-EN-00010.

Table 2.1 Historical Maps Summary

1746: The London 1746 map (published by the land surveyor John Rocque) indicates that the current Queen Caroline St was already built with indicative building locations marked within the site boundary on the north bank. The south bank of the site does not indicate any urban development.

Off-site, most of surrounding land use appears to comprise developed agricultural or orchard land.

1896: On-site the map shows no notable changes. The new Hammersmith Bridge is shown (completed 1887) which shares the same alignment and foundation piers as its predecessor. No notable development is indicated on the south bank.

Off-site, the land use on the north bank is largely unchanged (wharfs to the SE are now named, inc. Queen's Wharf). Hammersmith Iron Works is shown 90m SE. A public house is shown on Queen Caroline St (immediately NW). Two foreshore overflows are shown NE of the Site. The only notable change on the south bank is the presence of a river channel structure named 'Hammersmith Pier' which bisects the site close to the southern shore.

1937: The aerial photograph provides a good view of the wharfs and residential dwellings within the site boundary on the north bank.

Off-site, the imagery confirms the items described by the OS mapping.

1940: The 1940 ground level photo faces north from Barnes. The site boundary extends to the street level in the centre foreground of this image.

Off-site, no relevant features noted.

2020: The current mapping shows very limited change within the site boundary.

Off-site, the most significant change is the redevelopment of the former Queen's Wharf and adjacent Riverside Studios to the southeast. Dated Google satellite imagery confirms that the previous Queens Wharf and Riverside studios were demolished after 2014 and redeveloped between 2015 and 2018 to form the new Riverside Studios complex, a combined arts, studio and performance centre including extensive upper tier residential apartments.

Key: N north, E east, S south, W west, NE north east, NNE north north east etc. Inc. including

2.3 Geological Maps and Memoirs

The British Geological Survey (BGS) on-line Geo-index search-engine and published BGS geological maps were used to initially identify the underlying geology of the area.

The British Geological Survey (BGS) 1:50,000 Scale Solid and Drift Edition geological map of the area (Sheet 72, Beverley, 1995) shows the superficial deposits to comprise of Alluvium on the south bank and under the river, and of River Terrace deposits at the northern pier. These strata were described as follows:

Alluvium: Soft grey CLAY grading to loose grey slightly sandy SILT.

River Terrace Deposits: Medium dense multi-coloured sandy to very sandy GRAVEL Sand is medium to coarse. Gravel is fine to coarse angular to rounded flint.

Solid geology in the area is shown to comprise London Clay, broadly defined by the BGS Lexicon as;

"The London Clay mainly comprises bioturbated or poorly laminated, blue-grey or grey-brown, slightly calcareous, silty to very silty clay, clayey silt and sometimes silt, with some layers of sandy clay."

2.4 Records of Mines and Mineral Deposits

One historic mine entry was recorded within 1000m of the site, located 530m South of the site boundary. The materials extracted came from the Kempton Park Gravel Formation and consisted of sand and gravel. The site is not within a Coal Mining Reporting Area.

2.5 Pollution Events

It was identified at the desk study stage that there are three licensed discharge consents within 250m of the bridge site within the Thames River. These were related to sewage and storm water overflows. Also, there are six pollution incidents to controlled waters recorded within 250m of the site. The incidents occurred between 1990 and 1997 and were related to the discharge of unknown sewage. These were classified as having a minor impact to water as a result of the pollution.

2.6 Historic Ground Investigations

Figure 2.1 maps the existing borehole information available on the BGS website. Borehole TQ27NW1065 in the Thames channel is of particular interest as it shows a possible soil condition under the river within less than 100m of the site. This hole encountered London Clay from the river channel level that extended until 48m below drilling level where Lambeth Group soils were encountered through to the base of the hole. No strength testing was available from the logs, and the logs did not encounter groundwater within the boreholes.

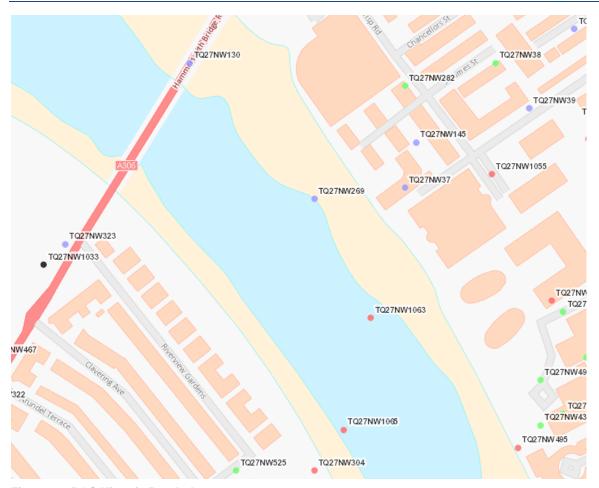


Figure 2.1 BGS Historic Boreholes

2.7 Consultation with Statutory Bodies and Agencies

The following entities were consulted via the Envirocheck report to search for information considered relevant to this report:

- Environment Agency;
- English Heritage;
- British Geological Survey (BGS);
- Coal Authority;
- Ordnance Survey, and;
- Public Health England.

The findings of these consultations are summarised in various other sections of this report and are covered in detail within the desk study.

2.8 Hydrogeology

According to the Envirocheck Report and the Environment Agency website, the superficial deposits underlying the site comprise a Secondary 'Undifferentiated' Aquifer associated with the alluvial deposits and a Secondary 'A' aquifer associated with the Kempton Park Gravel. The bedrock geology of London Clay is mapped as an Unproductive Aquifer.

The Envirocheck Report indicates that the site is not located within a Source Protection Zone (SPZ). There are no groundwater abstraction licenses within 1,000m of the site.

2.9 Flood Records

The Envirocheck report classifies the existing bridge structure and proposed temporary ferry crossing locations as being in a Zone 3 floodplain. Therefore, it is at high risk of flooding from the rivers and the sea and each year has a chance of flooding of greater than 3.3%. This considers the effect of any flood defences in the area which reduce, but do not stop, the chance of flooding as they can fail.

The area at the north of the northern pier is classified as being of high risk of flooding from surface water, likely due to the presence of permeable granular Kempton Park Gravel soils overlying impermeable London Clay beneath.

2.10 Unexploded Ordnance

A detailed UXO desktop study was commissioned by Safelane Global. The site was split into areas of LOW and MEDIUM risk, refer map below.

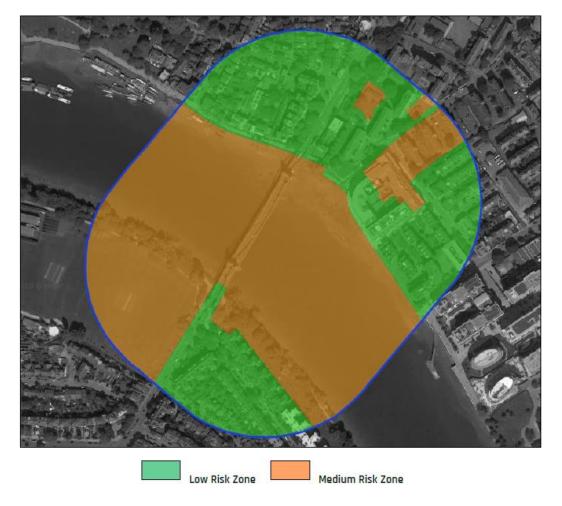


Figure 2.2 UXO Risk Map - SafeLane Global

3 Field and Laboratory Studies

3.1 Ground Investigations

Further to the proposals set out within the Desk Study, a project-specific ground investigation (GI) was procured by PFC and undertaken by Socotec during May 2020. The purpose of the works was to determine a geological ground model and characteristic geotechnical parameters of the encountered materials to facilitate earthworks and foundation design. Investigations BH101 and CPT101 were located The ground investigation locations are shown on **Figure 3.1** and the schedule of investigations are presented in **Table 3.1**.

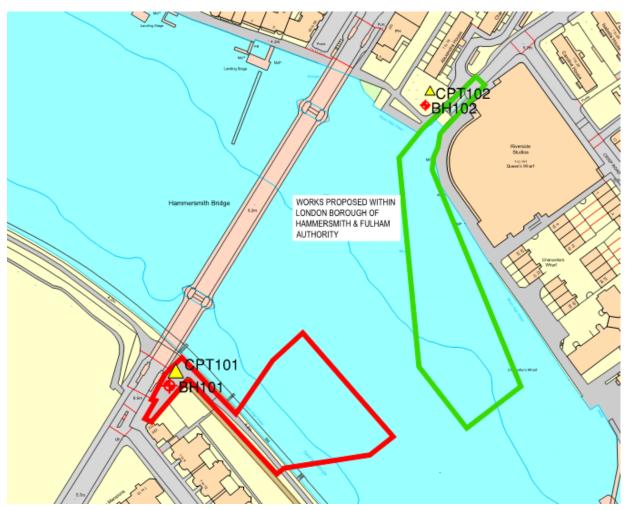


Figure 3.1 Ground Investigation Locations with North and South Ferry Piers

3.1.1 Description of Fieldwork

The following exploratory holes were undertaken during the May 2020 ground investigation:

Table 3.1: Summary of Exploratory Holes undertaken by Socotec

Explorator y Hole ID	Easting	Northing	Ground Level (m AOD)	Hole Scheduled Depth	Hole Final Depth	Installation	Comments
BH101-SP	522920.27	177988.12	4.61	40.0m	40.38m	Groundwater and ground gas monitoring installed	Achieved target depth.
BH102-SP	523072.73	178148.02	4.95	40.0m	40.45m	Groundwater and ground gas monitoring installed	Achieved target depth.
CPT101	Unable to be drilled due to access issues						
CPT102	523073.39	178154.08	5.11	20.0m	16.8m	-	Pre-drilled to 6m by cable percussion rig

bgl = below existing ground level;

m AOD = metres above ordnance datum;

The GI was carried out in accordance with the following standards:

- BS 5930:2015
- BS EN 1997-2
- BS EN ISO 22475-1:2006
- BS EN ISO 22476-1:2012
- BS EN ISO 22476-3:2005+A1:2011

The Ground Investigation Factual Report produced by Socotec is presented in Appendix B of this report.

3.2 In-Situ Testing

In-situ testing comprised Standard Penetration Tests (SPTs) and Hand Shear Vane (HSV) tests in boreholes. SPT tests were undertaken within boreholes at regular intervals. Test results are discussed in the following sections per strata, and are presented on the relevant logs within the Socotec Factual Report included as Appendix B of this report.

3.3 Laboratory Testing

The following tests were scheduled by Pell Frischmann on samples recovered during the fieldworks in accordance with BS 1377 (1990), BS EN ISO 17892 (2014) Part 1 and 2.

Table 3.2: Summary of geotechnical laboratory testing					
Туре	Quantity	Comment			
Water content determination	16				
Atterberg limit determination	16				
Particle size distribution analysis-wet sieve	8				
Particle size distribution analysis-sedimentation	4				
pH, water soluble sulphate content, acid soluble sulphate and total sulphur of soils	8				
Unconsolidated undrained triaxial compression testing	13				
Hand vane	13				
Determination of shear strength by direct shear	1	Requested test at BH101 5.7-6.2m not undertaken due to insufficient sample			

4 Ground Summary

With reference to GI and historic borehole records and supported by the BGS geological maps, the following ground model has been developed, refer to Table 4.1.

Table 4.1: Ground Model					
Deposit/Stratum	Thickn	ness (m) Elevation to top of St AOD)		•	
	Minimum	Maximum	Highest	Lowest	
Made Ground – Granular (MG-G)	1	1.8	4.95	4.61	
Made Ground – Cohesive (MG-C)	0.5	1.5	3.21	3.05	
Alluvium	0	2.80	1.71	1.71	
River Terrace Deposits*	2.4	3.0	2.65	-1.09	
London Clay**	30+	-	-0.35	-3.49	

^{*}also referred to as Kempton Park Gravel

The general ground model for this site includes 2-3m of Made Ground usually featuring Granular fill above cohesive Made Ground. On the north bank of the river, Alluvium is present below the Made Ground, but this layer is absent on the south bank. River Terrace deposits and London Clay are the underlying strata over the whole site.

^{**}base unproven

5 Ground Conditions and Material Properties

5.1 Made Ground

5.1.1 Composition and Distribution

Made Ground was encountered in all investigation locations and ranged in thickness from 2.3m to 2.9m.

The Made Ground was encountered below concrete or grassed areas and was of mixed composition and description, though typically described as SAND and GRAVEL or gravelly, sandy CLAY and SILT. The Made Ground comprised brick, ceramics, concrete and glass. Sand and gravel were fine to coarse.

5.1.2 Classification Properties

Particle Size Distribution (PSD) analysis was undertaken on a total of 3 No. samples of Made Ground (2 No. at BH 101 and 1 No. at BH102). The results of the particle size distribution analysis for Made Ground are presented in **Table 5.1** & **Table 5.2**.

Table 5.1 indicates the Granular Made Ground is predominantly a mixture of sand and gravel with a low percentage of fine material. **Table 5.2** shows the Cohesive Made Ground to be made predominately of silt and clay particles and containing small quantities of sand and gravel.

Table 5.1: Granular Made Ground Particle Size Distribution Summary					
Soil Classification	Content Distribution Range %	Average Content %			
Silt/Clay	10-35	25			
Sand	25 - 35	30			
Gravel	30 -65	45			
Cobbles 0 - 0 0					
2 No. tests conducted					

Table 5.2: Cohesive Made Ground Particle Size Distribution Summary				
Soil Classification Content Distribution %				
Silt/Clay	55			
Sand	33			
Gravel	12			
Cobbles 0				
1 No. test conducted				

5.1.3 In-Situ Testing

A total of 4 SPT tests were undertaken in Made Ground in boreholes BH101 and BH102. **Table 5.3** shows the SPT 'N' values for each borehole.

Table 5.3: Made Ground In-situ SPT Test Results					
Borehole	Soil Type	Depth (m bgl)	SPT		
BH101	Made ground granular	1.2	6		
BH102	Made ground granular	1.2	3		
BH101	Made ground cohesive	2.0	4		
BH102	Made ground cohesive	2.0	21		

The SPT values presented in **Table 5.3** show overall low values for N, the higher value of 21 appears anomalous and will not be taken into account for the overall strength parameters The following representative "N" value is adopted for design for both the Granular Made Ground and the Cohesive Made Ground:

N = 5 blows per 300mm

5.1.4 Atterberg Limit Testing

Atterberg Limit testing was conducted on 1 No. sample within the Cohesive Made Ground, the value of plasticity index (PI) was 12%.

5.1.5 Undrained Shear Strength Parameters

The undrained shear strength for the Made Ground can be derived using correlations to the SPT N value and the plasticity index as presented in CIRIA 143. Using an average plasticity index of 12%, an f_1 factor of 7.0 is derived. Considering the limited laboratory testing a conservative values of 5.0 was adopted for design. With this factor the following undrained shear strength is derived for the cohesive Made Ground:

$$S_{ii} = 25 \text{ kPa}$$

5.1.6 Effective Stress Properties

The friction angle for Granular Made Ground can be estimated from the N value of the soil obtained from the SPT tests presented above (CIRIA 143). The friction angle for the granular made ground with an SPT value of 5 is taken to be:

$$\emptyset' = 28^{\circ}$$

No effective cohesion shall be adopted for Granular Made Ground, therefore c'=0kPa.

Considering the SPT value and the description of the material the following material parameters are considered appropriate for design.

$$\emptyset' = 28^{\circ}$$
. c' = 0

5.1.7 Density

In the absence of field data, the bulk density of the Made Ground was estimated from the general description of the soil, the particle size distribution and case-based precedence as being $17 \, \text{kN/m}^3$.

5.1.8 Stiffness

The undrained stiffness of the Made Ground has been derived using the following relationship to the undrained shear strength:

$$E_{u} = 250 \, S_{u} \, kPa$$

Thus, for the design undrained shear strength value the following stiffness is recommended:

$$E_u = 6,250 \ kPa$$

The drained stiffness of the Made Ground is derived from the following relationship:

$$E' = 0.8 E_u kPa$$

$$E' = 5,000 kPa$$

5.1.9 Summary of Soil Parameters

The recommended design parameters for Made Ground are summarised in **Table 5.4 & Table 5.5.**

Table 5.4: Granular Made Ground Recommended Design Parameters					
Unit Weight γ _{bulk} 17 kN/m³					
Friction Angle	Ø'	28	0		
Drained Stiffness	E'	5,000	kPa		

Table 5.5: Cohesive Made Ground Recommended Design Parameters					
Unit Weight γ _{bulk} 17 kN/m³					
Undrained Shear Strength	Su	25	kPa		
Undrained Stiffness	Eu	6,250	kPa		

5.2 Alluvium

5.2.1 Composition and Distribution

Alluvium was only encountered on the South bank of the Thames River and was 2.8m thick. This stratum was described as very loose grey slightly sandy SILT to silty SAND.

5.2.1 Classification Properties

One particle size distribution (PSD) test was undertaken with an Alluvium sample. The results are presented in **Table 5.6**. The results confirm the Alluvium is predominately a cohesive material with 85% of the composition comprising clay and silt.

Table 5.6: Alluvium Particle Size Distribution Summary				
Soil Classification Content Distribution %				
Silt/Clay	85			
Sand	13			
Gravel	2			
Cobbles 0				
1 No. test conducted				

5.2.2 In-situ Testing

2 No. SPT tests were undertaken in-situ in the Alluvium stratum, the results of which can be found in **Table 5.7**.

Table 5.7: Alluvium In-situ SPT Test Results					
Borehole	Soil Type	Depth (m bgl)	SPT		
BH101	Alluvium	4.0	8		
BH101	Alluvium	5.0	9		

Based on the readings obtained, the following representative "N" value is adopted:

$$N = 8$$
 blows per 300mm

5.2.3 Undrained Shear Strength

The c_u was determined using correlation with PI and SPT N. The SPT result was correlated to an equivalent s_u using the approach by Stroud based upon a relationship of s_u =4N, in the absence of test data regarding the PI value for Alluvium. This correlation gives a value of c_u of approximately 32kPa, which is considered a conservative estimation in the absence of additional test results.

$$S_u = 35 \text{ kPa}$$

This value was confirmed by the triaxial test undertaken in the laboratory which yielded a Su of 31kPa.

5.2.4 Density

Based on correlations presented in Figure 1 and Figure 2 of BS 8002 (2015), a medium shear strength term and general Engineer's descriptions of a firm consistency, a bulk (γ_{bulk}) and saturated unit weight (γ_{sat}) of 18kN/m³ is considered appropriate for design for the Alluvium.

5.2.5 Effective Stress Properties

The peak friction angle for Alluvium can be estimated from the plasticity index of the soil and assuming an apparent cohesion of zero (BS 8002:2015). The peak friction angle is derived from the following relationship, without accounting for dilation:

$$\emptyset' = 42^{\circ} - 12.5 \log_{10} I_{p}$$

Where:

 I_p is the plasticity index (entered as a %), in the absence of recorded data, the plasticity index has been assumed to be 40%

$$\emptyset' = 25^{\circ}$$

The following effective cohesion considered appropriate for the Alluvium, c' = 1kPa.

5.2.6 Coefficient of Volume Compressibility

Modulus of Volume Compressibility (m_v) values based upon SPT N values and Plasticity Indices were derived using Stroud's correlation of $m_v = 1/(f_2xN)$ (Stroud (1975)). Assuming a PI of 40%, a factor (f_2) of 0.45 was assumed for the cohesive Head deposits

An m_v value based upon a characteristic cohesive shear strength value of 32kPa derived using Stroud's correlations of $m_v = 1/(f_2xN)$ and $s_u = f_1xN$ (Stroud (1975)) gives $m_v = 10/s_u = 0.30m^2/MN$.

$$m_v = 0.30 m^2/MN$$

5.2.7 Stiffness

The stiffness of the Alluvium has been calculated using the following conventional correlations to undrained shear strength:

Undrained Shear Strength:

$$E_u = 250 S_u kPa$$

• Drained Stiffness:

$$E' = 0.8 E_u kPa$$

Based on the design value for undrained shear strength stated in **Section 5.2.3**, the following stiffness values are recommended for design purposes:

Undrained Shear Strength:

$$E_u = 8,000 \ kPa$$

Vertical Drained Stiffness:

$$E' = 6,400 \ kPa$$

5.2.1 Summary of Soil Parameters

Table 5.8: Alluvium Recommended Design Parameters							
Unit Weight	γ bulk	18	kN/m³				
Undrained Shear Strength	Su	35	kPa				
Undrained Stiffness	Eu	8,000	kPa				
Drained Stiffness	E'	6,400	kPa				
Friction angle	Ø'	25	o				
Effective cohesion	c'	1	kPa				

5.3 River Terrace Deposits

5.3.1 Composition and Distribution

River Terrace Deposits (RTD) was typically encountered below Alluvium or, in the absence of Alluvium, below Made Ground. It was generally described as fine to coarse brown SAND with angular to rounded flint gravel. RTD was encountered in both boreholes on the site.

5.3.2 Classification Properties

Four Particle Size Distribution (PSD) tests were undertaken on bulk samples of RTD from exploratory holes BH101 and BH102. The results from these PSD tests are presented in **Table 5.9**.

Table 5.9: River Terrace Deposits Particle Size Distribution Summary						
Soil Classification	lassification Content Distribution Range %					
Silt/Clay	0-22	7				
Sand	25 - 52	37				
Gravel	34 -75	56				
Cobbles	0 - 0	0				
4 No. tests conducted						

5.3.3 In-situ Testing

A total of 5no. SPTs were undertaken within RTD at the locations of exploratory holes BH101 and BH102

Table 5.10: River Terrace Deposits In-situ SPT Test Results							
Borehole	Soil Type	Depth(m)	SPT				
BH101	RTD	6.5	26				
BH101	RTD	8	9				
BH102	RTD	3	250				
BH102	RTD	4	29				
BH102	RTD	5	14				

The SPT values presented in **Table 5.10** show overall low values for N, however, the N value of 250 obtained in BH102 is considered an outlier an is neglected. The following representative "N" value is adopted:

N = 20 blows per 300mm

5.3.4 Density

Based on a typical characteristic range in SPT N value of 20 and the correlations presented in Figure 1 and Figure 2 of BS 8002 (2015), a bulk unit weight (γ_{bulk}) of 17kN/m³ and a saturated unit weight (γ_{sat}) of 19kN/m³ are considered appropriate for design for the RTD stratum.

5.3.5 Laboratory Testing

A series of shearbox tests were undertaken on a sample of River Terrace Deposits, the results of which are presented in **Figure 5.1**.

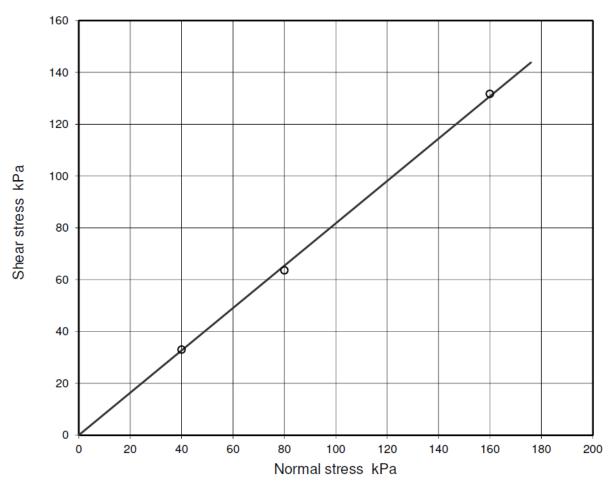


Figure 5.1 Shear Box Test Results

This test yielded the following results:

$$c' = 0 \text{ kPa}$$

$$Ø'_{pk} = 39.5^{\circ}$$

5.3.6 Effective Stress Properties

From the shearbox test results the derived peak friction angle has been estimated to be 39.5 degrees with a c' value of 0kN/m².

Additionally, the peak effective friction angle of gravels can be derived in accordance with BS8002:2015 based on the description of the angularity of the grains, the grading of the soil and the relative density as follows:

$$\emptyset'_{pk} = 30^{\circ} + \emptyset'_{ang} + \emptyset'_{psd} + \emptyset'_{dil}$$

Generally the logs described the Kempton Park Gravel as angular to rounded, and the grain size ranged from fine to coarse. Therefore the following effective friction angle is derived from Table 1 of BS8002:2015:

$$\emptyset'_{ang} = 2^{\circ}$$

Considering the available sets of derived friction angles, the following peak strength parameters are recommended for design:

$$Ø'_{p} = 37$$
°, c' = 0 kPa

The peak friction value presented above will be mobilised at relatively small displacements, and the critical state friction angle may be more appropriate for general design. Deriving this as per BS8002 using the equation presented above, but omitting the contribution from dilation, critical state friction angle of 34° is derived and from the shear box test data a value of 31° is obtained. With regard to design it is recommended that the following critical state friction angle is adopted:

$$Ø'_{cs} = 32^{\circ}$$

5.3.7 Stiffness

The stiffness of the Kempton Park Gravel has been derived using the following relationship between uncorrected SPT "N" value and stiffness (Stroud, 1989):

$$E' / N = 1.5 MN/m^2$$

Based on the design line for SPT "N" the following stiffness value is recommended for design purposes:

$$E' = 30,000 kPa$$

5.3.8 Summary of Soil Parameters

Table 5.11: River Terrace Deposits Recommended Design Parameters								
Unit Weight - Bulk	γbulk	17	kN/m³					
Unit Weight - Saturated	γ sat	19	kN/m³					
Peak friction angle	Ø'pk	37	0					
Critical state friction angle	Ø'cs	32	0					
Effective cohesion	c'	0	kPa					
Drained stiffness	E'	30	MPa					

5.4 London Clay

5.4.1 Composition and Distribution

London clay was encountered in both boreholes and is expected to be encountered over the entire site based on preliminary analysis at the desk study stage. It was generally described as grey CLAY with occasional grey silt partings, fissures very closely spaced, tight.

5.4.1 Classification Properties

A total of 13no. moisture content and Atterberg Limit tests were undertaken on samples of London Clay. The moisture content was measured at between 22% and 35% with an average of 26%, the liquid limits were between 59% and 76% with an average of 66% and the Plasticity Indices (PI) of between 36% and 49% with an average of 40%. The results have been presented graphically in **Figure 5.2** and generally indicate the material to be a high plasticity clay.

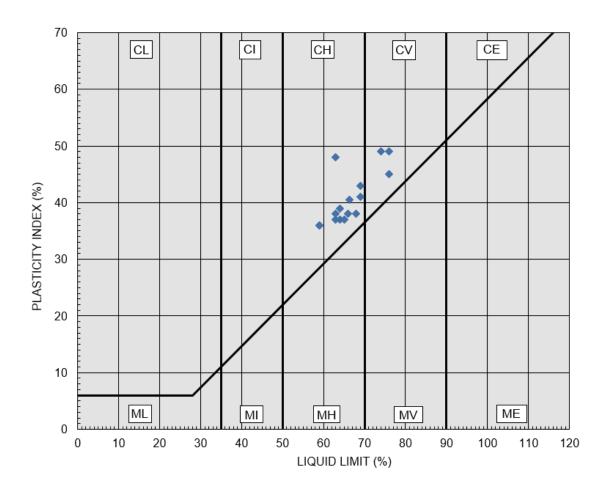


Figure 5.2 Atterberg limits in London Clay

5.4.2 In-situ Testing

A total of 23no. SPTs were undertaken within the London Clay in boreholes BH101 and BH102. The results are presented graphically in **Figure 5.3** which typically indicate an increase in strength with depth.

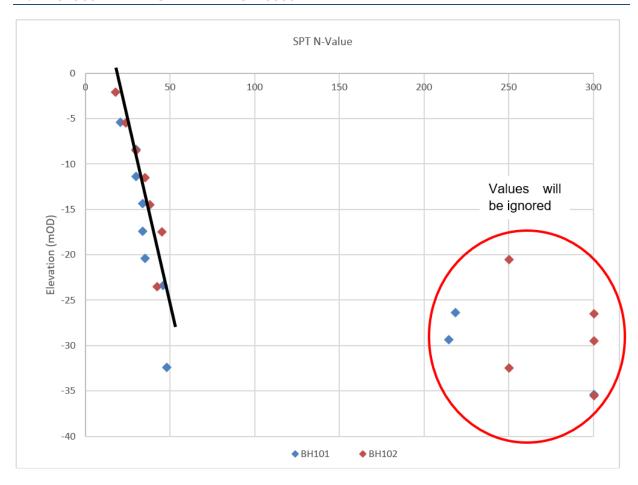


Figure 5.3 London Clay SPT results

Based on these results, the N value of London Clay will be expressed in function of depth: N=20+Z where Z is the depth below a datum elevation of 0.0mOD.

N = (20 + z) blows per 300mm

where z is the depth below surface of the stratum

5.4.1 Laboratory Testing

The laboratory tests undertaken on London Clay samples consisted of 13 hand shear vane tests on samples taken at various depths which all returned an undrained shear strength value of 140 kPa (the maximum value for this test). A total of 12 triaxial compression tests were also undertaken on samples of London Clay, the results of which have been included in **Figure 5.4**.

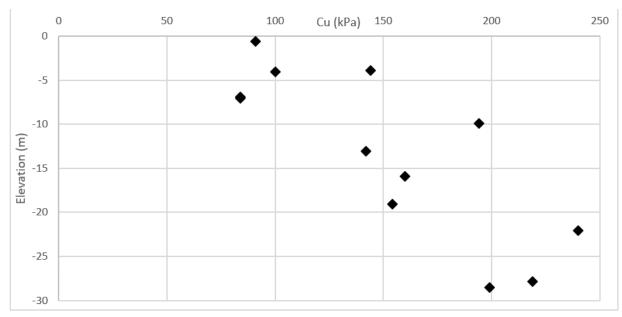


Figure 5.4 Traxial Results - London Clay

5.4.2 Undrained Shear Strength

Values for undrained shear strength have been obtained via the hand vane tests, the triaxial loading tests, the CPTs and the SPTs undertaken in situ. Figure 5.5 summarises the data collected in each of those tests to interpret them visually.

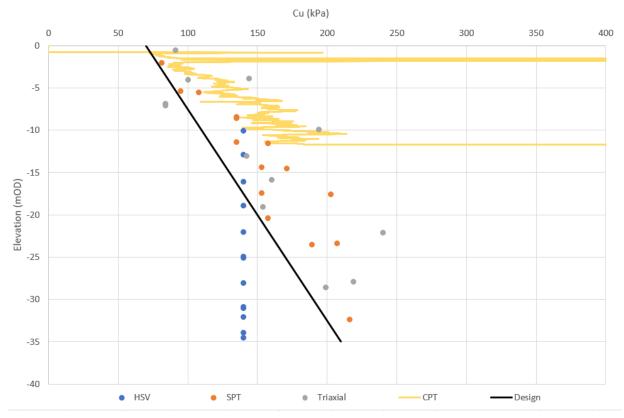


Figure 5.5 Summary of Undrained Shear Strength Results in London Clay

The following gives a summary of s_u determined using correlation with PI and SPT N values. The SPT result was correlated to an equivalent s_u using the approach by Stroud based upon a relationship of s_u =4.7N, derived from an average PI of 40%. This correlation suggests a s_u value of 70 + 4.7z kPa indicating the soil to typically be a stiff clay becoming very stiff to hard with depth.

This interpretation of undrained shear strength confirms the results obtained in the 11no. triaxial tests performed on London Clay samples which yielded results varying from 84 to 240kPa with an average of 156kPa.

A series of hand vane shear tests were also carried out on 13 samples of London Clay and all yielded an undrained shear strengths greater than the maximum value of the test of 140kPa.

The following relationship for undrained shear strength is proposed for design:

$$Su = 70 + 4.7z \text{ kPa}$$

where z is the depth below surface of the stratum.

5.4.3 Density

Based on correlations presented in Figure 1 and Figure 2 of BS 8002 (2015), a high shear strength term and general Engineer's descriptions of a very stiff consistency, a bulk unit weight (γ_{bulk}) and saturated unit weight (γ_{sat}) of 20kN/m³ is considered appropriate for design for the London Clay.

5.4.4 Effective Stress Properties

The peak friction angle for London Clay can be estimated from the plasticity index of the soil (40) and assuming an apparent cohesion of zero (BS 8002:2015). The critical state friction angle is derived from the following relationship:

$$\emptyset'_{cs} = 42^{\circ} - 12.5 \log_{10} I_{p}$$

Where:

I_p is the plasticity index (entered as a %)

$$Ø'_{cs} = 23^{\circ}$$

Considering a contribution from dilation of 2° the following peak friction angle is proposed.

$$Ø'_{pk} = 25^{\circ}$$

Based on previous experience the following effective cohesion for the London Clay is proposed:

c'cs = 0kPa for the critical state

c'pk = 2kPa for the peak state

5.4.5 Compaction and Consolidation

5.4.5.1 Coefficient of Volume Compressibility

Modulus of Volume Compressibility (m_v) values based upon SPT N values and Plasticity Indices were derived using Stroud's correlation of $m_v = 1/(f_2xN)$ (Stroud (1975)). With a PI of 40%, a factor (f_2) of 0.45 was derived for the London Clay and the resultant m_v values were determined and plotted against depth in **Figure 5.6**. The results show a decrease in values of mv as depth increases.

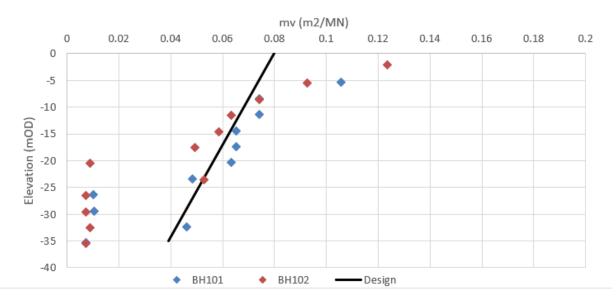


Figure 5.6 Coefficient of Volume Compressibility Values for London Clay

Given the wide range of values of mv shown in Figure 5.6 the following design trend for m_v can be generally adopted for the London Clay; however, this may need to be assessed separately during design on a case by case basis.

$$m_v = 0.08 - z/875 \text{ m}^2/\text{MN}$$

where z is the depth below the surface of the stratum

5.4.5.2 Coefficient of consolidation

A coefficient of consolidation (c_v) value can be derived from the relationship:

$$c_v = k / \gamma_w m_v$$

Based on an estimated Coefficient of Permeability (k) value for the cohesive London Clay of 5 x 10^{-10} m/s (Craig, 1992 and CIRIA 504) and an mv ranging from 0.04 to 0.08 m²/MN

$$c_v max = 7 m^2/year$$

$$c_v min = 2 m^2/year$$

5.4.6 Stiffness

The stiffness of the London Clay has been calculated using the following conventional correlations to undrained shear strength:

Vertical Undrained Stiffness:

$$E_u = 450 S_u kPa$$

• Horizontal Undrained Stiffness:

$$E_u = 1000 S_u kPa$$

Drained Stiffness:

$$E' = 0.8 E_u kPa$$

Based on the design line for undrained shear strength stated in **Section 5.4.1**, the following stiffness values are recommended for design purposes:

Vertical Undrained Stiffness

$$E_u = 31,500 + 2,115 z kPa$$

• Horizontal Undrained Stiffness

$$E_u = 70,000 + 4,700 z kPa$$

Vertical Drained Stiffness

$$E' = 25,000 + 1,692 z kPa$$

Horizontal Drained Stiffness

$$E' = 56,000 + 3,760 z kPa$$

5.4.7 Summary of Soil Parameters

Table 5.12: London Clay Recommend	Table 5.12: London Clay Recommended Design Parameters							
Unit Weight	γbulk	20	kN/m3					
Undrained Shear Strength	Su	70 + 4.7z	kPa					
Undrained Vertical Stiffness	Eu	31,500 + 2,115 z	kPa					
Drained Vertical Stiffness	E'	25,000 + 1,692 z	kPa					
Undrained Horizontal Stiffness	Eu	70,000 + 4,700 z	kPa					
Drained Horizontal Stiffness	E'	56,000 + 3,760 z	kPa					
Peak friction angle	ø'pk	25	o					
Peak effective cohesion	c'pk	2	kPa					
Critical state friction angle	Ø'cs	23	٥					
Critical state effective cohesion	c'cs	0	kPa					
Where z is the depth below the surface of	of the stratum							

5.5 Ground Aggressivity

The proposed ferry crossing is a temporary structure and therefore corrosion and attack on buried concrete from aggressive ground is not anticipated to be significant. To evaluate the class of ground aggressivity to concrete, testing was carried out on 8 No. samples. To determine the sulphate and ground aggressivity class, characteristic values of water soluble sulphate, total potential sulphate and pH were derived in accordance with BRE (2005). The characteristic values are presented in the table below for the deep foundation strata (London Clay).

It should be noted that this testing was specific to the London Clay and although anticipated to be less onerous, the upper layers of Made Ground and River Terrace Deposits (if in contact with the proposed foundation solution) will provide a different groundwater condition and aggressivity risk. However it is also noted that the proposed temporary nature of the structure is such that any significant degradation of concrete is unlikely to occur during the proposed life of the structure.

Table 5.13: Soil Aggressivity Charact	Table 5.13: Soil Aggressivity Characteristic Results and Concrete Classification								
Strata	Depth Range (mbgl)	No. Samples	Water Soluble SO4 (mg/l)	Total Potential Sulphate (%)	Hd	Sulphate Class	ACEC Class		
London Clay	6 – 22	8	250	1.74	8.35	DS-4	AC-3s		

For deep foundations where concrete will be in contact with London Clay, the results indicate a requirement for a concrete mix design sulphate class of DS-4 with an aggressive chemical environment for concrete class (ACEC) of AC-3s.

Summary of Engineering Properties 5.6

Table 5.14 below summarises the ground model and characteristic soil parameters that can be used in design at the site.

Note: Geotechnical parameter selection is dependent on the actual context of the design; in this respect it is recommended that a Geotechnical Engineer reviews all final parameter selection within any detailed design stage calculations being carried out by other discipline engineers. Where available, a Geotechnical Design Report (GDR) for the particular design application should also be referenced in preference to this table of suggested geotechnical design parameters.

Deposit/Stratum	Y BULK	Y SAT	ф' _{peak}	φ' _{crit}	Su	c'	m _v	Cv	Eu	E'd	BRE Class
	(kN/m³)	(kN/m³)	(°)	(°)	(kPa)	(kPa)	(m²/MN)	(m²/year)	(MPa)	(MPa)	DRE Class
Made Ground	17	17	-	28	25	0	-	-	6.25	5.0	-
Alluvium	18	18		25	35	1	0.3	-	8.0	6.4	-
River Terrace Deposits	17	19	37	32	-	0	-	-	-	30	-
London Clay	20	20	25	23	70+4.7 z	0 - 2	0.04 - 0.08	2 - 7	V:32+2z H: 70+4.7z	V:25+1.7z H:56 + 3.8z	DS-4, AC3s

Pell Frischmann Page **25**

6 Groundwater Monitoring

A summary of the groundwater strikes is provided within Section 4. Groundwater monitoring standpipes were installed in exploratory holes BH101, BH102. A summary of the groundwater monitoring instruments and response zones are presented in below.

Table 6.1: Grou	ndwater Summa	ry				
Exploratory Hole Reference	Screen Depth (mbgl)	Date	Groundwate r depth (m bgl)	Groundwater depth (m OD)	Strata water encountered within	
BH101(1)	3.0 - 6.0	20/05/2020	2.45	2.16	River Terrace	
Billol(1)	3.0 - 0.0	17/06/2020	3.40	1.21	Deposits	
DH404(2)	1.0 - 1.5	20/05/2020	Dry	Dry	Made Ground	
BH101(2)	1.0 - 1.5	17/06/2020 Dry Dry				
		20/05/2020	4.93	0.02		
BH102(1)	2.3 - 5.3	03/06/2020	5.11	-0.16	River Terrace Deposits	
		17/06/2020	5.02	-0.07		
		20/05/2020	Dry	Dry		
BH102(2)	0.7 - 1.5	03/06/2020	Dry	Dry	Made Ground	
		17/06/2020	Dry	Dry		

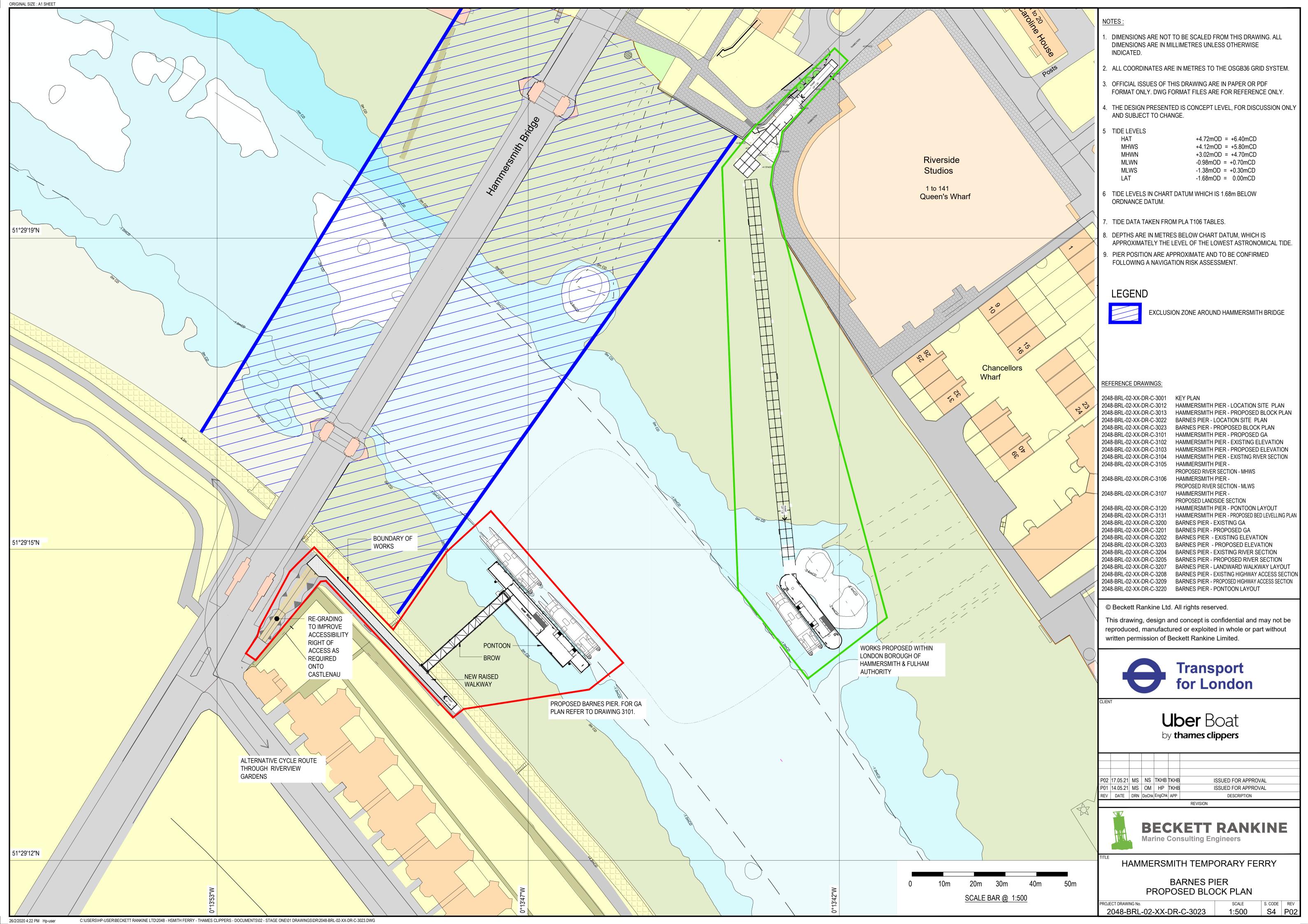
The groundwater monitoring results show that no groundwater was recorded within the Made Ground. Groundwater was recorded within the Kempton Park Gravel generally at approximately 5.0m bgl on the north Side of the river and generally at 2.5m - 3.4m bgl on the south Side.

7 Geotechnical Risk Register

A geotechnical risk register (Table 7.2) has been updated for the scheme in order to identify potential hazards, the probability of the hazard occurring, impact and risk rating. In addition, an estimate of cost implications if the risk occurred prior to the implementation of risk control measures is provided (Table 7.1).

It is a very simple qualitative risk assessment and should not be viewed as definitive. This Risk Assessment reflects the current level of understanding of the geotechnical aspects of the scheme and will be subject to revision. It is a generalised risk register that covers the main risks for construction. Risk rating is defined by the following relationship:

Risk rating (R) = Probability (P) x Impact (I).


Table 7.1: Risk Assessment Criteria and Rating							
Risk (R) = Probability (P) x Impact (I)							
Probability (P) Impact (I)							
Very likely	5	Very high	5				
Probable	4	High	4				
Possible	3	Medium	3				
Unlikely	2	Low	2				
Negligible	1	Very Low	1				

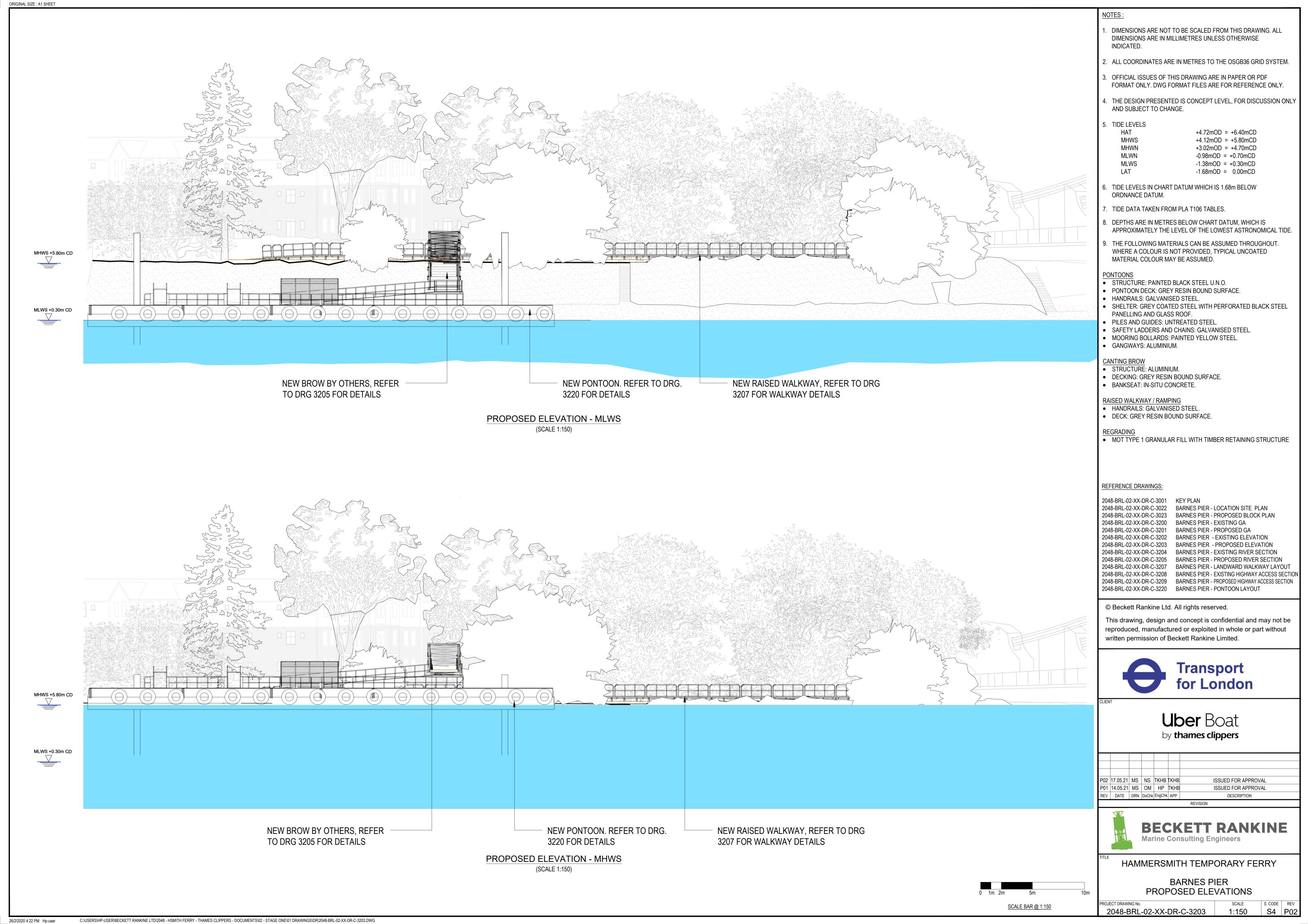

Hammersmith Temporary Ferry – Ground Investigation Report Ref: 102963-PEF-BAS-ZZZ-REP-GE-00002

Table 7.2: Geote	Table 7.2: Geotechnical Risk Register								
Hazard / Risk	Cause	Consequence(s)	Pr	e-Cor	itrol	Mitigation	Po	st-Co	ontrol
Tiazaid / Nisk	Cause	Oonsequence(s)	Р	I	R		Р	I	R
Unforeseen ground conditions	-Inadequate site investigation data /unusual ground conditions-Ground contamination.	-Increased geotechnical risk -Conservative design approach -Delay in construction -Further site investigation required -Damage to pavement / structure -Additional cost of remediation	3	3	9	 -Appropriate ground investigation coverage with contamination risk assessment. -Appropriate design parameters and design methods. 	1	1	1
Excessive settlement of foundations	-Weak, compressive ground -Poor subgrade.	-Structural damage due to excessive deformation -Potential cost of remedial measures -Delay in construction	3	4	12	-Adequate and appropriate ground investigation.-Adopt appropriate geotechnical parameters for design.-Appropriate design.	2	2	4
Fluvial action and erosion	- Scour of river foundations	- Settlement and instability of river structures.	3	4	12	-Bathymetric study of the river channel profile -Scour assessment of bridge foundations from river channel action	1	2	2
Pollution of Environment	-Disturbance of contaminated sediment on river bed during piling and contamination with river water Creation of cross/contamination vertical pathways	-Potential contamination of river water -Impact on adjacent ecology -Legal liability for nuisance, etc.	2	2	4	-Use of appropriate construction method to minimise/reduce risk of developing pathway for contaminants	2	2	4
Damage to known and unmarked services	-Inaccurate / no service plansDamage caused by construction activityGround investigation works within easements specified by service providers.	-Damage to utilities -Health and safety risk to site personnel and general public -Buildability constraints and issues -Utilities temporarily unavailable -Environmental impact from spillages such as oil or sewerage -Litigation	3	4	12	 Services plans to be sourced / produced prior to construction works commencing. Protect or divert services prior to construction works beginning on site. All work locations to be scanned for services prior to work commencing. Be aware of easements specified by utility owner/provider. 	1	4	4

Pell Frischmann
Page 28

Appendix A **Drawings**

Appendix B Socotec Factual Report

HAMMERSMITH BRIDGE

FACTUAL REPORT ON GROUND INVESTIGATION

Report No G0015-20

July 2020

Issue No 1

Carried out for: Pell Frischmann Consulting Engineers Ltd 5 Manchester Square London W1U 3PD

The Oasts, Newnham Court, Bearsted Road, Maidstone, Kent ME14 5LH Tel: +44 (0) 1622 632100 email: geo.maidstone@socotec.com

©2017 SOCOTEC UK Limited

Report No G0015-20

June 2020

ISSUE No STATUS PREPARED BY DATE		PREPARED BY	CHECKED BY	APPROVED BY		
		NAME and QUALIFICATIONS	NAME and QUALIFICATIONS	NAME and QUALIFICATIONS		
1	Draft	S Nicol MSc	L W Brown MSc CEng MICE	L W Brown MSc CEng MICE		
June 2020	report	SIGNATURE	SIGNATURE	SIGNATURE		
1		NAME and QUALIFICATIONS	NAME and QUALIFICATIONS	NAME and QUALIFICATIONS		
'	Final	S Nicol MSc	L W Brown MSc CEng MICE	L W Brown MSc CEng MICE		
		SIGNATURE	SIGNATURE	SIGNATURE		
July 2020	report	San	lean	lean		

This Report has been prepared by SOCOTEC UK Limited ("SOCOTEC") with all reasonable skill and care, within the terms and conditions of the contract between SOCOTEC and the Client ("Contract") and within the limitations of the resources devoted to it by agreement with the Client.

This Report shall not be used for engineering or contractual purposes unless the Report status is 'Final' and signed by the author, checker and the approver for and on behalf of SOCOTEC.

Whilst every effort has been made to ensure the accuracy of the data supplied and any analysis interpretation derived from it, the possibility exists of variations in the ground and groundwater conditions around and between the exploratory positions. SOCOTEC shall not be liable for any use of the Report for any purpose other than that for which it was originally prepared. No liability can be accepted for any such variations in these conditions. Furthermore, any recommendations are specific to the development as detailed in this Report and no liability will be accepted should they be used for the design of alternative schemes without prior consultant with SOCOTEC.

This Report is confidential between the Client and SOCOTEC. Any reliance upon the Report is subject to the Contract terms and conditions.

SOCOTEC accepts no responsibility whatsoever to third parties to whom this document, or any part thereof, is made known. Any such party relies upon the Report at their own risk. The Contracts (Rights of Third Parties) Act 1999 does not apply to this Report nor the Contract and the provisions of the said Act are hereby excluded.

Unless specifically assigned or transferred within the terms and conditions of the Contract, SOCOTEC asserts and retains all Copyright and other Intellectual Property Rights in and over the Report and its contents. The Report may not be copied or reproduced, in whole or in part, without the written authorisation from SOCOTEC.

SOCOTEC UK Limited was formerly known as Environmental Scientifics Group Limited. The Certificate of Incorporation on Change of Name was filed on 16 October 2017.

www.socotec.co.uk

CONTENTS

			Page
1	INT	RODUCTION	1
2	SITE	E SETTING	1
	2.1 2.2	Location and Description Published Geology	1 2
3	FIEL	LDWORK	2
	3.2	General Exploratory Holes Groundwater and Gas Monitoring	3
4	LAB	BORATORY TESTING	5
	4.1 4.2	Geotechnical Testing	5 5
5	REF	FERENCES	6

APPENDIX A FIGURES AND DRAWINGS

APPENDIX B EXPLORATORY HOLE RECORDS

APPENDIX C INSTRUMENTATION AND MONITORING

APPENDIX D GEOTECHNICAL LABORATORY TEST RESULTS

APPENDIX E GEOENVIRONMENTAL LABORATORY TEST RESULTS

1 INTRODUCTION

SOCOTEC UK Limited was commissioned in February 2020 by Pell Frischmann Consulting Engineers Ltd (PFCE), to carry out a ground investigation for the construction of a temporary pedestrian footbridge during the refurbishment of Hammersmith Bridge, London. The investigation was required to obtain geotechnical and geo-environmental information.

The scope of the investigation was specified by PFCE and comprised the following:

- Two cable percussion boreholes to a depth of 40m;
- Two CPTs to be undertaken in close proximity to the above boreholes. It was agreed that
 these would be performed through the bases of cable percussion boreholes pre-drilled
 through superficial materials. A third proposed CPT was temporarily postponed by the Client.

The investigation was performed in accordance with the contract specification, and the general requirements of BS 5930 (2015), BS EN 1997-2 (2007), BS EN ISO 22475-1 (2006) and other relevant related standards identified below. The boreholes were drilled between 4th and 15th May 2020. The CPT work was undertaken on 19th May 2020.

This report presents the factual records of the fieldwork, monitoring and laboratory testing. The information is also presented as digital data as defined in AGS (2017).

2 SITE SETTING

2.1 Location and Description

The fieldwork took place on two separate sites on the north and south banks of the Thames, in the vicinity of the existing Hammersmith Bridge.

On the north side (Hammersmith) the site was an essentially level grassed area. The approximate National Grid Reference was TQ231782.

©2017 SOCOTEC UK Limited

On the south side (Richmond) the site was immediately adjacent to the existing bridge towards the bottom end of an access ramp towards the Thames footpath. The approximate National Grid Reference was TQ229780.

2.2 Published Geology

Reference to the BGS GeoIndex Onshore online viewer (2020) shows the site lies close to the boundary of Alluvium and the Kempton Park Gravel Member, a River Terrace Deposit. These superficial materials are underlain by the London Clay Formation.

3 FIELDWORK

3.1 General

The exploratory hole locations were selected by PFCE and set out from local features. The coordinates and ground levels of the positions were surveyed by SOCOTEC to National Grid and Ordnance Datum, and are presented in the logs in Appendix B. The approximate exploratory hole locations are shown on the Site Plan in Appendix A.

3.2 Exploratory Holes

The exploratory holes are listed in the following table.

TABLE 1: SUMMARY OF EXPLORATORY HOLES

ТҮРЕ	ВН	DEPTH (m)	INSTALLATION	REMARKS
	BH101	40.38	Two 50mm diameter standpipes installed to 1.50m and 6.00m respectively	
Cable Percussion Drilling	BH102	40.45	Two 50mm diameter standpipes installed to 1.50m and 5.30m respectively	
	CPT101 (pre-drill)	8.50		
	CPT102 (pre-drill)	6.00		
	CPT101			CPT test could not be undertaken due to limited access
	CPT102	16.80		
Cone Penetration Testing	CPT103			CPT103 was temporarily removed due to the restricted access at its proposed location as the site compound for the works to Hammersmith Bridge was at the time of the investigation located on the north side of the bridge

The exploratory hole logs are presented in Appendix B. These include descriptions of the strata encountered together with details of the equipment and methods used, sampling and field testing carried out, water depths and other field observations. Explanation of the terms and abbreviations used on the logs is given in the Key to Exploratory Hole Records in Appendix B, along with other explanatory information. Soil and rock material descriptions are in accordance with BS EN ISO 14688-1 (2018), BS EN ISO 14689 (2018) and the guidance of BS 5930 (2015).

Standard penetration tests (SPT) in the boreholes were carried out in accordance with BS EN ISO 22476-3+A1 (2011) and the SPT hammer energy ratio certificate is included in Appendix B. The results are presented on the logs as uncorrected N values.

The CPT results are included as a stand-alone report in Appendix B.

On completion of the fieldwork, geotechnical samples were transported to the Maidstone office of SOCOTEC for temporary retention, with those required for testing being transferred to the

SOCOTEC laboratory at Carcroft, near Doncaster. Geoenvironmental samples were transported from site directly to the SOCOTEC laboratory at Bretby, near Burton-on-Trent.

3.3 Groundwater and Gas Monitoring

Gas and groundwater monitoring instrumentation was installed in selected boreholes, as requested by the Client. Details are shown on the logs and summarised in Appendix C. Records of monitoring carried out by SOCOTEC during and after the fieldwork period are also presented in Appendix C and summarised in the table below.

TABLE 2: SUMMARY OF MONITORING

ТҮРЕ	DATE	REMARKS
Gas/Groundwater Monitoring Visit	03/06/20	Access not available to BH101
Gas/Groundwater Monitoring Visit	17/06/20	

July 2020 Report No G0015-20 Issue 1 Page 4 of 6

4 LABORATORY TESTING

4.1 Geotechnical Testing

Geotechnical laboratory testing was scheduled by the Client and was carried out in accordance with BS 1377 (1990), BS EN ISO 17892 (2014) Part 1 and 2 and ISRM (2007) unless otherwise stated within the test report. The testing is summarised below and the results are presented in Appendix D.

TABLE 3: SUMMARY OF GEOTECHNICAL LABORATORY TESTING

ТҮРЕ	QUANTITY	REMARKS
Water Content Determination	16	
Atterberg Limit Determination	16	
Particle Size Distribution Analysis – wet sieve	8	
Particle Size Distribution Analysis – sedimentation	4	
pH, Water Soluble Sulphate Content, Acid Soluble Sulphate and Total Sulphur of soils	8	
Unconsolidated Undrained Triaxial Compression Testing	13	
Hand Vane	13	
Determination of shear strength by direct shear	1	Requested test at BH101 5.7-6.2m not undertaken due to insufficient sample

4.2 Geoenvironmental Testing

Geoenvironmental laboratory testing was scheduled by the Client on the soil samples recovered during the fieldwork and water samples taken by SOCOTEC from the installations. The testing is summarised in the table below and the results are presented in Appendix E.

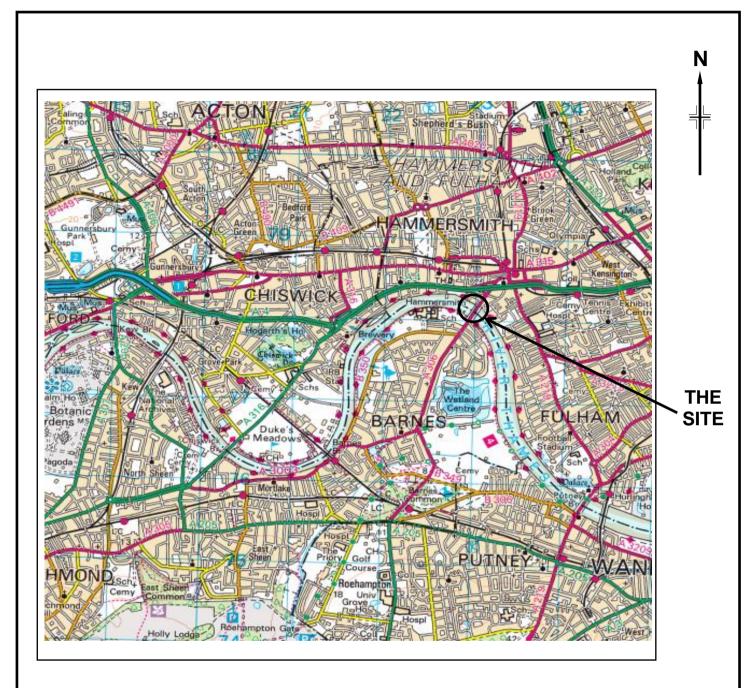
TABLE 4: SUMMARY OF GEOENVIRONMENTAL LABORATORY TESTING

ТҮРЕ	QUANTITY	REMARKS
Suite A – Soils	14	
Suite A – Water	1	

July 2020 Report No G0015-20 Issue 1 Page 5 of 6

5 REFERENCES

- AGS: 2017: Electronic transfer of geotechnical and geoenvironmental data (Edition 4.0.4 February 2017). Association of Geotechnical and Geoenvironmental Specialists.
- BGS England and Wales Sheet 270: 1975: South London. 1:50000 geological map (solid and drift) (Bedrock and Superficials). British Geological Survey.
- BGS GeoIndex Onshore (online viewer): 2020. www.bgs.ac.uk. British Geological Survey.
- BRE Special Digest 1: 2005: Concrete in aggressive ground. Building Research Establishment.
- BS 1377 : 1990 : Methods of test for soils for civil engineering purposes. British Standards Institution.
- BS 5930 : 2015 : Code of practice for ground investigations. British Standards Institution.
- BS EN 1997-2 : 2007 : Eurocode 7 Geotechnical design Part 2 Ground investigation and testing. British Standards Institution.
- BS EN ISO 14688-1:2018 : Geotechnical investigation and testing Identification and classification of soil Part 1 Identification and description.
- BS EN ISO 14688-2:2018 : Geotechnical investigation and testing Identification and classification of soil Part 2 Principles for a classification.
- BS EN ISO 22475-1 : 2006 : Geotechnical investigation and testing Sampling methods and groundwater measurements Part 1 Technical principles for execution. British Standards Institution.
- BS EN ISO 22476-3:2005+A1 : 2011 : Geotechnical investigation and testing Field testing Part 3 Standard penetration test. British Standards Institution.



APPENDIX A FIGURES AND DRAWINGS

Site Location Plan	A1
Site Plan	Α2

Site Location Plan

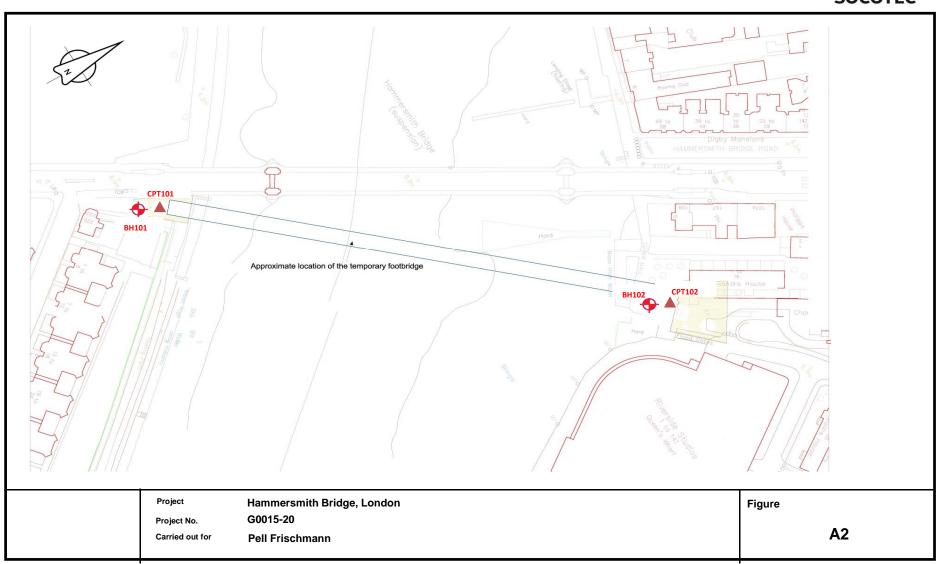
Reproduced from the 1992 Ordnance Survey 1:50 000 scale Landranger map No 270 by permission of Ordnance Survey on behalf of The Controller of Her Majesty's Stationery Office, a Crown copyright, SOCOTEC UK Limited. All rights reserved. Licence Number 100006060

Notes: Scale 1:50 000

Project

Hammersmith Bridge, London

Project No. G0015-2


Carried out for

G0015-20 Pell Frischmann Figure

A1

SOCOTEC

Borehole Location Plan

APPENDIX B EXPLORATORY HOLE RECORDS

Key to Exploratory Hole Records

SPT Hammer Energy Ratio Report

SPT Hammer Ref EQU2383

Borehole Logs

BH101 & BH102, CPT101 & CPT102 (pre-drill)

CPT Report

No. M0012-20

Key to Exploratory Hole Records

SAMPLES

Undisturbed

U Driven tube sample

UT Driven thin wall tube sample TW Driven thin wall tube sample nominally 100 mm diameter and full recovery unless otherwise stated

P Pushed piston sample

L Liner sample from dynamic (windowless) sampling. Full recovery unless otherwise stated

CBR CBR mould sample BLK Block sample

C / CS Core sample (from rotary core) taken for laboratory testing.

AMAL Amalgamated sample

Disturbed

D Small sample B Bulk sample

Other

W Water sample G Gas sample

Environmental chemistry samples (in more than one container where appropriate)

ES Soil sample EW Water sample

Comments Sample reference numbers are assigned to every sample taken. A sample reference of 'NR' indicates that, while an

attempt was made to take a tube sample, there was no recovery.

Samples taken from borehole installations (ie water or gas) after hole construction are not shown on the exploratory

hole logs.

Specimens for point load testing undertaken on site (or other non-lab location) are not shown on the log.

IN SITU TESTS

SPT S or SPT C Standard Penetration Test, open shoe (S) or solid cone (C)

The Standard Penetration Test is defined in BS EN ISO 22476-3:2005+A1:2011.

The incremental blow counts are given in the Field Records column; each increment is 75 mm unless stated otherwise and any penetration under self-weight in mm (SW) is noted. Where the full 300 mm test drive is achieved the total number of blows for the test drive is presented as N = ** in the Test column. Where the test drive blows reach 50 the

total blow count beyond the seating drive is given (without the N = prefix).

IV in situ vane shear strength, peak (p) and remoulded (r)
HV Hand vane shear strength, peak (p) and remoulded (r)
PP Pocket penetrometer test, converted to shear strength

KFH, KRH, KPI Permeability tests (KFH = falling head, KRH = rising head; KPI = packer inflow);

results provided in Field Records column (one value per stage for packer tests)

DRILLING RECORDS

The mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930:2015

TCR Total Core Recovery, %
SCR Solid Core Recovery, %
RQD Rock Quality Designation, %

If Fracture spacing, mm. Minimum, typical and maximum spacing measurements are presented.

NI The term non-intact (NI) is used where the core is fragmented.

NA Used where a measurement is not applicable (eg. If, SCR and RQD in non-rock materials).

Flush returns, estimated percentage with colour where relevant, are given in the Records column

CRF Core recovered (length in m) in the following run

AZCL Assessed zone of core loss

GROUNDWATER

Groundwater entry

Depth to groundwater after standing period

Key to Exploratory Hole Records

INSTALLATION

Details of standpipe/piezometer installations are given on the Record. Legend column shows installed instrument depths including slotted pipe section or tip depth, response zone filter material type and layers of backfill.

Slotted

Standpipe/ piezometer

The type of instrument installed is indicated by a code in the Legend column at the depth of the response zone:

Standpipe

SPIE PPIE

ICM

Standpipe piezometer Pneumatic piezometer Electronic piezometer

EPIE

The installation of vertical profiling instruments is indicated on the Record. The base of tubing is shown in the Legend column.

Inclinometer or Slip Indicator

The type of instrument installed is indicated by a code in the Legend column at the base of the tubing:

Pipe

ICE Biaxial inclinometer

Inclinometer tubing for use with probe SLIP Slip indicator

Settlement Points or **Pressure Cells** The installation of single point instruments is indicated on the Record. The location of the measuring device is shown in the

Legend column.

The type of instrument installed is indicated by a code in the Legend column:

ESET Electronic settlement cell/gauge

ETM Magnetic extensometer settlement point **EPCE** Electronic embedment pressure cell **PPCE** Electronic push in pressure cell

INSTALLATION / BACKFILL LEGENDS

A legend describing the installation is shown in the rightmost column. Legend symbols used to describe the backfill materials are indicated below.

Topsoil

Piezometer

qiT

STRATUM **LEGENDS**

The legend symbols used for graphical representation of soils, rocks and other materials on the borehole logs are shown below. For soils with significant proportions of secondary soil types, a combination of two or more symbols may be used.

Macadam
簽
Clay
Mudstone

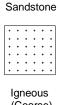
Siltstone

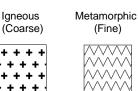
Concrete

Made Ground / Fill

Void or No Information

Conglomerate





(Fine)

Limestone

Notes:

See report text for full references of standards.

Updated October 2017

Project

Hammersmith Bridge, London

Project No. Carried out for

G0015-20 Pell Frischmann

Key

Sheet 2 of 3

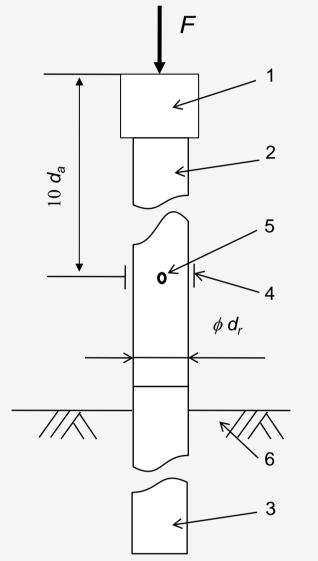
Key to Exploratory Hole Records

	SOCOTEC
NOTES	
1	Soils and rocks are described in accordance with BS EN ISO 14688-1:2002+A1:2013 and 14689-1:2003 respectively as amplified by BS 5930:2015.
2	For fine soils, consistency determined during description is reported for those strata where undisturbed samples are available. Where the logger considers that the sample may not be representative of the condition in situ, for whatever reason, the reported consistency is given in brackets. The reliability of the sample is indicated by Probably or Possibly as appropriate. Hence (Probably firm) indicates the logger is reasonably confident of the assessment, but (Possibly firm) means less certainty. Where the samples available are too disturbed to allow a reasonable assessment of the in situ condition, no consistency is given.
3	Evidence of the occurrence of very coarse particles (cobbles and boulders) is presented on the logs. However, because of their size in relation to the exploratory hole these records may not be fully representative of their size and frequency in the ground mass.
4	The declination of bedding and joints is given with respect to the normal to the core axis. Thus in a vertical borehole this will be the dip.
5	The assessment of SCR, RQD and Fracture Spacing excludes artificial fractures.
7	Observations of discernible groundwater entries during the advancement of the exploratory hole are given at the foot of the log and in the Legend column. The absence of a recorded groundwater entry should not, however, be interpreted as a groundwater level below the base of the borehole. Under certain conditions groundwater entry may not be observed, for instance, drilling with water flush or overwater, or boring at a rate faster than water can accumulate in the borehole. Similarly, where water entry observations do exist, groundwater may also be present at higher elevations in the ground than where recorded in the borehole. In addition, where appropriate, water levels in the hole at the time of recovering individual samples or carrying out in situ tests and at shift changes are given in the Records column.
7	The borehole logs present the results of Standard Penetration Tests recorded in the field without correction or interpretation. However, in certain ground conditions (eg high hydraulic head or where very coarse particles are present) some judgement may be necessary in considering whether the results are representative of in situ mass conditions.
REFERENCES	
1	BS EN ISO 14688-1:2002+A1 : 2013 : Geotechnical investigation and testing - Identification and classification of soil. Part 1 Identification and description. British Standards Institution
2	BS EN ISO 14689-1 : 2003 : Geotechnical investigation and testing - Identification and classification of rock. Part 1 Identification and description. British Standards Institution
3	BS EN ISO 22476-3:2005+A1 : 2011 : Geotechnical investigation and testing - Field testing. Part 3 Standard penetration test. British Standards Institution

BS 5930 : 2015 : Code of practice for ground investigations. British Standards Institution

Notes.
See report text for full references of standards.
Updated October 2017

SPT Calibration Report

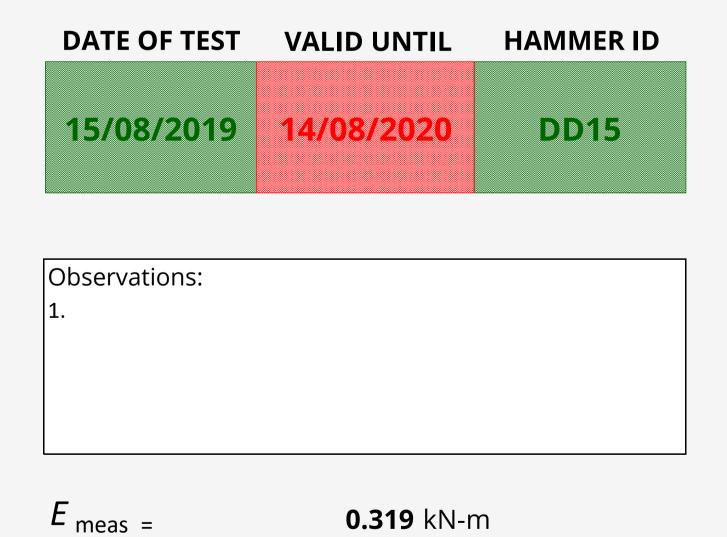

Hammer Energy Measurement Report

Type of Hammer SPT HAMMER **Test No** EQU2383 **GAP DRILLING** Client

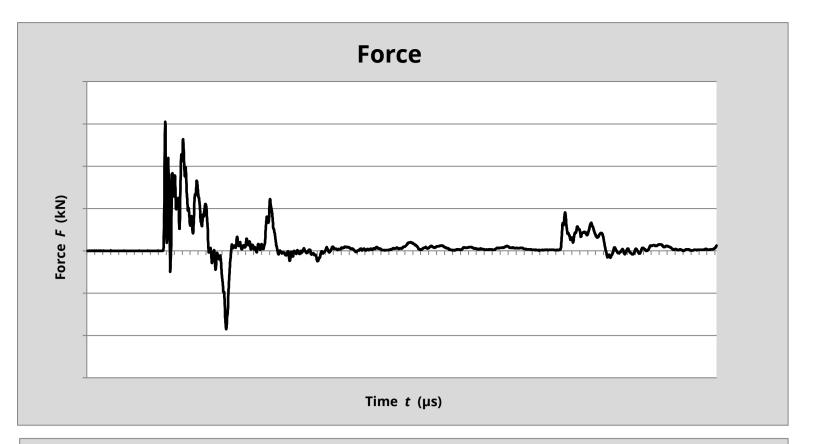
Test Depth (m) 4.70 **Mass of hammer** m = 63.5 kgFalling height h = 0.76m $m \times g \times h = 473J$ $E_{\text{theor}} =$

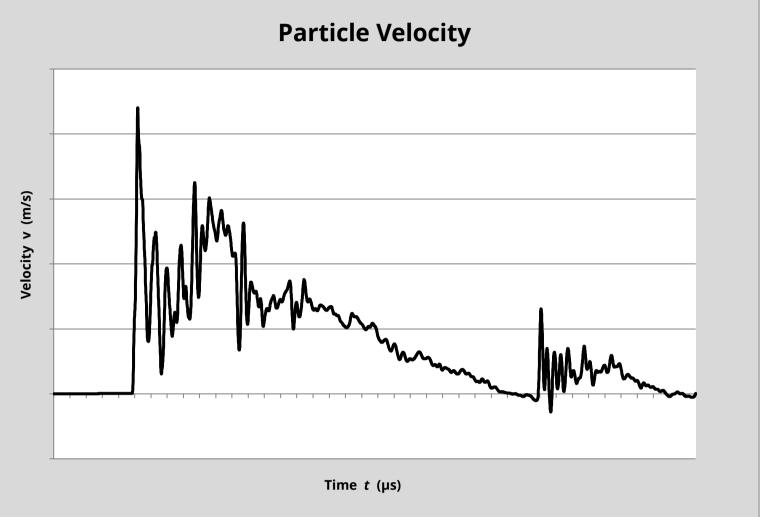
Characteristics of the instrumented rod

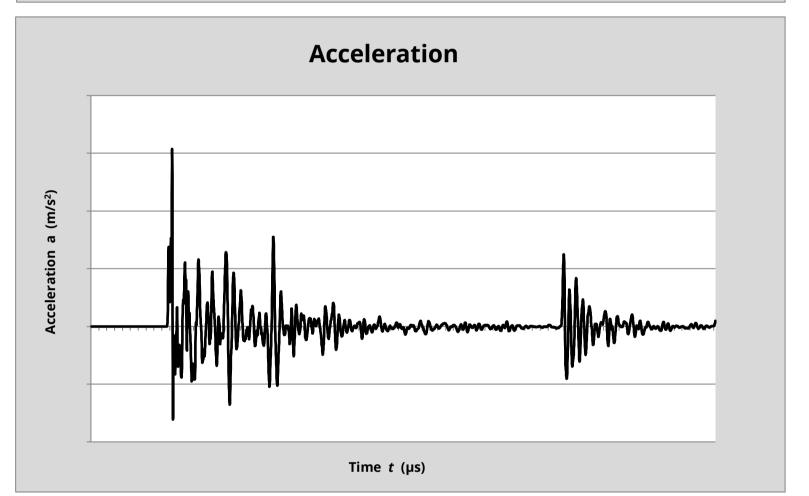
 $d_r = 0.052 \text{ m}$ Diameter Length of instrumented rod 0.558 m Area $A = 11.61 \text{ cm}^2$ **Modulus** $E_a = 206843 \text{ MPa}$

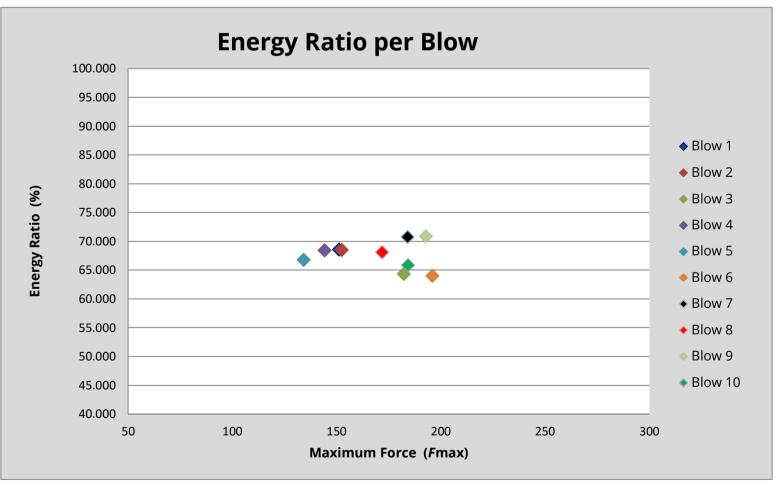


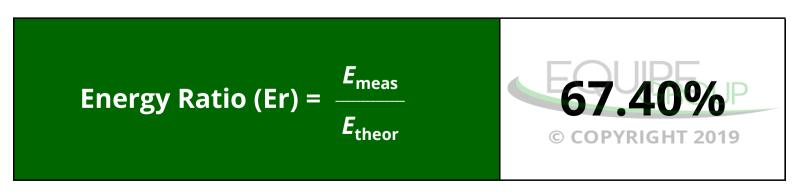
Key


- 1 Anvil
- 2 Part of instrumented rod
- 3 Drive Rod
- 4 Strain Gauge
- 5 Accelerometer
- 6 Ground
- *F* Force
- d_r Diameter of rod


Fig. B.1 and B.2


BS EN ISO 22476-3: 2005 + A1: 2011




0.473 kN-m

Equipe SPT Analyzer Operator

KS

Certificate prepared by

Certificate checked by

Certificate date

21/08/2019

Drilled GP Start quipment, Methods and Remarks Depth from Casing Depth Ground Level (m) 40.38 (mm) 200 DB .oaaed 12/05/2020 Coordinates (m) E 522920.27 and dug inspection pit to 1.2m followed by cable percussion boring to 40.38m. LB lational Grid N 177988.12 Checked End lo groundwater strikes recorded. Approved LWB 15/05/2020 Samples and Tests Strata Description Backfill Depth, Level Legend Depth Type & No. Records Detail Casing Wate Light orange brown slightly sandy silty fine to 1230 Dry 12/05/20 0.15 (0.15) +4.46 0.20 - 0.70 0.30 0.30 0.50 B 2 PID ES 1 PID ES 3 coarse angular to predominantly rounded flint 0.0 ppmv (1) (MADE GROUND) 0.50 With rare glass fragments (10-15mm) and 0.0 ppmv (2) Brown gravelly silty fine to coarse SAND with low 0.70 - 1.20 cobble content. Gravel is fine to coarse angular to rounded flint, brick and concrete. Cobbles are red (1.25)occasional red ceramic tile 1.00 1.00 1.20 - 1.65 1.20 PID ES 5 SPTS D 6 0.0 ppmv (3) fragments (10-20mm) brick. (MADE GROUND) 0.00 N=6 (1,1/1,2,1,2) Soft locally firm orange mottled brown sandy 0.0 ppmv (4) gravelly CLAY. Occasional glass, pottery and bivalve shell (oyster?) fragments. (MADE GROUND/REWORKED LONDON SPTS PID ES 8 D 9 B 10 PID ES 11 CLAY?) N=4 (1,0/1,1,1,1) 0.0 ppmv (5) 2.00 2.00 Soft grey brown slightly gravelly sandy SILT with rare red brick cobbles Gravel is fine to coarse 2.00 2.00 2.00 2.40 - 2.80 2.50 2.50 angular and subangular red brick. (MADE GROUND) 2.40 Becoming very (0.90) 0.0 ppmv (6) 2.90 3.00 - 3.45 3.00 - 3.40 Soft grey CLAY grading to loose grey slightly sandy SILT. +1.71 D 12 UT 13 2.90 6 blows Ō B 15 Ö (ALLUVIUM) 3.40 - 4.00 3.45 - 3.50 0 Ö SPTS N=8 (1/1,2,2,3) 3.50 4.00 - 4.45 Dry 0 Ō (2.80)О PID 0.0 ppmv (7) 0 ES 18 O 12/05/20 1700 4.50 5 00 - 5 45 SPTC N=9 (1.2/2.2.2.3) 0800 3.30 13/05/20 0 0 О Ö 5.70 - 6.20 B 20 5.70 -1.09 Medium dense multicoloured sandy to very sandy Ö GRAVEL. Sand is medium to coarse. Gravel is fine to coarse angular to rounded flint. RIVER TERRACE DEPOSITS) N=26 (3,5/7,8,5,6) 6.50 (2.40) 7.50 D 22 7.80 Becoming slightly clayey. 8.00 - 8.45 SPTS N=9 (3,4/2,2,2,3) 8.00 8.10-8.40 Firm Firm quickly becoming stiff to very stiff fissured locally thinly laminated grey CLAY with occasional light grey silt partings. Fissures very closely -3.49 D 23 B 24 8.10 - 8.50 slightly sandy. Sand is fine. 8.50 - 8.95 UT 58 25 blows spaced, tight.
(LONDON CLAY) 8.95 - 9.00 D 26 9.50 D 27

			<u> </u>	
Groundwater Entries Depth Related Remarks Hard Boring				
No. Depth Strike (m) Remarks	Depth Sealed (m)	Depths (m) Remarks 0.00 - 6.00 50mm standpipe installed. 0.00 - 1.50 50mm standpipe installed. 5.70 - 8.10 Water added to assist drilling.	Depths (m) Duration (mins) Tools used	
Notes: For explanation of symbols and abbreviations	Project Har	nmersmith Bridge	Borehole	

ee Key to Exploration of Synthous and abbreviations ee Key to Exploratory Hole Records. All depths and educed levels in metres. Stratum thickness given in rackets in depth column. © Copyright SOCOTEC UK Limited AGS

Project No. G0015-20 Carried out for Pell Frischmann

BH101

Drilled Start quipment, Methods and Remarks Depth from Casing Depth Ground Level to (m) 40.38 (mm) 200 D150 Hand dug inspection pit to 1.2m followed by cable percussion boring to 40.38m. No groundwater strikes recorded. DB Coordinates (m) 12/05/2020 E 522920.27 National Grid LB N 177988.12 Checked Approved LWB Samples and Tests Strata Description Depth, Level (Thickness) Backfill Legend Type & No. Records Detail Casing Wate Firm quickly becoming stiff to very stiff fissured locally thinly laminated grey CLAY with occasional light grey silt partings. Fissures very closely spaced, tight. 0.00 - 10.45 10.00 SPTS D 28 (LONDON CLAY) UT 59 40 blows 11.95 - 12.00 13.00 - 13.45 13.00 N=30 (4,4/6,7,8,9) 9.00 Dry 14.00 D 33 14.50 - 14.95 UT 60 40 blows 14.70-16.00 With casional lenses of fine grey sand. 14.95 - 15.00 D 34 (14.40) 15.50 D 35 N=30 (2,5/6,7,8,9) 9.00 Dry 17.50 - 17.95 UT 61 50 blows 19.00 - 19.45 19.00 N=34 (3,6/7,8,9,10) SPTS D 38 9.00 Dry Depth Related Remarks No. Depth Strike (m) Remarks Depth Sealed (m) Depths (m) Depths (m) Duration (mins) Tools used Remarks Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. Hammersmith Bridge Borehole Project **BH101** © Copyright SOCOTEC UK Limited AGS Project No. G0015-20

Carried out for

Drilled quipment, Methods and Remarks Depth from Casing Depth Ground Level (m) 40.38 (mm) 200 DB Coordinates (m) 12/05/2020 E 522920.27 and dug inspection pit to 1.2m followed by cable percussion boring to 40.38m. LB National Grid N 177988.12 Checked Approved LWB Samples and Tests Strata Description Depth, Level (Thickness) Backfill Legend Records Detail Casing Wate Firm quickly becoming stiff to very stiff fissured locally thinly laminated grey CLAY with occasional light grey silt partings. Fissures very closely spaced, tight. 20.50 - 20.90 UT 62 55 blows (LONDON CLAY) 20.90 - 20.95 D 40 22.00 - 22.45 N=34 (4,6/7,8,9,10) 13/05/20 9.00 1700 Dry 22.50 Rare iron pyrite nodule (15mm Very stiff fissured grey CLAY with occasional light grey silt partings. Fissures are very closely 14/05/20 9.00 spaced, tight, (LONDON CLAY) D 42 23.00 70 blows 23.50 - 23.90 UT 63 23.90 - 23.95 D 43 24.50 D 44 25.00 - 25.45 SPTS N=35 (4.5/6.9.9.11) 9 00 Drv D 46 26.40-26.60 Light 27.15 - 27.20 D 48 27.50 27.80 Rare iron pyrite nodule (10mm x 16mm). 28.00 - 28.45 28.00 N=46 (6,9/8,12,12,14) 9.00 Dry 29.00 D 50 29.50 - 29.95 UT 65 80 blows 29.95 - 30.00 D 51 Groundwater Entries Depth Related Remarks Depth Sealed (m) No. Depth Strike (m) Remarks Duration (mins) Tools used Depths (m) Remarks Depths (m) Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. Hammersmith Bridge Project Borehole **BH101** © Copyright SOCOTEC UK Limited AGS Project No. G0015-20

Carried out for

Sheet 4 of 5

Drilled quipment, Methods and Remarks Depth from Casing Depth Ground Level to (m) 40.38 (mm) 200 D150 Hand dug inspection pit to 1.2m followed by cable percussion boring to 40.38m. No groundwater strikes recorded. Coordinates (m) .oaaed 12/05/2020 E 522920.27 National Grid LB N 177988.12 Checked End Approved LWB 15/05/2020 Samples and Tests Strata Description Depth, Level (Thickness) Backfill Legend Type & No. Records Detail Casing Wate Very stiff fissured grey CLAY with occasional light grey silt partings. Fissures are very closely spaced, tight. (LONDON CLAY) 30.50 D 52 31.00 - 31.45 31.00 51 (6,8/11,11,13,16 for 70mm) 9.00 Dry (17.88) 80 blows 32.85 - 32.90 33.50 D 56 34.00 - 34.45 34.00 50 (7,9/11,13,13,13 for 70mm) 9.00 SPTS D 57 Dry 35.00 D 67 35.50 - 35.95 UT 68 80 blows 35.95 - 36.00 D 69 D 70 37.00 - 37.45 37.00 N=48 (5,7/9,12,12,15) Dry 37.00-37.30 Band oflight grey mudstone. 38.00 38.50 - 38.95 UT 73 80 blows 38.95 - 39.00 D 74 39.50 D 75 Depth Related Remarks Depth Sealed (m) No. Depth Strike (m) Remarks Depths (m) Depths (m) Duration (mins) Tools used Remarks Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. Hammersmith Bridge Borehole Project **BH101** © Copyright SOCOTEC UK Limited AGS Project No. G0015-20

Carried out for

		•							so	COTEC
Drilled GP	Start	Equipment, Methods and Rema	arks		Depth from to	Diameter	Casing Depth	Ground Level		4.61 mOD
Logged DB	12/05/2020	D150			(m) (m) 0.00 40.38	(mm) 200	(m) 9.00	Coordinates (m)	Е	522920.27
Checked LB	End	Hand dug inspection pit to 1.2m f No groundwater strikes recorded	ollowed by cable percu	ission boring to 40.38m.				National Grid	N	177988.12
Approved LWB	15/05/2020									
Samples and	Tests			Strata Description	n .					
			Date Time					Depth, Level	Legend	Backfill
Depth	Type & No		Casing Water		ain		Detail	(Thickness)		
40.00 - 40.38 40.00	SPTS D 76	50 (6,9/13,17,20 for 0mm)	9.00 Dry 14/05/20 1700	Very stiff fissured grey Cl grey silt partings. Fissure	LAY with occasional ligl	ht	=			
-			9.00 Dry	spaced, tight.	co are very diodery			40.38 -35.77		
_			15/05/20 0800 9.00 Dry	(LONDON CLAY) END OF EXPLO	DRATORY HOLE	-1	_	10.00		
F			0.00				_			
							_			
_							_			
F							=			
_							_			
Ē							_			
Ē							=			
-							_			
							_			
<u>-</u>							_			
_							_			
<u>-</u>							=			
_							_			
<u> </u>							_			
_							_			
_							=			
<u> </u>							_			
_ -							_			
- -							=			
_							_			
_							_			
							=			
<u> </u>							_			
_							=			
_							_			
_							_			
_							_			
_							_			
							=			
_							_			
							=			
_							=			
_							_			
_							_			
_ _							_			
_ _							_			
							_			
_							_			
_							=			
_							_			
_							_			
_							_			
_							_			
_							=			
_							_			
E							_			
<u>-</u> =							=			
_									<u> </u>	
Groundwater Entries				Depth Related Remarks				Hard Boring		
No. Depth Strike (r	n) Remarks		Depth Sealed (m)	Depths (m) Remarks				Depths (m)	Ouration (mins)	Tools used
Notes: For explanation	of symbols and	d abbreviations Project	Han	nmersmith Bridge				Borehole		
see Key to Exploratory reduced levels in metre brackets in depth colum	Hole Records. s. Stratum thick nn.	All depths and kness given in Project		15-20					3H101	
© Copy Scale 1:50	yright SOCOTE	Carried AGS Carried	out for Pell	Frischmann					Sheet 5 of 5	

Drilled quipment, Methods and Remarks Depth from Casing Depth Ground Level (m) 40.45 (mm) 200 SN .oaaed 04/05/2020 Coordinates (m) E 523072.73 and dug inspection pit to 1.2m followed by cable percussion boring to 40.45m LB lational Grid Checked End N 178148.02 Approved LWB 07/05/2020 Samples and Tests Strata Description Backfill Depth, Level Legend Type & No. Records Detail Casing Wate Grass over firm grey slightly gravelly sandy CLAY 0.10 (0.10) 04/05/20 080 Gravel is medium chert. 0.0 ppmv (1) (TOPSOIL) 0.30 0.30 - 0.70 ES 1 B 2 PID ES 3 Brown gravelly to very gravelly SAND with low to medium cobble content. Sand is fine to coarse. (0.60)0.0 ppmv (2) 0.50 0.50 Gravel is predominantly subangular to 0.70 +4.25 subrounded medium to coarse brick concrete 0.70 - 1.20 B 4 1.00 1.00 1.20 - 1.65 1.20 - 1.65 PID ES 5 SPTS D 6 0.0 ppmv (3) (MADE GROUND) Very loose grey sandy silty GRAVEL. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse brick, concrete and mortar with minor 0.00 N=3 (1,1/1,0,1,1) (1.20) glass and chert. (MADE GROUND) 1.90 Recovered as firm brown slightly gravelly locally sandy CLAY. Sand is fine to medium. Gravel is predominantly subrounded medium chert with SPTS PID ES 7 N=21 (1,2/3,6,6,6) 0.0 ppmv (4) 2.00 3.80 (0.40) 2.00 2.00 minor brick and charcoal(?) fragments.
(DISTURBED GROUND)
Medium dense to very dense brown and orangish brown SAND and GRAVEL. Sand is 2.00 - 2.45 0 O predominantly medium. Gravel is rounded to subangular medium to coarse chert/flint. SPTC PID ES 9 0 3.00 3.00 - 3.44 50 (3,6/11,15,15,9 for 2.80 (RIVER TERRACE DEPOSIT) 0 3.00 3.00 0.0 ppmv (5) Ō 3.00 - 3.50 B 10 (2.20)0 Ö SPTC 4.00 - 4.45 4.00 - 4.50 N=29 (5,4/6,7,8,8) 4.00 Dry 0 Ō О 4.50 - 5.00 B 12 4.50 +0.45 0 Medium dense brown slightly gravelly to gravelly SAND. Sand is predominantly medium. Gravel is angular to subrounded fine to coarse chert/flint. (RIVER TERRACE DEPOSIT) O (0.80)5 00 - 5 45 SPTS N=14 (2.4/5.3.3.3) 5.00 5.00 - 5.45 5.00 5.00 - 5.50 0.0 ppmv (6) 0 5.30 -0.35 Stiff becoming very stiff fissured brownish grey 5.50 - 5.95 UT 15 30 blows CLAY. Fissures are very closely spaced, tight, non (LONDON CLAY) 5.95 - 6.00 6.00 - 6.50 0.0 ppmv (7) 04/05/20 6.00 Dry N=18 (1,3/3,4,5,6) 8.00 D 20 9.00 - 9.45 UT 21 30 blows 9 45 - 9 50 D 22 10.00 At 10r Depth Related Remarks Hard Boring Groundwater Entries Depths (m) Depth Strike (m) Remarks Depth Sealed (m) Remarks Depths (m) Duration (mins) Tools used 0.00 - 5.30 0.00 - 1.50 2.00 - 4.50 50mm standpipe installed. 50mm standpipe installed. Water added to assist drilling. 4.50 Remained at 4.50 m after 20 minutes Notes: For explanation of symbols and abbreviations Project Hammersmith Bridge Borehole see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. **BH102** © Copyright SOCOTEC UK Limited AGS Project No G0015-20

Carried out for

Drilled quipment, Methods and Remarks Depth from Casing Depth Ground Level to (m) 40.45 (mm) 200 D150 Hand dug inspection pit to 1.2m followed by cable percussion boring to 40.45m No groundwater strikes recorded. Coordinates (m) E 523072.73 04/05/2020 National Grid LB N 178148.02 Checked End Approved LWB 07/05/2020 Samples and Tests Strata Description Depth, Level (Thickness) Backfill Legend Records Detail Casing Wate Stiff becoming very stiff fissured brownish grey CLAY. Fissures are very closely spaced, tight, non discoloured. (LONDON CLAY) 10.50 - 10.95 10.50 SPTS D 24 N=24 (3,4/4,5,7,8) 7.00 Dry 11.50 D 25 12.00 - 12.45 40 blows 12.45 - 12.50 13.00 13.50 Below 13.5m: becoming silty. 13.50 - 13.95 13.50 N=30 (3,4/6,7,8,9) 7.00 SPTS D 29 Drv 14.50 D 30 15.00 - 15.40 UT 31 60 blows 15.40 - 15.45 D 32 D 33 (21.70) 16.50 - 16.95 16.50 N=35 (3,5/7,8,9,11) 7.00 Dry 17.50 D 35 18.00 - 18.45 65 blows 18.45 - 18.50 D 37 19.00 D 38 19.50 - 19.95 19.50 SPTS D 39 N=38 (4,5/8,9,10,11) 7.00 Dry Depth Related Remarks Depth Sealed (m) No. Depth Strike (m) Remarks Depths (m) Depths (m) Duration (mins) Tools used Remarks Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. Hammersmith Bridge Borehole Project **BH102** © Copyright SOCOTEC UK Limited AGS Project No. G0015-20

Carried out for

Borel	1016	<u> </u>							S	ОСОТЕС
orilled GP ogged SN checked LB upproved LWB	04/05/2020	Equipment, Methods and Rem D150 Hand dug inspection pit to 1.2m No groundwater strikes recorded	followed by cable	e percu	Depth (n 0.0		Diameter (mm) (m) 200 7.00	Ground Level Coordinates (m National Grid		4.95 mOE E 523072.73 N 178148.02
Samples and	Tests		ID-4-		Strata Description			<u> </u>		
Depth	Type & No.	. Records	1	Time Water	Main		Detail	Depth, Level (Thickness)	Legend	Backfill
21.00 - 21.45 - 21.40 - 21.45 - 21.40 - 21.45 - 22.00 - 22.50 - 22.95	D 40 UT 41 D 42 D 43 SPTS D 44	70 blows N=45 (5,8/10,10,11,14)	7.00	Dry	Stiff becoming very stiff fissured CLAY. Fissures are very closely discoloured. (LONDON CLAY)			(IIII.Aiiess)		
- 23.50 - 24.00 - 24.45 _ 24.45 - 24.50	D 45 UT 46 D 47	70 blows								
- 25.00 - 25.50 - 25.94 25.50	D 48 SPTS D 49	50 (5,7/8,14,15,13 for 60mm)	05/05/20 7.00 06/05/20 7.00	1700 Dry 0800 Dry			25.10-25.40 - Moderately weak - variably dark grey - and brown - claystone			
- 26.50 - 27.00 - 27.40	D 50 UT 51	70 blows			Very stiff fissured grey to dark g fine sand on fissure surfaces or	rey silty CLAY with as lenses.	- - - - - - 1	- 27.00 -22.0	5	
	D 52				(LONDON CLAY)		-		× x - x - x - x - x - x - x - x - x	
- 28.50 - 28.95 28.50	SPTS D 54	N=42 (5,6/8,9,11,14)	7.00	Dry			-		× – × – × – × – × – × – × – × – × – × –	
- - 29.50 - -	D 55						- - - - - -	(5.00)	×x ×x ×x	
					·					
Groundwater Entries No. Depth Strike (r	n) Remarks		Depth Sealed	(m)	Depth Related Remarks Depths (m) Remarks 25.10 - 25.40 Chiselling technique	used to advance bor	ehole.	Hard Boring Depths (m) 25.10 - 25.40	Duration (mins) 15	Tools us
otes: For explanation see Key to Exploratory educed levels in metre rackets in depth colum © Copy Scale 1:50	Hole Records. A s. Stratum thick nn. yright SOCOTEO	all depths and ness given in CUK Limited AGS		G001	mersmith Bridge 15-20 Frischmann			Borehole	BH102 Sheet 3 of 5	

Borehole Log Drilled quipment, Methods and Remarks Depth from Casing Depth Ground Level to (m) 40.45 (mm) 200 D150 Hand dug inspection pit to 1.2m followed by cable percussion boring to 40.45m No groundwater strikes recorded. SN Coordinates (m) E 523072.73 04/05/2020 LB National Grid N 178148.02 Checked End Approved LWB 07/05/2020 Samples and Tests Strata Description Depth, Level (Thickness) Backfill Legend Records Detail Casing Wate Very stiff fissured grey to dark grey silty CLAY with fine sand on fissure surfaces or as lenses. (LONDON CLAY) 30.40 - 30.45 D 57 31.50 - 31.91 31.50 SPTS D 59 50 (6,10/13,15,16,6 for 30mm) 7.00 Very stiff dark grey CLAY locally grading to extremely weak CLAYSTONE. (LONDON CLAY) 32.00 33.00 - 33.10 33.10 - 33.20 80 blows 33.50 - 33.85 UT 63 70 blows 33.85 - 33.90 D 64 34.50 - 34.88 34.50 50 (7,10/13,16,21 for 0mm) 7.00 Dry 35.50 D 66 80 blows (8.45) 36.30 - 36.35 37.00 - 37.35 80 blows 37.35 - 37.40 37.40 - 37.76 37.40 D 70 SPTS D 71 7.00 Dry 50 (7,12/14,20,16 for 60mm) 38.50 D 72

see Key t reduced l	o Expl evels i	anation of symbols and abbreviations oratory Hole Records. All depths and n metres. Stratum thickness given in th column. © Copyright SOCOTEC UK Limited
Scale	1:50	17/07/2020 11:16:07

UT 73

D 74

39.50 - 39.85

39.85 - 39.90

No. Depth Strike (m) Remarks

nd	
in	_
ed	AGS
	_

Project

100 blows

Hammersmith Bridge

Depth Related Remarks

Remarks

Depths (m)

Project No. G0015-20 Carried out for Pell Frischmann

Depth Sealed (m)

Depths (m)

Borehole

Duration (mins) Tools used

BH102

Sheet 4 of 5

Drilled GP Start quipment, Methods and Remarks Depth from Casing Depth Ground Level to (m) 40.45 (mm) 200 D150 Hand dug inspection pit to 1.2m followed by cable percussion boring to 40.45m No groundwater strikes recorded. SN .ogged Coordinates (m) E 523072.73 04/05/2020 National Grid Checked LB N 178148.02 End Approved LWB 07/05/2020 Samples and Tests Strata Description Depth, Level (Thickness) Backfill Legend Records Detail Casing Wate 50 (25 for 60mm/16,13,15,6 for 20mm) Very stiff dark grey CLAY locally grading to extremely weak CLAYSTONE. (LONDON CLAY) SPTS D 75 07/05/20 7.00 1700 Dry 40.45 -35.50 END OF EXPLORATORY HOLE Depth Related Remarks No. Depth Strike (m) Remarks Depth Sealed (m) Duration (mins) Tools used Depths (m) Depths (m) Remarks Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column.

© Copyright SOCOTEC UK Limited Scale 1:50 17/07/2020 11:16:07 Hammersmith Bridge Borehole Project **BH102** Project No. G0015-20 Carried out for Pell Frischmann

Drilled GP Start quipment, Methods and Remarks Depth from Casing Depth Ground Level (m) 8.50 DB .oaaed 11/05/2020 Coordinates (m) E 522921.74 Hand excavated inspection pit to 1.2m then cable percussion boring to 8.5m. Borehole drilled as pre-drill for CPT101 - no samples or testing. LB lational Grid N 177990.36 Checked End Approved LWB 11/05/2020 Samples and Tests Strata Description Depth, Level Backfill Legend Records Detail Casing Wate 10 1" black ribbed plastic ducting, suspected cable Sandy, slightly silty fine and medium subrounded flint GRAVEL. Riverside path. (MADE GROUND) Pinkish grey sandy fine angular GRAVEL.
(MADE GROUND) Ö Greyish brown sandy gravelly CLAY with low cobble content. Gravel is fine to coarse angular to rounded flint and brick. Occasional fine rounded Ö chalk. Cobbles are red brick fragments. (MADE GROUND) О 0 (2.90) O 2.00-2.30 Band of 0 brown clayey fine and medium SAND. 0 0 Ö 3.00 +1.51 Soft brown mottled grey sandy SILT. Ö (ALLUVIUM) Ö 0 Ö 4.00 Becoming ver (2.00)0 О 0 Ö 5.00 -0 49 Brown and grey silty fine to coarse SAND. (RIVER TERRACE DEPOSITS) 0 О (1.00) 0 Ö -1.49 Multicoloured fine to coarse SAND and fine to coarse angular to rounded flint GRAVEL. (RIVER TERRACE DEPOSITS) o Ö 0 Ö (2.00)Ö О 0 7.80 Becoming 8.00 Ö -3.49 Firm locally soft brown mottled grey slightly sandy CLAY. (LONDON CLAY) (0.50)8.50 -3.99 END OF EXPLORATORY HOLE Groundwater Entries Depth Related Remarks Depth Sealed (m) No. Depth Strike (m) Remarks Depths (m) Remarks Depths (m) Duration (mins) Tools used Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. Project Hammersmith Bridge Borehole **CPT101** © Copyright SOCOTEC UK Limited AGS Project No. G0015-20 Carried out for Pell Frischmann

Drilled Start quipment, Methods and Remarks Depth from Casing Depth Ground Level (m) (mm) SNN .oaaed 07/05/2020 Coordinates (m) E 523073.39 land dug inspection pit followed by cable percussion drilling to 6m orehole drilled as pre-drill for CPT102 - no samples or testing. LB lational Grid Checked N 178154.08 Approved LWB 07/05/2020 Samples and Tests Strata Description Backfill Depth, Level Legend Records Detail Casing Wate Grass over firm grey slightly gravelly sandy CLAY 0.10 (0.10) Gravel is medium chert. (TOPSOIL) Brown gravelly to very gravelly SAND with low to medium cobble content. Sand is fine to coarse. (0.60)Ö Gravel is predominantly subangular to 0.70 +4 41 subrounded medium to coarse brick, concrete and mortar with minor chert. 0 (MADE GROUND) (MADE GROUND)

Very loose grey sandy GRAVEL. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse brick concrete mortar with minor glass and 0 (1.20) 0 chert. (MADE GROUND) O 1.90 Recovered as firm brown slightly gravelly locally sandy CLAY. Sand is fine to medium. Gravel is predominantly subrounded medium chert with (0.40) О predominantly sourced redurn crief with minor brick and charcoal(?) fragments.

(DISTURBED GROUND)

Brown slightly gravelly clayey fine to medium SAND. Gravel is angular fine chert.

(RIVER TERRACE DEPOSIT)

Brown fine to medium SAND. 0 (0.50)Ö +2.31 2.80 (RIVER TERRACE DEPOSIT) Ö (0.70) Ö 0 +1.61 3.50 Brown and orange brown sandy GRAVEL. Sand is medium to coarse. Gravel is rounded to Ö subangular fine to medium chert/flint. (RIVER TERRACE DEPOSIT) 0 О 4.50 At 4.5m: (2.10)0 Horizon of fine to coarse SAND. O 0 О 5.60 -0.49 0 Stiff greyish brown CLAY. (LONDON CLAY) (0.40)Ö 6.00 -0.89 END OF EXPLORATORY HOLE Groundwater Entries Depth Related Remarks No. Depth Strike (m) Remarks Depth Sealed (m) Depths (m) Remarks Depths (m) Duration (mins) Tools used Notes: For explanation of symbols and abbreviations Project Hammersmith Bridge Borehole see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. **CPT102** © Copyright SOCOTEC UK Limited 1:50 Project No. G0015-20 Carried out for Pell Frischmann Sheet 1 of 1

HAMMERSMITH BRIDGE

FACTUAL REPORT ON CONE PENETRATION TESTING

Report No M0012-20

July 2020

Issue No 1

Carried out for: Pell Frischmann Consulting Engineers Limited 5 Manchester Square London W1U 3PD

Unit 4 Gainsborough Trading Estate, Leamington Road, Southam, Warwickshire, CV 47 1RB Tel: +44 (0) 1926 819300

email: geo.southam@socotec.com

©2020 SOCOTEC UK Limited

Report No M0012-2020

July 2020

ISSUE No DATE	STATUS	PREPARED BY	CHECKED BY	APPROVED BY
		NAME and QUALIFICATIONS	NAME and QUALIFICATIONS	NAME and QUALIFICATIONS
1		lan Campbell BSc, BEng, ACSM, FGS	Peter Hepton BSc PhD	lan Campbell BSc, BEng, ACSM, FGS
	Final report	SIGNATURE	SIGNATURE	SIGNATURE
July 2020	-	IRCeff	Assopa	IRCeff

This Report has been prepared by SOCOTEC UK Limited ("SOCOTEC") with all reasonable skill and care, within the terms and conditions of the contract between SOCOTEC and the Client ("Contract") and within the limitations of the resources devoted to it by agreement with the Client.

This Report shall not be used for engineering or contractual purposes unless the Report status is 'Final' and signed by the author, checker and the approver for and on behalf of SOCOTEC.

Whilst every effort has been made to ensure the accuracy of the data supplied and any analysis interpretation derived from it, the possibility exists of variations in the ground and groundwater conditions around and between the exploratory positions. SOCOTEC shall not be liable for any use of the Report for any purpose other than that for which it was originally prepared. No liability can be accepted for any such variations in these conditions. Furthermore, any recommendations are specific to the development as detailed in this Report and no liability will be accepted should they be used for the design of alternative schemes without prior consultant with SOCOTEC.

This Report is confidential between the Client and SOCOTEC. Any reliance upon the Report is subject to the Contract terms and conditions.

SOCOTEC accepts no responsibility whatsoever to third parties to whom this document, or any part thereof, is made known. Any such party relies upon the Report at their own risk. The Contracts (Rights of Third Parties) Act 1999 does not apply to this Report nor the Contract and the provisions of the said Act are hereby excluded.

Unless specifically assigned or transferred within the terms and conditions of the Contract, SOCOTEC asserts and retains all Copyright and other Intellectual Property Rights in and over the Report and its contents. The Report may not be copied or reproduced, in whole or in part, without the written authorisation from SOCOTEC.

SOCOTEC UK Limited was formerly known as Environmental Scientifics Group Limited. The Certificate of Incorporation on Change of Name was filed on 16 October 2017.

CONTENTS

		Page			
1	INTRODUCTION				
2	CONE PENETRATION TESTING				
	2.1 General	1 2			
3	REFERENCES	3			

APPENDIX A DRAWINGS
APPENDIX B CONE PENETRATION TEST RECORDS

1 INTRODUCTION

SOCOTEC UK Limited was commissioned in February 2020 by Pell Frischmann Consulting Engineers Limited (PFCE), to carry out a ground investigation for the construction of a temporary pedestrian footbridge during the refurbishment of Hammersmith Bridge, London, see Site Location Plan in Appendix A. The investigation was required to obtain geotechnical and geoenvironmental information. The scope of the investigation was specified by PFCE and included two cone penetration tests (CPT) one of which was cancelled due to access limitations on site

Records of the main ground investigation works carried out by SOCOTEC are presented in SOCOTEC Report No. G0015-20 (2020). This report presents the factual records of the CPT work, carried out on 20 May 2020, together with an interpretation of the soils penetrated. The information is also presented as digital data as defined in AGS (2017).

2 CONE PENETRATION TESTING

2.1 General

One CPT was carried out from the base of a pre-drilled cable percussion borehole to a maximum depth of 16.84 m, using an electric piezocone operated from a wheeled CPT unit. The test location was selected, set out and surveyed by PFCE to National Grid and Ordnance Datum. The coordinates and reduced level for the test location is shown on the CPT log.

Testing was carried out in accordance with Part 9 of BS 1377 (1990) and BS EN ISO 22476-1 (2012). The serial number of the cone used is indicated on the test plot. The calibration certificate is included in Appendix B and provides details of the manufacturer, cone dimensions, capacity and geometry.

Any opinions and interpretations presented are outside the scope of SOCOTEC's UKAS accreditation for cone penetration testing.

2.2 CPT Data Processing

Test control and data acquisition was carried out using CPTask, a proprietary software supplied by Geomil Equipment BV of Holland. The measured cone end resistance, sleeve friction, dynamic porewater pressure, and inclination were recorded at 1 cm intervals of penetration.

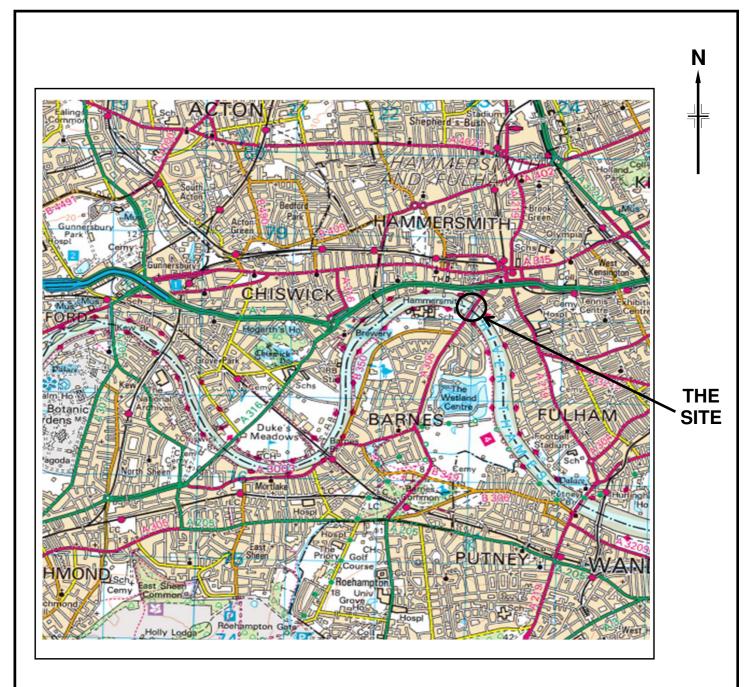
Interpretation of the CPT data was carried out using an in-house data reduction spreadsheet. The interpretation follows the recommendations of Lunne et al (1997) to derive, where appropriate: friction ratio, pore pressure ratio, undrained shear strength (minimum and maximum range presented using typical cone factors of 20 and 12 respectively), relative density, angle of friction and soil type. The soil classification uses the soil behaviour type chart of Robertson (1990), see KeyCPT. A nominal groundwater level of 3.30 m has been assumed for the data interpretation, based on the groundwater level recorded during the field works.

Explanation of the terms used and derivations of the cone and soil parameters are given in the Key, see KeyCPT. The data are presented graphically as plots relative to depth below ground level on the CPT logs in Appendix B. The stratum descriptions shown are derived using the interpreted soil classification in conjunction with the site borehole data, together with strength and relative density terms related to the CPT data, as indicated in the Key.

3 REFERENCES

- AGS: 2017: Electronic transfer of geotechnical and geoenvironmental data (Edition 4.0.4). Association of Geotechnical and Geoenvironmental Specialists.
- BS 1377 : 1990 : Methods of test for soils for civil engineering purposes. British Standards Institution.
- BS EN ISO 22476-1 : 2012 : Geotechnical investigation and testing Field testing Part 1 : Cone penetration tests. British Standards Institution
- Lunne T, Robertson PK and Powell JJM: 1997: Cone Penetration Testing in Geotechnical Practice.

 Blackie Academic & Professional.
- Robertson P K: 1990: Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1), 151-8.



APPENDIX A DRAWINGS

Site Location Plan	A1
Site Plan	A2

Site Location Plan

Reproduced from the 1992 Ordnance Survey 1:50 000 scale Landranger map No 270 by permission of Ordnance Survey on behalf of The Controller of Her Majesty's Stationery Office, a Crown copyright, SOCOTEC UK Limited. All rights reserved. Licence Number 100006060

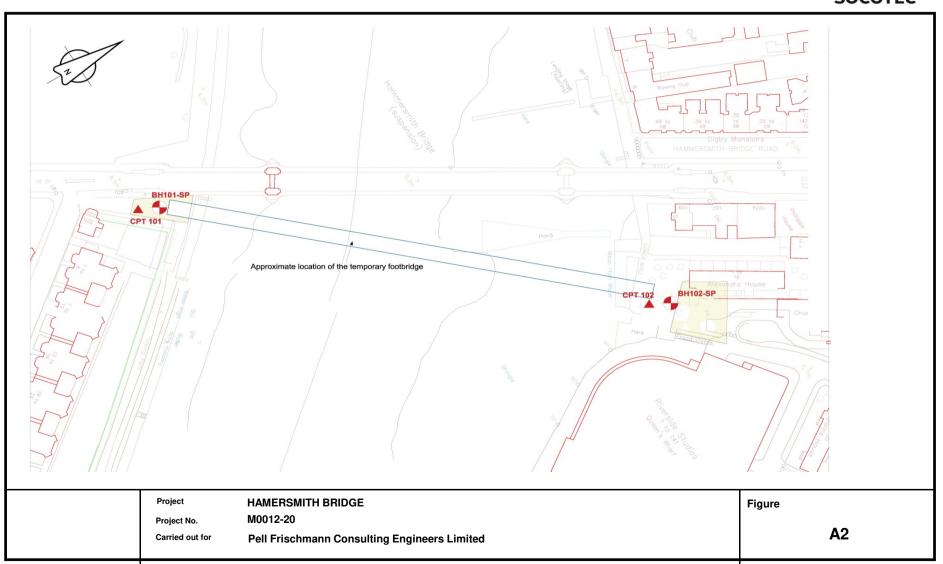
Notes: Scale 1:50 000

Project No.

Carried out for

HAMMERSMITH BRIDGE

M0012-20


Pell Frischmann Consulting Engineers Limited

Figure

A1

SOCOTEC

Borehole Location Plan

APPENDIX B CONE PENETRATION TEST RECORDS

Key to Cone Penetration Test Records Cone Calibration Certificate Cone Penetration Test Logs

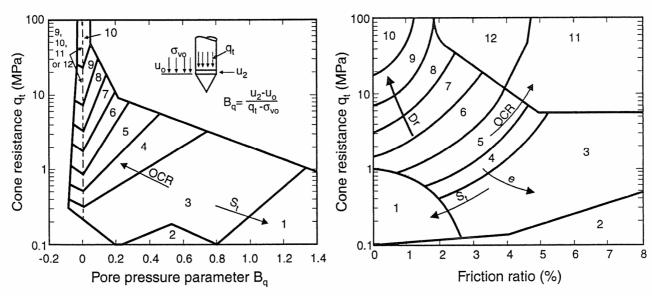
Key CPT Cone S15-CFIP.1619 CPT102

Key to Cone Penetration Test Records

Parameter	Unit	Description	Equation								
Measured pa	rameters										
q _c	MPa	Cone resistance	Measured parameter								
fs	MPa	Sleeve friction	Measured parameter								
I	degrees	Inclination	Measured parameter								
u	MPa	Dynamic pore pressure (Piezocone only)	Measured parameter. Denoted as u ₁ and u ₂ for por pressure filter locations on cone face and cone shoulde respectively.								
-	m, s	Penetration depth and corresponding time	Measured parameters								
Derived cond	e paramete	rs									
R _f	%	Friction ratio	f _s / q _c . 100 %								
q _t	MPa	Corrected cone resistance (Piezocone only)	$q_c + (1 - a) \cdot u_2$ where $a =$ area ratio of cone = A_n/A_c $A_n = cross \ sectional \ areas \ of \ cone \ tip \ shadow $ $A_c = projected \ area \ of \ cone \ tip$								
ft	MPa	Corrected sleeve friction (Piezocone only)	$(f_s-(u_2.\ A_{sb}-u_3.\ A_{st}))\ /\ A_s$ where b = area ratio of friction sleev $A_{sb}\ and\ A_{st}\ are\ bottom\ and\ top\ cross sectional\ areas\ of\ friction\ sleeve$								
qе	MPa	Effective cone resistance (Piezocone only)	$q_t - u_2$								
q _n	MPa	Net cone resistance $(\text{Piezocone or using } q_t = q_c)$	$q_t - \sigma_{vo} \qquad \qquad \text{where } \sigma_{vo} = \text{vertical total stress}$								
R _t '	%	Corrected friction ratio (Piezocone only)	f _t / q _t . 100 %								
Δυ	MPa	Excess pore pressure (Piezocone only)	$u - u_0$ where $u_0 =$ equilibrium pore water pressure								
B_q	-	Pore pressure ratio (Piezocone only)	$(u - u_0) / (q_t - \sigma_{vo}) = \Delta u/q_n$								
-	-	Dynamic pore pressure ratio (Piezocone only)	u/q _c								
Qt	-	Normalised cone resistance $(\mbox{Piezocone or using } q_t = q_c)$	$(q_t - \sigma_{vo}) / \sigma'_{vo} = q_n / \sigma'_{vo}$ where σ'_{vo} = vertical effective stress								
Fr	%	Normalised local friction $ (\text{Piezocone or using } q_t = q_c) $	$f_s / (q_t - \sigma_{vo}) = f_s / q_n . 100 \%$								

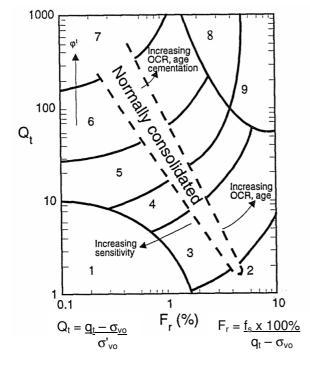
Notes:	Project	HAMMERSMITH BRIDGE	Figure
	Project No.	M0012-20	Key CPT
	Carried out for	Pell Frischmann Consulting Engineers Limited	

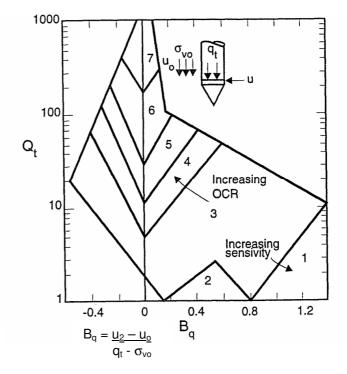
Key to Cone Penetration Test Records



Parameter		Description		Remarks							
S _u	Un	drained Shear	Interpretation for fine soils only	- soil types 3 and 4.							
Su(min) and Su(max)	Str	ength (Clays)	Based on net cone resistance (corrected where pore pressure data available) and empirical cone factor								
()			$= (q_c - \sigma_{vo}) / N_k$								
			Plots of minimum and maximum strength presented using N_{k} of 20 and 12.								
D _r	Re	lative Density	Interpretation for coarse soils o	nly – soil types 5, 6 and 7.							
RD			After Baldi et al (1986) for moderately compressible, unaged, uncemented, silica sand								
			= (1 / C_2) . Ln (q_c / C_0 (σ')^ C_1)								
			For NC sands : $C_0 = 157$, $C_1 =$	0.55, $C_2 = 2.41$, $\sigma' = \sigma'_{vo}$							
			For OC sands : $C_0 = 181$, $C_1 =$ and mean effective stress = σ'_n								
ф	Inte	ernal Friction	Interpretation for coarse soils o	nly – soil types 5, 6 and 7.							
IFA	An	gle	After Robertson and Campanella (1983) for uncemented, moderately incompressible, predominately silica sands								
			= Arctan (0.105 + 0.16 . Ln (qc	/ o' _{vo}))							
N ₆₀	Eq	uivalent	$= (q_c/p_a)/8.5.(1-l_c/4.6))$								
	Pe	andard netration Test PT) N value	p _a – reference stress of 100 kPa								
Soil Descript	ion										
Soil Type		Classification a	, , ,	malised cone resistance, normalised friction ratio a							
Undrained shea strength description	ır	•	Descriptive term	Strength, kPa							
			Very soft	<20							
			Soft	20 to 40							
			Firm Stiff	40 to 75 75 to 150							
			Very stiff	>150							
Relative density description			Descriptive term	Cone resistance (q _c), MPa							
			Very loose	<2							
			Loose	2 to 4							
			Medium dense	4 to 12							
			Dense	12 to 20							

Notes:	Project	HAMMERSMITH BRIDGE	Figure
	Project No. Carried out for	M0012-20 Pell Frischmann Consulting Engineers Limited	Key CPT


Key to Cone Penetration Test Records



KEY TO SOIL BEHAVIOUR TYPES - after Robertson et al (1986)

ZONE	SOIL BEHAVIOUR TYPE	ZONE	SOIL BEHAVIOUR TYPE	ZONE	SOIL BEHAVIOUR TYPE
1	Sensitive fine grained	5	Clayey silt to silty clay	9	Sand
2	Organic material	6	Sandy silt to clayey silt	10	Gravelly sand to sand
3	Clay	7	Silty sand to sandy silt	11	Very stiff fine grained*
4	Silty clay to clay	8	Sand to silty sand	12	Sand to clayey sand*

KEY TO SOIL BEHAVIOUR TYPES - after Robertson (1990)

ZONE	SOIL BEHAVIOUR TYPE	ZONE	SOIL BEHAVIOUR TYPE	ZONE	SOIL BEHAVIOUR TYPE
1	Sensitive fine grained	4	Silt mixtures: clayey silt to silty clay	7	Gravelly sand to sand
2	Organic soils – peats	5	Sand mixtures: silty sand to sandy silt	8	Very stiff sand to clayey sand
3	Clays: clay to silty clay	6	Sands: clean sand to silty sand	9	Very stiff fine grained

Notes:	Project	HAMMERSMITH BRIDGE	Figure
	Project No. Carried out for	M0012-20 Pell Frischmann Consulting Engineers Limited	Key CPT

Rijkstraatweg 22F 2171 AL Sassenheim The Netherlands

T +31 71 301 9251

E info@eijkelkamp-geopoint.com

1 eijkelkamp-geopoint.com

Cone Calibration Certificate

Certificate:

Instrument Type:

Model:

Serial number:

Calibration date:

Client:

Calibrated by:

Calibration instruments

Manufacturer:

HBM certificate no.:

Calibration conditions

Ambient temperature: Atmospheric pressure:

Cone specifications Cone base area:

Load tip resistance (nom.): Friction sleeve area: Load tip + local friction (nom.):

Load friction sleeve (nom.): Load pore pressure (nom.):

Inclination (nom.): Temperature compensation (all channels):

Maximum overload capacity (all channels):

Cone area ratio (a):

Max. Inaccuracy, relative to measurement value:

GS-1619-008

Electric Subtraction Cone

S15-CFIIP

1619

20-04-2020

Insitu

W.Volgering

Hottinger Baldwin Messtechnik GmbH

49046

19.0 ٥С

1021 mBar

1500 mm2 50 kN

22500 mm2 50 kN 22.5 kN

MPa 2

+/- 20 0...+40 ٥С

100 %

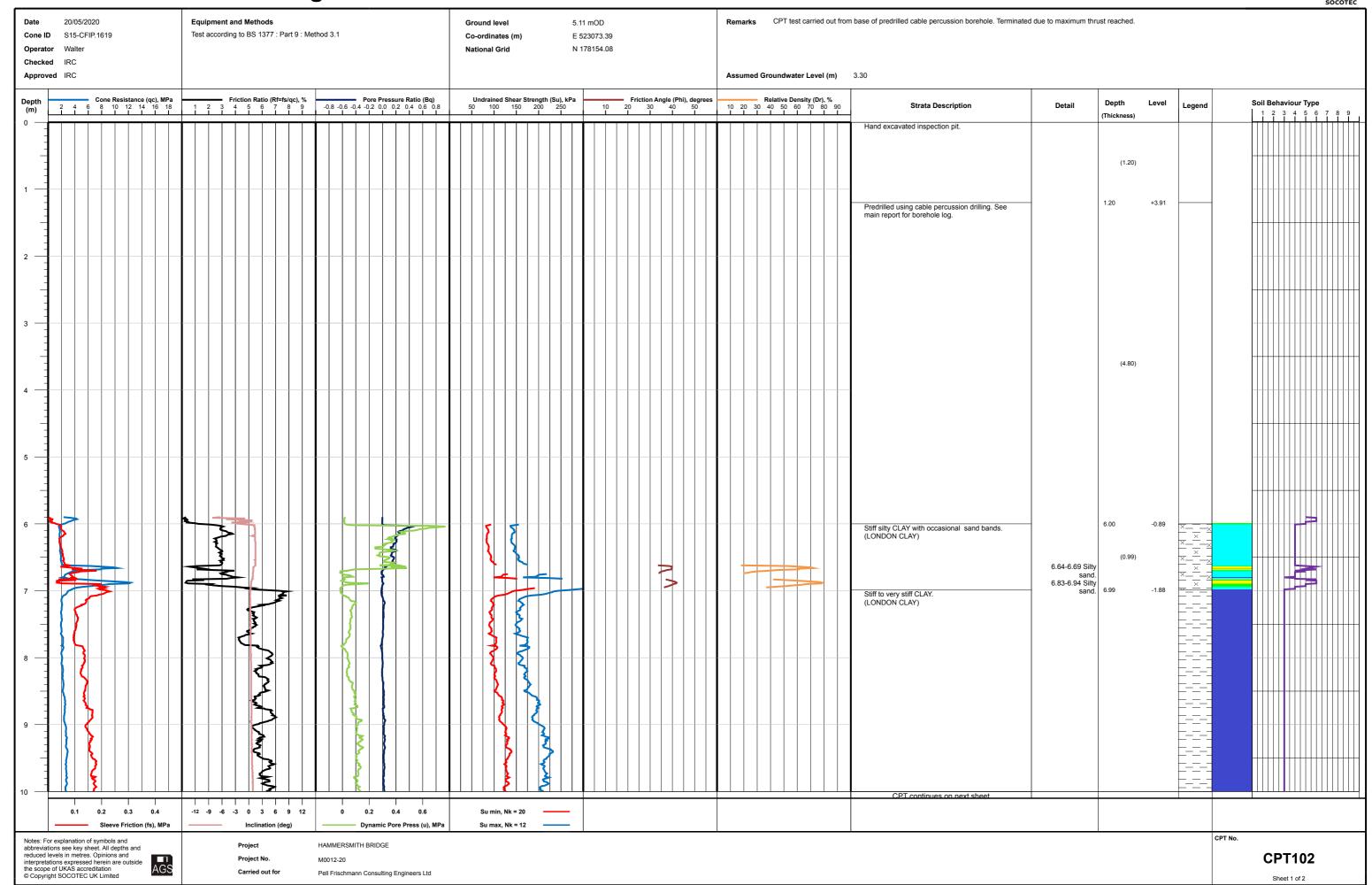
0.79

1.0 %

	Ti	ip:	Slee	eve:	Pore P	ressure:	Inclinometer:			
	qc in kN	mV	fs in kN	mV	MPa	mV	Degrees	X (mV)	Y (mV)	
Zero points:		0243		0214		0221				
	0	0	0	0	0	0	0	2425	2327	
	5	0305	5 0313		0.4	1487	-20	0405	0250	
	10	0607	10	0624	0.8 2972		20	4412	4357	
	15	0912	15	0935	1.2	4456		2		
	20	1219	20	1251	1.6	5930				
	25	1524	25	1564	2.0	7400				
	30	1828	.30	1877	1	. 1	-			
	35	2130	35	2186		Max. eror,	abs. qc:	35 kPa		
*	40	2432	40	2497		Max. error	, abs. fs:	2 kPa		
	45	2735	45	2807		Max. error	, abs. u2:	10 kPa		
	50	3038	50	3117		Max. error	, abs. I:	1 °		

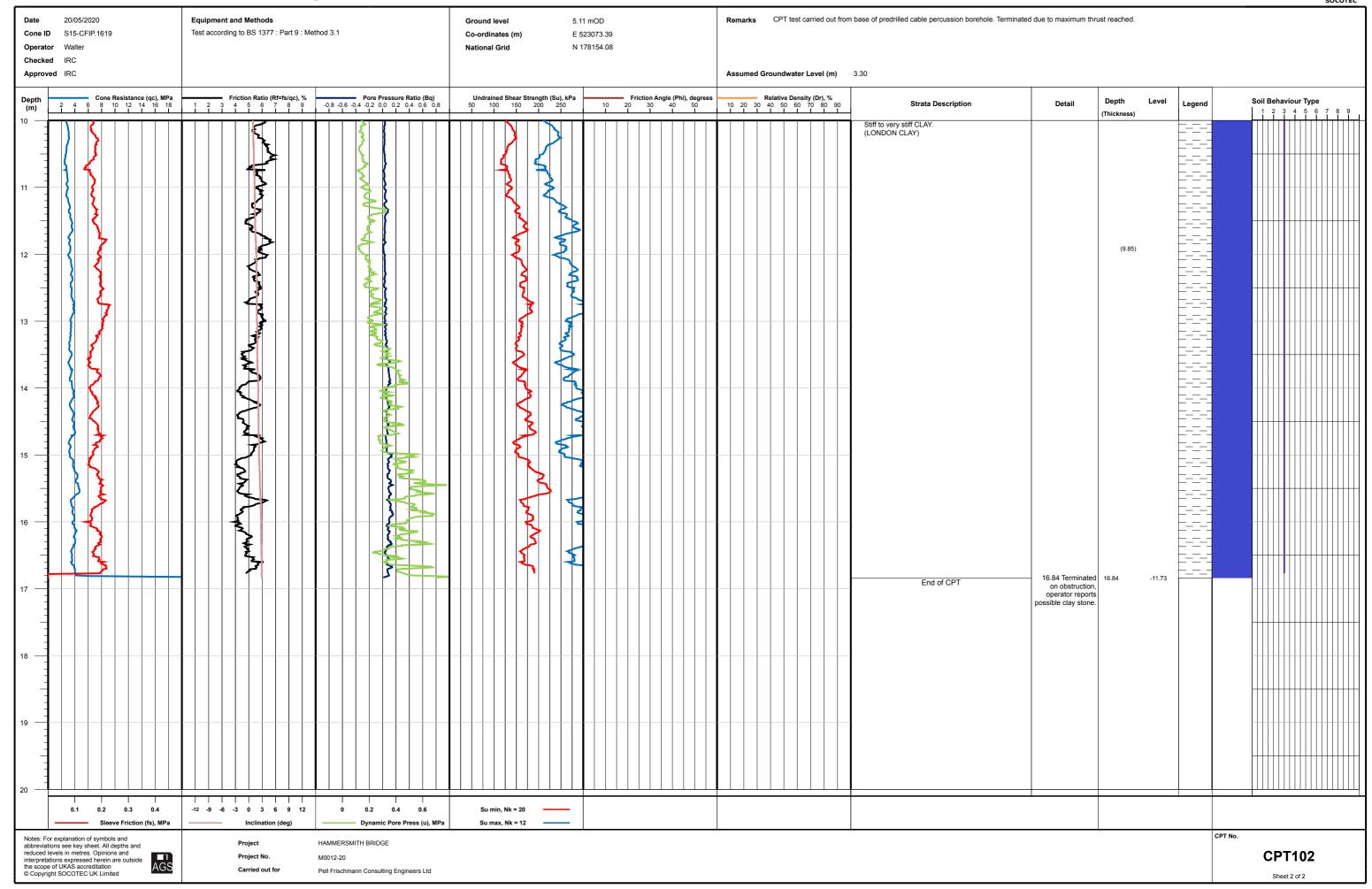
This calibration is compliant with GeoPoint Systems internal quality system, internal calibration procedures and meets the requirements of NEN2649, NEN-EN-ISO 22476-1, NORSOK G-001, ISSMFE and ASTM using calibration equipment traceable to (Inter-) National Standards.

Approved by: M.van Es


20-04-2020

Eijkelkamp GeoPoint SoilSolutions V.A.T. NO. NL 8584.21.422.B01 Trade Reg. Arnhem no. 70686149

IBAN NL43 RABO 0326 7904 38 BIC: RABONL2U


Cone Penetration Test Log

Cone Penetration Test Log

APPENDIX C INSTRUMENTATION AND MONITORING

Monitoring Installation Details
Groundwater Monitoring
Gas Monitoring

Table C1

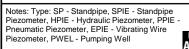

Table C2

Table C3/1 to C3/3

Groundwater Monitoring Installations Summary

Ι.									
	Instrument Reference	Instrument Type (See Notes)	Installation Date, dd/mm/yyyy	Pipe Diameter, mm	Instrument Base, mbgl	Response Zone Range, mbgl	Pipe Top Details	Headworks	Remarks
	BH101 (1)	SP			3.00 to 6.00	Flush cover	Gas tap		
	BH101 (2)	SP	SP 15/05/2020 50 1.50 1.00 to 1.50		Flush cover	Gas tap			
	BH102 (1)	SP	07/05/2020	50	5.30	2.30 to 5.30	Flush cover	Gas tap	
	BH102 (2)	SP	07/05/2020	50	1.50	0.70 to 1.50	Flush cover	Gas tap	

Groundwater Monitoring

Instrument Reference	Instrument Type	Instrument Base, mbgl	Date Time dd/mm/yyyy hh:mm:ss	Groundwater depth, mbgl	Comments
BH101 (1)	SP	6.00	20/05/2020 15:30:00	2.45	
BH101 (1)	SP	6.00	17/06/2020 11:05:00	3.40	
BH101 (2)	SP	1.50	20/05/2020 15:30:00	Dry	
BH101 (2)	SP	1.50	17/06/2020 11:21:00	Dry	
BH102 (1)	SP	5.30	20/05/2020 15:00:00	4.93	
BH102 (1)	SP	5.30	03/06/2020 11:00:00	5.11	
BH102 (1)	SP	5.30	17/06/2020 12:38:00	5.02	
BH102 (2)	SP	1.50	20/05/2020 15:00:00	Dry	
BH102 (2)	SP	1.50	03/06/2020 11:20:00	Dry	
BH102 (2)	SP	1.50	17/06/2020 12:31:00	Dry	

Gas Monitoring Record

Project No		G0015-20		Project Hammersmith Bridge							Sheet No							
Date		03/06/2020		1					State of Gro	und	Dry							C3/1
		-		-					Wind		Light							
Operator		Daniel Brock	man						Wind Direct									
		1.140\/;							Cloud Cove		Cloudy							
Equipment	Usea	LMSXI							Precipitation	ı	Slight							
					<u>'</u>			_		tion Limits								
Borehole ID	Inst ID	Depth of Installation	Time of Reading	Barometric Pressure	Air temp	Reading Depth	Dip to Base of	Depth to Groundwater	Differential Pressure	FlowRate	CH4	CH4	O2	CO2	со	H2S	Nitrogen	Remarks
	sul	(m BGL)	hh:mm:ss	(mbars)	(°C)	(mBGL)	Pipe	(m BGL)	(Pa)	(l/hr)	(% vol)	(% LEL)	(% vol)	(% vol)	(ppm)	(ppm)	(%vol)	
BH102	1	5.30	11:00:00	1005			5.37	5.11	0.0	0.10								
BH102	1	5.30	11:02:00								1.6		19.8	0.0	0.0	0.0	78.0	
BH102	1	5.30	11:04:00								3.0		20.0	0.1	0.0	0.0	78.0	
BH102	1	5.30	11:06:00								3.8		20.9	0.2	0.0	0.0	78.0	
BH102	1	5.30	11:10:00								4.0		21.0	0.4	0.0	0.0	78.0	
BH102	1	5.30	11:12:00								4.0		21.0	0.6	0.0	0.0	78.1	
BH102	2	1.50	11:20:00	1005			1.58	Dry	0.0	-0.10								
BH102	2	1.50	11:22:00								0.1		21.6	0.0	0.0	0.0	78.0	
BH102	2	1.50	11:24:00								0.1		21.0	0.0	0.0	0.0	78.1	
BH102	2	1.50	11:26:00								0.1		21.0	0.3	0.0	0.0	78.1	
BH102	2	1.50	11:28:00								0.1		21.0	0.6	0.0	0.0	78.3	
BH102	2	1.50	11:30:00								0.1		20.9	0.7	0.0	0.0	78.4	

Gas Monitoring Record

Project No		G0015-20		Project Hammersmith Bridge								Sheet No						
Date		17/06/2020]					State of Gro	und	Damp							C3/2
				-					Wind		Calm							
Operator		M Wise							Wind Direct		-							
									Cloud Cove		None							
Equipment	Used	LMSXi							Precipitation	1	None]
									Detec	tion Limits]
		Depth of	Time of	Barometric	Air temp	Reading	Dip to	Depth to	Differential	FlowRate	CH4	CH4	O2	CO2	со	H2S	Nitrogen	
Borehole ID	Inst ID	Installation (m BGL)	Reading hh:mm:ss	Pressure (mbars)	(°C)	Depth (mBGL)	Base of Pipe	Groundwater (m BGL)	Pressure (Pa)	(l/hr)	(% vol)	(% LEL)	(% vol)	(% vol)	(ppm)	(ppm)	(%vol)	Remarks
BH101	1	6.00	11:05:00	1009	21	0.00	6.15	3.40	26.0	27.81	0.1		20.1	0.4	0.0	0.0	78.5	
BH101	1	6.00	11:05:30	1009	21	0.00	0.13	3.40	-417.0	-48.81	0.0		20.1	1.1	0.0	0.0	78.3	
BH101	1	6.00	11:06:00						-312.0	-38.61	0.0		20.1	1.3	0.0	0.0	78.5	
BH101	1	6.00	11:06:30						84.0	7.41	0.0		19.8	1.5	0.0	0.0	78.6	
BH101	1	6.00	11:07:00						91.0	22.91	0.0		12.7	1.5	0.0	0.0	78.7	
BH101	1	6.00	11:07:30						45.0	13.11	0.0		19.5	1.6	0.0	0.0	78.8	
BH101	1	6.00	11:08:00						37.0	11.01	0.0		19.3	1.8	0.0	0.0	78.8	
BH101	1	6.00	11:09:00								0.0		19.1	2.0	0.0	0.0	78.8	
BH101	1	6.00	11:10:00								0.0		19.0	2.1	0.0	0.0	78.8	
BH101	2	1.50	11:21:00	1009	21	0.00	1.55	Dry	0.0	0.01	0.0		19.4	1.7	0.0	0.0	78.8	
BH101	2	1.50	11:21:30						0.0	0.01	0.0		19.4	1.6	0.0	0.0	78.9	
BH101	2	1.50	11:22:00								0.0		19.6	1.6	0.0	0.0	78.8	
BH101	2	1.50	11:22:30								0.0		19.8	1.5	0.0	0.0	78.6	
BH101	2	1.50	11:23:00								0.0		19.9	1.4	0.0	0.0	78.5	
BH101	2	1.50	11:23:30								0.0		20.1	1.3	0.0	0.0	78.4	
BH101	2	1.50	11:24:00								0.0		20.1	1.2	0.0	0.0	78.5	
BH101	2	1.50	11:25:00								0.0		19.7	1.4	0.0	0.0	78.8	
BH101	2	1.50	11:26:00								0.0		19.6	1.5	0.0	0.0	78.9	

Gas Monitoring Record

Project No		G0015-20 Project Hammersmith Bridge								Sheet No								
Date										C3/3								
				-					Wind		Calm							
Operator		M Wise							Wind Direct		-							
l									Cloud Cove		Cloudy							
Equipment	Used	LMSXI							Precipitation	1	None]
		l							Detec	tion Limits]
	□	Depth of	Time of	Barometric	Air temp	Reading	Dip to	Depth to	Differential	FlowRate	CH4	CH4	O2	CO2	СО	H2S	Nitrogen	
Borehole ID	Inst ID	Installation (m BGL)	Reading hh:mm:ss	Pressure (mbars)	(°C)	Depth (mBGL)	Base of Pipe	Groundwater (m BGL)	Pressure (Pa)	(l/hr)	(% vol)	(% LEL)	(% vol)	(% vol)	(ppm)	(ppm)	(%vol)	Remarks
BH102	1	5.30	12:38:00	1009	22	0.00	5.42	5.02	0.0	0.01	0.0		21.2	1.0	0.0	0.0	77.9	
BH102	1	5.30	12:38:30	1003		0.00	0.42	0.02	0.0	0.01	0.0		20.7	0.8	0.0	0.0	78.4	
BH102	1	5.30	12:39:00						0.0	0.01	0.0		20.7	0.8	0.0	0.0	78.4	
BH102	1	5.30	12:39:30					 	0.0	0.0.	0.0		20.7	0.8	0.0	0.0	78.4	
BH102	1	5.30	12:40:00								0.0		20.7	0.8	0.0	0.0	78.4	
BH102	1	5.30	12:40:30								0.0		20.7	0.8	0.0	0.0	78.4	
BH102	1	5.30	12:41:00								0.0		20.7	0.8	0.0	0.0	78.4	
BH102	1	5.30	12:42:00								0.0		20.7	0.8	0.0	0.0	78.4	
BH102	1	5.30	12:43:00															
BH102	2	1.50	12:31:00	1009	22	0.00	1.5	Dry	0.0	-0.11	0.0		20.3	1.4	0.0	0.0	78.2	
BH102	2	1.50	12:31:30						0.0	0.01	0.0		20.2	1.4	0.0	0.0	78.3	
BH102	2	1.50	12:32:00						0.0	0.01	0.0		20.3	1.3	0.0	0.0	78.2	
BH102	2	1.50	12:32:30						0.0	0.01	0.0		20.5	1.2	0.0	0.0	78.2	
BH102	2	1.50	12:33:00						0.0	0.01	0.0		20.5	1.2	0.0	0.0	78.2	
BH102	2	1.50	12:33:30						0.0	0.01	0.0		20.6	1.2	0.0	0.0	78.1	
BH102	2	1.50	12:34:00						0.0	0.01	0.0		20.6	1.1	0.0	0.0	78.2	
BH102	2	1.50	12:35:00								0.0		20.7	1.0	0.0	0.0	78.2	
BH102	2	1.50	12:36:00								0.0		20.7	1.0	0.0	0.0	78.2	
<u> </u>											<u> </u>							

APPENDIX D GEOTECHNICAL LABORATORY TEST RESULTS

Index Properties – Summary of Results	INDX
Particle Size Distribution Analyses	PSD (8No.)
Unconsolidated Undrained Triaxial Compression Tests – Summary of Results	UUSUM
Small Shearbox Test	SSB (1No.)
Hand Vane	HV
Test Report – Chemical Tests	20-09676

INDEX PROPERTIES - SUMMARY OF RESULTS

		Samp	le			р	p_{d}	W	< 425	W_L	W _P	l _P	<i>p</i> ₅	Remarks
Hole No.	No.	Dept	h (m)	type	Soil Description				μm sieve					
	110.	from	to			Mg/	/m3	%	%	%	%		Mg/m3	
BH101	16	4.00	4.00	D	Brown slightly sandy SILT			39			NP			
BH101	19	5.00	5.50	В	Grey slightly gravelly slightly clayey SAND			20			NP			
BH101	25	8.50	8.50	D	Brown slightly sandy slightly gravelly CLAY			26	84 s	63 a	25	38		
BH101	27	9.50	9.50	D	Brown slightly sandy CLAY			28	100	74 a	26	48		
BH101	32	13.00	13.00	D	Brown slightly sandy CLAY			27	100 n	76 a	27	49		
BH101	37	17.00	17.00	D	Grey slightly sandy CLAY			25	100 n	66 a	28	38		
BH101	43	23.90	23.95	D	Grey slightly sandy CLAY			27	100 n	68 a	30	38		
BH101	51	29.95	30.00	D	Grey slightly sandy CLAY			24	100 n	59 a	23	36		
BH101	67	35.00	35.00	D	Grey slightly sandy CLAY			24	100	64 a	27	37		
BH102	8	2.00	2.45	D	Brown slightly gravelly clayey SAND			15	67 s	28 b	16	12		
BH102	17	6.00	6.50	В	Brown slightly sandy CLAY			35	100	69 a	28	41		
BH102	23	10.00	10.00	D	Brown slightly sandy CLAY			28	100	76 a	31	45		
BH102	30	14.50	14.50	D	Grey slightly sandy CLAY			25	100	69 a	26	43		
BH102	42	21.40	21.45	D	Grey slightly sandy CLAY			23	100 n	65 a	28	37		
BH102	52	27.40	27.40	D	Grey slightly sandy CLAY			22	100 n	63 a	26	37		
BH102	60	32.50	32.50	D	Grey slightly sandy CLAY			23	100 n	64 a	25	39		
	<u> </u>	1	1	ı		I	ı		1				1	

All above tests carried out to BS1377: 1990 unless annotated otherwise. See Remarks for further details

WL Liquid limit <425um preparation Key: p bulk density, linear WP Plastic limit ps particle density pd dry density a 4 point cone test NP non - plastic n from natural soil -g = gas jar b 1 point cone test s sieved specimen

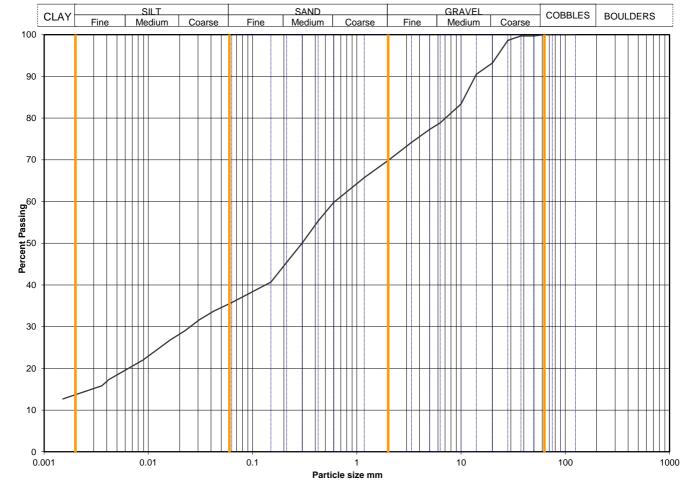
IP Plasticity Index w moisture content h removed by hand * test carried out to BS EN ISO 17892

QA Ref SLR 1 Rev 2.94 Mar 17	
	SOCOTEC

Project No	G0015-20	Figure
Project Name	Hammersmith Bridge	INDX

-p = small pyknometer

Printed: 19/06/2020 12:11


The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

 Sample Details:
 Hole No
 BH101

 Sample Depth (m BGL)
 0.70 - 1.20

 Sample Type and No
 B4

 Specimen Ref
 Specimen Ref

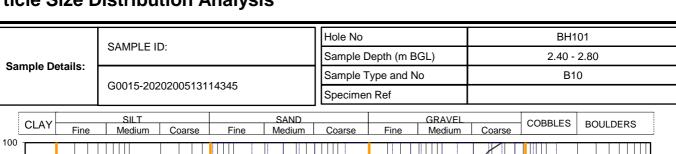
Sievin	a	Sedimentation			
Particle Size	%	Particle Size	%		
mm	Passing	mm	Passing		
125	100	0.0630	36		
90	100	0.0422	34		
75	100	0.0307	32		
63	100	0.0224	29		
50	100	0.0163	27		
37.5	100	0.0089	22		
28	99	0.0042	17		
20	93	0.0036	16		
14	91	0.0015	13		
10	83				
6.3	79				
5.0	77				
3.35	74				
2.00	70				
1.18	66	Particle density	, Ma/m2		
0.600	60	Particle density, Mg/m3			
0.425	55	2.65 assumed			
0.300	50	Dry mass of s	ample ka		
0.212	45	Dry mass of sample, kg			
0.150	41	3.7			
0.063	36				

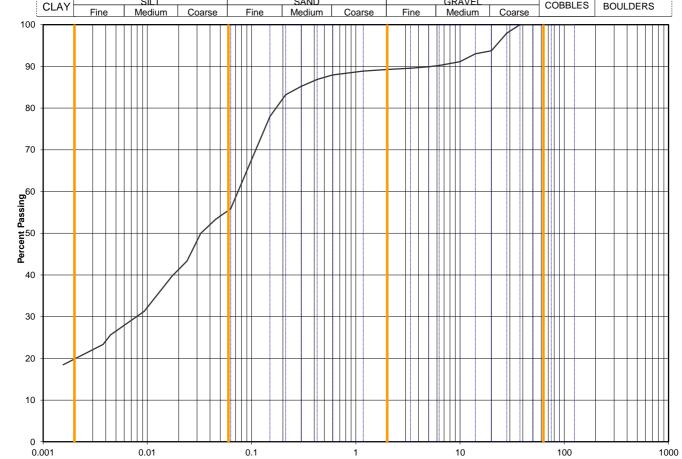
Soil description	Dark brown very gravelly silty SAND				
Preparation / Pretreatment	Sieve: pre dried, Hydro: as BS1377				
Remarks					
Comple		Whole	*<60mm		
Sample Proportions	Cobbles / boulders	0.0	0.0		
Fioportions	Gravel	30.1	30.1		
	Sand	34.1	34.1		
*<60mm values to aid	Silt	22.1	22.1		
description only	Clay	Clay 13.7 13.7			

Uniformity Coefficient	D60 / D10	Not applicable
Uniformity Coefficient	D60 / D10	Not applicable

	BS 1377 : Part 2 : 1990				
Test Method	Sieving 9.2 wet sie				
	Sedimentation	9.5 hydrometer			

QA Ref SLR 2,9 Rev 2.21 Jul 17


Project No G0015-20
Project Name Hammersr


Hammersmith Bridge

Figure

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

Particle size mm

Sievin		Sediment	otion
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	56
90	100	0.0451	53
75	100	0.0326	50
63	100	0.0240	43
50	100	0.0173	40
37.5	100	0.0093	31
28	98	0.0044	26
20	94	0.0038	23
14	93	0.0016	18
10	91		
6.3	90		
5.0	90		
3.35	90		
2.00	89		
1.18	89	Partiala danait	, Ma/m2
0.600	88	Particle density, Mg/m3	
0.425	87	2.65 a	ssumed
0.300	85	Dry mass of or	ample ka
0.212	83	 Dry mass of sample, 	
0.150	78	1.9	
0.063	56	1.9	

Soil description	Grey oxodising to brown slightly sandy slightly gravelly organic CLAY				
Preparation / Pretreatment	Sieve: pre dried, Hydro: as BS1377				
Remarks					
Camania		Whole	*<60mm		
Sample Proportions	Cobbles / boulders	0.0	0.0		
Froportions	Gravel	10.8	10.8		
	Sand	33.4	33.4		
*<60mm values to aid	Silt	36.0	36.0		
description only	Clay	19.8	19.8		

Thot applicable	Uniformity Coefficient	D60 / D10	Not applicable
-----------------	------------------------	-----------	----------------

	BS 1377 : Part 2 : 1990						
Test Method	Sieving	9.2 wet sieve					
	Sedimentation	9.5 hydrometer					

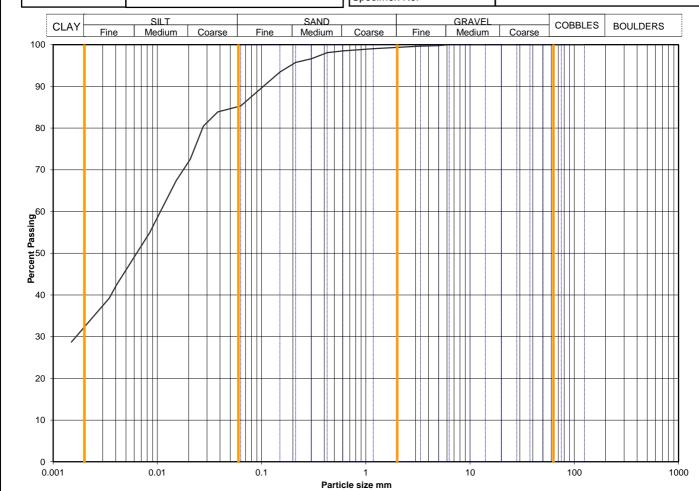
QA Ref SLR 2,9 Rev 2.21 Jul 17

Project No G0015-20

Project Name Hammersmith Bridge

Figure

PSD


The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

 SAMPLE ID:
 Hole No
 BH101

 Sample Depth (m BGL)
 3.00 - 3.40

 Sample Type and No
 B15

 Specimen Ref
 Specimen Ref

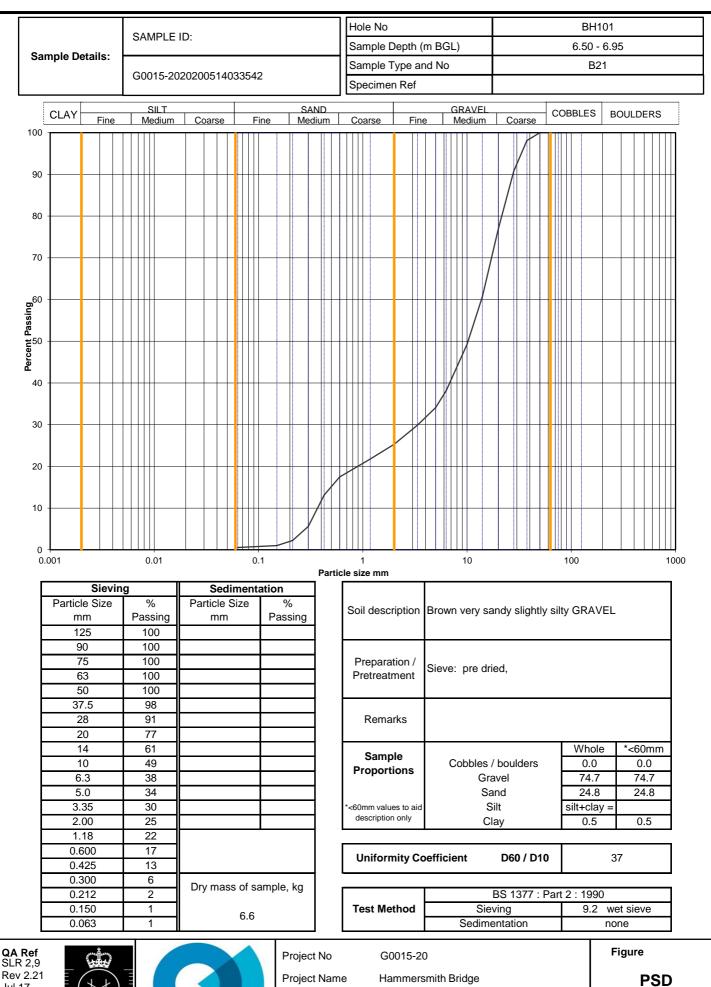
		1	
Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	85
90	100	0.0380	84
75	100	0.0276	80
63	100	0.0207	73
50	100	0.0152	67
37.5	100	0.0084	55
28	100	0.0041	42
20	100	0.0035	39
14	100	0.0015	29
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	99		
1.18	99	Partiala danait	, Ma/m2
0.600	99	Particle density	y, ivig/iiis
0.425	98	2.65 a	ssumed
0.300	97	Dry mass of sa	ample ka
0.212	96	DIY IIIass OI Sa	апріе, ку
0.150	93	0.5	
0.063	85	0.5	

Soil description	Grey oxodising to brown slightly sandy slightly gravelly organic CLAY.								
Preparation / Pretreatment	Sieve: pre dried, Hydro: as BS1377								
Remarks									
Commis		Whole	*<60mm						
Sample Proportions	Cobbles / boulders	0.0	0.0						
Froportions	Gravel	0.7	0.7						
	Sand	14.0	14.0						
*<60mm values to aid	Silt	53.0	53.0						
description only	Clay	32.3	32.3						

Uniformity Coefficient D60 / D10 Not applicable

	BS 1377 : Part 2 : 1990					
Test Method	Sieving	9.2 wet sieve				
	Sedimentation	9.5 hydrometer				

QA Ref SLR 2,9 Rev 2.21 Jul 17

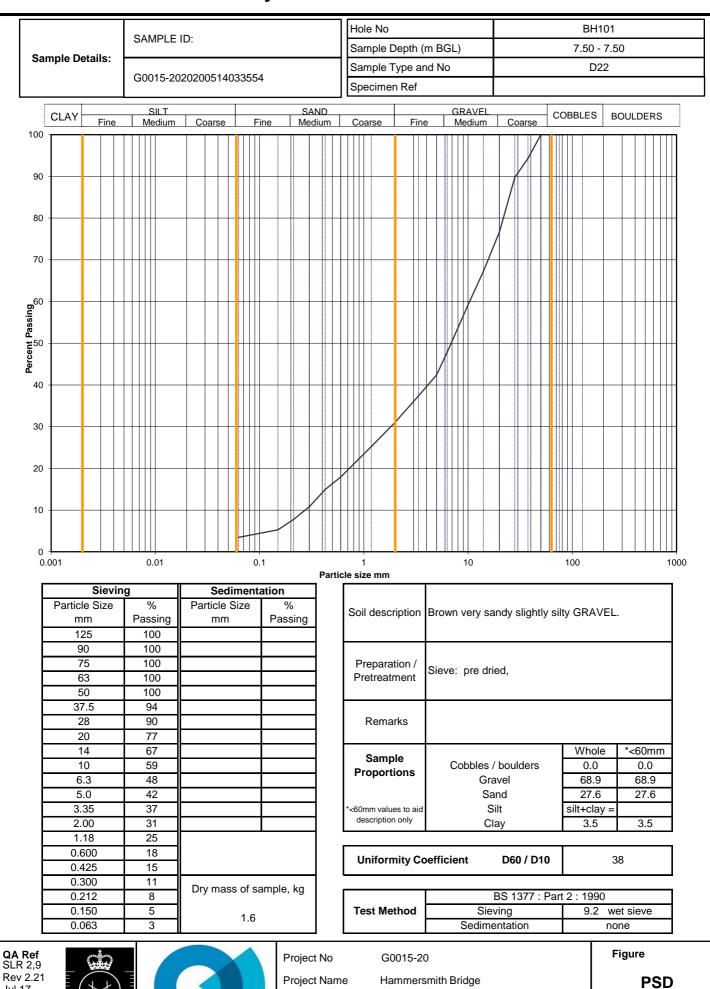

Project No G0015-20

Project Name Hammersmith Bridge

Figure

PSD

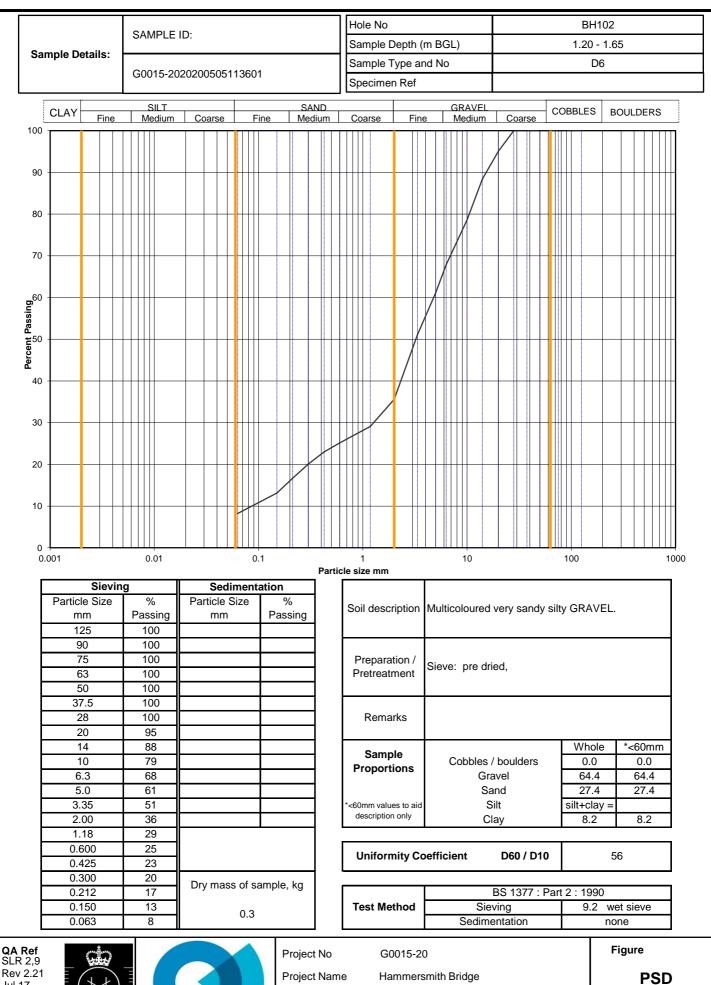
The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited



Jul 17

SO	CC	T	FC

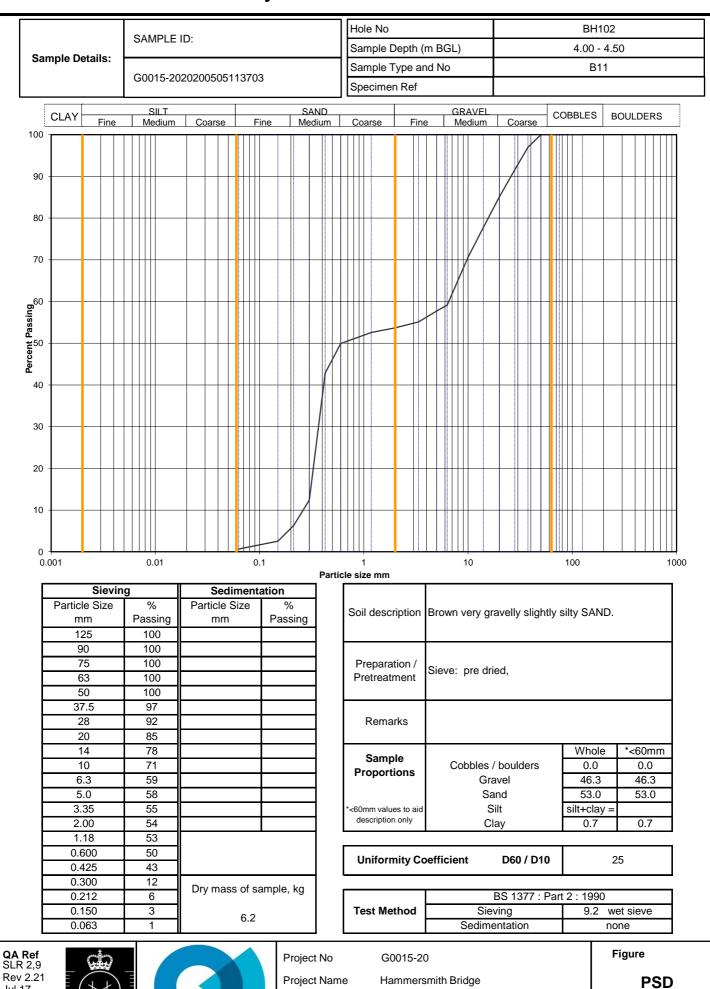
The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited



Jul 17

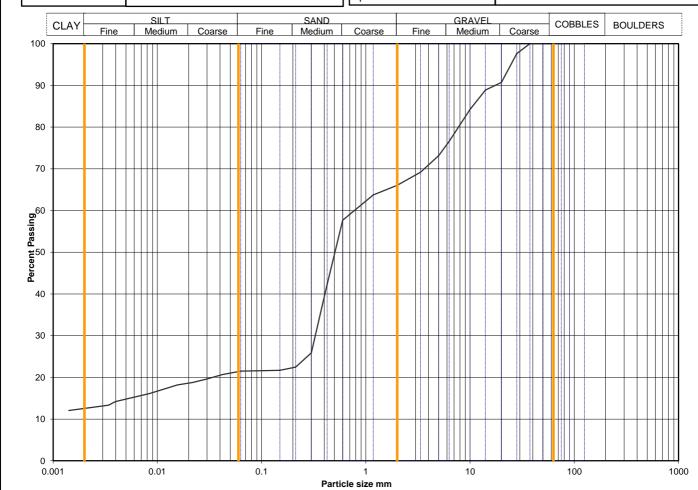
Hammersmith Bridge

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited



Jul 17

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited


Jul 17

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

Hole No BH102 SAMPLE ID: Sample Depth (m BGL) 5.00 - 5.50 Sample Details: Sample Type and No B14 G0015-2020200505113749 Specimen Ref

		1	
Sievin	g	Sediment	
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	21
90	100	0.0418	21
75	100	0.0303	20
63	100	0.0218	19
50	100	0.0156	18
37.5	100	0.0084	16
28	98	0.0040	14
20	91	0.0034	13
14	89	0.0014	12
10	84		
6.3	77		
5.0	73		
3.35	69		
2.00	66		
1.18	64	Partiala danait	, Ma/m2
0.600	58	Particle density	y, ivig/iiio
0.425	42	2.65 a	ssumed
0.300	26	Dry mass of sa	ample ka
0.212	22	DIY IIIass OI Sa	ampie, kg
0.150	22	4.0	
0.063	21	4.0	

Soil description	Brownish grey slightly gravelly sandy CLAY.							
Preparation / Pretreatment	Sieve: pre dried, Hydro: as BS1377							
Remarks								
Commis		Whole	*<60mm					
Sample Proportions	Cobbles / boulders	0.0	0.0					
Froportions	Gravel	33.9	33.9					
	Sand	44.6	44.6					
*<60mm values to aid	Silt	8.9	8.9					
description only	Clay	12.6	12.6					

Uniformity Coefficient D60 / D10 Not applicable

	BS 1377 : Part 2 : 1990						
Test Method	Sieving	9.2 wet sieve					
	Sedimentation	9.5 hydrometer					

QA Ref SLR 2,9 Rev 2.21 Jul 17

Project No G0015-20 Project Name

Hammersmith Bridge

Figure

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TESTS WITHOUT MEASUREMENT OF PORE PRESSURE - SUMMARY OF RESULTS

	Sample					Density		w Test		ia. ó3		At failure / end of stage			Membrane		
Hole No.	No.	Depth (m)		type	Soil Description		dry		type			Axial strain	ó1 - ó3	си	М О	Thickness	Remarks
		from	to	.,,,,		Mg	/m3	%		mm	kPa	%	kPa	kPa	D E	mm	
BH101	13	3.00	3.45	UT	Firm greyish brown slightly sandy CLAY	1.54	0.88	74	UU	102	55	6.5	62	31	В	0.3	
BH101	58	8.50	8.95	UT	Stiff - very stiff thinly laminated greyish brown slightly sandy CLAY	2	1.57	27	UU	103.8	160	3.2	288	144	В	0.3	
BH101	59	11.50	11.95	UT	Very stiff thinly laminated greyisg brown slightly sandy CLAY	1.98	1.53	30	UU	103.4	215	3.5	167	84	В	0.3	
BH101	60	14.50	14.95	UT	Very stiff thinly laminated greyish brown slightly sandy CLAY	2.02	1.61	25	UU	103.3	278	5	387	194	В	0.3	
BH101	62	20.50	20.90	UT	Very stiff thinly laminated greyish brown slightly sandy CLAY	2.03	1.6	27	UU	103.3	390	3.1	319	160	В	0.3	
BH101	64	26.70	27.15	UT	Very stiff thinly laminated greyish brown slightly sandy CLAY	2	1.59	25	UU	104.4	500	3.5	481	240	В	0.3	
BH101	66	32.50	32.85	UT	Very stiff thinly laminated greyish brown slightly sandy CLAY	2.05	1.65	24	UU	103.4	615	3.8	438	219	В	0.3	
BH102	15	5.50	5.95	UT	Stiff greyish brown slightly sandy CLAY	1.99	1.53	30	UU	103.5	100	14.3	183	91	С	0.3	
BH102	21	9.00	9.45	UT	Very stiff thinly laminated greyish brown slightly sandy CLAY	1.99	1.54	29	UU	103.3	170	16.4	200	100	В	0.3	
BH102	26	12.00	12.45	UT	Very stiff thinly laminated greyish brown slightly sandy CLAY	2.01	1.58	27	UU	103.1	228	2	168	84	В	0.3	
BH102	36	18.00	18.45	UT	Very stiff thinly laminated greyish brown slightly sandy CLAY	1.98	1.55	28	UU	104	342	3.2	284	142	В	0.3	
BH102	46	24.00	24.45	UT	Very stiff thinly laminated greyish brown slightly sandy CLAY	2.02	1.6	26	UU	103.9	455	3.2	308	154	В	0.3	
BH102	63	33.50	33.85	UT	Very stiff thinly laminated greyish brown slightly sandy CLAY	2.04	1.64	24	UU	103.9	630	5.1	398	199	В	0.3	
General notes:	Tests c	arried ou	t in acco	rdance	e with BS1377: Part 7: 1990, clause 8 for sing	le stag	e, clau	se 9 for	multista	ige tests	. Spec	imens	nomina	ally 2:1	heig	ht diameter	ratio and tested

Tests carried out in accordance with BS1377: Part 7: 1990, clause 8 for single stage, clause 9 for multistage tests. Specimens nominally 2:1 height diameter ratio and tested at a rate of strain of 2%/minute, unless annotated otherwise. Latex rubber membrane used and membrane correction applied in accordance with BS1377-7 8.5.1.4 unless stated.

ó3

Tested from base depth and in a vertical orientation unless stated otherwise.

UU - single stage test (may be in sets of specimens) Legend

suffix R - remoulded or recompacted

ó1 - ó3 deviator stress

cell pressure

plastic brittle

Printed: 19/06/2020 12:15

UUM - multistage test on a single specimen В undrained shear strength С compound

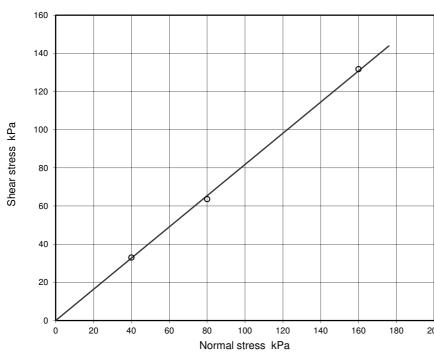
QA Ref SLR 2 Rev 2.8 Apr 19

Figure G0015-20 Project No **UUSUM Project Name** Hammersmith Bridge

Mode of failure

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2019 SOCOTEC UK Limited

Determination of shear strength by direct shear (Small shearbox apparatus) (BS1377: Part 7: clause 4: 1990) Project No G0015-20 Sample Details: Hole No. BH102 Project Name Depth (m BGL) 4.50-5.00 Sample No В 12 Type Hammersmith Bridge Spec Ref


Soil Description	Brown SAND.
	-2mm material. Recompacted using 2.5kg equivalent effort at as received moisture content.

 $\label{eq:specimen} Specimen(s) \ nominally \ 60mm \ x \ 60mm \ square$ $\ Test(s) \ carried \ out \ in \ submerged \ condition$ $\ Particle \ density, \ assumed \qquad \qquad 2.65 \qquad Mg/m^3$

Speci	men Details	No.	1	2	3	4	5	6
	Height	mm	25.5	25.5	25.5			
	Bulk Density	Mg/m³	1.91	1.91	1.91			
Initial	Water Content	%	18.7	16.1	17.9			
<u>=</u>	Dry density	Mg/m³	1.61	1.65	1.62			
	Voids ratio		0.644	0.608	0.633			
	Degree of Saturation	%	77	70	75			
<u>_</u>	Consolidation / Normal Stress applied	kPa	40	80	160			
Consol ⁿ	Change in height during consolidation	mm	-0.160	-0.130	-0.280			
ŏ	Voids ratio after consolidation		0.634	0.600	0.615			
- t	Voids ratio at end of test		0.655	0.628	0.646			
Shear se note	Moisture content at end of test	%	19.6	18.8	17.9			
See	Saturation at end of test	%	79	79	73			

Shearing stage

Pate of displacement	Peak	mm/min	0.600	0.600	0.600		
Rate of displacement	Residual	mm/min					
D ()	Relative displacement	mm	1.30	1.30	1.30		
Peak values, (o)	Shear stress	kPa	32.9	63.6	131.7		
	No. of reversals						
Residual values, (x)	Relative displacement	mm					
	Shear stress	kPa					

Shear Strength Parameters

Peak strengt	h, (o)	Regression	Manual
с'	kPa	(-1.1)	0.0
ø'	degrees	(39½)	39½

Residual strength, (x)

C' _R	kPa	1	-
Ø' _R	degrees	-	-

Notes:

1. After shear values based on BS1377. Pt 7 cl. 4.6.1.6 using δ H calculated from consolidation and shear stages. 2. The automated regression line results in a negative c'value, therefore a manual line has been used which assumes a c'value of 0.0 kPa. The manual data is presented in the AGS.

Ref

SLR7.4 Rev 86.0 Feb18

Printed:19/06/2020 12:21

Figure

SSB

sheet 1 of 2

			Dete	ermir	natio	on of	shea (r strer BS13	ngth b	y directory directory	t shear clause 4	(Sm : 199	all sh	earbo	х арр	aratu	s)		
Proje	ect No	G00	15-20							Sam	ole Details	: Но	ole No.				Bl	H102	
	ect Name									1			epth (m	BGL)				0-5.00	
		l											ample I		1	2	Туре		В
		Ham	mersm	nith Bi	riage							ID						<u> </u>	
												Sp	oec Re	F					
Co	nsolida	tion s	tage(s)															
	0.00																		— I
E	-0.05																		_
out n	-0.10	\																	
/eme	-0.15						2												
mov	-0.20	_					1												
Vertical movement mm																			
Vert	-0.25	_																	
	-0.30 		1	2	3	<u> </u>	↓3 4	5	6	7	8 9		10	11	12	13	14	15	 16
	U			۷	3		•	5		Root Time			10	''	12	10	14	13	10
Sh	earing s	stage(s)							2									
	0.40 T																		─ ┐
	0.30												2						
E	0.20			_/									→ 3						
Vertical movement mm	0.10		ļ.,	4									<u> </u>						
еше	0.00			/															
mov	- 1																		
ical	-0.10																		
Vert	-0.20																		
	-0.30																		
	-0.40 L									<u> </u>			1						
	0 200 r		1	2	3	3	4	5	6	7	8 9		10	11	12	13	14	15	16
	180 -																	o peak x residu	al
	160 -																		
	140																		
ss kPa	120			`															
Shear stress kPa	100												- 3						
	60 -		0																
	40 -												2						
	20 -				_		_	_					1						
	0	/	1				1	F	6	7			10	11	10	10	14	45	
	0		1	2		3	4	5	6 R	7 Relative dis	8 9 placement		10	11	12	13	14	15	16
Re	_R7.4 v 86.0 eb18			5		:OTI	EC		U K	A S	F	rinted:	:19/06/:	2020 12	2:21	Fig	ure	SSB	o of o
									0(001								sheet	2.01.2

Shear Strength by Pilcon Hand method - Summary of Results

Hole No.	Sample				Spec ref	Soil Description	Undrained shear strength kPa	Residual shear	Remarks
	No.	Depth (m)		type	rei	·	strength kPa	strength kPa	
		from	to	,,					
BH101	61	17.50	17.95	UT			140		
BH101	63	23.50	23.90	UT			140		
BH101	65	29.50	29.95	UT			140		
BH101	68	35.50	35.95	UT			140		
BH101	73	38.50	38.95	UT			140		
BH102	31	15.00	15.40	UT			140		
BH102	41	21.00	21.45	UT			140		
BH102	51	27.00	27.40	UT			140		
BH102	56	30.00	30.40	UT			140		
BH102	61	33.00	33.10	UT			140		
BH102	67	36.00	36.30	UT			140		
BH102	69	37.00	37.35	UT			140		
BH102	73	39.50	39.85	UT			140		

Notes: 1 Tests carried out in accordance with Manufacturers Instructions

QA Ref SLR Lvane Rev 2.1 Sep 17

Project No	G0015-20
Project Name	Hammersn

me	Hammersmith Bridge	

Figure

ΗV

The results reported relate only to the samples tested; test carried out outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

Certificate Number 20-09676

11-Jun-20

Client Socotec

The Oasts

Newham Court Bearsted Road Maidstone ME14 5LH

Our Reference 20-09676

Client Reference G0015

Order No G/4281

Contract Title Hammersmith Bridge

Description 8 Soil samples.

Date Received 02-Jun-20

Date Started 02-Jun-20

Date Completed 11-Jun-20

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025

accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Summary of Chemical Analysis Soil Samples

Our Ref 20-09676 Client Ref G0015

Test

Contract Title Hammersmith Bridge

Lab No	1678546	1678547	1678548	1678549	1678550	1678551	1678552	1678553
Sample ID	BH101	BH101	BH101	BH101	BH102	BH102	BH102	BH102
Depth	8.95-9.00	11.95-12.00	14.95-15.00	21.50	5.95-6.00	10.50	15.40-15.45	22.50
Other ID	20	25	30	41	11	18	26	38
Sample Type	D	D	D	D	D	D	D	D
Sampling Date	24/03/2020	n/s	24/03/2020	n/s	24/03/2020	24/03/2020	24/03/2020	n/s
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s

1030	wicthou		011163								
Inorganics											
рН	DETSC 2008#		рН	8.3	8.8	8.7	8.7	8.4	8.7	8.7	8.8
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	120	150	190	240	260	90	190	< 10
Sulphur as S, Total	DETSC 2320	0.01	%	0.34	0.33	0.50	0.37	0.66	0.20	0.48	0.35
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.12	0.13	0.15	0.12	0.14	0.09	0.14	0.13

Units

Method

Information in Support of the Analytical Results

Our Ref 20-09676 Client Ref G0015

Contract Hammersmith Bridge

Containers Received & Deviating Samples

Date Inappropriate container for

Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1678546	BH101 8.95-9.00 SOIL	24/03/20	PT 1L	Anions 2:1 (30 days), Total Sulphur ICP (7 days), Total	
				Sulphate ICP (30 days), pH + Conductivity (7 days)	
1678547	BH101 11.95-12.00 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days),	
				Total Sulphur ICP (7 days), Total Sulphate ICP (30	
				days), Metals ICP Prep (182 days), pH + Conductivity	
1678548	BH101 14.95-15.00 SOIL	24/03/20	PT 1L	Anions 2:1 (30 days), Total Sulphur ICP (7 days), Total	
				Sulphate ICP (30 days), pH + Conductivity (7 days)	
1678549	BH101 21.50 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days),	
				Total Sulphur ICP (7 days), Total Sulphate ICP (30	
				days), Metals ICP Prep (182 days), pH + Conductivity	
1678550	BH102 5.95-6.00 SOIL	24/03/20	PT 1L	Anions 2:1 (30 days), Total Sulphur ICP (7 days), Total	
				Sulphate ICP (30 days), pH + Conductivity (7 days)	
1678551	BH102 10.50 SOIL	24/03/20	PT 1L	Anions 2:1 (30 days), Total Sulphur ICP (7 days), Total	
				Sulphate ICP (30 days), pH + Conductivity (7 days)	
1678552	BH102 15.40-15.45 SOIL	24/03/20	PT 1L	Anions 2:1 (30 days), Total Sulphur ICP (7 days), Total	
				Sulphate ICP (30 days), pH + Conductivity (7 days)	
1678553	BH102 22.50 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days),	
				Total Sulphur ICP (7 days), Total Sulphate ICP (30	
				days), Metals ICP Prep (182 days), pH + Conductivity	
				(7 days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28° C +/- 2° C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

APPENDIX E GEOENVIRONMENTAL LABORATORY TEST RESULTS

Test Report - Soil 20050166(v.1)

20050367(v.1)

Test Report – Water 20060621(v.1)

Environmental Chemistry SOCOTEC UK Ashby Rd, Bretby, Burton-on-Trent, UK DE15 0YZ

Certificate of Analysis

Project No: 20050166

Client: SOCOTEC Geotechnical

Quote Number: BEC20057992

Project Reference: G0015-20

Site Name: Hammersmith Bridge

Contact: Stewart Nicol

Address: The Oasts, Newnham Court

Bearsted Road

Maidstone

Kent

Post Code: ME14 5LH

E-Mail: Stewart.nicol@socotec.com

Phone No: 07702 641769

Number of Samples Received: 7

Date Received: 07/05/2020

Analysis Date: 22/05/2020

Date Issued: 26/05/2020

Job Status: Complete

Account Manager

Jonas

Emily Jones

Authorised by the Operations Manager Becky Batham

Page 1 of 33

Client: SOCOTEC Geotechnical

Project Name: Hammersmith Bridge

Project No: 20050166

Date Issued: 26/05/2020

Samples Analysed

Sample Reference	Text ID	Sample Date	Sample Type
BH102-1-ES-0.30	20050166-001	04/05/2020 10:00:00	SOLID
BH102-3-ES-0.50	20050166-002	04/05/2020 10:00:00	SOLID
BH102-5-ES-1.00	20050166-003	04/05/2020 10:00:00	SOLID
BH102-7-ES-2.00	20050166-004	04/05/2020 10:00:00	SOLID
BH102-9-ES-3.00	20050166-005	04/05/2020 10:00:00	SOLID
BH102-13-ES-5.00	20050166-006	04/05/2020 10:00:00	SOLID
BH102-18-ES-6.20	20050166-007	04/05/2020 10:00:00	SOLID

Client: SOCOTEC Geotechnical

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

Analysis Results

				Project ID			20050166		
				Sample ID	001	002	003	004	005
				Customer ID	BH102-1-ES-0.30	BH102-3-ES-0.50	BH102-5-ES-1.00	BH102-7-ES-2.00	BH102-9-ES-3.00
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID
				Sampling Date	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred					
>C6-C8 Aliphatic	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0.235	<0.233	<0.246	<0.271	<0.224
>C7-C8 Aromatic	GROHSA/BTEXHSA	0.01	mg/kg^	UM	<0.012	<0.012	<0.012	<0.014	<0.011
>C8-C10 Aliphatic	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0.235*	<0.233*	<0.246*	<0.271*	<0.224*
>C8-C10 Aromatic	GROHSA/BTEXHSA	0.04	mg/kg^	UM	<0.048	<0.047	<0.049	<0.055	<0.044
C5-C6 Aliphatic	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0.235	<0.233	<0.246	<0.271	<0.224
C5-C7 Aromatic	GROHSA/BTEXHSA	0.01	mg/kg^	UM	<0.012	<0.012	<0.012	<0.014	<0.011
Total GRO	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0.235	<0.233	<0.246	<0.271	<0.224
pH (2.5:1 extraction)	PHSOIL	1	pH units	UM	8.8	8.7	8.2	8.0	8.8
Chloride as Cl	KONECL	2	mg/kg^	N	52	20	24	10	25
Chromium (VI) as Cr	KONENS	0.1	mg/kg	N	0.1	<0.1	<0.1	<0.1	<0.1
Free Cyanide	SFAPI	0.5	mg/kg^	UM	<0.6	<0.6	<0.6	<0.7	<0.6
Phenol Index	SFAPI	0.5	mg/kg^	U	<0.6	<0.6	<0.6	<0.7	<0.6
Total Cyanide	SFAPI	0.5	mg/kg^	UM	<0.6	<0.6	0.7	2.0	<0.6
Fluoride as F	ISEFSS	0.2	mg/kg^	U	0.5	0.6	0.3	0.4	1.3
Total Organic Carbon	WSLM59	0.02	% m/m^	U	1.81	2.11	5.15	0.89	0.11
LOI	LOI(%MM)	0.2	% m/m^	N	4.7	4.5	5.7	4.4	1.1
Antimony as Sb	ICPMSS	0.1	mg/kg^	U	2.0	2.0	4.1	0.5	0.4

Page 3 of 33 FINAL_COA_00001

Client: SOCOTEC Geotechnical

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

Analysis Results

				Project ID	20050166	
				Sample ID	006	007
				sustomer ID BH102-13-ES-5.00		BH102-18-ES-6.20
			:	Sample Type	SOLID 04/05/2020	SOLID 04/05/2020
			Sa	Sampling Date		
Analysis	Method Code	MDL	Units	Accred		
>C6-C8 Aliphatic	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0.243	<0.274
>C7-C8 Aromatic	GROHSA/BTEXHSA	0.01	mg/kg^	UM	<0.012	<0.014
>C8-C10 Aliphatic	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0.243	<0.274*
>C8-C10 Aromatic	GROHSA/BTEXHSA	0.04	mg/kg^	UM	<0.048	<0.055
C5-C6 Aliphatic	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0.243	<0.274
C5-C7 Aromatic	GROHSA/BTEXHSA	0.01	mg/kg^	UM	<0.012	<0.014
Total GRO	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0.243	<0.274
pH (2.5:1 extraction)	PHSOIL	1	pH units	UM	8.9	8.8
Chloride as Cl	KONECL	2	mg/kg^	N	32	109
Chromium (VI) as Cr	KONENS	0.1	mg/kg	N	<0.1	<0.1
Free Cyanide	SFAPI	0.5	mg/kg^	им	<0.6	<0.7
Phenol Index	SFAPI	0.5	mg/kg^	U	<0.6	<0.7
Total Cyanide	SFAPI	0.5	mg/kg^	им	<0.6	<0.7
Fluoride as F	ISEFSS	0.2	mg/kg^	U	1.5	1.1
Total Organic Carbon	WSLM59	0.02	% m/m^	U	0.05	0.44
LOI	LOI(%MM)	0.2	% m/m^	N	0.5	4.9
Antimony as Sb	ICPMSS	0.1	mg/kg^	U	0.4	0.4

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

Analysis Results

				Project ID			20050166		
				Sample ID	001	002	003	004	005
				Customer ID	BH102-1-ES-0.30	BH102-3-ES-0.50	BH102-5-ES-1.00	BH102-7-ES-2.00	BH102-9-ES-3.00
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID
				Sampling Date	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred					
Arsenic as As	ICPMSS	0.3	mg/kg^	UM	14.0	13.5	13.9	13.9	12.2
Cadmium as Cd	ICPMSS	0.2	mg/kg^	UM	0.3	0.3	0.4	0.2	<0.2
Copper as Cu	ICPMSS	1.6	mg/kg^	UM	36.4	37.2	45.4	36.3	12.6
Lead as Pb	ICPMSS	0.7	mg/kg^	UM	182.1	202.8	382.3	36.3	6.8
Mercury as Hg	ICPMSS	0.5	mg/kg^	UM	0.6	0.6	1.0	<0.5	<0.5
Molybdenum as Mo	ICPMSS	0.5	mg/kg^	UM	4.0	5.7	3.9	4.5	12.4
Nickel as Ni	ICPMSS	2	mg/kg^	UM	20.3	20.1	23.2	30.6	23.9
Selenium as Se	ICPMSS	0.5	mg/kg^	UM	<0.5	<0.5	<0.5	<0.5	<0.5
Total Chromium as Cr	ICPMSS	1.2	mg/kg^	UM	62.4	85.0	52.9	72.0	165.3
Vanadium as V	ICPMSS	0.6	mg/kg^	N	36.4	35.1	45.1	50.9	29.9
Zinc as Zn	ICPMSS	16	mg/kg^	UM	123.3	120.4	186.2	51.6	23.1
Barium as Ba	ICPSOIL	0.5	mg/kg^	UM	150	137	275	58.5	29.1
Water Soluble Sulphate as SO4 by Mass	ICPWSS	20	mg/kg^	N	419	458	2910	2970	262
Benzene	BTEXHSA	10	μg/kg^	UM	<12	<12	<12	<14	<11
Ethylbenzene	BTEXHSA	10	μg/kg^	UM	<12	<12	<12	<14	<11
m/p-Xylene	BTEXHSA	20	μg/kg^	UM	<24	<23	<25	<27	<22
o-Xylene	BTEXHSA	10	μg/kg^	UM	<12	<12	<12	<14	<11

Page 5 of 33 FINAL_COA_00001

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

				Project ID	2005	0166
				Sample ID	006	007
				Customer ID	BH102-13-ES-5.00	BH102-18-ES-6.20
				Sample Type	SOLID	SOLID
			\$	Sampling Date	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred		
Arsenic as As	ICPMSS	0.3	mg/kg^	UM	13.0	12.8
Cadmium as Cd	ICPMSS	0.2	mg/kg^	UM	<0.2	0.3
Copper as Cu	ICPMSS	1.6	mg/kg^	UM	7.7	29.8
Lead as Pb	ICPMSS	0.7	mg/kg^	UM	3.9	15.4
Mercury as Hg	ICPMSS	0.5	mg/kg^	UM	<0.5	<0.5
Molybdenum as Mo	ICPMSS	0.5	mg/kg^	UM	7.0	0.9
Nickel as Ni	ICPMSS	2	mg/kg^	UM	15.1	44.7
Selenium as Se	ICPMSS	0.5	mg/kg^	UM	<0.5	<0.5
Total Chromium as Cr	ICPMSS	1.2	mg/kg^	UM	99.6	48.0
Vanadium as V	ICPMSS	0.6	mg/kg^	N	31.1	68.7
Zinc as Zn	ICPMSS	16	mg/kg^	UM	20.3	86.1
Barium as Ba	ICPSOIL	0.5	mg/kg^	UM	56.9	35.1
Water Soluble Sulphate as SO4 by Mass	ICPWSS	20	mg/kg^	N	79	249
Benzene	BTEXHSA	10	μg/kg^	UM	<12	<14
Ethylbenzene	BTEXHSA	10	μg/kg^	UM	<12	<14
m/p-Xylene	BTEXHSA	20	μg/kg^	UM	<24	<27
o-Xylene	BTEXHSA	10	μg/kg^	UM	<12	<14

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

Analysis Results

				Project ID			20050166		
				Sample ID	001	002	003	004	005
				Customer ID	BH102-1-ES-0.30	BH102-3-ES-0.50	BH102-5-ES-1.00	BH102-7-ES-2.00	BH102-9-ES-3.00
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID
				Sampling Date	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred					
Toluene	BTEXHSA	10	μg/kg^	UM	<12	<12	<12	<14	<11
Acenaphthene	PAHMSUS	0.08	mg/kg^	UM	<0.09	<0.09	<0.10	<0.11	<0.09
Acenaphthylene	PAHMSUS	0.08	mg/kg^	U	<0.09	<0.09	<0.10	<0.11	<0.09
Anthracene	PAHMSUS	0.08	mg/kg^	U	0.23	0.12	0.15	<0.11	<0.09
Benzo[a]anthracene	PAHMSUS	0.08	mg/kg^	UM	0.77	0.41	0.40	<0.11	<0.09
Benzo[a]pyrene	PAHMSUS	0.08	mg/kg^	UM	0.74	0.36	0.40	<0.11	<0.09
Benzo[b]fluoranthene	PAHMSUS	0.08	mg/kg^	UM	1.07	0.61	0.59	<0.11	<0.09
Benzo[g,h,i]perylene	PAHMSUS	0.08	mg/kg^	UM	0.49	0.26	0.25	<0.11	<0.09
Benzo[k]fluoranthene	PAHMSUS	0.08	mg/kg^	UM	0.41	0.22	0.24	<0.11	<0.09
Chrysene	PAHMSUS	0.08	mg/kg^	UM	0.79	0.48	0.45	<0.11	<0.09
Coronene	PAHMSUS	0.08	mg/kg^	N	0.15	<0.09	<0.10	<0.11	<0.09
Dibenzo[a,h]anthracene	PAHMSUS	0.08	mg/kg^	UM	0.17	<0.09	<0.10	<0.11	<0.09
Fluoranthene	PAHMSUS	0.08	mg/kg^	UM	1.39	0.65	0.76	<0.11	<0.09
Fluorene	PAHMSUS	0.08	mg/kg^	UM	<0.09	<0.09	<0.10	<0.11	<0.09
Indeno[1,2,3-cd]pyrene	PAHMSUS	0.08	mg/kg^	UM	0.74	0.38	0.40	<0.11	<0.09
Naphthalene	PAHMSUS	0.08	mg/kg^	UM	<0.09	<0.09	<0.10	<0.11	<0.09
Phenanthrene	PAHMSUS	0.08	mg/kg^	UM	0.54	0.24	0.42	<0.11	<0.09

Page 7 of 33 FINAL_COA_00001

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

				Project ID	20050166		
				Sample ID	006	007	
				Customer ID	BH102-13-ES-5.00	BH102-18-ES-6.20	
				Sample Type	SOLID	SOLID	
			s	ampling Date	04/05/2020	04/05/2020	
Analysis	Method Code	MDL	Units	Accred			
Toluene	BTEXHSA	10	μg/kg^	UM	<12	<14	
Acenaphthene	PAHMSUS	0.08	mg/kg^	UM	<0.10	<0.11	
Acenaphthylene	PAHMSUS	0.08	mg/kg^	U	<0.10	<0.11	
Anthracene	PAHMSUS	0.08	mg/kg^	U	<0.10	<0.11	
Benzo[a]anthracene	PAHMSUS	0.08	mg/kg^	UM	<0.10	<0.11	
Benzo[a]pyrene	PAHMSUS	0.08	mg/kg^	UM	<0.10	<0.11	
Benzo[b]fluoranthene	PAHMSUS	0.08	mg/kg^	UM	<0.10	<0.11	
Benzo[g,h,i]perylene	PAHMSUS	0.08	mg/kg^	UM	<0.10	<0.11	
Benzo[k]fluoranthene	PAHMSUS	0.08	mg/kg^	UM	<0.10	<0.11	
Chrysene	PAHMSUS	0.08	mg/kg^	UM	<0.10	<0.11	
Coronene	PAHMSUS	0.08	mg/kg^	N	<0.10	<0.11	
Dibenzo[a,h]anthracene	PAHMSUS	0.08	mg/kg^	UM	<0.10	<0.11	
Fluoranthene	PAHMSUS	0.08	mg/kg^	UM	<0.10	<0.11	
Fluorene	PAHMSUS	0.08	mg/kg^	UM	<0.10	<0.11	
Indeno[1,2,3-cd]pyrene	PAHMSUS	0.08	mg/kg^	UM	<0.10	<0.11	
Naphthalene	PAHMSUS	0.08	mg/kg^	UM	<0.10	<0.11	
Phenanthrene	PAHMSUS	0.08	mg/kg^	UM	<0.10	<0.11	

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

Analysis Results

				Project ID	20030100							
				Sample ID	001	002	003	004	005			
				Customer ID	BH102-1-ES-0.30	BH102-3-ES-0.50	BH102-5-ES-1.00	BH102-7-ES-2.00	BH102-9-ES-3.00			
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID			
				Sampling Date	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020			
Analysis	Method Code	MDL	Units	Accred								
Pyrene	PAHMSUS	0.08	mg/kg^	UM	1.22	0.58	0.60	<0.11	<0.09			
Total PAH 16	PAHMSUS	1.28	mg/kg^	U	<8.93	<4.76	<5.14	<1.73	<1.43			
PCB 101	PCBECD	5	μg/kg^	UM	<5.88	<5.83	<6.14	<6.78	<5.61			
PCB 118	PCBECD	5	μg/kg^	UM	<5.88	<5.83	<6.14	<6.78	<5.61			
PCB 138	PCBECD	5	μg/kg^	UM	<5.88	<5.83	<6.14	<6.78	<5.61			
PCB 153	PCBECD	5	μg/kg^	UM	<5.88	<5.83	<6.14	<6.78	<5.61			
PCB 180	PCBECD	5	μg/kg^	UM	<5.88	<5.83	<6.14	<6.78	<5.61			
PCB 28	PCBECD	5	μg/kg^	UM	<5.88	<5.83	<6.14	<6.78	<5.61			
PCB 52	PCBECD	5	μg/kg^	UM	<5.88	<5.83	<6.14	<6.78	<5.61			
1,2,4-Trichlorobenzene	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1	<0.1	<0.1	<0.1			
1,2-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1			
1,3-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1			
1,4-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1			
1-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1			
2,4,5-Trichlorophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1			
2,4,6-Trichlorophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1			
2,4-Dichlorophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1			

Page 9 of 33 FINAL_COA_00001

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

				Project ID	20050166		
				Sample ID	006	007	
				Customer ID	BH102-13-ES-5.00	BH102-18-ES-6.20	
				Sample Type	SOLID	SOLID	
			s	Sampling Date	04/05/2020	04/05/2020	
Analysis	Method Code	MDL	Units	Accred			
Pyrene	PAHMSUS	0.08	mg/kg^	UM	<0.10	<0.11	
Total PAH 16	PAHMSUS	1.28	mg/kg^	U	<1.55	<1.76	
PCB 101	PCBECD	5	μg/kg^	UM	<6.07	<6.86	
PCB 118	PCBECD	5	μg/kg^	UM	<6.07	<6.86	
PCB 138	PCBECD	5	μg/kg^	UM	<6.07	<6.86	
PCB 153	PCBECD	5	μg/kg^	UM	<6.07	<6.86	
PCB 180	PCBECD	5	μg/kg^	UM	<6.07	<6.86	
PCB 28	PCBECD	5	μg/kg^	UM	<6.07	<6.86	
PCB 52	PCBECD	5	μg/kg^	UM	<6.07	<6.86	
1,2,4-Trichlorobenzene	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1	
1,2-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	
1,3-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	
1,4-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	
1-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	
2,4,5-Trichlorophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	
2,4,6-Trichlorophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	
2,4-Dichlorophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

Analysis Results

				Project ID			20050166			
				Sample ID	001	002	003	004	005	
				Customer ID	BH102-1-ES-0.30	BH102-3-ES-0.50	BH102-5-ES-1.00	BH102-7-ES-2.00	BH102-9-ES-3.00	
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	
				Sampling Date	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020	
Analysis	Method Code	MDL	Units	Accred						
2,4-Dimethylphenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
2,4-Dinitrophenol	SVOCSW	0.5	mg/kg^	N	<0.6	<0.6	<0.6	<0.7	<0.6	
2,4-Dinitrotoluene	SVOCSW	0.2	mg/kg^	U	<0.2	<0.2	<0.2	<0.3	<0.2	
2,6-Dinitrotoluene	SVOCSW	0.5	mg/kg^	U	<0.6	<0.6	<0.6	<0.7	<0.6	
2-Chloronaphthalene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
2-Chlorophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
2-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
2-Methylphenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
2-Nitroaniline	SVOCSW	0.5	mg/kg^	N	<0.6	<0.6	<0.6	<0.7	<0.6	
2-Nitrophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
3- & 4-Methylphenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
3-Nitroaniline	SVOCSW	0.5	mg/kg^	N	<0.6	<0.6	<0.6	<0.7	<0.6	
4,6-Dinitro-2-methylphenol	SVOCSW	0.2	mg/kg^	N	<0.2	<0.2	<0.2	<0.3	<0.2	
4-Bromophenyl-phenylether	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
4-Chloro-3-methylphenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
4-Chloroaniline	SVOCSW	0.5	mg/kg^	N	<0.6	<0.6	<0.6	<0.7	<0.6	
4-Chlorophenol	SVOCSW	0.5	mg/kg^	U	<0.6	<0.6	<0.6	<0.7	<0.6	

Page 11 of 33 FINAL_COA_00001

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

				Project ID	2005	50166
				Sample ID	006	007
				Customer ID	BH102-13-ES-5.00	BH102-18-ES-6.20
				Sample Type	SOLID	SOLID
				Sampling Date	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred		
2,4-Dimethylphenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
2,4-Dinitrophenol	SVOCSW	0.5	mg/kg^	N	<0.6	<0.7
2,4-Dinitrotoluene	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3
2,6-Dinitrotoluene	SVOCSW	0.5	mg/kg^	U	<0.6	<0.7
2-Chloronaphthalene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
2-Chlorophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
2-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
2-Methylphenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
2-Nitroaniline	SVOCSW	0.5	mg/kg^	N	<0.6	<0.7
2-Nitrophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
3- & 4-Methylphenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
3-Nitroaniline	SVOCSW	0.5	mg/kg^	N	<0.6	<0.7
4,6-Dinitro-2-methylphenol	SVOCSW	0.2	mg/kg^	N	<0.2	<0.3
4-Bromophenyl-phenylether	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
4-Chloro-3-methylphenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
4-Chloroaniline	SVOCSW	0.5	mg/kg^	N	<0.6	<0.7
4-Chlorophenol	SVOCSW	0.5	mg/kg^	U	<0.6	<0.7

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

Analysis Results

				Project ID			20050166			
				Sample ID	001	002	003	004	005	
				Customer ID	BH102-1-ES-0.30	BH102-3-ES-0.50	BH102-5-ES-1.00	BH102-7-ES-2.00	BH102-9-ES-3.00	
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	
				Sampling Date	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020	
Analysis	Method Code	MDL	Units	Accred						
4-Chlorophenyl-phenylether	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
4-Nitroaniline	SVOCSW	0.6	mg/kg^	N	<0.7	<0.7	<0.7	<0.8	<0.7	
4-Nitrophenol	SVOCSW	0.5	mg/kg^	N	<0.6	<0.6	<0.6	<0.7	<0.6	
Acenaphthene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
Acenaphthylene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
Anthracene	SVOCSW	0.1	mg/kg^	U	<0.1	0.2	<0.1	<0.1	<0.1	
Azobenzene	SVOCSW	0.3	mg/kg^	N	<0.4	<0.4	<0.4	<0.4	<0.3	
Benzo[a]anthracene	SVOCSW	0.2	mg/kg^	U	0.4	0.8	0.3	<0.3	<0.2	
Benzo[a]pyrene	SVOCSW	0.2	mg/kg^	U	0.4	0.6	0.3	<0.3	<0.2	
Benzo[b]fluoranthene	SVOCSW	0.2	mg/kg^	U	0.6	1.0	0.4	<0.3	<0.2	
Benzo[g,h,i]perylene	SVOCSW	0.5	mg/kg^	U	<0.6	<0.6	<0.6	<0.7	<0.6	
Benzo[k]fluoranthene	SVOCSW	0.2	mg/kg^	U	<0.2	0.3	<0.2	<0.3	<0.2	
Benzoic Acid	SVOCSW	0.5	mg/kg^	N	<0.6	<0.6	<0.6	<0.7	<0.6	
Benzyl alcohol	SVOCSW	0.5	mg/kg^	U	<0.6	<0.6	<0.6	<0.7	<0.6	
Biphenyl	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
bis(2-Chloroethoxy)methane	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
bis(2-Chloroethyl)ether	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	

Page 13 of 33 FINAL_COA_00001

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

				Project ID	20050100		
				Sample ID	006	007	
				Customer ID	BH102-13-ES-5.00	BH102-18-ES-6.20	
				Sample Type	SOLID	SOLID	
				Sampling Date	04/05/2020	04/05/2020	
Analysis	Method Code	MDL	Units	Accred			
4-Chlorophenyl-phenylether	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	
4-Nitroaniline	SVOCSW	0.6	mg/kg^	N	<0.7	<0.8	
4-Nitrophenol	SVOCSW	0.5	mg/kg^	N	<0.6	<0.7	
Acenaphthene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	
Acenaphthylene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	
Anthracene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	
Azobenzene	SVOCSW	0.3	mg/kg^	N	<0.4	<0.4	
Benzo[a]anthracene	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3	
Benzo[a]pyrene	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3	
Benzo[b]fluoranthene	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3	
Benzo[g,h,i]perylene	SVOCSW	0.5	mg/kg^	U	<0.6	<0.7	
Benzo[k]fluoranthene	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3	
Benzoic Acid	SVOCSW	0.5	mg/kg^	N	<0.6	<0.7	
Benzyl alcohol	SVOCSW	0.5	mg/kg^	U	<0.6	<0.7	
Biphenyl	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	
bis(2-Chloroethoxy)methane	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	
bis(2-Chloroethyl)ether	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

				Project ID					
				Sample ID	001	002	003	004	005
				Customer ID	BH102-1-ES-0.30	BH102-3-ES-0.50	BH102-5-ES-1.00	BH102-7-ES-2.00	BH102-9-ES-3.00
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID
				Sampling Date	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred					
bis(2-Chloroisopropyl)ether	SVOCSW	0.5	mg/kg^	U	<0.6	<0.6	<0.6	<0.7	<0.6
bis(2-Ethylhexyl)phthalate	SVOCSW	0.2	mg/kg^	U	<0.2	<0.2	<0.2	<0.3	<0.2
Butylbenzylphthalate	SVOCSW	0.2	mg/kg^	U	<0.2	<0.2	<0.2	<0.3	<0.2
Carbazole	SVOCSW	0.3	mg/kg^	N	<0.4	<0.4	<0.4	<0.4	<0.3
Chrysene	SVOCSW	0.2	mg/kg^	U	0.4	0.8	0.3	<0.3	<0.2
Coronene	SVOCSW	0.3	mg/kg^	N	<0.4	<0.4	<0.4	<0.4	<0.3
Dibenzo[a,h]anthracene	SVOCSW	0.5	mg/kg^	U	<0.6	<0.6	<0.6	<0.7	<0.6
Dibenzofuran	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1
Diethylphthalate	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethylphthalate	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1
Di-n-butylphthalate	SVOCSW	0.1	mg/kg^	U	0.3	<0.1	<0.1	<0.1	<0.1
Di-n-octylphthalate	SVOCSW	0.2	mg/kg^	U	<0.2	<0.2	<0.2	<0.3	<0.2
Diphenyl ether	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	SVOCSW	0.2	mg/kg^	U	0.7	1.2	0.6	<0.3	<0.2
Fluorene	SVOCSW	0.2	mg/kg^	U	<0.2	<0.2	<0.2	<0.3	<0.2
Hexachlorobenzene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobutadiene	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1	<0.1	<0.1	<0.1

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

				Project ID	2005	0166
				Sample ID	006	007
				Customer ID	BH102-13-ES-5.00	BH102-18-ES-6.20
				Sample Type	SOLID	SOLID
			\$	Sampling Date	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred		
bis(2-Chloroisopropyl)ether	SVOCSW	0.5	mg/kg^	U	<0.6	<0.7
bis(2-Ethylhexyl)phthalate	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3
Butylbenzylphthalate	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3
Carbazole	SVOCSW	0.3	mg/kg^	N	<0.4	<0.4
Chrysene	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3
Coronene	SVOCSW	0.3	mg/kg^	N	<0.4	<0.4
Dibenzo[a,h]anthracene	SVOCSW	0.5	mg/kg^	U	<0.6	<0.7
Dibenzofuran	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Diethylphthalate	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Dimethylphthalate	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Di-n-butylphthalate	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Di-n-octylphthalate	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3
Diphenyl ether	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Fluoranthene	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3
Fluorene	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3
Hexachlorobenzene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Hexachlorobutadiene	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

Analysis Results

				Project ID	20030100					
				Sample ID	001	002	003	004	005	
				Customer ID	BH102-1-ES-0.30	BH102-3-ES-0.50	BH102-5-ES-1.00	BH102-7-ES-2.00	BH102-9-ES-3.00	
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	
				Sampling Date	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020	
Analysis	Method Code	MDL	Units	Accred						
Hexachlorocyclopentadiene	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1	<0.1	<0.1	<0.1	
Hexachloroethane	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
Indeno[1,2,3-cd]pyrene	SVOCSW	0.5	mg/kg^	U	<0.6	<0.6	<0.6	<0.7	<0.6	
Isophorone	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1	<0.1	<0.1	<0.1	
Naphthalene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
Nitrobenzene	SVOCSW	0.5	mg/kg^	U	<0.6	<0.6	<0.6	<0.7	<0.6	
N-Nitroso-di-n-propylamine	SVOCSW	0.9	mg/kg^	N	<1.1	<1.1	<1.1	<1.2	<1.0	
N-Nitrosodiphenylamine	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1	<0.1	<0.1	<0.1	
Pentachlorophenol	SVOCSW	0.5	mg/kg^	N	<0.6	<0.6	<0.6	<0.7	<0.6	
Phenanthrene	SVOCSW	0.1	mg/kg^	U	0.3	0.5	0.3	<0.1	<0.1	
Phenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
Pyrene	SVOCSW	0.2	mg/kg^	U	0.6	1.2	0.5	<0.3	<0.2	
>C10-C12 (Aliphatic)	TPHFIDUS (Aliphatic)	4	mg/kg^	U	<4.70	<4.66	<4.91	<5.42	<4.48	
>C12-C16 (Aliphatic)	TPHFIDUS (Aliphatic)	4	mg/kg^	U	<4.70	<4.66	<4.91	<5.42	<4.48	
>C16-C21 (Aliphatic)	TPHFIDUS (Aliphatic)	4	mg/kg^	U	5.04	<4.66	<4.91	<5.42	<4.48	
>C21-C35 (Aliphatic)	TPHFIDUS (Aliphatic)	10	mg/kg^	U	20.8	12.1	<12.3	<13.6	<11.2	
>C35-C44 (Aliphatic)	TPHFIDUS (Aliphatic)	6	mg/kg^	N	7.71	<6.99	<7.37	<8.13	<6.73	

Page 17 of 33 FINAL_COA_00001

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

				Project ID	2005	0166
				Sample ID	006	007
				Customer ID	BH102-13-ES-5.00	BH102-18-ES-6.20
				Sample Type	SOLID	SOLID
			\$	Sampling Date	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred		
Hexachlorocyclopentadiene	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1
Hexachloroethane	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Indeno[1,2,3-cd]pyrene	SVOCSW	0.5	mg/kg^	U	<0.6	<0.7
Isophorone	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1
Naphthalene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Nitrobenzene	SVOCSW	0.5	mg/kg^	U	<0.6	<0.7
N-Nitroso-di-n-propylamine	SVOCSW	0.9	mg/kg^	N	<1.1	<1.2
N-Nitrosodiphenylamine	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1
Pentachlorophenol	SVOCSW	0.5	mg/kg^	N	<0.6	<0.7
Phenanthrene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Phenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Pyrene	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3
>C10-C12 (Aliphatic)	TPHFIDUS (Aliphatic)	4	mg/kg^	U	<4.85	<5.49
>C12-C16 (Aliphatic)	TPHFIDUS (Aliphatic)	4	mg/kg^	U	<4.85	<5.49
>C16-C21 (Aliphatic)	TPHFIDUS (Aliphatic)	4	mg/kg^	U	<4.85	<5.49
>C21-C35 (Aliphatic)	TPHFIDUS (Aliphatic)	10	mg/kg^	U	<12.1	<13.7
>C35-C44 (Aliphatic)	TPHFIDUS (Aliphatic)	6	mg/kg^	N	<7.28	<8.23

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

Analysis Results

				Project ID			20050166		
				Sample ID	001	002	003	004	005
				Customer ID	BH102-1-ES-0.30	BH102-3-ES-0.50	BH102-5-ES-1.00	BH102-7-ES-2.00	BH102-9-ES-3.00
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID
				Sampling Date	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred					
Total TPH (Aliphatic)	TPHFIDUS (Aliphatic)	20	mg/kg^	U	31.9	<23.3	<24.6	<27.1	<22.4
>C10-C12 (Aromatic)	TPHFIDUS (Aromatic)	4	mg/kg^	U	<4.70	<4.66	<4.91	<5.42	<4.48
>C12-C16 (Aromatic)	TPHFIDUS (Aromatic)	4	mg/kg^	U	14.7	13.1	5.66	<5.42	<4.48
>C16-C21 (Aromatic)	TPHFIDUS (Aromatic)	4	mg/kg^	U	22.0	16.6	9.70	7.50	5.43
>C21-C35 (Aromatic)	TPHFIDUS (Aromatic)	10	mg/kg^	U	91.9	60.4	37.0	26.8	11.2
>C35-C44 (Aromatic)	TPHFIDUS (Aromatic)	6	mg/kg^	N	36.3	16.0	<7.37	<8.13	<6.73
Total TPH (Aromatic)	TPHFIDUS (Aromatic)	20	mg/kg^	U	152	101	55.1	41.5	<22.4
1,1,1,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,1,1-Trichloroethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	N	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,1-Dichloroethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,1-Dichloroethene	VOCHSAS	1	μg/kg^	U	<1	<1	<1	<1	<1
1,1-Dichloropropene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,2,3-Trichlorobenzene	VOCHSAS	3	μg/kg^	UM	<3	<4	<4	<4	<3
1,2,3-Trichloropropane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,2,4-Trichlorobenzene	VOCHSAS	3	μg/kg^	N	<3	<4	<4	<4	<3

Page 19 of 33 FINAL_COA_00001

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

				Project ID	2005	0166	
				Sample ID	006	007	
				Customer ID	BH102-13-ES-5.00	BH102-18-ES-6.20	
				Sample Type	SOLID	SOLID	
				Sampling Date	04/05/2020	04/05/2020	
Analysis	Method Code	MDL	Units	Accred			
Total TPH (Aliphatic)	TPHFIDUS (Aliphatic)	20	mg/kg^	U	<24.3	<27.4	
>C10-C12 (Aromatic)	TPHFIDUS (Aromatic)	4	mg/kg^	U	<4.85	<5.49	
>C12-C16 (Aromatic)	TPHFIDUS (Aromatic)	4	mg/kg^	U	<4.85	<5.49	
>C16-C21 (Aromatic)	TPHFIDUS (Aromatic)	4	mg/kg^	U	5.84	6.61	
>C21-C35 (Aromatic)	TPHFIDUS (Aromatic)	10	mg/kg^	U	19.4	18.9	
>C35-C44 (Aromatic)	TPHFIDUS (Aromatic)	6	mg/kg^	N	<7.28	<8.23	
Total TPH (Aromatic)	TPHFIDUS (Aromatic)	20	mg/kg^	U	31.3	32.3	
1,1,1,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	UM	<1	<1	
1,1,1-Trichloroethane	VOCHSAS	1	μg/kg^	UM	<1	<1	
1,1,2,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	N	<1	<1	
1,1,2-Trichloroethane	VOCHSAS	1	μg/kg^	UM	<1	<1	
1,1-Dichloroethane	VOCHSAS	1	μg/kg^	UM	<1	<1	
1,1-Dichloroethene	VOCHSAS	1	μg/kg^	U	<1	<1	
1,1-Dichloropropene	VOCHSAS	1	μg/kg^	UM	<1	<1	
1,2,3-Trichlorobenzene	VOCHSAS	3	μg/kg^	UM	<4	<4	
1,2,3-Trichloropropane	VOCHSAS	1	μg/kg^	UM	<1	<1	
1,2,4-Trichlorobenzene	VOCHSAS	3	μg/kg^	N	<4	<4	

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

Analysis Results

				Project ID			20050166		
				Sample ID	001	002	003	004	005
				Customer ID	BH102-1-ES-0.30	BH102-3-ES-0.50	BH102-5-ES-1.00	BH102-7-ES-2.00	BH102-9-ES-3.00
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID
				Sampling Date	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred					
1,2,4-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,2-Dibromo-3-chloropropane	VOCHSAS	1	μg/kg^	U	<1	<1	<1	<1	<1
1,2-Dibromoethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,2-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,2-Dichloroethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,2-Dichloropropane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,3,5-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,3-Dichloropropane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
2,2-Dichloropropane	VOCHSAS	2	μg/kg^	UM	<2	<2	<2	<3	<2
2-Chlorotoluene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
4-Chlorotoluene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Benzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Bromobenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Bromochloromethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Bromodichloromethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1

Page 21 of 33 FINAL_COA_00001

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

				Project ID	2005	0166
				Sample ID	006	007
				Customer ID	BH102-13-ES-5.00	BH102-18-ES-6.20
				Sample Type	SOLID	SOLID
			\$	Sampling Date	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred		
1,2,4-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1
1,2-Dibromo-3-chloropropane	VOCHSAS	1	μg/kg^	U	<1	<1
1,2-Dibromoethane	VOCHSAS	1	μg/kg^	UM	<1	<1
1,2-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM	<1	<1
1,2-Dichloroethane	VOCHSAS	1	μg/kg^	UM	<1	<1
1,2-Dichloropropane	VOCHSAS	1	μg/kg^	UM	<1	<1
1,3,5-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1
1,3-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM	<1	<1
1,3-Dichloropropane	VOCHSAS	1	μg/kg^	UM	<1	<1
1,4-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM	<1	<1
2,2-Dichloropropane	VOCHSAS	2	μg/kg^	UM	<2	<3
2-Chlorotoluene	VOCHSAS	1	μg/kg^	UM	<1	<1
4-Chlorotoluene	VOCHSAS	1	μg/kg^	UM	<1	<1
Benzene	VOCHSAS	1	μg/kg^	UM	<1	<1
Bromobenzene	VOCHSAS	1	μg/kg^	UM	<1	<1
Bromochloromethane	VOCHSAS	1	μg/kg^	UM	<1	<1
Bromodichloromethane	VOCHSAS	1	μg/kg^	UM	<1	<1

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

Analysis Results

				Project ID			20050166		
				Sample ID	001	002	003	004	005
				Customer ID	BH102-1-ES-0.30	BH102-3-ES-0.50	BH102-5-ES-1.00	BH102-7-ES-2.00	BH102-9-ES-3.00
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID
				Sampling Date	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred					
Bromoform	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Bromomethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Carbon Tetrachloride	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Chlorobenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Chloroethane	VOCHSAS	2	μg/kg^	UM	<2	<2	<2	<3	<2
Chloroform	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Chloromethane	VOCHSAS	3	μg/kg^	U	<3	<4	<4	<4	<3
cis 1,2-Dichloroethene	VOCHSAS	5	μg/kg^	UM	<6	<6	<6	<7	<6
cis 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Dibromochloromethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Dibromomethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Dichlorodifluoromethane	VOCHSAS	1	μg/kg^	N	<1	<1	<1	<1	<1
Ethylbenzene	VOCHSAS	2	μg/kg^	UM	<2	<2	<2	<3	<2
Hexachlorobutadiene	VOCHSAS	2	μg/kg^	N	<2	<2	<2	<3	<2
iso-Propylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
m and p-Xylene	VOCHSAS	4	μg/kg^	UM	<5	<5	<5	<5	<4
MTBE	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1

Page 23 of 33 FINAL_COA_00001

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

				Project ID	2005	0166
				Sample ID	006	007
				Customer ID	BH102-13-ES-5.00	BH102-18-ES-6.20
				Sample Type	SOLID	SOLID
			\$	Sampling Date	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred		
Bromoform	VOCHSAS	1	μg/kg^	UM	<1	<1
Bromomethane	VOCHSAS	1	μg/kg^	UM	<1	<1
Carbon Tetrachloride	VOCHSAS	1	μg/kg^	UM	<1	<1
Chlorobenzene	VOCHSAS	1	μg/kg^	UM	<1	<1
Chloroethane	VOCHSAS	2	μg/kg^	UM	<2	<3
Chloroform	VOCHSAS	1	μg/kg^	UM	<1	<1
Chloromethane	VOCHSAS	3	μg/kg^	U	<4	<4
cis 1,2-Dichloroethene	VOCHSAS	5	μg/kg^	UM	<6	<7
cis 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM	<1	<1
Dibromochloromethane	VOCHSAS	1	μg/kg^	UM	<1	<1
Dibromomethane	VOCHSAS	1	μg/kg^	UM	<1	<1
Dichlorodifluoromethane	VOCHSAS	1	μg/kg^	N	<1	<1
Ethylbenzene	VOCHSAS	2	μg/kg^	UM	<2	<3
Hexachlorobutadiene	VOCHSAS	2	μg/kg^	N	<2	<3
iso-Propylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1
m and p-Xylene	VOCHSAS	4	μg/kg^	UM	<5	<6
MTBE	VOCHSAS	1	μg/kg^	UM	<1	<1

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

Analysis Results

				Project ID			20050166		
				Sample ID	001	002	003	004	005
				Customer ID	BH102-1-ES-0.30	BH102-3-ES-0.50	BH102-5-ES-1.00	BH102-7-ES-2.00	BH102-9-ES-3.00
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID
				Sampling Date	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred					
Naphthalene	VOCHSAS	5	μg/kg^	UM	<6	<6	<6	<7	<6
n-Butylbenzene	VOCHSAS	1	μg/kg^	U	<1	<1	<1	<1	<1
o-Xylene	VOCHSAS	2	μg/kg^	UM	<2	<2	<2	<3	<2
p-lsopropyltoluene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Propylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
sec-Butylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Styrene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
tert-Butylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Tetrachloroethene	VOCHSAS	3	μg/kg^	UM	<3	<4	<4	<4	<3
Toluene	VOCHSAS	5	μg/kg^	UM	<6	<6	<6	<7	<6
trans 1,2-Dichloroethene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
trans 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Trichloroethene	VOCHSAS	1	μg/kg^	U	<1	<1	<1	<1	<1
Trichlorofluoromethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Vinyl Chloride	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Total Moisture at 105°C	TMSS	0.1	%	U	14.9	14.2	18.6	26.2	10.8
Total Moisture at 35°C	CLANDPREP	0.1	%	N	12.1	11.5	16.9	23.2	10.2

Page 25 of 33 FINAL_COA_00001

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

				Project ID	2005	0166
				Sample ID	006	007
				Customer ID	BH102-13-ES-5.00	BH102-18-ES-6.20
				Sample Type	SOLID	SOLID
			s	Sampling Date	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred		
Naphthalene	VOCHSAS	5	μg/kg^	UM	<6	<7
n-Butylbenzene	VOCHSAS	1	μg/kg^	U	<1	<1
o-Xylene	VOCHSAS	2	μg/kg^	UM	<2	<3
p-Isopropyltoluene	VOCHSAS	1	μg/kg^	UM	<1	<1
Propylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1
sec-Butylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1
Styrene	VOCHSAS	1	μg/kg^	UM	<1	<1
tert-Butylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1
Tetrachloroethene	VOCHSAS	3	μg/kg^	UM	<4	<4
Toluene	VOCHSAS	5	μg/kg^	UM	<6	<7
trans 1,2-Dichloroethene	VOCHSAS	1	μg/kg^	UM	<1	<1
trans 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM	<1	<1
Trichloroethene	VOCHSAS	1	μg/kg^	U	<1	<1
Trichlorofluoromethane	VOCHSAS	1	μg/kg^	UM	<1	<1
Vinyl Chloride	VOCHSAS	1	μg/kg^	UM	<1	<1
Total Moisture at 105°C	TMSS	0.1	%	U	17.6	27.1
Total Moisture at 35°C	CLANDPREP	0.1	%	N	17.8	23.5

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

				Project ID			20050166		
				Sample ID	001	002	003	004	005
				Customer ID	BH102-1-ES-0.30	BH102-3-ES-0.50	BH102-5-ES-1.00	BH102-7-ES-2.00	BH102-9-ES-3.00
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID
				Sampling Date	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred					
Colour of Material	CLANDPREP		-	N	Brown	Brown	Brown	Brown	Brown
Major Constituents	CLANDPREP		-	N	SILT	SILT	SILT	CLAY	SAND
Minor Constituents	CLANDPREP		-	N	Gravel/Brick	Gravel/Brick	Gravel/Brick	Gravel	Gravel
Miscellaneous Constituents	CLANDPREP		-	N	Concrete	Concrete	Concrete	na	na
Asbestos Identification	SUB020		-	N	NAIIS	NAIIS	NAIIS	NAIIS	NAIIS

Project Name: Hammersmith Bridge

Project No: 20050166 Date Issued: 26/05/2020

				Project ID	2005	0166
				Sample ID	006	007
				Customer ID	BH102-13-ES-5.00	BH102-18-ES-6.20
				Sample Type	SOLID	SOLID
			s	Sampling Date	04/05/2020	04/05/2020
Analysis	Method Code	MDL	Units	Accred		
Colour of Material	CLANDPREP		-	N	Brown	Brown
Major Constituents	CLANDPREP		-	N	SAND	CLAY
Minor Constituents	CLANDPREP		-	N	Gravel	Gravel
Miscellaneous Constituents	CLANDPREP		-	N	na	na
Asbestos Identification	SUB020		-	N	NAIIS	NAIIS

CERTIFICATE OF ANALYSIS

ANALYSIS REQUESTED BY:

SOCOTEC UK Ltd

Environmental Chemistry

CONTRACT NO: \$12460-7

PO Box 100

Burton upon Trent

Staffordshire **DE15 0XD**

DATE OF ISSUE: 19.05.20

DATE SAMPLES RECEIVED: 12.05.20

DATE ANALYSIS COMPLETED: 19.05.20

DESCRIPTION: Seven soil/loose aggregate samples each weighing approximately 0.8-1.5kg.

ANALYSIS REQUESTED: Qualitative and quantitative analysis of soil/loose aggregate samples for

mass determination of asbestos

METHODS:

Qualitative - The samples were analysed qualitatively for asbestos by polarised light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative - The analysis was carried out using our documented in-house method based on HSE Contract Research Report No. 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire sample, detailed analysis of a representative sub-sample and quantification by hand picking/weighing and/or fibre counting/sizing as appropriate.

RESULTS:

Initial Screening

No asbestos was detected in any of the soil samples by stereo-binocular and polarised light microscopy.

A summary of the results is given in Table 1.

Page 1 of 2

CONTRACT NO: \$12460-7 **DATE OF ISSUE:** 19.05.20

RESULTS: (cont.)

Table 1: Qualitative Results

SOCOTEC Job I.D: 20050166

IOM sample number	Client sample number	ACM type detected	PLM result
S72745	20050166-001-15	-	No Asbestos Detected
S72746	20050166-002-15	-	No Asbestos Detected
S72747	20050166-003-15	-	No Asbestos Detected
S72748	20050166-004-15	-	No Asbestos Detected
S72749	20050166-005-15	-	No Asbestos Detected
S72750	20050166-006-15	-	No Asbestos Detected
S72751	20050166-007-15	-	No Asbestos Detected

Our detection limit for this method is 0.001%.

COMMENTS:

IOM Consulting cannot accept responsibility for samples that have been incorrectly collected or despatched by external clients.

Any opinions and interpretations expressed herein are out with the scope of our UKAS accreditation.

AUTHORISED BY:

D Third Scientific Technician

2 Ager

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
GROHSA	001-007	The Secondary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily (including the Primary Process Control) and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation , where applicable, from the affected analytes (C6-C7, C8-C10) . These circumstances should be taken into consideration when utilising the data.

LIMS-F002 - Report Notes

Project Name: Hammersmith Bridge

Project No: 20050166

Date Issued: 26/05/2020

Deviating Sample Re	port					,e			
Sample Reference	Text ID	Reported Name	Incorrect Container	Incorrect Label	Headspace	Incorrect/No Preservative	No Sampling Date	Holding Time	Handling Time
BH102-13-ES-5.00	20050166-006	GROHSA/BTEXHSA						✓	
BH102-13-ES-5.00	20050166-006	BTEXHSA						✓	

Analysis Method

<u> </u>		
<u>Analysis</u>	Analysis Type	Analysis Method
BTEXHSA	ORGANIC	As Received
CLANDPREP	PHYS	As Received
GROHSA	ORGANIC	As Received
ICPMSS	METALS	Air Dried & Ground
ICPSOIL	METALS	Air Dried & Ground
ICPWSS	METALS	Air Dried & Ground
ISEFSS	INORGANIC	Air Dried & Ground
KONECL	INORGANIC	Air Dried & Ground
KONENS	INORGANIC	Air Dried & Ground
LOI(%MM)	INORGANIC	Air Dried & Ground
PAHMSUS	ORGANIC	As Received
PCBECD	ORGANIC	As Received
SFAPI	INORGANIC	As Received
SVOCSW	ORGANIC	As Received
TMSS	PHYS	As Received
TPHFIDUS (Aliphatic)	ORGANIC	As Received
TPHFIDUS (Aromatic)	ORGANIC	As Received
VOCHSAS	ORGANIC	As Received
WSLM59	INORGANIC	Air Dried & Ground

Project Name: Hammersmith Bridge

Project No: 20050166

Date Issued: 26/05/2020

Additional Information

This report refers to samples as received, and SOCOTEC Uk Ltd takes no responsibility for accuracy or competence of sampling by others.

Results within this report relate only to the samples tested.

In the accreditation column of analysis report the codes are as follows:

U = UKAS accredited analysis

M = MCERT accredited analysis

N = Unaccredited analysis

Any units marked with ^ signify results are reported on a dry weight basis of 105° C

All Air Dried and Ground Samples (ADG) are oven dried at less than 35° c.

This report shall not be reproduced except in full and with approval from the laboratory.

Opinions and interpretations given are outside the scope of our UKAS accreditation.

Any samples marked with * are not covered by our scope of UKAS accreditation, if applicable further report notes have been added.

Any solid samples where the Major Constituents are not one of the following (Sand, Silt, Clay, Made Ground) are not one of our accredited matrix types.

Any samples marked with ‡ have had MCERTS accreditation removed for this result

Any samples marked with a tick in the deviant table is deviant for the specific reason.

Any samples reported as IS, NA, ND mean the following:

IS = Insufficient Sample to complete analysis

NA = Sample is not amenable for the required analysis

ND = Results cannot be determined

Our deviating sample report does not include deviancy information for Subcontracted analysis. Please see the report from the Subcontracted lab for information regarding any deviancies for this analysis.

End of Certificate of Analysis

Environmental Chemistry SOCOTEC UK Ashby Rd, Bretby, Burton-on-Trent, UK DE15 0YZ

Certificate of Analysis

Project No: 20050367

Client: SOCOTEC Geotechnical

Quote Number: BEC20057992

Project Reference: G0015-20

Site Name: G0015-20 Hammersmith Bridge

Contact: Stewart Nicol

Address: The Oasts, Newnham Court

Bearsted Road

Maidstone

Kent

Post Code: ME14 5LH

E-Mail: Stewart.nicol@socotec.com

Phone No: 07702 641769

Number of Samples Received: 7

Date Received: 18/05/2020

Analysis Date: 03/06/2020

Date Issued: 03/06/2020

Job Status: Complete

Account Manager

Jonas

Emily Jones

Authorised by the Operations Manager Becky Batham

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367

Date Issued: 03/06/2020

Samples Analysed

Sample Reference	Text ID	Sample Date	Sample Type
BH101-1-ES-0.30	20050367-001	12/05/2020 12:06:01	SOLID
BH101-3-ES-0.50	20050367-002	12/05/2020 12:06:01	SOLID
BH101-5-ES-1.00	20050367-003	12/05/2020 12:06:01	SOLID
BH101-7-ES-1.50	20050367-004	12/05/2020 12:06:01	SOLID
BH101-8-ES-2.00	20050367-005	12/05/2020 12:06:01	SOLID
BH101-11-ES-2.50	20050367-006	12/05/2020 12:06:01	SOLID
BH101-18-ES-4.50	20050367-007	12/05/2020 12:06:01	SOLID

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

Analysis Results

				Project ID			20050367		
				Sample ID	001	002	003	004	005
				Customer ID	BH101-1-ES-0.30	BH101-3-ES-0.50	BH101-5-ES-1.00	BH101-7-ES-1.50	BH101-8-ES-2.00
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID
				Sampling Date	12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred					
>C6-C8 Aliphatic	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0.225	<0.250	<0.248	<0.248	<0.282
>C7-C8 Aromatic	GROHSA/BTEXHSA	0.01	mg/kg^	UM	<0.011	<0.013	<0.012	<0.012	<0.014
>C8-C10 Aliphatic	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0.225	<0.250	<0.248	<0.248	<0.282
>C8-C10 Aromatic	GROHSA/BTEXHSA	0.04	mg/kg^	UM	<0.045	<0.051	<0.049	<0.049	<0.056
C5-C6 Aliphatic	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0.225	<0.250	<0.248	<0.248	<0.282
C5-C7 Aromatic	GROHSA/BTEXHSA	0.01	mg/kg^	UM	<0.011	<0.013	<0.012	<0.012	<0.014
Total GRO	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0.225	<0.250	<0.248	<0.248	<0.282
pH (2.5:1 extraction)	PHSOIL	1	pH units	UM	8.3	8.2	8.3	8.1	8.2
Chloride as Cl	KONECL	2	mg/kg^	N	2260	110	35	23	30
Chromium (VI) as Cr	KONENS	0.1	mg/kg	N	<0.5	<0.1	<0.1	<0.1	<0.1
Free Cyanide	SFAPI	0.5	mg/kg^	UM	<0.6	<0.6	<0.6	<0.6	<0.7
Phenol Index	SFAPI	0.5	mg/kg^	U	<0.6	<0.6	<0.6	<0.6	<0.7
Total Cyanide	SFAPI	0.5	mg/kg^	UM	<0.6	<0.6	<0.6	<0.6	<0.7
Fluoride as F	ISEFSS	0.2	mg/kg^	U	1.9	0.5	0.3	0.2	0.7
Total Organic Carbon	WSLM59	0.02	% m/m^	U	2.34	2.09	5.48	1.91	3.27
LOI	LOI(%MM)	0.2	% m/m^	N	5.7	4.5	6.4	4.4	6.7
Antimony as Sb	ICPMSS	0.1	mg/kg^	U	6.4	1.5	4.4	4.7	1.8

Page 3 of 34 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

				Project ID	2005	50367
				Sample ID	006	007
				Customer ID	BH101-11-ES-2.50	BH101-18-ES-4.50
				Sample Type	SOLID	SOLID
			S	ampling Date	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred		
>C6-C8 Aliphatic	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0.282	<0.293
>C7-C8 Aromatic	GROHSA/BTEXHSA	0.01	mg/kg^	UM	<0.014	<0.015
>C8-C10 Aliphatic	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0.282	<0.293
>C8-C10 Aromatic	GROHSA/BTEXHSA	0.04	mg/kg^	UM	<0.056	<0.059
C5-C6 Aliphatic	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0.282	<0.293
C5-C7 Aromatic	GROHSA/BTEXHSA	0.01	mg/kg^	UM	<0.014	<0.015
Total GRO	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0.282	<0.293*
pH (2.5:1 extraction)	PHSOIL	1	pH units	UM	8.2	8.0
Chloride as Cl	KONECL	2	mg/kg^	N	54	71
Chromium (VI) as Cr	KONENS	0.1	mg/kg	N	<0.1	<0.1
Free Cyanide	SFAPI	0.5	mg/kg^	UM	<0.7	<0.7
Phenol Index	SFAPI	0.5	mg/kg^	U	<0.7	<0.7
Total Cyanide	SFAPI	0.5	mg/kg^	UM	<0.7	<0.7
Fluoride as F	ISEFSS	0.2	mg/kg^	U	0.7	0.7
Total Organic Carbon	WSLM59	0.02	% m/m^	U	3.33	3.21
LOI	LOI(%MM)	0.2	% m/m^	N	6.6	5.2
Antimony as Sb	ICPMSS	0.1	mg/kg^	U	1.2	0.5

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

Analysis Results

				Project ID	20050367				
				Sample ID	001	002	003	004	005
				Customer ID	BH101-1-ES-0.30	BH101-3-ES-0.50	BH101-5-ES-1.00	BH101-7-ES-1.50	BH101-8-ES-2.00
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID
				Sampling Date	12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred					
Arsenic as As	ICPMSS	0.3	mg/kg^	UM	16.3	14.1	19.6	16.1	13.6
Cadmium as Cd	ICPMSS	0.2	mg/kg^	UM	2.0	0.3	0.3	0.2	<0.2
Copper as Cu	ICPMSS	1.6	mg/kg^	UM	95.8	67.7	202.0	134.3	61.2
Lead as Pb	ICPMSS	0.7	mg/kg^	UM	180.4	214.6	332.1	320.0	186.5
Mercury as Hg	ICPMSS	0.5	mg/kg^	UM	<0.5	0.8	1.2	1.1	1.5
Molybdenum as Mo	ICPMSS	0.5	mg/kg^	UM	8.7	3.7	4.6	4.0	2.9
Nickel as Ni	ICPMSS	2	mg/kg^	UM	67.4	23.5	26.0	22.9	20.3
Selenium as Se	ICPMSS	0.5	mg/kg^	UM	<0.5	<0.5	<0.5	<0.5	<0.5
Total Chromium as Cr	ICPMSS	1.2	mg/kg^	UM	131.8	60.5	59.7	62.0	56.3
Vanadium as V	ICPMSS	0.6	mg/kg^	N	46.1	41.5	48.1	41.1	38.4
Zinc as Zn	ICPMSS	16	mg/kg^	UM	400.3	110.4	134.2	130.9	70.6
Barium as Ba	ICPSOIL	0.5	mg/kg^	UM	175	93.4	140	88.1	69.1
Water Soluble Sulphate as SO4 by Mass	ICPWSS	20	mg/kg^	N	2830	269	170	373	215
Benzene	BTEXHSA	10	μg/kg^	UM	<11	<13	<12	<12	<14
Ethylbenzene	BTEXHSA	10	μg/kg^	UM	<11	<13	<12	<12	<14
m/p-Xylene	BTEXHSA	20	μg/kg^	UM	<23	<25	<25	<25	<28
o-Xylene	BTEXHSA	10	μg/kg^	им	<11	<13	<12	<12	<14

FINAL_COA_00001 Page 5 of 34

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

				Project ID	2005	50367
				Sample ID	006	007
				Customer ID	BH101-11-ES-2.50	BH101-18-ES-4.50
				Sample Type	SOLID	SOLID
				Sampling Date	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred		
Arsenic as As	ICPMSS	0.3	mg/kg^	UM	13.5	8.6
Cadmium as Cd	ICPMSS	0.2	mg/kg^	UM	0.2	<0.2
Copper as Cu	ICPMSS	1.6	mg/kg^	UM	61.9	28.4
Lead as Pb	ICPMSS	0.7	mg/kg^	UM	179.5	86.9
Mercury as Hg	ICPMSS	0.5	mg/kg^	UM	1.7	0.6
Molybdenum as Mo	ICPMSS	0.5	mg/kg^	UM	3.0	1.7
Nickel as Ni	ICPMSS	2	mg/kg^	UM	21.3	12.4
Selenium as Se	ICPMSS	0.5	mg/kg^	UM	<0.5	<0.5
Total Chromium as Cr	ICPMSS	1.2	mg/kg^	UM	58.8	35.2
Vanadium as V	ICPMSS	0.6	mg/kg^	N	38.7	24.5
Zinc as Zn	ICPMSS	16	mg/kg^	UM	78.5	45.9
Barium as Ba	ICPSOIL	0.5	mg/kg^	UM	72.3	50.8
Water Soluble Sulphate as SO4 by Mass	ICPWSS	20	mg/kg^	N	167	139
Benzene	BTEXHSA	10	μg/kg^	UM	<14	<15
Ethylbenzene	BTEXHSA	10	μg/kg^	UM	<14	<15
m/p-Xylene	BTEXHSA	20	μg/kg^	UM	<28	<29
o-Xylene	BTEXHSA	10	μg/kg^	UM	<14	<15

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

Analysis Results

				Project ID	20050367					
				Sample ID	001	002	003	004	005	
				Customer ID	BH101-1-ES-0.30	BH101-3-ES-0.50	BH101-5-ES-1.00	BH101-7-ES-1.50	BH101-8-ES-2.00	
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	
				Sampling Date	12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020	
Analysis	Method Code	MDL	Units	Accred						
Toluene	BTEXHSA	10	μg/kg^	UM	<11	<13	<12	<12	<14	
Acenaphthene	PAHMSUS	0.08	mg/kg^	UM	<0.09	<0.10	<0.10	<0.10	<0.11	
Acenaphthylene	PAHMSUS	0.08	mg/kg^	U	0.12	<0.10	<0.10	<0.10	<0.11	
Anthracene	PAHMSUS	0.08	mg/kg^	U	0.16	<0.10	<0.10	<0.10	<0.11	
Benzo[a]anthracene	PAHMSUS	0.08	mg/kg^	UM	0.93	0.30	<0.10	<0.10	<0.11	
Benzo[a]pyrene	PAHMSUS	0.08	mg/kg^	UM	1.21	0.26	<0.10	<0.10	<0.11	
Benzo[b]fluoranthene	PAHMSUS	0.08	mg/kg^	UM	1.49	0.35	0.11	<0.10	<0.11	
Benzo[g,h,i]perylene	PAHMSUS	0.08	mg/kg^	UM	0.82	0.13	<0.10	<0.10	<0.11	
Benzo[k]fluoranthene	PAHMSUS	0.08	mg/kg^	UM	0.64	0.19	<0.10	<0.10	<0.11	
Chrysene	PAHMSUS	0.08	mg/kg^	UM	0.80	0.28	<0.10	<0.10	<0.11	
Coronene	PAHMSUS	0.08	mg/kg^	N	0.31	<0.10	<0.10	<0.10	<0.11	
Dibenzo[a,h]anthracene	PAHMSUS	0.08	mg/kg^	UM	0.29	<0.10	<0.10	<0.10	<0.11	
Fluoranthene	PAHMSUS	0.08	mg/kg^	UM	1.28	0.47	<0.10	<0.10	<0.11	
Fluorene	PAHMSUS	0.08	mg/kg^	UM	<0.09	<0.10	<0.10	<0.10	<0.11	
Indeno[1,2,3-cd]pyrene	PAHMSUS	0.08	mg/kg^	UM	0.98	0.18	<0.10	<0.10	<0.11	
Naphthalene	PAHMSUS	0.08	mg/kg^	UM	<0.09	<0.10	<0.10	<0.10	<0.11	
Phenanthrene	PAHMSUS	0.08	mg/kg^	UM	0.48	0.37	<0.10	<0.10	<0.11	

Page 7 of 34 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

				Project ID	2005	0367
				Sample ID	006	007
				Customer ID	BH101-11-ES-2.50	BH101-18-ES-4.50
				Sample Type	SOLID	SOLID
			s	ampling Date	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred		
Toluene	BTEXHSA	10	μg/kg^	UM	<14	<15
Acenaphthene	PAHMSUS	0.08	mg/kg^	UM	<0.11	<0.12
Acenaphthylene	PAHMSUS	0.08	mg/kg^	U	<0.11	<0.12
Anthracene	PAHMSUS	0.08	mg/kg^	U	<0.11	<0.12
Benzo[a]anthracene	PAHMSUS	0.08	mg/kg^	UM	<0.11	<0.12
Benzo[a]pyrene	PAHMSUS	0.08	mg/kg^	UM	<0.11	<0.12
Benzo[b]fluoranthene	PAHMSUS	0.08	mg/kg^	UM	<0.11	<0.12
Benzo[g,h,i]perylene	PAHMSUS	0.08	mg/kg^	UM	<0.11	<0.12
Benzo[k]fluoranthene	PAHMSUS	0.08	mg/kg^	UM	<0.11	<0.12
Chrysene	PAHMSUS	0.08	mg/kg^	UM	<0.11	<0.12
Coronene	PAHMSUS	0.08	mg/kg^	N	<0.11	<0.12
Dibenzo[a,h]anthracene	PAHMSUS	0.08	mg/kg^	UM	<0.11	<0.12
Fluoranthene	PAHMSUS	0.08	mg/kg^	UM	<0.11	<0.12
Fluorene	PAHMSUS	0.08	mg/kg^	UM	<0.11	<0.12
Indeno[1,2,3-cd]pyrene	PAHMSUS	0.08	mg/kg^	UM	<0.11	<0.12
Naphthalene	PAHMSUS	0.08	mg/kg^	UM	<0.11	<0.12
Phenanthrene	PAHMSUS	0.08	mg/kg^	UM	<0.11	<0.12

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

Analysis Results

				Project ID	20030367					
				Sample ID	001	002	003	004	005	
				Customer ID	BH101-1-ES-0.30	BH101-3-ES-0.50	BH101-5-ES-1.00	BH101-7-ES-1.50	BH101-8-ES-2.00	
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	
				Sampling Date	12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020	
Analysis	Method Code	MDL	Units	Accred						
Pyrene	PAHMSUS	0.08	mg/kg^	UM	1.15	0.34	<0.10	<0.10	<0.11	
Total PAH 16	PAHMSUS	1.28	mg/kg^	U	<10.6	<3.46	<1.60	<1.58	<1.81	
PCB 101	PCBECD	5	μg/kg^	UM	<5.62	<6.24	<6.20	<6.19	<7.06	
PCB 118	PCBECD	5	μg/kg^	UM	<5.62	<6.24	<6.20	<6.19	<7.06	
PCB 138	PCBECD	5	μg/kg^	UM	<5.62	<6.24	<6.20	<6.19	<7.06	
PCB 153	PCBECD	5	μg/kg^	UM	<5.62	<6.24	<6.20	<6.19	<7.06	
PCB 180	PCBECD	5	μg/kg^	UM	<5.62	<6.24	<6.20	<6.19	<7.06	
PCB 28	PCBECD	5	μg/kg^	UM	<5.62	<6.24	<6.20	<6.19	<7.06	
PCB 52	PCBECD	5	μg/kg^	UM	<5.62	<6.24	<6.20	<6.19	<7.06	
1,2,4-Trichlorobenzene	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1	<0.1	<0.1	<0.1	
1,2-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
1,3-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
1,4-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
1-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
2,4,5-Trichlorophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
2,4,6-Trichlorophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	
2,4-Dichlorophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1	

Page 9 of 34 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

				Project ID	2005	0367
				Sample ID	006	007
				Customer ID	BH101-11-ES-2.50	BH101-18-ES-4.50
				Sample Type	SOLID	SOLID
			\$	Sampling Date	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred		
Pyrene	PAHMSUS	0.08	mg/kg^	UM	<0.11	<0.12
Total PAH 16	PAHMSUS	1.28	mg/kg^	U	<1.81	<1.87
PCB 101	PCBECD	5	μg/kg^	UM	<7.05	<7.32
PCB 118	PCBECD	5	μg/kg^	UM	<7.05	<7.32
PCB 138	PCBECD	5	μg/kg^	UM	<7.05	<7.32
PCB 153	PCBECD	5	μg/kg^	UM	<7.05	<7.32
PCB 180	PCBECD	5	μg/kg^	UM	<7.05	<7.32
PCB 28	PCBECD	5	μg/kg^	UM	<7.05	<7.32
PCB 52	PCBECD	5	μg/kg^	UM	<7.05	<7.32
1,2,4-Trichlorobenzene	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1
1,2-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
1,3-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
1,4-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
1-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
2,4,5-Trichlorophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
2,4,6-Trichlorophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
2,4-Dichlorophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

Analysis Results

				Project ID	20050367						
				Sample ID	001	002	003	004	005		
				Customer ID	BH101-1-ES-0.30	BH101-3-ES-0.50	BH101-5-ES-1.00	BH101-7-ES-1.50	BH101-8-ES-2.00		
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID		
				Sampling Date	12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020		
Analysis	Method Code	MDL	Units	Accred							
2,4-Dimethylphenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
2,4-Dinitrophenol	SVOCSW	0.5	mg/kg^	N	<0.6	<0.6	<0.6	<0.6	<0.7		
2,4-Dinitrotoluene	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3	<0.2	<0.2	<0.3		
2,6-Dinitrotoluene	SVOCSW	0.5	mg/kg^	U	<0.6	<0.6	<0.6	<0.6	<0.7		
2-Chloronaphthalene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
2-Chlorophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
2-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
2-Methylphenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
2-Nitroaniline	SVOCSW	0.5	mg/kg^	N	<0.6	<0.6	<0.6	<0.6	<0.7		
2-Nitrophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
3- & 4-Methylphenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
3-Nitroaniline	SVOCSW	0.5	mg/kg^	N	<0.6	<0.6	<0.6	<0.6	<0.7		
4,6-Dinitro-2-methylphenol	SVOCSW	0.2	mg/kg^	N	<0.2	<0.3	<0.2	<0.2	<0.3		
4-Bromophenyl-phenylether	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
4-Chloro-3-methylphenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
4-Chloroaniline	SVOCSW	0.5	mg/kg^	N	<0.6	<0.6	<0.6	<0.6	<0.7		
4-Chlorophenol	SVOCSW	0.5	mg/kg^	U	<0.6	<0.6	<0.6	<0.6	<0.7		

Page 11 of 34 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

				Project ID	2005	0367
				Sample ID	006	007
				Customer ID	BH101-11-ES-2.50	BH101-18-ES-4.50
				Sample Type	SOLID	SOLID
			\$	Sampling Date	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred		
2,4-Dimethylphenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
2,4-Dinitrophenol	SVOCSW	0.5	mg/kg^	N	<0.7	<0.7
2,4-Dinitrotoluene	SVOCSW	0.2	mg/kg^	U	<0.3	<0.3
2,6-Dinitrotoluene	SVOCSW	0.5	mg/kg^	U	<0.7	<0.7
2-Chloronaphthalene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
2-Chlorophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
2-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
2-Methylphenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
2-Nitroaniline	SVOCSW	0.5	mg/kg^	N	<0.7	<0.7
2-Nitrophenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
3- & 4-Methylphenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
3-Nitroaniline	SVOCSW	0.5	mg/kg^	N	<0.7	<0.7
4,6-Dinitro-2-methylphenol	SVOCSW	0.2	mg/kg^	N	<0.3	<0.3
4-Bromophenyl-phenylether	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
4-Chloro-3-methylphenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
4-Chloroaniline	SVOCSW	0.5	mg/kg^	N	<0.7	<0.7
4-Chlorophenol	SVOCSW	0.5	mg/kg^	U	<0.7	<0.7

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

				Project ID	20030367						
				Sample ID	001	002	003	004	005		
				Customer ID	BH101-1-ES-0.30	BH101-3-ES-0.50	BH101-5-ES-1.00	BH101-7-ES-1.50	BH101-8-ES-2.00		
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID		
				Sampling Date	12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020		
Analysis	Method Code	MDL	Units	Accred							
4-Chlorophenyl-phenylether	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
4-Nitroaniline	SVOCSW	0.6	mg/kg^	N	<0.7	<0.7	<0.7	<0.7	<0.8		
4-Nitrophenol	SVOCSW	0.5	mg/kg^	N	<0.6	<0.6	<0.6	<0.6	<0.7		
Acenaphthene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
Acenaphthylene	SVOCSW	0.1	mg/kg^	U	0.2	<0.1	<0.1	<0.1	<0.1		
Anthracene	SVOCSW	0.1	mg/kg^	U	0.2	<0.1	<0.1	<0.1	<0.1		
Azobenzene	SVOCSW	0.3	mg/kg^	N	<0.3	<0.4	<0.4	<0.4	<0.4		
Benzo[a]anthracene	SVOCSW	0.2	mg/kg^	U	1.9	<0.3	0.3	<0.2	<0.3		
Benzo[a]pyrene	SVOCSW	0.2	mg/kg^	U	2.0	<0.3	0.3	<0.2	<0.3		
Benzo[b]fluoranthene	SVOCSW	0.2	mg/kg^	U	2.6	<0.3	0.3	<0.2	<0.3		
Benzo[g,h,i]perylene	SVOCSW	0.5	mg/kg^	U	1.4	<0.6	<0.6	<0.6	<0.7		
Benzo[k]fluoranthene	SVOCSW	0.2	mg/kg^	U	0.9	<0.3	<0.2	<0.2	<0.3		
Benzoic Acid	SVOCSW	0.5	mg/kg^	N	<0.6	<0.6	<0.6	<0.6	<0.7		
Benzyl alcohol	SVOCSW	0.5	mg/kg^	U	<0.6	<0.6	<0.6	<0.6	<0.7		
Biphenyl	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
bis(2-Chloroethoxy)methane	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
bis(2-Chloroethyl)ether	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

				Project ID	2005	0367
				Sample ID	006	007
				Customer ID	BH101-11-ES-2.50	BH101-18-ES-4.50
				Sample Type	SOLID	SOLID
			s	Sampling Date	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred		
4-Chlorophenyl-phenylether	svocsw	0.1	mg/kg^	U	<0.1	<0.1
4-Nitroaniline	svocsw	0.6	mg/kg^	N	<0.8	<0.9
4-Nitrophenol	SVOCSW	0.5	mg/kg^	N	<0.7	<0.7
Acenaphthene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Acenaphthylene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Anthracene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Azobenzene	SVOCSW	0.3	mg/kg^	N	<0.4	<0.4
Benzo[a]anthracene	SVOCSW	0.2	mg/kg^	U	<0.3	<0.3
Benzo[a]pyrene	SVOCSW	0.2	mg/kg^	U	<0.3	<0.3
Benzo[b]fluoranthene	SVOCSW	0.2	mg/kg^	U	<0.3	<0.3
Benzo[g,h,i]perylene	SVOCSW	0.5	mg/kg^	U	<0.7	<0.7
Benzo[k]fluoranthene	SVOCSW	0.2	mg/kg^	U	<0.3	<0.3
Benzoic Acid	SVOCSW	0.5	mg/kg^	N	<0.7	<0.7
Benzyl alcohol	SVOCSW	0.5	mg/kg^	U	<0.7	<0.7
Biphenyl	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
bis(2-Chloroethoxy)methane	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
bis(2-Chloroethyl)ether	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

Analysis Results

				Project ID	20030307						
				Sample ID	001	002	003	004	005		
				Customer ID	BH101-1-ES-0.30	BH101-3-ES-0.50	BH101-5-ES-1.00	BH101-7-ES-1.50	BH101-8-ES-2.00		
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID		
				Sampling Date	12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020		
Analysis	Method Code	MDL	Units	Accred							
bis(2-Chloroisopropyl)ether	SVOCSW	0.5	mg/kg^	U	<0.6	<0.6	<0.6	<0.6	<0.7		
bis(2-Ethylhexyl)phthalate	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3	<0.2	<0.2	<0.3		
Butylbenzylphthalate	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3	<0.2	<0.2	<0.3		
Carbazole	SVOCSW	0.3	mg/kg^	N	<0.3	<0.4	<0.4	<0.4	<0.4		
Chrysene	SVOCSW	0.2	mg/kg^	U	1.9	<0.3	0.3	<0.2	<0.3		
Coronene	SVOCSW	0.3	mg/kg^	N	0.5	<0.4	<0.4	<0.4	<0.4		
Dibenzo[a,h]anthracene	SVOCSW	0.5	mg/kg^	U	<0.6	<0.6	<0.6	<0.6	<0.7		
Dibenzofuran	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
Diethylphthalate	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
Dimethylphthalate	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
Di-n-butylphthalate	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
Di-n-octylphthalate	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3	<0.2	<0.2	<0.3		
Diphenyl ether	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
Fluoranthene	SVOCSW	0.2	mg/kg^	U	2.6	<0.3	0.2	<0.2	<0.3		
Fluorene	SVOCSW	0.2	mg/kg^	U	<0.2	<0.3	<0.2	<0.2	<0.3		
Hexachlorobenzene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
Hexachlorobutadiene	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1	<0.1	<0.1	<0.1		

Page 15 of 34 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

				Project ID	2005	0367
				Sample ID	006	007
				Customer ID	BH101-11-ES-2.50	BH101-18-ES-4.50
				Sample Type	SOLID	SOLID
			\$	Sampling Date	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred		
bis(2-Chloroisopropyl)ether	SVOCSW	0.5	mg/kg^	U	<0.7	<0.7
bis(2-Ethylhexyl)phthalate	SVOCSW	0.2	mg/kg^	U	<0.3	<0.3
Butylbenzylphthalate	SVOCSW	0.2	mg/kg^	U	<0.3	<0.3
Carbazole	SVOCSW	0.3	mg/kg^	N	<0.4	<0.4
Chrysene	SVOCSW	0.2	mg/kg^	U	<0.3	<0.3
Coronene	SVOCSW	0.3	mg/kg^	N	<0.4	<0.4
Dibenzo[a,h]anthracene	SVOCSW	0.5	mg/kg^	U	<0.7	<0.7
Dibenzofuran	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Diethylphthalate	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Dimethylphthalate	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Di-n-butylphthalate	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Di-n-octylphthalate	SVOCSW	0.2	mg/kg^	U	<0.3	<0.3
Diphenyl ether	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Fluoranthene	SVOCSW	0.2	mg/kg^	U	<0.3	<0.3
Fluorene	SVOCSW	0.2	mg/kg^	U	<0.3	<0.3
Hexachlorobenzene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Hexachlorobutadiene	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

Analysis Results

				Project ID	20050367						
				Sample ID	001	002	003	004	005		
				Customer ID	BH101-1-ES-0.30	BH101-3-ES-0.50	BH101-5-ES-1.00	BH101-7-ES-1.50	BH101-8-ES-2.00		
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID		
				Sampling Date	12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020		
Analysis	Method Code	MDL	Units	Accred							
Hexachlorocyclopentadiene	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1	<0.1	<0.1	<0.1		
Hexachloroethane	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
Indeno[1,2,3-cd]pyrene	SVOCSW	0.5	mg/kg^	U	1.5	<0.6	<0.6	<0.6	<0.7		
Isophorone	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1	<0.1	<0.1	<0.1		
Naphthalene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
Nitrobenzene	SVOCSW	0.5	mg/kg^	U	<0.6	<0.6	<0.6	<0.6	<0.7		
N-Nitroso-di-n-propylamine	SVOCSW	0.9	mg/kg^	N	<1.0	<1.1	<1.1	<1.1	<1.3		
N-Nitrosodiphenylamine	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1	<0.1	<0.1	<0.1		
Pentachlorophenol	SVOCSW	0.5	mg/kg^	N	<0.6	<0.6	<0.6	<0.6	<0.7		
Phenanthrene	SVOCSW	0.1	mg/kg^	U	0.8	<0.1	0.2	<0.1	<0.1		
Phenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1	<0.1	<0.1	<0.1		
Pyrene	SVOCSW	0.2	mg/kg^	U	2.3	<0.3	0.3	<0.2	<0.3		
>C10-C12 (Aliphatic)	TPHFIDUS (Aliphatic)	4	mg/kg^	U	<4.50	<4.99	<4.96	<4.95	<5.65		
>C12-C16 (Aliphatic)	TPHFIDUS (Aliphatic)	4	mg/kg^	U	<4.50	<4.99	5.01	<4.95	<5.65		
>C16-C21 (Aliphatic)	TPHFIDUS (Aliphatic)	4	mg/kg^	U	<4.50	<4.99	<4.96	<4.95	<5.65		
>C21-C35 (Aliphatic)	TPHFIDUS (Aliphatic)	10	mg/kg^	U	<11.2	<12.5	<12.4	<12.4	<14.1		
>C35-C44 (Aliphatic)	TPHFIDUS (Aliphatic)	6	mg/kg^	N	<6.75	<7.49	<7.43	<7.43	<8.47		

Page 17 of 34 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

				Project ID	2005	0367
				Sample ID	006	007
				Customer ID	BH101-11-ES-2.50	BH101-18-ES-4.5
				Sample Type	SOLID	SOLID
			\$	Sampling Date	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred		
Hexachlorocyclopentadiene	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1
Hexachloroethane	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Indeno[1,2,3-cd]pyrene	SVOCSW	0.5	mg/kg^	U	<0.7	<0.7
Isophorone	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1
Naphthalene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Nitrobenzene	SVOCSW	0.5	mg/kg^	U	<0.7	<0.7
N-Nitroso-di-n-propylamine	SVOCSW	0.9	mg/kg^	N	<1.3	<1.3
N-Nitrosodiphenylamine	SVOCSW	0.1	mg/kg^	N	<0.1	<0.1
Pentachlorophenol	SVOCSW	0.5	mg/kg^	N	<0.7	<0.7
Phenanthrene	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Phenol	SVOCSW	0.1	mg/kg^	U	<0.1	<0.1
Pyrene	SVOCSW	0.2	mg/kg^	U	<0.3	<0.3
>C10-C12 (Aliphatic)	TPHFIDUS (Aliphatic)	4	mg/kg^	U	<5.64	<5.86
>C12-C16 (Aliphatic)	TPHFIDUS (Aliphatic)	4	mg/kg^	U	5.94	<5.86
>C16-C21 (Aliphatic)	TPHFIDUS (Aliphatic)	4	mg/kg^	U	<5.64	<5.86
>C21-C35 (Aliphatic)	TPHFIDUS (Aliphatic)	10	mg/kg^	U	<14.1	14.7
>C35-C44 (Aliphatic)	TPHFIDUS (Aliphatic)	6	mg/kg^	N	<8.46	<8.78

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

Analysis Results

				Project ID			20050367		
				Sample ID	001	002	003	004	005
				Customer ID	BH101-1-ES-0.30	BH101-3-ES-0.50	BH101-5-ES-1.00	BH101-7-ES-1.50	BH101-8-ES-2.00
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID
			:	Sampling Date	12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred					
Total TPH (Aliphatic)	TPHFIDUS (Aliphatic)	20	mg/kg^	U	<22.5	<25.0	<24.8	<24.8	<28.2
>C10-C12 (Aromatic)	TPHFIDUS (Aromatic)	4	mg/kg^	U	<4.50*	5.08*	<4.96*	<4.95*	<5.65*
>C12-C16 (Aromatic)	TPHFIDUS (Aromatic)	4	mg/kg^	U	<4.50	<4.99	<4.96	<4.95	<5.65
>C16-C21 (Aromatic)	TPHFIDUS (Aromatic)	4	mg/kg^	U	8.20	<4.99	<4.96	<4.95	<5.65
>C21-C35 (Aromatic)	TPHFIDUS (Aromatic)	10	mg/kg^	U	48.5	27.0	16.0	13.4	24.5
>C35-C44 (Aromatic)	TPHFIDUS (Aromatic)	6	mg/kg^	N	10.8	<7.49	<7.43	<7.43	<8.47
Total TPH (Aromatic)	TPHFIDUS (Aromatic)	20	mg/kg^	U	67.4	36.2	<24.8	<24.8	34.4
1,1,1,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,1,1-Trichloroethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	N	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	VOCHSAS	1	μg/kg^	им	7	6	10	6	7
1,1-Dichloroethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,1-Dichloroethene	VOCHSAS	1	μg/kg^	U	<1*	<1*	<1*	<1*	<1*
1,1-Dichloropropene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,2,3-Trichlorobenzene	VOCHSAS	3	μg/kg^	UM	<4	<4	<4	<4	<4
1,2,3-Trichloropropane	VOCHSAS	1	μg/kg^	им	<1	<1	<1	<1	<1
1,2,4-Trichlorobenzene	VOCHSAS	3	μg/kg^	N	<4	<4	<4	<4	<4

Page 19 of 34 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

				Project ID	2005	0367
				Sample ID	006	007
				Customer ID	BH101-11-ES-2.50	BH101-18-ES-4.5
				Sample Type	SOLID	SOLID
			\$	Sampling Date	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred		
Total TPH (Aliphatic)	TPHFIDUS (Aliphatic)	20	mg/kg^	U	<28.2	<29.3
>C10-C12 (Aromatic)	TPHFIDUS (Aromatic)	4	mg/kg^	U	<5.64*	<5.86*
>C12-C16 (Aromatic)	TPHFIDUS (Aromatic)	4	mg/kg^	U	<5.64	<5.86
>C16-C21 (Aromatic)	TPHFIDUS (Aromatic)	4	mg/kg^	U	7.31	<5.86
>C21-C35 (Aromatic)	TPHFIDUS (Aromatic)	10	mg/kg^	U	19.3	18.5
>C35-C44 (Aromatic)	TPHFIDUS (Aromatic)	6	mg/kg^	N	<8.46	<8.78
Total TPH (Aromatic)	TPHFIDUS (Aromatic)	20	mg/kg^	U	30.2	<29.3
1,1,1,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	UM	<1	<2
1,1,1-Trichloroethane	VOCHSAS	1	μg/kg^	UM	<1	<2
1,1,2,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	N	<1	<2
1,1,2-Trichloroethane	VOCHSAS	1	μg/kg^	UM	9	4
1,1-Dichloroethane	VOCHSAS	1	μg/kg^	UM	<1	<2
1,1-Dichloroethene	VOCHSAS	1	μg/kg^	U	<1*	<2*
1,1-Dichloropropene	VOCHSAS	1	μg/kg^	UM	<1	<2
1,2,3-Trichlorobenzene	VOCHSAS	3	μg/kg^	UM	<4	<5
1,2,3-Trichloropropane	VOCHSAS	1	μg/kg^	UM	<1	<2
1,2,4-Trichlorobenzene	VOCHSAS	3	μg/kg^	N	<4	<5

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

Analysis Results

				Project ID			20050367		
				Sample ID	001	002	003	004	005
				Customer ID	BH101-1-ES-0.30	BH101-3-ES-0.50	BH101-5-ES-1.00	BH101-7-ES-1.50	BH101-8-ES-2.00
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID
				Sampling Date	12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred					
1,2,4-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,2-Dibromo-3-chloropropane	VOCHSAS	1	μg/kg^	U	<1	<1	<1	<1	<1
1,2-Dibromoethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,2-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,2-Dichloroethane	VOCHSAS	1	μg/kg^	UM	21	12	22	9	10
1,2-Dichloropropane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,3,5-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,3-Dichloropropane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
2,2-Dichloropropane	VOCHSAS	2	μg/kg^	UM	<2	<2	<3	<3	<3
2-Chlorotoluene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
4-Chlorotoluene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Benzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1 <1		<1
Bromobenzene	VOCHSAS	1	μg/kg^	UM	<1*	<1*	<1*	<1*	<1*
Bromochloromethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Bromodichloromethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1

Page 21 of 34 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

				Project ID	2005	0367
				Sample ID	006	007
				Customer ID	BH101-11-ES-2.50	BH101-18-ES-4.5
				Sample Type	SOLID	SOLID
			s	ampling Date	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred		
1,2,4-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<2
1,2-Dibromo-3-chloropropane	VOCHSAS	1	μg/kg^	U	<1	<2
1,2-Dibromoethane	VOCHSAS	1	μg/kg^	UM	<1	<2
1,2-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM	<1	<2
1,2-Dichloroethane	VOCHSAS	1	μg/kg^	UM	18	6
1,2-Dichloropropane	VOCHSAS	1	μg/kg^	UM	<1	<2
1,3,5-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<2
1,3-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM	<1	<2
1,3-Dichloropropane	VOCHSAS	1	μg/kg^	UM	<1	<2
1,4-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM	<1	<2
2,2-Dichloropropane	VOCHSAS	2	μg/kg^	UM	<3	<3
2-Chlorotoluene	VOCHSAS	1	μg/kg^	UM	<1	<2
4-Chlorotoluene	VOCHSAS	1	μg/kg^	UM	<1	<2
Benzene	VOCHSAS	1	μg/kg^	UM	<1	<2
Bromobenzene	VOCHSAS	1	μg/kg^	UM	<1*	<2*
Bromochloromethane	VOCHSAS	1	μg/kg^	UM	<1	<2
Bromodichloromethane	VOCHSAS	1	μg/kg^	UM	<1	<2

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

Analysis Results

				Project ID			20050367		
				Sample ID	001	002	003	004	005
				Customer ID	BH101-1-ES-0.30	BH101-3-ES-0.50	BH101-5-ES-1.00	BH101-7-ES-1.50	BH101-8-ES-2.00
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID
				Sampling Date	12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred					
Bromoform	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Bromomethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Carbon Tetrachloride	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Chlorobenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Chloroethane	VOCHSAS	2	μg/kg^	UM	<2	<2	<3	<3	<3
Chloroform	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Chloromethane	VOCHSAS	3	μg/kg^	U	<4	<4	<4	<4	<4
cis 1,2-Dichloroethene	VOCHSAS	5	μg/kg^	UM	<6	<6	<7	<7	<7
cis 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Dibromochloromethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Dibromomethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
Dichlorodifluoromethane	VOCHSAS	1	μg/kg^	N	<1	<1	<1	<1	<1
Ethylbenzene	VOCHSAS	2	μg/kg^	UM	<2	<2	<3	<3	<3
Hexachlorobutadiene	VOCHSAS	2	μg/kg^	N	<2	<2	<3	<3	<3
iso-Propylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1
m and p-Xylene	VOCHSAS	4	μg/kg^	UM	<5	<5	<5	<5	<5
МТВЕ	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1

Page 23 of 34 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

				Project ID	2005	0367
				Sample ID	006	007
				Customer ID	BH101-11-ES-2.50	BH101-18-ES-4.50
				Sample Type	SOLID	SOLID
			\$	Sampling Date	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred		
Bromoform	VOCHSAS	1	μg/kg^	UM	<1	<2
Bromomethane	VOCHSAS	1	μg/kg^	UM	<1	<2
Carbon Tetrachloride	VOCHSAS	1	μg/kg^	UM	<1	<2
Chlorobenzene	VOCHSAS	1	μg/kg^	UM	<1	<2
Chloroethane	VOCHSAS	2	μg/kg^	UM	<3	<3
Chloroform	VOCHSAS	1	μg/kg^	UM	<1	<2
Chloromethane	VOCHSAS	3	μg/kg^	U	<4	<5
cis 1,2-Dichloroethene	VOCHSAS	5	μg/kg^	UM	<7	<8
cis 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM	<1	<2
Dibromochloromethane	VOCHSAS	1	μg/kg^	UM	<1	<2
Dibromomethane	VOCHSAS	1	μg/kg^	UM	<1	<2
Dichlorodifluoromethane	VOCHSAS	1	μg/kg^	N	<1	<2
Ethylbenzene	VOCHSAS	2	μg/kg^	UM	<3	<3
Hexachlorobutadiene	VOCHSAS	2	μg/kg^	N	<3	<3
iso-Propylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<2
m and p-Xylene	VOCHSAS	4	μg/kg^	UM	<5	<6
MTBE	VOCHSAS	1	μg/kg^	UM	<1	<2

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

Analysis Results

				Project ID	20050367						
				Sample ID	001	002	003	004	005		
				Customer ID	BH101-1-ES-0.30	BH101-3-ES-0.50	BH101-5-ES-1.00	BH101-7-ES-1.50	BH101-8-ES-2.00		
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID		
				Sampling Date	12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020		
Analysis	Method Code	MDL	Units	Accred							
Naphthalene	VOCHSAS	5	μg/kg^	UM	<6	<6	<7	<7	<7		
n-Butylbenzene	VOCHSAS	1	μg/kg^	U	<1	<1	<1	<1	<1		
o-Xylene	VOCHSAS	2	μg/kg^	UM	<2	<2	<3	<3	<3		
p-Isopropyltoluene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1		
Propylbenzene	VOCHSAS	1	μg/kg^	UM	<1*	<1*	<1*	<1*	<1*		
sec-Butylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1		
Styrene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1		
tert-Butylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1		
Tetrachloroethene	VOCHSAS	3	μg/kg^	UM	5	4	4	<4	<4		
Toluene	VOCHSAS	5	μg/kg^	UM	<6	<6	<7	<7	<7		
trans 1,2-Dichloroethene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1		
trans 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1		
Trichloroethene	VOCHSAS	1	μg/kg^	U	<1	<1	<1	<1	<1		
Trichlorofluoromethane	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1		
Vinyl Chloride	VOCHSAS	1	μg/kg^	UM	<1	<1	<1	<1	<1		
Total Moisture at 105°C	TMSS	0.1	%	U	11.1	19.9	19.3	19.2	29.2		
Total Moisture at 35°C	CLANDPREP	0.1	%	N	8.2	16.8	18.6	16.3	24.6		

Page 25 of 34 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

				Project ID	2005	0367
				Sample ID	006	007
				Customer ID	BH101-11-ES-2.50	BH101-18-ES-4.50
				Sample Type	SOLID	SOLID
				Sampling Date	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred		
Naphthalene	VOCHSAS	5	μg/kg^	UM	<7	<8
n-Butylbenzene	VOCHSAS	1	μg/kg^	U	<1	<2
o-Xylene	VOCHSAS	2	μg/kg^	UM	<3	<3
p-Isopropyltoluene	VOCHSAS	1	μg/kg^	UM	<1	<2
Propylbenzene	VOCHSAS	1	μg/kg^	UM	<1*	<2*
sec-Butylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<2
Styrene	VOCHSAS	1	μg/kg^	UM	<1	<2
tert-Butylbenzene	VOCHSAS	1	μg/kg^	UM	<1	<2
Tetrachloroethene	VOCHSAS	3	μg/kg^	UM	5	<5
Toluene	VOCHSAS	5	μg/kg^	UM	<7	<8
trans 1,2-Dichloroethene	VOCHSAS	1	μg/kg^	UM	<1	<2
trans 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM	<1	<2
Trichloroethene	VOCHSAS	1	μg/kg^	U	<1	<2
Trichlorofluoromethane	VOCHSAS	1	μg/kg^	UM	<1	<2
Vinyl Chloride	VOCHSAS	1	μg/kg^	UM	<1	<2
Total Moisture at 105°C	TMSS	0.1	%	U	29.1	31.7
Total Moisture at 35°C	CLANDPREP	0.1	%	N	27.7	27.8

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

Analysis Results

				Project ID			20050367		
				Sample ID	001	002	003	004	005
				Customer ID	BH101-1-ES-0.30	BH101-3-ES-0.50	BH101-5-ES-1.00	BH101-7-ES-1.50	BH101-8-ES-2.00
				Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID
				Sampling Date	12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred					
Colour of Material	CLANDPREP		-	N	Brown	Brown	Brown	Brown	Brown
Major Constituents	CLANDPREP		-	N	SILT	SILT	SILT	MADE GROUND	MADE GROUND
Minor Constituents	CLANDPREP		-	N	Clay	Gravel	Gravel	None	None
Miscellaneous Constituents	CLANDPREP		-	N	Gravel	Brick	Brick	na	na
Asbestos Identification	SUB020		-	N	NAIIS	NAIIS	NAIIS	NAIIS	NAIIS

Page 27 of 34 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

				Project ID	2005	0367
				Sample ID	006	007
				Customer ID	BH101-11-ES-2.50	BH101-18-ES-4.50
				Sample Type	SOLID	SOLID
			Sampling Date		12/05/2020	12/05/2020
Analysis	Method Code	MDL	Units	Accred		
Colour of Material	CLANDPREP		-	N	Brown	Brown
Major Constituents	CLANDPREP		-	N	MADE GROUND	CLAY
Minor Constituents	CLANDPREP		-	N	None	Sand
Miscellaneous Constituents	CLANDPREP		-	N	na	na
Asbestos Identification	SUB020		-	N	NAIIS	NAIIS

CERTIFICATE OF ANALYSIS

ANALYSIS REQUESTED BY:

SOCOTEC UK Ltd

CONTRACT NO: \$12532-3

Environmental Chemistry

DATE OF ISSUE: 27.05.20

PO Box 100 **Burton upon Trent** Staffordshire **DE15 0XD**

DATE SAMPLES RECEIVED: 20.05.20

DATE ANALYSIS COMPLETED: 26.05.20

DESCRIPTION: Seven soil/loose aggregate samples each weighing approximately 0.9-1.5kg.

ANALYSIS REQUESTED: Qualitative and quantitative analysis of soil/loose aggregate samples for

mass determination of asbestos.

METHODS:

Qualitative - The samples were analysed qualitatively for asbestos by polarised light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative - The analysis was carried out using our documented in-house method based on HSE Contract Research Report No. 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire sample, detailed analysis of a representative sub-sample and quantification by hand picking/weighing and/or fibre counting/sizing as appropriate.

RESULTS:

Initial Screening

No asbestos was detected in any of the soil samples by stereo-binocular and polarised light microscopy.

A summary of the results is given in Table 1.

Page 1 of 2

CONTRACT NO: \$12532-3 **DATE OF ISSUE:** 27.05.20

RESULTS: (cont.)

Table 1: Qualitative Results

SOCOTEC Job I.D: 20050367

IOM sample number	Client sample number	ACM type detected	PLM result		
S72865	20050367-001-15	_	No Asbestos Detected		
S72866	20050367-002-15	-	No Asbestos Detected		
S72867	20050367-003-15	-	No Asbestos Detected		
S72868	20050367-004-15	-	No Asbestos Detected		
S72869	20050367-005-15	-	No Asbestos Detected		
S72870	20050367-006-15	-	No Aspestos Detected		
S72871	20050367-007-15	-	No Aspestos Detected		

Our detection limit for this method is 0.001%.

COMMENTS:

IOM Consulting cannot accept responsibility for samples that have been incorrectly collected or despatched by external clients.

Any opinions and interpretations expressed herein are out with the scope of our UKAS accreditation.

AUTHORISED BY:

D Third

20 Act

Scientific Technician

Report Number: 20050367

Additional Report Notes

Method	Commis ID	The following information should be taken into consideration when using the
Code	Sample ID	data contained within this report
TPHFIDUS (AROMATIC)	001 to 007	The Secondary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily (including the Primary Process Control) and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation , where applicable, from the affected analytes (C10-C12) . These circumstances should be taken into consideration when utilising the data.
GROHSA	7	The Secondary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily (including the Primary Process Control) and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation , where applicable, from the affected analytes (C5-C10, C6-C7, TOTAL GRO) . These circumstances should be taken into consideration when utilising the data.
VOCHSAS	001 to 007	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Bromobenzene, Propylbenzene). These circumstances should be taken into consideration when utilising the data.
VOCHSAS	001 to 007	The Secondary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily (including the Primary Process Control) and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (1,1-Dichloroethene). These circumstances should be taken into consideration when utilising the data.

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367

Date Issued: 03/06/2020

1						φ			
Sample Reference	Text ID	Reported Name	Incorrect Container	Incorrect Label	Headspace	Incorrect/No Preservative	No Sampling Date	Holding Time	Handling Time
					_	_	_		_
BH101-1-ES-0.30	20050367-001	PHSOIL						✓	
BH101-1-ES-0.30	20050367-001	GROHSA/BTEXHSA						✓	
BH101-1-ES-0.30	20050367-001	BTEXHSA						✓	
BH101-1-ES-0.30	20050367-001	VOCHSAS						✓	
BH101-3-ES-0.50	20050367-002	PHSOIL						✓	
BH101-3-ES-0.50	20050367-002	GROHSA/BTEXHSA						✓	
BH101-3-ES-0.50	20050367-002	BTEXHSA						✓	
BH101-3-ES-0.50	20050367-002	VOCHSAS						✓	
BH101-5-ES-1.00	20050367-003	PHSOIL						✓	
BH101-5-ES-1.00	20050367-003	GROHSA/BTEXHSA						✓	
BH101-5-ES-1.00	20050367-003	BTEXHSA						✓	
BH101-5-ES-1.00	20050367-003	VOCHSAS						✓	
BH101-7-ES-1.50	20050367-004	PHSOIL						✓	
BH101-7-ES-1.50	20050367-004	GROHSA/BTEXHSA						✓	
BH101-7-ES-1.50	20050367-004	BTEXHSA						✓	
BH101-7-ES-1.50	20050367-004	VOCHSAS						✓	
BH101-8-ES-2.00	20050367-005	PHSOIL						✓	
BH101-8-ES-2.00	20050367-005	GROHSA/BTEXHSA						✓	
BH101-8-ES-2.00	20050367-005	BTEXHSA						✓	
BH101-8-ES-2.00	20050367-005	VOCHSAS						✓	
BH101-11-ES-2.50	20050367-006	PHSOIL						✓	
BH101-11-ES-2.50	20050367-006	GROHSA/BTEXHSA						✓	
BH101-11-ES-2.50	20050367-006	BTEXHSA						✓	
BH101-11-ES-2.50	20050367-006	VOCHSAS						✓	
BH101-18-ES-4.50	20050367-007	PHSOIL						✓	
BH101-18-ES-4.50	20050367-007	GROHSA/BTEXHSA						✓	
BH101-18-ES-4.50	20050367-007	BTEXHSA						✓	
BH101-18-ES-4.50	20050367-007	VOCHSAS						✓	

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367 Date Issued: 03/06/2020

Analysis Method

<u>Analysis</u>	Analysis Type	Analysis Method
BTEXHSA	ORGANIC	As Received
CLANDPREP	PHYS	As Received
GROHSA	ORGANIC	As Received
ICPMSS	METALS	Air Dried & Ground
ICPSOIL	METALS	Air Dried & Ground
ICPWSS	METALS	Air Dried & Ground
ISEFSS	INORGANIC	Air Dried & Ground
KONECL	INORGANIC	Air Dried & Ground
KONENS	INORGANIC	Air Dried & Ground
LOI(%MM)	INORGANIC	Air Dried & Ground
PAHMSUS	ORGANIC	As Received
PCBECD	ORGANIC	As Received
SFAPI	INORGANIC	As Received
SVOCSW	ORGANIC	As Received
TMSS	PHYS	As Received
TPHFIDUS (Aliphatic)	ORGANIC	As Received
TPHFIDUS (Aromatic)	ORGANIC	As Received
VOCHSAS	ORGANIC	As Received
WSLM59	INORGANIC	Air Dried & Ground

Project Name: G0015-20 Hammersmith Bridge

Project No: 20050367

Date Issued: 03/06/2020

Additional Information

This report refers to samples as received, and SOCOTEC Uk Ltd takes no responsibility for accuracy or competence of sampling by others.

Results within this report relate only to the samples tested.

In the accreditation column of analysis report the codes are as follows:

U = UKAS accredited analysis

M = MCERT accredited analysis

N = Unaccredited analysis

Any units marked with ^ signify results are reported on a dry weight basis of 105° C

All Air Dried and Ground Samples (ADG) are oven dried at less than 35° c.

This report shall not be reproduced except in full and with approval from the laboratory.

Opinions and interpretations given are outside the scope of our UKAS accreditation.

Any samples marked with * are not covered by our scope of UKAS accreditation, if applicable further report notes have been added.

Any solid samples where the Major Constituents are not one of the following (Sand, Silt, Clay, Made Ground) are not one of our accredited matrix types.

Any samples marked with ‡ have had MCERTS accreditation removed for this result

Any samples marked with a tick in the deviant table is deviant for the specific reason.

Any samples reported as IS, NA, ND mean the following:

IS = Insufficient Sample to complete analysis

NA = Sample is not amenable for the required analysis

ND = Results cannot be determined

Our deviating sample report does not include deviancy information for Subcontracted analysis. Please see the report from the Subcontracted lab for information regarding any deviancies for this analysis.

End of Certificate of Analysis

Environmental Chemistry SOCOTEC UK Ashby Rd, Bretby, Burton-on-Trent, UK DE15 0YZ

Certificate of Analysis

Project No: 20060621

Client: SOCOTEC Geotechnical

Quote Number: BEC20057992

Project Reference: G0015-20

Site Name: G0015-20 Hammersmith Bridge

Contact: Stewart Nicol

Address: The Oasts, Newnham Court

Bearsted Road

Maidstone

Kent

Post Code: ME14 5LH

E-Mail: Stewart.nicol@socotec.com

Phone No: 07702 641769

Number of Samples Received: 1

Date Received: 19/06/2020

Analysis Date: 07/07/2020

Date Issued: 07/07/2020

Job Status: Complete

Report Type: Final Version 01

Account Manager

Laura Moore

Authorised by the Operations Manager Becky Batham

Page 1 of 15

Project Name: G0015-20 Hammersmith Bridge

Project No: 20060621

Date Issued: 07/07/2020

Samples Analysed

Sample Reference BH101 <u>Text ID</u> 20060621-001 Sample Date 17/06/2020 12:05:00 Sample Typ8ample Description WATER Ground Water

Project Name: G0015-20 Hammersmith Bridge

Project No: 20060621 Date Issued: 07/07/2020

Analysis Results

				Project ID	20060621
				Sample ID	001
				Customer ID	BH101
			\$	Sample Type	WATER
			Sa	mpling Date	17/06/2020
Analysis	Method Code	MDL	Units	Accred	
>C6-C8 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100
>C7-C8 Aromatic	GROHSA/BTEXHSA	0.005	mg/l	U	<0.005
>C8-C10 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100
>C8-C10 Aromatic	GROHSA/BTEXHSA	0.02	mg/l	U	<0.020
C5-C6 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100
C5-C7 Aromatic	GROHSA/BTEXHSA	0.005	mg/l	U	< 0.005
Total GRO	GROHSA/BTEXHSA	0.1	mg/l	U	<0.100
Conductivity at 20°C	WSLM2 & 3	100	μS/cm	U	1590
рН	WSLM2 & 3	1	pH units	U	7.6
Chloride as Cl	KONENS	1	mg/l	U	137
Chromium (VI) as Cr	KONENS	0.003	mg/l	U	<0.003
Free Cyanide	SFAPI	0.02	mg/l	U	<0.02
Phenol Index	SFAPI	0.05	mg/l	U	<0.05
Total Cyanide	SFAPI	0.02	mg/l	U	<0.02
Fluoride as F	ISEF	0.1	mg/l	U	0.2
Total Alkalinity	WSLM12	2	mg/l	U	511
BOD (5 day)	WSLM20	1	mg O2/I	U	<2.9
Total Organic Carbon	WSLM13	0.2	mg/l	U	4.2
Antimony as Sb	ICPMSW (Dissolved)	0.001	mg/l	U	0.002
Arsenic as As	ICPMSW (Dissolved)	0.001	mg/l	U	0.002
Cadmium as Cd	ICPMSW (Dissolved)	0.00002	mg/l	U	<0.00002
Total Chromium as Cr	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001
Copper as Cu	ICPMSW (Dissolved)	0.001	mg/l	U	0.001
Lead as Pb	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001
Mercury as Hg	ICPMSW (Dissolved)	0.00003	mg/l	U	<0.00003

Page 3 of 15 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20060621 Date Issued: 07/07/2020

Analysis Results

				Project ID	20060621	
				Sample ID	001	
				Customer ID	BH101	
				Sample Type	WATER	
			:	Sampling Date	17/06/2020	
Analysis	Method Code	MDL	Units	Accred		
Molybdenum as Mo	ICPMSW (Dissolved)	0.001	mg/l	U	0.003	
Nickel as Ni	ICPMSW (Dissolved)	0.001	mg/l	U	0.006	
Selenium as Se	ICPMSW (Dissolved)	0.001	mg/l	U	0.001	
Vanadium as V	ICPMSW (Dissolved)	0.001	mg/l	U	0.001	
Zinc as Zn	ICPMSW (Dissolved)	0.002	mg/l	U	0.008	
Barium as Ba	ICPWATVAR (Dissolved)	0.01	mg/l	U	0.05	
Total Sulphur as SO4	ICPWATVAR (Dissolved)	3	mg/l	U	207	
Benzene	BTEXHSA	5	μg/l	U	<5	
Ethylbenzene	BTEXHSA	5	μg/l	U	<5	
m/p-Xylene	BTEXHSA	10	μg/l	U	<10	
o-Xylene	BTEXHSA	5	μg/l	U	<5	
Toluene	BTEXHSA	5	μg/l	U	<5	
Acenaphthene	PAHMSW	0.01	μg/l	U	<0.01	
Acenaphthylene	PAHMSW	0.01	μg/l	U	<0.01	
Anthracene	PAHMSW	0.01	μg/l	U	<0.01	
Benzo[a]anthracene	PAHMSW	0.01	μg/l	U	<0.01	
Benzo[a]pyrene	PAHMSW	0.01	μg/l	U	<0.01	
Benzo[b]fluoranthene	PAHMSW	0.01	μg/l	U	<0.01	
Benzo[g,h,i]perylene	PAHMSW	0.01	μg/l	U	<0.01	
Benzo[k]fluoranthene	PAHMSW	0.01	μg/l	U	<0.01	
Chrysene	PAHMSW	0.01	μg/l	U	<0.01	
Coronene	PAHMSW	0.01	μg/l	U	<0.01	
Dibenzo[a,h]anthracene	PAHMSW	0.01	μg/l	U	<0.01	
Fluoranthene	PAHMSW	0.01	μg/l	U	<0.01	
Fluorene	PAHMSW	0.01	μg/l	U	<0.01	

Page 4 of 15 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20060621 Date Issued: 07/07/2020

Analysis Results

				Project ID	20060621
				Sample ID	001
				Customer ID	BH101
				Sample Type	WATER
				Sampling Date	17/06/2020
Analysis	Method Code	MDL	Units	Accred	
Indeno[1,2,3-cd]pyrene	PAHMSW	0.01	μg/l	U	<0.01
Naphthalene	PAHMSW	0.01	μg/l	U	<0.01
Phenanthrene	PAHMSW	0.01	μg/l	U	<0.01
Pyrene	PAHMSW	0.01	μg/l	U	<0.01
Total PAH 16	PAHMSW	0.16	μg/l	U	<0.16
PCB 101	PCBECD	0.01	μg/l	N	<0.01
PCB 118	PCBECD	0.01	μg/l	N	<0.01
PCB 138	PCBECD	0.01	μg/l	N	<0.01
PCB 153	PCBECD	0.01	μg/l	N	<0.01
PCB 180	PCBECD	0.01	μg/l	N	<0.01
PCB 28	PCBECD	0.01	μg/l	N	<0.01
PCB 52	PCBECD	0.01	μg/l	N	<0.01
1,2,4-Trichlorobenzene	SVOCSW	0.005	mg/l	N	<0.025
1,2-Dichlorobenzene	SVOCSW	0.005	mg/l	N	<0.025
1,3-Dichlorobenzene	SVOCSW	0.005	mg/l	N	<0.025
1,4-Dichlorobenzene	SVOCSW	0.005	mg/l	N	<0.025
1-Methylnaphthalene	SVOCSW	0.002	mg/l	N	<0.010
2,4,5-Trichlorophenol	SVOCSW	0.02	mg/l	N	<0.100
2,4,6-Trichlorophenol	SVOCSW	0.02	mg/l	N	<0.100
2,4-Dichlorophenol	SVOCSW	0.02	mg/l	N	<0.100
2,4-Dimethylphenol	SVOCSW	0.02	mg/l	N	<0.100
2,4-Dinitrophenol	SVOCSW	0.01	mg/l	N	<0.050
2,4-Dinitrotoluene	SVOCSW	0.005	mg/l	N	<0.025
2,6-Dinitrotoluene	SVOCSW	0.005	mg/l	N	<0.025
2-Chloronaphthalene	SVOCSW	0.002	mg/l	N	<0.010

Page 5 of 15 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20060621 Date Issued: 07/07/2020

Analysis Results

				Project ID	20060621
				Sample ID	001
				Customer ID	BH101
			:	Sample Type	WATER
			Sa	mpling Date	17/06/2020
Analysis	Method Code	MDL	Units	Accred	
2-Chlorophenol	SVOCSW	0.02	mg/l	N	<0.100
2-Methylnaphthalene	SVOCSW	0.002	mg/l	N	<0.010
2-Methylphenol	SVOCSW	0.005	mg/l	N	<0.025
2-Nitroaniline	SVOCSW	0.005	mg/l	N	<0.025
2-Nitrophenol	SVOCSW	0.02	mg/l	N	<0.100
3- & 4-Methylphenol	SVOCSW	0.02	mg/l	N	<0.100
3-Nitroaniline	SVOCSW	0.005	mg/l	N	<0.025
4,6-Dinitro-2-methylphenol	SVOCSW	0.05	mg/l	N	<0.250
4-Bromophenyl-phenylether	SVOCSW	0.005	mg/l	N	<0.025
4-Chloro-3-methylphenol	SVOCSW	0.005	mg/l	N	<0.025
4-Chloroaniline	SVOCSW	0.005	mg/l	N	<0.025
4-Chlorophenol	SVOCSW	0.02	mg/l	N	<0.100
4-Chlorophenyl-phenylether	SVOCSW	0.005	mg/l	N	<0.025
4-Nitroaniline	SVOCSW	0.005	mg/l	N	<0.025
4-Nitrophenol	SVOCSW	0.05	mg/l	N	<0.250
Acenaphthene	SVOCSW	0.002	mg/l	N	<0.010
Acenaphthylene	SVOCSW	0.002	mg/l	N	<0.010
Anthracene	SVOCSW	0.002	mg/l	N	<0.010
Azobenzene	SVOCSW	0.01	mg/l	N	<0.050
Benzo[a]anthracene	SVOCSW	0.002	mg/l	N	<0.010
Benzo[a]pyrene	SVOCSW	0.002	mg/l	N	<0.010
Benzo[b]fluoranthene	SVOCSW	0.002	mg/l	N	<0.010
Benzo[g,h,i]perylene	SVOCSW	0.002	mg/l	N	<0.010
Benzo[k]fluoranthene	SVOCSW	0.002	mg/l	N	<0.010
Benzoic Acid	SVOCSW	0.1	mg/l	N	<0.500

Page 6 of 15 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20060621 Date Issued: 07/07/2020

Analysis Results

				Project ID	20060621
				Sample ID	001
			C	Sustomer ID	BH101
			s	ample Type	WATER
			Sa	mpling Date	17/06/2020
Analysis	Method Code	MDL	Units	Accred	
Benzyl alcohol	SVOCSW	0.005	mg/l	N	<0.025
Biphenyl	SVOCSW	0.002	mg/l	N	<0.010
bis(2-Chloroethoxy)methane	SVOCSW	0.005	mg/l	N	<0.025
bis(2-Chloroethyl)ether	SVOCSW	0.005	mg/l	N	<0.025
bis(2-Chloroisopropyl)ether	SVOCSW	0.005	mg/l	N	<0.025
bis(2-Ethylhexyl)phthalate	SVOCSW	0.005	mg/l	N	<0.025
Butylbenzylphthalate	SVOCSW	0.005	mg/l	N	<0.025
Carbazole	SVOCSW	0.01	mg/l	N	<0.050
Chrysene	SVOCSW	0.002	mg/l	N	<0.010
Coronene	SVOCSW	0.05	mg/l	N	<0.250
Dibenzo[a,h]anthracene	SVOCSW	0.002	mg/l	N	<0.010
Dibenzofuran	SVOCSW	0.005	mg/l	N	<0.025
Diethylphthalate	SVOCSW	0.005	mg/l	N	<0.025
Dimethylphthalate	SVOCSW	0.005	mg/l	N	<0.025
Di-n-butylphthalate	SVOCSW	0.005	mg/l	N	<0.025
Di-n-octylphthalate	SVOCSW	0.002	mg/l	N	<0.010
Diphenyl ether	SVOCSW	0.002	mg/l	N	<0.010
Fluoranthene	SVOCSW	0.002	mg/l	N	<0.010
Fluorene	SVOCSW	0.002	mg/l	N	<0.010
Hexachlorobenzene	SVOCSW	0.005	mg/l	N	<0.025
Hexachlorobutadiene	SVOCSW	0.005	mg/l	N	<0.025
Hexachlorocyclopentadiene	SVOCSW	0.005	mg/l	N	<0.025
Hexachloroethane	SVOCSW	0.005	mg/l	N	<0.025
Indeno[1,2,3-cd]pyrene	SVOCSW	0.002	mg/l	N	<0.010
Isophorone	SVOCSW	0.005	mg/l	N	<0.025

Page 7 of 15 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20060621 Date Issued: 07/07/2020

Analysis Results

				Project ID	20060621	
				Sample ID	001	
				Customer ID	BH101	
				Sample Type	WATER	
				Sampling Date	17/06/2020	
Analysis	Method Code	MDL	Units	Accred		
Naphthalene	SVOCSW	0.002	mg/l	N	<0.010	
Nitrobenzene	SVOCSW	0.005	mg/l	N	<0.025	
N-Nitroso-di-n-propylamine	SVOCSW	0.005	mg/l	N	<0.025	
N-Nitrosodiphenylamine	SVOCSW	0.005	mg/l	N	<0.025	
Pentachlorophenol	SVOCSW	0.05	mg/l	N	<0.250	
Phenanthrene	SVOCSW	0.002	mg/l	N	<0.010	
Phenol	SVOCSW	0.02	mg/l	N	<0.100	
Pyrene	SVOCSW	0.002	mg/l	N	<0.010	
>C10-C12 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	<0.01	
>C12-C16 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	<0.01	
>C16-C21 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	<0.01	
>C21-C35 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	<0.01	
>C35-C44 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	N	<0.01	
Total TPH (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	<0.01	
>C10-C12 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	<0.01	
>C12-C16 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	<0.01	
>C16-C21 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	<0.01	
>C21-C35 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	<0.01	
>C35-C44 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	N	<0.01	
Total TPH (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	<0.01	
1,1,1,2-Tetrachloroethane	VOCHSAW	1	μg/l	U	<1	
1,1,1-Trichloroethane	VOCHSAW	1	μg/l	U	<u>-</u> <1	
1,1,2,2-Tetrachloroethane	VOCHSAW	1	μg/l	N	<1	
1,1,2-Trichloroethane	VOCHSAW	1	μg/l	U	 <1	
1,1-Dichloroethane	VOCHSAW	1	μg/l	U	<u>-</u> <1	

FINAL_COA_00001 Page 8 of 15

Project Name: G0015-20 Hammersmith Bridge

Project No: 20060621 Date Issued: 07/07/2020

Analysis Results

				Project ID	20060621
				Sample ID	001
				Customer ID	BH101
				Sample Type	WATER
				Sampling Date	17/06/2020
				· · ·	
Analysis	Method Code	MDL	Units	Accred	
1,1-Dichloroethene	VOCHSAW	1	μg/l	U	<1*
1,1-Dichloropropene	VOCHSAW	1	μg/l	U	<1
1,2,3-Trichlorobenzene	VOCHSAW	5	μg/l	U	<5
1,2,3-Trichloropropane	VOCHSAW	1	μg/l	U	<1
1,2,4-Trichlorobenzene	VOCHSAW	5	μg/l	U	<5
1,2,4-Trimethylbenzene	VOCHSAW	1	μg/l	U	<1
1,2-Dibromo-3-chloropropane	VOCHSAW	5	μg/l	U	<5
1,2-Dibromoethane	VOCHSAW	1	μg/l	U	<1
1,2-Dichlorobenzene	VOCHSAW	5	μg/l	U	<5
1,2-Dichloroethane	VOCHSAW	1	μg/l	U	<1
1,2-Dichloropropane	VOCHSAW	1	μg/l	U	<1
1,3,5-Trimethylbenzene	VOCHSAW	1	μg/l	U	<1
1,3-Dichlorobenzene	VOCHSAW	1	μg/l	U	<1
1,3-Dichloropropane	VOCHSAW	1	μg/l	N	<1
1,4-Dichlorobenzene	VOCHSAW	1	μg/l	U	<1
2,2-Dichloropropane	VOCHSAW	1	μg/l	N	<1
2-Chlorotoluene	VOCHSAW	1	μg/l	U	<1
4-Chlorotoluene	VOCHSAW	1	μg/l	U	<1
Benzene	VOCHSAW	1	μg/l	U	<1
Bromobenzene	VOCHSAW	1	μg/l	U	<1
Bromochloromethane	VOCHSAW	1	μg/l	U	<1
Bromodichloromethane	VOCHSAW	1	μg/l	U	<1
Bromoform	VOCHSAW	1	μg/l	U	<1
Bromomethane	VOCHSAW	5	µg/l	N	<5
Carbon Tetrachloride	VOCHSAW	1	μg/l	U	<1

FINAL_COA_00001 Page 9 of 15

Project Name: G0015-20 Hammersmith Bridge

Project No: 20060621 Date Issued: 07/07/2020

Analysis Results

				Project ID	20060621
				Sample ID	001
				Customer ID	BH101
			\$	Sample Type	WATER
			Sa	mpling Date	17/06/2020
Analysis	Method Code	MDL	Units	Accred	
Chlorobenzene	VOCHSAW	1	μg/l	U	<1
Chloroethane	VOCHSAW	5	μg/l	U	<5
Chloroform	VOCHSAW	5	μg/l	U	<5
Chloromethane	VOCHSAW	1	μg/l	U	<1*
cis 1,2-Dichloroethene	VOCHSAW	5	μg/l	U	<5
cis 1,3-Dichloropropene	VOCHSAW	1	μg/l	N	<1
Dibromochloromethane	VOCHSAW	1	μg/l	U	<1
Dibromomethane	VOCHSAW	1	μg/l	U	<1
Dichlorodifluoromethane	VOCHSAW	1	μg/l	N	<1
Ethylbenzene	VOCHSAW	1	μg/l	U	<1
Hexachlorobutadiene	VOCHSAW	5	μg/l	U	<5
iso-Propylbenzene	VOCHSAW	1	μg/l	U	<1
m and p-Xylene	VOCHSAW	1	μg/l	U	<1
MTBE	VOCHSAW	1	μg/l	N	<1
Naphthalene	VOCHSAW	5	μg/l	U	<5
n-Butylbenzene	VOCHSAW	1	μg/l	U	<1
o-Xylene	VOCHSAW	1	μg/l	U	<1
p-Isopropyltoluene	VOCHSAW	1	μg/l	U	<1
Propylbenzene	VOCHSAW	1	μg/l	U	<1
sec-Butylbenzene	VOCHSAW	1	μg/l	U	<1
Styrene	VOCHSAW	1	μg/l	U	<1
tert-Butylbenzene	VOCHSAW	1	μg/l	U	<1
Tetrachloroethene	VOCHSAW	5	μg/l	U	<5
Toluene	VOCHSAW	1	μg/l	U	<1
trans 1,2-Dichloroethene	VOCHSAW	1	μg/l	U	<1*

Page 10 of 15 FINAL_COA_00001

Project Name: G0015-20 Hammersmith Bridge

Project No: 20060621 Date Issued: 07/07/2020

Analysis Results

				Project ID	20060621
				Sample ID	001
			С	ustomer ID	BH101
			Sa	imple Type	WATER
			San	pling Date	17/06/2020
Analysis	Method Code	MDL	Units	Accred	
trans 1,3-Dichloropropene	VOCHSAW	1	μg/l	U	<1
Trichloroethene	VOCHSAW	5	μg/l	U	<5
Trichlorofluoromethane	VOCHSAW	1	μg/l	U	<1
Vinyl Chloride	VOCHSAW	1	μg/l	U	<1*

Page 11 of 15 FINAL_COA_00001

SOCOTEC - Unknowns Analysis Report

Sample Name:

20060621-001

Component RT

Compound Name

Match Score CAS#

Estimated Concentration

None Detected

Report Number: 20060621

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
WSLM20	001	Based on the sample history/appearance/smell, a dilution was applied prior to testing. Unfortunately the result is below our lower range for this sample volume, therefore the detection limit has been raised.
VOCHSAW	1	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (1,1-Dichloroethene, Bromomethane, Chloromethane, trans 1,2-Dichloroethene). These circumstances should be taken into consideration when utilising the data.
VOCHSAW	1	The Secondary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily (including the Primary Process Control) and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation , where applicable, from the affected analytes (Vinyl Chloride) . These circumstances should be taken into consideration when utilising the data.

LIMS-F002 - Report Notes

Project Name: G0015-20 Hammersmith Bridge

Project No: 20060621

Date Issued: 07/07/2020

Deviating Sample Rep	<u>oort</u>					é			
Sample Reference	Text ID	Reported Name	Incorrect Container	Incorrect Label	Headspace	Incorrect/No Preservative	No Sampling Date	Holding Time	Handling Time
BH101	20060621-001	WSLM20 BOD (5 day)						✓	

Analysis Method

<u>Analysis</u>	Analysis Type	Analysis Method
BTEXHSA	ORGANIC	UNFILTERED
GROHSA	ORGANIC	UNFILTERED
GROHSA/BTEXHSA	ORGANIC	
ICPMSW (Dissolved)	METALS	FILTERED
ICPWATVAR (Dissolved)	METALS	FILTERED
ISEF	INORGANIC	UNFILTERED
KONENS	INORGANIC	FILTERED
PAHMSW	ORGANIC	UNFILTERED
PCBECD	ORGANIC	UNFILTERED
SFAPI	INORGANIC	UNFILTERED
SVOCSW	ORGANIC	UNFILTERED
TPHFID (Aliphatic)	ORGANIC	UNFILTERED
TPHFID (Aromatic)	ORGANIC	UNFILTERED
WSLM13	INORGANIC	UNFILTERED
WSLM2 & 3	INORGANIC	UNFILTERED
WSLM20	INORGANIC	UNFILTERED

Project Name: G0015-20 Hammersmith Bridge

Project No: 20060621

Date Issued: 07/07/2020

Additional Information

This report refers to samples as received, and SOCOTEC Uk Ltd takes no responsibility for accuracy or competence of sampling by others.

Results within this report relate only to the samples tested.

In the accreditation column of analysis report the codes are as follows:

U = UKAS accredited analysis

M = MCERT accredited analysis

N = Unaccredited analysis

Any units marked with ^ signify results are reported on a dry weight basis of 105° C

All Air Dried and Ground Samples (ADG) are oven dried at less than 35° c.

This report shall not be reproduced except in full and with approval from the laboratory.

Opinions and interpretations given are outside the scope of our UKAS accreditation.

Any samples marked with * are not covered by our scope of UKAS accreditation, if applicable further report notes have been added.

Any solid samples where the Major Constituents are not one of the following (Sand, Silt, Clay, Made Ground) are not one of our accredited matrix types.

Any samples marked with ‡ have had MCERTS accreditation removed for this result

Any samples marked with a tick in the deviant table is deviant for the specific reason.

Any samples reported as IS, NA, ND mean the following:

IS = Insufficient Sample to complete analysis

NA = Sample is not amenable for the required analysis

ND = Results cannot be determined

Our deviating sample report does not include deviancy information for Subcontracted analysis. Please see the report from the Subcontracted lab for information regarding any deviancies for this analysis.

End of Certificate of Analysis