

WE LISTEN, WE PLAN, WE DELIVER Geotechnical Engineering and Environmental Services across the UK.

GEO-ENVIRONMENTAL & GEOTECHNICAL ASSESSMENT REPORT

ELLERAY HALL & NORTH LANE DEPOT/EAST CAR PARK TEDDINGTON, TW11

JOMAS ASSOCIATES LTD

6-9 The Square, Stockley Park, Uxbridge, UB11 1FW www.jomasassociates.com 0843-289-2187 info@jomasassociates.com

Geotechnical Engineering & Environmental Services across the UK

Report Title:	Geo-environmental & Geotechnical Assessment Report for Elleray Hall & North Lane Depot/East Car Park, Teddington				
Report Status:	Final				
Job No:	P3152J2114/TE				
Date:	23 June 2021				
QUALITY CONT Version	ROL - REVISIONS	Date	Issued By		
Prepa Tom Elbourne F F Senior Geo-6	ed by: JOMAS ASS ared by 3Sc (Hons), CGeol GS environmental tineer	OCIATES LTD For: RICHMOND & Reviewed by Suneel Law BSc (Hons) MSc FGS Principal Geo-environmental Engineer	WANDSWORTH COUNCIL Approved by James Field BSc (Hons), CGeol, FGS, RoGEP - Professional Principal Engineer		

Should you have any queries relating to this report, please contact

JOMAS ASSOCIATES LTD

www.jomasassociates.com

0843 289 2187

info@jomasassociates.com

i

Geotechnical Engineering & Environmental Services across the UK

CONTENTS

EXE	ECUTIVE SUMMARYIV
1	INTRODUCTION1
1.1	Terms of Reference1
1.2	Proposed Development1
1.3	Objectives2
1.4	Scope of Works2
1.5	Limitations2
2	SITE SETTING
2.1	Site Information4
2.2	Desk Study Overview4
3	GROUND INVESTIGATION
3.1	Rationale and Scope of Ground Investigation7
3.2	Factual Ground Investigation7
3.3	Observations by Jomas During Site Works7
3.4	Laboratory Analysis7
4	GROUND CONDITIONS
4.1	Soil10
4.2	Hydrogeology11
4.3	Physical and Olfactory Evidence of Contamination12
5	RISK ASSESSMENT – ANALYTICAL FRAMEWORK 13
5.1	Context and Objectives13
5.2	Analytical Framework – Soils13

i

Geotechnical Engineering & Environmental Services across the UK

5.3	BRE14
5.4	Analytical Framework – Groundwater and Leachate15
6	GENERIC QUANTITATIVE RISK ASSESSMENT17
6.1	Screening of Soil Chemical Analysis Results – Human Health Risk Assessment17
6.2	Vapour Risk Assessment from a Soil Source (Northern Pot)20
6.3	Volatile Organic Compounds23
6.4	Vapour Risk Assessment from a Soil Source (Southern Plot)23
6.5	Asbestos in Soil24
6.6	Screening of Groundwater Chemical Analysis Results24
6.7	Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth
6.8	Screening for Water Pipes27
6.9	Waste Characterisation and Disposal29
7	SOIL GAS RISK ASSESSMENT
7.1	Soil Gas Results
7.2	Screening of Results
8	SUMMARY OF RESULTS
8.1	Land Quality Impact Summary33
8.2	Review of Pollutant Linkages Following Site Investigation35
9	GEOTECHNICAL GROUND INVESTIGATION
9.1	Proposed Development
9.2	Geotechnical Classification
9.3	Geotechnical Ground Investigation Report37
9.4	Ground Investigation Summary38
9.5	Atterberg Limits
9.6	Standard Penetration Tests40

Geotechnical Engineering & Environmental Services across the UK

9.7	Undrained Shear Strength41
9.8	Bulk Density42
9.9	Coefficient of Compressibility43
9.10	In-Situ CBR Testing44
9.11	BRE 365 Soakage Tests46
9.12	Geotechnical Characteristic Parameter Summary47
10	GEOTECHNICAL ENGINEERING CONSIDERATIONS
10.1	Design Methodologies48
10.2	Geotechnical Design values48
10.3	Building Near Trees49
10.4	Shallow Foundations
10.5	Piled Foundations
10.6	Concrete in the Ground51
10.7	Ground Floor Slabs
10.8	Excavations53
10.9	Pavement Design
10.10	Groundwater Control54
11	REFERENCES

APPENDICES

APPENDIX 1 – FIGURES

APPENDIX 2 – FACTUAL REPORT

EXECUTIVE SUMMARY

Richmond and Wandsworth Council commissioned Jomas Associates Ltd to act as environmental consultants to oversee a Geo-environmental and Geotechnical ground investigation at the site located at Elleray Hall and North Lane Depot/East Car Park, Teddington. The works were undertaken by others, under instruction and supervision by Jomas Associates. This interpretive report is based on the factual report provided by the contractor.

It should be noted that the table below is an executive summary of the findings of this report and is for briefing purposes only. Reference should be made to the main report for detailed information and analysis.

	Site History and Ground Investigation
Current Site Use	Site is comprised of two separate but neighbouring plots; northern site is currently a car park and disused former works and the southern plot is occupied by a community hall.
Proposed Site Use	Demolition of Elleray Hall and the construction of a two-storey block of flats with soft landscaping, and the construction of a community centre on the currently vacant North Lane Depot/East Car Park plots.
Desk Study Overview	A Desk Study report has been produced for the site and issued separately (Jomas – November 2020). A brief overview of the desk study findings is presented below. Reference should be made to the full report for detailed information.
	A review of the earliest available (1865) historical maps indicates that the northern plot was occupied by residential/agricultural structures until the late 1800s when only a single structure is shown along the western boundary (use unclear), with the very north of the site comprising the end of neighbouring gardens. Throughout the first half of the 20 th century there are various reconfigurations of the site with commercial style buildings shown along the eastern and southern boundaries, with no usage indicated. By 1963 the east of the site is shown as vacant and by 1988 the east is indicated to be a car park. Structures remain along the western boundary up to the most recent map edition, however the area is shown vacant on an aerial photograph from 2011, indicating demolition between 2008 and 2011.
	The southern plot was occupied by residential properties and gardens from 1865 until at least 1898; by 1915 the east of the site is occupied by a large "hall" building with a smaller structure identified in the south-west of the site. By 1959 the hall structure is identified as "works", and remains in this use until the 1988 map edition identifies a "hall" once again with an extension to the west of the structure. By 1991 the structure is identified as a "day centre" which remains up to the most recent map edition.
	The surrounding area has been predominantly residential with occasional industrial features. Industrial features of note include various works, a warehouse, garage and an unspecified tank, all located within 250m of the site.
	The British Geological Survey indicates that the site is directly underlain by superficial deposits of the Kempton Park Gravel Member. These superficial deposits are underlain by solid deposits of the London Clay Formation. No artificial deposits are reported within the site.
	Borehole records from approximately 160m northeast of the site indicated sand and gravels extending to approximately 4mbgl, underlain by clay.
	The superficial deposits underlying the site are identified as a Principal Aquifer with the underlying solid deposits identified as unproductive. A review of the Enviro+Geoinsight Report indicates that there are no source protection zones within 500m of the site and there are no groundwater, surface water or potable water abstractions reported within 1km of the site. No detailed river entries or surface water features reported within 250m of the site and there are no Environment Agency Zone 2 or 3 floodplains reported within 50m of the site.

	Site History and Ground Investigation			
	Due to the potential for hydrocarbon contamination to be present beneath the site from the identified historical uses as "works" (southern site) and reported depot usage on the northern site, it was recommended that a ground investigation includes provision of gas and groundwater monitoring wells to allow for gas monitoring and groundwater sampling should viable sources be reported during the ground investigation. If deep Made Ground containing significant organic inclusions is encountered, gas monitoring should also be undertaken in accordance with CIRIA C655.			
Intrusive Investigation	The ground investigation was undertaken by Concept between 22 nd February and 5 th March 2021, and consisted of the following: 10No window sampling boreholes, drilled up to 2.00m below ground level (bgl), with			
	associated in situ testing and sampling;			
) 2No cable percussion boreholes to 20mbgl;			
) 3No machine excavated trial pits for BRE365 infiltration testing;			
	Laboratory analysis for chemical and geotechnical purposes,			
	ANNO. return visits to monitor ground gas concentrations and groundwater levels have been completed			
Ground Conditions	The results of the ground investigation revealed a ground profile comprising Made Ground up to 1.7mbgl overlying both cohesive and granular deposits of the Kempton Park Gravel Member to a maximum depth of 6.60mbgl, overlying London Clay Formation to at least the depth of the deepest borehole at 20.0mbgl. The base of this stratum was not proven.			
	During the investigation, groundwater was reported within boreholes BH1 and BH2 at 10.00mbgl and 19.30mbgl respectively.			
	During return monitoring groundwater was reported at depths of between 4.00-4.30mbgl. It is considered that these results represent a shallow ground water table within the superficial Kempton Park Gravel deposits.			
Environmental	Northern Plot			
Considerations	Following generic risk assessments, elevated concentrations of naphthalene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, dibenzo(ah)anthracene and C10-C12 aromatic petroleum hydrocarbons were detected in soils in excess of generic assessment criteria for the protection of human health within a "commercial" end-use scenario.			
	No asbestos fibres were detected in the samples analysed in the laboratory.			
	The site proposal indicates that large areas of site will remain covered by a combination of the proposed building footprints and hard surfacing. Where this is the case, no formal remedial measures are considered necessary in terms of human health (beyond the removal of the material described above), as the building and hard surfacing are expected to provide a barrier to potential receptors. In areas of soft landscaping, a cover layer of 450mm of clean imported sub/topsoil should be placed above a geotextile membrane.			
	Exceedances were of generic assessment criteria for potentially volatile compounds (naphthalene and the aromatic hydrocarbon fraction >C10-C12) were detected within made ground soils in WS5, and concentrations of volatile contaminants including BTEX compounds were detected above laboratory method detection limits in the made ground in WS5 and WS3. These concentrations of volatile contaminants were only detected in a sub-stratum of made ground comprising Light to dark brown - dark grey slightly clayey slightly silty very sandy gravel/gravelly sand with gravel consists of flint, brick, concrete, ceramic and asphalt, within which hydrocarbon odours were commonly noted. Pockets of a black tar substance were noted within this substratum in WS5. Given the relatively thin nature of the stratum, and the lack of visual / olfactory evidence			

	Site History and Ground Investigation
	of hydrocarbon or volatile contamination in soils underlying the stratum, as well as the low photo- ionisation detector readings recorded in monitoring well headspaces during monitoring events, it is considered unlikely that a significant risk to end users of the development exists via vapour inhalation pathways.
	A groundwater sample obtained from BH1 in the northern plot did not report any contaminants in excess of generic assessment criteria, and therefore the contaminants identified on site are not considered to be impacting on the groundwater beneath the site.
	Following four gas monitoring visits, concentrations of carbon dioxide are raised at the site, with corresponding depleted oxygen. Calculating the Gas Screening Value using worst case results indicates Characteristic Situation 1. However, due to the elevated concentrations of carbon dioxide measured in excess of 5%, consideration should be given to upgrading the sites to CS2. Given that no significant sources of ground gases were identified during the desk study, and no significant sources of potential ground gases were identified during the intrusive works it is considered that the site should not be classified as CS2, and a CS1 designation is appropriate (for which no gas protection measures are required). Barrier pipe is likely to be required for potable water supply pipes. The requirements should be confirmed with the relevant utility provider.
	Southern Plot
	Following generic risk assessments, elevated concentrations of arsenic, lead, benzo(b)fluoranthene, benzo(a)pyrene, dibenzo(ah)anthracene and C21-C352 grouped petroleum hydrocarbons were detected in soils in excess of generic assessment criteria for the protection of human health within a "residential with plant uptake" end-use scenario on the southern plot
	No asbestos fibres were detected in the samples analysed in the laboratory.
	The site proposals indicate that large areas of the site will be covered by a combination of the proposed building footprint and hard surfacing. Where this is the case, no formal remedial measures are considered necessary in terms of human health, as the building and hard surfacing are expected to provide a barrier to potential receptors. In areas of soft landscaping, a cover layer of 450mm of clean imported sub/topsoil should be placed above a geotextile membrane.
	It is possible that further soil sampling and assessment may allow for zoning and delineation of areas requiring clean cover in soft landscaped areas.
	Groundwater analysis of a sample obtained from the southern plot did not report any contaminants contained within the testing suite above the limit of detection. Risks to controlled waters are considered to be low.
	Following four gas monitoring visits, concentrations of carbon dioxide are raised at the site, with corresponding depleted oxygen. Calculating the Gas Screening Value using worst case results indicates Characteristic Situation 1. However, due to the elevated concentrations of carbon dioxide measured in excess of 5%, consideration should be given to upgrading the sites to CS2. Given that no significant sources of ground gases were identified during the desk study, and no significant sources of potential ground gases were identified during the intrusive works it is considered that the site should not be classified as CS2, and a CS1 designation is appropriate (for which no gas protection measures are required).
Geotechnical Considerations	Based on the findings of this investigation, it is considered that reinforced strip footings of up to 1m breadth may be formed at a minimum depth of 0.75mbgl within the underlying Kempton Park Gravel Member for an allowable bearing capacity of 120kPa.

	Site History and Ground Investigation				
	This depth, however, does not take into account the depth of Made Ground (encountered up t 1.7m bgl) or the distance to and species of any previous, existing and proposed trees, an foundations may need to be deepened further accordingly, in accordance with NHB requirements.				
	It is recommended that a layer of light mesh reinforcement is added to the base of all foundations to mitigate the potential for excessive differential settlement, given the variable properties (cohesive/granular) encountered within the Kempton Park Gravel Member.				
	Alternatively, piled foundations could be considered and preliminary pile carrying capacities are provided in Table 10.2.				
	Suspended floor slabs are recommended due to the presence of shrinkable soils and due to the depths of Made Ground encountered.				
	Groundwater was encountered at depths ranging between 4.00m and 4.30mbgl during retumentioning. Any groundwater encountered during construction works should be addressed conventional pumping from a sump.				
	Excavations during the intrusive works, although open for a relatively short period of time remained reasonably stable. However, it is recommended that the stability of all excavations should be assessed during construction. The sides of any excavations into which personnel are required to enter should be assessed and battered back to a safe angle.				
	Based on the results of chemical testing, the required concrete class for the site is DS-1 assuming an Aggressive Chemical Environment for Concrete classification of AC-1 in accordance with the procedures outlined in BRE Special Digest 1.				
	CBR values of <2.5% and 5% are recommended for use in preliminary design where the formation is within Made Ground and the superficial deposits respectively.				
Recommended	The following works are recommended:				
Further Work	 Seek approval of the Generic Quantitative Risk Assessment and Soil Gas Assessment from the Local Authority, NHBC and other relevant stakeholders; 				
	<pre>/ Production of a Remediation Method Statement (RMS);</pre>				
) Seek confirmation of the water supply pipe requirements by the appropriate service provider.				

1 INTRODUCTION

1.1 Terms of Reference

- 1.1.1 Richmond and Wandsworth Council ("The Client") has commissioned Jomas Associates Ltd, to assess the risk of contamination posed by the ground conditions reported at a site referred to as Elleray Hall and North Lane Depot/East Car Park, Teddington and to provide indicative recommendations for foundation design prior to the redevelopment of the site.
- 1.1.2 To this end a Desk Study has been produced for the site and issued separately (Jomas, November 2020), followed by an intrusive investigation undertaken and factually reported by Concept
- 1.1.3 A list of previous reports undertaken for the site are detailed in Table 1.1:

Table 1.1: Previous Reports

Title	Author	Reference	Date
Desk Study / Preliminary Risk Assessment Report for Elleray Hall & North Lane Depot/East Car Park, Teddington, TW11	Jomas Associates Ltd	P3152J2114 Final	November 2020
Ground Investigation Specification For Elleray Hall & North Lane Depot / East Car Park Teddington TW11	Jomas Associates Ltd	P3152J2114 Final	November 2020
Factual Report	Concept	20/3521/-FR01	9 th April 2021

1.1.4 In accordance with our proposal dated 19th October 2021, Jomas was instructed to act as an environmental consultant, to specify, and supervise intrusive works undertaken by the ground investigation contractor and prepare an interpretative report based on the factual findings of the investigation.

1.2 Proposed Development

- 1.2.1 The proposed development is to involve the demolition of Elleray Hall and the construction of a two-storey block of flats with soft landscaping to the south of Middle Lane, and the construction of a community centre on the currently vacant North Lane Depot/East Car Park plots to the north of Middle Lane.
- 1.2.2 Plans of the proposed development are included in Figures 3 and 4, Appendix 1.
- 1.2.3 For the purposes of the contamination risk assessment, the proposed development on the southern site is classified as a "residential with plant uptake" end-use scenario. The community centre on the northern plot is considered as a "commercial" end-use scenario.
- 1.2.4 For the purpose of geotechnical assessment, it is considered that the project could be classified as a Geotechnical Category (GC) 2 site in accordance with BS EN 1997. GC 2 projects are defined as involving:
 -) Conventional structures.

-) Quantitative investigation and analysis.
- / Normal risk.
- No difficult soil and site conditions.
-) No difficult loading conditions.
-) Routine design and construction methods.

1.3 Objectives

- 1.3.1 The objectives of Jomas' investigation were as follows:
 -) To commission and oversee an intrusive investigation, to determine the nature and extent of contaminants potentially present at the site;
 -) To establish the presence of significant pollutant linkages, in accordance with the procedures set out within Part IIA of the Environmental Protection Act 1990, associated statutory guidance and current best practice including the EA report R&D CLR 11; and,
 -) To recommend geotechnical parameters to inform preliminary foundation design.

1.4 Scope of Works

- 1.4.1 The following tasks were undertaken to achieve the objectives listed above:
 -) Specify, instruct and oversee an intrusive ground investigation to determine shallow ground conditions, and potential for contamination at the site;
 - Scheduling of laboratory chemical and geotechnical testing upon samples obtained;
 -) The compilation of this report, which collects and discusses the above data, and presents an assessment of the site conditions, conclusions and recommendations.

1.5 Limitations

- 1.5.1 Jomas Associates Ltd has prepared this report for the sole use of Richmond and Wandsworth Council, in accordance with the generally accepted consulting practices and for the intended purposes as stated in the agreement under which this work was completed. This report may not be relied upon by any other party without the explicit written agreement of Jomas Associates Limited. No other third party warranty, expressed or implied, is made as to the professional advice included in this report. This report must be used in its entirety.
- 1.5.2 The records search was limited to information available from public sources; this information is changing continually and frequently incomplete. Unless Jomas Associates Limited has actual knowledge to the contrary, information obtained from public sources or provided to Jomas Associates Limited by site personnel and other information sources, have been assumed to be correct. Jomas Associates Limited does not assume any liability for the misinterpretation of information or for items not visible, accessible or present on the subject property at the time of this study.
- 1.5.3 Whilst every effort has been made to ensure the accuracy of the data supplied, and any analysis derived from it, there may be conditions at the site that have not been disclosed by the investigation, and could not therefore be taken into account. As with any site, there may be differences in soil conditions between exploratory hole positions. Furthermore, it should be noted that groundwater conditions may vary due to seasonal and other effects and may at

times be significantly different from those measured by the investigation. No liability can be accepted for any such variations in these conditions.

- 1.5.4 Any reports provided to Jomas Associates Limited have been reviewed in good faith. Jomas Associates Limited cannot be held liable for any errors or omissions in these reports, or for any incorrect interpretation contained within them.
- 1.5.5 This investigation and report has been carried out in accordance with the relevant standards and guidance in place at the time of the works. Future changes to these may require a reassessment of the recommendations made within this report.
- 1.5.6 This report is not an engineering design and the figures and calculations contained in the report should be used by the Structural Engineer, taking note that variations may apply, depending on variations in design loading, in techniques used, and in site conditions. Our recommendations should therefore not supersede the Engineer's design.

2 SITE SETTING

2.1 Site Information

2.1.1 The site location plan is appended to this report in Figure 1, Appendix 1. The site comprises 2no distinct sections with the North Lane Depot and East Car Park located to the north of Middle Lane, and with the Elleray Hall site located ca 5m to the south east at its closest point, and to the south of Middle Lane.

Name of Site	Elleray Hall & North Lane Depot/East Car Park	
Address of Site	North Lane/Elleray Road Teddington TW11	
Approx. National Grid Ref.	515688 170873	
Site Area (Approx.)	0.24ha	
Site Occupation	Community centre, disused depot and car park	
Local Authority	London Borough of Richmond upon Thames	

Table 2.1: Site Information

2.2 Desk Study Overview

- 2.2.1 A Desk Study report has been produced for the site and issued separately (Jomas November 2020). A brief overview of the desk study findings is presented below. Reference should be made to the full report for detailed information.
- 2.2.2 A review of the earliest available (1865) historical maps indicates that the northern plot was occupied by residential/agricultural structures until the late 1800s when only a single structure is shown along the western boundary (use unclear), and with the very north of the site comprising parts of neighbouring gardens. Throughout the first half of the 20th century there are various reconfigurations of the site with commercial style buildings shown along the eastern and southern boundaries, with no usage indicated. By 1963 the east of the site is shown as vacant and by 1988 the east is indicated to be a car park. Structures remain along the western boundary up to the most recent map edition, however the area is shown vacant on an aerial photograph from 2011, indicating demolition between 2008 and 2011.
- 2.2.3 The southern plot was occupied by residential properties and gardens from 1865 until at least 1898; by 1915 the east of the site is occupied by a large "hall" building with a smaller structure identified in the south-west of the site. By 1959 the hall structure is identified as "works", and remains in this use until the 1988 map edition identifies a "hall" once again with an extension to the west of the structure. By 1991 the structure is identified as a "day centre" which remains up to the most recent map edition.
- 2.2.4 The surrounding area has been predominantly residential with occasional industrial features. Industrial features of note include various works, a warehouse, garage and an unspecified tank, all located within 250m of the site.
- 2.2.5 The British Geological Survey indicates that the site is directly underlain by superficial deposits of the Kempton Park Gravel Member. These superficial deposits are underlain by solid deposits of the London Clay Formation. No artificial deposits are reported within the site.

- 2.2.6 Borehole records from approximately 160m northeast of the site indicated sand and gravels extending to approximately 4mbgl, underlain by clay.
- 2.2.7 The superficial deposits underlying the site are identified as a Principal Aquifer with the underlying solid deposits identified as unproductive. A review of the Enviro+Geoinsight Report indicates that there are no source protection zones within 500m of the site and there are no groundwater, surface water or potable water abstractions reported within 1km of the site. No detailed river entries or surface water features reported within 250m of the site and there are no Environment Agency Zone 2 or 3 floodplains reported within 50m of the site.
- 2.2.1 Due to the potential for hydrocarbon contamination to be present beneath the site from the identified historical uses as "works" (southern site) and reported depot usage on the northern site, it was recommended that a ground investigation includes provision of gas and groundwater monitoring wells to allow for gas monitoring and groundwater sampling should viable sources be reported during the ground investigation. If deep Made Ground containing significant organic inclusions is encountered, gas monitoring was also recommended to be undertaken in accordance with CIRIA C655.
- 2.2.2 The conceptual site model is reproduced in Table 2.2 overleaf.

_

Sources	Pathways (P)	Receptors	Consequence of Impact	Probability of Impact	Risk Estimation	Hazard Assessment
 Potential for contaminated ground associated with previous site use – on site (S1) depot, works, car park, unspecified industrial/commercial Potential for Made Ground associated with previous development operations – on site (S2) Potential for asbestos impacted soils from demolition of previous structures – on site (S3) Previous industrial use – off site (S4) Works (40m NW, 100m, 180m, 230m W) Garage (60m NE) Industrial unit with tanks (240m W) 	 Ingestion and dermal contact with contaminated soil (P1) Inhalation or contact with potentially contaminated dust and vapours (P2) Permeation of water pipes and attack on concrete foundations by aggressive soil conditions (P6) 	 Construction workers (R1) Maintenance workers (R2) Neighbouring site users (R3) Future site users (R4) Building foundations and on site buried services (water mains, electricity and sewer) (R5) 	Medium	Low	Moderate	GI – Ground Investigation
	 Accumulation and migration of soil gases (P5) 		Severe	Unlikely	Low	
	 Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff. (P3) Horizontal and vertical migration of contaminants within groundwater (P4) 	 Neighbouring site users (R3) Building foundations and on site buried services (water mains, electricity and sewer) (R5) Controlled waters - Principal Aquifer (R6) 	Medium	Low	Moderate	

Table 2.2: Preliminary Risk Assessment for the Site

3 GROUND INVESTIGATION

3.1 Rationale and Scope of Ground Investigation

3.1.1 The Rationale and Scope of the Ground Investigation is detailed with the Ground Investigation Specification prepared by Jomas Associates, ref. P3152J2114, dated 26th November 2020.

3.2 Factual Ground Investigation

- 3.2.1 The ground investigation was undertaken by Concept Engineering Consultants Limited (Concept) between 22nd February and 5th March 2021, and is reported by Concept in their Factual Report dated 9th April 2021, ref 20/3521 FR01. The full factual report is provided as Appendix 2.
- 3.2.2 A summary of the fieldwork carried out at the site by Concept is presented in Table 3.1 below. Exploratory locations are shown in Figure 2.

Investigation Type	Number of Exploratory Holes Achieved	Exploratory Hole Designation	Depth Achieved (m BGL)	Limitations
Window Sample Boreholes	10	WS1 – 10	Maximum 2mbgl	All windowless sampler boreholes were terminated at 2.00mbgl due to refusal in very dense granular material interpreted to represent the Kempton Park Gravel Member.
Cable Percussion Boreholes	2	BH1-BH2	20mbgl	No deviation from agreed specification.
Monitoring Wells	6	BH1, BH2, WS1, WS2, WS6, WS10	Maximum 6.3mbgl	Installations within windowless sampler boreholes shallower than proposed due to shallow refusals.
Machine Excavated Trial Pits	3	STP1-STP3	Maximum 2.70mbgl	No deviation from agreed specification.

Table 3.1: Scope of Intrusive Investigation

3.3 Observations by Jomas During Site Works

3.3.1 A Jomas engineer supervised the initial set up of the site works on 21st February 2021. All works observed were in accordance with the agreed specification.

3.4 Laboratory Analysis

3.4.1 A programme of laboratory testing was scheduled by Jomas Associates Limited, based on the ground investigation data obtained by Concept.

Chemical Testing

- 3.4.2 Soil samples were obtained by Concept and submitted to Eurofins Chemtest Ltd (a UKAS and MCerts accredited laboratory), for analysis.
- 3.4.3 The samples were analysed for a suite of contaminants as shown in Table 3.2 below:

	No. of tests		
Test Suite	Made Ground / Topsoil	Natural	
Basic Suite 3	11	1	
Basic Suite 5	9	1	
Total Organic Carbon	4	-	
Water Soluble Sulphate	11	17	
TPHCWG (inc BTEX)	9	1	
VOC	9	1	
Waste Acceptance Criteria	2	-	
Asbestos Screen & ID	16	-	

Table 3.2: Chemical Tests Scheduled

3.4.4The determinands contained in the Basic Suite 3 are as detailed in Table 3.3 below. Basic Suite
5 contains the same determinands but without the hydrocarbon compounds to avoid
overlapping with the hydrocarbon testing.

DETERMINAND	LIMIT OF DETECTION (mg/kg)	UKAS ACCREDITATION	TECHNIQUE			
Arsenic	1	Y (MCERTS)	ICPMS			
Cadmium	0.1	Y (MCERTS)	ICPMS			
Chromium	1	Y (MCERTS)	ICPMS			
Chromium (Hexavalent)	0.5	Y (MCERTS)	"Aquakem 600" Discrete Analyser using 1,5- diphenylcarbazide.			
Lead	0.5	Y (MCERTS)	ICPMS			
Mercury	0.1	Y (MCERTS)	ICPMS			
Nickel	0.5	Y (MCERTS)	ICPMS			
Selenium	0.2	Y (MCERTS)	ICPMS			
Copper	0.5	Y (MCERTS)	ICPMS			
Zinc	0.5	Y (MCERTS)	ICPMS			
Boron (Water Soluble)	0.4	Y (MCERTS)	ICPMS			
pH Value	4.0	Y (MCERTS)	pH Meter			
Sulphate (Water Soluble)	0.01g/l	Y (MCERTS)	Aqueous extraction/ICP-OES			
Total Cyanide	0.5	Y (MCERTS)	Colorimetry			
Speciated/Total PAH	0.10/5.0	Y (MCERTS)	GCFID			
Phenols	0.3	Y (MCERTS)	HPLC			

Table 3.3: Basic Suite of Determinands

	Total Petroleum Hydrocarbons (banded)	10.0	N Y (MCERTS)	GCxGC FID	
3.4.5	To support the se for total organic c		priate tier 1 screening	values, 10No samples were analysed	
	Geotechnical Labo	oratory Testing			
3.4.6	In addition to the contamination assessment, soil samples were submitted to Concept's laboratory for a series of analyses.				
3.4.7	This testing was sp	pecifically design	ed to:		
) obtain pa		er directly or sufficient nical objectives of the	to allow relevant correlations to be investigation.	

3.4.8 The following laboratory geotechnical testing (as summarised in Table 3.4) was carried out:

BS 1377 (1990) Test Number	Test Description	Number of tests
Part 2		
3.2	Moisture Content Determination	20
4.3 and 5.3	Liquid and Plastic Limit Determination (Atterberg Limits)	20
9.2 and 9.3	Particle Size Distribution - Sieving	4
Part 7		
8	Determination of the undrained shear strength in triaxial compression with single stage loading and without measurement of pore pressure	8

Table 3.4 Laboratory Geotechnical Analysis

4 GROUND CONDITIONS

4.1 Soil

Jomas' summary interpretation of the ground profile described by Concept is provided in Table 4.1 below, based on the strata observed during the investigation.

Table 4.1:	Ground	Conditions	Encountered
------------	--------	------------	-------------

Stratum and Description	Encountered from (mbgl)	Base of strata (mbgl)	Thickness range (m)
Asphalt (MADE GROUND) Overlying concrete in WS5. (BH1, BH2, WS1, WS3, WS4, WS5, WS6, WS7, WS8, STP1)	GL	0.03 – 0.20	0.10 - 0.20
Paving slabs overlying gravelly sand. Gravel consists of flint. (MADE GROUND) (WS9)	GL	0.10	0.10
Dark brown silty clay with frequent rootlets. (WS2, STP2) (TOPSOIL)	GL	0.15	0.15
Light to dark brown - dark grey slightly clayey slightly silty very sandy gravel/gravelly sand. Gravel consists of flint, brick, concrete, ceramic and asphalt. Hydrocarbon odour reported in BH1, WS3, WS4, WS5, STP1, STP2 (MADE GROUND)	GL – 0.20	0.10 - 1.00	0.10 - 0.90
Greenish-grey to orangish-brown dark brown silty slightly sandy gravelly clay/silt. Gravel consists of flint, brick and concrete. Hydrocarbon odour reported in WS1 (MADE GROUND)	0.10 - 0.90	0.55 - 1.70	0.25 - 0.95
Orangish-brown to greenish-grey clayey sandy gravelly SILT/sandy slightly gravelly CLAY. Gravel consists of flint. (KEMPTON PARK GRAVEL MEMBER – Cohesive)	0.55 - 1.00	1.50 - 2.20	0.70 – 1.35
Orangish-brown to greyish brown sometimes clayey gravelly SAND/sandy GRAVEL. Gravel consists of flint. (KEMPTON PARK GRAVEL MEMBER – Granular)	1.20 - 2.20	>2.00 - 6.60	>0.1-5.1
Greyish brown to dark brown silty sandy CLAY with pockets of dark grey silt. Occasional shell fragments and dark grey staining. (LONDON CLAY FORMATION)	6.30 - 6.60	>20.00 (Base not proven)	>13.40 – >13.70 (Thickness not proven)

^{4.1.1}

4.1.2 Given the likely ground strata profile identified in the Desk Study and the BGS descriptions of the materials given in Section 3 of the Desk Study it is considered that the encountered strata represent superficial deposits of the Kempton Park Gravel Member overlying solid deposits of the London Clay Formation. The base of this deposit was not proven.

4.2 Hydrogeology

4.2.1 Groundwater strikes and groundwater monitoring are summarised below in Table 4.2. It is noted that water was added to aid drilling through the Kempton Park Gravel Member in the cable percussive boreholes BH1 and BH2, which may have masked groundwater strikes or seepages.

Exploratory Hole ID	Depth Encountered (mbgl)	Depth After 20mins (mbgl)	Stratum			
BH1	10.00	no rise	London Clay Formation			
BH2	19.30	no rise	London Clay Formation			
WS1		No water s	trike			
WS2		No water s	trike			
WS3	No water strike					
WS4	No water strike					
WS5	No water strike					
WS6		No water s	trike			
WS7		No water s	trike			
WS8		No water strike				
WS9		No water s	trike			
WS10		No water s	trike			

Table 4.2: Groundwater Strikes During Drilling

4.2.2

4No return groundwater monitoring visits were undertaken between 10/03/2021 and 09/06/2021. The results are summarised below.

Table 4.3: Groundwater Monitoring Records

Exploratory Hole ID	Depth Encountered (mbgl)	Depth to Base of Well (mbgl)	Strata targeted by response zone
BH1	4.00-4.15	6.30	Kempton Park Gravel Member
BH2	4.14-4.30	6.30	Kempton Park Gravel Member
WS1	Dry	2.00	Kempton Park Gravel Member
WS2	Dry	2.00	Made Ground/Kempton Park Gravel Member
WS6	Dry	2.00	Kempton Park Gravel Member
WS10	Dry	2.00	Kempton Park Gravel Member

4.2.3 The monitoring results are considered to reflect a groundwater table within the Kempton Park Gravel at a depth of ca 4m bgl, at the time of monitoring.

4.3 Physical and Olfactory Evidence of Contamination

- 4.3.1 Hydrocarbon odours were reported at the following locations in the northern plot:
 -) STP1: GL 0.25mbgl
 -) STP2: 0.10 0.30mbgl
 -) BH1: 0.10 0.30mbgl
 -) WS1: 0.30 0.55mbgl
 -) WS3: 0.10 0.50mbgl
 -) WS4: 0.10 0.50mbgl
 -) WS5: 0.20 0.75mbgl
- 4.3.2 In addition, a "black tar substance" was reported between 0.20-0.22mbgl in WS5.
- 4.3.3 Asphalt gravel was reported throughout the Made Ground in the northern plot.

5 RISK ASSESSMENT – ANALYTICAL FRAMEWORK

5.1 Context and Objectives

- 5.1.1 This section seeks to evaluate the level of risk pertaining to human health and the environment which may result from both the existing use and proposed future use of the site. It makes use of the site investigation findings, as described in the previous sections, to evaluate further the potential pollutant linkages identified in the desk study. A combination of qualitative and quantitative techniques is used, as described below.
- 5.1.2 The purpose of generic quantitative risk assessment is to compare concentrations of contaminants found on site against screening level generic assessment criteria (GAC) to establish whether there are actual or potential unacceptable risks. It also determines whether further detailed assessment is required. The approaches detailed all broadly fit within a tiered assessment structure in line with the framework set out in the Department of Environment, Food and Rural Affairs (DEFRA), EA and Institute for Environment and Health Publication, Guidelines for Environmental Risk Assessment and Management.

5.2 Analytical Framework – Soils

- 5.2.1 There is no single methodology that covers all the various aspects of the assessment of potentially contaminated land and groundwater. Therefore, the analytical framework adopted for this investigation is made up of a number of procedures, which are outlined below. All of these are based on a Risk Assessment methodology centred on the identification and analysis of Source Pathway Receptor linkages.
- 5.2.2 The CLEA model provides a methodology for quantitative assessment of the long term risks posed to human health by exposure to contaminated soils. Toxicological data have been used to calculate Soil Guideline Values (SGV) for individual contaminants, based on the proposed site use; these represent minimal risk concentrations and may be used as screening values.
- 5.2.3 In the absence of any published SGVs for certain substances, or where the assumptions made in generating the SGVs do not apply to the site, Jomas Associates Limited have obtained Tier 1 screening values for initial assessment of the soil, based on available current UK guidance including the LQM/CIEH S4ULs and DEFRA C4SL. Site-specific assessments are undertaken wherever possible and/or applicable. All assessments are carried out in accordance with the CLEA protocol.
- 5.2.4 The assessment criteria used for the screening of determinands within soils are identified within Table 5.1.

Substance Group	Determinand(s)	Assessment Criteria Selected
Organic Substances		
Non-halogenated Hydrocarbons	Total Petroleum Hydrocarbons (TPHCWG banded)	
	Total Phenols	S4UL
Polycyclic Aromatic Hydrocarbons (PAH-16)	Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenzo(a,h)anthracene, Benzo(ghi)perylene	S4UL
Volatile Organic Compounds (VOCs/sVOCs).	Toluene, Ethylbenzene, Benzene, Xylenes	S4UL
Inorganic Substances		
Heavy Metals and Metalloids	Arsenic, Cadmium, Chromium, Lead, Mercury, Nickel, Selenium, Copper, Zinc	S4UL
	Copper, Zinc, Nickel	BS: 3882 (2015).
Cyanides	Free Cyanide	CLEA v1.06
Sulphates	Water Soluble Sulphate	BRE Special Digest 1:2005

Table 5.1: Selected Assessment Criteria – Contaminants in Soils

- 5.2.5As the published reports only offer the option of selecting a SOM value of 1%, 2.5% or 6%, a
SOM value of 1% has been used for the selection of generic assessment criteria, as this provides
the most conservative assessment.
- 5.2.6 The proposed development is to involve the demolition of Elleray Hall and the construction of a two-storey block of flats with associated soft landscaping, and the construction of a community centre on the currently vacant North Lane Depot/East Car Park plots.
- 5.2.7 As a result, the proposed development on the southern site is classified as "residential with plant uptake". The community centre on the northern plot may be considered "commercial". Due to these differing end uses, the results from each pot have been assessed separately against their respective assessment criteria.
- 5.3 BRE
- 5.3.1 The BRE Special Digest 1:2005, 'Concrete in Aggressive Ground' is used with soluble sulphate and pH results to assess the aggressive chemical environment of future underground concrete structures at the site.

5.4 Analytical Framework – Groundwater and Leachate

- 5.4.1 The requirement to protect groundwater from pollution is outlined in Groundwater protection: Principles and practice (GP3, EA, August 2013, v1.1).
- 5.4.2 Where undertaken, the groundwater quality analysis comprises a Level 1 assessment in accordance with the EA Remedial Targets Methodology Document (EA, 2006).
- 5.4.3 The criteria used by Jomas' in the Level 1 assessment of groundwater and leachate quality are shown in Table 5.2.

Substance Group	Determinand(s)	Assessment Criteria Selected
Metals	Arsenic, Copper, Cyanide, Mercury, Nickel, Lead, Zinc, Chromium	EQS/DWS
	Selenium	DWS
PAHs	Sum of Four – benzo(b)fluoranthene, benzo(ghi)perylene, benzo(k)fluoranthene, indeno(1,2,3-c,d)pyrene	DWS
PAHs	Benzo(a)pyrene,	DWS
PAHs	Remainder	LEC
Total Petroleum Hydrocarbons	Aliphatic C5-C6, Aliphatic >C6-C8, Aliphatic >C8-C10. Aliphatic >C10-C12, Aliphatic >C12-C16, Aliphatic >C16-C21, Aromatic C5-C7, Aromatic >C7-C8, Aromatic >C8-C10, Aromatic >C10-C12, Aromatic >C12-C16, Aromatic >C16-C21, Aromatic >C16-C21, Aromatic >C21-C35	DWS/WHO
Benzene	Benzene	DWS
Toluene	Toluene	EQS
Ethylbenzene	Ethylbenzene	EQS
Xylene	Xylene	EQS
Oxygen Demand	Chemical Oxygen Demand and Biological Oxygen Demand	Urban Waste Water Treatment (England and Wales) Regulations

Table 5.2: Selected Assessment Criteria – Contaminants in Water

Environmental Quality Standards EQS

Environmental Quality Standards (EQS) have been released by the EA for dangerous substances, as identified by the EC Dangerous Substances Directive. EQS can vary for each substance, for the hardness of the water and can be different for fresh, estuarine or coastal waters.

Lowest Effect Concentration (LEC)

These criteria relate to the concentration of PAHs in groundwater. They are taken from the EA R&D Technical Report P45 – Polycyclic Aromatic Hydrocarbons (PAH): Priorities for Environmental Quality Standard Development (2001).

WHO Health

These screening criteria have been taken from the World Health Organisation Guidelines for Drinking Water Quality (1984). The health value is a guideline value representing the concentration of a contaminant that does not result in any significant risk to the receptor over a lifetime of exposure.

Further criteria have been obtained from 'Petroleum Products in Drinking-water' - Background document for development of WHO Guidelines for Drinking-water Quality (2005).

UK Drinking Water Standards (DWS)

These comprise screening criteria provided by the Drinking Water Inspectorate (DWI) in the Water Supply (Water Quality) Regulations 2006,

Urban Waste Water Treatment (England and Wales) Regulations - UWWT Regs

The Urban Waste Water Treatment (England and Wales) Regulations SI/1994/2841 as amended by SI/2003/1788 sets down minimum standards for the discharge of treated effluent from waste water treatment works to inland surface waters, groundwater, estuaries or coastal waters. Standards of (125mg/L) COD and (25mg/L) BOD have been set.

6 GENERIC QUANTITATIVE RISK ASSESSMENT

6.1 Screening of Soil Chemical Analysis Results – Human Health Risk Assessment

Laboratory analysis for soils obtained by Concept (with laboratory certificates included in their Factual Report) are summarised in the tables below.

Northern Plot (current car park and former depot site): Proposed Commercial Use

6.1.1 The results below represent samples obtained from the northern site, currently in use as a car park and former depot and proposed to be redeveloped to provide a new community centre facility. Based on this proposed end use, comparison of results is made against criteria protective of human health within a "commercial" end use setting.

Table 6.1: Soil Laboratory Analysis Results – Metals, Metalloids, Phenol, Cyanide – Northern Plot

Determinand	Unit	No. samples tested	Screenin	ng Criteria	Min	Мах	No. Exceeding
Arsenic	mg/kg	15	S4UL	640	11	30	0
Cadmium	mg/kg	15	S4UL	190	<0.1	3.2	0
Chromium	mg/kg	15	S4UL	8600	3.5	38	0
Lead	mg/kg	15	C4SL	2330	50	1200	0
Mercury	mg/kg	15	S4UL	320	<0.1	5.3	0
Nickel	mg/kg	15	S4UL	980	3.7	36	0
Copper	mg/kg	15	S4UL	68000	8.4	2000	0
Zinc	mg/kg	15	S4UL	730000	33	470	0
Total Cyanide ^A	mg/kg	15	CLEA v 1.06	33	<0.50	12	0
Selenium	mg/kg	15	S4UL	12000	<0.20	0.37	0
Boron Water Soluble	mg/kg	15	S4UL	240000	<0.4	1.8	0
Phenols	mg/kg	15	S4UL	440	<0.3	170	0

Notes: ^A Generic assessment criteria derived for free inorganic cyanide.

Table 6.2: Soil Laboratory Analysis Results – Polycyclic Aromatic Hydrocarbons (PAHs) – Northern Plot

Determinand	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
Naphthalene	mg/kg	15	S4UL	190	<0.10	370	1No (WS5@0.25mbgl)
Acenaphthylene	mg/kg	15	S4UL	83000	<0.10	66	-
Acenaphthene	mg/kg	15	S4UL	84000	<0.10	59	-
Fluorene	mg/kg	15	S4UL	63000	<0.10	150	-

Elleray Hall and North Lane Depot/East Car Park, Teddington Geo-environmental and Geotechnical Assessment P3152J2114 – June 2021

Prepared by Jomas Associates Ltd On behalf of Richmond and Wandsworth Council

Determinand	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
Phenanthrene	mg/kg	15	S4UL	22000	<0.10	710	-
Anthracene	mg/kg	15	S4UL	520000	<0.10	200	-
Fluoranthene	mg/kg	15	S4UL	23000	<0.10	760	-
Pyrene	mg/kg	15	S4UL	54000	<0.10	680	-
Benzo(a)anthracene	mg/kg	15	S4UL	170	<0.10	360	2No (WS3@0.25mbgl, BH1@0.25mbgl)
Chrysene	mg/kg	15	S4UL	350	<0.10	270	-
Benzo(b)fluoranthene	mg/kg	15	S4UL	44	<0.10	160	6No (WS1@0.30mbgl, WS3@0.25mbgl, WS4@0.10mbgl, WS5@0.25mbgl, BH1@0.25mbgl, BH1@0.40mbgl)
Benzo(k)fluoranthene	mg/kg	15	S4UL	1200	<0.10	160	-
Benzo(a)pyrene	mg/kg	15	S4UL	35	<0.10	340	6No (WS1@0.30mbgl, WS3@0.25mbgl, WS4@0.10mbgl, WS5@0.25mbgl, BH1@0.25mbgl, BH1@0.40mbgl)
Indeno(123-cd)pyrene	mg/kg	15	S4UL	500	<0.10	220	-
Dibenzo(ah)anthracene	mg/kg	15	S4UL	3.5	<0.10	59	6No (WS1@0.30mbgl, WS3@0.25mbgl, WS4@0.10mbgl, WS5@0.25mbgl, BH1@0.25mbgl, BH1@0.40mbgl)
Benzo(ghi)perylene	mg/kg	15	S4UL	3900	<0.10	200	-
Total PAH	mg/kg	15	-		<2.0	4400	-

Table 6.3: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPH) – Northern Plot

TPH Band	Unit	No. Samples Tested	Screening Criteria		Min	Max	No. Exceeding
C ₈ -C ₁₀	mg/kg	6	S4UL	2000	<1.0	6.7	0
>C ₁₀ -C ₁₂	mg/kg	6	S4UL	9700	<1.0	18	0
>C ₁₂ -C ₁₆	mg/kg	6	S4UL	36000	<1.0	200	0
>C ₁₆ -C ₂₁	mg/kg	6	S4UL	28000	11	1200	0

Elleray Hall and North Lane Depot/East Car Park, Teddington Geo-environmental and Geotechnical Assessment P3152J2114 – June 2021

Prepared by Jomas Associates Ltd On behalf of Richmond and Wandsworth Council

TPH Band	Unit	No. Samples Tested	Screening Criteria		Min	Max	No. Exceeding
>C ₂₁ -C ₃₅	mg/kg	6	S4UL	28000	16.7	1520	0
Total TPH	mg/kg	6	-	-	34	3200	-

Note: *The lower value of guidelines for Aromatic/Aliphatics has been selected

Table 6.4: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPHCWG) – Northern Plot

TPH Band	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
>C₅-C ₆ Aliphatic	mg/kg	9	S4UL	3200	<1.0	<1.0	0
>C ₆ -C ₈ Aliphatic	mg/kg	9	S4UL	7800	<1.0	<1.0	0
>C8-C10 Aliphatic	mg/kg	9	S4UL	2000	<1.0	72	0
>C10-C12 Aliphatic	mg/kg	9	S4UL	9700	<1.0	120	0
>C ₁₂ -C ₁₆ Aliphatic	mg/kg	9	S4UL	59000	<1.0	450	0
>C16-C35 Aliphatic	mg/kg	9	S4UL	1600000	20.3	1670	0
>C5-C7 Aromatic	mg/kg	9	S4UL	1600000	<1.0	<1.0	0
>C7-C8 Aromatic	mg/kg	9	S4UL	26000	<1.0	<1.0	0
>C8-C10 Aromatic	mg/kg	9	S4UL	56000	<1.0	280	0
>C ₁₀ -C ₁₂ Aromatic	mg/kg	9	S4UL	3500	<1.0	5200	1No (WS5@0.25mbgl)
>C ₁₂ -C ₁₆ Aromatic	mg/kg	9	S4UL	16000	<1.0	9900	0
>C ₁₆ -C ₂₁ Aromatic	mg/kg	9	S4UL	36000	27	19000	0
>C21-C35 Aromatic	mg/kg	9	S4UL	28000	97	27000	0
Total TPH (Ali/Aro)	mg/kg	9	-		150	67000	-

6.1.2 In addition to the suites above, 9No samples were also screened for the presence of volatile organic compounds (VOCs). VOCs were detected above method detection limits only in samples of the made ground in WS5 and WS3. The table below summarises the results for the compounds reported above detection limit.

Table 6.5: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPHCWG) – Northern Plot

Volatile Organic Compound	Unit	No. Samples Tested	Screening Criteria		Min	Max	No. Exceeding
Benzene	mg/kg	9	S4UL	27	<0.001	0.51	0
Toluene	mg/kg	9	S4UL	56000	<0.001	2.2	0
Ethylbenzene	mg/kg	9	S4UL	57000	<0.001	0.16	0
M & p xylene	mg/kg	9	S4UL	12100	<0.001	2.2	0

Elleray Hall and North Lane Depot/East Car Park, Teddington Geo-environmental and Geotechnical Assessment P3152J2114 – June 2021

JUMAS ENGINEERING ENVIRONMENTAL

Volatile Organic Compound	Unit	No. Samples Tested	Screening Criteria		Min	Max	No. Exceeding
o-xylene	mg/kg	9	S4UL	6600	<0.001	1.2	0
Styrene	mg/kg	9	S4UL	3300	<0.001	0.73	0
Isopropylbenzene	mg/kg	9	S4UL	1400	<0.001	0.014	0
1,3,5- trimethylbenzene	mg/kg	9	-	-	<0.001	0.18	0
1,2,4- trimethylbenzene	mg/kg	9	S4UL	42	<0.001	1.1	0

6.2 Vapour Risk Assessment from a Soil Source (Northern Pot)

6.2.1 As outlined in Tables 6.2-6.4, a number of polyaromatic hydrocarbons and a single petroleum hydrocarbon fraction have been found in excess of their generic screening criteria for the protection of human health within a 'commercial' end-use scenario. The generic screening criteria considers all possible pathways between the source and the receptor. In order to assess potential risks from inhalation of vapour, each organic compound that has been found in excess of its GAC will be assessed in terms of the contribution to total exposure from vapour inhalation inside a structure as reported within the LQM/CIEH S4UL document. Where a significant proportion of the total exposure is reported from vapour inhalation, there could be a potential risk from vapour inhalation.

Table 6.6: Soil Laboratory Analysis Results – Contribution to Total Exposure from Vapour Inhalation (Indoor)

Compound	Contribution of Vapour Inhalation to Total Exposure (%)	Screening Criteria (mg/kg)	Maximum recorded value (mg/kg)	Potential Vapour Risk?
Naphthalene	52.3	190	370	✓
Benzo(a)anthracene	<0.1	170	360	х
Benzo(b)fluoranthene	0.1	44	160	х
Benzo(a)pyrene	0.0	35	340	х
Dibenzo(ah)anthracene	0.0	3.5	3.5	х
>C ₁₀ -C ₁₂ Aromatic	16.3	3500	5200	√

6.2.2 As shown in the table above, the concentrations of naphthalene and C10-C12 aromatic hydrocarbons detected in a sample from WS5 at 0.25m bgl theoretically pose a significant risk via vapour inhalation pathways. These exceedances of assessment criteria correlate approximately with the records of "pockets of a black tar substance" reported on the WS5 log between 0.20-0.22mbgl.

Southern Plot (current town hall site): Proposed Residential Use

- 6.2.3 The results below represent samples obtained from the southern site, currently in use as a town hall/community centre and proposed to be redeveloped to provide a new residential development.
- 6.2.4 Based on this proposed end use, comparison of results is made against criteria protective of human health within a "residential with plant uptake" end use setting.

Determinand	Unit	No. samples tested	Screenin	g Criteria	Min	Max	No. Exceeding
Arsenic	mg/kg	8	S4UL	37	9.9	39	1No (BH2@0.30mbgl)
Cadmium	mg/kg	8	S4UL	11	<0.10	1.0	0
Chromium	mg/kg	8	S4UL	910	12	23	0
Lead	mg/kg	8	C4SL	200	33	620	3No (WS7@0.30mbgl, WS10@0.30mbgl, BH2@0.20mbgl)
Mercury	mg/kg	8	S4UL	40	<0.10	1.1	0
Nickel	mg/kg	8	S4UL	180	9.6	23	0
Copper	mg/kg	8	S4UL	2400	11	89	0
Zinc	mg/kg	8	S4UL	3700	32	430	0
Total Cyanide ^A	mg/kg	8	CLEA v 1.06	33	<0.50	0.50	0
Selenium	mg/kg	8	S4UL	250	<0.20	0.67	0
Boron Water Soluble	mg/kg	8	S4UL	290	0.58	0.90	0
Phenols	mg/kg	8	S4UL	120	<0.3	<0.3	0

Table 6.7: Soil Laboratory Analysis Results – Metals, Metalloids, Phenol, Cyanide – Southern Plot

Notes: ^A Generic assessment criteria derived for free inorganic cyanide.

Table 6.8: Soil Laboratory Analysis Results – Polycyclic Aromatic Hydrocarbons (PAHs) – Southern Plot

Determinand	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
Naphthalene	mg/kg	8	S4UL	2.3	<0.10	0.63	0
Acenaphthylene	mg/kg	8	S4UL	170	<0.10	0.80	0
Acenaphthene	mg/kg	8	S4UL	210	<0.10	0.14	0
Fluorene	mg/kg	8	S4UL	170	<0.10	0.43	0
Phenanthrene	mg/kg	8	S4UL	95	<0.10	3.4	0
Anthracene	mg/kg	8	S4UL	2400	<0.10	0.74	0
Fluoranthene	mg/kg	8	S4UL	280	<0.10	10	0

Elleray Hall and North Lane Depot/East Car Park, Teddington Geo-environmental and Geotechnical Assessment

P3152J2114 – June 2021

Determinand	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
Pyrene	mg/kg	8	S4UL	620	<0.10	9.4	0
Benzo(a)anthracene	mg/kg	8	S4UL	7.2	<0.10	4.5	0
Chrysene	mg/kg	8	S4UL	15	<0.10	4.2	0
Benzo(b)fluoranthene	mg/kg	8	S4UL	2.6	<0.10	7.1	3No (WS7@0.30mbgl, WS10@0.30mbgl, BH2@0.30mbgl)
Benzo(k)fluoranthene	mg/kg	8	S4UL	77	<0.10	2.9	0
Benzo(a)pyrene	mg/kg	8	S4UL	2.2	<0.10	5.5	3No (WS7@0.30mbgl, WS10@0.30mbgl, BH2@0.30mbgl)
Indeno(123-cd)pyrene	mg/kg	8	S4UL	27	<0.10	3.9	0
Dibenzo(ah)anthracene	mg/kg	8	S4UL	0.24	<0.10	1.1	4No (WS9@0.60mbgl, WS7@0.30mbgl, WS10@0.30mbgl, BH2@0.30mbgl)
Benzo(ghi)perylene	mg/kg	8	S4UL	320	<0.10	4.2	0
Total PAH	mg/kg	8	-	-	<2.0	59	-

Table 6.9: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPH) – Southern Plot

TPH Band	Unit	No. Samples Tested	Screening Criteria		Min	Мах	No. Exceeding
C ₈ -C ₁₀	mg/kg	6	S4UL	27	<1.0	<1.0	
>C ₁₀ -C ₁₂	mg/kg	6	S4UL	74	<1.0	20	
>C ₁₂ -C ₁₆	mg/kg	6	S4UL	140	<1.0	52	
>C ₁₆ -C ₂₁	mg/kg	6	S4UL	260	<1.0	29	
>C ₂₁ -C ₃₅	mg/kg	6	S4UL	1100	<1.0	3420	1No (WS6@0.10mbgl)
Total TPH	mg/kg	6	-	-	<10	5500	-

Note: *The lower value of guidelines for Aromatic/Aliphatics has been selected

Table 6.10: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPHCWG) – Southern Plot

TPH Band	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
>C5-C6 Aliphatic	mg/kg	3	S4UL	42	<1.0	<1.0	0
>C ₆ -C ₈ Aliphatic	mg/kg	3	S4UL	100	<1.0	<1.0	0

Elleray Hall and North Lane Depot/East Car Park, Teddington Geo-environmental and Geotechnical Assessment P3152J2114 – June 2021

Prepared by Jomas Associates Ltd On behalf of Richmond and Wandsworth Council

JUMAS ENGINEERING ENVIRONMENTAL

TPH Band	Unit	No. Samples Tested	Screening	Screening Criteria		Мах	No. Exceeding
>C8-C10 Aliphatic	mg/kg	3	S4UL	27	<1.0	<1.0	0
>C10-C12 Aliphatic	mg/kg	3	S4UL	130	<1.0	<1.0	0
>C ₁₂ -C ₁₆ Aliphatic	mg/kg	3	S4UL	1100	<1.0	<1.0	0
>C ₁₆ -C ₃₅ Aliphatic	mg/kg	3	S4UL	65000	<2.0	<2.0	0
>C5-C7 Aromatic	mg/kg	3	S4UL	70	<1.0	<1.0	0
>C7-C8 Aromatic	mg/kg	3	S4UL	130	<1.0	<1.0	0
>C8-C10 Aromatic	mg/kg	3	S4UL	34	<1.0	<1.0	0
>C10-C12 Aromatic	mg/kg	3	S4UL	74	<1.0	<1.0	0
>C ₁₂ -C ₁₆ Aromatic	mg/kg	3	S4UL	140	<1.0	<1.0	0
>C ₁₆ -C ₂₁ Aromatic	mg/kg	3	S4UL	260	<1.0	<1.0	0
>C ₂₁ -C ₃₅ Aromatic	mg/kg	3	S4UL	1100	<2.0	<2.0	0
Total TPH (Ali/Aro)	mg/kg	3	-	-	<10	<10	-

6.3 Volatile Organic Compounds

6.3.1 In addition to the suites outlined previously, 3No samples were tested for the presence of volatile organic compounds including BTEX compounds (benzene, toluene, ethylbenzene, xylene). No VOCs were reported above the laboratory detection limit within any tested sample.

6.4 Vapour Risk Assessment from a Soil Source (Southern Plot)

6.4.1 As outlined in Tables 6.8-6.9, a number of polyaromatic hydrocarbons and a single petroleum hydrocarbon fraction have been found in excess of their generic screening criteria for the protection of human health within a 'residential with plant uptake' end-use scenario. The generic screening criteria considers all possible pathways between the source and the receptor. In order to assess potential risks from inhalation of vapour, each organic compound that has been found in excess of its GAC will be assessed in terms of the contribution to total exposure from vapour inhalation inside a structure as reported within the LQM/CIEH S4UL document. Where a significant proportion of the total exposure is reported from vapour inhalation, there could be a potential risk from vapour inhalation.

Table 6.11: Soil Laboratory Analysis Results – Contribution to Total Exposure from Vapour Inhalation (Indoor)

Compound	Contribution of Vapour Inhalation to Total Exposure (%)	Screening Criteria (mg/kg)	Maximum recorded value (mg/kg)	Potential Vapour Risk?
Benzo(b)fluoranthene	<0.1	2.6	7.1	х
Benzo(a)pyrene	0.0	2.2	5.5	х
Dibenzo(ah)anthracene	<0.1	0.24	1.1	х
C21-C35	7.0/0.0*	6500/1100*	3420	х

Elleray Hall and North Lane Depot/East Car Park, Teddington Geo-environmental and Geotechnical Assessment P3152J2114 – June 2021

*aliphatic/aromatic

- 6.4.2 As shown in the table above, all of the PAHs detected in soils in excess of generic assessment criteria have a negligible contribution to total exposure via inhalation pathway (less or equal to 0.1%).
- 6.4.3 The petroleum hydrocarbon exceedance relates to a grouped hydrocarbon analysis, not split into aliphatic and aromatic fractions. The total reported hydrocarbons within the fraction in question does not exceed the criteria for aliphatic fractions, for which the contribution to exposure from vapour is 7%, and only exceeds the criteria for aromatic fractions which have a 0% contribution to exposure from vapour. On this basis, the petroleum hydrocarbons identified on the southern site are not considered to pose a significant risk from vapour inhalation.
- 6.4.4 Therefore, it is considered that there is a negligible risk to end users of the proposed development on the southern plot associated with vapour risk inhalation from soils.

6.5 Asbestos in Soil

- 6.5.1 15No samples of the Made Ground were screened in the laboratory for the presence of asbestos across the two sites.
- 6.5.2 No asbestos fibres were reported in samples analysed in the laboratory.

6.6 Screening of Groundwater Chemical Analysis Results

- 6.6.1 Samples of groundwater obtained from the borehole installations installed within exploratory locations BH1 and BH2 were obtained by low-flow methodology and submitted for analysis.
- 6.6.2 The results of the laboratory testing are summarised in Tables 6.12 to 6.14 below.

Determinand	Unit	No. samples tested	Screenin	g Criteria	Minimum	Maximum	No of Exceedances
Arconio	μg/l	2	10	DWS	0.57	0.57	0
Arsenic	μg/l	2	50	EQS	0.57	0.57	0
Cadmium	μg/l	2	5	DWS	<0.11	<0.12	0
Chromium	μg/l	2	50	DWS	6.9	7.0	0
Lead	μg/l	- 2	10	DWS	<0.50	<0.50	0
Leau	μg/l	Z	1.2*	EQS	<0.50	<0.50	0
Niekol	μg/l	C	20	DWS	0.59	1.0	0
Nickel	μg/l	- 2	4*	EQS	0.59	1.0	0
Connor		2	12	EQS	1.5	1.5	0
Copper	µg/l	2	2000	DWS	1.5	1.5	0
Zinc	μg/l	2	5000	DWS	<2.5	4.0	0
	μg/l	-	12.9**	EQS	<2.5	4.0	0

Table 6.12: Groundwater Analysis Results – Metals, Cyanide, Phenol

JUMAS ENGINEERING ENVIRONMENTAL

Determinand	Unit	No. samples tested	Screenin	g Criteria	Minimum	Maximum	No of Exceedances
Mercury	μg/l	2	1	DWS	<0.05	<0.05	0
Selenium	μg/l	2	10	DWS	1.2	1.4	0
Deven	μg/l	2	1000	DWS	84	110	0
Boron	μg/l	- 2	2000	EQS	84	110	0
	μg/l	2	50	DWS	<0.05	<0.05	0
Cyanide (Total)	μg/l	- 2	1	EQS	<0.05	<0.05	0
Phenols (Total)	μg/l	2	7.7	EQS	<0.030	<0.03	0

* bioavailable concentration

**bioavailable concentration + ambient background concentration dissolved for Thames Groundwater (2 μ g/L)

Table 6.13: Groundwater Analysis Results – Polycyclic Aromatic Hydrocarbons (PAHs)

Determinand	Unit	No. samples tested	Screening	; Criteria	Minimum	Maximum	No. of Exceedances
Naphthalene	μg/l	2	2.4	EQS	<0.10	<0.10	0
Acenaphthylene	μg/l	2	-	-	<0.10	<0.10	-
Acenaphthene	μg/l	2	-	-	<0.10	<0.10	-
Fluorene	μg/l	2	-	-	<0.10	<0.10	-
Phenanthrene	μg/l	2	-	-	<0.10	<0.10	-
Anthracene	μg/l	2	0.1	EQS	<0.10	<0.10	0
Fluoranthene	μg/l	2	0.0063	EQS	<0.10	<0.10	0
Pyrene	μg/l	2	-	-	<0.10	<0.10	-
Benzo(a)anthracene	μg/l	2	-	-	<0.10	<0.10	-
Chrysene	μg/l	2	-	-	<0.10	<0.10	-
Sum of four Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Indeno(123-cd)pyrene	μg/l	2	0.1	DWS	<0.40	<0.40	0
Benzo(a)pyrene	μg/l	2	0.01	DWS	<0.10	<0.10	0
Dibenzo(ah)anthracene	μg/l	2	0.00017	EQS	<0.10	<0.10	0

Table 6.14: Groundwater Analysis Results – TPHCWG – Controlled Waters

Determinand	Unit	No. Samples tested	Screeninį	g Criteria	Minimum	Maximum	No. of Exceedances
>C5-C6 Aliphatic	μg/I	2	15000	WHO	<0.10	<0.10	0
>C6-C8 Aliphatic	μg/I	2	15000	WHO	<0.10	<0.10	0
>C8-C10 Aliphatic	μg/I	2	300	WHO	<0.10	<0.10	0
>C10-C12 Aliphatic	μg/l	2	300	WHO	<0.10	<0.10	0

Elleray Hall and North Lane Depot/East Car Park, Teddington Geo-environmental and Geotechnical Assessment P3152J2114 – June 2021

Prepared by Jomas Associates Ltd On behalf of Richmond and Wandsworth Council

JUMAS ENGINEERING ENVIRONMENTAL

Determinand	Unit	No. Samples tested	Screenin	g Criteria	Minimum	Maximum	No. of Exceedances
>C12-C16 Aliphatic	μg/I	2	300	WHO	<0.10	<0.10	0
>C16-C21 Aliphatic	μg/l	2	-	-	<0.10	<0.10	-
>C21-C35 Aliphatic	μg/l	2	90	WHO	<0.10	<0.10	0
>C5-C7 Aromatic	μg/I	2	10	WHO	<0.10	<0.10	0
>C7-C8 Aromatic	μg/l	2	700	WHO	<0.10	<0.10	0
>C8-C10 Aromatic	μg/l	2	300	WHO	<0.10	<0.10	0
>C10-C12 Aromatic	μg/l	2	90	WHO	<0.10	<0.10	0
>C12-C16 Aromatic	μg/l	2	90	WHO	<0.10	<0.10	0
>C16-C21 Aromatic	μg/l	2	90	WHO	<0.10	<0.10	0
>C21-C35 Aromatic	μg/I	2	90	WHO	<0.10	<0.10	0

- 6.6.3 In addition to the suite outlined above, the water samples were also analysed for a suite of volatile organic compounds including BTEX. None of the compounds analysed for were reported above the laboratory method detection limit.
- 6.6.4 The results summarised above are considered to show that a pollutant linkage to controlled waters does not exist within either plot.

6.7 Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth

- 6.7.1 Zinc, copper and nickel are phytotoxins and could therefore inhibit plant growth in soft landscaped areas. Concentrations measured in soil for these determinands have been compared with the pH dependent values given in BS: 3882 (2015).
- 6.7.2 Adopting a pH value of greater than 7, as indicated by the results of the laboratory analysis, the following is noted;

Table 6.15: Soil Laboratory Analysis Results – Phytotoxic Determinands – Northern Plot

Determinand	Threshold level (mg/kg)	Min (mg/kg)	Max (mg/kg)	No. Exceeding
Nickel	110	3.7	36	0
Copper	200	8.4	2000	1No (WS2@0.30mbgl)
Zinc	300	33	470	2No (WS1@0.60mbgl, WS2@0.30mbgl)

Table 6.16: Soil Laboratory Analysis Results – Phytotoxic Determinands – Southern Plot

Determinand	Threshold level (mg/kg)	Min (mg/kg)	Max (mg/kg)	No. Exceeding
Nickel	110	9.6	23	0
Copper	200	11	89	0
Zinc	300	32	430	1No (WS10@0.30mbgl)

6.8 Screening for Water Pipes

6.8.1

The results of the analysis have been assessed for potential impact upon water supply pipes. Tables 6.17-6.18 below summarise the findings of the assessment:

Table 6.17: Screening Guide for Water Pipes – Northern Plot

	No. of	Threshold	Value for si	te data (mg/kg)	
Determinand	tests	adopted for PE (mg/kg)	Min	Max	No of Exceedances
Total VOCs	9	0.5	ND	8.294	1No (WS5@0.25mbgl)
BTEX	9	0.1	ND	6.27	1No (WS5@0.25mbgl)
MTBE	9	0.1	ND	ND	0
EC5-EC10	15	1	ND	352	7No (WS3@0.25mbgl, WS5@0.25mbgl, WS5@0.40mbgl, BH1@0.25mbgl, BH1@0.40mbgl, STP1@0.10mbgl, STP2@0.40mbgl)
EC10-EC16	15	10	ND	15670	11No (WS1@0.30mbgl, WS2@1.0mbgl, WS3@0.25mbgl, WS3@1.00mbgl, WS5@0.25mbgl, WS5@0.40mbgl, BH1@0.25mbgl, BH1@0.40mbgl, STP1@0.10mbgl, STP2@0.40mbgl)
EC16-EC40	15	500	ND	47670	11No (WS1@0.30mbgl, WS3@0.25mbgl, WS4@0.10mbgl, WS5@0.25mbgl, WS5@0.40mbgl, BH1@0.25mbgl,

Elleray Hall and North Lane Depot/East Car Park, Teddington Geo-environmental and Geotechnical Assessment P3152J2114 – June 2021

	No. of	Threshold	Value for site data (mg/kg)		
Determinand	tests	adopted for PE (mg/kg)	Min	Max	No of Exceedances
					BH1@0.40mbgl, STP1@0.10mbgl)
					6No
			ND 3		(WS3@0.25mbgl,
					WS3@1.00mbgl,
Naphthalene	15	5		370	WS5@0.25mbgl,
					WS5@0.40mbgl,
					BH1@0.25mbgl,
					BH1@0.40mbgl)
	45	2		470	1No
Phenols	15	2	ND	170	(WS5@0.25mbgl)

ND – None detected

Table 6.18: Screening Guide for Water Pipes – Southern Plot

	No. of	Threshold	Value for si	te data (mg/kg)	
Determinand	tests	tests adopted for PE (mg/kg) Min		Max	No of Exceedances
Total VOCs	3	0.5	ND	ND	0
BTEX	3	0.1	ND	ND	0
МТВЕ	3	0.1	ND	ND	0
					2No
EC5-EC10	9	1	ND	1.4	(WS6@0.10mbgl,
					WS8@0.60mbgl)
					2No
EC10-EC16	9	10	ND	72	(WS6@0.10mbgl,
					WS8@0.60mbgl)
EC16-EC40	9	500	ND	5349	1No
	5	500	500 10		(WS6@0.10mbgl)
Naphthalene	9	5	ND	0.63	0
Phenols	9	2	ND	ND	0

ND – None detected

6.8.2 The above suggests that upgraded pipe work is likely to be required across both plots.

- 6.8.3 Alternatively, it may be possible to utilise other protection methods including (but not limited to):
 -) diversion of the pipe,
 -) localised remediation
 -) embedding the pipe in a sufficient thickness of clean granular material
- 6.8.4 The water supply pipe requirements for this site should be discussed at an early stage with the relevant utility provider.

6.9 Waste Characterisation and Disposal

- 6.9.1 The following comments are given as guidance and should be confirmed by the waste disposal facility accepting the waste. The waste disposal facility may have their own classification methodology and are under no obligation to honour the comments given below.
- 6.9.2 Samples from WS5 0.25mbgl (northern plot) and BH2 0.6mbgl (southern plot) were scheduled for single stage WAC analysis.
- 6.9.3 The sample from WS5 0.25mbgl was reported to exceed the hazardous waste landfill limits for total organic carbon and therefore may require treatment before disposal. Inert waste landfill criteria were also exceeded for total petroleum hydrocarbons and total polyaromatic hydrocarbons.
- 6.9.4 The sample from BH2 -0.60mbgl was reported to exceed inert waste thresholds for antimony and fluoride. Criteria for "stable non-reactive hazardous waste in non-hazardous landfill" were not exceeded.

7 SOIL GAS RISK ASSESSMENT

7.1 Soil Gas Results

- 7.1.1 Four return monitoring visits have been undertaken by Concept between 10th March 2021 and 24th March 2021, to monitor wells installed within boreholes at the site for soil gas concentrations and groundwater levels.
- 7.1.2 Atmospheric pressures recorded during the existing monitoring visits ranged between 1009 and 1032 mbar.
- 7.1.3 The results of the monitoring undertaken are presented in full in the Concept Factual Report and summarised in Table 7.1 below.

Hole No.	CH₄ (%)	CO₂ (%)	O ₂ (%)	H₂S (ppm)	VOCs (ppm)	Steady Flow Rate (I/hr)	Peak Flow Rate (I/hr)	Depth to water (mbgl)	Depth of installation (mbgl)
				N	lorthern Pl	ot			
BH1	<0.1	0.0-4.6	18.7-19.3	<0.1	1.1-1.7	<0.1	<0.1	4.06-4.15	6.30
WS1	<0.1	0.0-5.2	18.1-19.8	<0.1	0.5-4.3	<0.1	-0.3- <0.1	Dry	2.00
WS2	<0.1	0.0-5.8	16.2-19.9	<0.1	0.4-2.8	<0.1	<0.1	Dry	2.00
				S	outhern Pl	ot			
BH2	<0.1	0.0-4.1	19.1-20.1	<0.1	0.2-2.7	<0.1	<0.1	4.15-4.24	6.30
WS6	<0.1	0.0-5.3	19.7-20.2	<0.1	0.9-4.6	<0.1	<0.1	Dry	2.00
WS10	<0.1	0.0-0.8	19.3-20.2	<0.1	0.7-3.9	<0.1	<0.1	Dry	2.00

Table 7.1: Summary of Gas Monitoring Data

7.2 Screening of Results

- 7.2.1 As shown in Table 7.1, no methane has been reported to date. Carbon dioxide has been reported to a maximum concentration of 5.8% v/v. Screening of the monitoring well headspaces with a photo-ionisation detector (PID) has detected maximum Volatile Organic Compound (VOC) concentration to a maximum level of 3.2ppm. A maximum flow rate of -0.3l/hr has been reported.
- 7.2.2 In the assessment of risks posed by hazardous ground gases and selection of appropriate mitigation measures, BS8485 (2015) + A1 (2019) identifies four types of development, termed Type A to Type D.
- 7.2.3 Type A buildings are defined as

"private ownership with no building management controls on alternations to the internal structure, the use of rooms, the ventilation of rooms or the structural fabric of the building. Some small rooms present. Probably conventional building construction (rather than civil engineering). Examples include private housing and some retail premises."

- 7.2.4 Type A has been adopted as the relevant category for the proposed development on the southern plot.
- 7.2.5 Type B buildings are defined as

" private or commercial property with central building management control of any alterations to the building or its uses but limited or no central building management control of the maintenance of the building, including the gas protection measures. Multiple occupancy. Small to medium size rooms with passive ventilation of rooms and other internal spaces throughout ground floor and basement areas. May be conventional building or civil engineering construction. Examples include managed apartments, multiple occupancy offices, some retail premises and parts of some public buildings (such as schools, hospitals, leisure centres) and parts of hotels."

- 7.2.6 Type B has been adopted as the relevant category for the proposed development for the northern plot.
- 7.2.7 The soil gas assessment method is based on that proposed by Wilson & Card (1999), which was a development of a method proposed in CIRIA publication R149 (CIRIA, 1995). The method uses both gas concentrations and borehole flow rates to define a characteristic situation based on the limiting borehole gas volume flow for methane and carbon dioxide. In both these methods, the limiting borehole gas volume flow is renamed as the Gas Screening Value (GSV).
- 7.2.8 The Gas Screening Value (litres of gas per hour) is calculated by using the following equation

GSV = (Concentration/100) X Flow rate

Where concentration is measured in percent (%) and flow rate is measured in litres per hour (I/hr)

- 7.2.9 The Characteristic Situation is then determined from Table 8.5 of CIRIA C665.
- 7.2.10 To accord with C665, worst case conditions are used in the calculation of GSVs for the site.
- 7.2.11 A worst case flow rate of 0.3l/hr (maximum reported) will be used in the calculation of GSVs for the northern plot, and 0.1l/hr will be used for the southern plot. The Characteristic Situation is then determined from Table 8.5 of CIRIA C665.
- 7.2.12 To accord with C665, worst case conditions are used in the calculation of GSVs for the site. These have been summarised below in Tables 7.2-7.3

Gas	Concentration (v/v %)	Peak Flow Rate (l/hr)	GSV (l/hr)	Characteristic Situation (after CIRIA C665)
CO2	5.8	0.3	0.0174	1
CH4	0.1	0.3	0.003	1

Table 7.2: Summary of Gas Monitoring Data – Northern Plot

Gas	Concentration (v/v %)	Peak Flow Rate (I/hr)	GSV (l/hr)	Characteristic Situation (after CIRIA C665)
CO2	5.3	0.1	0.0053	1
CH₄	0.1	0.1	0.001	1

Table 7.3: Summary of Gas Monitoring Data – Southern Plot

- 7.2.13 As shown in the tables above, on the basis of the data obtained, both sites could be considered Characteristic Situation 1, for which no formal gas protection measures are considered necessary; however, in accordance with BS8485, as both sites have reported carbon dioxide concentrations in excess of 5%, consideration should be given to upgrading the sites to CS2.
- 7.2.14 Given that no significant sources of ground gases were identified during the desk study, and no significant sources of potential ground gases were identified during the intrusive works it is considered that the site should not be classified as CS2, and a CS1 designation considered appropriate (for which no gas protection measures are required). Although no ground gas monitoring events were completed at atmospheric pressures of <1000 mbar, it is considered that this should not materially affect the conclusion that the site can be considered as CS1, given the absence of identified, significant sources.
- 7.2.15 PID screening of the monitoring well headspace has revealed maximum concentrations of VOCs of 3.9ppm. It is considered that the PID screening of monitoring well provides an additional supporting line of evidence to a conclusion that risks to human health receptors via vapour inhalation pathways are low.

8 SUMMARY OF RESULTS

8.1 Land Quality Impact Summary

- 8.1.1 Following the ground investigation, the following is noted:
 - J The proposed development is to involve the demolition of Elleray Hall and the construction of a two-storey block of flats with communal gardens (southern plot), and the construction of a community centre on the currently vacant North Lane Depot/East Car Park plots (northern plot).

Northern Plot

- Following generic risk assessments, elevated concentrations of naphthalene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, dibenzo(ah)anthracene and C10-C12 aromatic petroleum hydrocarbons were detected in soils in excess of generic assessment criteria for the protection of human health within a "commercial" end-use scenario.
-) No asbestos fibres were detected in the samples analysed in the laboratory.
-) The site proposal indicates that large areas of site will remain covered by a combination of the proposed building footprints and hard surfacing. Where this is the case, no formal remedial measures are considered necessary in terms of human health, as the building and hard surfacing are expected to provide a barrier to potential receptors. In areas of soft landscaping, a cover layer of 450mm of clean imported sub/topsoil should be placed above a geotextile membrane.
- Exceedances of generic assessment criteria for potentially volatile compounds (naphthalene and the aromatic hydrocarbon fraction >C10-C12) were detected within made ground soils in WS5, and concentrations of volatile contaminants including BTEX compounds were detected above laboratory method detection limits in the made ground in WS5 and WS3. These concentrations of volatile contaminants were only detected in a sub-stratum of granular made ground with various anthropogenic inclusions, within which hydrocarbon odours were commonly noted. Pockets of a black tar substance were noted within this substratum in WS5. Given the relatively thin nature of the stratum, and the lack of visual / olfactory evidence of hydrocarbon or volatile contamination in soils underlying the stratum, as well as the low photo-ionisation detector readings recorded in monitoring well headspaces during monitoring events, it is considered unlikely that a significant risk to end users of the development exists via vapour inhalation pathways.
- Following groundwater sampling and laboratory analysis from monitoring wells BH1, a pollutant linkage to controlled waters is not considered to exist.
- Following four gas monitoring visits, concentrations of carbon dioxide are raised at the site, with corresponding depleted oxygen. Calculating the Gas Screening Value using worst case results indicates Characteristic Situation 1. However, due to the elevated concentrations of carbon dioxide measured in excess of 5%, consideration should be given to upgrading the sites to CS2. Given that no significant sources of ground gases were identified during the desk study, and no significant sources of potential ground gases were identified during the intrusive works it is considered that the site should not be

classified as CS2, and a CS1 designation is appropriate (for which no gas protection measures are required).

) Barrier pipe is likely to be required for potable water supply pipes. The requirements should be confirmed with the relevant utility provider.

Southern Plot

- Following generic risk assessments, elevated concentrations of arsenic, lead, benzo(b)fluoranthene, benzo(a)pyrene, dibenzo(ah)anthracene and C21-C352 grouped petroleum hydrocarbons were detected in soils in excess of generic assessment criteria for the protection of human health within a "residential with plant uptake" end-use scenario on the southern plot.
-) No evidence of a possible source of volatile contaminants was detected in the southern site.
- \int No asbestos fibres were detected in the samples analysed in the laboratory.
-) The site proposals indicate that large areas of the site will be covered by a combination of the proposed building footprint and hard surfacing. Where this is the case, no formal remedial measures are considered necessary in terms of human health, as the building and hard surfacing are expected to provide a barrier to potential receptors. In areas of soft landscaping, a cover layer of 450mm of clean imported sub/topsoil should be placed above a geotextile membrane.
-) It is possible that further soil sampling and assessment may allow for zoning and delineation of areas requiring clean cover in soft landscaped area.
-) Following groundwater sampling and laboratory analysis from monitoring wells BH2, a pollutant linkage to controlled waters is not considered to exist.
-) Following four gas monitoring visits, concentrations of carbon dioxide are raised at the site, with corresponding depleted oxygen. Calculating the Gas Screening Value using worst case results indicates Characteristic Situation 1. However, due to the elevated concentrations of carbon dioxide measured in excess of 5%, consideration should be given to upgrading the sites to CS2. Given that no significant sources of ground gases were identified during the desk study, and no significant sources of potential ground gases were identified during the intrusive works it is considered that the site should not be classified as CS2, and a CS1 designation is appropriate (for which no gas protection measures are required).

General Comments

- 8.1.2 As with any ground investigation, the presence of further hotspots between sampling points cannot be ruled out. Should any contamination be encountered, a suitably qualified environmental consultant should be informed immediately, so that adequate measures may be recommended.
- 8.1.3 Remedial strategies will be required for the proposed developments.

8.1.4 The above conclusions are made subject to approval by the statutory regulatory bodies.

8.2 Review of Pollutant Linkages Following Site Investigation

8.2.1 The site CSM has been revised and updated from that suggested in the desk study in view of the ground investigation data, including soil laboratory analysis results. Table 8.1 highlights whether pollutant linkages identified in the original CSM are still relevant following the risk assessment, or whether pollutant linkages, not previously identified, exist.

Table 8.1: Plausible Pollutants Linkages Summary (Pre Remediation)

Potential Source (from desk study)	Pathway	Receptor	Relevant Pollutant Linkage?	Comment
 Potential for contaminated ground associated with previous site use – on site (S1) depot, works, car park, unspecified industrial/commercial Potential for Made Ground associated with previous development operations – on 	 Ingestion and dermal contact with contaminated soil (P1) Inhalation or contact with potentially contaminated dust and vapours (P2) Permeation of water pipes and attack on concrete foundations by aggressive soil conditions (P6) 	 Construction workers (R1) Maintenance workers (R2) Neighbouring site users (R3) Future site users (R4) Building foundations and on site buried services (water mains, electricity and sewer) (R5) 	Y	 See section 8.1 above for remedial measures. The findings of this report should be included in the construction health and safety file, with adequate measures put in place for the protection of construction and maintenance workers. Contact should be made with relevant utility providers to confirm if upgraded materials are required. The concrete classification to protect buried concrete is discussed in Section 10.6
site (S2)) Potential for asbestos impacted soils from demolition of	 Accumulation and migration of soil gases (P5) 		x	Site is considered Characteristic Situation 1 and no formal gas protection measures are considered necessary.
previous structures – on site (S3)) Previous industrial use – off site (S4)	 Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff. (P3) Horizontal and vertical migration of contaminants within groundwater (P4) 	 Neighbouring site users (R3) Building foundations and on site buried services (water mains, electricity and sewer) (R5) Controlled waters - Principal Aquifer (R6) 	x	Groundwater analysis from both plots did not report any elevated contaminant concentrations. The concrete classification to protect buried concrete is discussed in Section 10.6

9 GEOTECHNICAL GROUND INVESTIGATION

9.1 Proposed Development

- 9.1.1 The proposed development is to involve the demolition of Elleray Hall and the construction of a two-storey block of flats with communal gardens, and the construction of a community centre on the currently vacant North Lane Depot/East Car Park plots.
- 9.1.2 Preliminary foundation plans and unfactored anticipated loads have been provided for the proposed new community centre site (northern plot); however, no detailed structural engineering design information, with respect to the type of construction and associated structural loadings was provided for the proposed residential development (southern plot) at the time of preparing this report. Consequently, a detailed discussion of all the problems that may arise during the proposed redevelopment scheme is beyond the scope of this report.
- 9.1.3 Practical solutions to the difficulties encountered, both prior to, and during construction, are frequently decided by structural constraints or economic factors. For these reasons, this discussion is predominantly confined to remarks of a general nature, which are based on site conditions encountered during the intrusive investigations.

9.2 Geotechnical Classification

- 9.2.1 At the Desk Study stage this development was deemed to be a GC2 development in accordance with BS EN: 1997.
- 9.2.2 The findings of the investigation undertaken and discussed previously do not change this assessment.
- 9.2.3 As the site and the proposed development has been deemed to be a GC2 project, and each plot is a single-build (i.e. there are not proposed to be multiple structures on the same site) it is not considered necessary at this point to require a Geotechnical Feedback Report following construction. However, this will need to be confirmed within the Geotechnical Design Report (to be undertaken by others).

9.3 Geotechnical Ground Investigation Report

- 9.3.1 This report should only be read as a Geotechnical Ground Investigation Report (as defined by BS EN 1997) and as such outlines and discusses Geotechnical Derived Parameters for a range of geotechnical parameters that have been obtained and are discussed in the various sections below.
- 9.3.2 These derived values have been determined using a combination of field tests (see Section Insitu testing), laboratory testing (see Section 3.6) or by "theory, correlation or empiricism from test results" (EN 1997-1). Laboratory analysis to determine Derived Geotechnical Parameters was undertaken as described in Section 3.6.
- 9.3.3 Suggestions for characteristic parameters are provided to be carried forward to determine design parameters in the final geotechnical design report (to be carried out by others).
- 9.3.4 It should be noted that if other parts of the development have not been designed to Eurocodes then the following comments may not be relevant or may need revising.

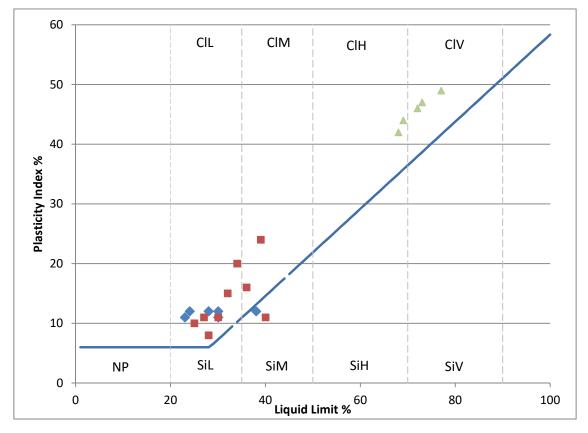
SECTION 9 GEOTECHNICAL GROUND INVESTIGATION

9.3.5 Practical solutions to the difficulties encountered, both prior to, and during construction, are frequently decided by structural constraints or economic factors. For these reasons, this discussion is predominantly confined to remarks of a general nature, which are based on site conditions encountered during the intrusive investigations.

9.4 Ground Investigation Summary

- 9.4.1 A summary of ground conditions obtained from the ground investigation is provided in Table 4.1.
- 9.4.2 The interpretation and name given to the various strata are used for identification purposes in the rest of this report.
- 9.4.3 The results of the ground investigation revealed a ground profile comprising Made Ground up to 1.7mbgl overlying both cohesive and granular deposits of the Kempton Park Gravel Member to a maximum depth of 6.60mbgl, overlying London Clay Formation to at least the depth of the deepest borehole at 20.0mbgl. The base of this stratum was not proven.
- 9.4.4 The derived geotechnical parameters, from in-situ and laboratory testing, empirical correlations and literature review are discussed below.
- 9.4.5 A summary of ground conditions obtained from the ground investigation and the recommended characteristic geotechnical parameters, is provided in Table 9.1 below.

9.5 Atterberg Limits


- 9.5.1 Samples of the cohesive Made Ground, Kempton Park Gravel Member and London Clay Formation deposits were subjected to Atterberg analysis using the 4-point methodology in accordance with BS1377-2: 1990: Clause 4.3 & 5: Definitive Method to determine the Liquid Limit, Plastic Limit and Plasticity Index as well as Moisture Content.
- 9.5.2 In addition, the moisture contents of the samples subjected to determination of the undrained shear strength using the quick undrained triaxial methodology were also determined as part of the analysis.
- 9.5.3 The results are summarised below in Table 9.1 below. The NHBC Volume Change Classification has been determined using Chapter 4.2 of the NHBC Guidelines.

Property	Made Ground	Kempton Park Gravel Member (Cohesive)	Kempton Park Gravel Member (Granular)	London Clay Formation
Moisture Content (%)	13-24	10-22	10-13	24-29
Liquid Limit (%)	23-28	25-40	30-34	68-73
Plastic Limit (%)	12-26	15-29	14-19	25-26
Plasticity Index (%)	11-15	8-24	11-20	42-47
Plasticity term	Low to medium	Low to medium	Low to medium	High to Very High
Corrected Plasticity Index (%)	5.06-10.2	6.0-14.64	6.82-15.4	42-47
NHBC Volume Change Classification	None – Low	None – Low	None - Low	High

9.5.4

Due to the range of values determined for the Atterberg limit results they have been plotted onto a Casagrande A-Line graph.

Figure 9.1 Atterberg Analysis Plotted onto a Casagrande (A-line) Graph

9.6 Standard Penetration Tests

- 9.6.1 Standard Penetration Tests were undertaken at regular intervals throughout the window sampler holes and cable percussive boreholes. The results of the SPTs are plotted against depth in Figure 9.2 below.
- 9.6.2 The strata have been grouped into "Made Ground", "Kempton Park Gravel Member Cohesive", "Kempton Park Gravel Granular", and "London Clay Formation".
- 9.6.3 N_{equi} results have been calculated where the full 300mm of penetration could not be achieved for 50 or more blows.

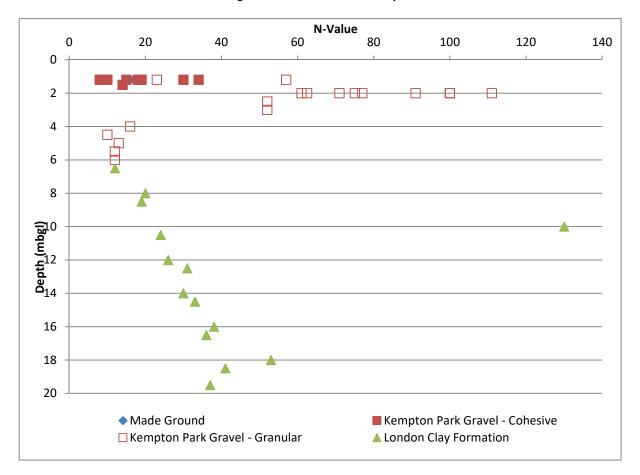
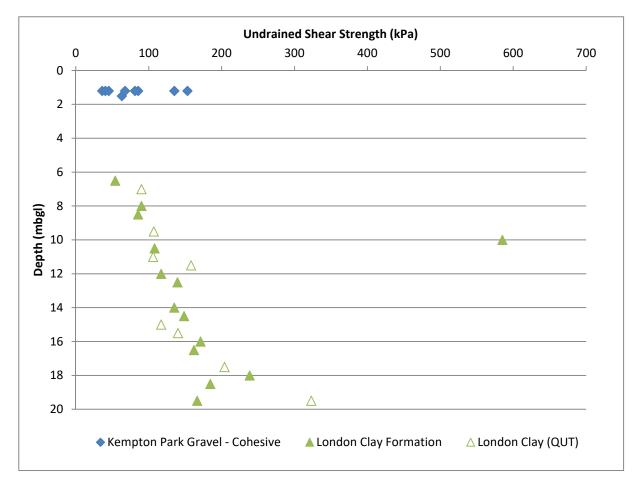


Figure 9.2: SPT 'N' Value v Depth

9.6.4 The results are broadly consistent between the two sites, as would be expected between two plots in close proximity with very similar geology. The N-values increase sharply within the granular superficial deposits, before dropping within the London Clay Formation where they start to increase with depth.


9.7 Undrained Shear Strength

9.7.1 As discussed above the N values recorded in the clay vary with depth, this infers that the undrained shear strength of the clay similarly varies. Figure 9.3 below shows the undrained shear strength inferred by the correlation suggested by Stroud (1974),

 $c_u = f_1 \times N$ can be applied,

in which c_u = mass undrained shear strength (kN) f_1 = constant N= SPT Value achieved during boring operations

- 9.7.2 In the above equation f_1 is dependent on the plasticity of the material that the SPT is being carried out in. As the plasticity indices were shown to be greater than 27% a value for f_1 of 4.5 has been adopted after Tomlinson (2001).
- 9.7.3 The graph below shows the shear strength profile of the London Clay Formation encountered at the site, based on the SPT to shear strength correlation described above, as well as the results of undrained triaxial tests on undisturbed samples taken from the boreholes.

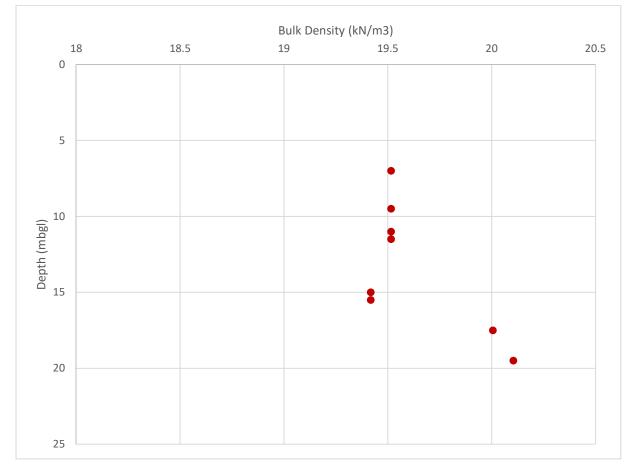


Figure 9.3: Undrained Shear Strength v Depth

9.8 Bulk Density

9.8.1 In order to calculate the undrained shear strength of undisturbed sample of London Clay, using the quick undrained triaxial methodology, the bulk density of the materials has to be calculated. These values are provided on the quick undrained triaxial testing certificates in the Concept Factual Report. These results are summarised in the figure below.

Figure 9.4: Bulk Density of London Clay v Depth

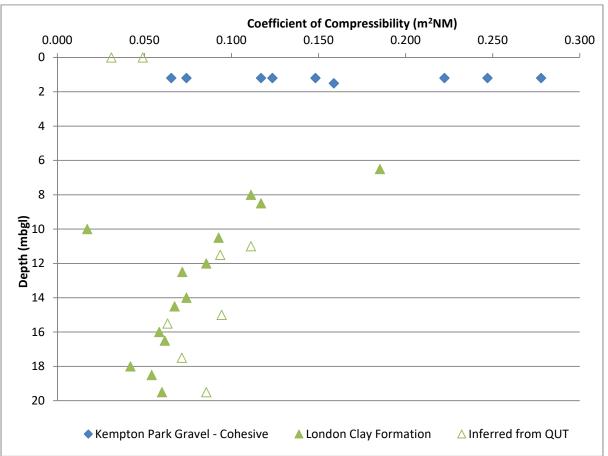
9.8.2 For materials encountered other than the London Clay, the correlations and suggested values for both cohesive and granular materials given in Carter and Butler (1991) have been used. The derived bulk densities are summarised below in Table 9.2.

Table 9.2 – Derived Bulk Densities

Strata	Bulk Density (kN/m³)
Made Ground	16
Kempton Park Gravel Member - Cohesive	19.5
Kempton Park Gravel Member - Granular	21.5

9.9 Coefficient of Compressibility

9.9.1 Stroud and Butler (1974) developed a relationship between the coefficient of compressibility (m_v) and SPT 'N' value.


 $m_v = 1/f_2 \times N$ can be applied,

in which m_v = coefficient of compressibility (m²/MN) f_2 = constant dependant on the plasticity index N = SPT Value achieved during boring operations

- 9.9.2 Using the plasticity indices obtained (See Table 9.1) and the graphs provided in Tomlinson (2001) a value of f_2 of 0.45 has been taken and used with the SPT 'N' values to infer coefficient of compressibility (m_v).
- 9.9.3 Where the undrained shear strength of the clays was obtained using the quick undrained triaxial methodology, the m_v value has been obtained by rearranging the equations for f_1 and f_2 and substituting in the measured undrained shear strength. These are plotted against depth below in Figure 9.5.

- 9.9.4 As would be expected, the results reduce with depth as the clay increases in strength and the over burden increases, reducing the potential for compressibility.
- 9.9.5 The results from of the London Clay are generally of "low compressibility" with some near surface clays of "medium compressibility". This is due to the lack of overburden pressure at shallow depth allowing the clays to relax and so compress slightly when loaded.

9.10 In-Situ CBR Testing

- 9.10.1 Concept undertook California Bearing Ratio tests using a Dynamic Cone Penetrometer (DCP) at each windowless sampler location across both sites as shown on the exploratory position plan provided as Figure 2.
- 9.10.2 The results have then been used to calculate CBR values using the methodology outlined in Interim Advice Notice 73/06 and using the method laid out in the Transport Research Laboratory document TRL 587.
- 9.10.3 The recorded penetration and the calculated CBR values from each position are included in the Concept Factual Report.

44

9.10.4 The results are summarised in the table below, however, it is noted that the DCP often reports a higher than true CBR value due to the nature of the test and due to possible effects from coarse grained inclusions.

			an a
Position	CBR (%)	From/To (mm)	Stratum
	39	20 – 286	Made Ground
WS1	7	286 – 1021	Made Ground/Cohesive Kempton Park Gravel Member
	10	1021 - 1623	Cohesive Kempton Park Gravel Member
	30	20 – 450	Topsoil/Made Ground
	6	450 – 680	Made Ground
WS2	16	680 – 1285	Made Ground
	32	1285 – 1615	Made Ground/Granular Kempton Park Gravel Member
	57	1615 - 1745	Granular Kempton Park Gravel Member
	46	20 – 91	Made Ground
WS3	6	91 – 855	Made Ground/Cohesive Kempton Park Gravel Member
	63	855 – 1245	Cohesive Kempton Park Gravel Member
	29	1245 – 1400	Cohesive Kempton Park Gravel Member
	40	20 – 150	Made Ground
	87	150 – 305	Made Ground
WS4	7	305 – 1040	Made Ground
	40	1040 - 1485	Made Ground/Granular Kempton Park Gravel Member
	84	20 - 360	Made Ground
	33	360 - 590	Made Ground
WS5	9	590 – 1325	Made Ground
	39	1325 – 1740	Made Ground/Granular Kempton Park Gravel Member
	27	20 - 360	Made Ground
WS6	3	360 - 1430	Made Ground/Cohesive Kempton Park Gravel Member
	12	1430 – 1725	Cohesive Kempton Park Gravel Member
	53	1725 – 1840	Cohesive Kempton Park Gravel Member
WS7	20	20 – 135	Made Ground
VV37	7	135 – 835	Made Ground

Table 9.3: CBR Test Results

Position	CBR (%)	From/To (mm)	Stratum
	12	835 – 1245	Made Ground/Cohesive Kempton Park Gravel Member
	41	1245 - 1350	Cohesive Kempton Park Gravel Member
	2	20 – 695	Made Ground/Cohesive Kempton Park Gravel Member
WS8	5	695 – 1055	Cohesive Kempton Park Gravel Member
	13		Cohesive Kempton Park Gravel Member
	43	1245 – 1415	Cohesive Kempton Park Gravel Member
	1	20 – 700	Made Ground
WS9	2	700 – 992	Made Ground
	20		Made Ground/ Cohesive Kempton Park Gravel Member
	3	20 – 786	Made Ground/ Cohesive Kempton Park Gravel Member
WS10	2	786 – 1400	Cohesive Kempton Park Gravel Member
	11	1400 – 1710	Cohesive Kempton Park Gravel Member

9.11 BRE 365 Soakage Tests

- 9.11.1 Concept undertook BRE365 soakaway testing at the site.
- 9.11.2 3No tests were undertaken at STP1 and STP3, 2No tests were completed at STP2.
- 9.11.3 The recorded results and calculations included in the Concept Factual Report, with the results summarised in Table 9.4 below.

Table 9.4: Summary of Calculated Infiltration Rate and Permeability

Test Location	Calculated	d Infiltration Ra	ate (m/s)	Deletive Develophility	Drainage	
Test Location	Test 1	Test 1 Test 2 Test 3		Relative Permeability	Conditions	
STP1	1.32x10 ⁻⁴	8.45x10 ⁻⁵	7.73x10 ⁻⁵	Medium - Low	Good	
STP2	6.70x10 ⁻⁶	7.09x10 ⁻⁶	-	Low	Good	
STP3	5.34x10 ⁻⁵	4.42x10 ⁻⁵	8.36x10 ⁻⁵	Medium - Low	Good	

9.11.4

All drainage for the site should be designed by a suitably qualified and experienced specialist in accordance with the recommendations provided in BRE DG 365 (2015).

9.12 Geotechnical Characteristic Parameter Summary

- 9.12.1 BS EN 1997-1 defines the Geotechnical Characteristic Parameter as being selected taking into account "worst credible (most conservative) results" from the investigation and derived results, which are "complemented by well-established experience".
- 9.12.2 By definition, as well as being based on the Geotechnical Derived Parameters, accepted published values for specific strata can also be included.
- 9.12.3 These values are selected with regards to the limit state that is being designed for and the structure that is being designed. Their selection is therefore part of the design process. It therefore follows that until the final limit state and structure is known the following Geotechnical Characteristic Parameters should only be used for guidance.
- 9.12.4 A summary of ground conditions obtained from the ground investigation and subsequently chosen Geotechnical Characteristic Parameters for each plot provided in the tables below

	Material				
Parameter	Made Ground	Kempton Park Gravel Member - Cohesive	Kempton Park Gravel Member - Granular	London Clay Formation	
Undrained Shear Strength (kPa)	-	65	NA	Cu = (z - 3.75)/0.0722	
Moisture content (%)	20	15	-	27	
Liquid Limit (%)	26	32	32	68	
Plastic Limit (%)	18	20	16	26	
Plasticity Index (%)	13	11	15	45	
Corrected Plasticity Index (%)	8.0	11	10	43	
NHBC Volume Change Classification	Low	Low	Low	High	
Coefficient of Compressibility m _v (m²NM)	-	0.156	NA	0.07	
Internal Angle of Friction	0° (undrained cohesive) ≤30° (granular)	27°	30°	21°	
Bulk Density (kN/m ³)	16*	19.5	21.5	19.6	
California Bearing Ratio (%)	≤2.5	5	5	NA	
Permeability (m/s)	N/A	N/A	6.1x10 ⁻⁵	N/A	

Table 9.5: Ground Conditions and Characteristic Geotechnical Parameters

Where z = depth below ground level in metres

10 GEOTECHNICAL ENGINEERING CONSIDERATIONS

10.1 Design Methodologies

- 10.1.1 This is not a Geotechnical Design Report and as such will not "design" any item or provide Geotechnical Design Values (see Section 11.2 below). The purpose of this section is to identify geotechnical issues that may affect the development and the subsequent design process.
- 10.1.2 There are four design methodologies that are allowed under EC7. These are:
 -) Design by calculation;
 -) Design by prescriptive measures;
 - Design by the observational method;
 - Design based on experimental models or site / load tests.
- 10.1.3 The first three methodologies will be generally used within this section. The use of experimental models or load tests is only really relevant where the specialist contractor can demonstrate similar results in similar ground conditions or where a structure is being converted with little or no change to the imposed loads.
- 10.1.4 The final two can be used to confirm and complement the recommendations made by the first two methodologies.
- 10.1.5 BS EN 1997 (Eurocode 7 (EC7)) requires the consideration of 5No separate limit states to ensure that the proposed design is suitable. Jomas has not been supplied with sufficient information to undertake these. The design principle laid out in EC7 is iterative, i.e. a solution is analysed, if that works then something of reduced capacity is analysed. The comments made below are there to aid the design and are not meant to provide designed solutions.

10.2 Geotechnical Design values

- 10.2.1 Geotechnical Design Values, sometimes referred to as Factored Parameters, will need to be selected as part of the Geotechnical Design Report by applying partial factors as outlined in BS EN 1997. These partial factors will depend on the Design Approach (normally taken as UK Design Approach 1 (DS1) within the UK), and which design case (Case A C) applies to the item being designed.
- 10.2.2 For the verification of serviceability limit state, the Geotechnical Characteristic Parameter and the actions (both permanent and variable) are used without having been factored.
- 10.2.3 It should be noted that different cases and therefore Geotechnical Design values for the same parameter may be used for different parts of the design and may depend on the particular case being modelled.
- 10.2.4 The comments below are indicative only based on limited ground investigation data. Foundations should be designed by a suitably qualified Engineer. Once structural loads have been fully determined a full design check in accordance with BS EN 1997 should be undertaken to confirm suitability of the proposed design values.

48

SECTION 10 GEOTECHNICAL ENGINEERING CONSIDERATIONS

10.3	Building Near Trees
	Design Methodology:
	Design by prescriptive measures – NHBC Standards, Chapter 4.2
	Notes:
10.3.2	The underlying soil conditions have been shown to be of "low" volume change potential at shallow depth, with "high" volume change potential in the London Clay Formation.
10.3.3	Using the geotechnical testing obtained (summarised in Table 9.1) and with reference to NHBC Standards Chapter 4.2 it can be seen that a minimum founding depth of 0.75m will be required.
10.3.4	Presence of existing and proposed trees may increase this minimum depth. It is recommended that a tree survey that should include: location, species and height of all trees on and near to the proposed development is recommended.
10.3.5	Although geotechnical laboratory testing has indicated the London Clay Formation to be of high volume change potential, given that this stratum is reported in excess of 6m bgl, it is considered highly unlikely that the clay would exhibit significant shrink/swelling due to limited changes in moisture content at this depth.
10.3.6	Guidance is also given in relation to other aspects of construction where the shrink / swell potential of the soils may be needed to take into consideration. This guidance is summarised in the appropriate sections below.
10.4	Shallow Foundations
	Design Methodology:
	Design Methodology.
	Design by prescriptive measures – NHBC Standards, Chapter 4.2
	Design by prescriptive measures – NHBC Standards, Chapter 4.2
10.4.2	 Design by prescriptive measures – NHBC Standards, Chapter 4.2 Design by calculation
10.4.2 10.4.3	 Design by prescriptive measures - NHBC Standards, Chapter 4.2 Design by calculation Notes: Foundations should not be formed in either the Made Ground or the topsoil due to the
-	 Design by prescriptive measures – NHBC Standards, Chapter 4.2 Design by calculation <u>Notes:</u> Foundations should not be formed in either the Made Ground or the topsoil due to the unacceptable risk of total and differential settlement. It should be noted that the demolition and removal of existing structures, foundations and
10.4.3	 Design by prescriptive measures – NHBC Standards, Chapter 4.2 Design by calculation Notes: Foundations should not be formed in either the Made Ground or the topsoil due to the unacceptable risk of total and differential settlement. It should be noted that the demolition and removal of existing structures, foundations and services may increase the depth of Made Ground on the site. Traditional shallow foundations may be appropriate to support at least part of the proposed

- 10.4.7 This depth, however, does not take into account the depth of Made Ground or the distance to and species of any previous, existing and proposed trees, and foundations may need to be deepened further accordingly, in accordance with NHBC requirements.
- 10.4.8 It is recommended that a layer of light mesh reinforcement is added to the base of all foundations to mitigate the potential for excessive differential settlement, given the variable properties (cohesive/granular) encountered within the Kempton Park Gravel Member.
- 10.4.9 Where foundations need to change levels, the foundations should be stepped. These steps should be no deeper than half of the width of the foundation and each step should not exceed 0.5m. For practical purposes, steps are unlikely to be less than 0.15m deep. The steps should be suitably reinforced for an adequate distance either side of the step.
- 10.4.10 It is recommended that formations are inspected by a geotechnical engineer prior to the pouring of concrete to confirm the bearing capacity.

10.5 Piled Foundations

Design Methodology:

-) Design by calculation
- Design based on experimental models or site / load tests.

Notes:

- 10.5.2 If a greater bearing capacity is required for the proposed development, a piled foundation solution extended into the underlying London Clay Formation could be considered.
- 10.5.3 The piled foundations will carry their working load in a combination of skin friction along the sides of the pile and end bearing at the base of the pile. The piles should be designed by a suitably qualified and experienced piling specialist using a suitable factor of safety with the settlement at working load specified to meet any structural requirements. Table 10.2 provides indicative capacities for a single pile for the diameter and depths shown.
- 10.5.4 In order to calculate the provided indicative allowable pile capacities, the following ground model and characteristic ground parameters, separated for each plot, were used.

Table 10.1: Characteristic Parameters Used to Calculate Allowable Indicative Pile Carry Capacities

Strata	Depth (m bgl)	Bulk Density (kN/m³)	Design c _u or N
Made Ground	GL to 1.7	16	
Kempton Park Gravel Member – Cohesive	1.7 to 2.2	19.5	cu = 65
Kempton Park Gravel Member - Granular	2.2 to 6.3	21.5	N = 30
London Clay	6.3 to 20	19.6	Cu = (z - 3.75)/0.0722
Groundwater	4	9.81	

Elleray Hall and North Lane Depot/East Car Park, Teddington Geo-environmental and Geotechnical Assessment P3152J2114 – June 2021

	Pile diameter (m)						
Pile toe depth (m bgl)	0.3	0.45	0.6	0.75	0.9		
	Indicative Allowable Pile Capacity (kN)						
9	165	215	275	350	440		
10	180	235	305	395	495		
11	190	255	340	435	550		
12	205	280	370	475	600		
13	215	295	395	515	650		
14	225	315	420	550	695		
15	235	330	445	580	735		

Table 10.2: Indicative Piles Capacities (kN)

- 10.5.5 To comply with BS EN 1997 and the guidance given by the Federation of Piling Specialists the ground must be proven to a minimum of 5m below the proposed toe of the piles. Consequently, the above table is limited to 15mbgl.
- 10.5.6 It should be noted that the above assumes a bored piling system. Other methods of piling and equipment may provide different results.
- 10.5.7 An alternative approach to piling could be to consider ground improvement techniques.
- 10.5.8 The use of a piling foundation solution will require the emplacement of an engineered granular piling mat to support the piling rig and prevent overturning. This should be designed and constructed in accordance with BRE 470.
- 10.5.9 The above comments are indicative only based on limited ground investigation data. Foundations should be designed by a suitably qualified Engineer. Once structural loads have been fully determined a full design check in accordance with BS EN 1997 should be undertaken to confirm suitability of foundation choice.
- 10.6 Concrete in the Ground

Design Methodology:

- Design by prescriptive measures BRE SD-1
- Design by prescriptive measures and Design by Calculation BS EN 1992-1-1:2004+A1:2014 (Eurocode 2)

Notes:

10.6.2 Sulphate attack on building foundations occurs where sulphate solutions react with the various products of hydration in Ordinary Portland Cement (OPC) or converted High-Alumina Cement (HAC). The reaction is expansive, and therefore disruptive, not only due to the formation of minute cracks, but also due to loss of cohesion in the matrix.

10.6.1 In accordance with BRE Special Digest 1, the characteristic values of sulphate used to determine the concrete classification are determined using the methodology summarised in the tables below for each plot.

No. Samples in the dataset	Method for determining the sulphate characteristic value
1 - 4	Highest value
5-9	Mean of the top 2no. highest results
10 or greater	Mean of the top 20% highest results

Table 10.3: Concrete in the Ground Classes

10.6.2

Tables 10.4 summarise the analysis of the aggressive nature of the ground for each of the strata encountered within the ground investigation.

Stratum	No. Samples	pH range	Characteristic WS Sulphate (mg/l)	Design Sulphate Class	ACEC Class
Made Ground	19	7.2-9.3	230	DS-1	AC-1
Kempton Park Gravel Member – Cohesive	6	7.6-8.7	85	DS-1	AC-1
Kempton Park Gravel Member – Granular	5	8.3-9.0	17.5	DS-1	AC-1
London Clay Formation	7	8.7-8.9	174	DS-1	AC-1

Table 10.4: Concrete in the Ground Classes

- 10.6.3 It should be noted that the BGS description of the London Clay Formation notes that it includes "disseminated pyrite". It is therefore common practice to ensure that buried concrete formed in London Clay Formation has a Design Sulphate Class of at least DS-2.
- 10.6.4The concrete structures, including foundations, will need to be designed in accordance with BS
EN 1992-1-1:2004+A1:2014.

10.7 Ground Floor Slabs

Design Methodology:

- Design by prescriptive measures NHBC Standards, Chapter 4.2
- Design by calculation

Notes:

10.7.2 Due to the presence of cohesive ground with a low volume change potential, and presence of Made Ground in excess of 600mm in thickness, in accordance with NHBC Standards Chapter 4.2, a suspended floor slab is recommended. The depth of clear void beneath the suspended floor slab will be dependent on the floor type used.

- 10.7.3 Under suspended in-situ concrete ground floor a minimum void of 50mm is required; under suspended precast concrete and timber floors a minimum of 200mm is required.
- 10.7.4 The loadings from the suspended floor slab will need to be carried by the foundations, which will need to be designed to not only carry the structural loadings but the additional floor loadings.
- 10.7.5 Alternatively, a ground bearing floor slab, could be used if emplaced on a blanket of suitable granular materials. The granular blanket should be at least 50% of the foundation depth and no more than 1.25m deep (measured from ground level). Assuming that there the proposed and current trees do not increase the required depth for shallow foundations this would mean a blanket of granular material between 0.5m and 1.25m thick.
- 10.7.6 The granular blanket should extend beyond the edge of the foundation by a distance equal to its natural angle of repose, plus 0.5m. The angle of repose will depend on the material used.
- 10.7.7 It is possible that following simple sorting and processing that demolition waste could be used for this purpose.

10.8 Excavations

Design Methodology:

- Design by calculation
-) Design by the observational method
-) Design based on experimental models or site / load tests

Notes:

- 10.8.2 It is likely that some shallow excavations will be required at the site for services etc., in addition to larger excavations during the remediation and construction works. These are anticipated to remain stable for the short term only.
- 10.8.3 The stability of all excavations should be assessed during construction. The sides of any excavations into which personnel are required to enter should be assessed and fully supported or battered back to a safe angle.
- 10.8.4 Any vertically sided excavations require support to provide safe man access and to support the sides of the excavation. Supports should be installed as excavation proceeds. For service excavations, overlapping trench sheets could be used as close support in the Made Ground deposits to minimise ground loss. Alternatively, consideration could be given to the use of trench boxes provided excavations take place within the boxes.

10.9 Pavement Design

Design Methodology:

- Design by prescriptive measures Interim Advice Notice 73/06
- Design by prescriptive measures Transport Research Laboratory document TRL 587
- Design by calculation
-) Design based on experimental models or site / load tests

Notes:

- 10.9.2 The CBR value is dependent on the condition of the strata and could be different upon excavation to the formation, subject to seasonal conditions.
- 10.9.3 Clay sub grades will be liable to deteriorate if exposed to poor weather conditions (including extreme temperature (hot or cold with clays likely to be frost susceptible) or excessive site traffic. Therefore, care should be taken to protect prepared formations by minimising their exposure to the elements and ensuring the prompt placement of sub-base layers. All formation levels should be proof rolled and any 'soft spots' removed and replaced with suitably engineered granular material.
- 10.9.4 Due to the potential presence of mixed strata at formation level, the use of a geotextile is recommended where variable ground conditions are encountered, or across changes in strata, to protect against potential differential settlement.
- 10.9.5 It is recommended that a CBR value of <2.5% is adopted for pavement design on Made Ground.
- 10.9.6 Based on the in-situ test results and taking into account the variability of the results and ground conditions (i.e. cohesive and granular materials) it is recommended that a CBR value of 5% be used for pavement construction within the superficial deposits.
- 10.9.7 Proof rolling/compaction of granular materials may provide a greater result.
- 10.9.8 Additional CBR testing should be undertaken after detailed design is complete to confirm suitability.

10.10 Groundwater Control

Design Methodology:

- Design by calculation
- Design based on experimental models or site / load tests.

Notes:

- 10.10.2 During the investigation, groundwater was reported within boreholes BH1 and BH2 at 10.00mbgl and 19.30mbgl respectively.
- 10.10.3 During return monitoring groundwater was reported at depths of between 4.00-4.30mbgl. It is considered that these results represent a shallow ground water table within the superficial Kempton Park Gravel deposits.
- 10.10.4 Subject to seasonal variations, any groundwater encountered during site works could be readily dealt with by conventional pumping from a sump used to collate waters.
- 10.10.5 Surface water or rainfall ingress is likely to freely drain through the granular materials. If this does not occur, then they too could be dealt with by traditional sump and pump.

11 REFERENCES

BRE Report BR211: Radon: Protective measures for new dwellings, 2015

BRE Special Digest 1: Concrete in Aggressive Ground, 2005

British Standards Institution (2004) Eurocode 7 – Geotechnical design - Part 1: General rules. BS EN 1997-1. Incorporating Corrigendum No.1. BSI, London

British Standards Institution (2007) Eurocode 7 – Geotechnical design - Part 2: Geotechnical investigation and testing. BS EN 1997-2. BSI, London

British Standards Institution (2007) BS 3882:2007 Specification for topsoil and requirements for use. Milton Keynes: BSI

British Standards Institution (2011) BS 10175:2011 Code of practice for the investigation of potentially contaminated sites. Milton Keynes: BSI

British Standards Institution (2013) BS 8576:2013 *Guidance on investigations for ground gas – Permanent gases and Volatile Organic Compounds (VOC's),* Milton Keynes: BSI

British Standards Institution (2015) BS 5930:2015 Code of practice for ground investigations. Milton Keynes: BSI

British Standards Institution (2015) BS 8485:2015 Incorporating corrigendum No.1 *Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings* Milton Keynes: BSI

CIEH & CL:AIRE (2008) *Guidance on comparing soil contamination data with a critical concentration*. London: Chartered Institute of Environmental Health (CIEH) and CL:AIRE

CIRIA C665 (2007) Assessing risks posed by hazardous ground gases to buildings London, CIRIA

Environment Agency (2004) *Model procedures for the management of land contamination*. CLR11. Bristol: Environment Agency

Environment Agency, NHBC & CIEH (2008) *Guidance for the safe development of housing on land affected by contamination*. R & D Publication 66. London: Environment Agency

Environment Agency (2006) Remedial Targets Methodology: Hydrogeological Risk Assessment for Land Contamination Environment Agency

LQM/CIEH S4ULs. LQM, 2014

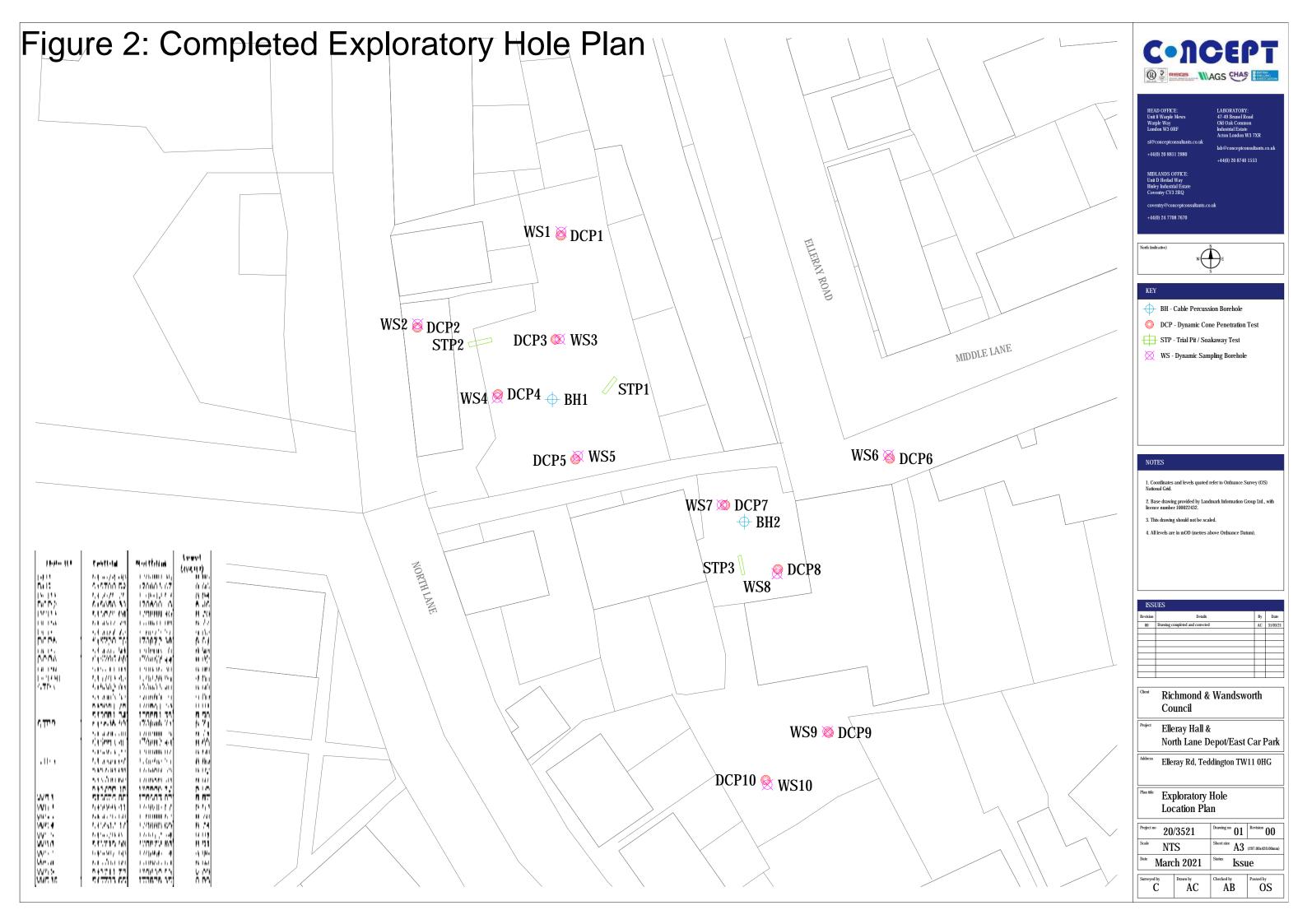
Ministry of Housing, Communities & Local Government: *National Planning Policy Framework*. February 2019.

M Zohrabi and PL Scott (2003) TRL Report TRL587 *The Correlation between the CBR Value and Penetrability of Pavement Construction Materials;* Transport Research Laboratory

NHBC Standards 2021. NHBC, Milton Keynes

The Highways Agency (2009) Design Manual for Roads and Bridges: Design Guidance for Road Pavement Foundations (Draft HD25) Interim Advice Note 73/06 Revision 1 (2009)

APPENDICES



APPENDIX 1 – FIGURES

Geotechnical Engineering & Environmental Services across the UK

PROJECT NAME	North lane depot East car park	CLIENT	Richmond and Wandsworth Councils
TITLE	Site Location Plan	PROJECT NO.	P3152J2114
DATE	November 2020	FIGURE NO.	1
-		E H	
	AR PARK		In the second
		LIERAY HALL	HERE
		en de la	

Figure 3: Proposed Development Plan - Northern Plot

FIRST FLOOR (ROOF SPACE)

GROUND FLOOR

SITE PLAN 1:200

ACCOMMODATION SCHEDULL

COMMUNITY CENTRE: GIFA 536M²

SIIL ANEA TOTAL SITE AREA 1,097M² OR 0.1 HECTARES

PARKING

3 STANDARD BAYS 1 DISABLED BAY

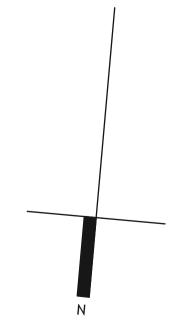
- 1 CAR CLUB SPACE (FOR AFFORDABLE HOUSING SCHEME)
- 1 MINIBUS BAY

SCALE BAR 1:100 0 1 2 3 4 5M

A - 17.07.20 Additional disab B - 27.07.20 Internal storage	led WC added to first floor, external garde adiusted.	en storage added.	
C - 07.08.20 Additional surve			
Project	-		
ELLERAY HALL, EL	LERAY ROAD, TEDDINGTON		
Drawing			-
SITE LAYOUT, ROC	F PLAN & FLOOR PLANS		
Drawing No.	Scale	Date	
EHT- 03C	1:200 / 1:100 @ A1	03 09 19	

Revisions:

CLIVE CHAPMAN A R C H I T E C T S SUSTAINABILITY CONSULTANTS 4 E E L P I E I S L A N D T W I C K E N H A M M I D D X T W I 3 D Y TELEPHONE 020 8891 4837 EMAIL INFO@CCAR.CO.UK WEBSITE WWW.CCAR.CO.UK



 PLANNING APPLICATION BOUNDARY EXISTING NEIGHBOURING BUILDINGS PROPOSED HEDGES & EDGE PLANTING PROPOSED HARD LANDSCAPING EXISTING TREES - TREE SURVEY REFERENCE PROPOSED TREES

Revisions A: 04.08.2020 - Flat 1 changed to a wheelchair unit, plus the introduction of a disabled parking bay. B: 07.08.2020 - Additional survey information added.

PRE-APPLICATION Project

ELLERAY HALL SITE, TEDDINGTON Drawing

PROPOSED SITE LAYOUT, ROOF PLAN & FLOOR PLANS

Drawing No. EHS OGB

11100,11200 @ A1

Date 30 06 2020

CLIVE CHAPMAN ARCHITECTS SUSTAINABILITY CONSULTANTS 4 EEL PIE ISLAND TWICKENHAM MIDDX TWI 3DY TELEPHONE 020 8891 4837 EMAIL INFO@CCAR.CO.UK WEBSITE WWW.CCAR.CO.UK

25m

50m

APPENDIX 2 – FACTUAL REPORT

FACTUAL REF	PORT	
Elleray Hall & North Lane Depot/East Car	r Park	
Ellerdy Hull & North Lune Depoty Lust ear	Turk	
Prepared For: Richmond & Wandsworth C	ouncil	
ICC		
ISSUE 01		
Concept: 20/3521- FR01 21	/06/2021	
	0072021	
Unit 8, Warple Mews,		
Warple Way London W3 0RF		
Tel: 020 8811 2880 Fax: 020 8811 2881 e-mail: <u>si@conceptconsultants.co.uk</u>		CONCEPT
www.conceptconsultants.co.uk		C•NCEPT

Unit 8 Warple Mews, Warple Way, London W3 0RF Tel: 0208 811 2880, Fax: 0208 811 2881 Email: si@conceptconsultants.co.uk

DOCUMENT ISSUE REGISTER					
Project Name: Elleray Hall & North Lane Depot/East Car Park					
Project Number:	0/3521				
Document Reference:	20/3521 - FR01	20/3521 - FR01 Current Issue 01			
Document Type:	Document Type: Site Investigation Report				

DEVELOPMENT	Name	Signature	Date
Prepared by:	N Carsandas	North Consider	21/06/2021
Checked by:	O Savvidou	Com far	21/06/2021
Approved by:	M Dedic	ill lost	21/06/2021

Issued to: Jomas Associates Ltd

Date	Issue	Amendment Details/ Reason for issue	Issued to
09/04/2021	Issue 00	DRAFT	Jomas Associates
21/06/2021	Issue 01	FINAL: Monitoring and water sampling complete	Jomas Associates

Notes:

CONTENTS

- 1. PROJECT PARTICULARS
- 2. PURPOSE AND SCOPE OF WORKS
- 3. DESCRIPTION OF WORKS
- 4. INVESTIGATION METHODS
- 4.1 Ground Penetrating Radar Survey (GPR)
- 4.2 Utilities Survey and Inspection Pits
- 4.3 Detailed Unexploded Ordnance Risk Assessment
- 4.4 Cable Percussion Drilling
 - 4.4.1 Sampling and Testing during Cable Percussion Drilling
- 4.5 Dynamic Sampling Boreholes
- 4.6 Machine Excavated Trial Trenches
- 4.7 Dynamic Cone Penetrometer Testing (DCP)
- 4.8 Soakaway Tests
- 4.9 Standpipe Installations and Backfill
- 4.10 Instrumentation Monitoring and Sampling
- 4.11 Logging / Laboratory Testing
- 4.12 Setting Out

- 5. GEOLOGICAL GROUND PROFILE
- 6. SITE LOCATION PLAN
- 7. EXPLORATORY HOLE LOCATION PLAN
- 8. CABLE PERCUSSION BOREHOLE LOGS
- 9. DYNAMIC SAMPLING BOREHOLE LOGS
- **10. TRIAL TRENCH LOGS**
- 11. DYNAMIC CONE PENETROMETER (DCP) RESULTS
- **12.** SOAKAWAY TEST RESULTS
- 13. INSTRUMENTATION MONITORING RESULTS
- 14. GEOTECHNICAL LABORATORY TEST RESULTS
- 15. CHEMICAL LABORATORY TEST RESULTS
- 16. PHOTOGRAPHS

APPENDIX A: Unexploded Ordnance Risk Assessment

1. PROJECT PARTICULARS

Site Location:	Elleray Hall & North Lane Depot/East Car Park
Client:	Richmond & Wandsworth Council
Investigation Supervisor:	Jomas Associates Ltd
Fieldwork:	22/02/2021 – 03/03/2021
Laboratory Work:	26/02/2021 – 08/04/2021

2. PURPOSE AND SCOPE OF WORKS

The purpose of the investigation was to understand the ground and groundwater conditions at the site and to determine the nature and extent of any ground and groundwater contamination.

The site comprised two irregular-shaped plots of land to the north and south of Middle Lane, Teddington.

The south plot was situated adjacent to the junction of Elleray Road and Middle Lane and was occupied by a single storey iron-clad commercial-style building identified as Elleray Hall Social Centre.

The north plot was located adjacent to the north of Middle Lane and east of North Lane with the western section of the plot secured with hoarding enclosing a demolished building. The eastern section was car parking area accessed off North Lane.

The scope of the works comprised the following:

- 2 No. Cable Percussion Boreholes to a depth of 20.00m;
- 10 No. Dynamic Sampler Boreholes to a depth of 2.00m;
- 3 No. Machine Excavated Trial Trenches to a maximum depth of 2.70m;
- Dynamic Cone Penetrometer (DCP) Testing;
- Soakaway Tests;
- Logging and Photographing;
- Instrumentation Monitoring and Sampling;
- Geotechnical & Chemical Testing.

Table 1 – Exploratory Hole List

Hole ID	Hole Type	Depth (m)	Easting	Northing	Level (mOD)
BH1	СР	20.00	515674.60	170880.38	8.85
BH2	СР	20.00	515700.52	170863.87	8.96

Hole ID	Hole Type	Depth (m)	Easting	Northing	Level (mOD)
WS1	DS/DCP	2.00	515675.80	170903.02	8.87
WS2	DS/DCP	2.00	515656.41	170890.57	8.52
WS3	DS/DCP	2.00	515675.58	170888.52	8.78
WS4	DS/DCP	2.00	515667.17	170880.60	8.74
WS5	DS/DCP	2.00	515678.06	170872.74	9.01
WS6	DS/DCP	2.00	515719.98	170872.86	8.91
WS7	DS/DCP	2.00	515697.50	170866.14	8.98
WS8	DS/DCP	2.00	515704.96	170856.83	8.94
WS9	DS/DCP	2.00	515711.76	170835.53	9.00
WS10	DS/DCP	2.00	515703.65	170828.35	9.09
STP1	TT	2.60	515682.35	170882.26	9.00
STP2	TT	2.50	515664.87	170888.10	8.66
STP3	TT	2.70	515700.13	170858.01	8.93

Key

CP – Cable Percussion Borehole

DS/DCP – Dynamic Sampler Borehole & DCP Location TT – Trial Trench

3. DESCRIPTION OF WORKS

The works were carried out in accordance with the Jomas Associates' "Elleyray Hall & North Lane Depot/ East Car Park" Ground Investigation Specification document with reference P3152J2114/TE, Rv00, dated 26/11/2020 and Concept's Method Statement with reference no: 20/3521, Rv00, dated 01/0/2021.

The northern plot was bounded by residential property to the north and east, North Lane on the west and Middle Lane in the south. The southern plot was bounded by Middle Lane to the north and residential property to the south, east and west. The approximate centre of the site was located at National Grid Reference: E515702, N170871.

The locations of all exploratory holes are shown in the Exploratory Hole Location Plan presented in <u>Section 7</u> of this report.

4. INVESTIGATION METHODS

4.1 Ground Penetrating Radar Survey (GPR)

The GPR survey was undertaken by subcontractor Terrascan.

The survey was designed to obtain information from the subsurface on the position of any additional underground services not locatable using conventional electromagnetic locators and to identify additional ground anomalies, voids and obstructions that may be present. All the services were marked out in the ground.

4.2 Utilities Survey and Inspection Pits

Prior to boring commencing all exploratory hole locations were checked for utilities /buried services using a CAT and genny, existing utility information and hand dug inspection pits to an appropriate depth as identified by the services plans. A hand dug inspection pit was excavated at each exploratory hole location to an appropriate depth as identified by the services plans typically to a maximum depth of 1.20m.

Where surface asphalt was encountered it was broken out by hand held electric breaker.

4.3 Detailed Unexploded Ordnance Risk Assessment

A Detailed Unexploded Ordnance Risk Assessment was carried out by Primely Ltd on behalf of Jomas Associates Ltd with Document titled "Elleyray Hall & North Lane Deport, Teddington TW11 And East car Park, Teddington TW11", dated 16/01/2021. The report is included in <u>Appendix A</u>.

The site was assessed as low risk of items of unexploded German aerial delivered and other types of munitions. Therefore, a UXO survey clearance was not undertaken during drilling.

4.4 Cable Percussion Drilling

2 No Cable Percussion Boreholes (BH1 and BH2) were drilled to a depth of 20.00m using a standard cable percussion rig (Dando 175) with 150mm diameter casing.

4.4.1 Sampling and Testing during Cable Percussion Drilling

Bulk samples were taken at regular intervals in the Made Ground and thereafter at each change in strata. Undisturbed Thin Walled samples (UT) were taken in accordance with EC7 using a down-hole sliding hammer in cohesive material at regular intervals or as instructed by the Investigation Supervisor.

Standard Penetration Tests (SPT) were carried out at specified intervals or as otherwise instructed by the Investigation Supervisor. The resulting SPT "N" blowcount values are presented in the relevant borehole records. Where an SPT using a split spoon sampler was not possible, due to the granular nature of the material, a solid cone was used. The SPT hammer calibration sheet is included in <u>Section 8</u> of this report.

Small, disturbed samples were retrieved from the cutting shoe of the UT100 sampler, the SPT split spoon sampler and at intervals specified by the Investigation Supervisor.

Environmental samples (tubs, jars and vials) were taken for chemical analysis in the Made Ground or at each change of strata and where visual or olfactory evidence of contamination was noted or as instructed by the Investigation Supervisor. Headspace readings for volatile organic compound (VOC) content were taken in all the samples using a Phocheck Tiger photoionization detector.

The borehole logs are presented in <u>Section 8</u> of this report.

4.5 Dynamic Sampling Boreholes

10 No. Dynamic Sampling Boreholes (WS1-WS10) were carried out to a depth of 2.00m. The boreholes were drilled using a tracked Geo drive-tube sampling rig.

Semi-rigid plastic core liners were recovered from each borehole location. The excavated soil was logged in accordance with BS 5930:2020 and photographed.

Environmental samples (tubs, jars and vials) were taken for chemical analysis mostly from the inspection pits. Headspace readings for volatile organic compound (VOC) content were taken using a Phocheck Tiger photoionization detector. Representative bulk and disturbed samples were taken for soil analysis.

SPTs were carried out at the base of the inspection pit at 1.20m depth and at 2.00m. All boreholes were aborted at 2.00m depth due to refusal.

The borehole logs along with the SPT hammer calibration sheet are presented in <u>Section 9</u> and the core photographs are presented in <u>Section 16</u>.

4.6 Machine Excavated Trial Trenches

3 No. Trial pits (STP1-STP3) were machine excavated to a maximum depth of 2.70m using a JCB 3CX backhoe with extension arm. The pits were carried out to for sample collection and to conduct soakaway testing to determine suitability of soakaway drainage.

Environmental samples (tubs, jars and vials) were taken for chemical analysis in the Made Ground or at each change of strata and where visual or olfactory evidence of contamination was noted or as instructed by the Investigation Supervisor. Headspace readings for volatile organic compound (VOC) content were taken in all the samples using a Phocheck Tiger photoionization detector. Bulk samples were also taken for soils analysis.

The trial trenches were logged and photographed. The logs and photographs are presented respectively in <u>Section 10</u> and <u>Section 16</u> of this report.

4.7 Dynamic Cone Penetrometer Testing (DCP)

10 No. TRL DCP Tests were carried out at locations adjacent to the dynamic sampling boreholes shown on the Exploratory Site Location Plan in <u>Section 7</u>.

An 8 kg free fall hammer is lifted and dropped through a height of 575mm. The penetration distance of the cone tip is then recorded and the cycle repeated. Continuous measurements can be made down to a depth of approximately 850mm or when extension shafts are fitted to a maximum recommended depth of 2.00m. Where sub-pavement layers have different strengths, the boundaries can be identified and the thickness determined.

The DCP results and graphs are presented in <u>Section 11</u> of this report.

4.8 Soakaway Tests

Soakaway Tests were carried out in trial pits STP1-STP3 using 50mm diameter pipes installed at the base of each pit, backfield with pea shingle to 1.20m depth. Water was then rapidly pumped in the pipes using a bowser. The water levels were recorded at the

start of each test and at regular intervals. The results of the tests are presented in <u>Section 12</u> of this report.

4.9 Standpipe Installations and Backfill

Monitoring wells were installed in the boreholes as follows:

Table 2 – Monitoring Installation Details

Hole ID	Base of	Diameter of Installation	Type of	Base of	Respo	nse Zone
Hole ID	ole ID Borehole Installation (m bgl) (mm)		Installation	Installation (m bgl)	Top (m bgl)	Bottom (m bgl)
BH1	20.00	50	GMP	6.30	1.00	6.30
BH2	20.00	50	GMP	6.60	1.00	6.60
WS1	2.00	50	GMP	2.00	1.00	2.00
WS2	2.00	50	GMP	2.00	1.00	2.00
WS6	2.00	50	GMP	2.00	1.00	2.00
WS10	2.00	50	GMP	2.00	1.00	2.00

<u>KEY</u>

GMP – Gas and groundwater Standpipe

The boreholes were backfilled with bentonite pellets with gas/groundwater response zones backfilled with a 10mm pea shingle filter with a geosock surround. All installations were finished with bentonite pellets to the surface with concrete and a lockable stopcock cover flush with the ground.

The boreholes with no installations were backfilled with bentonite pellets upon completion.

4.10 Instrumentation Monitoring and Sampling

Groundwater monitoring was carried out during fieldworks. Gas and groundwater monitoring and sampling was carried out by Concept subsequent to completion of the boreholes on 4No scheduled visits between 10/03/2021 and 09/06/2021.

All boreholes were developed least one week prior to sampling using a Wasp pump which provides a relatively high pumping rate to remove water and entrained sediment. Development continued until either the well ran dry, the water ran clear or at least 10 well volumes were removed.

Water sampling was carried in BH2 on 17/03/2021 and in BH1 on 09/06/2021. Water samples were taken using a peristaltic pump at a low pumping rate. The pump tubing was lowered to target the standpipe response zone and a dipmeter was used during purging to ensure that the pumping rate did not reduce the water level. Generally, the water level remained steady at pumping rates of 1 litre every 3 minutes. Water

parameters (pH, conductivity, dissolved oxygen, temperature and Redox levels) were recorded during purging using a flow cell and a YSI Professional Probe. Purging was considered complete when parameters stabilised to within 10%. Generally the water was noted as clear and the purging complete after 3 litres were removed. On completion of purging, the water samples were collected in bottles Eurofins (1No glass, 1No plastic and 1No vial). They were then transferred to Concept laboratory inside cool boxes protected by bubble wrap and kept in the fridge until collection from the chemical laboratory was arranged. The borehole was purged and sampled using a new length of tubing.

An In-Situ Rugged interface was used to prove/disprove the presence LNAPL and DNAPL. However, neither LNAPL nor DNAPL were detected throughout the water column in the boreholes therefore a Geosense dipmeter was used for the subsequent visits. The gas concentrations were recorded using a Gas data GFM436 monitor. Where 0.00 is shown on the results indicates value lower than the detection limit of the machine. The accuracy of the instruments is summarised in <u>Section 13</u> where the gas monitoring reports and groundwater results are presented.

4.11 Logging / Laboratory Testing

Logging of all soil samples was carried out in accordance with BS 5930:2020.

Geotechnical testing was performed at Concept Site Investigations laboratory in accordance with BS1377:1990 unless otherwise stated in the report. Concept is accredited by UKAS for tests where the UKAS logo is appended to the individual test report or summary. Approved signatories for laboratory testing are as follows:

- LG Lynn Griffin (Quality Manager)
- KM Kasia Mazerant (Laboratory Manager)

Where subcontracted analysis has been carried out, the details of the laboratory (and accreditation where applicable) are shown in the individual test report or summary.

The results are presented in tabular format in <u>Section 14</u> of this report.

All chemical testing was specified and scheduled by Jomas Associates and carried out by Chemest in accordance with the requirements of UKAS ISO17025 and MCERTS. The results are presented in tabular format in <u>Section 15</u> of this report.

4.12 Setting Out

The locations of all exploratory holes were agreed with the Investigation Supervisor and set out prior to commencement of the site works.

Following completion of the ground works the locations and elevations of the boreholes and pits were established by Concept using GPS equipment with accuracy between +/-10mm and 30mm.

The co-ordinates and levels of the as-built locations of the boreholes and pits are shown in the Exploratory Hole Location Plan presented in <u>Section 7</u> of this report.

5. GEOLOGICAL GROUND PROFILE

The geological strata encountered during the investigation are summarised in the table below. The Top and Bottom of the strata noted in the table indicates the highest and lowest boundaries encountered in all exploratory holes.

STRATUM	TOP (mOD)	BASE (mOD)	DESCRIPTION
TOPSOIL	TOPSOIL 8.66 8.37		Soft, dark brown silty CLAY with frequent rootlets.
MADE GROUND	9.09	7.04	Asphalt/ Brickwork/ Concrete over, Dark brownish grey sandy GRAVEL with low flint and concrete cobble content, occasional roots and strong hydrocarbon odour. Gravel comprises angular to subrounded fine to coarse flint, brick, concrete, coal, glass, bone, ceramic pipe and asphalt fragments. Brown slightly gravelly clayey silty fine to coarse SAND with occasional pockets of orangish brown clayey silt, shell fragments), roots and orange and black staining. Greyish brown slightly gravelly slightly sandy clayey SILT with low flint and brick cobble content and occasional roots. Soft, greenish grey slightly gravelly slightly sandy silty CLAY with occasional pockets of reddish brown silty fine sand and orangish brown silt, frequent dark grey flecks, slight hydrocarbon odour and dark grey
ALLUVIUM	8.34	6.86	staining. Firm, orangish brown mottled greenish grey slightly gravelly sandy clayey SILT with occasional pockets of reddish brown silty fine sand, frequent roots and occasional dark grey staining. Gravel is angular to subangular fine to medium flint. Greenish grey slightly gravelly sandy CLAY with
			occasional pockets of yellowish brown silt and reddish brown silty fine sand and frequent dark grey staining. Gravel is angular to rounded fine to medium flint. Sand is fine to medium.
KEMPTON PARK GRAVEL MEMBER	7.96	2.36	Very dense, brown silty sandy angular to subrounded fine to medium flint GRAVEL. Sand is fine to coarse.

STRATUM	TOP (mOD)	BASE (mOD)	DESCRIPTION
			Medium dense, brown clayey gravelly fine to medium SAND with occasional pockets of greyish brown and reddish brown sandy clay. Gravel is subangular to subrounded fine to coarse flint. Firm, orangish brown gravelly sandy clayey SILT.
LONDON CLAY FORMATION	2.55	Extent not proven	Very stiff, dark brown slightly sandy slightly micaceous silty CLAY with occasional partings of light grey silty fine sand, off-white shell fragments, white flecks and dark grey staining.

REFERENCES

British Standards Institution, (2015) Code of practice for ground investigations, British Standard BS5930: 2020, BSI, London

British Standards Institution, (2011) Investigation of potentially contaminated sites, British Standard BS10175: 2011+A2:2017, BSI, London.

UK Specification for Ground Investigation, (2011) Site Investigation Steering Group, Thomas Telford, London

British Geological Survey (1996) London and the Thames Valley 4th Edition, London HMSO.

British Standards Institution BS EN ISO 22475-1, (2006) Geotechnical Investigation and Testing – Sampling Methods and Groundwater Measurements – Part 1: Technical Principles for Execution

British Standards Institution BS EN 1997:1 (2004) EuroCode 7 - Geotechnical Design. Part 1 – General Rules.

British Standards Institution BS EN 1997:2 (2007) EuroCode 7 - Geotechnical Design. Part 2 - Ground Investigation and Testing.

King C. (1981) The stratigraphy of the London Basin and associated deposits. Tertiary Research Special Paper, Vol. 6, Backhuys, Rotterdam, p158.

Aldiss, D. T. (2012) The stratigraphical framework for the Palaeogene successions of the London Basin, UK. British Geological Survey Open Report. British Geological Survey.

6. SITE LOCATION PLAN

Not to Scale / Map data ©2021 Google

7. EXPLORATORY HOLE LOCATION PLAN

8. CABLE PERCUSSION BOREHOLE LOGS

Borehole No

BH1

Project

Elleray Hall & North Lane Depot/East Car Park

Job No	Date Started		Ground Level (mOD)	Co-Ordinates	Final Depth
20/3521	Date Completed	26/02/21	8.85	E 515674.60 N 170880.38	20.00m

Client Richmond & Wandsworth Council

Γ	BOREHOLE SUMMARY										
	Top (m)	Base (m)	Туре	Date Started	Date Ended	Crew	Logged By	Barrel Type	Core Bit	Plant Used/ Method	SPT Hammer Reference
	0.00 1.20	1.20 20.00	IP CP	24/02/2021 24/02/2021	24/02/2021 25/02/2021	DR DR	DH/JM JM			Hand Excavated Dando 175	AR779

	WA	TER STRIK	KES		WATE	R ADDED	CHIS	SELLIN	G / SLOW I	DRILLING
Strike at (m)	Rise to (m)	Time to Rise (min)	Casing Depth (m)	Sealed (m)	From (m)	To (m)	From (m)	To (m)	Duration (hr)	Remarks
10.00	10.00	20	6.80		2.00	6.30	10.00	10.40	01:00	Claystone

	НО	DLE			CASI	NG			ROTAR	Y RECOVER	RY
Dept	th (m)	Diameter	(mm)	Dept	th (m)	Dia	meter (mm)	From (m)	To (m)	Duration (hr)	Recovery (%)
0.0 20	00 .00	150 150		0.0 6.3	00 80		150 150				
		ROTAR	Y FLUS	H DE	TAIL						
From (m) To	(m) Flush	Type I	lush R	Return (%)	F	lush Colour	-			
		INSTALI		DFT							
Туре	Diamete		Тор	of	Bottom o	f	Date of	-			
	(mm)	(m)	(m)		(m)	one	Installation				
GMP		6.30	1.00)	6.30		26/02/2021				
		BAC	KFILL D	ЕТА	ILS						
Top (m)	Bottom (m)	Mat	erial	Ba	ackfill Date		Remarks				
0.00	0.30	Conc		20	5/02/2021		Flush Cover				
0.30 1.00 6.30	$ \begin{array}{c} 1.00 \\ 6.30 \\ 20.00 \end{array} $	Bentonite Pea Sh Bentonite	ingle								
0.50	20.00	Dentonia	i eneus								
^{sue:} FIN	JAL	CHD: AN	APRV: O	s I	Log Print Date	& T	ime: 09/04/2	2021 12:46			AG

Borehole No

BH1

Project

Elleray Hall & North Lane Depot/East Car Park

Job No 20/3521

Date Started Date Completed 26/02/21

24/02/21 Ground Level (mOD)

8.85

Co-Ordinates

E 515674.60 N 170880.38

Final Depth 20.00m

Client **Richmond & Wandsworth Council**

		PROGR	ESS					SPT DETAILS		
Date	Hole Depth (m)	Casing Depth (m)	Water Depth (m)	Remarks	Туре	Depth (m)	N Value	Blow Count / 75mm	Casing Depth (m)	Water Depth (m)
24/02/21 24/02/21 24/02/21 24/02/21 24/02/21 24/02/21 25/02/21	0.00 1.20 2.00 2.70 3.00 4.00 4.50 4.50 4.50 4.50 4.70 5.70 6.50 10.00 10.70 20.00 REMARKS	2.00 2.70 3.00 4.00 4.50 4.50 4.70 5.70 6.50 6.80 6.80 6.80 6.80	Depth (m) Dry Wet 1.00 1.50 2.00 4.00 4.00 3.50 4.50 Dry 10.00 Dry Dry Dry	Water Added Water Added Water Strike	C C C C C C S S S S S S S	(m) 1.20 2.00 3.00 4.00 5.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00	Value N19 N50/0.265 N50/0.29 N16 N13 N12 N20 N50/0.115 N26 N30 N38 N50/0.285	2, 3 / 5, 4, 4, 6 3, 5 / 8, 13, 18, 11 2, 5 / 8, 12, 16, 14 1, 4 / 4, 4, 3, 5 1, 3 / 4, 3, 3, 3 1, 2 / 3, 3, 3, 3 2, 3 / 4, 5, 5, 6 24 / 26, 24 3, 4 / 5, 6, 7, 8, 9 6, 7 / 7, 9, 10, 12 15, 10 / 10, 11, 16, 13	2.00 3.00 4.00 5.00 6.80 6.80 6.80 6.80 6.80 6.80	Dry 1.00 1.50 2.00 3.50 4.50 Dry Dry Dry Dry Dry Dry Dry
U - 100mm I UT - 100mm I U38 - 38mm D D - Disturbed C - Core Sam INSTALLATION SPIE - Standy SPGW - Groun SPGGW - Gas/C VWP - Vibrati ICM - Inclino TESTS S/C-SPT/	ple, W-Water Sample DETAILS ipe Piezometer dwater Monitor Stand froundwater Monitor ng Wire Piezometer meter (CPT, V-Shear Vane,	Sample indisturbed Sample Sample Sample, La- Large Bulk e, R-Root Sample HOLE lpipe IP Standpipe DS DC PP-Pocket Penetron	Sample, BLK-Block TYPES -Inspection Pit, TP-T -Cable Percussion, R -Dynamic Sampling, -Diamond Coring, C neter, MP-Mackintosl	ed Zone of Core Loss Sample rial Pit TT - Trial Trench C-Rotary Coring, R/S-Rotary/Sonic DS/R-Dynamic Sampling /Rotary P/R-Cable Percussion Rotary Follow on 1 Probe, VOC-Volatile Organic Compoun e in minutes. For details of abbreviations s	L					
Issue: FINA	L CHD	: AN AP	RV: OS	Log Print Date & Time:	09/(04/2021	12:46			AGS

Date Started

Level

(mOD)

8.74

8.5

8.50

8 30

7.65

6.85

o

σ

Ð

°°°°°

0.0.0

·O. 0

Legend

Date Completed

Project

Job No

Client

Date

24/02/21

24/02/21

24/02/21

24/02/21

24/02/21

24/02/21

24/02/21

25/02/21 25/02/21

25/02/21

25/02/21

25/02/21

25/02/21

Issue: FINAL

202

20/3521

PROGRESS

Casing

Water

Dry

Dry

Wet

1.00

1.50

2.00

4.00

4.00

3.50

4.50

Dry

10.0

Dry

Logger

6.80

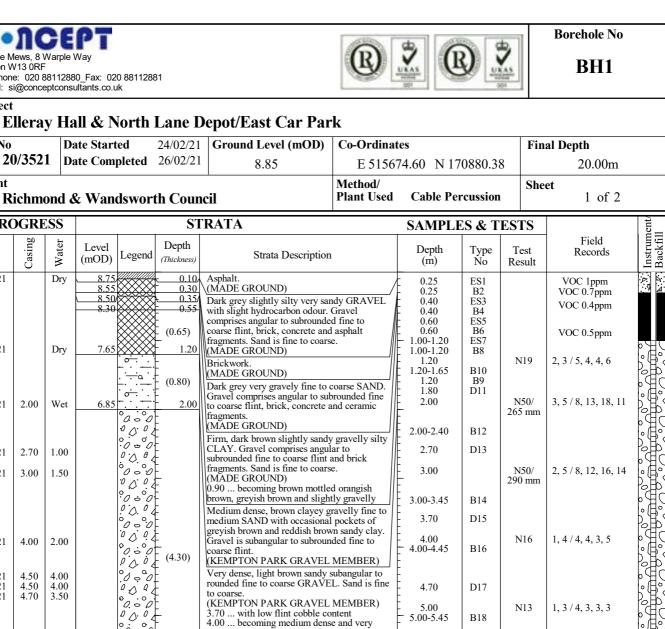
6.80

2

2.00

2.70

3.00


4.00

4.50

4.50 4.70

5.70

6.50

N. 10

April
6.0
Date
GLB
-
- 2021
R۲.
IBRA
_
ICEPTI
CON
ary:
Libr
GPJ
Ē
Ĩ.
ШD
LAD
NORTH
LL &
HAL
ERA
ELLEI
-
20352
ject:
Pro
ш
EHOL
ОR
S
0
ERCUS
с.
ABLE
T-C/
ICEPT-(
CONC
ä
eport
Re

		3.70 wi	ON PARK GRAV th low flint cobble coming medium c	e content	5.00	B18	N13	1, 3 / 4, 3, 3, 3
0.00		sandy	coming sandy	-	5.70	D19		
	6.30				6.00 6.00-6.45	B20	N12	1, 2 / 3, 3, 3, 3
	0.50	of dark gr	ish brown CLAY ey silt (<20mm), o -white shell fragn	with rare pockets occasional white	6.50-7.00	B21		
		grey staini	ing. S GROUP: LONI		7.00-7.45	UT22	50 blows	100% Recovery
<u> </u>			,		7.45	D23		
		7.50 wi	th rare white flecl	ks	7.70	D24		
			0 with frequent I shell fragments (8.00 8.00-8.45	D25	N20	2, 3 / 4, 5, 5, 6
		8.70 wi	th rare shell fragn	nents (<2mm)	8.70 9.00-9.45	D26 UT27	70 blows	100% Recovery
		9.50 wi	th occasional biot	urbation	9.45 9.70	D28 D29		
		10.00 - 10	0.20 with band	of claystone		DIG	N50/ 115 mm	24 / 26, 24
		10.70		ite de la	10.00-10.45 10.00-10.40 10.70	D30 B31 D32		
		10.70 v	with occasional wh	nite flecks	- 11.00-11.45	UT33	100 blows	100% Recovery
r: DH/JM	CHD:	AN	APRV: OS	Log Print Date	e & Time: 0	9/04/202	1 12:46	

Project

Borehole No

BH1

PROGRESS Date ison ison ison<		Level (mOD)	Legend		Incil FRATA Strata Description 11.50 becoming silty 11.70 with occasional dark g 12.00 - 12.45 with frequent b 12.70 with occasional dark g 12.70 with rare off-white she (<2mm) 13.50 with occasional pocket silty fine sand (<5mm) 13.70 with occasional off-wh fragments (<3mm) 14.00 with rare bioturbation 14.70 with 1No pyrite nodule 15.50 becoming very closely	rey staining pioturbation Il fragments is of dark grey ite shell	Cable Per SAMPLE Depth (m) 11.45 11.70 12.00 12.00-12.45 13.00-13.45 13.45 13.70 14.00 14.00-14.45 14.70 15.00-15.45			3, 5 / 6, 7, 8, 9
				Depth (Thickness)	Strata Description 11.50 becoming silty 11.70 with occasional dark g 12.00 - 12.45 with frequent b 12.70 with rare off-white she (<2mm) 13.50 with occasional pocket silty fine sand (<5mm) 13.70 with occasional off-wh fragments (<3mm) 14.00 with rare bioturbation 14.70 with 1No pyrite nodule	rey staining pioturbation Il fragments is of dark grey ite shell	Depth (m) 11.45 11.70 12.00 12.00-12.45 12.70 13.00-13.45 13.45 13.70 14.00 14.00 14.70	Type No D34 D35 D36 D37 UT38 D39 D40 D41 D42	Test Result N26 100 blows N30	Records 3, 4 / 5, 6, 7, 8 100% Recovery 3, 5 / 6, 7, 8, 9
Date	Water			(Thickness)	 11.50 becoming silty 11.70 with occasional dark g 12.00 - 12.45 with frequent f 12.70 with rare off-white she (<2mm) 13.50 with occasional pocket silty fine sand (<5mm) 13.70 with occasional off-wh fragments (<3mm) 14.00 with rare bioturbation 14.70 with 1No pyrite nodulation 	rey staining pioturbation Il fragments is of dark grey ite shell	(m) 11.45 11.70 12.00 12.00-12.45 12.70 13.00-13.45 13.45 13.45 13.70 14.00 14.00 14.70	No D34 D35 D36 D37 UT38 D39 D40 D41 D42	Result N26 100 blows N30	Records 3, 4 / 5, 6, 7, 8 100% Recovery 3, 5 / 6, 7, 8, 9
				(12.70)	 11.70 with occasional dark g 12.00 - 12.45 with frequent f 12.70 with rare off-white she (<2mm) 13.50 with occasional pocket silty fine sand (<5mm) 13.70 with occasional off-wh fragments (<3mm) 14.00 with rare bioturbation 14.70 with 1No pyrite nodular 	bioturbation Il fragments is of dark grey ite shell	11.70 12.00 12.00-12.45 12.70 13.00-13.45 13.45 13.45 13.70 14.00 14.00 14.70	D35 D36 D37 UT38 D39 D40 D41 D42	100 blows N30	100% Recovery 3, 5 / 6, 7, 8, 9
					13.50 with occasional pocket silty fine sand (<5mm) 13.70 with occasional off-wh fragments (<3mm) 14.00 with rare bioturbation 14.70 with 1No pyrite nodule	ite shell	13.45 13.70 14.00 14.00-14.45 14.70	D39 D40 D41 D42	N30	3, 5 / 6, 7, 8, 9
					silty fine sand (<5mm) 13.70 with occasional off-wh fragments (<3mm) 14.00 with rare bioturbation	ite shell	13.70 14.00 14.00-14.45 14.70	D40 D41 D42		
					silty fine sand (<5mm) 13.70 with occasional off-wh fragments (<3mm) 14.00 with rare bioturbation	ite shell	14.00 14.00-14.45 14.70	D41 D42		
						e (<4mm)	L		100 blows	100% Recovery
						e (<4mm)	- 15.00-15.45	UT43	100 blows	100% Recovery
					15.50 becoming very closely		F		1	
					15.50 becoming very closely		15.45	D44		
				ŧ l		fissured	15.70	D44		
					 15.50 becoming very every every every set of the second pocket brown silty fine sand (<25mm) 16.00 becoming very stiff wi pockets of grey silty fine sand (bioturbation 	ts of light th occasional	- 16.00 - 16.00-16.45	D45	N38	6, 7 / 7, 9, 10, 12
							16.70	D47		
							- 17.00-17.45	UT48	100 blows	100% Recovery
							17.45	D49		
				-			17.70	D50		
					17.70 with rare off-white she (<2mm)	ll fragments	18.00		N50/ 285 mm	15, 10 / 10, 11, 16, 13
							18.00-18.45	D51		
		-10.15		- 19.00	Very stiff, dark brown slightly s micaceous silty CLAY with rar	e partings of	- 19.00	D52		
			×> ×××× ×××	(1.00)	light grey fine sand, off-white s (<2mm) and white flecks. (THAMES GROUP: LONDON	hell fragments	- 19.50-19.95 -	UT53	100 blows	100% Recovery
25/02/21 6.80	Dry	-11.15	* * *	- 20.00	FORMATION - A3ii) 19.00 becoming slightly sand laminae of light grey fine sand, shell fragments and foraminifer End of Borehole	ly with rare	19.90	D54		
							- - - - - - - -			
				-			- - -			

Borehole No

BH2

Project

Elleray Hall & North Lane Depot/East Car Park

Job No	Date Started	22/02/21	Ground Level (mOD)	Co-Ordinate
20/3521	Date Completed	24/02/21	8.96	E 51570

-Ordinates E 515700.52 N 170863.87 Final Depth 20.00m

Client Richmond & Wandsworth Council

				BOREI	HOLE S	SUMMAR	RY			
Top (m)	Base (m)	Туре	Date Started	Date Ended	Crew	Logged By	Barrel Type	Core Bit	Plant Used/ Method	SPT Hammer Reference
0.00 1.20	1.20 20.00	IP CP	22/02/2021 22/02/2021	22/02/2021 25/02/2021	DR DR	JM JM			Hand Excavated Dando 175	AR779

	WA	TER STRIK	KES		WATE	R ADDED	CHIS	SELLIN	G / SLOW I	ORILLING
Strike at (m)	Rise to (m)	Time to Rise (min)	Casing Depth (m)	Sealed (m)	From (m)	To (m)	From (m)	To (m)	Duration (hr)	Remarks
19.30	19.30	20	8.10		1.80	6.60	19.30	19.60	00:30	Claystone

	Н	OLE				CASI	NG				ROTAR	Y RECOVER	RY
Dept	th (m)	Di	ameter (1	nm)	Dept	:h (m)	Dia	meter (mm)		From (m)	To (m)	Duration (hr)	Recovery (%)
0. 20	00		150 150		0.0 8.1	00		150 150					
		R	OTARY	Y FLUSH	I DE	TAIL							
From (m) To	(m)	Flush T	ype Fl	ush R	eturn (%)	Fl	lush Colour					
		ING		ATION I	DET								
Туре	Diamet	er D	epth of	Top o Response	f	Bottom of		Date of Installation					
	(mm)		(m)	(m)	Zone	(m)	one						
GMP			6.60	1.00		6.60		24/02/2021					
			BACK	FILL D	ЕТА	ILS							
Top (m)	Bottor (m)	n	Mate	rial	Ba	ckfill Date		Remarks					
0.00 0.30	0.30	1	Concre Bentonite 1	ete Pellets	24	4/02/2021]	Flush Cover					
1.00 6.60	6.60		Pea Shii Bentonite	ngle									
ssue: FI	NAL	CHD:	AN A	APRV: OS	Ι	Log Print Date	& Т	ime: 09/04/2	2021	12:46			AGS

Borehole No

BH2

Project

Elleray Hall & North Lane Depot/East Car Park

Job No 20/3521

Client

 Date Started
 22/02/21

 Date Completed
 24/02/21

 22/02/21
 Ground Level (mOD)

 24/02/21
 8.96

Co-Ordinates E 515700.52 N 170863.87

Final Depth

20.00m

Richmond & Wandsworth Council

		PROGR	ESS					SPT DETAILS	8	
Date	Hole Depth (m)	Casing Depth (m)	Water Depth (m)	Remarks	Туре	Depth (m)	N Value	Blow Count / 75mm	Casing Depth (m)	Water Depth (m)
	0.00 1.20 1.80 2.50 3.50 4.50 4.95 4.95 5.20 6.20 7.50 8.20 9.50 16.95 19.30 19.50 20.00 L REMARKS blowing in the gra	2.20 3.50 4.50 4.95 5.20 6.20 7.50 7.00 8.10 8.10 8.10 8.10 8.10 8.10	Dry Dry Wet 1.00 2.50 4.00 4.80 4.30 4.00 6.00 6.10 6.50 Dry Dry Dry 19.30 Dry Dry Dry	Water Added Water Added Water Strike	S C C C C S S S S S S C	(m) 1.50 2.50 3.50 4.50 5.50 6.50 8.50 10.50 12.50 14.50 16.50 19.50	Value N14 N50/0.29 N50/0.19 N10 N12 N12 N12 N19 N24 N31 N33 N36 N41 N37	5, 4 / 3, 3, 3, 5 2, 3 / 7, 10, 15, 18 2, 6 / 12, 22, 16 1, 2 / 3, 2, 3, 2 1, 2 / 3, 3, 3, 3 4, 3 / 2, 3, 3, 4 2, 3 / 3, 4, 5, 7 2, 4 / 5, 6, 6, 7 3, 5 / 6, 7, 8, 10 3, 5 / 6, 8, 9, 10 4, 5 / 7, 8, 10, 11 5, 6 / 8, 10, 11, 12 22, 3 / 7, 8, 10, 12	2.20 3.50 4.50 5.50 6.50 7.00 8.10 8.10 8.10 8.10 8.10 8.10	Dry 1.00 2.50 4.00 6.00 6.50 Dry Dry Dry Dry Dry Dry Dry
KEY SAMPLES ES ES JU 100m UT UT 100m UT UT SAMPLES ES SPGW SPGW SPGW VWP VWP ICM TESTS SVC-S		Vial, Jar) d Sample Jndisturbed Sample Sample, LB- Large Bulk e, R-Root Sample HOLI dpipe IP r Standpipe CP DS DC DC	AZCL:Assum Sample, BLK-Block : TYPES -Dynamic Sampling: -Dynamic Sampling. -Danand Coring. c -aeter, MP-Mackintosi	ed Zone of Core Loss Sample Trial Pit TT - Trial Trench IC-Rotary Coring, R/S-Rotary/Sonic DS/R-Dynamic Sampling (Rotary P/R-Cable Percussion Rotary follow on h Probe, VOC-Volatile Organic Compoung e in minutes. For details of abbreviations s	ik ce Key					
Issue: FIN	AL CHE	AP	RV: OS	Log Print Date & Time:	09/0	04/2021	12:46			AGS

 Borehole No

BH2

Job No 20/35		ate Start ate Comj		22/02/21 24/02/21	()	Co-Ordinat E 51570	es 00.52 N 17	0863.8		al Depth 20.00m
Client Richr	nond (& Wand	dswort	h Cour	ncil	Method/ Plant Used	Cable Per	cussion	She	et 1 of 2
PROGR	ESS			ST	TRATA		SAMPLE	ES & T	ESTS	
Date Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description		Depth (m)	Type No	Test Result	Field Records
22/02/21	Dry	8.86 8.36 7.96		0.10 (0.50) 0.60 1.00	\(MADE GROUND) Light brown slightly clayey san with low flint and concrete cobl Gravel comprises angular to sub to coarse flint, brick and concre Sand is fine to coarse.	ble content. prounded fine	$\begin{array}{c} 0.30\\ 0.30\\ 0.60\\ 0.90-1.00\\ 0.90-1.00\\ 1.20\\ \end{array}$	ES1 B2 ES3 B4 ES5 B6 ES7		VOC 9.2ppm VOC 6.4ppm VOC 41.6ppm VOC 42ppm
22/02/21	Wet	6.76	× ·× · × × · · · × × · · · × × · · · × × · · × × · · × × · × ·	(1.20)	(MADE GROUND) Soft, greenish grey slightly grav sandy silty CLAY with occasio reddish brown silty fine sand (< frequent dark grey flecks. Grav subangular to rounded fine to co (MADE GROUND) 0.80 becoming very silty	nal pockets of 25mm) and el is	$\begin{array}{c} 1.20 - 1.50 \\ 1.20 \\ 1.50 \\ 1.50 - 1.95 \\ 2.00 - 2.50 \\ 2.20 \end{array}$	B8 B9 D10 ES11 D12	N14	5, 4 / 3, 3, 3, 5 VOC 36.3ppm
22/02/21 2.20	1.00		0.0.0 0.0.0 0.0.0 0.0.0 0.0 0.0 0.0 0.0	- - - - - -	Firm, orangish brown gravelly s SILT. Gravel is subangular to su fine to medium flint. Sand is fir (KEMPTON PARK GRAVEL 1.20 with 1No flint cobble Very dense, brown sandy angula	ubrounded ne to medium. MEMBER)	2.50 2.50 3.20	B13 D14	N50/ 290 mm	2, 3 / 7, 10, 15, 18
22/02/21 3.50	2.50		0.0.0 0.0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0	-	subrounded fine to coarse GRA fine to coarse. (KEMPTON PARK GRAVEL 2.50 - 2.95 becoming clayey occasional pockets of orangish (<25mm)	VEL. Sand is MEMBER) with	3.50 3.50 4.20	B15 D16	N50/ 190 mm	2, 6 / 12, 22, 16
22/02/21 4.50			0.00 0.0.02 0.0.02 0.00	(4.40)	3.50 becoming dense4.50 becoming medium dens sandy	e and very	4.50 4.50	B17	N10	1, 2 / 3, 2, 3, 2
22/02/21 4.95 23/02/21 4.95 23/02/21 5.20	4.30			-			5.20 5.50 5.50	D18 B19	N12	1, 2 / 3, 3, 3, 3, 3
23/02/21 6.20	6.00	2.36	0 0 0 0 0 0 0 0 0 0 0 0	6.60	6.20 with 2No flint cobbles Firm to stiff, dark greyish brow	n CI AV with	6.20 6.50 6.50	D20 B21	N12	4, 3 / 2, 3, 3, 4
23/02/21 7.50	6.10			-	rare frequent light grey flecks a dark grey staining. (THAMES GROUP: LONDON FORMATION - B) 7.00 with 1No off-white shel (<4mm)	nd occasional	7.20	D22 UT23	50 blows	100% Recovery
23/02/21 7.00	6.50			-	8.00 with rare off-white fleck 8.20 with rare dark grey stain		7.95 8.20 8.50 8.50-8.95	D24 D25 D26	N19	2, 3 / 3, 4, 5, 7
23/02/21 8.10	Dry			-			9.20 9.50-9.95	D27 UT28	80 blows	100% Recovery
				-			9.95 10.20 10.50 10.50-10.95	D29 D30 D31	N24	2, 4 / 5, 6, 6, 7

Project

Job No

Client

Date

	V13 ORF e: 020 8	811288	PT Nay 0_Fax: 02 ultants.co.u		31		®	*		2	Borehole No BH2	
Project E		v Ha	11 & N	Jorth 1	Lane F	Depot/East Car Par	·k			I		
lob No			te Start		22/02/21	*	Co-Ordina	tes		Fin	al Depth	
20)/352	1 Da	ate Com	pleted	24/02/21		E 5157	00.52 N 17	0863.87		20.00m	
Client R	ichm	ond &	& Wan	dswort	th Coun	cil	Method/ Plant Used	Cable Per	cussion	She	2 of 2	
PRO)GRE				ST	TRATA		SAMPLE	CS & T	ESTS		nent/ II
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	L	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
					-	11.20 with rare pockets of lig	ght grey silt	11.20	D32	100 blasse	1000/ Decoura	
						(<15mm) and off-white shell fra (<3mm)	agments	- 11.50-11.95	UT33	100 blows	100% Recovery	
						12.00		11.95	D34			
						12.00 with occasional light g 1No pyrite nodule (<24mm) 12.20 with frequent white fle	5	- 12.20 - 12.50	D35	N31	3, 5 / 6, 7, 8, 10	
					(11.90)	12.50 with nequent white ne 12.50 with occasional pocket silt (<6mm)		12.50-12.95	D36	1131	5, 57 0, 7, 8, 10	
					-			- 13.20	D37			
						13.20 with occasional dark g and rare white flecks	rey staining	- 13.50-13.95	UT38	100 blows	100% Recovery	
					-			13.95	D39			
					-	14.00 with rare shell fragmer 14.20 with frequent pockets		14.20	D40			
					-	silt (<10mm) and white flecks 14.50 with occasional white		14.50 14.50-14.95	D41	N33	3, 5 / 6, 8, 9, 10	
					-			- 15.20	D42			
					-			- 15.50-15.95	UT43	100 blows	100% Recovery	
					-				DU			
						16.00 with rare white flecks		15.95	D44 D45			
								- 16.50		N36	4, 5 / 7, 8, 10, 11	
								16.50-16.95	D46			
3/02/21 1/02/21	8.10 8.10	Dry Dry						- 17.20	D47			
								17.50-17.95	UT48	100 blows	100% Recovery	
								17.05	D 40			
						18.00 with rare pockets of lig	ght brown and	17.95	D49 D50			
			-9.54		- 18.50	light grey silty fine sand (<20m 18.20 with 1No off-white she	m)	- 18.50		N41	5, 6 / 8, 10, 11, 12	
						(<2mm) Very stiff, dark brown slightly s	sandy slightly	18.50-18.95	D51			
		1		× ··· > × ··× ··		micaceous silty CLAY with occ partings of light grey silty fine s shell fragments (<18mm) and w	sand, off-white	- 19.20	D52			
/02/21 /02/21	8.10 8.10	19.3		×× ××	(1.50)	(THAMÉS GROUP: LONDON FORMATION - A3ii)	I CLAY	- 19.50		N37	22, 3 / 7, 8, 10, 12	
		2		· <u>×·</u> , <u>×·×</u>	-	19.20 with occasional pocket dark grey silty fine sand (<8mm	n) and rare	19.50-20.00	B53			
/02/21	8.10	Dry	-11.04	<u>×·_×</u> _	- 20.00	off-white shell fragments (<4mr 19.30 - 19.60 with band of c		⊧ ← -				
						End of Borehole		-				

Report ID: CONCEPT-CABLE PERCUSSION BOREHOLE || Project: 203521 ELLERAY HALL & NORTH LANE DEPOT. GPJ || Library: CONCEPT LIBRARY - 2021. GLB || Date: 9 April 2021 23/02/21 24/02/21

24/02/21

24/02/21

24/02/21

Issue: FINAL

Logger: JM

CHD: AN

APRV: OS

Log Print Date & Time:

09/04/2021 12:46

AGS

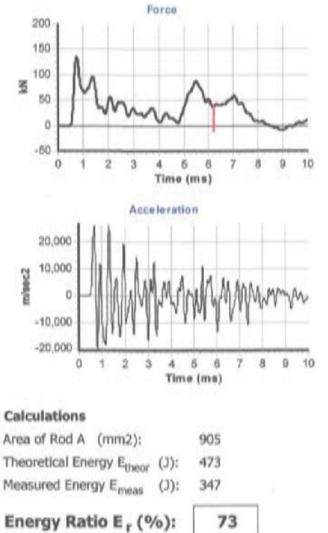
SPT Hammer Energy Test Report

In accordance with BSEN ISO 22476-3:2005

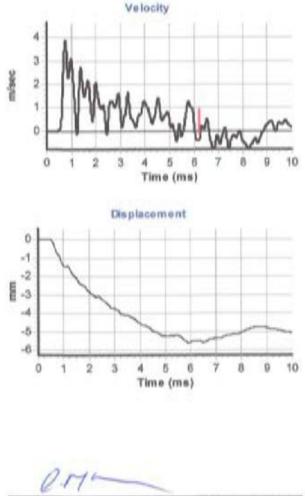
ARCHWAY ENGINEERING (UK) LTD AINLEYS INDUSTRIAL ESTATE ELLAND WEST YORKSHIRE HX5 9JP

Instrumented Rod Data

Diameter dr (mm):	54
Wall Thickness tr (mm):	6.0
Assumed Modulus Ea (GPa):	200
Accelerometer No.1:	7080
Accelerometer No.2:	11609


AR779
11/06/2020
11/06/2020
AR779.spt
CM

SPT Hammer Information


Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 10.0

Comments / Location

CONCEPT ENGINEERING/71108

The recommended calibration interval is 12 months

Signed: C.McCLUSKEY Title: FITTER

9. DYNAMIC SAMPLING BOREHOLE LOGS

0

C

Borehole No

Project E	leray	' H	all & N	orth	Lane D) Depot/Ea	st Car Pa	ırk					
Job No	U		ate Start		26/02/21	<u> </u>	Level (mOD)		ates		Fi	nal Depth	
20	/3521	D	ate Com	pleted	26/02/21	8	3.87	E 5156	675.80 N 17	70903.0	02	2.00m	
Client Ri	chmo	nd	& Wan	dswor	th Coun	cil		Method/ Plant Used	Dynamic S	Samplir		eet 1 of 1	
PRO	GRE	SS			ST	RATA			SAMPL	ES & T	TESTS		
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	S	trata Descriptio	on	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
26/02/21		Dry	8.77		0.10	Asphalt.			0.10-0.20	ES1		VOC 10ppm	
			8.57		$\begin{array}{c} (0.20) \\ 0.30 \\ \hline (0.25) \\ 0.55 \end{array}$	comprises a	andy GRAVEL ngular to subro and asphalt frag se.		- 0.10-0.20 0.30-0.40 0.30 - 0.60-0.70	B2 ES3 B4 ES5		VOC 10.5ppm VOC 9.7ppm	
26/02/21		Dry	8.07		(0.25) 0.80 (1.10)	Dark grey s CLAY with black stainin to subround and concretu coarse. (MADE GR Greenish gr CLAY with brown silty frequent dan angular to ro Sand is fine (ALLUVIU	lightly gravelly slight hydroca ng. Gravel com ed fine to coars e fragments. Sa COUND) ey slightly grav occasional poo fine sand (<25r k grey staining bunded fine to i to medium.	rbon odour and prises angular se flint, brick nd is fine to elly sandy skets of reddish nm) and . Gravel is medium flint.	- 0.60-0.70 - 1.00-1.10 - 1.00-1.10 - 1.20 - 1.20-1.65 	B6 ES7 B8 D9	N8	VOC 4.8ppm 2, 2 / 2, 2, 2, 2, 2	
26/02/21	2.00	Dry	6.97		1.90 2.00 	sandy claye of dark grey and occasio silty clay (< to rounded f (ALLUVIU Medium der gravelly find subangular t	y SILT with free vilty fine to m nal pockets of g 25mm). Gravel ine to medium M) use to dense, or to to dense, or to medium SA to rounded fine N PARK GRA	equent pockets edium sand greenish grey l is subangular flint. angish brown AND. Gravel is to coarse flint.			N50/ 195 mm	9, 16 / 17, 22, 11 Borehole aborted at 2.00m depth (see Remarks)	
		~ ~				~							
From To Diameter (mm) Recovery (%) 1. 2. 1.20 2.00 87 100 3. 4. do 0 0 1.00 1.00 1.00							10mm casing us orehole aborted a 50mm gas and gr orehole backfille	vas hand excavate sed from ground lu t 2.00 depth due oundwater monito d with pea shingle depth. Concrete	evel to 2.00m de to refusal. oring pipe installe e between 2.00m	pth. ed at 2.00 and 1.00	m, slotted	mencing. between 1.00m and 2.0 tonite pellets between 0.20m to ground level.	00m
C-C V-S	ore Sampl hear Vane	e, W-V , PP-F	Water Sample, Pocket Penetro	, R-Root Sa ometer, MP	ample AZC -Mackintosh F	L: Assumed Zono Probe, VOC-Vola	e of Core Loss tile Organic Compo	le, U36-36mm Diam punds s of abbreviations sea		mple D-Dis	turbed Sampl	le, B-Bulk Sample,	
Inner	FINAL		Driller: D		Logger: J		CHD: AN		Log Print Date	& Time	· 09/04/20	021 12:49	GS

C

Borehole No

Project El	lera	уH	all & N	orth	Lane D	Depot/East Car Pa	rk			I		
Job No			Date Start		25/02/21	. ,	Co-Ordina	tes		Fi	nal Depth	
20	/3521		Date Com	pleted	25/02/21	8.52	E 5156	56.41 N 1'	70890.5	57	2.00m	
Client Ri	chmo	ond	& Wan	dswor	th Coun	cil	Method/ Plant Used	Dynamic	Sampliı	ng Sh	eet 1 of 1	
PRO	GRE	SS			ST	RATA		SAMPL	ES & 7	TESTS		
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	n	Depth (m)	Type No	Test Result		Instrument Back fill
25/02/21		Dry	8.37		- 0.15	Soft, dark brown silty CLA' frequent rootlets. (TOPSOIL) Dark brown silty gravelly fi SAND with frequent roots.		0.00-0.15 0.10 0.30 0.30	B1 ES2 ES3 B4			
			7.62		(0.75)	comprises subrounded to rot coarse flint, brick and ceram (MADE GROUND) 0.35 with rare shell fragn leather fragment (<100mm)	unded fine to ic fragments.	- 0.60 - 0.60 -	ES5 B6		VOC 0.4ppm	
			7.02		0.90	Firm, orangish brown mottle gravelly silty CLAY. Grave	l comprises	1.00-1.20 1.00-1.20	ES7 B8		VOC 0.4ppm	o J
25/02/21		Dry	7.04	• • • • •	(0.58) 1.48 (0.52)	angular to subrounded fine t and brick fragments. (MADE GROUND) 1.20 becoming slightly gr sandy with occasional dark Sand is fine to medium Medium dense to dense, oar gravelly fine to coarse SAN subangular to subrounded fi	ravelly and grey staining. ngish brown D. Gravel is	- 1.20 - 1.20 	D9	N16	2, 3 / 2, 2, 5, 7	
25/02/21	2.00	Dry	6.52	· · · · · ·	- 2.00	flint. (KEMPTON PARK GRAV MEMBER) 1.60 - 1.70 becoming gre and very gravelly End of Borehole	EL	- - 2.00 - 2.00		N25/ 100 mm	Borehole aborted at 2.00m depth	
					-			- - - - - - - - - -				
DY	NAMI	C SA	AMPLING	RECO	VERY	GENERAL REM	ARKS					
From 1.20	To 2.00		Diameter (m 87	ım) l	Recovery (%	3. Borehole aborted at	d from ground le 2.00 depth due to undwater monito with pea shingle depth. Concrete w	vel to 2.00m de o refusal. ring pipe install between 2.00m	epth. led at 2.00 1 and 1.00	m, slotted m, and ben	between 1.00m and 2.0 tonite pellets between	0m
C-Co V-Sł	ore Samp hear Van	le, W- e, PP-I	Water Sample, Pocket Penetro	, R-Root Sa ometer, MF	ample AZC P-Mackintosh F		ınds		imple D-Dis	turbed Samp	le, B-Bulk Sample,	
Issue: F	FINAL		Driller: E	DN	Logger: [OH/JM CHD: AN	APRV: OS	Log Print Date	e & Time	: 09/04/20	021 12:49 MA	GS

C

Borehole No

lob No 20/3	521		te Start te Comj		26/02/21 26/02/21	Ground Level (mOD) 8.78	Co-Ordinat E 5156	tes 75.58 N 1'	70888.5		nal Depth 2.00m	
Client Ricł	mon	d &	Wan	dswort	th Coun		Method/ Plant Used	Dynamic		Sh	eet 1 of 1	
PROG	RES	S			ST	RATA		SAMPL	ES & T	ESTS		
Date .	Casilig	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	1	Depth (m)	Type No	Test Result	Field Records	Instrument/
26/02/21 26/02/21 26/02/21 2.	E	hy - - - hy - -	8.68 8.28 7.98 7.28 6.78		$\begin{array}{c} 0.10 \\ \hline 0.40) \\ \hline 0.50 \\ \hline 0.30) \\ \hline 0.80 \\ \hline 0.80 \\ \hline 0.70) \\ \hline 0.70) \\ \hline 0.70) \\ \hline 0.70 \\ \hline $	Asphalt. (MADE GROUND) Dark grey sandy GRAVEL hydrocarbon odour. Gravel of angular to subrounded fine to brick and concrete fragment to coarse. (MADE GROUND) Dark greyish brown very gre coarse SAND. Gravel is ang subrounded fine to coarse fli (MADE GROUND) Stiff, greyish brown slightly slightly sandy CLAY with f pockets of yellowish brown and dark grey silty fine sand Gravel is subangular to subr to medium flint. (ALLUVIUM) 1.00 becoming orangish b sandy with frequent pockets grey clay (<30mm) Medium dense to dense, gree slightly clayey gravelly fine SAND. Gravel is subangula subrounded fine to coarse fli (KEMPTON PARK GRAV MEMBER) 1.65 becoming reddish br End of Borehole	comprises o coarse flint, s. Sand is fine avelly fine to ular to int. gravelly requent silt (<30mm) (<25mm). ounded fine of greenish yish brown to coarse r to int. EL brown	- 0.25 0.25 - 0.60 - 0.60 - 1.00 1.00 - 1.00 - 1.20 - 1.20-1.65 - 1.20 - 2.00 - 2.00 	ES1 B2 ES3 B4 ES5 B6 ES7 D8 B9	N30 N50/ 150 mm	VOC 12.6ppm VOC 11.5ppm VOC 13ppm VOC 12.7ppm 1, 3 / 4, 6, 10, 10 12, 13 / 24, 26 Borehole aborted at 2.00m depth (see Remarks)	
				DECO			ADVC	_				
From 1.20	<u>To</u> 2.00		meter (m 87	RECOV m) F	VERY Recovery (% 100	GENERAL REM 1. An inspection pit wa 2. Ø110mm casing use 3. Borchole aborted at 4. Borchole backfilled 5. SPT Hammer: 0037	ns hand excavated d from ground lev 2.00 depth due to	vel to 2.00m de o refusal.	eptĥ.	poring com	mencing.	
		W-Wa					, U36-36mm Diamet	er Undisturbed Sa	mple D-Dist	urbed Sampl	le, B-Bulk Sample,	

C

Borehole No

Client Ri		1 D	ate Com	pleted	25/02/21 25/02/21	Ground Level (mOD) 8.74	Co-Ordinat	57.17 N 1'	70880 4		inal Depth 2.00m	
	ichm			-	th Coun		Method/ Plant Used	Dynamic		SI	heet 1 of 1	
DDO	GRE					RATA		SAMPL	FC 0- T	TETE		_
Date	Casing	Water 0	Level (mOD)	Legend	Depth	KATA Strata Description	L	Depth (m)	Type No	Test Result	Field Records	Instrument/
25/02/21		Dry	8.64		0.10	Asphalt.		0.10-0.20	ES1		VOC 0.8ppm	,
			8.24		(0.40)	(MADE GROUND) Blackish grey sandy GRAVI hydrocarbon odour. Gravel c angular to subangular fine to brick, clinker and asphalt fra	omprises coarse flint,	0.10-0.20 0.30 0.30	B2 ES3 B4		VOC 0.6ppm	
			8.04		(0.20) 0.70	is fine to coarse. (MADE GROUND) 0.25 becoming brown and Greyish brown silty gravelly coarse SAND. Gravel compt subangular to subrounded fir	fine to rises	- 0.60 - 0.60 1.00-1.20	ES5 B6 ES7		VOC 0.5ppm VOC 0.4ppm	
25/02/21		Dry	7.40	xoʻ	(0.64)	flint and brick fragments. (MADE GROUND) Firm, orangish brown mottle slightly gravelly sandy SILT comprises angular to subroun	d light grey . Gravel nded fine to	- 1.00-1.20 - 1.20 - 1.20-1.65	B8 D9	N17/ 225 mm	2, 4 / 5, 5, 7	
			6.94	· · · × · · · · · · · · · · · · · · · ·	(0.46)	coarse flint and brick fragme fine to coarse. (MADE GROUND) Medium dense, yellowish br gravelly fine to medium SAN angular to subrounded fine to	own silty ND. Gravel is	- - -				
25/02/21	2.00	Dry	6.74	0.0	- (0.20) 2.00 - -	(KEMPTON PARK GRAV) MEMBER) Medium dense to dense, oran slightly clayey sandy angular fine to coarse flint GRAVEL to coarse.	EL ngish brown to rounded	2.00		N50/ 150 mm	16, 9 / 25, 25 Borehole aborted at 2.00m depth (see Remarks)	
					-	(KEMPTON PARK GRAV MEMBER) End of Borehole	EL	- - - - - -				
					-			- - - - -				
								_				
DY From 1.20	NAM Tc 2.0	D	MPLING iameter (n 87		VERY Recovery (9 100	GENERAL REM 1. An inspection pit wa 2. Ø110mm casing usee 3. Borehole aborted at 4. Borehole backfilled 5. SPT Hammer: 0037	s hand excavated 1 from ground lev 2.00 depth due to	vel to 2.00m de refusal.	pth.	ooring cor	nmencing.	
C-C V-S	ore Sam hear Vai	ple, W-V ne, PP-P	Vater Sample, ocket Penetro	, R-Root S ometer, MI	ample AZC P-Mackintosh F	38mm Diameter Undisturbed Sample, 38mm Diameter Undisturbed Sample, L: Assumed Zone of Core Loss robe, VOC-Volatile Organic Compou strike rise time in minutes. For details o	nds		mple D-Dist	urbed Samj	ple, B-Bulk Sample,	=

0

® 💐 🕲 💐

Borehole No

			unanit3.00.0										
Project E	lera	y Ha	all & N	orth	Lane I	Depot/Ea	st Car Pa	ark					
Job No			ate Start		26/02/21		Level (mOD) Co-Ordina	ates		Fi	nal Depth	
20	/352	1 D	ate Com	pleted	26/02/21	9	9.01	E 5156	678.06 N1	70872.7	74	2.00m	
Client Ri	chm	ond &	& Wan	dswor	th Coun	cil		Method/ Plant Used	Dynamic	Samplii		eet 1 of 1	
PRO	GRE	SS			ST	TRATA			SAMPL	ES & 1	FESTS		
Date	Casing	Water	Level (mOD)	Legend	Depth (Thicknass)		trata Descripti	ion	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
26/02/21 26/02/21 26/02/21	2.00	Dry	8.95 8.81 8.26 7.31 7.01		0.06 0.20 (0.55) (0.95) (0.95) (0.30) 2.00	Dark brown strong hydro comprises a coarse flint a is fine to coo (MADE GR 0.20 - 0.22 substance 0.50 becc clayey. Grav subrounded concrete fra Orangish br CLAY with staining. Gra rounded find fragments. S (MADE GR Medium der slightly silty medium SA rounded find (KEMPTON MEMBER)	CONCRETE. ish grey sandy bearbon odour. ngular to subre and concrete fi arse. COUND) with pocket oming greyish vel comprises fine to coarse gments own slightly gr occasional da avel comprises to coarse flin Sand is fine to COUND) nse to dense, y slightly grave ND. Gravel is e to medium fl N PARK GRA becoming g	s of black tar brown and subangular to flint, brick and ravelly sandy rk grey s angular to it and brick medium. ellowish brown .lly fine to subangular to int. .VEL	- 0.25 0.25 0.40 0.40 - 0.70 - 1.00 1.00-1.20 - 1.20 1.20-1.65 - 1.40-1.60 - 2.00	ES1 B2 ES3 B4 ES5 B6 ES7 B8 D9 ES10	N16 N50/ 135 mm	VOC 115.8ppm VOC 40.8ppm VOC 32.6ppm VOC 20.7ppm 1, 2 / 2, 4, 5, 5 VOC 0.3ppm 8, 17 / 23, 27 Borehole aborted at 2.00m depth (see Remarks)	
				DECO		CEN	EDAL DE	MADIZS			1		1
DY	INAN	IC SA	MPLING		V ĽK Y		ERAL RE	WARKS was hand excavate	d to 1 20m dant	h prior to	horing age	mencing	
From	То	D	iameter (n	nm) l	Recovery (<u>%)</u> 2. Ø1	10mm casing u	used from ground lo	evel to 2.00m de		comg com	incicing.	
BYNAMIC SAMPLING RECOVERY To DIAMAGE SAMPLING RECOVERY From To Diameter (mm) Recovery (%) 1.20 2.00 87 90 State of the second								at 2.00 depth due ed with bentonite p 37		pletion.			
C-C V-S	ore Samj hear Var	ple, W-W ne, PP-Po	Vater Sample ocket Penetro	, R-Root Sa ometer, MF	ample AZC P-Mackintosh I	L: Assumed Zone Probe, VOC-Vola	e of Core Loss tile Organic Comp			ample D-Dis	sturbed Samp	le, B-Bulk Sample,	
T	FINAL		Driller: E		Logger: J		CHD: AN	APRV: OS	Log Print Date	e & Time	[:] 09/04/20	021 12:49 MA	GS
							-				_		

C

Borehole No

PROC	Casing	S S	Level mOD) 8.81	lswor	th Coun ST Depth (Thickness)	cil RATA	Method/ Plant Used	Dynamic :	Samplin	s Sh	eet 1 of 1	
Date 25/02/21	Casing	Water	mOD) 8.81	Legend	Depth	RATA		GANTE				_
25/02/21			mOD) 8.81	Legend	1			SAMPL	ES & T	ESTS		T
		Dry				Strata Description		Depth (m)		Test Result	Field Records	To other and /
25/02/21			8.56		0.10 (0.25) 0.35	Asphalt. (MADE GROUND) Brown sandy GRAVEL with brick and concrete cobble co comprises angular to subroun coarse flint, brick and concret Sand is fine to coarse.	ntent. Gravel	0.10-0.20 0.10-0.20 0.30 0.30 0.30	ES1 B2 ES3 B4 ES5		VOC 7.2ppm VOC 6.1ppm VOC 4.1ppm	$\Lambda \sim \pi$
		Dry	8.11	× · · · · · · · · · · · · · · · · · · ·	_ (0.45) 	(MADE GROUND) Greyish brown slightly grave silty CLAY with rare pocket brown silt (<15mm). Gravel angular to subrounded fine to and brick fragments. (MADE GROUND)	s of orangish comprises o coarse flint	- 0.60 - 0.90-1.00 - 0.90-1.00 - 1.20	B6 ES7 B8	N9	VOC 4.1ppm VOC 9.2ppm 1, 2 / 2, 2, 2, 3	
				× · · · × · × · × · × · × · × · × · × ·	(1.10) - - - 1.90	Firm, orangish brown slightly sandy clayey SILT with freq grey staining. Gravel is angu subrounded fine to medium f (ALLUVIUM) 1.50 with occasional pock yellowish brown silty fine to sand (<25mm)	uent dark lar to lint. ets of	- 1.20 - 1.20-1.65 - -	B10 D9			
25/02/21 2	2.00	Dry	6.91		2.00	Very dense to dense, brown subangular to rounded fine to GRAVEL. (KEMPTON PARK GRAVI MEMBER) End of Borehole	coarse flint	2.00		N50/ 245 mm	4, 4 / 11, 14, 18, 7 Borehole aborted at 2.00m depth (see Remarks)	
					-		- - - -	- - - -				
					- - - -		-	- - - -				
				DECO	-			-				
_				RECO		GENERAL REM 1. An inspection pit wa	s hand excavated	to 1.20m deptl	h prior to b	poring com	mencing.	
From 1.20	<u>To</u> 2.00	Dian	neter (m 87		Recovery (9 75	 2. Ø110mm casing used 3. Borehole aborted at 1 4. Ø50mm gas and groudepth. 5. Borehole backfilled 1.00m and and 0.20m d 6. SPT Hammer: 0037 	1 from ground lev 2.00 depth due to indwater monitor with pea shingle l	el to 2.00m de refusal. ing pipe install petween 2.00m	pth. ed at 2.00: and 1.00r	m, slotted	between 1.00m and 2.0 tonite pellets between	0m
C-Cor V-She	re Sample ear Vane,	, W-Wate PP-Pocke	er Sample, et Penetroi	R-Root Sa meter, MP	mple AZC -Mackintosh F	-38mm Diameter Undisturbed Sample, -38mm Diameter Undisturbed Sample, L: Assumed Zone of Core Loss Probe, VOC-Volatile Organic Compou strike rise time in minutes. For details o	nds		mple D-Dist	urbed Sampl	e, B-Bulk Sample,	=

C

Borehole No

Job No	12521		ate Start		24/02/21	. ,	Co-Ordinat				nal Depth
20	/3521		ate Comj	pleted	24/02/21	8.98	E 51569	97.50 N 1	70866.1	4	2.00m
Client Ri	chmo	ond &	& Wano	dswor	th Coun	cil	Method/ Plant Used	Dynamic	Samplir	ng Sh	eet 1 of 1
PRO	GRE	SS			ST	RATA		SAMPL	ES & T	TESTS	
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	L	Depth (m)	Type No	Test Result	Field Records
24/02/21		Dry	8.88		0.10	Asphalt. (MADE GROUND)		0.10-0.30	ES1 B2		VOC 17.8ppm
			8.58		(0.30) 0.40	Dark grey sandy angular to s fine to medium flint GRAVE fine to coarse. (MADE GROUND)		0.30	ES3 B4		VOC 6.5ppm
					(0.50)	0.20 becoming light brown clayey		- 0.60 - 0.60	ES5 B6		VOC 6.1ppm
			8.08	×		Greyish brown slightly grave sandy clayey SILT with low brick cobble content and occ Gravel comprises angular to to coarse flint, brick and con	asional roots.	- 0.90 - 0.90 -	ES7 B8		VOC 6.8ppm
24/02/21	/02/21 Dry X X X X X X X X X X X X X X X X X X X					fragments. (MADE GROUND) Firm, orangish brown mottle	d greenish	- 1.20 - 1.20 - 1.20-1.65	B10 D9	N10	1, 2 / 2, 2, 3, 3
			7.23	× × × × × × × × × × × × × × × × × × ×	- (0.05) 	grey slightly gravelly sandy with occasional pockets of re silty fine sand (<25mm), free and occasional dark grey sta is angular to subangular fine flint.	eddish brown quent roots ining. Gravel	1.40-1.70 - -	ES11		VOC 7.7ppm
24/02/21	2.00	Dry	6.98	· · · × · ·	(0.25) 2.00	(ALLUVIUM) 1.40 with occasional pock brown and yellowish brown clay (<25mm)	ets of greyish fine sandy	2.00		N50/ 240 mm	7, 8 / 10, 14, 22, 4
					- - - - -	Very dense, brown slightly s fine to medium SAND. Grav subangular to rounded fine to flint. (KEMPTON PARK GRAV MEMBER) 1.80 - 1.90 becoming slig End of Borehole	rel is o medium EL	2.00			Borehole aborted at 2.00m depth (see Remarks)
					-			- - - -			
					- - -		- - - -	-			
		C SA	MPLING	RECO		GENERAL REM	ARKS	-			
From 1.20	To 2.00	D	iameter (m 87		Recovery (9 100	1 An inspection pit wa	s hand excavated 1 from ground lev 2.00 depth due to	el to 2.00m de refusal.	eptĥ.	boring com	mencing.
C-C V-S	ore Samp hear Van	ole, W-V e, PP-P	Vater Sample, ocket Penetro	R-Root Sa meter, MP	mple AZCI -Mackintosh P		nds		mple D-Dist	turbed Samp	le, B-Bulk Sample,

•

C

Borehole No

Project El	leray	' Ha	all & N	orth	Lane D	Depot/Eas	st Car Pa	ırk			I		
Job No	•	D	ate Start	ed	24/02/21	Ground L	evel (mOD)		ntes		Fi	nal Depth	
20	/3521	D	ate Com	pleted	24/02/21	8.	.94	E 5157	704.96 N 1'	70856.8	33	2.00m	
Client Ri	chmo	nd &	& Wan	dswor	th Coun	cil		Method/ Plant Used	Dynamic	Samplir	ng Sh	eet 1 of 1	
PRO	GRE	SS			ST	RATA			SAMPL	ES & T	TESTS		
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	St	rata Descripti	on	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
24/02/21		Dry	8.84		0.10	Asphalt. (MADE GRO	DUND)		0.10-0.20	ES1 B2		VOC 4.9ppm	
					(0.50)	Dark brown s sandy clayey angular to roo	slightly gravel SILT. Gravel unded fine to	l comprises	- 0.30-0.40 - 0.30-0.40 - 0.60-0.70	ES3 B4 ES5		VOC 5.4ppm VOC 7.9ppm	
			8.34	××××××	0.60	(MADE GRO	DUND) /n mottled ora	naich brown	0.60-0.70	B6		VOC 7.9ppm	
			7.94		- (0.40) 	slightly grave	elly slightly sa frequent dark	ndy silty grey staining.	- 0.90-1.00 - 0.90-1.00	ES7 B8		VOC 7.7ppm	
24/02/21		Dry	7.39	× · · · · · · · · · · · · · · · · · · ·	(0.55) (0.55) (0.25) (0.25) (1.80)	gravelly sand occasional po fine sand (<2 staining and 1 subangular to flint.	ning orangish stiff, orangish ly clayey SIL ockets of redd 5mm), freque No flint cobb o rounded fine	brown slightly Γ with ish brown silty nt dark grey ble. Gravel is	- 1.20 - 1.20-1.30 - 1.20-1.65 	B10 D9	N34	1, 2 / 2, 12, 10, 10	
24/02/21	2.00	Dry	6.94	'xο' ·	- (0.20) 2.00 - - - - - - - - - - - - - - - - -	GRAVEL. S (KEMPTON MEMBER) Very dense, o gravelly silty Gravel is sub coarse flint.	n silty sandy a ine to mediun and is fine to PARK GRA orangish brow fine to mediu angular to rou PARK GRA ning gravelly	n flint coarse. VEL m slightly um SAND. unded fine to	2.00 2.00		N50/ 210 mm	9, 13 / 16, 16, 18 Borehole aborted at 2.00m depth (see Remarks)	
					- - - - - -				- - - - -				
DY	NAMI	C SA	MPLING	RECO	VERY	GENI	ERAL REN	MARKS					
From 1.20	То 2.00	D	iameter (n 87	11m) H	Recovery (9 95	2. Ø11 3. Bor 4. Bor	10mm casing us whole aborted a	was hand excavate sed from ground lo at 2.00 depth due t d with bentonite p 7	evel to 2.00m de to refusal.	pth.	boring com	imencing.	
C-C V-S	ore Sampl hear Vane	e, W-V , PP-P	Vater Sample, ocket Penetro	, R-Root Sa ometer, MP	ample AZC -Mackintosh I	L: Assumed Zone Probe, VOC-Volati	of Core Loss ile Organic Comp	le, U36-36mm Diamo ounds ls of abbreviations sec		mple D-Dis	turbed Samp	le, B-Bulk Sample,	
Tanaa	FINAL		Driller: E		Logger: J		CHD: AN		Log Print Date	e & Time	[:] 09/04/20	021 12:49 MA	GS

-

C

Borehole No

Projec]		ıy H	all & N	orth	Lane I) Depot/Ea	st Car Pa	ark					
Job N			Date Start		24/02/21		Level (mOD)) Co-Ordina	ates		Fi	nal Depth	
2	20/352	21 D	Date Com	pleted	24/02/21	9	9.00	E 515	711.76 N 1	70835.5	53	2.00m	
Client		ond	& Wan	dswor	th Coun	ncil		Method/ Plant Used	l Dynamic	Samplir		eet 1 of 1	
PR	OGR	ESS			ST	RATA			SAMPL	ES & T	TESTS		_
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	S	trata Descripti	on	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
24/02/2 24/02/2 24/02/2 Issue:	:1	Dry Dry		וו× וו× וו× וו×		brown slight SAND. Gra fine to medi (MADE GR Dark brown Gravel comp fine to coars ceramic frag (MADE GR Dark greyis brown slight with frequer comprises a coarse flint, Sand is fine (MADE GR 0.80 becc frequent poo (<30mm) Orangish br clayey SILT staining. Gra fine to coars medium. (ALLUVIU 1.50 becc Very dense, subrounded GRAVEL. S	tly gravelly fin vel is angular t um fint. (OUND) gravelly sandy prises angular t is flint, brick, c gravelly sandy (OUND) h brown mottle tly gravelly sar angular to subtor brick and cond to coarse. (OUND) ming orangish ckets of dark gr own slightly g (with occasion avel is angular se flint. Sand is M) brown silty sa fine to medium Sand is fine to V PARK GRA	o subangular y silty CLAY. to subrounded concrete and ed orangish idy silty CLAY uning. Gravel bunded fine to punded fine to crete fragments. brown with rey silt ravelly sandy to subrounded fine to ndy angular to n flint coarse.	0.10 0.10 0.40 0.40 0.60 0.90 1.20 1.20-1.65 1.40-1.70 2.00 2.00 - - - - - - - - - - - - -	ES1 B2 ES3 B4 ES5 B6 ES7 B8 D9 ES10	N18 N50/ 180 mm	VOC 11.6ppm VOC 20.2ppm VOC 27.6ppm VOC 19.4ppm 1, 1 / 1, 3, 7, 7 VOC 4.5ppm 12, 16 / 18, 20, 12 Borehole aborted at 2.00m depth (see Remarks)	
) YNAN	ПС SA	MPLING	RECO	VERY	GEN	ERAL REN	MARKS		·			
From 1.20							n inspection pit v 10mm casing us prehole aborted a	was hand excavate sed from ground 1 at 2.00 depth due ed with bentonite	evel to 2.00m de to refusal.	eptĥ.	boring com	mencing.	
KEY:	KEY: Drilled By: ES-Environmental Sample (Tub, Vial, Jar), U38-38 C-Core Sample, W-Water Sample, R-Root Sample AZCL: V-Shear Vane, PP-Pocket Penetrometer, MP-Mackintosh Pro All depths are in metres, all diameters in millimetres, water stri						e of Core Loss tile Organic Comp	ounds		ample D-Dis	turbed Samp	le, B-Bulk Sample,	
Issue:	FINA		Driller: E		Logger: J		CHD: AN		Log Print Date	e & Time	: 09/04/20	21 12:49 MA	GS

C

Borehole No

Job No 20/3521			Date Started Date Completed		24/02/21 ed 24/02/21		Co-Ordinates				Final Depth	
							E 51570	03.65 N 170828.35		5	2.00m	
Client Richmond & Wandsworth Council					th Coun	cil	Dynamic Sampling			Sheet 1 of 1		
PROGRESS STRA					ST	RATA	ATA		SAMPLES & TES		TS	
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Descriptior	1	Depth (m)	Type No	Test Result	Field Records	
24/02/21		Dry	8.99		0.10	Grass over dark brown slight	tly gravelly	0.10-0.20	ES1		VOC 5.4ppm	
					- - (0.65)	clayey fine to medium SAN frequent roots and rootlets. C angular to subrounded fine to (MADE GROUND)	Gravel is to coarse flint.	- 0.10 - 0.30 - 0.30	B2 ES3 B4		VOC 8.4ppm	
			8.34		- - - <u>0.75</u>	Dark brown gravelly sandy s Gravel comprises angular to fine to coarse flint, brick, con ceramic fragments.	subrounded	- 0.60 - 0.60 -	ES5 B6		VOC 6.8ppm	
				ו × ·× × ·× × ·× × ·×		(MADE GROUND) 0.30 with 1No glass fragm (<10mm) Firm to stiff, orangish brown	/ [- 0.90 - 0.90	ES7 B8		VOC 6.7ppm	
24/02/21		Dry	7.29		(1.05)	ark grey staining and occas Gravel is subangular to subro to coarse flint. (ALLUVIUM) 1.40 with occasional pock brown and yellowish brown clay (<25mm)	with frequent ional roots. ounded fine tets of greyish	- 1.20 - 1.20 - 1.20-1.65 - -	B10 D9	N15	1, 3 / 2, 2, 3, 8	
24/02/21	2.00	Dry	7.09	×o · · × ·	- (0.20) 2.00	Very dense, brown slightly s fine to coarse SAND. Grave rounded fine to medium flint (KEMPTON PARK GRAV MEMBER) 1.90 becoming slightly gr becoming fine to medium End of Borehole	l is angular to EL	2.00		N50/ 165 mm	7, 18 / 21, 22, 7 Borehole aborted at 2.00m depth (see Remarks)	
							- - - - - - - - - - - - - - - - - - -	-				
DY	NAMI	C SA	MPLING	RECO	VERY	GENERAL REM		to 1 20m dant	h prior to b	oring com	mencing	
From 1.20	<u>To</u> 2.00		ameter (n 87	nm) H	Recovery (9 75	 An inspection pit was a section pit	d from ground lev 2.00 depth due to undwater monitor with pea shingle	vel to 2.00m de o refusal. ing pipe install between 2.00m	pth. led at 2.001 1 and 1.00n	n, slotted n, and ben	between 1.00m and 2.0	
C-C V-S	ore Samp hear Van	ole, W-W e, PP-Po	/ater Sample ocket Penetro	, R-Root Sa ometer, MP	mple AZCI -Mackintosh P	38mm Diameter Undisturbed Sample, 2.: Assumed Zone of Core Loss robe, VOC-Volatile Organic Compou trike rist time in minutes. For details	nds		mple D-Dist	urbed Samp	le, B-Bulk Sample,	

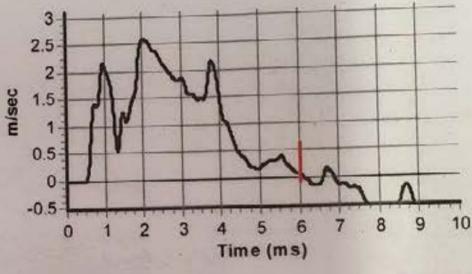
SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

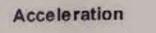
Southern Testing
Unit 11
Charlwood Road
East Grinstead
West Sussex
RH19 2HU

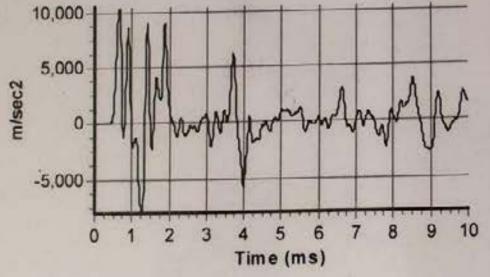
Instrumented Rod Data

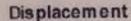
Diameter dr (mm):	54
Wall Thickness tr (mm):	6.3
Assumed Modulus E _a (GPa):	208
Accelerometer No.1:	6458
Accelerometer No.2:	9607

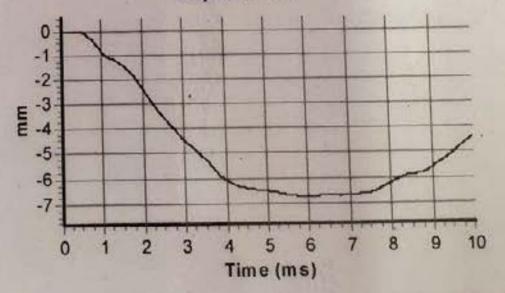

SPT Hammer Ref:	0037
Test Date:	12/02/2021
Report Date:	12/02/2021
File Name:	0037.spt
Test Operator:	NPB

SPT Hammer Information


Hammer Mass	m (kg):	63.5
Falling Height	h (mm):	760
SPT String Len	gth L (m):	14.5


Comments / Location CHARLWOODS





Velocity

Calculations

- Area of Rod A (mm2): 944 Theoretical Energy E_{theor} (J): 473 Neasured Energy E_{meas} (J): 278
- energy Ratio E r (%):
- 59

Signed S simmonds Title: Field Operations Tech

he recommended calibration interval is 12 months

SPTMAN ver. 1.92 All rights reserved, Testconsult @2010

10. TRIAL TRENCH LOGS

Warple Mews, 8 Warple Way London W13 0RF Telephone: 020 88112880_Fax: 020 88112881 E-mail: si@conceptconsultants.co.uk

Trial Pit No

STP1

ob N	o 20/3521		e Started Comple	25/02/21 eted 03/03/21		evel (mOD)		Ordinates		70882.26	Final Depth 2.60m
Client M						Meth	nod/	Machine	Sheet 1 of 1		
					RATA			SAMP	LES & T	ESTS	
ע מוכו	Level (mOD)	Legend	Depth (Thickness)	St	ata Descriptio	on		Depth	Type No	Test Result	Field Records
	0.75		(0.25)	Asphalt (0.03m) of sandy GRAVEL v odour. Gravel is a flint. Sand is fine (MADE GROUN	with a moderate ngular to subar to coarse.	e hydrocarbon		0.10 0.15	ES1		VOC 30.3ppm Concrete encountered on the NE side of the pit between
	8.75 8.60		0.25 (0.15) 0.40	Greyish brown sli Gravel comprises coarse flint, brick	ghtly silty sand angular to subi	rounded fine to	F	0.25 0.25	ES2 B3		0.15m and QZEmppm
	8.10		(0.50)	(MADE GROUN) Brown slightly gr SAND with occas clayey silt (<50m Gravel comprises coarse flint, brick fragments. (MADE GROUN)	avelly clayey s ional pockets o m) and shell fra angular to subr , coal, glass, bo	of orangish brow agments (<30mn rounded fine to	n).	0.70 0.70	ES4 B5		VOC 0.8ppm
	8.10		 (0.50)	Firm, orangish bro gravelly slightly s dark brown stainin subrounded fine to (MADE GROUN	andy silty CLA ng. Gravel com o coarse brick a	AY with occasion prises subangula	nal ar to ents				
	7.60	×0 	- 1.40	Yellowish brown coarse SAND. Gr fin to coarse flint. (KEMPTON PAF	avel is subangu	ılar to subrounde		1.30	B6		
		· · · · · · · · · · · · · · · · · · ·	- - (0.60) -	(REMPTON PAP	K GRAVEL I	VIENIBER)	-	1.60	B7		
			2.00 - - - (0.60)	Yellowish brown to coarse flint GR (KEMPTON PAF	AVĚL. Sand i	s fine to coarse.	-	2.30	B8		
	6.40		2.60	End of Trial Pit			-				
1. 2. 3. 4. rer	Ø50mm sl noved after	vas cloudy y and unst sions: 2.50 ottled star testing.	able.)m x 0.35m ndpipe was	1x 2.60m deep. installed to 2.60m o ngle between 2.60m	-		-	-			n and 1.20m depth. Pipe sting.

Warple Mews, 8 Warple Way London W13 0RF Telephone: 020 88112880_Fax: 020 88112881 E-mail: si@conceptconsultants.co.uk

Trial Pit No

STP2

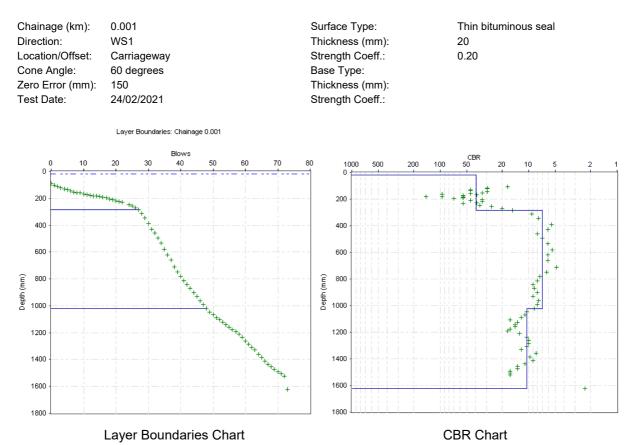
ob N	lo 20/3521		Started Comple	25/02/21 eted 02/03/21		Level (mOD) 3.66		Ordinates		70888.10	Final Depth 2.50m
Client Richmond & Wandsworth Council						Met	hod/		2.50m Sheet 1 of 1		
STRATA									LES & T		
walci	Level (mOD)	egend	Depth (Thickness)		tata Descript	tion		Depth	Type	Test Result	Field Records
	8.56	<u>1</u>	0.10	Brown sandy silt (TOPSOIL)	y CLAY with	frequent rootlet	s.	0.00		Result	Asphalt encounted on the Eastern side of the pit between
	8.36		(0.20) 0.30	Dark brown and of frequent rootlets Gravel comprises coarse flint, brick fine to coarse.	and slight hyd angular to su	frocarbon odour brounded fine to	D	0.10 0.10	ES1 B2		GL and 0.10m VOC 1.5ppm
	8.06		(0.30) 0.60	(MADE GROUN 0.20 becoming Dark grey slightl SAND with frequ Gravel comprises	g orangish bro y gravelly san lent orange an s angular to ro	ndy silty fine to and black staining	g. [0.40	ES3 B4		VOC 2ppm
			(0.40)	flint and brick fra (MADE GROUN Orangish brown of occasional roots, subrounded fine to ceramic pipe frag (MADE GROUN	(D) Clayey sandy (Gravel compr to coarse flint gments. Sand i	rises subangular , brick, glass and	d b	0.70 0.70 0.70	ES5 B6		VOC 0.8ppm 2No Ø150-200mm clay pipes infilled with clay and roots encountered running diagonally at 0.70m depth
		× · · · · · · · · · · · · · · · · · · ·	(0.80)	Firm, orangish br gravelly sandy cl rounded fine to c (ALLUVIUM)	ayey SILT. G	ravel is subangu	ilar to	- 1.20	B7		
		× · · · · · · · · · · · · · · · · · · ·	<u> </u>	Brownish orange to coarse flint GF (KEMPTON PA	RAVÉL. Sand	is fine to coarse	fine e.	- 2.00	В8		Pit collapsing at 1.80m depth
		0 0 0 0. 0 0 0 0	2.50	End of Trial Pit			-	2.50	В9		
1. 2. 3. 4. ren	Ø50mm slot moved after to	s cloudy. and unsta ons: 2.50 tled stan esting.	able. m x 0.35m dpipe was	1 x 2.50m deep. installed to 2.50m ngle between 2.50m	-		-				n and 1.40m depth. Pipe ting.

C 0 Warple Mews, 8 Warple Way London W13 0RF Telephone: 020 88112880_Fax: 020 88112881 E-mail: si@conceptconsultants.co.uk

Trial Pit No

STP3

	20/3521		e Started e Comple	25/02/21 eted 03/03/21	Ground Level (mOD) 8.93		Ordinates E 515700.	13 N 1	70858.01	Final Depth 2.70m
Client Method Richmond & Wandsworth Council Plant Us							thod/ nt Used Machine Excavated			Sheet 1 of 1
	1			ST	RATA		SAMPL	ES & T	TESTS	•
waler	Level (mOD)	Legend	Depth (Thickness)	S	ata Description		Depth	Type No	Test Result	Field Records
			(0.50)	silty gravelly fine fragments (<2mm	over dark brown and dark gre to coarse SAND with rare sh). Gravel comprises angular t o coarse flint, brick, glass and s. D)	iell o	0.20 0.20	ES1 B2		VOC 0.6ppm
	8.43		0.50	sandy silty CLAY	brown slightly gravelly sligh with occasional pockets of b ind (<40mm). Gravel comprise nded fine to coarse flint and b D)	brown ses	0.50 0.50	ES3 B4		VOC 0.5ppm
	7.93	× · · · ·	- 1.00	Yellowish brown coarse SAND. Gu to coarse flint.	slightly gravelly silty fine to avel is angular to subrounded	fine	- 1.00-1.10 1.00-1.10	ES5 B6		VOC 0.6ppm
		×	. (1.20)	1.50 with occa clayey silt (<300	sional pockets of light grey sa nm)	- andy - -	1.50	Β7		
	6.73	· · · · · · · · · · · · · · · · · · ·	- 2.20		slightly silty and gravelly	- - -	-2.00	B8		
			(0.50)	fine to coarse flir	RAVEL. Sand is fine to c RK GRAVEL MEMBER)	oarse	2.50	В9		
	6.23		2.70	End of Trial Pit						
1. 2. 3. 4. sai	Ø50mm s nd arisings	was cloudy y and unst sions: 2.30 lottled star from 1.20	able. m x 0.35m ndpipe was m to 0.80m	depth. Pipe remov	depth to facilitate infiltration ed after testing. 1 and 1.20m depth and soil ar	-				


11. DYNAMIC CONE PENETROMETER (DCP) RESULTS

Penetration Data Report

Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

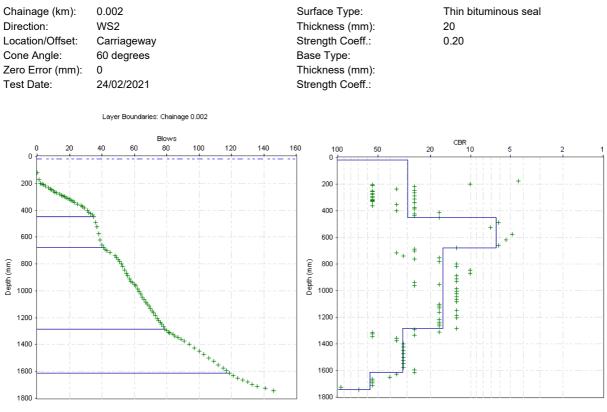
Chainage (km): 0.001 Direction: WS1 Location/Offset: Carriageway Cone Angle: 60 degrees Zero Error (mm): 150 Test Date: 24/02/2021						Surface Type: Thin bituminous seal Thickness (mm): 20 Strength Coeff.: 0.20 Base Type: Thickness (mm): Strength Coeff.: Strength Coeff.:						
No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate	No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate			
				(mm/blow)					(mm/blow)			
1	0	0	240	0.00	26	1	26	419	13.00			
2	1	1	255	15.00	27	1	27	436	17.00			
3	1	2	264	9.00	28	1	28	463	27.00			
4	1	3	273	9.00	29	1	29	495	32.00			
5	1	4	279	6.00	30	1	30	539	44.00			
6	1	5	285	6.00	31	1	31	579	40.00			
7	1	6	294	9.00	32	1	32	610	31.00			
8	1	7	302	8.00	33	1	33	645	35.00			
9	1	8	308	6.00	34	1	34	685	40.00			
10	1	9	311	3.00	35	1	35	730	45.00			
11	1	10	318	7.00	36	1	36	770	40.00			
12	1	11	323	5.00	37	1	37	810	40.00			
13	1	12	328	5.00	38	0	37	20				
14	1	13	330	2.00	39	1	38	70	50.00			
15	1	14	333	3.00	40	1	39	109	39.00			
16	1	15	338	5.00	41	1	40	142	33.00			
17	1	16	343	5.00	42	1	41	173	31.00			
18	1	17	347	4.00	43	1	42	201	28.00			
19	1	18	355	8.00	44	1	43	230	29.00			
20	1	19	361	6.00	44	1	43	250	31.00			
20	1	20	369	8.00	46	1	44	289	28.00			
21	1	20	376	7.00	40	1	45	321	32.00			
22	1	21	381	5.00	47	1	40	352	31.00			
23	2	22	396	7.50	40	1	47	381				
24	1	24	406		49 50	1	40	405	29.00			
				10.00	50	1	49	405	24.00			
51	1	50	428	23.00	_							
52	1	51	449	21.00	_							
53	1	52	465	16.00	_							
54	1	53	484	19.00	_							
55	1	54	502	18.00	_							
56	1	55	520	18.00	_							
57	1	56	536	16.00	_							
58	1	57	551	15.00	_							
59	1	58	571	20.00	_							
60	1	59	595	24.00	_							
61	1	60	620	25.00	_							
62	1	61	645	25.00								
63	1	62	669	24.00								
64	1	63	690	21.00								
65	1	64	720	30.00								
66	1	65	746	26.00								
67	1	66	774	28.00								
68	1	67	797	23.00								
69	1	68	816	19.00								
70	1	69	835	19.00								
71	1	70	851	16.00								
72	1	71	867	16.00								
73	1	72	883	16.00								
		73	983	100.00		1	1		1			

Point 38 Extension Rod Added

Layer Properties

,	•			
No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	6.92	39	266	286
2	35.00	7	735	1021
3	24.08	10	602	1623

CBR Relationship:


TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

Penetration Data Report

Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

Chainage (km):0.002Direction:WS2Location/Offset:CarriagewayCone Angle:60 degreesZero Error (mm):0Test Date:24/02/2021						Surface Type:Thin bituminous sealThickness (mm):20Strength Coeff.:0.20Base Type:Thickness (mm):Strength Coeff.:Strength Coeff.:						
No.	Blows	Cumulative	Penetration	Penetration	No.	Blows	Cumulative	Penetration	Penetration			
		Blows	Depth (mm)	Rate			Blows	Depth (mm)	Rate			
				(mm/blow)					(mm/blow)			
1	0	0	120	0.00	26	1	29	385	10.00			
2	1	1	175	55.00	27	2	31	400	7.50			
3	1	2	200	25.00	28	1	32	415	15.00			
4	1	3	205	5.00	29	1	33	425	10.00			
5	1	4	210	5.00	30	1	34	435	10.00			
6	1	5	220	10.00	31	1	35	450	15.00			
7	2	7	235	7.50	32	1	36	490	40.00			
8	1	8	245	10.00	33	1	37	525	35.00			
9	1	9	250	5.00	34	1	38	575	50.00			
10	1	10	255	5.00	35	1	39	620	45.00			
11	1	11	265	10.00	36	1	40	660	40.00			
12	1	12	270	5.00	37	1	41	680	20.00			
13	2	14	280	5.00	38	1	42	690	10.00			
14	1	15	290	10.00	39	1	43	700	10.00			
15	1	16	295	5.00	40	2	45	715	7.50			
16	1	17	300	5.00	41	3	48	740	8.33			
17	1	18	310	10.00	42	1	49	755	15.00			
18	1	19	315	5.00	43	1	50	765	10.00			
19	1	20	320	5.00	44	1	51	780	15.00			
20	1	21	325	5.00	45	1	52	800	20.00			
21	1	22	330	5.00	46	1	53	820	20.00			
22	1	23	340	10.00	47	1	54	845	25.00			
23	2	25	355	7.50	48	1	55	870	25.00			
24	2	27	365	5.00	49	0	55	65				
25	1	28	375	10.00	50	1	56	85	20.00			
51	1	57	105	20.00	76	1	82	510	5.00			
52	1	58	125	20.00	77	2	84	520	5.00			
53	1	59	135	10.00	78	1	85	530	10.00			
54	1	60	150	15.00	79	2	87	540	5.00			
55	1	61	160	10.00	80	2	89	555	7.50			
56	1	62	180	20.00	81	2	91	570	7.50			
57	1	63	200	20.00	82	3	94	595	8.33			
58	1	64	220	20.00	83	3	97	620	8.33			
59	1	65	240	20.00	84	3	100	645	8.33			
60	1	66	260	20.00	85	3	103	670	8.33			
61	1	67	280	20.00	86	3	106	695	8.33			
62	1	68	295	15.00	87	3	109	720	8.33			
63	1	69	310	15.00	88	3	112	745	8.33			
64	1	70	325	15.00	89	3	115	770	8.33			
65	1	71	345	20.00	90	2	117	790	10.00			
66	1	72	360	15.00	91	2	119	810	10.00			
67	1	73	380	20.00	92	2	121	825	7.50			
68	1	74	400	20.00	93	3	124	845	6.67			
69	1	75	415	15.00	94	3	127	860	5.00			
70	1	76	430	15.00	95	3	130	875	5.00			
71	1	77	445	15.00	96	3	133	890	5.00			
72	1	78	460	15.00	97	3	136	905	5.00			
73	1	79	480	20.00	98	5	141	920	3.00			
74	1	80	490	10.00	99	5	146	940	4.00			
75	1	81	505	15.00				1				

Point 49 Extension Rod Added

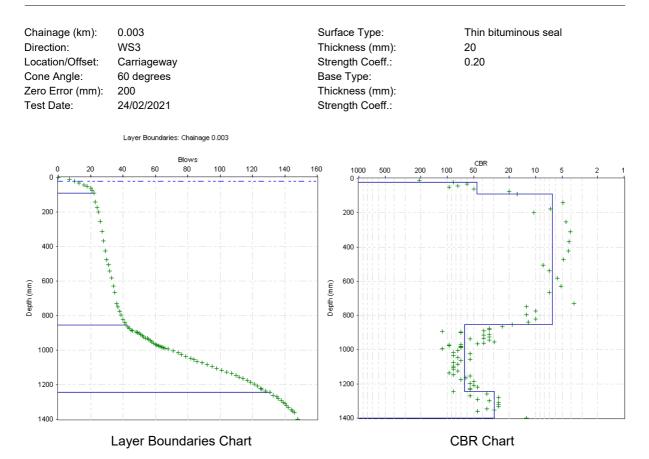
Layer Boundaries Chart

CBR Chart

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	8.95	30	430	450
2	38.33	6	230	680
3	15.92	16	605	1285
4	8.25	32	330	1615
5	4.81	57	130	1745

CBR Relationship:


TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

Penetration Data Report

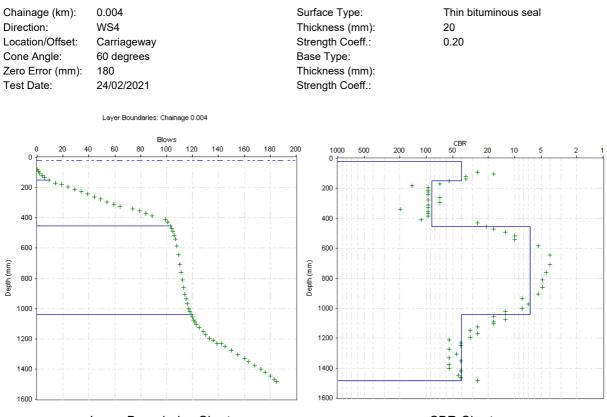
Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

Chainage (km):0.003Direction:WS3Location/Offset:CarriagewayCone Angle:60 degreesZero Error (mm):200Test Date:24/02/2021			Surface Type:Thin bituminous sealThickness (mm):20Strength Coeff.:0.20Base Type:Thickness (mm):Thickness (mm):						
No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate	No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate
				(mm/blow)					(mm/blow)
1	0	0	200	0.00	26	1	38	130	25.00
2	7	7	210	1.43	27	1	39	150	20.00
3	3	10	220	3.33	28	1	40	175	25.00
4	3	13	234	4.67	29	1	41	196	21.00
5	3	16	245	3.67	30	1	42	210	14.00
6	2	18	251	3.00	31	1	43	221	11.00
7	2	20	262	5.50	32	1	44	229	8.00
8	1	21	275	13.00	33	1	45	237	8.00
9	1	22	291	16.00	34	1	46	244	7.00
10	1	23	340	49.00	35	2	48	249	2.50
11	1	24	376	36.00	36	1	49	253	4.00
12	1	25	400	24.00	37	1	50	257	4.00
13	1	26	453	53.00	38	1	51	265	8.00
14	1	27	512	59.00	39	1	52	272	7.00
15	1	28	569	57.00	40	1	53	280	8.00
16 17	1	29 30	625 675	56.00 50.00	41	1	54 55	287	7.00
17	1	30	705	30.00	42	1	55	292	5.00
19	1	32	740	35.00	43	1	57	300	8.00
20	1	33	783	43.00	44	1	58	309	9.00
20	1	34	830	47.00	46	1	59	316	7.00
22	1	35	865	35.00	47	1	60	322	6.00
23	0	35	20		48	1	61	326	4.00
24	1	36	85	65.00	49	1	62	329	3.00
25	1	37	105	20.00	50	1	63	332	3.00
51	1	64	336	4.00	76	2	125	575	6.00
52	1	65	340	4.00	77	1	126	580	5.00
53	1	66	344	4.00	78	2	128	590	5.00
54	2	68	349	2.50	79	3	131	600	3.33
55	3	71	360	3.67	80	2	133	615	7.50
56	3	74	370	3.33	81	2	135	625	5.00
57	2	76	380	5.00	82	1	136	635	10.00
58	3	79	390	3.33	83	2	138	647	6.00
59	3	82	401	3.67	84	1	139	655	8.00
60	2	84	411	5.00	85	1	140	665	10.00
61	2	86	419	4.00	86	1	141	675	10.00
62	3	89	429	3.33	87	1	142	685	10.00
63	3	92	440	3.67	88	2	144	700	7.50
64	3	95	450	3.33	89	1	145	709	9.00
65	3	98	460	3.33	90	1	146	715	6.00
66	3	101	470	3.33	91	2	148	755	20.00
67	3	104	481	3.67	_				
68	3	107	490	3.00	_				
69	3	110	500	3.33	_				
70	2	112	510	5.00					
71	2	114	519	4.50					
72	3	117	531	4.00	-				
73 74	2	119 121	542 552	5.50 5.00	_				
		1.7.1	1 bb'/	6 00			1		

Remarks: Start at 260mm Point 23 Extension Rod Added

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	5.92	46	71	91
2	38.20	6	764	855
3	4.38	63	390	1245
4	9.12	29	155	1400


CBR Relationship:

TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

Penetration Data Report

Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

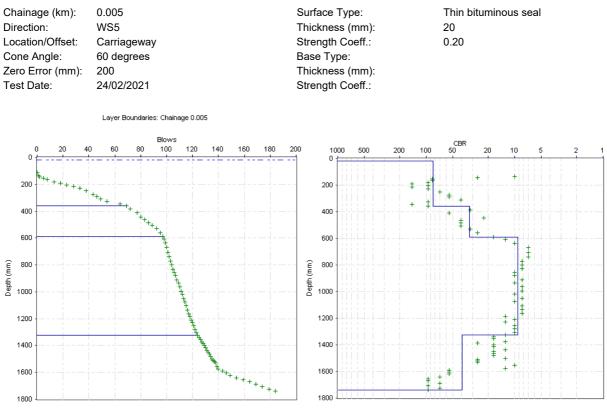
Directic Locatio Cone A Zero Ei Test Da	n/Offset: angle: rror (mm): ate:	24/02/2021			Thickne Strengt Base T Thickne Strengt	ess (mm): h Coeff.:		Thin bituminous 20 0.20	
No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate	No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate
				(mm/blow)					(mm/blow)
1	0	0	260	0.00	26	1	105	670	20.00
2	1	1	270	10.00	27	1	106	695	25.00
3	1	2	285	15.00	28	1	107	720	25.00
4	2	4	300	7.50	29	1	108	765	45.00
5	2	6	315	7.50	30	1	109	825	60.00
6	3	9	330	5.00	31	0	109	30	
7	5	14	350	4.00	32	1	110	90	60.00
8	5	19	360	2.00	33	1	111	145	55.00
9	5	24	375	3.00	34	1	112	195	50.00
10	5	29	390	3.00	35	1	113	245	50.00
11	5	34	405	3.00	36	1	114	290	45.00
12	5	39	420	3.00	37	1	115	320	30.00
13	5	44	440	4.00	38	1	116	355	35.00
14	5	49	455	3.00	39	1	117	385	30.00
15	5	54	475	4.00	40	1	118	405	20.00
16	5	59	490	3.00	41	1	119	425	20.00
17	5	64	505	3.00	42	1	120	440	15.00
18	10	74	520	1.50	43	1	121	460	20.00
19	5	79	535	3.00	44	1	122	475	15.00
20	5	84	550	3.00	45	1	123	490	15.00
21	5	89	565	3.00	46	2	125	510	10.00
22	10	99	590	2.50	47	3	128	535	8.33
23	2	101	610	10.00	48	2	130	555	10.00
24	2	103	635	12.50	49	3	133	580	8.33
25	1	104	650	15.00	50	3	136	595	5.00
51	3	139	615	6.67					0.00
52	3	142	615	0.00	-				
53	3	145	635	6.67	_				
54	5	150	660	5.00	_				
55	5	155	690	6.00	-				
56	5	160	715	5.00	_				
57	3	163	735	6.67	-				
58	5	168	760	5.00				+	
59	5	173	785	5.00					
60	3	176	805	6.67					
61	4	180	830	6.25	-			-	
62	3	183	850	6.67	-				
63	2	185	870	10.00	-				
00	2	100	010	10.00	_				
					-				
		1			-			+	
					-				
			+	+	-				
				+	-				
				+					
					_				

Layer Boundaries Chart

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	6.82	40	130	150
2	3.24	87	305	455
3	36.56	7	585	1040
4	6.74	40	445	1485

CBR Relationship:


TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

Penetration Data Report

Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

Chainage (km): 0.005 Direction: WS5 Location/Offset: Carriageway Cone Angle: 60 degrees Zero Error (mm): 200 Test Date: 24/02/2021			Surface Type: Thin bituminous seal Thickness (mm): 20 Strength Coeff.: 0.20 Base Type: Thickness (mm): Strength Coeff.: Strength Coeff.:						
No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate	No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate
				(mm/blow)					(mm/blow)
1	0	0	310	0.00	26	2	97	790	15.00
2	1	1	335	25.00	27	1	98	810	20.00
3	1	2	345	10.00	28	1	99	835	25.00
4	3	5	355	3.33	29	1	100	870	35.00
5	3	8	365	3.33	30	0	100	65	
6	5	13	380	3.00	31	1	101	100	35.00
7	5	18	390	2.00	32	1	102	135	35.00
8	5	23	405	3.00	33	1	103	165	30.00
9	5	28	415	2.00	34	1	104	195	30.00
10	5	33	430	3.00	35	1	105	225	30.00
11	5	38	450	4.00	36	1	106	250	25.00
12	5	43	475	5.00	37	1	107	275	25.00
13	3	46	490	5.00	38	1	108	305	30.00
14	3	49	510	6.67	39	1	109	330	25.00
15	5	54	525	3.00	40	1	110	360	30.00
16	10	64	545	2.00	41	1	111	390	30.00
17	5	69	560	3.00	42	1	112	415	25.00
18	3	72	585	8.33	43	1	112	445	30.00
19	5	77	610	5.00	44	1	114	470	25.00
20	3	80	645	11.67	45	1	115	500	30.00
21	3	83	665	6.67	46	1	116	530	30.00
22	3	86	685	6.67	47	1	117	560	30.00
23	3	89	705	6.67	48	1	118	580	20.00
24	3	92	730	8.33	49	1	119	605	25.00
25	3	95	760	10.00	50	1	120	625	20.00
51	1	121	650	25.00	76	5	164	1065	3.00
52	1	121	675	25.00	70	5	169	1085	4.00
53	1	122	700	25.00	78	5	174	1100	3.00
53	1	123	720	20.00	78	5	174	1120	4.00
55	1	124	735	15.00	80	5	184	1135	3.00
56	1	125	750	15.00	- 00	5	104	1135	3.00
			750		-				
57 58	1	127 128	770	20.00	-				
58 59	1	128	780	15.00	_		+		
60	1	129	810	15.00	-		+		
61	1	130	810	20.00	-		+		
62	1	131	830	15.00	-		+		
63	1	132	860	15.00	-		+		
64	1	133	860 875	15.00	_				
65	1	134	895	20.00	-		+		
	1		905		-		+		
66		136 137		10.00	_				
67 68	1	137	915		_				
	1	138	925 950	10.00 25.00	_				
69					_				
70	1	140	970	20.00	_				
71	3	143	985	5.00	_				
72	3	146	1000	5.00	_				
73	3	149	1015	5.00	_				
74	5	154	1035	4.00					

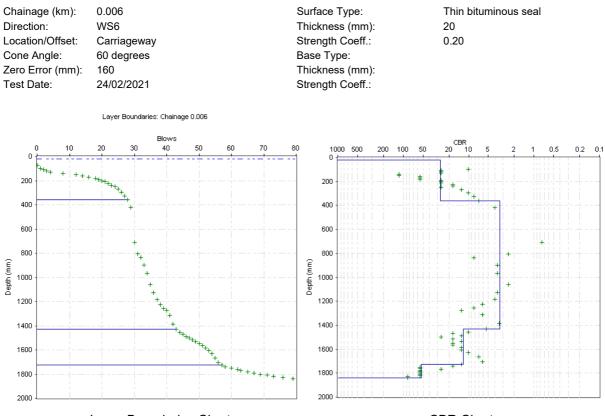
Remarks: Start at 220mm Point 30 Extension Rod Added

Layer Boundaries Chart

CBR Chart

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	3.37	84	340	360
2	8.21	33	230	590
3	27.22	9	735	1325
4	6.92	39	415	1740


CBR Relationship:

TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

Penetration Data Report

Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

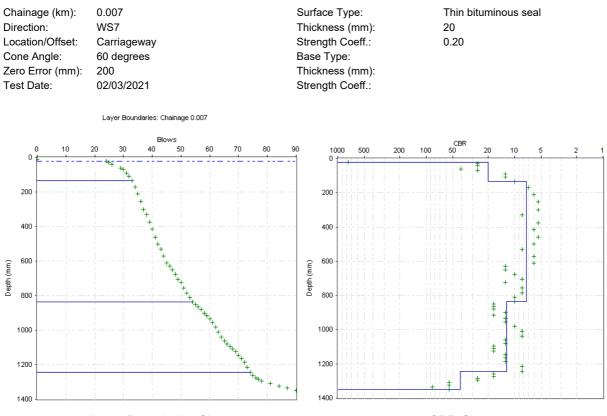
Chainage (km): 0.006 Direction: WS6 Location/Offset: Carriageway Cone Angle: 60 degrees Zero Error (mm): 160 Test Date: 24/02/2021 No. Blauxe			Surface Type: Thin bituminous seal Thickness (mm): 20 Strength Coeff.: 0.20 Base Type: Thickness (mm): Strength Coeff.: Strength Coeff.:						
No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate	No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate
				(mm/blow)					(mm/blow)
1	0	0	235	0.00	26	1	33	275	65.00
2	1	1	260	25.00	27	1	34	340	65.00
3	1	2	270	10.00	28	1	35	435	95.00
4	1	3	280	10.00	29	1	36	500	65.00
5	1	4	290	10.00	30	1	37	560	60.00
6	4	8	300	2.50	31	1	38	600	40.00
7	4	12	310	2.50	32	1	39	630	30.00
8	2	14	320	5.00	33	1	40	650	20.00
9	2	16	330	5.00	34	1	41	690	40.00
10	2	18	340	5.00	35	1	42	760	70.00
11	1	19	350	10.00	36	1	43	805	45.00
12	1	20	360	10.00	37	1	44	830	25.00
13	1	21	370	10.00	38	1	45	845	15.00
14	1	22	385	15.00	39	1	46	865	20.00
15	1	23	400	15.00	40	1	47	875	10.00
16	1	24	410	10.00	41	1	48	890	15.00
17	1	25	430	20.00	42	1	49	910	20.00
18	1	26	455	25.00	43	1	50	925	15.00
19	1	27	485	30.00	44	1	51	940	15.00
20	1	28	520	35.00	45	1	52	960	20.00
21	1	29	580	60.00	46	1	53	980	20.00
22	1	30	870	290.00	47	1	54	1005	25.00
23	0	30	85		48	1	55	1040	35.00
24	1	31	180	95.00	49	1	56	1080	40.00
25	1	32	210	30.00	50	1	57	1100	20.00
51	1	58	1115	15.00					
52	2	60	1125	5.00					
53	2	62	1135	5.00					
54	1	63	1145	10.00					
55	2	65	1155	5.00					
56	2	67	1165	5.00					
57	2	69	1175	5.00					
58	2	71	1185	5.00					
59	2	73	1195	5.00					
60	3	76	1205	3.33					
61	3	79	1215	3.33					

Layer Boundaries Chart

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	9.74	27	340	360
2	71.33	3	1070	1430
3	21.07	12	295	1725
4	5.23	53	115	1840

CBR Relationship:


TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

Penetration Data Report

Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

Directio Locatio Cone A Zero E Fest D	on/Offset: Angle: rror (mm):	0.007 WS7 Carriagewa 60 degrees 200 02/03/2021			Strengt Base T Thickne Strengt	ess (mm): h Coeff.:		Thin bituminous 20 0.20	seal
No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate	No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate
				(mm/blow)					(mm/blow)
1	0	0	210	0.00	26	1	49	110	30.00
2	24	24	220	0.42	27	1	50	130	20.00
3	1	25	230	10.00	28	1	51	160	30.00
4	1	26	240	10.00	29	1	52	190	30.00
5 6	3	29 30	260 270	6.67 10.00	30 31	1	53 54	215 240	25.00 25.00
7	1	30	270	20.00	31	1	54	240	25.00
8	1	32	310	20.00	33	1	56	270	15.00
9	1	33	335	25.00	34	1	57	285	15.00
10	1	34	370	35.00	35	1	58	305	20.00
11	1	35	410	40.00	36	1	59	320	15.00
12	1	36	455	45.00	37	1	60	340	20.00
13	1	37	500	45.00	38	1	61	360	20.00
14	1	38	530	30.00	39	1	62	385	25.00
15	1	39	575	45.00	40	1	63	415	30.00
16	1	40	615	40.00	41	1	64	445	30.00
17	1	41	660	45.00	42	1	65	465	20.00
18	1	42	700	40.00	43	1	66	485	20.00
19	1	43	730	30.00	44	1	67	500	15.00
20	1	44	770	40.00	45	1	68	515	15.00
21	1	45	810	40.00	46	1	69	530	15.00
22	0	45	15		47	1	70	550	20.00
23	1	46	35	20.00	48	1	71	570	20.00
24	1	47	55	20.00	49	1	72	590	20.00
25	1	48	80	25.00	50	1	73	620	30.00
51	1	74	650	30.00					
52	1	75	665	15.00					
53	1	76	680	15.00					
54	1	77	690	10.00					
55	1	78	700	10.00					
56	3	81	715	5.00	_				
57	3	84	730	5.00	_				
58	3	87	740	3.33					
59	3	90	755	5.00	_				
					_				
					_				
					-				
							-		
					-		1		
	-				-				
	1				-				
					-				
					-				
					-		+		
					-		1		
					-				
	-		-					-	

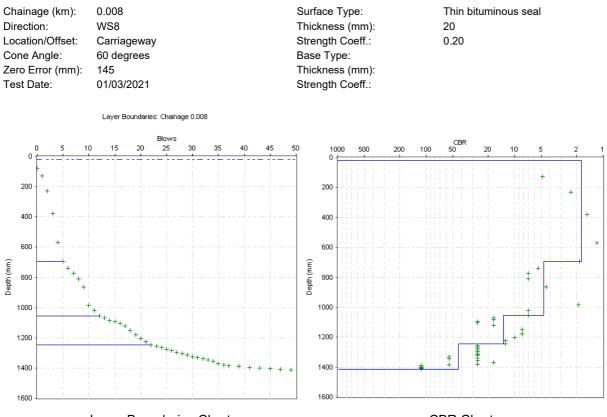
Remarks: Start at 310mm Point 22 Extension Rod Added

Layer Boundaries Chart

CBR Chart

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	13.13	20	115	135
2	33.33	7	700	835
3	20.50	12	410	1245
4	6.56	41	105	1350


CBR Relationship:

TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

Penetration Data Report

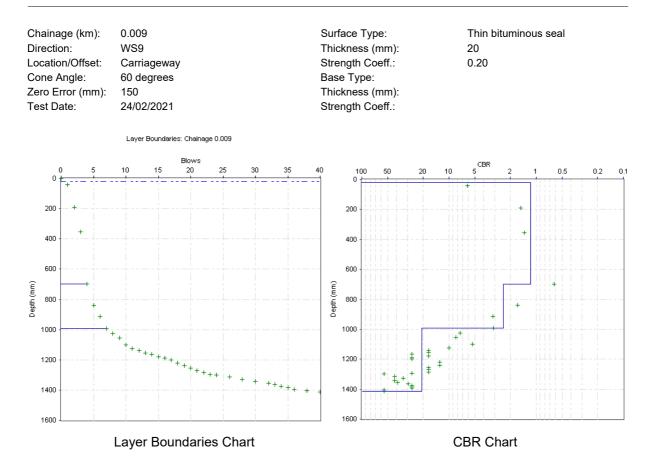
Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

Chaina	ige (km):	0.008			Surface	e Type:		Thin bituminous	seal
Directio	on:	WS8			Thickne	ess (mm):		20	
Locatio	on/Offset:	Carriagewa	V			h Coeff.:		0.20	
Cone A	Angle:	60 degrees			Base T				
	rror (mm):	0				ess (mm):			
Test D	. ,	01/03/2021				h Coeff.:			
						-			
No.	Blows	Cumulative	Penetration	Penetration	No.	Blows	Cumulative	Penetration	Penetration
		Blows	Depth (mm)	Rate			Blows	Depth (mm)	Rate
				(mm/blow)					(mm/blow)
1	0	0	225	0.00	26	1	24	285	10.00
2	1	1	275	50.00	27	1	25	295	10.00
3	1	2	375	100.00	28	1	26	305	10.00
4	1	3	525	150.00	29	1	27	315	10.00
5	1	4	715	190.00	30	1	28	325	10.00
6	1	5	840	125.00	31	1	29	335	10.00
7	1	6	885	45.00	32	1	30	345	10.00
8	1	7	920	35.00	33	1	31	350	5.00
9	1	8	955	35.00	34	1	32	360	10.00
10	1	9	1010	55.00	35	1	33	365	5.00
11	1	10	1130	120.00	36	1	34	375	10.00
12	1	11	1165	35.00	37	1	35	390	15.00
13	0	11	40		38	1	36	400	10.00
14	1	12	75	35.00	39	1	37	405	5.00
15	1	13	90	15.00	40	2	39	410	2.50
16	1	14	105	15.00	41	2	41	415	2.50
17	1	15	115	10.00	42	2	43	420	2.50
18	1	16	125	10.00	43	2	45	425	2.50
19	1	17	140	15.00	44	2	47	430	2.50
20	1	18	170	30.00	45	2	49	435	2.50
21	1	19	200	30.00					
22	1	20	225	25.00					
23	1	21	245	20.00					
24	1	22	265	20.00					
25	1	23	275	10.00					

Layer Boundaries Chart

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	129.35	2	675	695
2	51.43	5	360	1055
3	19.00	13	190	1245
4	6.30	43	170	1415


CBR Relationship:

TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

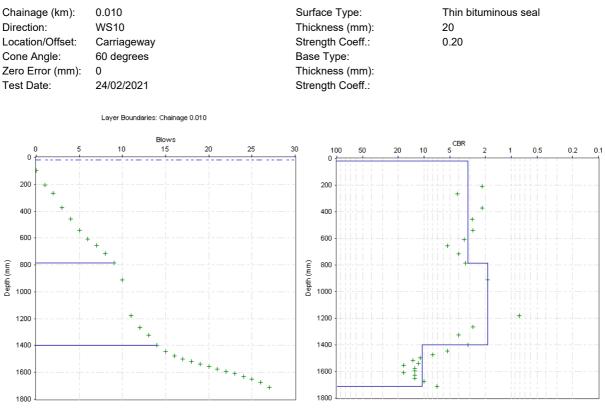
Penetration Data Report

Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

Chainage (km): 0.009		Surface Type:			Thin bituminous seal				
Directi	Direction: WS9		Thickness (mm):		20				
Locatio	Location/Offset: Carriageway		Strength Coeff.: 0.20						
Cone A	Angle.	60 degrees			Base T				
	rror (mm):					ess (mm):			
Test D	• •	24/02/2021				th Coeff.:			
No.	Blows	Cumulative	Penetration	Penetration	No.	Blows	Cumulative	Penetration	Penetration
		Blows	Depth (mm)	Rate			Blows	Depth (mm)	Rate
				(mm/blow)					(mm/blow)
1	0	0	150	0.00	26	1	24	100	5.00
2	1	1	190	40.00	27	2	26	113	6.50
3	1	2	340	150.00	28	2	28	129	8.00
4	1	3	505	165.00	29	2	30	142	6.50
5	1	4	850	345.00	30	2	32	156	7.00
6	1	5	990	140.00	31	1	33	165	9.00
7	1	6	1065	75.00	32	1	34	175	10.00
8	1	7	1142	77.00	33	1	35	185	10.00
9	1	8	1175	33.00	34	1	36	195	10.00
10	1	9	1205	30.00	35	2	38	205	5.00
11	1	10	1250	45.00	36	2	40	215	5.00
12	1	11	1275	25.00					
13	1	12	1290	15.00					
14	1	13	1305	15.00					
15	1	14	1315	10.00					
16	1	15	1330	15.00					
17	1	16	1340	10.00					
18	1	17	1350	10.00					
19	1	18	1370	20.00					
20	1	19	1390	20.00					
21	0	19	40						
22	1	20	55	15.00					
23	1	21	70	15.00					
24	1	22	85	15.00					
25	1	23	95	10.00					

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	194.29	1	680	700
2	97.33	2	292	992
3	12.82	20	423	1415


CBR Relationship:

TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

Penetration Data Report

Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

Chaina		0.010			Surface	Tunoi		Thin hituminour	
	- 3 ()		Surface Type:		Thin bituminous seal				
							20		
	on/Offset:	Carriagewa	У		-	h Coeff.:		0.20	
	Cone Angle: 60 degrees			Base T					
	rror (mm):					ess (mm):			
Test D	ate:	24/02/2021			Streng	h Coeff.:			
No.	Blows	Cumulative	Penetration	Penetration	No.	Blows	Cumulative	Penetration	Penetration
		Blows	Depth (mm)	Rate			Blows	Depth (mm)	Rate
				(mm/blow)					(mm/blow)
1	0	0	100	0.00	26	1	24	830	20.00
2	1	1	207	107.00	27	1	25	850	20.00
3	1	2	265	58.00	28	1	26	875	25.00
4	1	3	372	107.00	29	1	27	910	35.00
5	1	4	456	84.00					
6	1	5	541	85.00					
7	1	6	610	69.00					
8	1	7	655	45.00					
9	1	8	715	60.00					
10	1	9	786	71.00					
11	1	10	910	124.00					
12	0	10	110						
13	1	11	380	270.00					
14	1	12	465	85.00					
15	1	13	525	60.00					
16	1	14	600	75.00					
17	1	15	645	45.00					
18	1	16	676	31.00					
19	1	17	699	23.00					
20	1	18	718	19.00					
21	1	19	740	22.00					
22	1	20	755	15.00					
23	1	21	775	20.00					
24	1	22	795	20.00					
25	1	23	810	15.00					

Layer Boundaries Chart

CBR Chart

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	75.57	3	766	786
2	122.80	2	614	1400
3	23.85	11	310	1710

CBR Relationship:

TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

12. SOAKAWAY TEST RESULTS

Site Name:	Elleray Hall &	& North Lane I	Depot/East (Car Park			
Job No.:	20/3521						
Date:	26/02/2021						
			ay Design				
	BRE Digest 365	5 (September 1991	incl. revisions,	2003, 2007 and 2	016)		
Trial Pit No.:	STP1						
Date Excavated:	25/02/2021						
Date Backfilled:	03/03/2021						
Pit Dimensions:	Length (m) Width (m) Depth (m)	2.50 0.35 2.60					
Level:							
Soil Infiltration Ra	te:	$f = -\frac{1}{a}$	$\frac{V_{p75-25}}{p50} * t_{p75}$	5 - 25			
Effective depth V _p 75-25 a _p 50 t _p 75-25	<u>Test 1</u> 1.81 0.523 6.034 10.90	m m ³ m ² min	<u>Test 2</u> 1.77 0.511 5.920 17.03	m m ³ m ² min	<u>Test 3</u> 1.70 0.491 5.370 19.72	m m ³ m ² min	
Result (<i>f</i>)	1.32E-(04 m/sec	8.45E-	05 m/sec	7.73E-	05 m/sec	
REMARKS:							
Weather:	Cloudy						
Installation Construction:		50mm pipe installed to base of pit, with pipe protruding 0.30m above ground level. D Pit backfield with pea shingle to 1.20m depth					
Notes:	It is assumed the	hat voids in grav	el are 33% of	total volume			

Site Name: Elleray Hall & North Lane Depot/East Car Park

Dry

Job No.: 20/3521

26/02/2021 Test No.: 1 Date:

Standing Water Level (m)

Date	Time	Minutes	Depth to Water	Depth to Water
Date	(h:mm:ss)	winutes	(mbgl)	(mOD)
26/02/2021	0:00:00	0.00	0.79	
26/02/2021	0:00:30	0.50	0.87	
26/02/2021	0:01:00	1.00	0.95	
26/02/2021	0:01:30	1.50	1.03	
26/02/2021	0:02:00	2.00	1.11	
26/02/2021	0:02:30	2.50	1.25	
26/02/2021	0:03:00	3.00	1.39	
26/02/2021	0:03:30	3.50	1.50	
26/02/2021	0:04:00	4.00	1.59	
26/02/2021	0:04:30	4.50	1.67	
26/02/2021	0:05:00	5.00	1.74	
26/02/2021	0:06:00	6.00	1.85	
26/02/2021	0:07:00	7.00	1.94	
26/02/2021	0:09:00	9.00	2.04	
26/02/2021	0:10:00	10.00	2.08	
26/02/2021	0:15:00	15.00	2.18	
26/02/2021	0:20:00	20.00	2.27	
26/02/2021	0:25:00	25.00	2.33	
26/02/2021	0:30:00	30.00	2.38	
26/02/2021	0:35:00	35.00	2.43	
26/02/2021	0:40:00	40.00	2.46	
26/02/2021	0:45:00	45.00	2.48	
26/02/2021	0:50:00	50.00	2.51	
26/02/2021	0:55:00	55.00	2.53	
26/02/2021	1:00:00	60.00	2.55	

REMARKS:

All measurements taken from he top of standpipe at 0.30m above ground level.
 Pit filled with water above top of gravel.

Site Name: Elleray Hall & North Lane Depot/East Car Park

Job No.: 20/3521

Date: 26/02/2021 Test No.: 2

Standing Water Level (m)

Date	Time	Minuteo	Depth to Water	Depth to Water	
Date	(h:mm:ss)	Minutes	(mbgl)	(mOD)	
26/02/2021	0:00:00	0.00	0.83		
26/02/2021	0:00:30	0.50	0.91		
26/02/2021	0:01:00	1.00	0.98		
26/02/2021	0:01:30	1.50	1.04		
26/02/2021	0:02:00	2.00	1.09		
26/02/2021	0:02:30	2.50	1.20		
26/02/2021	0:03:00	3.00	1.31		
26/02/2021	0:03:30	3.50	1.40		
26/02/2021	0:04:00	4.00	1.47		
26/02/2021	0:04:30	4.50	1.54		
26/02/2021	0:05:00	5.00	1.59		
26/02/2021	0:06:00	6.00	1.67		
26/02/2021	0:07:00	7.00	1.74		
26/02/2021	0:09:00	9.00	1.83		
26/02/2021	0:10:00	10.00	1.88		
26/02/2021	0:15:00	15.00	2.07		
26/02/2021	0:20:00	20.00	2.16		
26/02/2021	0:25:00	25.00	2.23		
26/02/2021	0:30:00	30.00	2.29		
26/02/2021	0:35:00	35.00	2.34		
26/02/2021	0:40:00	40.00	2.38		
26/02/2021	0:45:00	45.00	2.42		
26/02/2021	0:50:00	50.00	2.45		
26/02/2021	0:55:00	55.00	2.48		
26/02/2021	1:00:00	60.00	2.50		

REMARKS:

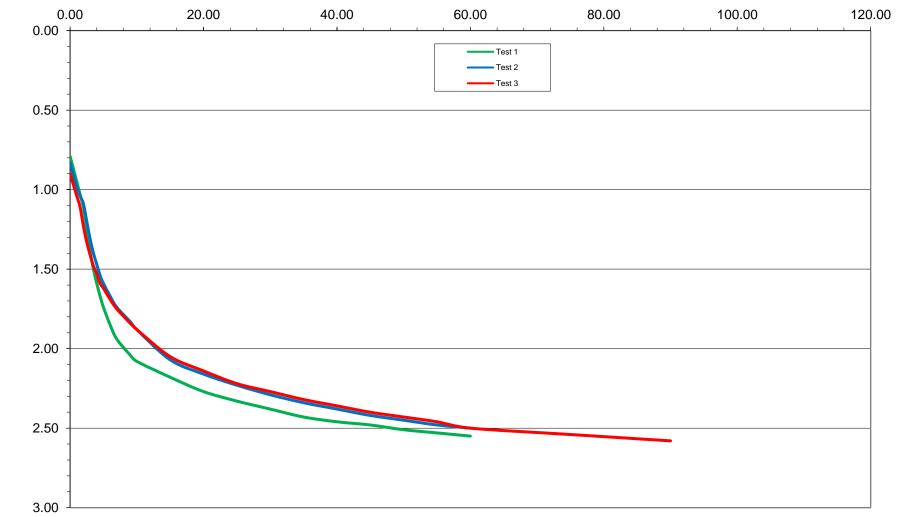
All measurements taken from the top of standpipe at 0.30m above ground level.
 Pit filled with water above top of gravel.

Site Name: Elleray Hall & North Lane Depot/East Car Park

Job No.: 20/3521

Date: 26/02/2021 Test No.: 3

Standing Water Level (m)


Date	Time	Minutes	Depth to Water	Depth to Water	
Date	(h:mm:ss)	winnutes	(mbgl)	(mOD)	
26/02/2021	0:00:00	0.00	0.90		
26/02/2021	0:00:30	0.50	0.97		
26/02/2021	0:01:00	1.00	1.04		
26/02/2021	0:01:30	1.50	1.11		
26/02/2021	0:02:00	2.00	1.23		
26/02/2021	0:02:30	2.50	1.33		
26/02/2021	0:03:00	3.00	1.41		
26/02/2021	0:03:30	3.50	1.48		
26/02/2021	0:04:00	4.00	1.53		
26/02/2021	0:04:30	4.50	1.59		
26/02/2021	0:05:00	5.00	1.62		
26/02/2021	0:06:00	6.00	1.69		
26/02/2021	0:07:00	7.00	1.75		
26/02/2021	0:09:00	9.00	1.84		
26/02/2021	0:10:00	10.00	1.88		
26/02/2021	0:15:00	15.00	2.05		
26/02/2021	0:20:00	20.00	2.14		
26/02/2021	0:25:00	25.00	2.22		
26/02/2021	0:30:00	30.00	2.27		
26/02/2021	0:35:00	35.00	2.32		
26/02/2021	0:40:00	40.00	2.36		
26/02/2021	0:45:00	45.00	2.40		
26/02/2021	0:50:00	50.00	2.43		
26/02/2021	0:55:00	55.00	2.46		
26/02/2021	1:00:00	60.00	2.50		
26/02/2021	1:15:00	75.00	2.54		
26/02/2021	1:30:00	90.00	2.58		

REMARKS:

1) All measurements taken from the top of standpipe at 0.30m above ground level.

STP1 Soakaway

Minutes

Water Level (m)

Site Name:	Elleray Hall & North Lane Depot/East Car Park						
Job No.:	20/3521						
Date:	26/02/2021						
Soakaway Design BRE Digest 365 (September 1991 incl. revisions, 2003, 2007 and 2016)							
Trial Pit No.:	STP2						
Date Excavated:	25/02/2021						
Date Backfilled:	02/03/2021						
Pit Dimensions:	Length (m)2.50Width (m)0.35Depth (m)2.60						
Level:							
Soil Infiltration Ra	te: $f = \frac{V_{p75-25}}{a_{p50} * t_{p75-25}}$						
Effective depth V _p 75-25 a _p 50 t _p 75-25	Test 1 0.83 m 0.240 m^3 4.352 m^2 137.04 min	Test 2 0.62 m 0.179 m^3 3.953 m^2 106.50 min					
Result (<i>f</i>)	6.70E-06 m/sec	7.09E-06 m/sec					
REMARKS:							
Weather:	Cloudy						
Installation Construction:	50mm pipe installed to base of pit, with pipe protruding 0.40m Pit backfield with pea shingle to 1.20m depth	above ground level.					
Notes:	Soakaway did not reach 75% of effective storage depth. Infiltration rate calculated for the fall of water level from 75% t maximium water depth achieved in the test. Gravel assumed volume.						
AGS management	® 💐						

Elleray Hall & North Lane Depot/East Car Park Site Name:

Dry

Job No.: 20/3521

26/02/2021 Test No.: 1 Date:

Standing Water Level (m)

Date	Time	Minutes	Depth to Water	Depth to Water	
Date	(h:mm:ss)	winutes	(mbgl)	(mOD)	
26/02/2021	0:00:00	0.00	1.38		
26/02/2021	0:00:30	0.50	1.39		
26/02/2021	0:01:00	1.00	1.39		
26/02/2021	0:01:30	1.50	1.40		
26/02/2021	0:02:00	2.00	1.41		
26/02/2021	0:02:30	2.50	1.42		
26/02/2021	0:03:00	3.00	1.43		
26/02/2021	0:03:30	3.50	1.43		
26/02/2021	0:04:00	4.00	1.44		
26/02/2021	0:04:30	4.50	1.44		
26/02/2021	0:05:00	5.00	1.45		
26/02/2021	0:06:00	6.00	1.46		
26/02/2021	0:07:00	7.00	1.47		
26/02/2021	0:08:00	8.00	1.48		
26/02/2021	0:09:00	9.00	1.49		
26/02/2021	0:10:00	10.00	1.50		
26/02/2021	0:15:00	15.00	1.53		
26/02/2021	0:20:00	20.00	1.56		
26/02/2021	0:25:00	25.00	1.59		
26/02/2021	0:30:00	30.00	1.61		
26/02/2021	0:40:00	40.00	1.64		
26/02/2021	0:50:00	50.00	1.69		
26/02/2021	1:00:00	60.00	1.72		
26/02/2021	1:15:00	75.00	1.75		
26/02/2021	1:30:00	90.00	1.79		
26/02/2021	1:45:00	105.00	1.85		
26/02/2021	2:00:00	120.00	1.91		
26/02/2021	2:30:00	150.00	2.00		
26/02/2021	3:30:00	210.00	2.11		
26/02/2021	5:10:00	310.00	2.21		

REMARKS:

1) All measurements taken from the top of standpipe at 0.40m above ground level.

2) Water level filled the hole to approximately 0.40m above pea shingle.
3) Test 2 started on the 26/02/2021 and completed on the 01/03/2021. Results recorded by diver. Base of diver at 2.83m below the top of standpipe.

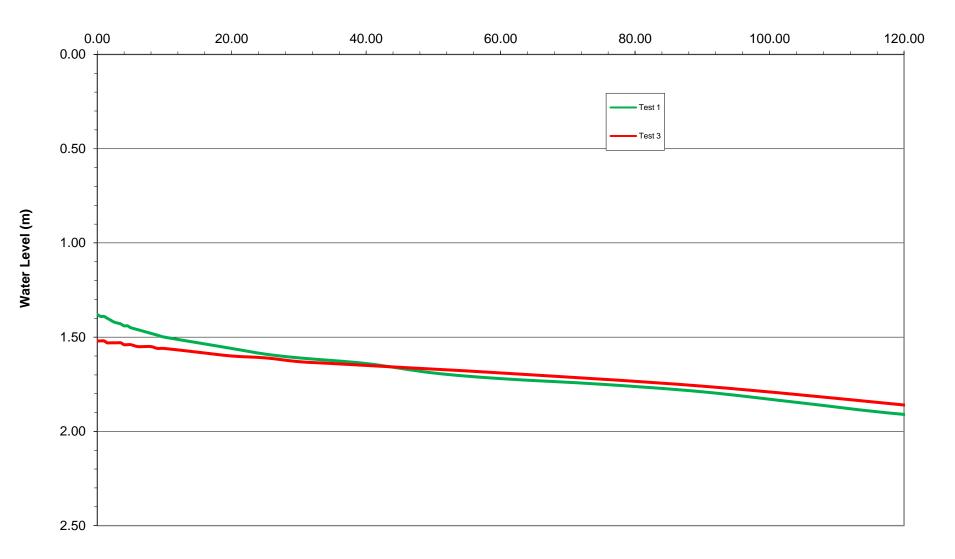
Site Name: Elleray Hall & North Lane Depot/East Car Park

Dry

Job No.: 20/3521

Date: 26/02/2021 Test No.: 3

Standing Water Level (m)


Date	Time (h:mm:ss)	Minutes	Depth to Water	Depth to Water
		winnutes	(mbgl)	(mOD)
26/02/2021	0:00:00	0.00	1.52	, , ,
26/02/2021	0:00:30	0.50	1.52	
26/02/2021	0:01:00	1.00	1.52	
26/02/2021	0:01:30	1.50	1.53	
26/02/2021	0:02:00	2.00	1.53	
26/02/2021	0:02:30	2.50	1.53	
26/02/2021	0:03:00	3.00	1.53	
26/02/2021	0:03:30	3.50	1.53	
26/02/2021	0:04:00	4.00	1.54	
26/02/2021	0:04:30	4.50	1.54	
26/02/2021	0:05:00	5.00	1.54	
26/02/2021	0:06:00	6.00	1.55	
26/02/2021	0:07:00	7.00	1.55	
26/02/2021	0:08:00	8.00	1.55	
26/02/2021	0:09:00	9.00	1.56	
26/02/2021	0:10:00	10.00	1.56	
26/02/2021	0:15:00	15.00	1.58	
26/02/2021	0:20:00	20.00	1.60	
26/02/2021	0:25:00	25.00	1.61	
26/02/2021	0:30:00	30.00	1.63	
26/02/2021	0:35:00	35.00	1.64	
26/02/2021	0:40:00	40.00	1.65	
26/02/2021	0:45:00	45.00	1.66	
26/02/2021	1:00:00	60.00	1.69	
26/02/2021	1:30:00	90.00	1.76	
26/02/2021	2:00:00	120.00	1.86	
26/02/2021	2:30:00	150.00	1.97	
26/02/2021	3:00:00	180.00	2.02	
26/02/2021	3:30:00	210.00	2.07	
26/02/2021	4:00:00	240.00	2.10	
26/02/2021	4:30:00	270.00	2.14	

REMARKS:

1) All measurements taken from the top of standpipe at 0.40m above ground level.

STP2 Soakaway

Minutes

Job No.: 20/3521

Date: 26/02/2021

Soakaway Design

2.30 0.35 2.70

BRE Digest 365 (September 1991 incl. revisions, 2003, 2007 and 2016)

Trial Pit No.:	STP3
Date Excavated:	25/02/2021
Date Backfilled:	03/03/2021
Pit Dimensions:	Length (m) Width (m) Depth (m)

Level:

Soil Infiltration Rate:

f	_	V _{p 75 - 25}
J	_	$a_{p50} * t_{p75-25}$

	<u>Test 1</u>		<u>Test 2</u>		Test 3			
Effective depth	1.44	m	1.47	m	1.16	m		
V _p 75-25	0.383	m ³	0.391	m ³	0.308	m ³		
a _p 50	4.621	m²	4.701	m ²	3.879	m²		
t _p 75-25	25.83	min	31.29	min	15.83	min		
Result (<i>f</i>)	5.34E-	05 m/sec	4.42E-	05 m/sec	8.36E-	05 m/sec		

REMARKS:

Weather:

Cloudy

Installation50mm pipe installed to base of pit, with pipe protruding 0.35m above ground level.Construction:Pit backfield with pea shingle to 1.20m depth

Notes:

Volume of water in the hole reduced by 66% to account for gravel.

Y:\Concept System\2020\203521 - Elleray Hall & North Lane Depot\DRAFT LOGS\IN-SITU TESTING\SOAKAWAY\checked by Form SI018 Dan\Soakaway - STP3

Site Name: Elleray Hall & North Lane Depot/East Car Park

Job No.: 20/3521

Date: 26/02/2021 Test No.: 1

Standing Water Level (m)

Dry

Date	Time	Minutes	Depth to Water	Depth to Water
	(h:mm:ss)	Minutes	(mbgl)	(mOD)
26/02/2021	0:00:00	0.00	1.26	
26/02/2021	0:00:30	0.50	1.32	
26/02/2021	0:01:00	1.00	1.39	
26/02/2021	0:01:30	1.50	1.44	
26/02/2021	0:02:00	2.00	1.48	
26/02/2021	0:02:30	2.50	1.51	
26/02/2021	0:03:00	3.00	1.55	
26/02/2021	0:03:30	3.50	1.58	
26/02/2021	0:04:00	4.00	1.61	
26/02/2021	0:04:30	4.50	1.64	
26/02/2021	0:05:00	5.00	1.67	
26/02/2021	0:05:30	5.50	1.70	
26/02/2021	0:06:00	6.00	1.72	
26/02/2021	0:06:30	6.50	1.75	
26/02/2021	0:07:00	7.00	1.77	
26/02/2021	0:07:30	7.50	1.80	
26/02/2021	0:08:00	8.00	1.82	
26/02/2021	0:08:30	8.50	1.84	
26/02/2021	0:09:00	9.00	1.86	
26/02/2021	0:09:30	9.50	1.88	
26/02/2021	0:10:00	10.00	1.90	
26/02/2021	0:11:00	11.00	1.94	
26/02/2021	0:12:00	12.00	1.98	
26/02/2021	0:13:00	13.00	2.01	
26/02/2021	0:14:00	14.00	2.05	
26/02/2021	0:15:00	15.00	2.08	
26/02/2021	0:16:00	16.00	2.10	
26/02/2021	0:17:00	17.00	2.13	
26/02/2021	0:18:00	18.00	2.15	
26/02/2021	0:19:00	19.00	2.17	
26/02/2021	0:20:00	20.00	2.19	
26/02/2021	0:22:00	22.00	2.23	
26/02/2021	0:24:00	24.00	2.26	
26/02/2021	0:26:00	26.00	2.29	
26/02/2021	0:28:00	28.00	2.32	
26/02/2021	0:30:00	30.00	2.34	
26/02/2021	0:35:00	35.00	2.39	
26/02/2021	0:40:00	40.00	2.43	
26/02/2021	0:45:00	45.00	2.45	
26/02/2021	0:50:00	50.00	2.47	

REMARKS:

1) All measurements taken from the top of standpipe at 0.35m above ground level.

2) Water level filled to the top of pea shingle at approximately 1.20m.

Site Name: Elleray Hall & North Lane Depot/East Car Park

Job No.: 20/3521

Date: 26/02/2021 Test No.: 2

Standing Water Level (m)

Dry

Date	Time	Minutes	Depth to Water	Depth to Water
Duto	(h:mm:ss)	minutes	(mbgl)	(mOD)
26/02/2021	0:00:00	0.00	1.23	
26/02/2021	0:00:30	0.50	1.28	
26/02/2021	0:01:00	1.00	1.34	
26/02/2021	0:01:30	1.50	1.39	
26/02/2021	0:02:00	2.00	1.44	
26/02/2021	0:02:30	2.50	1.47	
26/02/2021	0:03:00	3.00	1.50	
26/02/2021	0:03:30	3.50	1.52	
26/02/2021	0:04:00	4.00	1.55	
26/02/2021	0:04:30	4.50	1.57	
26/02/2021	0:05:00	5.00	1.60	
26/02/2021	0:05:30	5.50	1.62	
26/02/2021	0:06:00	6.00	1.64	
26/02/2021	0:06:30	6.50	1.66	
26/02/2021	0:07:00	7.00	1.68	
26/02/2021	0:07:30	7.50	1.70	
26/02/2021	0:08:00	8.00	1.72	
26/02/2021	0:08:30	8.50	1.75	
26/02/2021	0:09:00	9.00	1.77	
26/02/2021	0:09:30	9.50	1.78	
26/02/2021	0:10:00	10.00	1.80	
26/02/2021	0:11:00	11.00	1.84	
26/02/2021	0:12:00	12.00	1.87	
26/02/2021	0:13:00	13.00	1.90	
26/02/2021	0:14:00	14.00	1.93	
26/02/2021	0:15:00	15.00	1.96	
26/02/2021	0:16:00	16.00	1.96	
26/02/2021	0:17:00	17.00	2.02	
26/02/2021	0:18:00	18.00	2.05	
26/02/2021	0:19:00	19.00	2.07	
26/02/2021	0:20:00	20.00	2.10	
26/02/2021	0:22:00	22.00	2.14	
26/02/2021	0:24:00	24.00	2.13	
26/02/2021	0:24:00	24.00	2.22	
26/02/2021	0:28:00	28.00	2.22	
26/02/2021	0:30:00	30.00	2.24	
26/02/2021	0:35:00	35.00	2.20	
26/02/2021	0:40:00	40.00	2.32	
26/02/2021	0:45:00	40.00	2.37	
			2.40	
26/02/2021	0:50:00	50.00	2.43	

REMARKS:

1) All measurements taken from the top of standpipe at 0.35m above ground level.

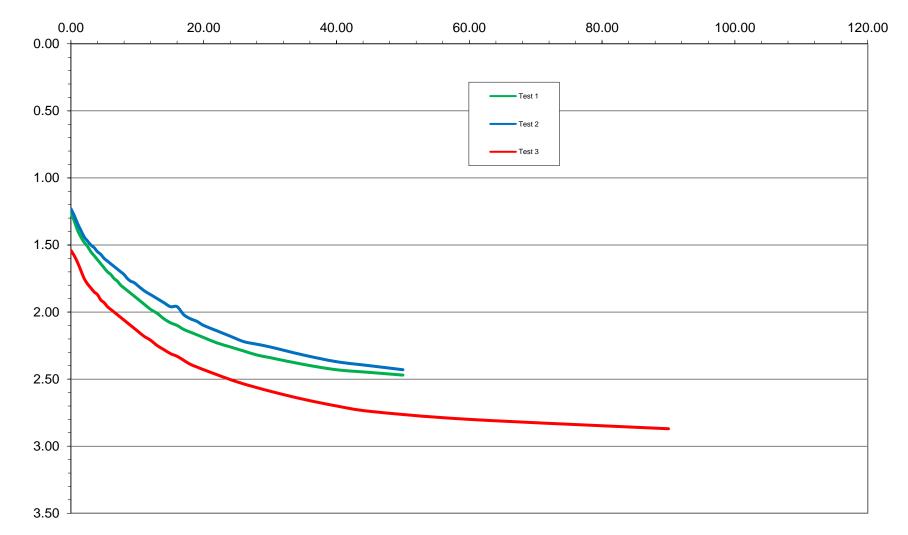
2) Water level filled to the top of pea shingle at approximately 1.20m.

Site Name: Elleray Hall & North Lane Depot/East Car Park

Job No.: 20/3521

Date: 01/03/2021 Test No.: 3

Standing Water Level (m)


Date	Time	Minutes	Depth to Water	Depth to Water
	(h:mm:ss)		(mbgl)	(mOD)
26/02/2021	0:00:00	0.00	1.54	
26/02/2021	0:00:30	0.50	1.58	
26/02/2021	0:01:00	1.00	1.63	
26/02/2021	0:01:30	1.50	1.69	
26/02/2021	0:02:00	2.00	1.75	
26/02/2021	0:02:30	2.50	1.79	
26/02/2021	0:03:00	3.00	1.82	
26/02/2021	0:03:30	3.50	1.85	
26/02/2021	0:04:00	4.00	1.87	
26/02/2021	0:04:30	4.50	1.91	
26/02/2021	0:05:00	5.00	1.93	
26/02/2021	0:05:30	5.50	1.96	
26/02/2021	0:06:00	6.00	1.98	
26/02/2021	0:06:30	6.50	2.00	
26/02/2021	0:07:00	7.00	2.02	
26/02/2021	0:07:30	7.50	2.04	
26/02/2021	0:08:00	8.00	2.06	
26/02/2021	0:08:30	8.50	2.08	
26/02/2021	0:09:00	9.00	2.10	
26/02/2021	0:09:30	9.50	2.12	
26/02/2021	0:10:00	10.00	2.14	
26/02/2021	0:11:00	11.00	2.18	
26/02/2021	0:12:00	12.00	2.21	
26/02/2021	0:13:00	13.00	2.25	
26/02/2021	0:14:00	14.00	2.28	
26/02/2021	0:15:00	15.00	2.31	
26/02/2021	0:16:00	16.00	2.33	
26/02/2021	0:17:00	17.00	2.36	
26/02/2021	0:18:00	18.00	2.39	
26/02/2021	0:19:00	19.00	2.41	
26/02/2021	0:20:00	20.00	2.43	
26/02/2021	0:25:00	25.00	2.52	
26/02/2021	0:30:00	30.00	2.59	
26/02/2021	0:35:00	35.00	2.65	
26/02/2021	0:40:00	40.00	2.70	
26/02/2021	0:45:00	45.00	2.74	
26/02/2021	1:00:00	60.00	2.80	
26/02/2021	1:30:00	90.00	2.87	

REMARKS:

1) All measurements taken from below top of standpipe at 0.35m above ground level.

STP3 Soakaway

Minutes

Water Level (m)

13. INSTRUMENTATION MONITORING RESULTS

Borehole	Depth of Installation (mbgl)	Date of Installation	Туре	Top (mbgl)	Bottom (mbgl)	Date & Time	Water Level (mbgl)	Water Level (mOD)	Remarks
BH1	6.30	26/02/2021	GMP	1.00	6.30	25/02/2021	4.00	4.85	
	6.30	26/02/2021	GMP	1.00	6.30	03/03/2021	4.05	4.80	
	6.30	26/02/2021	GMP	1.00	6.30	10/03/2021 09:35:00	No Access		Car parked
	6.30	26/02/2021	GMP	1.00	6.30	17/03/2021 09:32:00	4.06	4.79	
	6.30	26/02/2021	GMP	1.00	6.30	24/03/2021 10:10:00	No Access		Car parked
	6.30	26/02/2021	GMP	1.00	6.30	09/06/2021 12:27:00	4.15	4.70	
BH2	6.60	24/02/2021	GMP	1.00	6.60	23/02/2021	4.30	4.66	
	6.60	24/02/2021	GMP	1.00	6.60	03/03/2021	4.14	4.82	
	6.60	24/02/2021	GMP	1.00	6.60	10/03/2021 08:30:00	4.15	4.81	
	6.60	24/02/2021	GMP	1.00	6.60	17/03/2021 10:16:00	4.15	4.81	
	6.60	24/02/2021	GMP	1.00	6.60	24/03/2021 10:00:00	4.16	4.80	
	6.60	24/02/2021	GMP	1.00	6.60	09/06/2021 14:32:00	4.24	4.72	
WS1	2.00	26/02/2021	GMP	1.00	2.00	03/03/2021	Dry		
	2.00	26/02/2021	GMP	1.00	2.00	10/03/2021 09:40:00	Dry		
	2.00	26/02/2021	GMP	1.00	2.00	17/03/2021 09:38:00	Dry		
	2.00	26/02/2021	GMP	1.00	2.00	24/03/2021 10:20:00	Dry		
	2.00	26/02/2021	GMP	1.00	2.00	09/06/2021 13:20:00	Dry		
WS2	2.00	25/02/2021	GMP	1.00	2.00	03/03/2021	Dry		
	2.00	25/02/2021	GMP	1.00	2.00	10/03/2021 09:55:00	Dry		
	2.00	25/02/2021	GMP	1.00	2.00	17/03/2021 10:00:00	Dry		
	2.00	25/02/2021	GMP	1.00	2.00	24/03/2021 10:15:00	Dry		
	2.00	25/02/2021	GMP	1.00	2.00	09/06/2021 13:45:00	Dry		
WS6	2.00	25/02/2021	GMP	1.00	2.00	03/03/2021	Dry		
	2.00	25/02/2021	GMP	1.00	2.00	10/03/2021 09:00:00	Dry		
	2.00	25/02/2021	GMP	1.00	2.00	17/03/2021 10:20:00	Dry		
	2.00	25/02/2021	GMP	1.00	2.00	24/03/2021 09:50:00	Dry		
	2.00	25/02/2021	GMP	1.00	2.00	09/06/2021 14:20:00	Dry		
WS10	2.00	24/02/2021	GMP	1.00	2.00	03/03/2021	Dry		
	2.00	24/02/2021	GMP	1.00	2.00	10/03/2021 09:25:00	Dry		
	2.00	24/02/2021	GMP	1.00	2.00	17/03/2021 10:38:00	Dry		
	2.00	24/02/2021	GMP	1.00	2.00	24/03/2021 09:40:00	Dry		
	2.00	24/02/2021	GMP	1.00	2.00	09/06/2021 14:05:00	Dry		

<u>KEY</u> GMP - Gas monitoring point GWMP - Groundwater monitoring point SPIE - Standpipe piezometer EPIE - Electronic Piezometer SP - Standpipe

GROUNDWATER MONITORING

Job No: 20/3521

Project: Elleray Hall & North Lane Depot/East Car Park

Client: Richmond & Wandsworth Council

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	10/03/2021			Job Nur	nber:	20/3521		Time:	08:10			
METEOROLOGI	CAL AND SI	TE INFORM	ATION									
State of ground:	CAL AND SI	Dry	AHON			Moist		Wet				Delete As Required
-						4					1	Ground Level
Wind:		Calm				Light		Moderate			Strong	
Cloud cover:		None				Slight		Cloudy			Overcast	Basement Level
Precipitation		None	•			Slight		Moderate	r		Heavy	
Barometric pressure (mb)) Before:						Temper	ature (°)				
INSTRUMENTAT	TION USED											
		M 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0	% (at 30%)), ±3.0% (at 100	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0.	.2%;		
Gas concentration:		M 436, Accuracy:										Tick Instrument used
BH	BH1	aP After	dn (Pa)	Flow rate	Time	CH ₄ (%)	LEL (%)	$CO_2(\%)$	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(No.)	DIII	(mb)	up (1 a)	(l/h)	(s)	CII4 (70)	LEL (70)	$CO_2(70)$	$O_2(70)$	11 ₂ 5(ppiii)	CO (ppm)	Comments
(1,00)		(1110)		(1/11)	0							No access
					15							
Depth to GW: (m)					30							
					45							
					60							
					75							
					90							
					105							
					120							
					135							
					150							
					PEAK	PID(ppm)						
					15							
					30							
					45							
					60							
					75							
					90							
					105							
					120							

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	10/03/2021			Job Nur	nber:	20/3521		Time:	08:10			
METEOROLOGI		ITE INFODM	ATION									
	CAL AND 5											
State of ground:		X Dry				Moist		Wet			1	Delete As Required
Wind:		Calm				Light	X	Moderate			Strong	Ground Level
Cloud cover:		None				Slight	Х	Cloudy			Overcast	
Precipitation		X None	e			Slight		Moderate	-		Heavy	
Barometric pressure (mb)) Before:	1010					Temper	rature (°)	7		J	
INSTRUMENTAT	ION USED											
		FM 436, Accuracy:	CH4 ±0.3%	$(0 \text{ to } 5\%), \pm 3.0$	% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	$(0 \text{ to } 5\%), \pm 3.0\%$	(at 40%): O2 ±0.	.2%:		
Gas concentration:		FM 436, Accuracy:									Х	Tick Instrument used
BH	BH2	aP After		Flow rate		CH ₄ (%)	LEL (%)	$CO_2(\%)$	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
ын (No.)	DII2	(mb)	up (ra)	(l/h)	(s)	$CH_4(70)$	LEL (70)	$CO_2(70)$	$O_2(70)$	$H_2S(ppin)$	CO (ppm)	Comments
(110.)		1010	0.0	0.0	0	0.0	0.0	0.2	19.2	0.0	0.0	
		1010	0.0	0.0	-							
Depth to GW: (m)	4.15				15	0.0	0.0	0.4	19.9	0.0	0.0	
,					30	0.0	0.0	0.4	19.6	0.0	0.0	
					45	0.0	0.0	0.4	19.5	0.0	0.0	
					60 75	0.0	0.0	0.4	19.5 19.5	0.0	0.0	Constant in the second
					75 90	0.0	0.0	0.4	19.5	0.0	0.0	Constant readings
	-				90 105							
					103							
					135							
					150							
						PID(ppm)						
					PEAK	0.4						
					15	0.3						
					30	0.2						
					45	0.2						
					60	0.1						
			<u> </u>		75	0.1						
			 		90	0.1						
	L		<u> </u>		105							
		 	<u> </u>		120						ļ	
	1	1	1	1								

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	10/03/2021			Job Nur	nber:	20/3521		Time:	09:30			
METEOROLOGI		ITE INFODM	ATION									
	CAL AND 5				V	Matu		XX7				Delete An Description 1
State of ground:		Dry			X	Moist		Wet			1	Delete As Required
Wind:		Calm			Х	Light		Moderate			Strong	Ground Level
Cloud cover:		None				Slight		Cloudy		X	Overcast	
Precipitation		None	e		X	Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1009					Temper	ature (°)	7		J	
INSTRUMENTAT	TON USED											
		FM 436, Accuracy:	CH4 +0 3%	(0 to 5%) + 3.0)% (at 30%) +3.0% (at 10	0%)· CO2 +0 3%	(0 to 5%) + 3.0%	(at 40%): O2 +0	2%		
Gas concentration:		FM 436, Accuracy:			-						Х	Tick Instrument used
DII									-	-		
BH (Na)	WS1	aP After	dp (Pa)	Flow rate (l/h)	Time	CH ₄ (%)	LEL (%)	CO ₂ (%)	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		- ` ´	(s)							
		1009	0.0	0.0	0	0.0	0.0	0.5	18.8	0.0	0.0	
Depth to GW: (m)	Dry				15	0.0	0.0	0.8	18.9	0.0	0.0	
Depin to G (() (m)	21)				30	0.0	0.0	0.9	18.3	0.0	0.0	
					45	0.0	0.0	0.9	18.2	0.0	0.0	
					60	0.0	0.0	0.9	18.2	0.0	0.0	
					75	0.0	0.0	0.9	18.2	0.0	0.0	Constant readings
					90 105							
	ł				105				ł			
					120							
					150							
					100	PID(ppm)						
					PEAK	\• •/						
					15	0.6						
					30	0.5						
					45	0.5						
					60	0.4						
					75	0.4						
			 		90	0.4						
			<u> </u>		105							
			<u> </u>		120							
												l
	1	1	1	1					1	1	1	

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	10/03/2021			Job Nur	nber:	20/3521		Time:	09:45			
METEOROLOGI		TTE INFORM	ATION									
	CAL AND S				r	1	r					
State of ground:		X Dry				Moist		Wet			•	Delete As Required
Wind:		Calm			X	Light		Moderate			Strong	Ground Level
Cloud cover:		X None	•			Slight		Cloudy			Overcast	
Precipitation		None	•		Х	Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:					-	Temper	ature (°)	7		1	
INSTRUMENTAT												
Gas concentration:		FM 436, Accuracy:			-							Tick Instrument used
	#2 Gas Data GF	FM 436, Accuracy:)% (at 30%), ±3.0% (at 100	0%); CO2 ±0.3%	$(0 \text{ to } 5\%), \pm 3.0\%$	(at 40%); O2 ±0.	2%;	Х	
BH (No.)	WS2	aP After (mb)	dp (Pa)	Flow rate (l/h)	Time (s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(100)		1009	0.0	0.0	0	0.0	0.0	0.8	8.5	0.0	0.0	
					15	0.0	0.0	4.5	16.2	0.0	0.0	
Depth to GW: (m)	Dry				30	0.0	0.0	4.6	15.1	0.0	0.0	
		1			45	0.0	0.0	4.7	14.9	0.0	0.0	
					60	0.0	0.0	4.7	14.8	0.0	0.0	
					75	0.0	0.0	4.7	14.8	0.0	0.0	
					90	0.0	0.0	4.7	14.7	0.0	0.0	
					105	0.0	0.0	4.7	14.7	0.0	0.0	
					120	0.0	0.0	4.7	14.7	0.0	0.0	Constant readings
					135							
					150							
						PID(ppm)						
					PEAK	0.4						
					15	0.2						
					30	0.2						
					45	0.2						
			 		60 75	0.2						
		}	+		<u>75</u> 90						 	
			1		105							
		1			105						1	
		1			120						1	
		1	1								1	

aP: Atmospheric Pressure

NR: Not Recorded

METEOROLOGICAL AND SITE INFORMATION State of ground: Dry X Moist Widt Dry X Moist Wet Dete As Required Ground Level Dry X Slight Cloudy X Overcast Precipitation None X Slight Cloudy X Moderate Dete As Required Barometric pressure (mb) Before: 1010 X Slight Cloudy X Slight Cloudy X Moderate Temperature (*) 7 Temperature (*) Temperature (*) Temperature (*) Tech Instrument used MI Gas Data GFM 436, Accuracy: CH4 =0.3% (0 to 5%), ±3.0% (at 100%); CO2 =0.3% (0 to 5%), ±3.0% (at 40%); O2 =0.2%; X Tick Instrument used BH WS6 <t< th=""><th>JOB DETAILS</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	JOB DETAILS												
METEOROLOGICAL AND SITE INFORMATION State of ground: Dry X Moist Wind: Cloud cover: Dry X None Slight Cloudy X Overcast Precipitation None X Slight Cloudy X Overcast Barometric pressure (mb) Before: 1010 X Slight Cloudy X Slight Cloudy X Barometric pressure (mb) Before: 1010 X Slight Cloudy X Slight Cloudy X Slight Cloudy X TOTO X Slight Cloudy X Slight Cloudy X Defet As Required Garometriz pressure (mb) Before: <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Engineer:</td> <td></td> <td></td> <td></td> <td></td> <td></td>								Engineer:					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Date:	10/03/2021			Job Nur	nber:	20/3521		Time:	09:00			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	METEODOLOCI		TE INFORM	ATION									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		CAL AND SI				N	1		XX 7 .				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							1					1 ~	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						X	-					-	Ground Level
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							-		2		X	4	
Marking provided with provide	Precipitation		None	•		X	Slight					Heavy	
Bas Concentration #I Gas Data GFW 436, Accuracy: U4 ±0.3% (0 to 5%), ±3.0% (at 100%); CO2 ±0.3% (0 to 5%), ±3.0% (at 40%); CO2 ±0.2%; Image: Concentration of the second concentrating concentra	Barometric pressure (mb)) Before:	1010					Temper	ature (°)	7			
Bas Concentration #I Gas Data GFW 436, Accuracy: U4 ±0.3% (0 to 5%), ±3.0% (at 100%); CO2 ±0.3% (0 to 5%), ±3.0% (at 40%); CO2 ±0.2%; Image: Concentration of the second concentrating concentra	INSTRUMENTAT	TON USED											
Gas concentration: $\frac{1}{22}$ Gas Data GFM 436, Accuracy: CH4 ±0.3% (0 to 5%), ±3.0% (at 30%), ±3.0% (at 100%); CO2 ±0.3% (0 to 5%), ±3.0% (at 40%); O2 ±0.2%; X Tick Instrument used BH (No.) WS6 aP After (mb) dp (Pa) Flow rate (l/h) Time (s) CH4 (%) LEL (%) CO2 (%) Q_2 (%) H_2 S(ppm) CO (ppm) Comments Depth to GW: (m) Dry Intel instrument used Intel instrument used 0.0 <t< td=""><td></td><td></td><td>M 436 Accuracy:</td><td>CH4 +0 3%</td><td>(0 to 5%) + 3.0</td><td>% (at 30%)</td><td>) +3.0% (at 10</td><td>0%)· CO2 +0 3%</td><td>(0 to 5%) + 3.0%</td><td>(at 40%): O2 +0</td><td>2%:</td><td></td><td></td></t<>			M 436 Accuracy:	CH4 +0 3%	(0 to 5%) + 3.0	% (at 30%)) +3.0% (at 10	0%)· CO2 +0 3%	(0 to 5%) + 3.0%	(at 40%): O2 +0	2%:		
BH (No.) WS6 aP After (mb) dp (Pa) (Mb) Flow rate (Mb) Time (Mb) CH4 (%) (N) LEL (%) CO ₂ (%) H ₂ S(ppm) CO (ppm) Comments 0 1010 0.0 0.0 0 0.0 0.0 0.3 19.2 0.0 0.0 0.0 Depth to GW: (m) Dry I I 15 0.0 0.0 19.9 0.0 0.0 0.0 Depth to GW: (m) Dry I I 15 0.0 0.0 19.9 0.0 0.0 0.0 Image: Imag	Gas concentration:											Х	Tick Instrument used
(No.) (mb) <	DII												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		W86		dp (Pa)			$CH_4(\%)$	LEL (%)	$\operatorname{CO}_2(\%)$	$O_2(\%)$	$H_2S(ppm)$	CO (ppm)	Comments
Depth to GW: (m) Dry Image: Constant set in the set	(110.)			0.0	· /		0.0	0.0	0.2	10.0	0.0	0.0	
Depth to GW: (m) Dry Image: Constant readings			1010	0.0	0.0	v							
Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings Image: Constant readings	Depth to GW: (m)	Dry											
image: constant readings image: co	1 ()	-											
Image: style styl						-							
Image: Mark Stream Stre Stream Stream Str													
Image: Constraint of the second sec													Constant readings
120 120 135 135		ł					0.0	0.0	0.0	19.5	0.0	0.0	Constant readings
135		1											
						-							
						150							
PID(ppm)							PID(ppm)						
PEAK 2.0						PEAK							
15 1.3						15	1.3						
30 1.1													
45 1.0													
60 1.8													
75 1.9				ļ		-							
90 2.0											 	 	
105 2.0				+									
120 2.0						120	2.0						

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	10/03/2021			Job Nur	nber:	20/3521		Time:	09:15			
METEOROLOGI		ITE INFODM	ATION									
	CAL AND 5				V	Matu		XX7.4				Delete An Description 1
State of ground:		Dry			X	Moist		Wet		r	1	Delete As Required
Wind:		Calm			Х	Light		Moderate			Strong	Ground Level
Cloud cover:		None				Slight		Cloudy		Х	Overcast	
Precipitation		None	•		X	Slight		Moderate	-		Heavy	
Barometric pressure (mb)) Before:	1010					Temper	rature (°)	7		J	
INSTRUMENTAT	TION USED											
		FM 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0)% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0.	2%;		
Gas concentration:	#2 Gas Data GI	FM 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0)% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0.	2%;	Х	Tick Instrument used
BH	WS10	aP After	dn (Pa)	Flow rate	Time	CH ₄ (%)	LEL (%)	$CO_2(\%)$	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)	up (1 u)	(l/h)	(s)	0114 (70)		002(70)	02(70)	1120 (pp 111)	ee (ppm)	Comments
		1010	0.0	0.0	0	0.0	0.0	0.0	19.2	0.0	0.0	
	Dere				15	0.0	0.0	0.5	19.3	0.0	0.0	
Depth to GW: (m)	Dry				30	0.0	0.0	0.5	18.6	0.0	0.0	
					45	0.0	0.0	0.5	18.5	0.0	0.0	
					60	0.0	0.0	0.5	18.5	0.0	0.0	
					75	0.0	0.0	0.5	18.4	0.0	0.0	
					90	0.0	0.0	0.5	18.4	0.0	0.0	
					105	0.0	0.0	0.5	18.4	0.0	0.0	Constant readings
					120							
					135							
					150							
					PEAK	PID(ppm)						
					15	0.9 0.9						
					30	0.9						
					45	0.9						
					60	0.9						
		1			75	0.9						
					90	0.9						
			1		105	0.9						
					120	0.9						

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	17/03/2021			Job Nur	nber:	20/3521		Time:	09:25			
METEOROLOGI		TTE INFORM	ATION									
	CAL AND S					1		1				
State of ground:		X Dry				Moist		Wet			-	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		None	•		X	Slight		Cloudy			Overcast	
Precipitation		X None	•			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1032				-	Temper	rature (°)	8		1	
INSTRUMENTAT												
Gas concentration:		FM 436, Accuracy:									Х	Tick Instrument used
	#2 Gas Data GF	FM 436, Accuracy:			% (at 30%		0%); CO2 ±0.3%	$(0 \text{ to } 5\%), \pm 3.0\%$	$(at 40\%); O2 \pm 0.$	2%;	А	
BH (No.)	BH1	aP After (mb)	dp (Pa)	Flow rate (l/h)	Time (s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
		1032	0.0	0.0	0	0.0	0.0	0.6	18.7	0.0	0.0	
	1.00				15	0.0	0.0	4.1	15.5	0.0	0.0	
Depth to GW: (m)	4.06				30	0.0	0.0	4.3	14.0	0.0	0.0	
					45	0.0	0.0	4.4	13.6	0.0	0.0	
					60	0.0	0.0	4.4	13.5	0.0	0.0	
					75	0.0	0.0	4.5	13.4	0.0	0.0	
					90	0.0	0.0	4.5	13.3	0.0	0.0	
					105	0.0	0.0	4.5	13.2	0.0	0.0	
					120	0.0	0.0	4.5	13.2	0.0	0.0	
					135	0.0	0.0	4.6	13.1	0.0	0.0	
					150	0.0	0.0	4.6	13.0	0.0	0.0	Constant readings
						PID(ppm)						
					PEAK	1.0						
					15	1.0						
					30 45	1.1 1.1						
	-				45 60	1.1						
			+		75	1.1						
					90	1.1						
			1		105	1.1					1	
		1			100	1.1					1	
		1			120						1	
		1	1								1	

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	17/03/2021			Job Nur	nber:	20/3521		Time:	10:08			
METEOROLOGI		ITE INFODM	ATION									
	CAL AND 5					Matu		XX7.4				Delete An Description 1
State of ground:		X Dry				Moist		Wet			1	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		None			X	Slight		Cloudy			Overcast	
Precipitation		X None	e			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1032					Temper	rature (°)	8			
INSTRUMENTAT	TION USED											
		FM 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0	% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0.	2%;		
Gas concentration:	#2 Gas Data GI	FM 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0	% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0.	.2%;	Х	Tick Instrument used
BH	BH2	aP After	dn (Pa)	Flow rate	Time	CH ₄ (%)	LEL (%)	$CO_2(\%)$	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(No.)	0112	(mb)	up (1 a)	(l/h)	(s)	CII4 (70)		$CO_2(70)$	02(70)	11 <u>2</u> 0(pp 11)	co (ppm)	connicitis
()		1032	0.0	0.0	0	0.0	0.0	4.1	17.1	0.0	0.0	
					15	0.0	0.0	0.7	18.2	0.0	0.0	
Depth to GW: (m)	4.15				30	0.0	0.0	0.6	19.0	0.0	0.0	
					45	0.0	0.0	0.6	19.1	0.0	0.0	
			1		60	0.0	0.0	0.6	19.1	0.0	0.0	
					75	0.0	0.0	0.6	19.1	0.0	0.0	Constant readings
					90							
					105							
					120							
					135							
					150							
					PEAK	PID(ppm) 0.4						
					15	0.4						
					30	0.3						
					45	0.2						
					60	0.2						
					75	0.2						
					90	0.2						
					105							
			 		120							
	ļ					ļ						
	1	1	1	1					1		1	

aP: Atmospheric Pressure

NR: Not Recorded

Note: Where 0.0 is shown on the results indicates value lower than the detection limit of the instrument.

dP: Differential Pressure

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	17/03/2021			Job Nur	nber:	20/3521		Time:	10:30			
METEOROLOGI		TE INFODM	ATION									
	CAL AND 5.											
State of ground:		X Dry				Moist		Wet			1 -	Delete As Required
Wind:		X Calm				Light		Moderate	:		Strong	Ground Level
Cloud cover:		None			X	Slight		Cloudy			Overcast	
Precipitation		X None	e			Slight		Moderate	-		Heavy	
Barometric pressure (mb) Before:	1033					Temper	rature (°)	8			
INSTRUMENTAT	TION USED											
		FM 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0	% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%): O2 ±0.	.2%:	Х	
Gas concentration:		FM 436, Accuracy:										Tick Instrument used
ВН	WS1	aP After		Flow rate		CH ₄ (%)	LEL (%)	$CO_2(\%)$	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(No.)	W31	(mb)	up (1 a)	(l/h)	(s)	CII ₄ (70)	LEL (70)	$CO_2(70)$	$O_2(70)$	11 ₂ 5(ppiii)	CO (ppiii)	Comments
(100)		1033	0.0	0.0	0	0.0	0.0	0.1	19.8	0.0	0.0	
		1055	0.0	0.0	-	0.0	0.0	1.2	17.7	0.0	0.0	
Depth to GW: (m)	Dry				15 30	0.0	0.0	1.2	17.7	0.0	0.0	
					45	0.0	0.0	1.3	17.2	0.0	0.0	
						0.0	0.0	1.4	17.2	0.0	0.0	
					75	0.0	0.0	1.4	16.9	0.0	0.0	
					90	0.0	0.0	1.4	17.1	0.0	0.0	
					105	0.0	0.0	1.4	17.1	0.0	0.0	
					120	0.0	0.0	1.4	17.1	0.0	0.0	Constant readings
					135							
					150							
						PID(ppm)						
					PEAK	0.4						
					15 30	0.4						
					<u> </u>	0.5						
					60	0.5						
	1				75	0.5						
					90	0.5						
					105	0.5						
					120	0.5						
	1											

aP: Atmospheric Pressure

NR: Not Recorded

Note: Where 0.0 is shown on the results indicates value lower than the detection limit of the instrument.

dP: Differential Pressure

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	17/03/2021			Job Nur	nber:	20/3521		Time:	09:50			
METEOROLOGI		TTE INFORM	ATION									
	CAL AND 5.					1						
State of ground:		X Dry				Moist		Wet			٦.	Delete As Required
Wind:		X Calm				Light		Moderate	:		Strong	Ground Level
Cloud cover:		None	•		Х	Slight		Cloudy			Overcast	
Precipitation		X				Slight		Moderate	:		Heavy	
Barometric pressure (mb)) Before:	1033					Temper	rature (°)	8]	
INSTRUMENTAT	TON USED											
INSTRUMENTAL		FM 436, Accuracy:	CI14 - 0.20/	(0 + 50() + 2.0	0/ (2.00/ ((0.1. 50()	((10%) 02 .0	201	v	
Gas concentration:		FM 436, Accuracy: FM 436, Accuracy:									Х	Tick Instrument used
									-			
BH	WS2	aP After	dp (Pa)	Flow rate		CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1033	0.0	0.0	0	0.0	0.0	1.3	18.4	0.0	0.0	
Depth to GW: (m)	Dry				15	0.0	0.0	5.4	14.7	0.0	0.0	
	DIY				30	0.0	0.0	5.7	14.4	0.0	0.0	
					45	0.0	0.0	5.8	14.4	0.0	0.0	
					60	0.0	0.0	5.8	14.4	0.0	0.0	
					75	0.0	0.0	5.8	14.1	0.0	0.0	
					90	0.0	0.0	5.8	14.1	0.0	0.0	
					105	0.0	0.0	5.8	14.2	0.0	0.0	
					120	0.0	0.0	5.8 5.8	14.3	0.0	0.0	
	-				135 150	0.0 0.0	0.0	5.8	14.3 14.3	0.0	0.0	Constant readings
					150	0.0 PID(ppm)	0.0	5.8	14.5	0.0	0.0	Constant readings
					PEAK	1.0						
					1 EAK	1.0						
					30	0.4						
					45	0.3						
					60	0.3						
					75	0.3						
					90							
					105							
					120							
											ļ	
1			1						I			

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	17/03/2021			Job Nur	nber:	20/3521		Time:	10:10			
METEOROLOGI		ITE INFODM	ATION									
	CAL AND 5					No. 14		XX7.4				Delete An Description 1
State of ground:		X Dry				Moist		Wet		r	1	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		None			X	Slight		Cloudy			Overcast	
Precipitation		X None	è			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1033					Temper	rature (°)	8		J	
INSTRUMENTAT	TION USED											
		FM 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0)% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0.	2%;	Х	
Gas concentration:		FM 436, Accuracy:			-							Tick Instrument used
BH	WS6	aP After		Flow rate		CH ₄ (%)	LEL (%)	$CO_2(\%)$	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(No.)	1150	(mb)	up (1 a)	(l/h)	(s)	CII ₄ (70)		$CO_2(70)$	$O_2(70)$	11 ₂ 5(ppiii)	CO (ppm)	Comments
(1,00)		1033	0.0	0.0	0	0.0	0.0	5.3	17.0	0.0	0.0	
					15	0.0	0.0	0.2	19.3	0.0	0.0	
Depth to GW: (m)	Dry				30	0.0	0.0	0.1	19.9	0.0	0.0	
		4			45	0.0	0.0	0.1	19.9	0.0	0.0	
					60	0.0	0.0	0.0	20.0	0.0	0.0	
					75	0.0	0.0	0.0	20.2	0.0	0.0	
					90	0.0	0.0	0.0	20.2	0.0	0.0	
					105	0.0	0.0	0.0	20.2	0.0	0.0	Constant readings
					120							
					135							
					150							
					PEAK	PID(ppm)						
					15	1.3 1.0						
					30	1.0						
					45	1.1						
					60	1.2						
					75	1.2						
					90	1.3						
					105	1.3						
					120	1.3						
			 			ļ						
			1									

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	17/03/2021			Job Nur	nber:	20/3521		Time:	10:30			
METEOROLOGI		ITE INFODM	ATION									
	CAL AND 5.					1						
State of ground:		X Dry				Moist		Wet		r	٦ ~	Delete As Required
Wind:		X Calm				Light		Moderate	;		Strong	Ground Level
Cloud cover:		None				Slight	X	Cloudy			Overcast	
Precipitation		X None	e			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1032					Temper	rature (°)	8			
INSTRUMENTAT	TON LISED											
		FM 436, Accuracy:	CH4 +0 3%	(0 to 5%) + 3.0	% (at 30%) +3.0% (at 10)%)· CO2 +0 3%	(0 to 5%) + 3.0%	(at 40%): O2 +0	2%·		
Gas concentration:		FM 436, Accuracy:									Х	Tick Instrument used
BH (No.)	WS10	aP After (mb)	dp (Pa)	Flow rate (l/h)	Time (s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(190.)		È é						0.7	10 -	0.0	0.0	
		1032	0.0	0.0	0	0.0	0.0	0.7	19.7	0.0	0.0	
Depth to GW: (m)	Dry		_		15	0.0	0.0	0.6	19.2	0.0	0.0	
	5		_		30	0.0	0.0	0.6	19.1	0.0	0.0	
					45	0.0	0.0	0.6	19.1	0.0	0.0	a
					60	0.0	0.0	0.6	19.1	0.0	0.0	Constant readings
			-		75							
			-		90 105							
	-		-		105				ł		ł	
			1		135							
					150							
					100	PID(ppm)						
					PEAK	1.7						
					15	0.6						
					30	0.6						
					45	0.6						
					60	0.6						
					75	0.6						
					90	0.6						
					105							
					120							
	1	1	1	1					1	1	1	

aP: Atmospheric Pressure

NR: Not Recorded

Note: Where 0.0 is shown on the results indicates value lower than the detection limit of the instrument.

dP: Differential Pressure

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI & JM				
Date:	24/03/2021			Job Nur	nber:	20/3521		Time:	10:20			
METEOROLOGI		TE INFORM	ATION									
	CAL AND SI					Matu		XX7.4				Delete An Description 1
State of ground:		Dry				Moist		Wet			1	Delete As Required
Wind:		Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		None				Slight		Cloudy			Overcast	
Precipitation		None	•			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:						Temper	ature (°)				
INSTRUMENTAT	TION USED											
		FM 436, Accuracy:	CH4 ±0.3%	$(0 \text{ to } 5\%), \pm 3.0$	% (at 30%)), ±3.0% (at 100	0%): CO2 ±0.3%	(0 to 5%), ±3.0% ((at 40%): O2 ±0	.2%:		
Gas concentration:		FM 436, Accuracy:										Tick Instrument used
BH	BH1	aP After		Flow rate		CH ₄ (%)	LEL (%)				CO(nnm)	Comments
ын (No.)	DHI	(mb)	ap (Pa)	rlow rate (l/h)	(s)	$CH_4(\%)$	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(110.)		(IIIU)		(1/11)	0							No Access
												No Access
Depth to GW: (m))				15 30							
					30 45							
					43 60							
					75							
					90							
					105							
					120							
					135							
					150							
						PID(ppm)						
					PEAK							
					15 30							
					45							
					60							
	1		1		75				1	1		
					90							
					105							
					120							

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI & JM				
Date:	24/03/2021			Job Nur	nber:	20/3521		Time:	10:00			
METEOROLOGI		TE INFORM	ATION									
	CAL AND SI				-							
State of ground:		X Dry				Moist		Wet			•	Delete As Required
Wind:		X Calm				Light		Moderate	:		Strong	Ground Level
Cloud cover:		None	•		X	Slight		Cloudy			Overcast	
Precipitation		X None	•			Slight		Moderate	:		Heavy	
Barometric pressure (mb)) Before:	1020				_	Temper	rature (°)	10			
INSTRUMENTAT												
Gas concentration:		M 436, Accuracy:										Tick Instrument used
	#2 Gas Data GF	M 436, Accuracy:	CH4 ±0.3%	$(0 \text{ to } 5\%), \pm 3.0$)% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0.	.2%;	Х	
BH	BH2	aP After	dp (Pa)	Flow rate	Time	CH ₄ (%)	LEL (%)	CO ₂ (%)	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1020	0.0	0.0	0	0.0	0.0	0.0	19.2	0.0	0.0	
Depth to GW: (m)	4.16				15	0.0	0.0	0.9	19.2	0.0	0.0	
Depth to Gw: (iii)	4.10				30	0.0	0.0	0.9	18.7	0.0	0.0	
					45	0.0	0.0	0.9	18.6	0.0	0.0	
					60	0.0	0.0	0.9	18.6	0.0	0.0	
					75	0.0	0.0	0.9	18.6	0.0	0.0	Constant readings
					90							
					105							
					120							
					135							
					150							
					DEAT	PID(ppm)						
					PEAK	0.3 0.2						
					15 30	0.2						
					45	0.2						
	1				60	0.2						
				1	75	0.2						
					90							
			1		105							
					120							
			1									

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI & JM				
Date:	24/03/2021			Job Nur	nber:	20/3521		Time:	10:15			
METEODOLOCI		TTE INFORM	ATION									
METEOROLOGI	CAL AND S				r			1				
State of ground:		X Dry				Moist		Wet			•	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		None	•		Х	Slight		Cloudy			Overcast	
Precipitation		X None	•			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1020				_	Temper	rature (°)	10		1	
INSTRUMENTAT												
Gas concentration:		FM 436, Accuracy:			-						Х	Tick Instrument used
		FM 436, Accuracy:					0%); CO2 ±0.3%	$(0 \text{ to } 5\%), \pm 3.0\%$	$(at 40\%); 02 \pm 0.$	2%;	Λ	
BH (No.)	WS1	aP After (mb)	dp (Pa)	Flow rate (l/h)	Time (s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
		1020	-1.0	-0.3	0	0.0	0.0	5.2	15.6	0.0	0.0	
Donth to CW. (m)	DRY		0.0	0.0	15	0.0	0.0	1.0	17.2	0.0	0.0	
Depth to GW: (m)	DKI		0.0	0.0	30	0.0	0.0	0.9	17.6	0.0	0.0	
					45	0.0	0.0	0.8	17.9	0.0	0.0	
					60	0.0	0.0	0.8	18.0	0.0	0.0	
					75	0.0	0.0	0.7	18.1	0.0	0.0	
					90	0.0	0.0	0.8	18.0	0.0	0.0	
					105	0.0	0.0	0.8	18.0	0.0	0.0	
					120	0.0	0.0	0.8	18.0	0.0	0.0	Constant readings
					135							
					150							
					DEAT	PID(ppm)						
					PEAK	0.6 0.2						
					15 30	0.2						
					45	0.2						
						0.2						
		1			75	0.2					1	
		1			90						1	
			1		105							
	[[120							
			1									

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI & JM				
Date:	24/03/2021			Job Nur	nber:	20/3521		Time:	10:05			
METEOROLOGI		ITE INFODM	ATION									
	CAL AND 5					Matu		XX7.4				Delete An Decoder 1
State of ground:		X Dry				Moist		Wet			٦ ~	Delete As Required
Wind:		X Calm				Light		Moderate	:		Strong	Ground Level
Cloud cover:		None			X	Slight		Cloudy			Overcast	
Precipitation		X None	e			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1020					Temper	rature (°)	10			
INSTRUMENTAT	TION USED											
		FM 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0)% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0.	.2%;		
Gas concentration:		FM 436, Accuracy:									Х	Tick Instrument used
BH	WS2	aP After	dn (Pa)	Flow rate	Time	CH ₄ (%)	LEL (%)	$CO_2(\%)$	$O_2(\%)$	$H_2S(ppm)$	CO (ppm)	Comments
(No.)	1102	(mb)	up (1 a)	(l/h)	(s)	CII4 (70)		$CO_2(70)$	02(70)	11 <u>2</u> 5(pp 11)	co (ppm)	Comments
		1020	0.0	0.0	0	0.0	0.0	0.0	19.9	0.0	0.0	
	DDU				15	0.0	0.0	4.8	16.6	0.0	0.0	
Depth to GW: (m)	DRY				30	0.0	0.0	5.6	14.8	0.0	0.0	
		1			45	0.0	0.0	5.7	14.5	0.0	0.0	
					60	0.0	0.0	5.7	14.4	0.0	0.0	
					75	0.0	0.0	5.7	14.4	0.0	0.0	
					90	0.0	0.0	5.7	14.3	0.0	0.0	
					105	0.0	0.0	5.7	14.3	0.0	0.0	
					120	0.0	0.0	5.7	14.3	0.0	0.0	Constant readings
					135							
					150							
					PEAK	PID(ppm) 0.5						
					15	0.2						
					30	0.2						
					45	0.2						
					60	0.2						
					75							
					90							
					105						ļ	
					120						ļ	
						 						
	1	1	1	1		I					1	

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI & JM				
Date:	24/03/2021			Job Nur	nber:	20/3521		Time:	09:45			
METEOROLOGI		ITE INFODM	ATION									
	CAL AND 5					No. 14		XX7.4				Delete An Description 1
State of ground:		X Dry				Moist		Wet			1	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		None			X	Slight		Cloudy			Overcast	
Precipitation		X None	è			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1020					Temper	rature (°)	10		J	
INSTRUMENTAT	TON USED											
		FM 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0	% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0.	2%;		
Gas concentration:	#2 Gas Data GF	FM 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0	% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0.	.2%;	Х	Tick Instrument used
BH	WS6	aP After	dn (Pa)	Flow rate	Time	CH ₄ (%)	LEL (%)	$CO_2(\%)$	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(No.)	1150	(mb)	up (1 u)	(l/h)	(s)	0114 (70)			02(70)	ii20(ppiii)	co (ppm)	Comments
		1020	0.0	0.0	0	0.0	0.0	0.8	18.8	0.0	0.0	
	DDV				15	0.0	0.0	0.0	19.7	0.0	0.0	
Depth to GW: (m)	DRY				30	0.0	0.0	0.0	19.6	0.0	0.0	
		1			45	0.0	0.0	0.0	19.6	0.0	0.0	
					60	0.0	0.0	0.0	19.6	0.0	0.0	
					75	0.0	0.0	0.0	19.6	0.0	0.0	Constant readings
					90							
					105							
					120							
					135							
					150	PID(ppm)						
					PEAK	0.9						
					15	0.9						
					30	0.9						
					45	0.9						
					60	0.9						
					75							
					90							
			 		105							
			 		120							
	1	1	1	I				1	I		1	

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI & JM				
Date:	24/03/2021			Job Nur	nber:	20/3521		Time:	09:30			
METEOROLOGI		ITE INFODM	ATION									
	CAL AND 5				V	No. 14		XX7.4				Delete An Decoder 1
State of ground:		Dry			Х	Moist		Wet			1 a	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		None			X	Slight		Cloudy			Overcast	
Precipitation		X None	•			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1020					Temper	rature (°)	10			
INSTRUMENTAT	TION USED											
		FM 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0	% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0.	.2%;		
Gas concentration:	#2 Gas Data GF	FM 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0	% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0.	.2%;	Х	Tick Instrument used
BH	WS10	aP After		Flow rate	Time	CH ₄ (%)	LEL (%)	$CO_2(\%)$	$O_2(\%)$	$H_2S(ppm)$	CO (ppm)	Comments
(No.)	11010	(mb)	up (1 a)	(l/h)	(s)	CII4 (70)	LEL (70)	$CO_2(70)$	$O_2(70)$	1120(ppiii)	CO (ppm)	Comments
(1100)		1020	0.0	0.0	0	0.0	0.0	0.4	19.1	0.0	0.0	
					15	0.0	0.0	0.8	19.3	0.0	0.0	
Depth to GW: (m)	DRY				30	0.0	0.0	0.8	18.9	0.0	0.0	
		1			45	0.0	0.0	0.8	18.8	0.0	0.0	
					60	0.0	0.0	0.8	18.8	0.0	0.0	
					75	0.0	0.0	0.8	18.7	0.0	0.0	
					90	0.0	0.0	0.8	18.7	0.0	0.0	
					105	0.0	0.0	0.8	18.7	0.0	0.0	Constant readings
					120							
					135							
					150							
					PEAK	PID(ppm) 0.7						
					15	0.7						
					30	0.5						
					45	0.4						
					60	0.4						
					75	0.4						
					90							
					105							
					120							
			1									

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI				
Date:	09/06/2021			Job Nur	nber:	20/3521		Time:	12:18			
METEOROLOGI		TE NEODM	ATION									
	CAL AND 51		ATION					XX7 .				
State of ground:		X Dry				Moist	<u> </u>	Wet			7	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		X None	:			Slight		Cloudy			Overcast	
Precipitation		X None	;			Slight		Moderate			Heavy	
Barometric pressure (mb)	Before:	1024					Temper	ature (°)	23			
		-										
INSTRUMENTAT												
Gas concentration:		M 436, Accuracy:									V	Tick Instrument used
	#2 Gas Data GF	M 436, Accuracy:			% (at 30%)		0%); CO2 ±0.3%	$(0 \text{ to } 5\%), \pm 3.0\%$	(at 40%); O2 ±0	.2%;	Х	
BH	BH1	aP After	dp (Pa)	Flow rate	Time	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1024	0.0	0.0	0	0.0	0.0	0.0	19.3	0.0	0.0	
Depth to GW: (m)	4.15				15	0.0	0.0	0.0	19.5	0.0	0.0	
Deptil to G W. (III)	4.15				30	0.0	0.0	0.0	19.6	0.0	0.0	
					45	0.0	0.0	0.0	19.6	0.0	0.0	
					60	0.0	0.0	0.0	19.6	0.0	0.0	
					75	0.0	0.0	0.0	19.6	0.0	0.0	Constant readings
					90							
					105							
					120							
					135							
					150							
					DEAV	PID(ppm) 1.7						
					PEAK 15	0.5						
					30	0.3						
					45	0.0						
					60	0.0						
			1		75							
					90							
					105							
					120							

aP: Atmospheric Pressure dP: Differential Pressure

re NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI				
Date:	09/06/2021			Job Nur	nber:	20/3521		Time:	14:25			
METEOROLOGI		TE INFORM	ATION									
	CAL AND SI		ATION					XX7 .				
State of ground:		X Dry				Moist		Wet			7	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		X None	:			Slight		Cloudy			Overcast	
Precipitation		X None	;			Slight		Moderate			Heavy	
Barometric pressure (mb)	Before:	1018					Temper	ature (°)	24			
INSTRUMENTAT												
Gas concentration:		M 436, Accuracy:									V	Tick Instrument used
	#2 Gas Data GF	M 436, Accuracy:			9% (at 30%)		0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0	.2%;	Х	
BH	BH2	aP After	dp (Pa)	Flow rate	Time	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1018	0.0	0.0	0	0.0	0.0	0.0	20.1	0.0	0.0	
Depth to GW: (m)	4.24				15	0.0	0.0	0.0	20.1	0.0	0.0	
Deptil to G W: (III)	4.24				30	0.0	0.0	0.0	20.1	0.0	0.0	
					45	0.0	0.0	0.0	20.1	0.0	0.0	
					60	0.0	0.0	0.0	20.1	0.0	0.0	Constant readings
					75							
					90							
					105							
					120							
					135							
					150							
					DEAV	PID(ppm) 2.7						
					PEAK 15	0.8						
	1				30	0.8						
					45	0.6						
					60	0.6						
			1		75							
	İ				90							
					105							
					120							

aP: Atmospheric Pressure dP: Differential Pressure

re NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI				
Date:	09/06/2021			Job Nur	nber:	20/3521		Time:	13:08			
METEOROLOGI			ATION									
	CAL AND SI		ATION			1						
State of ground:		X Dry				Moist		Wet			•	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		X None				Slight		Cloudy			Overcast	
Precipitation		X None				Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1026					Temper	ature (°)	24			
INSTRUMENTAT	TON USED											
INDIKOWENTAI		M 436, Accuracy:	CH4 ±0.3%	(0 to 5%) + 3(0% (at 30%)) ±3.0% (at 10)	(0.00) + (0.00) + (0.00) = (0.00) + ((0 to 5%) + 3.0%	(at 40%): O2 ±0	204.		
Gas concentration:		M 436, Accuracy: M 436, Accuracy:									x	Tick Instrument used
BH	WS1	aP After	dp (Pa)	Flow rate		CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1026	0.0	0.0	0	0.0	0.0	0.0	19.0	0.0	0.0	
Depth to GW: (m)	Dry				15	0.0	0.0	0.0	19.6	0.0	0.0	
Deptil to G W. (III)	Diy				30	0.0	0.0	0.0	19.8	0.0	0.0	
					45	0.0	0.0	0.0	19.8	0.0	0.0	
					60	0.0	0.0	0.0	19.8	0.0	0.0	
					75	0.0	0.0	0.0	19.8	0.0	0.0	Constant readings
					90							
					105							
					120							
					135							
					150							
					PEAK	PID(ppm) 4.3						
	ł				15	4.5						
					<u> </u>	1.3						
					45	1.3						
	1				60	1.2						
			1		75	1.2						
					90							
	1				105							
					120							

aP: Atmospheric Pressure dP: Differential Pressure

re NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI				
Date:	09/06/2021			Job Nur	nber:	20/3521		Time:	13:35			
METEOROLOGI		TE NEODM	ATION									
	CAL AND 51		ATION			1		XX7 .				
State of ground:		X Dry				Moist		Wet			7	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		X None				Slight		Cloudy			Overcast	
Precipitation		X None				Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1020					Temper	ature (°)	24			
		-										
INSTRUMENTAT												
Gas concentration:		M 436, Accuracy:									х	Tick Instrument used
		M 436, Accuracy:			% (at 30%)		0%); CO2 ±0.3%	$(0 \text{ to } 5\%), \pm 3.0\%$	(at 40%); O2 ±0	.2%;	Х	
BH	WS2	aP After	dp (Pa)	Flow rate	Time	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1021	1.0	0.1	0	0.0	0.0	0.0	19.6	0.0	0.0	
Depth to GW: (m)	Dry		0.0	0.0	15	0.0	0.0	0.0	19.7	0.0	0.0	
Deptil to G W. (III)	Diy				30	0.0	0.0	0.0	19.8	0.0	0.0	
					45	0.0	0.0	0.0	19.8	0.0	0.0	
					60	0.0	0.0	0.0	19.7	0.0	0.0	
					75	0.0	0.0	0.0	19.7	0.0	0.0	
					90	0.0	0.0	0.0	19.7	0.0	0.0	Constant readings
					105							
					120							
					135							
					150							
					DE LV	PID(ppm)						
					PEAK	2.8						
					15 30	0.6 0.6						
					45	0.0						
					60	0.5						
			<u> </u>		75	0.5						
					90							
					105							
					120							
			l									

aP: Atmospheric Pressure dP: Differential Pressure

re NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI				
Date:	09/06/2021			Job Nur	nber:	20/3521		Time:	14:10			
METEOROLOGI		TE INFORM	ATION									
	CAL AND SI				r	1						
State of ground:		X Dry				Moist		Wet			7	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		X None	e			Slight		Cloudy			Overcast	
Precipitation		X None	e			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1020				_	Temper	ature (°)	24			
INSTRUMENTAT	TON USED											
		M 436, Accuracy:	CH4 +0.20/	(0 to 5%) +2.0	0/ (at 200/	+2.0% (at 10)	0% $CO2 \pm 0.2\%$	$(0 t_0 50/) + 2.00/$	(at 40%): 02 +0	20%		
Gas concentration:		M 436, Accuracy.									x	Tick Instrument used
BH	WS6	aP After	dp (Pa)	Flow rate		CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1020	0.0	0.0	0	0.0	0.0	0.0	20.1	0.0	0.0	
Depth to GW: (m)	Dry				15	0.0	0.0	0.0	20.1	0.0	0.0	
Deptil to G W. (III)	Diy				30	0.0	0.0	0.0	20.1	0.0	0.0	
					45	0.0	0.0	0.0	20.1	0.0	0.0	
					60	0.0	0.0	0.0	20.1	0.0	0.0	Constant readings
					75							
					90							
					105							
					120							
					135							
					150							
						PID(ppm)						
					PEAK 15	4.6						
					30	1.3						
					45	1.3						
					60	1.3						
					75	1.0						
			1		90							
					105							
	1		1		120							

aP: Atmospheric Pressure dP: Differential Pressure

re NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI				
Date:	09/06/2021			Job Nur	nber:	20/3521		Time:	13:55			
METEOROLOGI		TE INFORM	ATION									
	CAL AND SI							XX7 .				
State of ground:		X Dry				Moist		Wet			1 _	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		X None	;			Slight		Cloudy			Overcast	
Precipitation		X None				Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1021					Temper	ature (°)	24			
INSTRUMENTAT	a											
Gas concentration:		FM 436, Accuracy:									х	Tick Instrument used
		FM 436, Accuracy:						$(0 \text{ to } 5\%), \pm 3.0\%$	(at 40%); O2 ±0		А	
BH	WS10	aP After	dp (Pa)	Flow rate		CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1021	0.0	0.0	0	0.0	0.0	0.0	20.0	0.0	0.0	
Depth to GW: (m)	Dry				15	0.0	0.0	0.0	20.1	0.0	0.0	
Deptil to G W. (iii)	Diy				30	0.0	0.0	0.0	20.2	0.0	0.0	
					45	0.0	0.0	0.0	20.2	0.0	0.0	
					60	0.0	0.0	0.0	20.2	0.0	0.0	
					75	0.0	0.0	0.0	20.2	0.0	0.0	Constant readings
					90							
					105							
					120							
					135							
					150							
						PID(ppm)						
					PEAK 15	3.9 0.6						
					30	0.0						
					45	0.4						
					60	0.3						
					75	0.2						
			1		90	0.2						
			1		105	0.2						
	1		1		120							

aP: Atmospheric Pressure dP: Differential Pressure

e NR: Not Recorded

				C•10	CEPT			
					SITU ANA	LYSIS &	SAMPLING	ì
		Site: Job No.:	Elleray Ha	II				
			20/3521 09/06/2021	1				
	Tec	hnician:						
	Sampling r			peristaltic)				
	BHN		Base of well (mbgl)	Top of slotted (mbgl)	Depth to GW (mbgl)			
	BH	1	6.30	1.00	4.15			
Purge Volume (L)	Time	Temp (°C)	DO (mg/L)	SPC (mS/cm)	рН	pH (mV)	Redox Potential (mV)	Sample Detail (Colour/Odour/ Turbidity)
1.0	12:35	20.4	6.50	0.79	7.23	-42.8	175.9	Clear
2.0	12:39	19.9	6.55	0.79	7.25	-43.4	178.1	Clear
3.0	12:42	19.8	6.57	0.79	7.27	-44.6	176.4	Clear
4.0	12:45	19.8	6.56	0.79	7.25	-43.7	173.3	Clear

S Job M Da Technici		11 1	Depth to GW (mbgl) 4.15	ALYSIS & S	SAMPLING	
Job N Da Technici pling meth BH No. BH2 "ime Ter (°(Io.: 20/3521 ate: 17/03/202 an: JI + JM od: Low Flow Base of well (mbgl) 6.60 np DO	1 (peristaltic) Top of slotted (mbgl) 1.00	GW (mbgl)			
Da Technici pling meth BH No. BH2 "ime Ter (°(ate: 17/03/202 an: JI + JM od: Low Flow Base of well (mbgl) 6.60 np DO	(peristaltic) Top of slotted (mbgl) 1.00	GW (mbgl)			
Technici pling meth BH No. BH2 ïme Ter (°(an: JI + JM od: Low Flow Base of well (mbgl) 6.60 np DO	(peristaltic) Top of slotted (mbgl) 1.00	GW (mbgl)			
BH No. BH2 Ter (°C	od: Low Flow Base of well (mbgl) 6.60 np DO	Top of slotted (mbgl) 1.00	GW (mbgl)			
BH2 ïme Ter (°(well (mbgl) 6.60 np DO	slotted (mbgl) 1.00	GW (mbgl)			
ïme Ter (°(np DO		4.15			
ime (°(SPC				
0:31 12		(mS/cm)	рН	pH (mV)	Redox Potential (mV)	Sample Detail (Colour/Odour/ Turbidity)
	.0 5.66	0.95	7.03	-21.0	192.5	Slightly brown
0:33 12	.0 5.58	0.95	7.01	-19.6	194.1	Slightly brown
0:36 12	.0 5.48	0.95	6.98	-18.4	196.9	Slightly brown
0:39 12	.0 5.48	0.95	6.97	-17.9	198.4	Slightly brown
0):36 12	0:36 12.0 5.48	0:36 12.0 5.48 0.95	0:36 12.0 5.48 0.95 6.98	D:36 12.0 5.48 0.95 6.98 -18.4	D:36 12.0 5.48 0.95 6.98 -18.4 196.9

TEST DATE AN	D CONDITIONS
Date	11/08/2020
Atmospheric Pressu	e 997 mB
Ambient Temperatur	e 21.6 °C
Environics Serial No	5089

GFM436 Final Inspection & Calibration Check Certificate

Customer	Concept Site Investigations
Certificate Number	121930
Order Number	326344

Serial Number	13240
Software Version	G436-00.0027/0010

GAS DATA LTD	
Unit 4, Fairfield Court	1
Seven Stars Estate	
Wheler Rd	
Coventry	And the second second
CV3 4LJ	
Tel 02476303311	Fax 02476307711

Recalibration	DUE	Date
11/08/	21	

Instrument Checks					
Keyboard	1		Display Contrast	1	
Pump Flow In	400	Accept > 200 cc/min	Pump Flow @ -200mB	250 Accept > 200 cc/mi	
Clock Set / Running	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Labels Fitted		1

	and the second		Gas Checks				
	СН ,		CO 2		02		
	Instrument Gas	True Gas	Instrument Gas	True Gas	Instrument Gas	True Gas	
	Readings %	eadings % Value %	Readings %	Value %	Readings %	Value %	
Sensor	59.8		40	40	20.9	20.9	
	Accept #3.0	60	Accept #3.0	40	Accept ±0.5	20.9	
	4.9		5	-	6	6	
	Accept ±0.3	5	Accept ±0.3	5	Accept #0.3	0	
Zero	0	0	0	0	0	0	
Reading	Accept +0,0	0	Accept #0.0	0	Accept ±0.1	0	

Optional Gas Checks								
Applie	d Gas & Range	Range Concentration Tested @ Instrument Readings (ppm)						
Gas Type	Range (ppm)	(ppm)		Zero Reading		Instrument Gas Reading		
H2S	5000	1500	0	Accept ±0.0	1500	Accept #5.0		
со	2000	1000	0	Accept ±0.0	1000	Accept ±5.0		
Hexane	2.0%	2.0%	0	Accepta0.0	1.99	Accept #10.0		

		NY ALL	AL PART	Cross Gas	Effects	S. S. Partie	11 1 1 1 1 1	
Applie	l Gas (ppm)			h	astrument l	Readings (ppm)		
Gas Type	Concentration	Toxic I:	H25	Toxic 2:	co	Texic 3:	HEX	
H25	1500	150	00	0		0		
co	1000	40	,	100	00	0		
Hexane	2.0%	0		0	ŝ	1.9	9	

Pressure Checks

2.	41 41	10 C	a same	100
Atmost	nheric.	Pressure	[AP]	(mll)

Current Atmospheric	Pressure (mB)	Instrument Atmospheri	c Pressure Reading (mB)	
AP Open Ports		997	Accept \$2.0	
The second second	+000 mB	800	Accept ±5.0	
AP Port (Internal)	+1200mb	1200	Accept #5.0	

E C BLEVE		Flow	Checks			
Bo	rehole Flow		Differential Pressure			
Applied Reading (1/h) In:		ent Reading (1/h)	Applied Pressure (Pa)	Instrument Reading (Pa)		
-30	-30.1	Accept ±3.0	-328	-330	Accept 250	
<i>k</i> -	-3	Accept ±1.0	-15	-15	Accept ±6.0	
0	0	Accept ±0.0	0	0	Accept ±0.5	
3	3	Accept ±0.5	16	16	Accept ±3.0	
30	30	Accept x3.0	328	328	Accept x50	
60	60	Accept ±6.0	971	968	Accept ±130	
90	90.7	Accept ±9.0	1894	1933	Accept ±250	

Temper	Temperature Checks					
Calibration Temperature	-					
Applied Temperature [®] C	Instrument Temperature Reading					
-10	-10	Accept ±2.0				
0	0	Accept s L0				
30	30	Accept ±2.0				
60	60	Accept ±1.0				
100	100	Accept ±1.0				

Technician:	Date Tested:
Jack Rutland	12/08/2020

The instrument identified by the serial number stated above has been tested by Gas Data personnel for calibration accuracy on the date and under the ambient conditions stated. Gas Data Ltd internal BS EN ISO9001:2015 compliant workshop procedures were followed to apply known calibration test gases, gas flow rates, pressures and temperatures of the values stated. The results displayed on the instrument at each stage are recorded above.

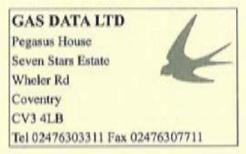
Gas Data Ltd is certified to BS EN ISO9001:2015. Certificate NQA 0374. Valid until 21/03/2022

TEST DATE AND CON	DITIONS	
Date	03/03/21	
Atmospheric Pressure	1013mB	
Ambient Temp	24.7°C	
Environics Serial No.	2518	

GAS DATA LTD Pegasus House Seven Stars Estate Wheler Rd Coventry CV3 4LB Tel 02476303311 Fax 02476307711

GFM436-3 FINAL INSPECTION & CALIBRATION CHECK CERTIFICATE

INSTRUMENT DETAILS				
Serial No	Customer			
12224	Concept Site Investigations			


	INSTR	UMENT CHECKS	
Keyboard	1	Pump Flow	500cc/min
Display Contrast	1	Pump Flow @ -200mB	300cc/min
Clock Set / Running	~	S/W Version	G436.0027/0011
Labels Fitted	1	Recalibration Date	03/03/22

			GAS CHECK	S		1000		
Calibrati	ion Gas	Instrument Gas Channels Read						
Gas Type	Applied Conc.	CH4 (%)	tol. (% vol.)	CO2 (%)	tol. (% vol.)	O2 (%)	tol. (% vol.)	
N2	100%	0.0	0.0	0.0	0.0	0.0	+/-0.1	
CH4	5%	4.9	+/-0.3	0.0	0.0	0.0	+/-0.1	
	60%	59.7	+/-3.0	0.0	0.0	0.0	+/-0.1	
CO2	5%	0.0	0.0	5.0	+/-0.3	0.0	+/-0.1	
	40%	0.0	0.0	40.2	+/-3.0	0.0	+/=0.1	
O2	20.9%	0.0	0.0	0.1	+0.1	20.8	+/-0.5	

			OPTI	ONAL GAS	CHECKS			_
Calibrat	tion Gas			Instrun	nent Gas Chann	els Read		
Gas Type	Applied	Label	H2S	CO	Constant and the second se	I	Iexane	tol.
1212010202020	Conc.	Range	5000ppm	2000ppm			2.00%	(% vol.)
N2	100%	Malla L	0	0	SHOULD I		0	0.0
H2S	1500ppm	13 eller	1500	0	The second second	D VO VERSIT	aller the	+/= 5.0
CO	1000ppm	(19)	70	998	March 19 1		Waterwar	+/- 5.0
Hexane	2.00%				Contractor and the		1.966	+/- 10.0

PRESSURE CHECKS							
Calibratio	n Pressure		Instru	nent Pressure	e Channels Rea	d	
Pressure @	Applied Pressure	Atmospheric [Ap] (mB)	tol. (mB)	No. A game		AND AND AND	
All Ports	Current Atmospheric	1012	+/-2.0	of Pilare		10.000	
Ap Port	+800mB(a)	802	+/-5.0	STELLAR DALES		Shiring and shares	
(Internal)	+1200mB(a)	1197	+/-5.0	Sally Parts	La Sold have been	and the second second	

TEST DATE AND COM	DITIONS
Date	03/03/21
Atmospheric Pressure	1013mB
Ambient Temp	24.7°C
Environics Serial No.	2518

GFM436-3 FINAL INSPECTION & CALIBRATION CHECK CERTIFICATE FLOW CHECKS

Calibra	tion Flow	Instrument Flow Channels Read						
Applied Flow (l/hour)	Applied Pressure (Pa)	Flow [Flow] (1/hour)	tol. (1/hour)	Differential Pressure [Dp] (Pa)	tol. (Pa)			
-30.0	-305	-28.6	+/-3.0	-319	+/-50			
-3.0	-10	-2.7	+/-1.0	-10	+/-6			
0.0	0	0.0	0.0	0	0.0			
+3.0	9	3.1	+/-0.5	11	+/-3			
+30.0	283	29.7	+/-3.0	287	+/-50			
+60.0	840	60.1	+/-6.0	847	+/-130			
+90.0	1642	90.1	+/-9.0	1676	+/-250			

TEMPERATURE CHECK								
Calibration Temperature	Instrument Temperature Channel Read							
Applied Equivalent Temperature (°C)	Temperature [Temp] (°C)	tol. (°C)						
-10.0	-10.5	+/- 2.0						
0.0	0.0	+/- 1.0						
30.0	30.0	+/- 1.0						
60.0	60.0	+/- 1.0						
100.0	99.5	+/- 1.0						

Notes:

The instrument identified by the serial number stated above has been tested by Gas Data personnel for calibration accuracy on the date and under the ambient conditions stated. Gas Data Ltd internal BS EN ISO9001:2015 compliant workshop procedures were followed to apply known calibration test gases, gas flow rates, pressures and temperatures of the values stated. The results displayed on the instrument at each stage are recorded above.

Gas Data Ltd is certified to BS EN ISO9001:2015. Certificate NQA 8374. Valid until 22/03/2019

CERTIFICATE OF CALIBRATION Phocheck Tiger

CALIBRATION CERTIFICATE NO:

ISSUED BY:	SHAWCITY LIMITED
DATE:	09.09.20
APPROVED SIGNATORY:	Morde 2002
NAME:	Matt Jordison
CUSTOMER:	Concept Engineering Consultants
INSTRUMENT:	Tiger
SERIAL NUMBER;	T-107908
CALIBRATION METHOD:	CM03
AMBIENT CONDITIONS:	20°C ± 2°C and 50% (± 20%) RH

Prior to calibration the instrument was allowed to stabilise in the laboratory for at least 30 minutes.

The instrument was calibrated by exposing the sensor to known values of gas concentrations.

All gases were sampled through the complete probe and in line filter, where applicable.

The reference value is that generated by the certified source and the indicated value is that measured by the instrument.

CALIBRATION RESULTS

GAS	LOT No	REF. VALUE	INDICATED VALUE		
Isobutylene	WO241578-1	100 ppm	100 ppm		
Isobutylene	WO229476-2	1000 ppm	1000 ppm		

COMMENTS:

The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2.

This provides a level of confidence of uncertainty of approximately 95%.

The uncertainty of measurement is ±2 %

The results indicate that the instrument conforms to the applicable parts of the published specification.

HEALTH & SAFETY, OCCUPATIONAL HYGIENE AND ENVIRONMENTAL MONITORING INSTRUMENTS

Tel: 01793 780622 www.shawcity.co.uk Instrument House, 91-92 Shrivenham Hundred Business Park Watchfield, Oxfordshire, SN6 8TY Fax: 01793 784466 service@shawcity.co.uk

14. GEOTECHNICAL LABORATORY TEST RESULTS

Site Na	me:		Elleray	Hall & North Lane Depot/East Ca	ar Park			Job No.		20/3521
lient:			Richmo	nd & Wandsworth Council	Date Rep	orted:	08/04/2021			
				Summary 7	Test Rep	ort				
0	Detern	ninati	on of N	loisture Content and Liqu						Method
Borehole	Sample	Sample	Depth	Description	Natural Moisture	Passing 425 μm	Liquid Limit	Plastic Limit	Plasticity Index	Remarks
No.	Туре	No.	m		Content %	sieve %	%	%	%	
BH1					24	61	30	18	12	
BH1	В	10	1.20	Brown clayey silty gravelly SAND. Gravel is fine to coarse flint	10	62	30	19	11	
BH1	D	24	7.70	Greyish brown slightly micaceous silty CLAY	27	100	68	26	42	
BH1 UT		53	19.50	Very stiff, extremely closely fissured dark brown slightly sandy slightly micaceous silty CLAY with rare partings (<1mm) of silty sand and white flecks		100	69	25	44	
S 1377: S 1377:	Part 2: Cl Part 2: Cl	ause 5: 1 ause 3.2	990 Deterr : 1990 Dete	D Determination of the liquid limit by the con- nination of the plastic limit and plasticity inde ermination of the moisture content by the over	ex.			AGS		
	ples receiv	-		09/03/2021						
	ples received		ed :	29/03/2021 Checked / Approv	ved by:	LG	1	Unit D, Herald	OOROEPT Way, Coventr	rv CV3 2RQ
te - sam	ple testing	completed	:	06/04/2021 Date Approved:		08/04/2021		Tel	02477087673	

				CONCEPT SITE IN	IVESTIC	GATIO	ns			
Site Na	ame:		Elleray H	all & North Lane Depot/East Car Pa	rk			Job No.	:	20/3521
lient:			Richmon	d & Wandsworth Council			Date Reported: 08/04/2021			
	Dete	ermin	ation of	Summary Te Moisture Content and Liquid	-		nits by	4 Point	Cone N	lethod
Borehole	Sample	Sample	Depth	Description	Natural Moisture Content	Passing 425 μm sieve	Liquid Limit	Plastic Limit	Plasticity Index	Remarks
No. BH2	Type B	<u>No.</u> 6	m 0.90	Orangish brown sandy slightly gravelly silty CLAY. Gravel is fine to medium flint	<u>%</u> 18	<u>%</u> 85	<u>%</u> 24	<u>%</u> 12	<u>%</u> 12	
BH2	D	10	1.50	Orangish brown slightly gravelly slightly sandy SILT. Gravel is fine and medium flint	16	83	25	15	10	
BH2	D	24	7.95	Greysih brown slightly micaceous silty CLAY	27	100	72	26	46	
BH2	D	40	14.20	Greyish brown slightly micaceous silty CLAY	25	100	77	28	49	
BH2	D	52	19.20	Dark brown slightly micaceous silty CLAY with rare pockets of grey silty sand	24	100	73	26	47	
S 1377: S 1377:	Part 2: Cl Part 2: Cl	lause 5: ′ lause 3.2	1990 Determir : 1990 Detern	Determination of the liquid limit by the cone pene nation of the plastic limit and plasticity index nination of the moisture content by the oven dryir		hod		AGS:	ala të Parikisi e Katelori parikisi t	
		-	ea relate only	-			1			
			xed :	09/03/2021 29/03/2021 Checked / Appro	oved by:	LG				
	ple testing			06/04/2021 Date Approved:		08/04/2021	_	Te	l: 0247708767	'3
1377: 1377: marks: e - sam e - sam e - sam	Part 2: Cl Part 2: Cl The resu pples receiv	lause 5: ⁻ lause 3.2 llts report red: commenc complete	1990 Determir : 1990 Determ ed relate only xed : d :	nation of the plastic limit and plasticity index nination of the moisture content by the oven dryir to the items tested or sampled. 09/03/2021 29/03/2021 Checked / Appre	ng method	LG			d Way, Covent I: 0247708767	try CV3 2RC

N14 N1				Liall 9 North Lana Danat/East Oa	n Denla			1.1. N.		00/0504
Site Na	ime:		•	Hall & North Lane Depot/East Ca	r Park			Job No.:		20/3521
Client:			Richmo	nd & Wandsworth Council				Date Rep	orted:	08/04/2021
	Dotor	minati	ion of I	Summary Summary	-		imita h	v 4 Doin	+ Cono	Mothod
	Jelen	iiiiat		Moisture Content and Liqu	Natural	Passing	Liquid	Plastic	Plasticity	
Borehole	Sample	Sample	Depth	Description	Moisture Content	425 μm sieve	Limit	Limit	Index	Remarks
N₀. STP1	Туре В	No. 5	m 0.70	Dark brown clayey silty slightly	% 17	% 68	% 23	% 12	% 11	
SIFI	В	5	0.70	gravelly SAND. Gravel comprises fine to medium flint and brick fragments	17	00	23	12		
STP2	В	7	1.20	Orangish brown mottled brownish grey slightly gravelly sandy silty CLAY. Gravel is fine to medium flint	20	80	36	20	16	
STP3	В	7	1.50	Yellowish brown very sandy slightly gravelly silty CLAY. Gravel is fine to coarse flint	13	77	34	14	20	
WS1	D	9	1.20	Yellowish brown slightly sandy slightly gravelly clayey SILT. Gravel comprises fine to medium flint	19	58	40	29	11	
WS2	В	8	1.00	Orangish brown slightly sandy slightly gravelly silty CLAY. Gravel comprises fine to coarse flint, brick and concrete fragments		60	32	17	15	
WS3	В	6	1.00	Greyish brown slightly sandy slightly gravelly silty CLAY. Gravel is fine to medium flint	22	75	28	20	8	
WS5	В	8	1.00	Orangish brown slightly sandy slightly gravelly silty CLAY .Gravel is fine to medium flint	21	46	30	19	11	
WS6	D	9	1.20	Orangish brown sandy slightly gravelly silty CLAY. Gravel is fine to medium flint	14	61	39	15	24	
8S 1377: 8S 1377:	Part 2: C Part 2: C	lause 5: 1 lause 3.2	990 Deterr : 1990 Dete	D Determination of the liquid limit by the const nination of the plastic limit and plasticity inde ermination of the moisture content by the ove nly to the items tested or sampled.	x		1	AGS:		
			טי יכומול טו							
	ples receiv	/ed: commenc	ed :	09/03/2021 31/03/2021 Checked / Appro	oved by:	LG		Unit D, Herald	OONOLPT Way, Covent	rv CV3 2R0
		completed		06/04/2021 Date Approved:		08/04/2021	I		0247708767	

Form Läb/00n/cept System/2020/203521 - Elleray Hall & North Lane Depot/LAB RESULTS/Geotechnical/Concept/SCH 2/203521 NMC PI (STP1,STP2,STP3,WS1,WS2,WS3,WS5,WS6,WS8,WS9,WS10) Rev 01/20 02 July 2020

				CONCEPT SITE I	NVESTI	GATIO	ns			
Site Na	me:		Elleray Ha	all & North Lane Depot/East Car Pa	ark			Job No.:		20/3521
Client:			Richmond	d & Wandsworth Council	Date Reported: (08/04/2021			
				Summary Te	est Repor	t		•		
	Dete	ermin	ation of	Moisture Content and Liquid						lethod
Borehole	Sample		Depth	Description	Natural Moisture Content	Passing 425 μm sieve	Liquid Limit	Plastic Limit	Plasticity Index	Remarks
No. WS8	Type B	<u>No.</u> 4	m 0.30	Dark brown slightly sandy gravelly silty CLAY. Gravel comprises fine to coarse flint, brick and concrete fragments	21	<u>%</u> 45	<u>%</u> 28	<u>%</u> 16	<u>%</u> 12	
WS9	В	4	0.40	Dark brown slightly sandy gravelly silty CLAY. Gravel comprises fine to medium flint, brick and concrete fragments	20	44	38	26	12	
WS10	D	9	1.20	Orangish brown sandy slightly gravelly silty CLAY. Gravel is fine to coarse flint	13	70	27	16	11	
BS 1377:	Part 2: C	lause 4.3	& 4.4: 1990 E	Determination of the liquid limit by the cone pen-	etrometer met	thod				E CERT
				nation of the plastic limit and plasticity index	ing method			AGS		
Remarks:	The resu	ilts report	ed relate only	to the items tested or sampled.						
Date - sam	oles receiv	/ed:		09/03/2021					CONCEPT	
Date - sam	-			31/03/2021 Checked / App		LG		Unit D, Herald	Way, Covent	
Date - sample testing completed : 06/04/2021 Date Approved: 08/04/2021 Approved Signatories: L Griffin LG (QA Technical & Lab Mngr) – K Mazerant KM (Lab Mngr) Mazerant KM (Lab Mngr)										

	CON	CEPT SITE	INVESTIGA	TIONS					
	PAF	RTICLE SIZE TEST R	DISTRIBUT	<u>'ION</u>					
Site Name:	Elleray Hall & North Lane Dep	ot/East Car Park			Job Number:	20/3521			
Client:	Richmond & Wandsworth Cou				Date Reported:	08/04/2021			
Borehole No:	BH1 Sample Type/No.	B 16	Top Depth:	4.00 m	Bottom Depth:	4.45 m			
Soil Description: Brown very sandy fine to coarse flint GRAVEL									
BS Test Sieves Size (mm) % Passing 75.000 100 63.000 100 50.000 95 37.500 92 28.000 82 20.000 69 14.000 54 10.000 43 6.300 35 5.000 31 3.350 27 2.000 23 1.180 20 0.600 14 0.425 9 0.300 4 0.212 1 0.150 1 0.063 0 Sedimentation (*if applicable) Size (mm) % Passing 0.020 0.006 0.002 0.002			0.1000 Particle Siz	1.0000	Image: Constraint of the second sec	100.0 90.0 80.0 70.0 60.0 50.0 90.0 80.0 70.0 60.0 50.0 90.0 70.0 100.0 90.0 70.0 100.0 90.0 90.0 80.0 90.0 70.0 90.0 90.0 90.0 80.0 90.0 90.0 90.0 9			
Method/type: Dry Sieving Particle Proportions % Cobbles Gravel 76.7 Sand 23.1 Silt and Clay 0.1 Remarks:	09/03/2021			y sieving method.	AGS	4503			
Date - sample testing commenced : Date - sample testing completed : Approved Signatories: L Griffi			LG 08/04/2021 ngr)		47-49 Brunel Road, Lo Tel: 0208740 Email: lab@conceptco	ondon W3 7XR 1553			

	CONC	EPT SITE INVE	STIGATIONS		
	PAR	TICLE SIZE DIST	RIBUTION		
		TEST REPORT	-		
Site Name:	Elleray Hall & North Lane Depo	t/East Car Park		Job Number:	20/3521
Client:	Richmond & Wandsworth Cour	ncil		Date Reported:	08/04/2021
Borehole No:	BH2 Sample Type/No.	B 13 Top D	epth: 2.50 m	Bottom Depth:	m
Soil Description:		Brown slightly clayey very gra	avelly SAND. Gravel is fine to	coarse flint	
BS Test Sieves Size (mm) % Passing 75.000 100 63.000 100 50.000 100 50.000 100 37.500 95 28.000 91 20.000 87 14.000 81 10.000 76 6.300 69 5.000 66 3.350 61 2.000 56 1.180 51 0.600 41 0.425 31 0.300 19 0.212 11 0.150 7 0.063 3 Secimentation (*if applicable) Size (mm) % Passing 0.020 0.006 0.002 0.002		Image: Constraint of the second state of the second sta	0.1000 Particle Size (mm)		100.0 90.0 90.0 80.0 70.0 60.0 50.0 40.0 20.0 100.0000 100.0000
Method/type: Wet Sieving Particle Proportions % Cobbles Gravel 43.8 Sand 53.0 Silt and Clay 3.2	BS 1377: Part 2: Clause 9.2: 1990 D	etermination of particle size dist	ribution - wet sieving method.	AG8	
Date - samples received: Date - sample testing commenced : Date - sample testing completed :		ecked / Approved by: LG te Approved: 08/04/2021 Mazerant KM (Lab Mngr)		COROLPT 47-49 Brunel Road, Londo Tel: 0208740155 Email: lab@conceptconsult	3

			COUC	EPT SITE	INVE	TIGATIO	ns		
			PAR	TICLE SIZE	<u>DIST</u>				
Site Name:			North Long Danat						20/2524
Client:		-	North Lane Depot					Job Number:	20/3521
Borehole No:			Sample	B 7	Top D	epth: 1.60 r	n	Date Reported: Bottom	m
			Type/No.		100 2	1.001		Depth:	
Soil Description:		Orangish bro	own very gravelly sil	ty SAND with occa	asional po	ckets of sandy clay	. Gravel c	omprises fine to coarse	e flint and sandstone
BS Test Siev	'es								100.0
	Passing								
75.000 63.000	100 100								90.0
50.000 37.500	100 100								80.0
28.000	100					#			70.0
20.000 14.000	95 91								
10.000	87								60.0 ×
6.300 5.000	85 83								50.0 sing
3.350 2.000	82 80								
1.180	77								40.0
0.600 0.425	72 64					Ĭ			30.0
0.300	52								
0.212	35 20	-							20.0
0.063	13					*			10.0
									0.0
Sedimentatio (*if applicable		0.0001	0.0010	0.0100		0.1000 Particle Size (mm)	1.0000	10.0000	100.0000
Size (mm) %	Passing	<u> </u>		F M	с	F M	с	F M O	
0.006			CLAY	SILT		SAND		GRAVEL	COBBLES
0.002									ö
Method/type: Wet	Sieving BS	5 1377: Part 2	Clause 9.2: 1990 De	termination of partic	le size dist	ribution - wet sieving	method.		
Particle Proportio	ons %								_ <u>_</u>
Cobbles Gravel	20.3							100	(≱≮)
Sand	67.2							AGS	UKAS -
Silt and Clay	12.5								4503
Remarks:									
The results reported re	elate only to th	e items teste	d or sampled.						
Date - samples received:		09/03/2021							
Date - sample testing cor Date - sample testing cor		01/04/2021 07/04/2021		cked / Approved by: Approved:	LG 08/04/2021			47-49 Brunel Road, Lon	
Approved Signatorie	-							Tel: 020874019 Email: lab@conceptcons	
.,		,	3.,	(<u></u> iii	.,			-	

		CONC	EPT SITE	INVEST	IGATIONS		
		PAR	TICLE SIZE		IBUTION		
			TEST F	REPORT			
Site Name:	Elleray Hall 8	North Lane Depot	t/East Car Park			Job Number:	20/3521
Client:	Richmond &	Wandsworth Coun	icil			Date Reported:	08/04/2021
Borehole No:	STP3	Sample Type/No.	B 9	Top Dept	h: 2.50 m	Bottom Depth:	m
Soil Description:							
		(Orangish brown sli	ghtly clayey v	ery sandy fine to coa	arse flint GRAVEL	
BS Test Sieves							- •
Size (mm) % Pas							
75.000 10 63.000 10							90.0
50.000 10							80.0
37.500 90 28.000 70							
20.000 56	6						70.0
14.000 44 10.000 38							60.0
6.300 34							
5.000 32						/	Passing
3.350 30 2.000 27							
1.180 25							40.0
0.600 2'							30.0
0.425 16 0.300 1 ⁻							
0.212 7							20.0
0.150 5					×		
0.063 3				0	*		10.0
Sedimentation (*if applicable)	0.0001	0.0010	0.0100		1000 1.00 article Size (mm)	10.0000	0.0
Size (mm) % Pas	ssing						
0.020			F M	С	F M O	C F M C	E C
0.006		CLAY	SILT		SAND	GRAVEL	COBBLES
0.002			<u> </u>				
Method/type: Wet Sie	eving BS 1377: Part 2	2: Clause 9.2: 1990 D	etermination of partic	le size distribu	ition - wet sieving meth	nod.	
Particle Proportions	· %						de
Cobbles							(SA)
Gravel 72 Sand 24						AGS	
Sand 24 Silt and Clay 3.							UKAS
							4503
Remarks:							
The results reported relate	-	ed or sampled.			T		
Date - samples received: Date - sample testing comme	09/03/2021 enced : 01/04/2021	Ch	ecked / Approved by:	LG		OOROEPT	
Date - sample testing comple			te Approved:	08/04/2021		47-49 Brunel Road, Lono Tel: 020874015	
Approved Signatories: L	Griffin LG (QA Techn	ical & Lab Mngr) – K I	Mazerant KM (Lab M	ngr)		Email: lab@conceptcons	

🔅 eurofins

Chemtest Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-08106-1		
Initial Date of Issue:	19-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Kasia Mazerant Lab		
Project	20/3521		
Quotation No.:	Q21-22809	Date Received:	15-Mar-2021
Order No.:	L2462	Date Instructed:	15-Mar-2021
No. of Samples:	10		
Turnaround (Wkdays):	5	Results Due:	19-Mar-2021
Date Approved:	19-Mar-2021		
Approved By:			
Ulipe Mary			

Details:

Glynn Harvey, Technical Manager

<u> Results - Soil</u>

Project: 20/3521

Client: Concept Consultants		Che	mtest J	ob No.:	21-08106	21-08106	21-08106	21-08106	21-08106	21-08106	21-08106	21-08106	21-08106
Quotation No.: Q21-22809	Chemtest Sample ID.:		1159838	1159839	1159840	1159841	1159842	1159843	1159844	1159845	1159846		
		Client Sample ID.:				28	41	53	9	14	23	30	46
	Sample Location:			BH1	BH1	BH1	BH1	BH2	BH2	BH2	BH2	BH2	
	Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
	Top Depth (m):			4.70	9.45	14.00	19.50	1.20	3.20	7.50	10.20	16.50	
		Bot	ttom De	oth (m):			14.45	19.95			7.95		16.95
			Date Sa	ampled:	10-Mar-2021								
Determinand	Accred.	SOP	Units	LOD									
Moisture	Ν	2030	%	0.020	13	18	18	18	14	10	23	22	18
рН	U	2010		4.0	9.0	8.8	8.7	8.8	8.7	9.0	8.7	8.7	8.9
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	0.038	0.076	0.11	< 0.010	< 0.010	0.038	0.088	0.052

Project: 20/3521

Client: Concept Consultants		Che	ob No.:	21-08106			
Quotation No.: Q21-22809	(Chemte	st Sam	ple ID.:	1159847		
		Clie	ent Sam	ple ID.:	53		
		Sa	ample Lo	ocation:	BH2		
		Sample Type:					
		Top Depth (m):					
		Bot	tom Dep	oth (m):	20.00		
			Date Sa	ampled:	10-Mar-2021		
Determinand	Accred.	SOP	Units	LOD			
Moisture	Ν	N 2030 % 0.020					
рН	U	8.8					
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.26		

Test Methods

SOP	Title	Parameters included	Method summary					
2010	pH Value of Soils	рН	pH Meter					
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.					
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930					
	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES					

Report Information

Key	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently

corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-08014-2		
Initial Date of Issue:	19-Mar-2021	Date of Re-Issue:	30-Mar-2021
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Kasia Mazerant Lab Lynn Griffin		
Project	20/3521		
Quotation No.:	Q21-22809	Date Received:	15-Mar-2021
Order No.:	L2463	Date Instructed:	15-Mar-2021
No. of Samples:	6		
Turnaround (Wkdays):	5	Results Due:	19-Mar-2021
Date Approved:	19-Mar-2021		
Approved By:			

Hip Mary

Details:

<u> Results - Soil</u>

Project: 20/3521

Client: Concept Consultants		Che	mtest Jo	ob No.:	21-08014	21-08014	21-08014	21-08014	21-08014	21-08014
Quotation No.: Q21-22809	(Chemte	st Sam	ple ID.:	1159289	1159290	1159291	1159292	1159293	1159294
		Cli	ent Sam	ple ID.:	7	7	8	8	6	8
	Sample Location:			STP1	STP2	STP2	WS1	WS3	WS10	
		Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Top Depth (m):			1.60	1.20	2.0	1.00	1.00	0.90
		Bot	tom Dep	oth (m):				1.10		
			Date Sa	ampled:	11-Mar-2021	11-Mar-2021	11-Mar-2021	11-Mar-2021	11-Mar-2021	11-Mar-2021
Determinand	Accred.	SOP	Units	LOD						
Moisture	Ν	2030	%	0.020	15	22	14	18	18	17
рН	U	2010		4.0	8.5	8.4	8.8	8.3	8.4	7.6
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.025	< 0.010	< 0.010	< 0.010	0.034	< 0.010

Test Methods

SOP	Title	Parameters included	Method summary					
2010	pH Value of Soils	рН	pH Meter					
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.					
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930					
	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES					

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently

corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

C	ONCE	PT SI	ΓΕ ΙΛΥ	ESTIGATIONS	Summary Te	(S	port - Undrained Triaxial Compression (Single-Stage) BS 1377 : Part 7: 1990 Clause 8					eported:	08/04/2021 20/3521
Sit	te Locatio	on:	Elleray H	all & North Lane Depot/E	ast Car Park	Client:	Richmond	d & Wands	sworth Cour	ncil		110	20/0021
BH No.	Sample Type	Sample No	Depth top (m)	Description	n	Cell pressure kN/m2	Strain at failure %	Bulk Density Mg/m3	Dry Density Mg/m3	NMC %	Max Dev. Stress kPa	Shear Strength kPa	Mode of failure/Comments
BH1	UT	22	7.00	Very stiff, very closely fissur slightly micaceous silty CLA	140	9.0	1.99	1.55	28	180	90	Brittle with slight plastic deformation	
BH1	UT	33	11.00	Very stiff, very closely fissur slightly micaceous silty CLA flecks		220	6.8	1.99	1.55	29	211	106	Brittle
BH1	UT	43	15.00	Very stiff, extremely closely brown slightly micaceous si		300	2.8	1.98	1.53	29	234	117	Brittle
BH1	UT	53	19.50	Very stiff, extremely closely brown slightly sandy slightly CLAY with rare partings (<1 and white flecks	390	3.5	2.05	1.65	24	645	323	Brittle	
Remarks: T	The results r	eported rela	ate only to th	e items tested or sampled.		·		•	· · ·				
Date - samples received: 09/03/2021									CONCEPT				de _
Date - sample testing commenced: 29/03/2021 Date - sample testing completed: 31/03/2021				29/03/2021 31/03/2021	Checked/Approved by: Date Approved:	LG 08/04/2021			el Road, Londor el: 02087401553			AGS	- (><) -
Approved Signatories: L Griffin LG (QA Technical & Lab Mngi				- K Mazerant KM (La	b Mngr)	Email: Lab@conceptconsultants.co.uk					- ų		

C	ONCE	PT SI	ΓΕ ΙΛΥ	ESTIGATIONS	Summary Te	(S	Undrain ingle-Sta	ige)	al Compre	ession		eported:	08/04/2021 20/3521
Sit	te Locatio	on:	Elleray H	all & North Lane Depot/E	ast Car Park	Client:	Richmond	d & Wands	sworth Cour	ncil			20,0021
BH No.	Sample Type	Sample No	Depth top (m)	Description	n	Cell pressure kN/m2	Strain at failure %	Bulk Density Mg/m3	Dry Density Mg/m3	NMC %	Max Dev. Stress kPa	Shear Strength kPa	Mode of failure/Comments
BH2	UT	28	9.50	Very stiff, extremely closely brown slightly micaceous si		190	7.7	1.99	1.54	29	214	107	Brittle
BH2	UT	33	11.50	Very stiff, very closely fissur slightly micaceous silty CLA pockets of shell fragments		230	5.3	1.99	1.57	27	316	158	Brittle
BH2	UT	43	15.50	Very stiff, very closely fissu brown slightly micaceous si		310	2.9	2.01	1.57	27	280	140	Brittle
BH2	UT	48	17.50	Very stiff, very closely fissur brown slightly micaceous si pockets of grey silty sand		360	2.6	2.04	1.64	25	407	204	Brittle
Remarks: The results reported relate only to the items tested or sampled.									L				
Date - sam	ples receive	ed:		09/03/2021									dia a
	ple testing c		:	29/03/2021	Checked/Approved by:				CONCEPT el Road, Londor			AGS	- (><)-
	ple testing of Signatories		L Griffin L	31/03/2021 .G (QA Technical & Lab Mngr) -	Date Approved: - K Mazerant KM (Lal	08/04/2021 b Mngr)	21 Tel: 02087401553 Email: Lab@conceptconsultants.co.uk			4503			

15. CHEMICAL LABORATORY TEST RESULTS

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-05672-1		
Initial Date of Issue:	08-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Chris Hustler Kasia Mazerant		
Project	20/3521 Elleray Hall		
Quotation No.:	Q21-23032	Date Received:	24-Feb-2021
Order No.:	CL2727	Date Instructed:	01-Mar-2021
No. of Samples:	2		
Turnaround (Wkdays):	5	Results Due:	05-Mar-2021
Date Approved:	08-Mar-2021		
Approved By:			

Upp Mary

Details:

2183

Final Report

Glynn Harvey, Technical Manager

Client: Concept Consultants	Chemtest Job No.:				21-05672	
Quotation No.: Q21-23032	(st Sam		1147935	1147936
	Sample Loca				WS1	WS1
		Sample Type:			SOIL	SOIL
			Top Dep	, ,	0.30	0.60
		Bo	tom Dep			0.70
			Date Sa		22-Feb-2021	22-Feb-2021
	· · ·			os Lab:	COVENTRY	
Determinand	Accred.	SOP	Units		-	
АСМ Туре	0	2192		N/A		
Asbestos Identification	U	2192		N/A	No Asbestos Detected	
ACM Detection Stage	U	2192		N/A	-	
Moisture	Ν	2030	%	0.020	13	13
Soil Colour	N	2040	ļ	N/A	Black	Black
Other Material	N	2040	ļ	N/A	Stones	Stones
Soil Texture	N	2040		N/A	Clay	Clay
pH	M	2010		4.0	8.4	8.3
Boron (Hot Water Soluble)	M	2120	0 0	0.40	1.7	1.8
Sulphate (2:1 Water Soluble) as SO4	M	2120	g/l	0.010	0.060	0.060
Cyanide (Total)	M	2300	0 0	0.50	0.90	8.4
Sulphate (Total)	M	2430	%	0.010	0.29	0.35
Arsenic	M	2450 2450		1.0	24	23 0.38
Cadmium	M	2450	0 0	0.10	0.36 22	28
Chromium Copper	M	2450	mg/kg mg/kg	0.50	56	92
Mercury	M	2450	mg/kg	0.30	0.64	0.62
Nickel	M	2450	0 0	0.10	22	24
Lead	M	2450	0 0	0.50	300	370
Selenium	M	2450	0 0	0.20	0.26	0.34
Zinc	M	2450	0 0		160	430
Chromium (Hexavalent)	N	2490	00	0.50	< 0.50	< 0.50
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	0 0	1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	М	2680		1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	М	2680		1.0	19	< 1.0
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0	25	< 1.0
Aliphatic TPH >C16-C21	М	2680		1.0	41	4.5
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0	130	17
Aliphatic TPH >C35-C44	Ν	2680	mg/kg	1.0	51	< 1.0
Total Aliphatic Hydrocarbons	Ν	2680	mg/kg	5.0	270	22
Aromatic TPH >C5-C7	N	2680	0 0	1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0	21	< 1.0
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0	180	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	870	27

Client: Concept Consultants	Chemtest Job No.:			21-05672	21-05672	
Quotation No.: Q21-23032	(Chemte	est Sam	ple ID.:	1147935	1147936
	Sample Location:				WS1	WS1
				e Type:	SOIL	SOIL
			Тор Dep	, ,	0.30	0.60
		Bot	tom Dep	. ,		0.70
			Date Sa	-	22-Feb-2021	22-Feb-2021
				os Lab:	COVENTRY	
Determinand	Accred.	SOP		LOD		
Aromatic TPH >C21-C35	M	2680	0 0	1.0	2600	97
Aromatic TPH >C35-C44	N	2680	0 0	1.0	300	< 1.0
Total Aromatic Hydrocarbons	N	2680	0 0	5.0	4000	120
Total Petroleum Hydrocarbons	N	2680	0 0	10.0	4200	150
Naphthalene	M	2700	00	0.10	2.5	0.41
Acenaphthylene	M	2700 2700	mg/kg	0.10	17 11	1.0 0.83
Acenaphthene Fluorene	M	2700	mg/kg	0.10	28	1.9
Phenanthrene	M	2700	mg/kg mg/kg	0.10	170	9.9
Anthracene	M	2700		0.10	55	9.9 3.1
Fluoranthene	M	2700	00	0.10	200	13
Pyrene	M	2700		0.10	190	12
Benzo[a]anthracene	M	2700	3.3	0.10	92	5.6
Chrysene	M	2700	0 0	0.10	79	5.1
Benzo[b]fluoranthene	M	2700		0.10	96	6.4
Benzo[k]fluoranthene	М	2700	0 0	0.10	38	2.9
Benzo[a]pyrene	М	2700		0.10	83	5.5
Indeno(1,2,3-c,d)Pyrene	М	2700		0.10	64	3.5
Dibenz(a,h)Anthracene	М	2700		0.10	14	1.1
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	51	2.9
Total Of 16 PAH's	М	2700	mg/kg	2.0	1200	75
Dichlorodifluoromethane	U	2760	µg/kg	1.0	< 1.0	< 1.0
Chloromethane	М	2760	µg/kg	1.0	< 1.0	< 1.0
Vinyl Chloride	М	2760	µg/kg	1.0	< 1.0	< 1.0
Bromomethane	М	2760	µg/kg	20	< 20	< 20
Chloroethane	U	2760		2.0	< 2.0	< 2.0
Trichlorofluoromethane	М	2760		1.0	< 1.0	< 1.0
1,1-Dichloroethene	М	2760	mg/kg	1.0	< 1.0	< 1.0
Trans 1,2-Dichloroethene	М	2760	mg/kg	1.0	< 1.0	< 1.0
1,1-Dichloroethane	M	2760	µg/kg	1.0	< 1.0	< 1.0
cis 1,2-Dichloroethene	M	2760	µg/kg	1.0	< 1.0	< 1.0
Bromochloromethane	U	2760	µg/kg	5.0	< 5.0	< 5.0
Trichloromethane	M	2760	µg/kg	1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	M	2760		1.0	< 1.0	< 1.0
Tetrachloromethane	M	2760		1.0	< 1.0	< 1.0
1,1-Dichloropropene	U	2760	µg/kg	1.0	< 1.0	< 1.0
Benzene	M	2760	µg/kg	1.0	< 1.0	< 1.0
1,2-Dichloroethane	М	2760	µg/kg	2.0	< 2.0	< 2.0

Client: Concept Consultants	Chemtest Job No.:			21-05672	21-05672	
Quotation No.: Q21-23032	(est Sam		1147935	1147936
	Sample Location:			WS1	WS1	
	Sample Type:			SOIL	SOIL	
			Top Dep		0.30	0.60
		Bot	tom Dep			0.70
			Date Sa		22-Feb-2021	22-Feb-2021
			Asbest		COVENTRY	
Determinand	Accred.	SOP	Units	LOD	1.0	1.0
Trichloroethene	N	2760	µg/kg	1.0	< 1.0	< 1.0
1,2-Dichloropropane	M	2760	µg/kg	1.0	< 1.0	< 1.0
Dibromomethane Bromodichloromethane	M	2760 2760	µg/kg	1.0	< 1.0	< 1.0
	N	2760	µg/kg	5.0 10	< 5.0	< 5.0 < 10
cis-1,3-Dichloropropene Toluene	M	2760	µg/kg µg/kg	1.0	< 10 < 1.0	< 1.0
Trans-1,3-Dichloropropene	N	2760	μg/kg μg/kg	1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	M	2760	µg/kg	10	< 10	< 10
Tetrachloroethene	M	2760	µg/kg	1.0	< 1.0	< 1.0
1,3-Dichloropropane	U	2760	µg/kg	2.0	< 2.0	< 2.0
Dibromochloromethane	U	2760	µg/kg	10	< 10	< 10
1.2-Dibromoethane	M	2760	µg/kg	5.0	< 5.0	< 5.0
Chlorobenzene	M	2760	µg/kg	1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	M	2760	µg/kg	2.0	< 2.0	< 2.0
Ethylbenzene	М	2760	µg/kg	1.0	< 1.0	< 1.0
m & p-Xylene	М	2760	µg/kg	1.0	< 1.0	< 1.0
o-Xylene	М	2760	µg/kg	1.0	< 1.0	< 1.0
Styrene	М	2760	µg/kg	1.0	< 1.0	< 1.0
Tribromomethane	U	2760	µg/kg	1.0	< 1.0	< 1.0
Isopropylbenzene	М	2760	µg/kg	1.0	< 1.0	< 1.0
Bromobenzene	М	2760	µg/kg	1.0	< 1.0	< 1.0
1,2,3-Trichloropropane	N	2760	µg/kg	50	< 50	< 50
N-Propylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0
2-Chlorotoluene	М	2760	µg/kg	1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	М	2760	µg/kg	1.0	< 1.0	< 1.0
4-Chlorotoluene	U	2760	µg/kg	1.0	< 1.0	< 1.0
Tert-Butylbenzene	U	2760		1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	M	2760	µg/kg	1.0	< 1.0	< 1.0
Sec-Butylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	M	2760	µg/kg	1.0	< 1.0	< 1.0
4-Isopropyltoluene	U	2760	µg/kg	1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	M	2760	µg/kg	1.0	< 1.0	< 1.0
N-Butylbenzene	U M	2760 2760	µg/kg	1.0 1.0	< 1.0 < 1.0	< 1.0
1,2-Dichlorobenzene	M	2760	µg/kg	1.0 50	< 1.0 < 50	< 1.0 < 50
1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene	M		µg/kg	1.0	< 50 < 1.0	< 50
	U	2760	µg/kg			
Hexachlorobutadiene 1.2.3-Trichlorobenzene	U U	2760 2760	µg/kg	1.0 2.0	< 1.0 < 2.0	< 1.0 < 2.0
1,∠,3-1 richiorobenzene	U	2760	µg/kg	2.0	< 2.0	< 2.0

Client: Concept Consultants	Chemtest Job No.:				21-05672	21-05672
Quotation No.: Q21-23032	Chemtest Sample ID.:				1147935	1147936
		Sa	ample Lo	ocation:	WS1	WS1
	Sample Type:			SOIL	SOIL	
	Top Depth (m):			0.30	0.60	
		Bot	tom Dep	oth (m):		0.70
			Date Sa	mpled:	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY	
Determinand	Accred. SOP Units LOD					
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0	< 1.0	< 1.0
Total Phenols	М	2920	mg/kg	0.30	0.48	< 0.30

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	pН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-05674-1		
Initial Date of Issue:	05-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Chris Hustler Kasia Mazerant		
Project	20/3521 Elleray Road		
Quotation No.:	Q21-23032	Date Received:	24-Feb-2021
Order No.:	CL2727	Date Instructed:	01-Mar-2021
No. of Samples:	2		
Turnaround (Wkdays):	5	Results Due:	05-Mar-2021
Date Approved:	05-Mar-2021		
Approved By:			

Upp Mary

Details:

2183

Final Report

Glynn Harvey, Technical Manager

Project: 20/3521 Elleray Road

Client: Concept Consultants			mtest Jo		21-05674	21-05674
Quotation No.: Q21-23032	(Chemtest Sample ID.:				1147942
		Sample Location:			WS2	WS2
				e Type:	SOIL	SOIL
			Top Dep		0.30	1.00
		Bot	ttom Dep			1.20
			Date Sa	ampled:	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
АСМ Туре	U	2192		N/A	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-
Moisture	N	2030	%	0.020	14	13
Soil Colour	Ν	2040		N/A	Brown	Brown
Other Material	Ν	2040		N/A	Stones	Stones
Soil Texture	Ν	2040		N/A	Sand	Sand
рН	М	2010		4.0	8.4	8.5
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	1.1	0.83
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.011	0.035
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	< 0.50
Sulphate (Total)	М	2430	%	0.010	0.11	0.042
Arsenic	М	2450	mg/kg	1.0	30	22
Cadmium	М	2450	mg/kg	0.10	< 0.10	< 0.10
Chromium	М		mg/kg	1.0	25	25
Copper	М	2450		0.50	2000	53
Mercury	М	2450	mg/kg	0.10	1.7	0.26
Nickel	М	2450	mg/kg	0.50	31	25
Lead	М	2450		0.50	1200	130
Selenium	М	2450		0.20	0.37	0.28
Zinc	М	2450	mg/kg	0.50	800	84
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50
Total Organic Carbon	М	2625		0.20		0.53
TPH >C6-C8	N	2670	mg/kg	1.0	< 1.0	< 1.0
TPH >C8-C10	N		mg/kg	1.0	< 1.0	< 1.0
TPH >C10-C12	N	2670		1.0	< 1.0	< 1.0
TPH >C12-C16	N	2670		1.0	< 1.0	12
TPH >C16-C21	N	2670		1.0	15	24
TPH >C21-C25	N	2670		1.0	22	14
TPH >C25-C35	N	2670		1.0	17	14
TPH >C35-C40	N	2670		1.0	< 1.0	< 1.0
Total TPH >C6-C40	M	-	mg/kg	10	54	63
Naphthalene	M		mg/kg	0.10	< 0.10	< 0.10
Acenaphthylene	M		mg/kg	0.10	< 0.10	< 0.10
Acenaphthene	M	2700	0 0	0.10	< 0.10	< 0.10
Fluorene	M	2700	mg/kg	0.10	< 0.10	< 0.10
Phenanthrene	M	2700	0 0	0.10	3.5	2.8

Project: 20/3521 Elleray Road

Client: Concept Consultants		Che	mtest Jo	ob No.:	21-05674	21-05674
Quotation No.: Q21-23032	(Chemte	est Sam	ple ID.:	1147940	1147942
		Sa	ample Lo		WS2	WS2
				e Type:	SOIL	SOIL
			Тор Dep	oth (m):	0.30	1.00
		Bot	tom Dep	oth (m):		1.20
			Date Sa	ampled:	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
Anthracene	М	2700	mg/kg	0.10	1.1	1.2
Fluoranthene	М	2700	mg/kg	0.10	11	6.7
Pyrene	М	2700	mg/kg	0.10	10	5.4
Benzo[a]anthracene	М	2700	mg/kg	0.10	6.9	3.9
Chrysene	М	2700	mg/kg	0.10	5.7	3.1
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	9.0	4.2
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	3.6	1.9
Benzo[a]pyrene	М	2700	mg/kg	0.10	6.9	3.1
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.10	5.3	2.1
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	1.5	0.59
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	4.2	1.7
Total Of 16 PAH's	М	2700	mg/kg	2.0	69	37
Total Phenols	М	2920	mg/kg	0.30	< 0.30	< 0.30

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key			
U	UKAS accredited		
М	MCERTS and UKAS accredited		
Ν	Unaccredited		
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis		
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis		
Т	This analysis has been subcontracted to an unaccredited laboratory		
I/S	Insufficient Sample		
U/S	Unsuitable Sample		
N/E	not evaluated		
<	"less than"		
>	"greater than"		
SOP	Standard operating procedure		
LOD	Limit of detection		
	Comments or interpretations are beyond the scope of LIKAS appreditation		

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently

corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-05677-1		
Initial Date of Issue:	05-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Chris Hustler Kasia Mazerant		
Project	20/3521 Elleray Hall		
Quotation No.:	Q21-23032	Date Received:	24-Feb-2021
Order No.:	CL2727	Date Instructed:	01-Mar-2021
No. of Samples:	3		
Turnaround (Wkdays):	5	Results Due:	05-Mar-2021
Date Approved:	05-Mar-2021		
Approved By:			

Upp Mary

Details:

2183

Final Report

Glynn Harvey, Technical Manager

Client: Concept Consultants		Che	mtest Jo	b No.:	21-05677	21-05677	21-05677
Quotation No.: Q21-23032	(Chemte	est Sam	ole ID.:	1147952	1147953	1147955
		Sa	ample Lo		BH1	BH1	BH1
				е Туре:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.25	0.40	1.00
		Bot	tom Dep	oth (m):			1.20
			Date Sa	mpled:	22-Feb-2021		
		Asbestos Lab:		COVENTRY		COVENTRY	
Determinand	Accred.	SOP	Units	LOD			
АСМ Туре	U	2192		N/A	-		-
Asbestos Identification	U	2192		N/A	No Asbestos Detected		No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-		-
Moisture	N	2030	%	0.020	2.8	2.5	13
Soil Colour	N	2040		N/A	Brown	Brown	Brown
Other Material	Ν	2040		N/A	Stones	Stones	Stones
Soil Texture	Ν	2040		N/A	Sand	Sand	Sand
рН	М	2010		4.0	9.3	9.3	7.2
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.70	0.75	0.86
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.066	0.052	0.12
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Sulphate (Total)	М	2430	%	0.010	0.28	0.10	0.043
Arsenic	М	2450	mg/kg	1.0	19	18	11
Cadmium	М	2450	mg/kg	0.10	0.10	< 0.10	< 0.10
Chromium	М	2450	mg/kg	1.0	25	22	17
Copper	М	2450	mg/kg	0.50	60	30	16
Mercury	М	2450	mg/kg	0.10	0.36	3.2	0.15
Nickel	М	2450	mg/kg	0.50	24	21	13
Lead	М	2450	mg/kg	0.50	1200	130	58
Selenium	М	2450	mg/kg	0.20	0.21	0.23	0.25
Zinc	М	2450	mg/kg	0.50	89	62	35
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Total Organic Carbon	М	2625	%	0.20	4.8		
TPH >C6-C8	N	2670	mg/kg	1.0	-	< 1.0	< 1.0
TPH >C8-C10	N	2670	mg/kg	1.0		6.7	< 1.0
TPH >C10-C12	N	2670	mg/kg	1.0		10	< 1.0
TPH >C12-C16	N	2670	mg/kg	1.0		200	6.2
TPH >C16-C21	N	2670	mg/kg	1.0		1200	11
TPH >C21-C25	N	2670	mg/kg	1.0		520	9.3
TPH >C25-C35	N	2670	mg/kg	1.0		1000	7.4
TPH >C35-C40	N	2670	mg/kg	1.0		230	< 1.0
Total TPH >C6-C40	M	2670	mg/kg	10		3200	34
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0		
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0		
Aliphatic TPH >C8-C10	M	2680	mg/kg	1.0	< 1.0		
Aliphatic TPH >C10-C12	M	2680	mg/kg	1.0	13		
Aliphatic TPH >C12-C16	M	2680	mg/kg	1.0	14		

Client: Concept Consultants			mtest Jo		21-05677 1147952	21-05677	21-05677
Quotation No.: Q21-23032	(Chemtest Sample ID.:				1147953	1147955
		Sa	ample Lo		BH1	BH1	BH1
			Sample		SOIL	SOIL	SOIL
			Тор Dep		0.25	0.40	1.00
		Bot	tom Dep	oth (m):			1.20
			Date Sa	mpled:	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY		COVENTRY
Determinand	Accred.	SOP	Units	LOD			
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0	28		
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0	150		
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	49		
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	250		
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0	81		
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0	38		
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0	270		
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	1500		
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	3700		
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	350		
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	5900		
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	6100		
Naphthalene	М	2700	mg/kg	0.10	20	26	< 0.10
Acenaphthylene	М	2700	mg/kg	0.10	65	66	< 0.10
Acenaphthene	М	2700	mg/kg	0.10	12	12	< 0.10
Fluorene	М	2700	mg/kg	0.10	75	83	< 0.10
Phenanthrene	М	2700	mg/kg	0.10	560	710	< 0.10
Anthracene	М	2700	mg/kg	0.10	150	160	< 0.10
Fluoranthene	М	2700	mg/kg	0.10	660	760	< 0.10
Pyrene	М	2700	mg/kg	0.10	560	620	< 0.10
Benzo[a]anthracene	М	2700	mg/kg	0.10	300	31	< 0.10
Chrysene	М	2700	mg/kg	0.10	240	230	< 0.10
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	320	340	< 0.10
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	130	140	< 0.10
Benzo[a]pyrene	M	2700	mg/kg	0.10	260	270	< 0.10
Indeno(1,2,3-c,d)Pyrene	M	2700	mg/kg	0.10	190	180	< 0.10
Dibenz(a,h)Anthracene	M	2700	mg/kg	0.10	45	47	< 0.10
Benzo[g,h,i]perylene	M	2700	mg/kg	0.10	160	160	< 0.10
Total Of 16 PAH's	M	2700	mg/kg	2.0	3700	3800	< 2.0
Dichlorodifluoromethane	U	2760	µg/kg	1.0	< 1.0		. 2.0
Chloromethane	M	2760	µg/kg	1.0	< 1.0		
Vinyl Chloride	M	2760	µg/kg	1.0	< 1.0		
Bromomethane	M	2760	µg/kg	20	< 20		
Chloroethane	U	2760	µg/kg	2.0	< 2.0		
Trichlorofluoromethane	M	2760	µg/kg	1.0	< 1.0		
1,1-Dichloroethene	M	2760	mg/kg	1.0	< 1.0		

Client: Concept Consultants			ntest Jo		21-05677	21-05677	21-05677
Quotation No.: Q21-23032	(est Sam		1147952	1147953	1147955
		Sa	ample Lo		BH1	BH1	BH1
				e Type:	SOIL	SOIL	SOIL
			Тор Dep	oth (m):	0.25	0.40	1.00
		Bot	tom Dep	oth (m):			
			Date Sa	mpled:	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY		COVENTRY
Determinand	erminand Accred. SOP U		Units	LOD			
Trans 1,2-Dichloroethene	М	2760	mg/kg	1.0	< 1.0		
1,1-Dichloroethane	М	2760	µg/kg	1.0	< 1.0		
cis 1,2-Dichloroethene	М	2760	µg/kg	1.0	< 1.0		
Bromochloromethane	U	2760	µg/kg	5.0	< 5.0		
Trichloromethane	М	2760	µg/kg	1.0	< 1.0		
1,1,1-Trichloroethane	М	2760	µg/kg	1.0	< 1.0		
Tetrachloromethane	М	2760	µg/kg	1.0	< 1.0		
1,1-Dichloropropene	U	2760	µg/kg	1.0	< 1.0		
Benzene	М	2760	µg/kg	1.0	< 1.0		
1,2-Dichloroethane	М	2760	µg/kg	2.0	< 2.0		
Trichloroethene	N	2760	µg/kg	1.0	< 1.0		
1,2-Dichloropropane	М	2760	µg/kg	1.0	< 1.0		
Dibromomethane	М	2760	µg/kg	1.0	< 1.0		
Bromodichloromethane	М	2760	µg/kg	5.0	< 5.0		
cis-1,3-Dichloropropene	N	2760	µg/kg	10	< 10		
Toluene	М	2760	µg/kg	1.0	< 1.0		
Trans-1,3-Dichloropropene	N	2760	µg/kg	10	< 10		
1,1,2-Trichloroethane	М	2760	µg/kg	10	< 10		
Tetrachloroethene	М	2760	µg/kg	1.0	< 1.0		
1,3-Dichloropropane	U	2760	µg/kg	2.0	< 2.0		
Dibromochloromethane	U	2760	µg/kg	10	< 10		
1,2-Dibromoethane	М	2760	µg/kg	5.0	< 5.0		
Chlorobenzene	М	2760	µg/kg	1.0	< 1.0		
1,1,1,2-Tetrachloroethane	М	2760	µg/kg	2.0	< 2.0		
Ethylbenzene	М	2760	µg/kg	1.0	< 1.0		
m & p-Xylene	М	2760	µg/kg	1.0	< 1.0		
o-Xylene	М	2760	µg/kg	1.0	< 1.0		
Styrene	М	2760	µg/kg	1.0	< 1.0		
Tribromomethane	U	2760	µg/kg	1.0	< 1.0		
Isopropylbenzene	М	2760	µg/kg	1.0	< 1.0		
Bromobenzene	М	2760	µg/kg	1.0	< 1.0		
1,2,3-Trichloropropane	N	2760	µg/kg	50	< 50		
N-Propylbenzene	U	2760	µg/kg	1.0	< 1.0		
2-Chlorotoluene	M	2760	µg/kg	1.0	< 1.0		
1,3,5-Trimethylbenzene	М	2760	µg/kg	1.0	< 1.0		
4-Chlorotoluene	U	2760	µg/kg	1.0	< 1.0		
Tert-Butylbenzene	U	2760	µg/kg	1.0	< 1.0		
1,2,4-Trimethylbenzene	M	2760	µg/kg	1.0	< 1.0		

Client: Concept Consultants		Che	mtest Jo	b No.:	21-05677	21-05677	21-05677
Quotation No.: Q21-23032	(Chemte	est Sam	ole ID.:	1147952	1147953	1147955
		Sa	ample Lo	ocation:	BH1	BH1	BH1
		Sample Type:			SOIL	SOIL	SOIL
			Тор Dep	oth (m):	0.25	0.40	1.00
		Bottom Depth (m):					1.20
		Date Sampled:				22-Feb-2021	22-Feb-2021
		Asbestos Lab:					COVENTRY
Determinand	Accred.	SOP	Units	LOD			
Sec-Butylbenzene	U	2760	µg/kg	1.0	< 1.0		
1,3-Dichlorobenzene	М	M 2760 µg/kg 1.0		< 1.0			
4-Isopropyltoluene	U	2760	µg/kg	1.0	< 1.0		
1,4-Dichlorobenzene	М	2760	µg/kg	1.0	< 1.0		
N-Butylbenzene	U	2760	µg/kg	1.0	< 1.0		
1,2-Dichlorobenzene	М	2760	µg/kg	1.0	< 1.0		
1,2-Dibromo-3-Chloropropane	U	2760	µg/kg	50	< 50		
1,2,4-Trichlorobenzene	М	2760	µg/kg	1.0	< 1.0		
Hexachlorobutadiene	U	2760	µg/kg	1.0	< 1.0		
1,2,3-Trichlorobenzene	U	2760	µg/kg	2.0	< 2.0		
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0	< 1.0		
Total Phenols	М	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Dichloromethane extraction / GCxGC FID detection
2700	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Speciated Polynuclear Benzo[b]Fluoranthene; Benzo[ghi]Perylene;		Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-05752-1		
Initial Date of Issue:	05-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Chris Hustler Kasia Mazerant		
Project	20/3521 Elleray Hall		
Quotation No.:	Q21-23032	Date Received:	24-Feb-2021
Order No.:	CL2727	Date Instructed:	01-Mar-2021
No. of Samples:	3		
Turnaround (Wkdays):	5	Results Due:	05-Mar-2021
Date Approved:	05-Mar-2021		
Approved By:			

Upp Mary

Details:

2183

Final Report

Glynn Harvey, Technical Manager

Client: Concept Consultants			mtest Jo		21-05752	21-05752	21-05752
Quotation No.: Q21-23032	(Chemte	est Sam	ple ID.:	1148288	1148289	1148292
		Sa	ample Lo		WS5	WS5	WS3
				e Type:	SOIL	SOIL	SOIL
			Top Dep		0.25	0.40	1.00
		Date Sampled: 22-Feb-2021		22-Feb-2021	22-Feb-2021		
			Asbest	os Lab:		COVENTRY	
Determinand	Accred.	SOP	Units	LOD			
АСМ Туре	U	2192		N/A		-	
Asbestos Identification	U	2192		N/A		No Asbestos Detected	
ACM Detection Stage	U	2192		N/A		-	
Asbestos by Gravimetry	U	2192	%	0.001		-	
Total Asbestos	U	2192	%	0.001		-	
Moisture	N	2030	%	0.020	3.6	9.2	16
Soil Colour	N	2040	1	N/A	Black	Brown	Brown
Other Material	N	2040	l	N/A	Stones	Stones	None
Soil Texture	N	2040	1	N/A	Chalk	Clay	Clay
рН	М	2010		4.0	8.9	,	
Boron (Hot Water Soluble)	М	_	mg/kg	0.40	< 0.40		
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.010		
Cyanide (Total)	М	2300	mg/kg	0.50	4.7		
Sulphate (Total)	М	2430	%	0.010	0.11		
Arsenic	М	2450	mg/kg	1.0	11		
Cadmium	М	2450		0.10	0.25		
Chromium	М	2450	0 0	1.0	3.5		
Copper	М	2450	mg/kg	0.50	8.4		
Mercury	М	2450		0.10	0.15		
Nickel	М	2450	mg/kg	0.50	3.7		
Lead	М	2450		0.50	50		
Selenium	М	2450	mg/kg	0.20	0.28		
Zinc	M	2450	~ ~	0.50	33		
Chromium (Hexavalent)	N	2490		0.50	< 0.50		
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0	72	43	< 1.0
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0	120	15	< 1.0
Aliphatic TPH >C12-C16	M	2680	mg/kg	1.0	450	11	6.5
Aliphatic TPH >C16-C21	M	2680		1.0	570	14	6.9
Aliphatic TPH >C21-C35	M	2680	mg/kg	1.0	1100	62	29
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	460	13	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	2700	160	42
Aromatic TPH >C5-C7	N	2680	~ ~	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	M	2680		1.0	280	< 1.0	< 1.0
Aromatic TPH >C10-C12	M	2680	mg/kg	1.0	5200	16	< 1.0
Aromatic TPH >C12-C16	M	2680	0 0	1.0	9900	41	6.1

Client: Concept Consultants			mtest Jo		21-05752	21-05752	21-05752
Quotation No.: Q21-23032	(est Sam		1148288	1148289	1148292
		Sa	ample Lo		WS5	WS5	WS3
			Sample		SOIL	SOIL	SOIL
			Тор Dep		0.25	0.40	1.00
			Date Sa	mpled:	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:		COVENTRY	
Determinand	Accred.	SOP	Units	LOD			
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	19000	170	38
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	27000	620	160
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	2800	48	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	64000	900	210
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	67000	1100	250
Naphthalene	М	2700	mg/kg	0.10	370	18	7.0
Acenaphthylene	М	2700	mg/kg	0.10	58	7.5	1.4
Acenaphthene	М	2700	mg/kg	0.10	59	4.8	1.6
Fluorene	М	2700	mg/kg	0.10	150	15	3.3
Phenanthrene	М	2700	mg/kg	0.10	580	71	14
Anthracene	М	2700	mg/kg	0.10	140	19	3.5
Fluoranthene	М	2700	mg/kg	0.10	380	61	10
Pyrene	М	2700	mg/kg	0.10	340	56	9.4
Benzo[a]anthracene	М	2700	mg/kg	0.10	140	27	4.0
Chrysene	М	2700	mg/kg	0.10	120	25	3.8
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	130	28	4.3
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	56	12	2.1
Benzo[a]pyrene	М	2700	mg/kg	0.10	120	23	3.5
Indeno(1,2,3-c,d)Pyrene	М	2700		0.10	83	15	3.8
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	20	4.3	0.98
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	69	11	2.2
Total Of 16 PAH's	М	2700	mg/kg	2.0	2800	400	74
Dichlorodifluoromethane	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Chloromethane	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Bromomethane	М	2760	µg/kg	20	< 20	< 20	< 20
Chloroethane	U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0
Trichlorofluoromethane	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	М	2760	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Trans 1,2-Dichloroethene	М	2760	mg/kg	1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
cis 1,2-Dichloroethene	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Bromochloromethane	U	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0
Trichloromethane	M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Benzene	M	2760	µg/kg	1.0	510	< 1.0	< 1.0
1,2-Dichloroethane	M	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0

Client: Concept Consultants		Che	ntest Jo	ob No.:	21-05752	21-05752	21-05752
Quotation No.: Q21-23032	(est Sam		1148288	1148289	1148292
		Sa	ample Lo		WS5	WS5	WS3
				e Type:	SOIL	SOIL	SOIL
			Top Dep		0.25	0.40	1.00
			Date Sa		22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest			COVENTRY	
Determinand	Accred.	SOP	Units	LOD			
Trichloroethene	N	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	M	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene	N	2760	µg/kg	10	< 10	< 10	< 10
Toluene	M	2760 2760	µg/kg	1.0 10	2200 < 10	4.5 < 10	< 1.0
Trans-1,3-Dichloropropene 1,1,2-Trichloroethane	M	2760	µg/kg µg/kg	10	< 10	< 10	< 10 < 10
Tetrachloroethene	M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0
Dibromochloromethane	U	2760	µg/kg	10	< 10	< 10	< 10
1.2-Dibromoethane	M	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0
Chlorobenzene	M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	M	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0
Ethylbenzene	M	2760	µg/kg	1.0	160	< 1.0	< 1.0
m & p-Xylene	М	2760	µg/kg	1.0	2200	5.8	< 1.0
o-Xylene	М	2760	µg/kg	1.0	1200	3.4	< 1.0
Styrene	М	2760	µg/kg	1.0	730	< 1.0	< 1.0
Tribromomethane	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	М	2760	µg/kg	1.0	14	< 1.0	< 1.0
Bromobenzene	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane	N	2760	µg/kg	50	< 50	< 50	< 50
N-Propylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	M	2760	µg/kg	1.0	180	1.8	< 1.0
4-Chlorotoluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	M	2760	µg/kg	1.0	1100	4.4	< 1.0
Sec-Butylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
4-Isopropyltoluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
N-Butylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	M U	2760 2760	µg/kg	1.0 50	< 1.0 < 50	< 1.0 < 50	< 1.0
1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene	U	2760	µg/kg µg/kg	1.0	< 50	< 50	< 50 < 1.0
Hexachlorobutadiene	U	2760	μg/kg μg/kg	1.0	< 1.0	< 1.0	< 1.0
1.2.3-Trichlorobenzene	U	2760	µg/kg µg/kg	2.0	< 2.0	< 2.0	< 2.0
Methyl Tert-Butyl Ether	0	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0

<u> Results - Soil</u>

Client: Concept Consultants		Chemtest Job No.:		21-05752	21-05752	21-05752	
Quotation No.: Q21-23032	0	Chemtest Sample ID.:			1148288	1148289	1148292
	Sample Location:			WS5	WS5	WS3	
			Sample	e Type:	SOIL	SOIL	SOIL
	Top Depth (m):				0.25	0.40	1.00
			Date Sa	mpled:	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:		COVENTRY	
Determinand	Accred.	Accred. SOP Units LOD					
Total Phenols	М	2920	mg/kg	0.30	170	< 0.30	< 0.30

Project: 20/3521 Elleray Hall Chemtest Job No:	21-05752					Maata Aaaantanaa	Critoria
	1148288				Landfill	Waste Acceptance	Criteria
Chemtest Sample ID:	1140200					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	MOE					reactive	
Sample Location:	WS5					hazardous	Hazardous
Top Depth(m):	0.25				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	22-Feb-2021					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	M	%	6.3	3	5	6
Loss On Ignition	2610	М	%	9.7			10
Total BTEX	2760	М	mg/kg	6.3	6		
Total PCBs (7 Congeners)	2815	М	mg/kg	< 0.10	1		
TPH Total WAC (Mineral Oil)	2670	М	mg/kg	67000	500		
Total (Of 17) PAH's	2700	N	mg/kg	2800	100		
рН	2010	М		8.9		>6	
Acid Neutralisation Capacity	2015	Ν	mol/kg	0.0060		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	s for compliance le	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	6 10 l/kg
Arsenic	1455	U	0.0009	0.0092	0.5	2	25
Barium	1455	U	0.013	0.13	20	100	300
Cadmium	1455	U	< 0.00012	< 0.00012	0.04	1	5
Chromium	1455	U	0.0039	0.039	0.5	10	70
Copper	1455	U	0.0018	0.018	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0007	0.0070	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0017	0.017	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	0.005	0.051	4	50	200
Chloride	1220	U	5.9	59	800	15000	25000
Fluoride	1220	U	0.27	2.7	10	150	500
Sulphate	1220	U	7.2	72	1000	20000	50000
Total Dissolved Solids	1020	N	290	2900	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	4.2	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	3.6

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	pН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection

Test Methods

SOP	Title	Parameters included	Method summary
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-05756-1		
Initial Date of Issue:	05-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Chris Hustler Kasia Mazerant		
Project	20/3521 Elleray Hall		
Quotation No.:	Q21-23032	Date Received:	24-Feb-2021
Order No.:	CL2727	Date Instructed:	01-Mar-2021
No. of Samples:	4		
Turnaround (Wkdays):	5	Results Due:	05-Mar-2021
Date Approved:	05-Mar-2021		
Approved By:			

Upp Mary

Details:

2183

Final Report

Glynn Harvey, Technical Manager

Client: Concept Consultants	Chemtest Job No.:			21-05756	21-05756	21-05756	
Quotation No.: Q21-23032	(Chemte	est Sam	ple ID.:	1148308	1148310	1148311
		Sa	ample Lo	ocation:	BH2	BH2	BH2
		Sample Type:				SOIL	SOIL
			Тор Dep		0.3	0.9	1.2
		Bot	tom Dep	oth (m):		1.0	
			Date Sa	ampled:	22-Feb-2021	22-Feb-2021	22-Feb-202
			Asbest	os Lab:	COVENTRY	COVENTRY	
Determinand	Accred.	SOP	Units	LOD			
АСМ Туре	U	2192		N/A	-	-	
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	
ACM Detection Stage	U	2192		N/A	-	-	
Moisture	N	2030	%	0.020	11	14	13
Soil Colour	Ν	2040		N/A	Brown	Brown	Brown
Other Material	N	2040		N/A	Stones	Stones	Stones
Soil Texture	N	2040		N/A	Sand	Clay	Clay
pH	М	2010		4.0	8.6	8.3	, í
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.58	0.64	
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	< 0.010	0.019	
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	< 0.50	
Sulphate (Total)	М	2430	%	0.010	0.084	0.052	
Arsenic	М		mg/kg	1.0	39	9.9	
Cadmium	М	2450		0.10	1.0	< 0.10	
Chromium	М	2450	mg/kg	1.0	17	17	
Copper	М	2450	mg/kg	0.50	61	11	
Mercury	М	2450		0.10	0.88	< 0.10	
Nickel	М	2450	mg/kg	0.50	18	9.6	
Lead	М	2450	mg/kg	0.50	620	41	
Selenium	М	2450		0.20	< 0.20	0.26	
Zinc	М	2450		0.50	230	72	
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	
Total Organic Carbon	М	2625	%	0.20	1.4		
TPH >C6-C8	N	2670	mg/kg	1.0	< 1.0		
TPH >C8-C10	N	2670	mg/kg	1.0	< 1.0		
TPH >C10-C12	N	2670		1.0	< 1.0		
TPH >C12-C16	N	2670	mg/kg	1.0	< 1.0		
TPH >C16-C21	N	2670	0 0	1.0	4.7		
TPH >C21-C25	Ν	2670		1.0	7.5		
TPH >C25-C35	Ν	2670		1.0	7.0		
TPH >C35-C40	N	2670		1.0	< 1.0		
Total TPH >C6-C40	М	2670	mg/kg	10	19		
Aliphatic TPH >C5-C6	N	2680	0 0	1.0		< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	00	1.0		< 1.0	< 1.0
Aliphatic TPH >C8-C10	М	2680		1.0		< 1.0	< 1.0
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0		< 1.0	< 1.0
Aliphatic TPH >C12-C16	М	2680	0 0	1.0		< 1.0	< 1.0

Client: Concept Consultants		Chemtest Job No.:				21-05756	21-05756
Quotation No.: Q21-23032	(est Samp		1148308	1148310	1148311
		Sample Location:				BH2	BH2
		Sample Type:				SOIL	SOIL
			Top Dep		0.3	0.9	1.2
		Bot	tom Dep	. ,		1.0	
			Date Sa		22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY	COVENTRY	
Determinand	Accred.	SOP	Units	LOD			
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0		< 1.0	< 1.0
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0		< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0		< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0		< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0		< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0		< 1.0	< 1.0
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0		< 1.0	< 1.0
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0		< 1.0	< 1.0
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0		< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0		< 1.0	< 1.0
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0		< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0		< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0		< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0		< 10	< 10
Naphthalene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluorene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	М	2700	mg/kg	0.10	1.9	< 0.10	< 0.10
Anthracene	М	2700	mg/kg	0.10	0.45	< 0.10	< 0.10
Fluoranthene	М	2700	mg/kg	0.10	5.2	0.34	0.42
Pyrene	М	2700	mg/kg	0.10	4.8	0.34	0.43
Benzo[a]anthracene	М	2700	mg/kg	0.10	2.8	< 0.10	< 0.10
Chrysene	М	2700	mg/kg	0.10	2.8	< 0.10	< 0.10
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	4.1	< 0.10	< 0.10
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	1.6	< 0.10	< 0.10
Benzo[a]pyrene	М	2700	mg/kg	0.10	2.9	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.10	2.4	< 0.10	< 0.10
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	0.56	< 0.10	< 0.10
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	2.1	< 0.10	< 0.10
Total Of 16 PAH's	М	2700	mg/kg	2.0	32	< 2.0	< 2.0
Dichlorodifluoromethane	U	2760	µg/kg	1.0		< 1.0	< 1.0
Chloromethane	М	2760	µg/kg	1.0		< 1.0	< 1.0
Vinyl Chloride	М	2760	µg/kg	1.0		< 1.0	< 1.0
Bromomethane	М	2760	µg/kg	20		< 20	< 20
Chloroethane	U	2760	µg/kg	2.0		< 2.0	< 2.0
Trichlorofluoromethane	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,1-Dichloroethene	M	2760	mg/kg	1.0		< 1.0	< 1.0

Client: Concept Consultants		Chemtest Job No.:				21-05756	21-05756
Quotation No.: Q21-23032	(est Sam		1148308	1148310	1148311
		Sa	ample Lo		BH2	BH2	BH2
				e Type:	SOIL	SOIL	SOIL
			Тор Dep		0.3	0.9	1.2
		Bot	tom Dep			1.0	
			Date Sa	impled:	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY	COVENTRY	
Determinand	Accred.	SOP	Units	LOD			
Trans 1,2-Dichloroethene	М	2760	mg/kg	1.0		< 1.0	< 1.0
1,1-Dichloroethane	М	2760	µg/kg	1.0		< 1.0	< 1.0
cis 1,2-Dichloroethene	М	2760	µg/kg	1.0		< 1.0	< 1.0
Bromochloromethane	U	2760	µg/kg	5.0		< 5.0	< 5.0
Trichloromethane	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,1,1-Trichloroethane	М	2760	µg/kg	1.0		< 1.0	< 1.0
Tetrachloromethane	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,1-Dichloropropene	U	2760	µg/kg	1.0		< 1.0	< 1.0
Benzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,2-Dichloroethane	М	2760	µg/kg	2.0		< 2.0	< 2.0
Trichloroethene	N	2760	µg/kg	1.0		< 1.0	< 1.0
1,2-Dichloropropane	М	2760	µg/kg	1.0		< 1.0	< 1.0
Dibromomethane	М	2760	µg/kg	1.0		< 1.0	< 1.0
Bromodichloromethane	М	2760	µg/kg	5.0		< 5.0	< 5.0
cis-1,3-Dichloropropene	N	2760	µg/kg	10		< 10	< 10
Toluene	М	2760	µg/kg	1.0		< 1.0	< 1.0
Trans-1,3-Dichloropropene	N	2760	µg/kg	10		< 10	< 10
1,1,2-Trichloroethane	М	2760	µg/kg	10		< 10	< 10
Tetrachloroethene	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,3-Dichloropropane	U	2760	µg/kg	2.0		< 2.0	< 2.0
Dibromochloromethane	U	2760	µg/kg	10		< 10	< 10
1,2-Dibromoethane	М	2760	µg/kg	5.0		< 5.0	< 5.0
Chlorobenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	М	2760	µg/kg	2.0		< 2.0	< 2.0
Ethylbenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
m & p-Xylene	М	2760	µg/kg	1.0		< 1.0	< 1.0
o-Xylene	М	2760	µg/kg	1.0		< 1.0	< 1.0
Styrene	М	2760	µg/kg	1.0		< 1.0	< 1.0
Tribromomethane	U	2760	µg/kg	1.0		< 1.0	< 1.0
Isopropylbenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
Bromobenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,2,3-Trichloropropane	N	2760	µg/kg	50		< 50	< 50
N-Propylbenzene	U	2760	µg/kg	1.0		< 1.0	< 1.0
2-Chlorotoluene	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,3,5-Trimethylbenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
4-Chlorotoluene	U	2760	µg/kg	1.0		< 1.0	< 1.0
Tert-Butylbenzene	U	2760	µg/kg	1.0		< 1.0	< 1.0
1,2,4-Trimethylbenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0

Client: Concept Consultants		Chemtest Job No.:				21-05756	21-05756
Quotation No.: Q21-23032	(Chemtest Sample ID.:				1148310	1148311
		Sa	ample Lo	ocation:	BH2	BH2	BH2
			Sample	е Туре:	SOIL	SOIL	SOIL
			Тор Dep	oth (m):	0.3	0.9	1.2
		Bot	tom Dep	oth (m):		1.0	
			Date Sa	mpled:	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY	COVENTRY	
Determinand	Accred.	SOP	Units	LOD			
Sec-Butylbenzene	U	2760	µg/kg	1.0		< 1.0	< 1.0
1,3-Dichlorobenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
4-Isopropyltoluene	U	2760	µg/kg	1.0		< 1.0	< 1.0
1,4-Dichlorobenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
N-Butylbenzene	U	2760	µg/kg	1.0		< 1.0	< 1.0
1,2-Dichlorobenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,2-Dibromo-3-Chloropropane	U	2760	µg/kg	50		< 50	< 50
1,2,4-Trichlorobenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
Hexachlorobutadiene	U	2760	µg/kg	1.0		< 1.0	< 1.0
1,2,3-Trichlorobenzene	U				< 2.0	< 2.0	
Methyl Tert-Butyl Ether	М					< 1.0	< 1.0
Total Phenols	М	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30

Project: 20/3521 Elleray Hall	21-05756					Nosta Associationa	Criteria
Chemtest Job No:					Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1148309					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	D LIO					reactive	
Sample Location:	BH2					hazardous	Hazardous
Top Depth(m):	0.6				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	22-Feb-2021					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	М	%	1.3	3	5	6
Loss On Ignition	2610	М	%	3.6			10
Total BTEX	2760	М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg	< 0.10	1		
TPH Total WAC (Mineral Oil)	2670	М	mg/kg	25	500		
Total (Of 17) PAH's	2700	N	mg/kg	30	100		
рН	2010	М		8.4		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.017		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	s for compliance l	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	6 10 l/kg
Arsenic	1455	U	0.0042	0.042	0.5	2	25
Barium	1455	U	0.010	0.10	20	100	300
Cadmium	1455	U	< 0.00012	< 0.00012	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0018	0.018	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.026	0.26	0.5	10	30
Nickel	1455	U	0.0007	0.0065	0.4	10	40
Lead	1455	U	0.0032	0.032	0.5	10	50
Antimony	1455	U	0.014	0.14	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	0.006	0.064	4	50	200
Chloride	1220	U	7.5	75	800	15000	25000
Fluoride	1220	U	1.2	12	10	150	500
Sulphate	1220	U	63	630	1000	20000	50000
Total Dissolved Solids	1020	N	120	1200	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	22	220	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	17

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	pН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Dichloromethane extraction / GCxGC FID detection

Test Methods

SOP	Title	Parameters included	Method summary
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-05764-1		
Initial Date of Issue:	05-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Chris Hustler Kasia Mazerant		
Project	20/3521 Elleray Hall		
Quotation No.:	Q21-23032	Date Received:	24-Feb-2021
Order No.:	CL2727	Date Instructed:	01-Mar-2021
No. of Samples:	4		
Turnaround (Wkdays):	5	Results Due:	05-Mar-2021
Date Approved:	05-Mar-2021		
Approved By:			

Upp Mary

Details:

2183

Final Report

Glynn Harvey, Technical Manager

Client: Concept Consultants			ntest Jo		21-05764	21-05764	21-05764	21-05764
Quotation No.: Q21-23032	(Chemte	st Sam	ple ID.:	1148334	1148335	1148336	1148338
		Sa	ample Lo		WS4	WS4	WS4	WS3
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL
			Top Dep		0.1	0.3	0.6	0.25
		Bot	tom Dep	. ,	0.2			
			Date Sa	•	22-Feb-2021	22-Feb-2021	22-Feb-2021	22-Feb-202
		_	Asbest	os Lab:		COVENTRY		COVENTRY
Determinand	Accred.	SOP	Units	LOD				
АСМ Туре	U	2192		N/A		-		-
Asbestos Identification	U	2192		N/A		No Asbestos Detected		No Asbesto Detected
ACM Detection Stage	U	2192		N/A		-		-
Moisture	Ν	2030	%	0.020	8.5	8.7	13	3.9
Soil Colour	Ν	2040		N/A	Brown		Brown	Brown
Other Material	Ν	2040		N/A	Stones		None	Stones
Soil Texture	Ν	2040		N/A	Sand		Sand	Sand
рН	М	2010		4.0	8.9		8.8	8.8
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.64		1.1	1.1
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.013		< 0.010	0.070
Cyanide (Total)	М	2300	mg/kg	0.50	3.1		2.1	12
Sulphate (Total)	М	2430	%	0.010	0.18		0.050	0.40
Arsenic	М	2450	mg/kg	1.0	24		11	30
Cadmium	M	2450	mg/kg	0.10	0.15		< 0.10	0.33
Chromium	M	2450	mg/kg	1.0	27		17	24
Copper	M	2450	mg/kg	0.50	40		21	88
Mercury	М	2450	mg/kg	0.10	0.69		< 0.10	0.32
Nickel	М	2450	mg/kg	0.50	26		16	36
Lead	М	2450	mg/kg	0.50	290		50	250
Selenium	М	2450	mg/kg	0.20	0.27		0.28	0.34
Zinc	М	2450	mg/kg	0.50	81		47	140
Chromium (Hexavalent)	Ν	2490	mg/kg	0.50	< 0.50		< 0.50	< 0.50
Total Organic Carbon	М	2625	%	0.20		3.7		
TPH >C6-C8	Ν	2670	mg/kg	1.0			< 1.0	
TPH >C8-C10	Ν	2670	mg/kg	1.0			< 1.0	
TPH >C10-C12	Ν	2670	mg/kg	1.0			< 1.0	
TPH >C12-C16	Ν	2670	mg/kg	1.0			< 1.0	
TPH >C16-C21	Ν	2670	mg/kg	1.0			13	
TPH >C21-C25	Ν	2670	mg/kg	1.0			26	
TPH >C25-C35	Ν	2670	mg/kg	1.0			18	
TPH >C35-C40	Ν	2670	mg/kg	1.0			1.7	
Total TPH >C6-C40	М	2670	mg/kg	10			60	
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0	< 1.0			< 1.0
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0	< 1.0			< 1.0
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0			55
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0			26
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0			44

Client: Concept Consultants			mtest Jo		21-05764	21-05764	21-05764	21-05764
Quotation No.: Q21-23032	(st Sam		1148334	1148335	1148336	1148338
		Sa	ample Lo		WS4	WS4	WS4	WS3
			Sample		SOIL	SOIL	SOIL	SOIL
			Тор Dep		0.1	0.3	0.6	0.25
		Bot	tom Dep	. ,	0.2			
			Date Sa	•	22-Feb-2021	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest			COVENTRY		COVENTRY
Determinand	Accred.	SOP		LOD				
Aliphatic TPH >C16-C21	M	2680	0 0	1.0	20			82
Aliphatic TPH >C21-C35	M	2680	mg/kg	1.0	86			320
Aliphatic TPH >C35-C44	N	2680	0 0	1.0	< 1.0			180
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	110			710
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0			< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0			< 1.0
Aromatic TPH >C8-C10	M	2680	mg/kg	1.0	< 1.0			15
Aromatic TPH >C10-C12	M	2680	mg/kg	1.0	18			63
Aromatic TPH >C12-C16	M	2680	mg/kg	1.0	120			530
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	580			2900
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	1500			8800
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	190			1100
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	2400			13000
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	2500			14000
Naphthalene	М	2700	mg/kg	0.10	2.4		0.21	24
Acenaphthylene	М	2700	mg/kg	0.10	9.0		0.75	2.6
Acenaphthene	М	2700	mg/kg	0.10	2.8		0.30	24
Fluorene	М	2700	mg/kg	0.10	8.6		0.65	100
Phenanthrene	M	2700	mg/kg	0.10	61		5.9	610
Anthracene	М	2700	mg/kg	0.10	17		1.5	200
Fluoranthene	М	2700	mg/kg	0.10	96		5.2	760
Pyrene	М	2700	mg/kg	0.10	90		4.8	680
Benzo[a]anthracene	М	2700	mg/kg	0.10	45		1.9	360
Chrysene	М	2700	mg/kg	0.10	37		1.6	270
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	66		1.4	380
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	26		1.0	160
Benzo[a]pyrene	М	2700	mg/kg	0.10	54		2.2	340
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.10	40		1.5	220
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	11		0.63	59
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	34		1.1	200
Total Of 16 PAH's	М	2700	mg/kg	2.0	600		31	4400
Dichlorodifluoromethane	U	2760	µg/kg	1.0	< 1.0			< 1.0
Chloromethane	М	2760	µg/kg	1.0	< 1.0			< 1.0
Vinyl Chloride	М	2760	µg/kg	1.0	< 1.0			< 1.0
Bromomethane	М	2760	µg/kg	20	< 20			< 20
Chloroethane	U	2760	µg/kg	2.0	< 2.0			< 2.0
Trichlorofluoromethane	М	2760	µg/kg	1.0	< 1.0			< 1.0
1,1-Dichloroethene	М	2760	mg/kg	1.0	< 1.0			< 1.0

Client: Concept Consultants			ntest Jo		21-05764	21-05764	21-05764	21-05764
Quotation No.: Q21-23032		Chemte	st Samp	ole ID.:	1148334	1148335	1148336	1148338
		Sa	ample Lo		WS4	WS4	WS4	WS3
			Sample		SOIL	SOIL	SOIL	SOIL
			Тор Dep	oth (m):	0.1	0.3	0.6	0.25
		Bot	tom Dep	oth (m):	0.2			
			Date Sa	mpled:	22-Feb-2021	22-Feb-2021	22-Feb-2021	22-Feb-2021
		Asbestos Lab:			COVENTRY		COVENTRY	
Determinand	Accred.	SOP	Units	LOD				
Trans 1,2-Dichloroethene	М	2760	5	1.0	< 1.0			< 1.0
1,1-Dichloroethane	М	2760	µg/kg	1.0	< 1.0			< 1.0
cis 1,2-Dichloroethene	М	2760	µg/kg	1.0	< 1.0			< 1.0
Bromochloromethane	U	2760	µg/kg	5.0	< 5.0			< 5.0
Trichloromethane	М	2760	µg/kg	1.0	< 1.0			< 1.0
1,1,1-Trichloroethane	М	2760	µg/kg	1.0	< 1.0			< 1.0
Tetrachloromethane	М	2760	µg/kg	1.0	< 1.0			< 1.0
1,1-Dichloropropene	U	2760	µg/kg	1.0	< 1.0			< 1.0
Benzene	М	2760	µg/kg	1.0	< 1.0			2.4
1,2-Dichloroethane	М	2760	µg/kg	2.0	< 2.0			< 2.0
Trichloroethene	N	2760	µg/kg	1.0	< 1.0			< 1.0
1,2-Dichloropropane	М	2760	µg/kg	1.0	< 1.0			< 1.0
Dibromomethane	М	2760	µg/kg	1.0	< 1.0			< 1.0
Bromodichloromethane	М	2760	µg/kg	5.0	< 5.0			< 5.0
cis-1,3-Dichloropropene	N	2760	µg/kg	10	< 10			< 10
Toluene	М	2760	µg/kg	1.0	< 1.0			1.5
Trans-1,3-Dichloropropene	N	2760	µg/kg	10	< 10			< 10
1,1,2-Trichloroethane	М	2760	µg/kg	10	< 10			< 10
Tetrachloroethene	М	2760	µg/kg	1.0	< 1.0			< 1.0
1,3-Dichloropropane	U	2760	µg/kg	2.0	< 2.0			< 2.0
Dibromochloromethane	U	2760	µg/kg	10	< 10			< 10
1,2-Dibromoethane	М	2760	µg/kg	5.0	< 5.0			< 5.0
Chlorobenzene	М	2760	µg/kg	1.0	< 1.0			< 1.0
1,1,1,2-Tetrachloroethane	М	2760	µg/kg	2.0	< 2.0			< 2.0
Ethylbenzene	М	2760	µg/kg	1.0	< 1.0			< 1.0
m & p-Xylene	М	2760	µg/kg	1.0	< 1.0			< 1.0
o-Xylene	М	2760	µg/kg	1.0	< 1.0			1.1
Styrene	М	2760	µg/kg	1.0	< 1.0			< 1.0
Tribromomethane	U	2760	µg/kg	1.0	< 1.0			< 1.0
Isopropylbenzene	М	2760	µg/kg	1.0	< 1.0			< 1.0
Bromobenzene	М	2760	µg/kg	1.0	< 1.0			< 1.0
1,2,3-Trichloropropane	N	2760	µg/kg	50	< 50			< 50
N-Propylbenzene	U	2760	µg/kg	1.0	< 1.0			< 1.0
2-Chlorotoluene	M	2760	µg/kg	1.0	< 1.0			< 1.0
1,3,5-Trimethylbenzene	М	2760	µg/kg	1.0	< 1.0			2.0
4-Chlorotoluene	U	2760	µg/kg	1.0	< 1.0			< 1.0
Tert-Butylbenzene	U	2760	µg/kg	1.0	< 1.0			< 1.0
1,2,4-Trimethylbenzene	M	2760		1.0	< 1.0			6.5

Results - Soil

Client: Concept Consultants		Cher	ntest Jo	ob No.:	21-05764	21-05764	21-05764	21-05764
Quotation No.: Q21-23032	(hemte	st Sam	ple ID.:	1148334	1148335	1148336	1148338
		Sa	ample Lo	ocation:	WS4	WS4	WS4	WS3
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL
			Top Dep			0.3	0.6	0.25
		Bot	tom Dep	oth (m):	0.2			
			Date Sa	ampled:	22-Feb-2021	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:		COVENTRY		COVENTRY
Determinand	Accred.	SOP	Units	LOD				
Sec-Butylbenzene	U	2760	µg/kg	1.0	< 1.0			< 1.0
1,3-Dichlorobenzene	М	2760	µg/kg	1.0	< 1.0			< 1.0
4-Isopropyltoluene	U	2760	µg/kg	1.0	< 1.0			< 1.0
1,4-Dichlorobenzene	М	2760	µg/kg	1.0	< 1.0			< 1.0
N-Butylbenzene	U	2760	µg/kg	1.0	< 1.0			< 1.0
1,2-Dichlorobenzene	М	2760	µg/kg	1.0	< 1.0			< 1.0
1,2-Dibromo-3-Chloropropane	U	2760	µg/kg	50	< 50			< 50
1,2,4-Trichlorobenzene	М	2760	µg/kg	1.0	< 1.0			< 1.0
Hexachlorobutadiene	U	2760	µg/kg	1.0	< 1.0			< 1.0
1,2,3-Trichlorobenzene	U	2760	µg/kg	2.0	< 2.0			< 2.0
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0	< 1.0			< 1.0
Total Phenols	М	2920	mg/kg	0.30	< 0.30		< 0.30	0.85

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-05789-1		
Initial Date of Issue:	11-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Kasia Mazerant		
Project	20/3521 Elleray Hall		
Quotation No.:	Q21-23032	Date Received:	25-Feb-2021
Order No.:	CL2732	Date Instructed:	05-Mar-2021
No. of Samples:	6		
Turnaround (Wkdays):	5	Results Due:	11-Mar-2021
Date Approved:	11-Mar-2021		
Approved By:			

Upp Mary

Details:

2183

Final Report

Glynn Harvey, Technical Manager

Client: Concept Consultants			mtest J		21-05789	21-05789	21-05789	21-05789	21-05789	21-05789
Quotation No.: Q21-23032	(Chemte	est Sam	ple ID.:	1148464	1148469	1148473	1148474	1148478	1148481
		Sa	ample Lo	ocation:	WS6	WS7	WS8	WS8	WS9	WS10
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Top Depth (m):			0.10	0.30	0.30	0.60	0.60	0.30
		Bot	tom De	oth (m):	0.20	0.30	0.40	0.70	0.60	0.30
	Date Sampled:		23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021		
	Asbestos I		os Lab:	COVENTRY	COVENTRY	COVENTRY			COVENTRY	
Determinand	Accred.	SOP	Units	LOD						
АСМ Туре	U	2192		N/A	-	-	-			-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected			No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-	-			-
Moisture	Ν	2030	%	0.020	9.5	12		18	18	18
Soil Colour	Ν	2040		N/A	Brown	Brown		Brown	Brown	Brown
Other Material	Ν	2040		N/A	Stones	Stones		None	None	Stones
Soil Texture	Ν	2040		N/A	Sand	Sand		Clay	Clay	Sand
рН	М	2010		4.0	9.6	8.5		7.8	7.8	7.7
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.63	0.90		0.68	0.63	0.64
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.13	0.048		< 0.010	< 0.010	0.017
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	< 0.50		< 0.50	< 0.50	0.50
Sulphate (Total)	М	2430	%	0.010	0.19	0.12		0.035	0.026	0.12
Arsenic	М	2450	mg/kg	1.0	19	31		15	13	23
Cadmium	М	2450	mg/kg	0.10	0.22	0.87		0.13	0.11	0.80
Chromium	М	2450	mg/kg	1.0	12	14		15	17	23
Copper	М	2450	mg/kg	0.50	14	79		41	25	89
Mercury	М	2450	mg/kg	0.10	< 0.10	0.61		0.90	0.40	1.1
Nickel	М	2450	mg/kg	0.50	13	15		15	15	23
Lead	М	2450	mg/kg	0.50	33	430		170	130	500
Selenium	М	2450	mg/kg	0.20	< 0.20	< 0.20		0.36	0.33	0.67
Zinc	М	2450	mg/kg	0.50	61	190		69	68	430
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50		< 0.50	< 0.50	< 0.50
TPH >C6-C8	N	2670	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0
TPH >C8-C10	N		mg/kg	1.0	1.2	< 1.0		1.4		< 1.0
TPH >C10-C12	N		mg/kg	1.0	18	< 1.0		20		< 1.0
TPH >C12-C16	N		mg/kg	1.0	49	< 1.0		52		4.7
TPH >C16-C21	Ν		mg/kg	1.0	29	< 1.0		25		25
TPH >C21-C25	Ν	2670	mg/kg	1.0	120	< 1.0		110		100
TPH >C25-C35	Ν		mg/kg	1.0	3300	< 1.0		37		51
TPH >C35-C40	Ν	2670	mg/kg	1.0	1900	< 1.0		< 1.0		< 1.0
Total TPH >C6-C40	М		mg/kg	10	5500	< 10		240		180
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0					< 1.0	
Aliphatic TPH >C6-C8	Ν		mg/kg	1.0					< 1.0	
Aliphatic TPH >C8-C10	М		mg/kg	1.0					< 1.0	
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0					< 1.0	
Aliphatic TPH >C12-C16	М		mg/kg	1.0					< 1.0	
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0					< 1.0	

Client: Concept Consultants			mtest Jo		21-05789	21-05789	21-05789	21-05789	21-05789	21-05789
Quotation No.: Q21-23032	0		est Sam	-	1148464	1148469	1148473	1148474	1148478	1148481
	Sample Location:			WS6	WS7	WS8	WS8	WS9	WS10	
		Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep		0.10	0.30	0.30	0.60	0.60	0.30
		Bot	tom Dep	. ,	0.20	0.30	0.40	0.70	0.60	0.30
			Date Sa		23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021
		A		os Lab:	COVENTRY	COVENTRY	COVENTRY			COVENTRY
Determinand	Accred.	SOP		LOD						
Aliphatic TPH >C21-C35	M		mg/kg	1.0					< 1.0	
Aliphatic TPH >C35-C44	N		mg/kg	1.0					< 1.0	
Total Aliphatic Hydrocarbons	N		mg/kg	5.0					< 5.0	
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0					< 1.0	
Aromatic TPH >C7-C8	N		mg/kg	1.0					< 1.0	
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0					< 1.0	
Aromatic TPH >C10-C12	М		mg/kg	1.0					< 1.0	
Aromatic TPH >C12-C16	М		mg/kg	1.0					< 1.0	
Aromatic TPH >C16-C21	U		mg/kg	1.0					< 1.0	
Aromatic TPH >C21-C35	М		mg/kg	1.0					< 1.0	
Aromatic TPH >C35-C44	N	2680		1.0					< 1.0	
Total Aromatic Hydrocarbons	N		mg/kg	5.0					< 5.0	
Total Petroleum Hydrocarbons	N		mg/kg	10.0					< 10	
Naphthalene	М		mg/kg	0.10	< 0.10	0.63		< 0.10	< 0.10	0.43
Acenaphthylene	М		mg/kg	0.10	< 0.10	0.80		< 0.10	< 0.10	0.81
Acenaphthene	М		mg/kg	0.10	< 0.10	0.11		< 0.10	< 0.10	0.14
Fluorene	М		mg/kg	0.10	< 0.10	0.43		< 0.10	< 0.10	0.23
Phenanthrene	М		mg/kg	0.10	< 0.10	3.4		0.86	0.54	3.0
Anthracene	М		mg/kg	0.10	< 0.10	0.70		0.16	0.13	0.74
Fluoranthene	М		mg/kg	0.10	0.35	10		1.2	1.2	7.7
Pyrene	М		mg/kg	0.10	0.42	9.4		1.2	1.2	7.5
Benzo[a]anthracene	М		mg/kg	0.10	< 0.10	4.5		0.49	0.69	4.2
Chrysene	M		mg/kg	0.10	< 0.10	4.3		0.64	0.72	4.2
Benzo[b]fluoranthene	M		mg/kg	0.10	< 0.10	7.1		< 0.10	0.54	6.2
Benzo[k]fluoranthene	M		mg/kg	0.10	< 0.10	2.8		< 0.10	0.35	2.9
Benzo[a]pyrene	М		mg/kg	0.10	< 0.10	5.5		< 0.10	0.77	4.7
Indeno(1,2,3-c,d)Pyrene	M		mg/kg	0.10	< 0.10	3.9		< 0.10	0.66	3.4
Dibenz(a,h)Anthracene	М		mg/kg	0.10	< 0.10	0.97		< 0.10	0.34	1.1
Benzo[g,h,i]perylene	М		mg/kg	0.10	< 0.10	4.2		< 0.10	0.58	2.8
Total Of 16 PAH's	М		mg/kg	2.0	< 2.0	59		4.6	7.7	50
Dichlorodifluoromethane	U	2760		1.0					< 1.0	
Chloromethane	M	2760		1.0					< 1.0	
Vinyl Chloride	М	2760		1.0					< 1.0	
Bromomethane	М	2760		20					< 20	
Chloroethane	U	2760	µg/kg	2.0					< 2.0	
Trichlorofluoromethane	М	2760	µg/kg	1.0					< 1.0	
1,1-Dichloroethene	М		mg/kg	1.0					< 1.0	
Trans 1,2-Dichloroethene	М	2760	mg/kg	1.0					< 1.0	

Client: Concept Consultants	Chemtest Job No.:				21-05789	21-05789	21-05789	21-05789	21-05789	21-05789
Quotation No.: Q21-23032	Chemtest Sample ID.:				1148464 WS6	1148469	1148473	1148474	1148478	1148481
		Sample Location:				WS7	WS8	WS8	WS9	WS10
		Sample Type:				SOIL	SOIL	SOIL	SOIL	SOIL
		Top Depth (m):				0.30	0.30	0.60	0.60	0.30
		Bottom Depth (m):				0.30	0.40	0.70	0.60	0.30
		Date Sampled:				23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021
	Asbestos Lab:			COVENTRY	COVENTRY	COVENTRY			COVENTRY	
Determinand	Accred.	SOP	Units	LOD						
1,1-Dichloroethane	М	2760	µg/kg	1.0					< 1.0	
cis 1,2-Dichloroethene	М	2760	µg/kg	1.0					< 1.0	
Bromochloromethane	U	2760	µg/kg	5.0					< 5.0	
Trichloromethane	М	2760	µg/kg	1.0					< 1.0	
1,1,1-Trichloroethane	М	2760	µg/kg	1.0					< 1.0	
Tetrachloromethane	М	2760	µg/kg	1.0					< 1.0	
1,1-Dichloropropene	U	2760		1.0					< 1.0	
Benzene	М	2760	µg/kg	1.0					< 1.0	
1,2-Dichloroethane	М	2760	µg/kg	2.0					< 2.0	
Trichloroethene	N	2760		1.0					< 1.0	
1,2-Dichloropropane	М	2760		1.0					< 1.0	
Dibromomethane	М	2760		1.0					< 1.0	
Bromodichloromethane	М	2760	µg/kg	5.0					< 5.0	
cis-1,3-Dichloropropene	N	2760		10					< 10	
Toluene	М	2760		1.0					< 1.0	
Trans-1,3-Dichloropropene	N	2760		10					< 10	
1,1,2-Trichloroethane	М	2760		10					< 10	
Tetrachloroethene	М	2760		1.0					< 1.0	
1,3-Dichloropropane	U	2760		2.0					< 2.0	
Dibromochloromethane	U	2760	µg/kg	10					< 10	
1,2-Dibromoethane	M	2760		5.0					< 5.0	
Chlorobenzene	M	2760		1.0					< 1.0	
1,1,1,2-Tetrachloroethane	M	2760		2.0					< 2.0	
Ethylbenzene	M	2760	µg/kg	1.0					< 1.0	
m & p-Xylene	M	2760	µg/kg	1.0					< 1.0	
o-Xylene	M	2760		1.0					< 1.0	
Styrene	M	2760		1.0					< 1.0	
Tribromomethane	U	2760		1.0					< 1.0	
Isopropylbenzene	0	2760	µg/kg	1.0					< 1.0	
Bromobenzene	M	2760		1.0					< 1.0	
1,2,3-Trichloropropane	N	2760		50					< 50	
N-Propylbenzene	U	2760		1.0					< 1.0	
2-Chlorotoluene	0	2760		1.0					< 1.0	
1,3,5-Trimethylbenzene	M	2760		1.0					< 1.0	
4-Chlorotoluene	U	2760	10 0	1.0					< 1.0	
Tert-Butylbenzene	U	2760	µg/kg µg/kg	1.0					< 1.0	
1,2,4-Trimethylbenzene	M	2760	- 0	1.0					< 1.0	
Sec-Butylbenzene	U		μg/kg μg/kg	1.0					< 1.0	

<u> Results - Soil</u>

Client: Concept Consultants		Chemtest Job No.:				21-05789	21-05789	21-05789	21-05789	21-05789
Quotation No.: Q21-23032	(Chemtest Sample ID.:				1148469	1148473	1148474	1148478	1148481
		Sample Location:				WS7	WS8	WS8	WS9	WS10
		Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Top Depth (m):				0.30	0.30	0.60	0.60	0.30
		Bottom Depth (m): Date Sampled:				0.30	0.40	0.70	0.60	0.30
						23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021
		Asbestos Lab:				COVENTRY	COVENTRY			COVENTRY
Determinand	Accred.	SOP	Units	LOD						
1,3-Dichlorobenzene	М	2760	µg/kg	1.0					< 1.0	
4-Isopropyltoluene	U	2760	µg/kg	1.0					< 1.0	
1,4-Dichlorobenzene	М	2760	µg/kg	1.0					< 1.0	
N-Butylbenzene	U	2760	µg/kg	1.0					< 1.0	
1,2-Dichlorobenzene	М	2760	µg/kg	1.0					< 1.0	
1,2-Dibromo-3-Chloropropane	U	2760	µg/kg	50					< 50	
1,2,4-Trichlorobenzene	М	2760	µg/kg	1.0					< 1.0	
Hexachlorobutadiene	U	2760	µg/kg	1.0					< 1.0	
1,2,3-Trichlorobenzene	U	2760		2.0					< 2.0	
Methyl Tert-Butyl Ether	М	2760		1.0					< 1.0	
Total Phenols	М	2920	mg/kg	0.30	< 0.30	< 0.30		< 0.30	< 0.30	< 0.30

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-06275-1		
Initial Date of Issue:	11-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Chris Hustler Kasia Mazerant		
Project	20/3521 Elleray Hall		
Quotation No.:	Q21-23032	Date Received:	01-Mar-2021
Order No.:	CL2732	Date Instructed:	05-Mar-2021
No. of Samples:	4		
Turnaround (Wkdays):	5	Results Due:	11-Mar-2021
Date Approved:	11-Mar-2021		
Approved By:			

Upp Mary

Details:

2183

Final Report

Glynn Harvey, Technical Manager

Results - Soil

Client: Concept Consultants			ntest Jo		21-06275	21-06275	21-06275	21-06275
Quotation No.: Q21-23032	Chemtest Sample ID.: Sample Location:			1151026	1151028	1151029	1151032	
				STP3	STP1	STP1	STP2	
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.50	0.10	0.25	0.40
		Bot	tom Dep	oth (m):	0.50	0.10	0.25	0.40
			Date Sa	ampled:	25-Feb-2021	25-Feb-2021	25-Feb-2021	25-Feb-202
			Asbest	os Lab:	COVENTRY		COVENTRY	
Determinand	Accred.	SOP	Units	LOD				
АСМ Туре	U	2192		N/A	-		-	
Asbestos Identification	U	2192		N/A	No Asbestos Detected		No Asbestos Detected	
ACM Detection Stage	U	2192		N/A	-		-	
Moisture	N	2030	%	0.020	15	7.8		11
Soil Colour	N	2040		N/A	Brown	Brown		Brown
Other Material	Ν	2040		N/A	Stones	Stones		Stones
Soil Texture	Ν	2040		N/A	Sand	Sand		Sand
рН	М	2010		4.0	8.0	9.0		8.8
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.65	0.74		0.53
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	< 0.010	0.37		0.064
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	0.60		< 0.50
Sulphate (Total)	М	2430	%	0.010	0.020	1.1		0.13
Arsenic	М	2450	mg/kg	1.0	11	26		11
Cadmium	М	2450	mg/kg	0.10	< 0.10	3.2		0.19
Chromium	М	2450	mg/kg	1.0	14	38		15
Copper	М	2450	mg/kg	0.50	15	170		25
Mercury	М	2450	mg/kg	0.10	0.17	5.3		0.39
Nickel	М	2450	mg/kg	0.50	11	35		16
Lead	М	2450	mg/kg	0.50	52	770		100
Selenium	М	2450	mg/kg	0.20	0.26	0.31		< 0.20
Zinc	М	2450	mg/kg	0.50	32	470		59
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50		< 0.50
TPH >C6-C8	N	2670	mg/kg	1.0	< 1.0			< 1.0
TPH >C8-C10	N	2670	mg/kg	1.0	< 1.0			< 1.0
TPH >C10-C12	N	2670	mg/kg	1.0	< 1.0			18
TPH >C12-C16	N	2670	mg/kg	1.0	< 1.0			33
TPH >C16-C21	N	2670	mg/kg	1.0	< 1.0			70
TPH >C21-C25	Ν	2670	mg/kg	1.0	< 1.0			150
TPH >C25-C35	Ν	2670	mg/kg	1.0	< 1.0			160
TPH >C35-C40	Ν	2670	mg/kg	1.0	< 1.0			32
Total TPH >C6-C40	М	2670	mg/kg	10	< 10			460
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0		< 1.0		
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0		< 1.0		
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0		< 1.0		
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0		25		
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0		22		
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0		51		

Client: Concept Consultants		Che	mtest Jo	b No.:	21-06275	21-06275	21-06275	21-06275
Quotation No.: Q21-23032	(Chemtest Sample ID.: Sample Location:		1151026	1151028	1151029	1151032	
				STP3	STP1	STP1	STP2	
		Sample Type: Top Depth (m):			SOIL	SOIL	SOIL	SOIL
					0.50	0.10	0.25	0.40
		Bot	tom Dep	oth (m):	0.50	0.10	0.25	0.40
			Date Sa		25-Feb-2021	25-Feb-2021	25-Feb-2021	25-Feb-202
			Asbesto	os Lab:	COVENTRY		COVENTRY	
Determinand	Accred.	SOP		LOD				
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0		370		
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0		60		
Total Aliphatic Hydrocarbons	N		mg/kg	5.0		520		
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0		< 1.0		
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0		< 1.0		
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0		21		
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0		36		
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0		69		
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0		220		
Aromatic TPH >C21-C35	М	2680	0 0	1.0		2100		
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0		410		
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0		2800		
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0		3400		
Naphthalene	М	2700	mg/kg	0.10	< 0.10	3.3		1.9
Acenaphthylene	М	2700	mg/kg	0.10	< 0.10	6.6		2.4
Acenaphthene	М	2700	mg/kg	0.10	< 0.10	5.4		4.9
Fluorene	М	2700	mg/kg	0.10	< 0.10	11		7.5
Phenanthrene	М	2700	mg/kg	0.10	< 0.10	63		54
Anthracene	М	2700	mg/kg	0.10	< 0.10	23		15
Fluoranthene	М	2700	mg/kg	0.10	< 0.10	130		67
Pyrene	М	2700	mg/kg	0.10	< 0.10	120		62
Benzo[a]anthracene	М	2700		0.10	< 0.10	58		30
Chrysene	М	2700	mg/kg	0.10	< 0.10	57		28
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	< 0.10	78		36
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	< 0.10	31		15
Benzo[a]pyrene	М	2700	mg/kg	0.10	< 0.10	62		31
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.10	< 0.10	42		< 0.10
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	< 0.10	11		< 0.10
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	< 0.10	35		< 0.10
Total Of 16 PAH's	М	2700	mg/kg	2.0	< 2.0	740		350
Dichlorodifluoromethane	U	2760	µg/kg	1.0		< 1.0		
Chloromethane	М	2760	µg/kg	1.0		< 1.0		
Vinyl Chloride	М	2760	µg/kg	1.0		< 1.0		
Bromomethane	М	2760	µg/kg	20		< 20		
Chloroethane	U	2760	µg/kg	2.0		< 2.0		
Trichlorofluoromethane	М	2760	µg/kg	1.0		< 1.0		
1,1-Dichloroethene	М	2760	mg/kg	1.0		< 1.0		
Trans 1,2-Dichloroethene	М	2760		1.0		< 1.0		

Client: Concept Consultants			ntest Jo		21-06275	21-06275	21-06275	21-06275
Quotation No.: Q21-23032	0	Chemte	st Samp	ole ID.:	1151026	1151028	1151029	1151032
		Sample Location:		STP3	STP1	STP1	STP2	
			Sample		SOIL	SOIL	SOIL	SOIL
			Тор Dep		0.50	0.10	0.25	0.40
		Bot	tom Dep	, ,	0.50	0.10	0.25	0.40
			Date Sa		25-Feb-2021	25-Feb-2021	25-Feb-2021	25-Feb-2021
		_	Asbesto	os Lab:	COVENTRY		COVENTRY	
Determinand	Accred.	SOP		LOD				
1,1-Dichloroethane	M	2760	µg/kg	1.0		< 1.0		
cis 1,2-Dichloroethene	M	2760	µg/kg	1.0		< 1.0		
Bromochloromethane	U	2760	µg/kg	5.0		< 5.0		
Trichloromethane	М	2760	µg/kg	1.0		< 1.0		
1,1,1-Trichloroethane	М	2760	µg/kg	1.0		< 1.0		
Tetrachloromethane	М	2760	µg/kg	1.0		< 1.0		
1,1-Dichloropropene	U	2760	µg/kg	1.0		< 1.0		
Benzene	М	2760	µg/kg	1.0		< 1.0		
1,2-Dichloroethane	М	2760	µg/kg	2.0		< 2.0		
Trichloroethene	N	2760	µg/kg	1.0		< 1.0		
1,2-Dichloropropane	М	2760	µg/kg	1.0		< 1.0		
Dibromomethane	M	2760	µg/kg	1.0		< 1.0		
Bromodichloromethane	М	2760	µg/kg	5.0		< 5.0		
cis-1,3-Dichloropropene	N	2760	µg/kg	10		< 10		
Toluene	М	2760	µg/kg	1.0		< 1.0		
Trans-1,3-Dichloropropene	N	2760	µg/kg	10		< 10		
1,1,2-Trichloroethane	М	2760	µg/kg	10		< 10		
Tetrachloroethene	M	2760	µg/kg	1.0		< 1.0		
1,3-Dichloropropane	U	2760	µg/kg	2.0		< 2.0		
Dibromochloromethane	U	2760	µg/kg	10		< 10		
1,2-Dibromoethane	M	2760	µg/kg	5.0		< 5.0		
Chlorobenzene	M	2760	µg/kg	1.0		< 1.0		
1,1,1,2-Tetrachloroethane	M	2760	µg/kg	2.0		< 2.0		
Ethylbenzene	М	2760	µg/kg	1.0		< 1.0		
m & p-Xylene	М	2760	µg/kg	1.0		< 1.0		
o-Xylene	M	2760	µg/kg	1.0		< 1.0		
Styrene	M	2760	µg/kg	1.0		< 1.0		
Tribromomethane	U	2760	µg/kg	1.0		< 1.0		
Isopropylbenzene	М	2760	µg/kg	1.0		< 1.0		
Bromobenzene	М	2760	µg/kg	1.0		< 1.0		
1,2,3-Trichloropropane	N	2760	µg/kg	50		< 50		
N-Propylbenzene	U	2760	µg/kg	1.0		< 1.0		
2-Chlorotoluene	М	2760	µg/kg	1.0		< 1.0		
1,3,5-Trimethylbenzene	M	2760	µg/kg	1.0		< 1.0		
4-Chlorotoluene	U	2760	µg/kg	1.0		< 1.0		
Tert-Butylbenzene	U	2760	µg/kg	1.0		< 1.0		
1,2,4-Trimethylbenzene	М	2760	µg/kg	1.0		< 1.0		
Sec-Butylbenzene	U	2760	µg/kg	1.0		< 1.0		

<u> Results - Soil</u>

Client: Concept Consultants		Che	ntest Jo	ob No.:	21-06275	21-06275	21-06275	21-06275
Quotation No.: Q21-23032	0	Chemtest Sample ID.:		1151026	1151028	1151029	1151032	
		Sa	ample Lo	ocation:	STP3	STP1	STP1	STP2
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.50	0.10	0.25	0.40
		Bot	tom Dep	oth (m):	0.50	0.10	0.25	0.40
			Date Sa	ampled:	25-Feb-2021	25-Feb-2021	25-Feb-2021	25-Feb-2021
			Asbest	os Lab:	COVENTRY		COVENTRY	
Determinand	Accred.	SOP	Units	LOD				
1,3-Dichlorobenzene	М	2760	µg/kg	1.0		< 1.0		
4-Isopropyltoluene	U	2760	µg/kg	1.0		< 1.0		
1,4-Dichlorobenzene	М	2760	µg/kg	1.0		< 1.0		
N-Butylbenzene	U	2760	µg/kg	1.0		< 1.0		
1,2-Dichlorobenzene	М	2760	µg/kg	1.0		< 1.0		
1,2-Dibromo-3-Chloropropane	U	2760	µg/kg	50		< 50		
1,2,4-Trichlorobenzene	М	2760	µg/kg	1.0		< 1.0		
Hexachlorobutadiene	U	2760	µg/kg	1.0		< 1.0		
1,2,3-Trichlorobenzene	U	2760	µg/kg	2.0		< 2.0		
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0		< 1.0		
Total Phenols	М	2920	mg/kg	0.30	< 0.30	< 0.30		< 0.30

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Chemtest Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-08859-1		
Initial Date of Issue:	25-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Kasia Mazerant		
Project	20/3521 Elieray Hall & North Lake Depot		
Quotation No.:	Q21-23032	Date Received:	19-Mar-2021
Order No.:	CL2776	Date Instructed:	19-Mar-2021
No. of Samples:	1		
Turnaround (Wkdays):	5	Results Due:	26-Mar-2021
Date Approved:	25-Mar-2021		
Approved By:			

Up Mary

Details:

Glynn Harvey, Technical Manager

Project: 20/3521 Elieray Hall & North Lake Depot

Client: Concept Consultants		Chemtest Job No.:						
Quotation No.: Q21-23032	(Chemtest Sample ID.:						
		Sa	ocation:	BH2				
				e Type:	WATER			
			Date Sa	· ·	17-Mar-2021			
Determinand	Accred.	SOP	Units					
рН	U	1010		N/A	8.2			
Sulphate	U	1220	mg/l	1.0	89			
Cyanide (Total)	U	1300	mg/l	0.050	< 0.050			
Arsenic (Dissolved)	U	1455	µg/l	0.20	0.57			
Boron (Dissolved)	U	1455	µg/l	10.0	110			
Cadmium (Dissolved)	U	1455	µg/l	0.12	< 0.12			
Chromium (Dissolved)	U	1455	µg/l	0.50	6.9			
Copper (Dissolved)	U	1455	µg/l	0.50	1.5			
Mercury (Dissolved)	U	1455	µg/l	0.05	< 0.05			
Nickel (Dissolved)	U	1455	µg/l	0.50	1.0			
Lead (Dissolved)	U	1455	µg/l	0.50	< 0.50			
Selenium (Dissolved)	U	1455	µg/l	0.50	1.2			
Zinc (Dissolved)	U	1455	µg/l	3.0	4.0			
Chromium (Hexavalent)	U	1490	µg/l	20	< 20			
Aliphatic TPH >C5-C6	N	1675	µg/l	0.10	< 0.10			
Aliphatic TPH >C6-C8	N	1675	µg/l	0.10	< 0.10			
Aliphatic TPH >C8-C10	N	1675	µg/l	0.10	< 0.10			
Aliphatic TPH >C10-C12	N	1675	µg/l	0.10	< 0.10			
Aliphatic TPH >C12-C16	N	1675	µg/l	0.10	< 0.10			
Aliphatic TPH >C16-C21	N	1675	µg/l	0.10	< 0.10			
Aliphatic TPH >C21-C35	N	1675	µg/l	0.10	< 0.10			
Aliphatic TPH >C35-C44	N	1675	µg/l	0.10	< 0.10			
Total Aliphatic Hydrocarbons	N	1675	µg/l	5.0	< 5.0			
Aromatic TPH >C5-C7	N	1675	µg/l	0.10	< 0.10			
Aromatic TPH >C7-C8	N	1675	µg/l	0.10	< 0.10			
Aromatic TPH >C8-C10	Ν	1675	µg/l	0.10	< 0.10			
Aromatic TPH >C10-C12	Ν	1675	µg/l	0.10	< 0.10			
Aromatic TPH >C12-C16	Ν	1675	µg/l	0.10	< 0.10			
Aromatic TPH >C16-C21	Ν	1675	µg/l	0.10	< 0.10			
Aromatic TPH >C21-C35	Ν	1675	µg/l	0.10	< 0.10			
Aromatic TPH >C35-C44	Ν	1675	µg/l	0.10	< 0.10			
Total Aromatic Hydrocarbons	Ν	1675	µg/l	5.0	< 5.0			
Total Petroleum Hydrocarbons	Ν	1675	µg/l	10	< 10			
Naphthalene	U	1700	µg/l	0.10	< 0.10			
Acenaphthylene	U	1700	µg/l	0.10	< 0.10			
Acenaphthene	U	1700	µg/l	0.10	< 0.10			
Fluorene	U	1700	µg/l	0.10	< 0.10			
Phenanthrene	U	1700	µg/l	0.10	< 0.10			
Anthracene	U	1700	µg/l	0.10	< 0.10			
Fluoranthene	U	1700	µg/l	0.10	< 0.10			
Pyrene	U	1700	µg/l	0.10	< 0.10			

Project: 20/3521 Elieray Hall & North Lake Depot

Client: Concept Consultants		Chemtest Job No.:						
Quotation No.: Q21-23032	(st Sam		1163651			
		Sample Location:						
			Sample	e Type:	WATER			
			Date Sa	mpled:	17-Mar-2021			
Determinand	Accred.	SOP	Units	LOD				
Benzo[a]anthracene	U	1700	µg/l	0.10	< 0.10			
Chrysene	N	1700	µg/l	0.10	< 0.10			
Benzo[b]fluoranthene	U	1700	µg/l	0.10	< 0.10			
Benzo[k]fluoranthene	U	1700	µg/l	0.10	< 0.10			
Benzo[a]pyrene	U	1700	µg/l	0.10	< 0.10			
Indeno(1,2,3-c,d)Pyrene	U	1700	µg/l	0.10	< 0.10			
Dibenz(a,h)Anthracene	U	1700	µg/l	0.10	< 0.10			
Benzo[g,h,i]perylene	U	1700	µg/l	0.10	< 0.10			
Total Of 16 PAH's	N	1700	µg/l	2.0	< 2.0			
Dichlorodifluoromethane	U	1760	µg/l	1.0	< 1.0			
Chloromethane	U	1760	µg/l	1.0	< 1.0			
Vinyl Chloride	N	1760	µg/l	1.0	< 1.0			
Bromomethane	U	1760	µg/l	5	< 5			
Chloroethane	U	1760	µg/l	2.0	< 2.0			
Trichlorofluoromethane	U	1760	µg/l	1.0	< 1.0			
1,1-Dichloroethene	U	1760	µg/l	1.0	< 1.0			
Trans 1,2-Dichloroethene	U	1760	µg/l	1.0	< 1.0			
1,1-Dichloroethane	U	1760	µg/l	1.0	< 1.0			
cis 1,2-Dichloroethene	U	1760	µg/l	1.0	< 1.0			
Bromochloromethane	U	1760	µg/l	5	< 5			
Trichloromethane	U	1760	µg/l	1.0	< 1.0			
1,1,1-Trichloroethane	U	1760	µg/l	1.0	< 1.0			
Tetrachloromethane	U	1760	µg/l	1.0	< 1.0			
1,1-Dichloropropene	U	1760	µg/l	1.0	< 1.0			
Benzene	U	1760	µg/l	1.0	< 1.0			
1,2-Dichloroethane	U	1760	µg/l	2.0	< 2.0			
Trichloroethene	N	1760	µg/l	1.0	< 1.0			
1,2-Dichloropropane	U	1760	µg/l	1.0	< 1.0			
Dibromomethane	U	1760	µg/l	10	< 10			
Bromodichloromethane	U	1760	µg/l	5	< 5			
cis-1,3-Dichloropropene	N	1760	µg/l	10	< 10			
Toluene	U	1760	µg/l	1.0	< 1.0			
Trans-1,3-Dichloropropene	N	1760	µg/l	10	< 10			
1,1,2-Trichloroethane	U	1760	µg/l	10	< 10			
Tetrachloroethene	U	1760	µg/l	1.0	< 1.0			
1,3-Dichloropropane	U	1760	µg/l	2.0	< 2.0			
Dibromochloromethane	U	1760	µg/l	10	< 10			
1,2-Dibromoethane	U	1760	µg/l	5	< 5			
Chlorobenzene	N	1760	µg/l	1.0	< 1.0			
1,1,1,2-Tetrachloroethane	U	1760	µg/l	2.0	< 2.0			
Ethylbenzene	U	1760	µg/l	1.0	< 1.0			

Project: 20/3521 Elieray Hall & North Lake Depot

Client: Concept Consultants			ntest Jo		21-08859
Quotation No.: Q21-23032	(Chemte	st Sam	ple ID.:	1163651
		Sa	ample Lo	ocation:	BH2
			Sampl	e Type:	WATER
			Date Sa	ampled:	17-Mar-2021
Determinand	Accred.	SOP	Units	LOD	
m & p-Xylene	U	1760	µg/l	1.0	< 1.0
o-Xylene	U	1760	µg/l	1.0	< 1.0
Styrene	U	1760	µg/l	1.0	< 1.0
Tribromomethane	U	1760	µg/l	1.0	< 1.0
Isopropylbenzene	U	1760	µg/l	1.0	< 1.0
Bromobenzene	U	1760	µg/l	1.0	< 1.0
1,2,3-Trichloropropane	N	1760	µg/l	50	< 50
N-Propylbenzene	U	1760	µg/l	1.0	< 1.0
2-Chlorotoluene	U	1760	µg/l	1.0	< 1.0
1,3,5-Trimethylbenzene	U	1760	µg/l	1.0	< 1.0
4-Chlorotoluene	U	1760	µg/l	1.0	< 1.0
Tert-Butylbenzene	U	1760	µg/l	1.0	< 1.0
1,2,4-Trimethylbenzene	U	1760	µg/l	1.0	< 1.0
Sec-Butylbenzene	U	1760	µg/l	1.0	< 1.0
1,3-Dichlorobenzene	N	1760	µg/l	1.0	< 1.0
4-Isopropyltoluene	U	1760	µg/l	1.0	< 1.0
1,4-Dichlorobenzene	U	1760	µg/l	1.0	< 1.0
N-Butylbenzene	U	1760	µg/l	1.0	< 1.0
1,2-Dichlorobenzene	U	1760	µg/l	1.0	< 1.0
1,2-Dibromo-3-Chloropropane	U	1760	µg/l	50	< 50
1,2,4-Trichlorobenzene	U	1760	µg/l	1.0	< 1.0
Hexachlorobutadiene	U	1760	µg/l	1.0	< 1.0
1,2,3-Trichlorobenzene	U	1760	µg/l	2.0	< 2.0
Methyl Tert-Butyl Ether	N	1760	µg/l	1.0	< 1.0
Total Phenols	U	1920	mg/l	0.030	< 0.030

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	pН	pH Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8– C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Pentane extraction / GCxGC FID detection
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.

Report Information

Key	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

🔅 eurofins

Chemtest Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-19966-1		
Initial Date of Issue:	18-Jun-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Kasia Mazerant		
Project	20/3521 Elleray Hall & North Lane Depot		
Quotation No.:	Q21-23032	Date Received:	11-Jun-2021
Order No.:	CL2904	Date Instructed:	11-Jun-2021
No. of Samples:	1		
Turnaround (Wkdays):	5	Results Due:	17-Jun-2021
Date Approved:	18-Jun-2021		
Approved By:			

Ula Mary

Details:

Glynn Harvey, Technical Manager

Project: 20/3521 Elleray Hall & North Lane Depot

Client: Concept Consultants			ntest Jo		21-19966
Quotation No.: Q21-23032	(Chemte	st Sam	ple ID.:	1219867
Order No.: CL2904		Clier	nt Samp	le Ref.:	1A
		Sa	ample Lo		BH1
				e Type:	WATER
			Date Sa		09-Jun-2021
Determinand	Accred.	SOP	Units		
рН	U	1010		N/A	8.3
Sulphate	U	1220	mg/l	1.0	110
Cyanide (Total)	U	1300	mg/l	0.050	< 0.050
Arsenic (Dissolved)	U	1455	µg/l	0.20	0.57
Boron (Dissolved)	U	1455	µg/l	10.0	84
Cadmium (Dissolved)	U	1455	µg/l	0.11	< 0.11
Chromium (Dissolved)	U	1455	µg/l	0.50	7.0
Copper (Dissolved)	U	1455	µg/l	0.50	1.5
Mercury (Dissolved)	U	1455	µg/l	0.05	< 0.05
Nickel (Dissolved)	U	1455	µg/l	0.50	0.59
Lead (Dissolved)	U	1455	µg/l	0.50	< 0.50
Selenium (Dissolved)	U	1455	µg/l	0.50	1.4
Zinc (Dissolved)	U	1455	µg/l	2.5	< 2.5
Chromium (Hexavalent)	U	1490	µg/l	20	< 20
Aliphatic TPH >C5-C6	N	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C6-C8	N	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C8-C10	Ν	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C10-C12	Ν	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C12-C16	Ν	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C16-C21	N	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C21-C35	N	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C35-C44	Ν	1675	µg/l	0.10	< 0.10
Total Aliphatic Hydrocarbons	Ν	1675	µg/l	5.0	< 5.0
Aromatic TPH >C5-C7	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C7-C8	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C8-C10	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C10-C12	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C12-C16	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C16-C21	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C21-C35	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C35-C44	N	1675	µg/l	0.10	< 0.10
Total Aromatic Hydrocarbons	N	1675	µg/l	5.0	< 5.0
Total Petroleum Hydrocarbons	N	1675	µg/l	10	< 10
Naphthalene	U	1700	µg/l	0.10	< 0.10
Acenaphthylene	U	1700	µg/l	0.10	< 0.10
Acenaphthene	U	1700	µg/l	0.10	< 0.10
Fluorene	U	1700	µg/l	0.10	< 0.10
Phenanthrene	U	1700	µg/l	0.10	< 0.10
Anthracene	U	1700	µg/l	0.10	< 0.10
Fluoranthene	U	1700	µg/l	0.10	< 0.10

Project: 20/3521 Elleray Hall & North Lane Depot

Client: Concept Consultants		Che	mtest Jo	ob No.:	21-19966
Quotation No.: Q21-23032	(est Sam		1219867
Order No.: CL2904		Clie	nt Samp	le Ref.:	1A
		Sa	ample Lo	ocation:	BH1
			Sampl	e Type:	WATER
			Date Sa	ampled:	09-Jun-2021
Determinand	Accred.	SOP	Units	LOD	
Pyrene	U	1700	µg/l	0.10	< 0.10
Benzo[a]anthracene	U	1700	µg/l	0.10	< 0.10
Chrysene	N	1700	µg/l	0.10	< 0.10
Benzo[b]fluoranthene	U	1700	µg/l	0.10	< 0.10
Benzo[k]fluoranthene	U	1700	µg/l	0.10	< 0.10
Benzo[a]pyrene	U	1700	µg/l	0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	µg/l	0.10	< 0.10
Dibenz(a,h)Anthracene	U	1700	µg/l	0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	µg/l	0.10	< 0.10
Total Of 16 PAH's	N	1700	µg/l	2.0	< 2.0
Dichlorodifluoromethane	U	1760	µg/l	1.0	< 1.0
Chloromethane	U	1760	µg/l	1.0	< 1.0
Vinyl Chloride	N	1760	µg/l	1.0	< 1.0
Bromomethane	U	1760	µg/l	5	< 5
Chloroethane	U	1760	µg/l	2.0	< 2.0
Trichlorofluoromethane	U	1760	µg/l	1.0	< 1.0
1,1-Dichloroethene	U	1760	µg/l	1.0	< 1.0
Trans 1,2-Dichloroethene	U	1760	µg/l	1.0	< 1.0
1,1-Dichloroethane	U	1760	µg/l	1.0	< 1.0
cis 1,2-Dichloroethene	U	1760	µg/l	1.0	< 1.0
Bromochloromethane	U	1760	µg/l	5	< 5
Trichloromethane	U	1760	µg/l	1.0	< 1.0
1,1,1-Trichloroethane	U	1760	µg/l	1.0	< 1.0
Tetrachloromethane	U	1760	µg/l	1.0	< 1.0
1,1-Dichloropropene	U	1760	µg/l	1.0	< 1.0
Benzene	U	1760	µg/l	1.0	< 1.0
1,2-Dichloroethane	U	1760	µg/l	2.0	< 2.0
Trichloroethene	N	1760	µg/l	1.0	< 1.0
1,2-Dichloropropane	U	1760	µg/l	1.0	< 1.0
Dibromomethane	U	1760	µg/l	10	< 10
Bromodichloromethane	U	1760	µg/l	5	< 5
cis-1,3-Dichloropropene	N	1760	µg/l	10	< 10
Toluene	U	1760	µg/l	1.0	< 1.0
Trans-1,3-Dichloropropene	Ν	1760	µg/l	10	< 10
1,1,2-Trichloroethane	U	1760	µg/l	10	< 10
Tetrachloroethene	U	1760	µg/l	1.0	< 1.0
1,3-Dichloropropane	U	1760	µg/l	2.0	< 2.0
Dibromochloromethane	U	1760	µg/l	10	< 10
1,2-Dibromoethane	U	1760	µg/l	5	< 5
Chlorobenzene	N	1760	µg/l	1.0	< 1.0

Project: 20/3521 Elleray Hall & North Lane Depot

Client: Concept Consultants		Chei	ntest Jo	ob No.:	21-19966
Quotation No.: Q21-23032	(Chemte	ple ID.:	1219867	
Order No.: CL2904		Clier	nt Samp	le Ref.:	1A
		Sa	ample Lo	ocation:	BH1
			Sampl	e Type:	WATER
			Date Sa	ampled:	09-Jun-2021
Determinand	Accred.	Accred. SOP Units LOD			
1,1,1,2-Tetrachloroethane	U	1760	µg/l	2.0	< 2.0
Ethylbenzene	U	1760	µg/l	1.0	< 1.0
m & p-Xylene	U	1760	µg/l	1.0	< 1.0
o-Xylene	U	1760	µg/l	1.0	< 1.0
Styrene	U	1760	µg/l	1.0	< 1.0
Tribromomethane	U	1760	µg/l	1.0	< 1.0
Isopropylbenzene	U	1760	µg/l	1.0	< 1.0
Bromobenzene	U	1760	µg/l	1.0	< 1.0
1,2,3-Trichloropropane	N	1760	µg/l	50	< 50
N-Propylbenzene	U	1760	µg/l	1.0	< 1.0
2-Chlorotoluene	U	1760	µg/l	1.0	< 1.0
1,3,5-Trimethylbenzene	U	1760	µg/l	1.0	< 1.0
4-Chlorotoluene	U	1760	µg/l	1.0	< 1.0
Tert-Butylbenzene	U	1760	µg/l	1.0	< 1.0
1,2,4-Trimethylbenzene	U	1760	µg/l	1.0	< 1.0
Sec-Butylbenzene	U	1760	µg/l	1.0	< 1.0
1,3-Dichlorobenzene	N	1760	µg/l	1.0	< 1.0
4-Isopropyltoluene	U	1760	µg/l	1.0	< 1.0
1,4-Dichlorobenzene	U	1760	µg/l	1.0	< 1.0
N-Butylbenzene	U	1760	µg/l	1.0	< 1.0
1,2-Dichlorobenzene	U	1760	µg/l	1.0	< 1.0
1,2-Dibromo-3-Chloropropane	U	1760	µg/l	50	< 50
1,2,4-Trichlorobenzene	U	1760	µg/l	1.0	< 1.0
Hexachlorobutadiene	U	1760	µg/l	1.0	< 1.0
1,2,3-Trichlorobenzene	U	1760	µg/l	2.0	< 2.0
Methyl Tert-Butyl Ether	N	1760	µg/l	1.0	< 1.0
Total Phenols	U	1920	mg/l	0.030	< 0.030

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	pН	pH Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8– C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Pentane extraction / GCxGC FID detection
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

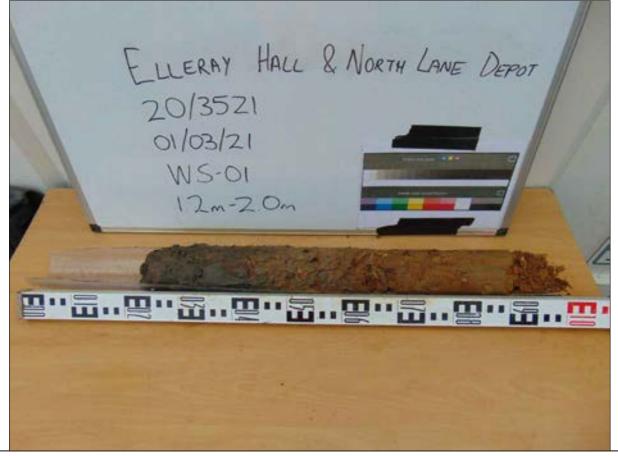
Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes


- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

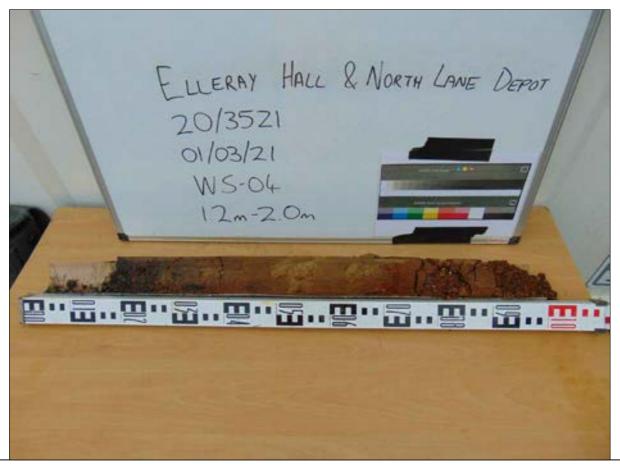
Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

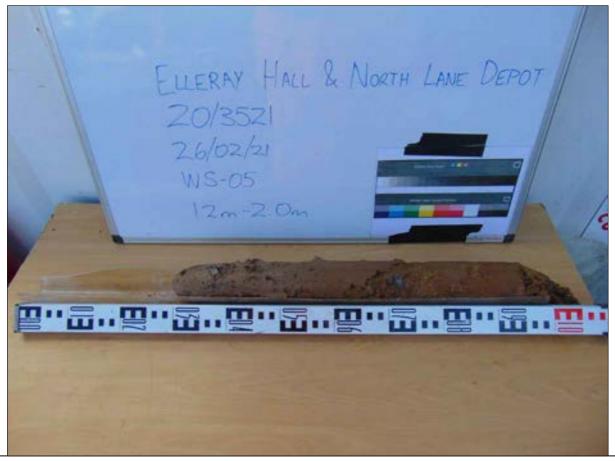
If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com 16. PHOTOGRAPHS

Project No	20/3521	Hole ID	WS1	C.DCEPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	001 & 002	@? mass WAGS CHAS
Client	Richmond & Wandsworth Council	Date	February 2021	IEAD 0FPCE: LAB0RAT087: MDDA105 0FPCE: Lisä Kingelisens (7.4 Pisanelisad, Lisä Kingelisens) Dieded King- Waph Way Oxi Oxi Galasman Bahy Jakon Bahy Jakon Lisä Laada Wilf (Stef Astra Laada Wilf 7), Convery (CV 1820, all'conceptomolatat nai Labi?uszeptomolatat on al. +4400 20 8411 2880 +4400 20 8740 1553 +44400 24 708 7670

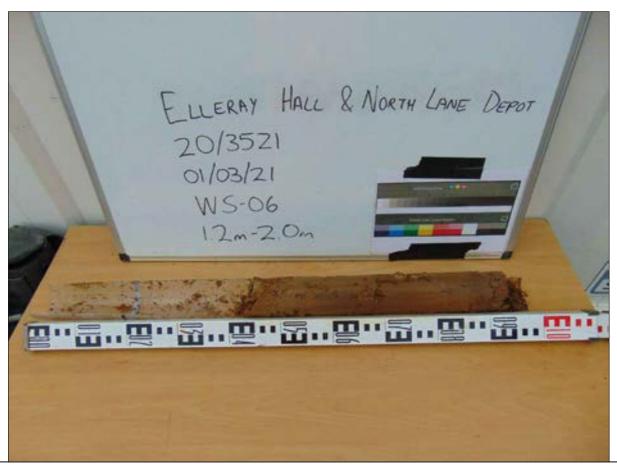
I	Project No	20/3521	Hole ID	WS2	C.JOEPT
I	Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	003 & 004	@? WAGS CHAP
(Client	Richmond & Wandsworth Council	Date	February 2021	IBEAD OFFICE: LABORATORY: MULAINS OFFICE: Lina 8 Kingh Wese: 0.48 Banch Kingh Ling Defined King Wayab Way: 0.04 Ock Common Bindly Information State London 81 Way: 0.04 Ock Common Bindly Information State Jandon 81 Way: 0.04 Ock Common Bindly Information State Jandon 81 Way: 0.04 Ock Common Bindly Information State Jandon 81 Way: 0.04 Ock Common Bindly Information State Jandon 81 Way: 0.04 Ock Common Bindly Information State Jandon 81 Way: 0.04 Ock Common Bindly Information State Jandon 81 Way: 0.04 Ock Common Bindly Information State Jandon 81 Wayab



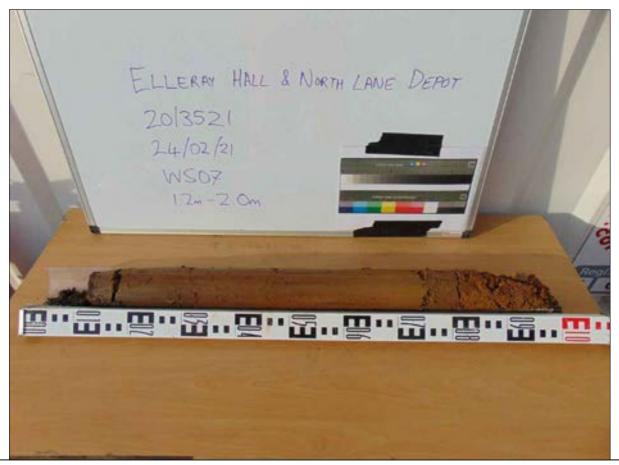
Project No	20/3521	Hole ID	WS3	C.NCEPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	005 & 006	@ ? mass WAGS CHAP
Client	Richmond & Wandsworth Council	Date	February 2021	IEAD 0FPCE: LANOBATORY: MIDAANG 0FPCE: Lisa Wang-Bees, 47-49 Bana Boad, Lin Ti Di Incha Way, Waya Way OH Ola Camano Bialy Isakata Jista Landa W10FF Artas Landaw 107 AR Conventy CY1 250 all'conceptonoblants nak Jab?conceptonoblants na k 4400 20 8111 2880 + 4400 20 87/0 1553 + 4400 24 708 7670



Project No	20/3521	Hole ID	WS4	C•	nc	EPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	007 & 008	@?	-WAGS	9449 III
Client	Richmond & Wandsworth Council	Date	February 2021	HEAD OFFICE: Unit 8 Warple Mews Warple Way London W3 00F sill@conceptromsthants.co.uk +44(0) 20 8811 2880	LABORATORY: 47-49 Branel Road Old Oak Common Acton London W3 7XR lab@conceptconsultants.co.ul +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Herhol Way Binley Industrial Coventy CV3 2RQ coventry@conceptconsultants.co. +44(0) 24 7708 7670



Project No	20/3521	Hole ID	WS5	C•JCEPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	009 & 010	@ ? mass WAGS CHAP
Client	Richmond & Wandsworth Council	Date	February 2021	BEAD OFFICE LABORTOFF: NELANISOFOFICE Lead Wingdi, Mess, G. 44 Bine Eload Diaded Wingdi, Mess, Bine Eload Diaded Wingdi, Mess, Bine Eload Wingdi Wingdi, Wingdi Wingdi, Mess, Bine Eload Microbio Common 200, Res, Bine Eload Diaded Wingdi, Mess, Bine Eload Wingdi Wingd



Project No	20/3521	Hole ID	WS6	C•JCEPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	011 & 012	@?
Client	Richmond & Wandsworth Council	Date	February 2021	IIIED OFFICE LADORATORY: MIDLANDS OFFICE: Dark Wangh Wass 74.49 Bene Beland Dark Dinchel Way Waye Ways 04.00 Common Bink phadratal Distate London X1920 Astan London X1720. Common Strate (70.12 SU) self-compositionation call bink compositionation call control X100 Common Strate (70.12 SU) self-compositionation call bink compositionation call control X100 Common Strate (70.12 SU) self-compositionation call bink compositionation call control X100 Common Strate (70.12 SU) self-compositionation call self-compositionation call control X100 Common Strate (70.12 SU) self-compositionation call control X100 Common Strate (70.12 SU)

Project No	20/3521	Hole ID	WS7	C.	NC	EP
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	013 & 014	@ 2	MAGS	CHW9 [
Client	Richmond & Wandsworth Council	Date	February 2021	HEAD OFFICE: Unit 8 Warple Mews Warple Way London W3 0RF si® conceptionsultants.co.ui +44(0) 20 8811 2880	LABORATORY: 47-49 Bnnel Road OH Oak Common Acton London W3 7XR k lab@conceptconsultants.co.uk +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Herlad Way Binley Industrial Estate Coventry CV3 2RQ coventry@conceptcom +44(0) 24 7708 7670

Project No	20/3521	Hole ID	WS8	C•	NC	EPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	015 & 016	@?=	MAGS	9449 [ESS
Client	Richmond & Wandsworth Council	Date	February 2021	HEAD OFFICE: Unit 8 Warple Mews Warple Way London W3 0RF si@conceptronsultants.co.ul +44(0) 20 8811 2880	LABORATORY: 47-49 Branel Read Old Oak Common Acton London W3 7XR bib@conceptcorsultants.co.ul +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Herhid Way Binley Industrial Estate Coventry CV 3 2RQ coventry @ conceptconsultants.co +44(0) 24 7708 7670

Project No	20/3521	Hole ID	WS9	C.	NC	EPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	017 & 018	@2=	MAGS	0.00
Client	Richmond & Wandsworth Council	Date	February 2021	HEAD OFFICE: Unit 8 Warple Ments Warple Way London W3 0RF si@conceptconsultants.co.u +44(0) 20 8811 2880	LABORATORY: 47-49 Branel Road OH Oak Common Actoa Londoa W3 7XR k lab@conceptconsultants.co.uk +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Herhad Way Binley Industrial Estate Covenity CV3 2RQ covenity@conceptconsulta +44(0) 24 7708 7670

Project No	20/3521	Hole ID	WS10	C.	NC	EPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	019 & 020	@ ?	MAGS	ew 199
Client	Richmond & Wandsworth Council	Date	February 2021	HEAD OFFICE: Unit 8 Warple Mems Warple Way London W3 0RF si@conceptronsultants.co.ul +44(0) 20 8811 2880	LABORATORY: 47-49 Branel Road Old Oak Common Acton London W3 7XR bib@conceptconsultants.co.uk +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Herbid Way Binkey Industrial Estate Coventry CV3 2RQ corentry CV3 2RQ corentry@conceptconsultants.co.t +44(0) 24 7708 7670

Project No	20/3521	Hole ID	STP1	C•	nc	EPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	021 & 022	@?	. WAGS	9449 ESS
Client	Richmond & Wandsworth Council	Date	25/02/2021	HEAD OFFICE: Unit 8 Warple Mens Warple Way London W3 0RF si@conceptronsultants.co.uk +44(0) 20 8811 2880	LABORATORY: 47-49 Branel Road OH Oak Common Acton London W3 7XR lab@conceptconsultants.co.uk +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Herhol Way Binley Industrial Coventy CV3 2RQ k coventry@conceptconsultants.co.u +444(0) 24 7708 7670

Project No	20/3521	Hole ID	STP1	C•JCEPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	023 & 024	@ ? WAGS PAP
Client	Richmond & Wandsworth Council	Date	25/02/2021	IBED: OFFICE: LAUGRATORY: MELANIS OFFICE: Line IV Ways of 20 Bane Alam Line ID Alam Miny The Alam Miny Alam Line II Alam Miny Alam Line II Alam Miny Mines Miny BF Area Laudes With Zie Contrary (V1378) alim Contrary (V137

Project No	20/3521	Hole ID	STP2	C-JCEPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	025 & 026	@ 2 man WAGS CHAP
Client	Richmond & Wandsworth Council	Date	25/02/2021	IIILAD OFFICE LALGORYDOYT MDLADARS OFFICE Una 10 field at the strength lows, and the strength lows, and the strength lows, and the strength low strengh low strength low str

Project No	20/3521	Hole ID	STP2	C•	nc	EPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	027 & 028	@?	. WAGS	9449 E
Client	Richmond & Wandsworth Council	Date	25/02/2021	HEAD OFFICE: Unit 8 Warple Mews Warple Way London W3 0RF si® conceptoonsultants.co.uk +44(0) 20 8811 2880	LABORATORY: 47-49 Brunel Read OH Oak Common Acton London W3 7XR lab@conceptionsruhants.co.u +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Herhid Way Binky Industrial Estate Coventry CV3 2RQ k coventry@conceptentsubants.co. +44(0) 24 7708 7670

Project Name Elleray Hall & North Lane Depot/East Car Park Photograph No 029 & 030 Image: Constraint of the former state of the former	Project No	20/3521	Hole ID	STP2	C•JOEPT
Client Richmond & Wandsworth Council Date 25/02/2021	Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	029 & 030	@? WAGS CHAP
	Client	Richmond & Wandsworth Council	Date	25/02/2021	Unit 8 Warple Mens 47:49 Branel Road Unit D Hechal Way Warple Way OH Oak Common Binley Industrial Exate London W3 0RF Action London W3 7XR Conventy CV3 2RQ silic carceptionnshanks.co.uk lab@conceptionnshanks.co.uk

Photograph No 029

Photograph No 030

Project Name Ellelay Hall & NOIUI Lalle Depot/Last Cal Palk Photograph No US1 & US2	Project No	20/3521	Hole ID	STP3	C•JCEPT
Unit 8 Warple Meres 47-49 Emzel Road Unit D Herb	Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	031 & 032	@ ? man WAGS CHAP
	Client	Richmond & Wandsworth Council	Date	25/02/2021	Unit 8 Warple Mens 47-49 Branel Road Unit D Herhal Way Warple Way OH Oak Common Binley Industrial Estate London W3 0RF Acton London W3 7XR Coventry CV3 2RQ s@conceptonsublants.co.uk hb@conceptonsublants.co.uk covertiny@conceptonsublants.co.uk

Photograph No 031

Photograph No 032

Project No	20/3521	Hole ID	STP3	C•JCEPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	033 & 034	@ ? man WAGS CHAP
Client	Richmond & Wandsworth Council	Date	25/02/2021	IIIAD OFFICE: LADORATORY: MEDIADOS OFFICE: BLA Wingh Mens 47 - 48 hand Road Lad B Hedd M 20 hand Road Lad B Hedd M 20 hand Road Wingh Wing OH Gold Common NR Red patiential E Gold M 20 hand Road Red patiential E Gold M 20 hand Road Wingh Wing OH Gold Common NR Red patiential E Gold M 20 hand Road Red patiential E Gold M 20 hand Red patienial E Gold M 20 hand R

Photograph No 033

Photograph No 034

APPENDIX A: Unexploded Ordnance Risk Assessment

JUMAS ENGINEERING ENVIRONMENTAL

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK.

DETAILED UNEXPLODED ORDNANCE (UXO) RISK ASSESSMENT

FOR THE SITE AT

Elleray Hall & North Lane Depot, Teddington TW11 And East Car Park, Teddington TW11

This report has been produced by Primely on behalf of JOMAS

6-9 The Square, Stockley Park, Uxbridge, UB11 1FW www.jomasassociates.com 0843-289-2187 info@jomasassociates.com

EXECUTIVE SUMMARY

Site location and general description

Primely Ltd has been commissioned by *JOMAS ASSOCIATES Ltd* to carry out a detailed Unexploded Ordnance (UXO) Risk Assessment for the development projects at North lane depot East car park, Teddington TW11 0HG and Elleray Hall, Elleray Road, Teddington TW11 0HG. The sites are centred approximately on National Grid Reference TQ 15689 70909.

The site is bounded on all sides by private homes, with North Lane on its West and Middle Lane centred between the two plots as seen in figure 2.1.

The site is currently occupied by commercial buildings in part and associated with hardstanding tarmacked ground.

TW11 0HG is currently in Coronavirus (Covid-19) England Tier 5 (Stay at home) Data from NHSX, correct as of 16th January 2021

Scope of proposed works

It is understood that a series of site investigation works are planned across the site area.

Risk assessment

Primely Ltd has assessed that there is a **LOW** risk of items of unexploded German aerial delivered. Other types of munitions also constitute a **LOW** risk.

- The site is located within the London Borough of Richmond upon Thames, historic county of Middlesex, which sustained a low-density bombing campaign during the Blitz.
- Official records show that 59 high explosive (HE) bombs were dropped in Teddington throughout the war.
- November 1940 saw the borough sustain its highest casualties. 74 people were killed.
- On the night of November 29,130 bombs and between 3,000 and 5,000 incendiary devices rained down on Twickenham and Teddington, destroying 150 houses and damaging more than 6,000 others.

- The National Physical Laboratory had been designated a special target by the Luftwaffe, as it was here the engineer and aeronautical designer Barnes Wallis was developing the 'Bouncing Bomb', later to be used by the RAF in the famous Dambusters raid of May 1943. The raid destroyed Germany's Mohne and Eder dams.
- There was an American army base in Bushy Park (600m south west of the site).
- Teddington Film Studios, one of the few British studios (2km southeast), received a direct hit from a V1 on the evening of July 5, 1944.
- By the end of the war, 143 civilians had been killed in air raids, 500 houses had been destroyed, and another 32,000 residences had sustained damage.

Recommended risk mitigation measures

To support the proposed works, Primely Ltd suggests the following risk mitigation measures:

 No further action. However, re-active measures should be employed such as a UXO "Toolbox" brief, a UXO 'Emergency Management Plan' and/or an "on-call" service.

Primely Ltd can supply the above services.

Table of Contents

EXECUTIVE SUMMARY	. 1
SITE LOCATION AND GENERAL DESCRIPTION	
	1
TABLE OF CONTENTS	. 3
INTRODUCTION	. 7
1. METHODOLOGY	8
1.1 METHOD OBJECTIVES	
1.2 Sources of Information	9
2. SITE DETAILS AND DESCRIPTION	10
2.1 SITE LOCATION AND DESCRIPTION	
2.2 PROPOSED SCHEME OF WORK	
2.3 GROUND CONDITIONS - GEOLOGY.	
2.4 HISTORICAL GROUND INVESTIGATION DATA	11
3. HISTORICAL DATASETS	13
3.1 GENERAL	
3.2 SITE HISTORY	
3.2.1 Second World War Bombing Statistics	
3.3 ORDNANCE SURVEY HISTORICAL MAPS	
3.5 SOURCES OF POTENTIAL UNEXPLODED ORDNANCE	-
3.5.1 Allied as source of UXO	
3.5.2 German as source of UXO	
3.6 WWII GERMAN AERIAL ORDNANCE TYPE DESCRIPTION HIGH EXPLOSIVE (HE) BOMBS	20
3.6.1 German SC50 and SC250	
3.6.2 1Kg Incendiary Bomb SD2 'Butterfly' Bomb (Armed status)	
3.6.3 The Butterfly Bomb (or Sprengbombe Dickwandig 2 kg or SD2)	
3.6.4 V1s and V2s 3.7 Consequences of interaction	
4. REQUIREMENT FOR UXO RISK ASSESSMENT	
4.1 BACKGROUND	
4.2 CDIVI REGULATIONS 2015	
5. DATA ANALYSIS	26
6. RISK ASSESSMENT	-
6.1 MAXIMUM BOMB PENETRATION DEPTH	
6.1.1 The J-Curve Effect	
6.1.2 WWII UXB Penetration Studies	
6.1.3 Site Specific Bomb Penetration Considerations 6.2 RISK PATHWAY	
6.4 RISK PATHWAT	30
7 RECOMMENDED RISK MITIGATION MEASURES	
BIBLIOGRAPHY	33
REFERENCES	36

APPENDICES	38
APPENDIX A SITE LOCATION	38
Appendix B Historical Borehole scans	39
APPENDIX C LONDON BOMBING CENSUS MAP	
Appendix D Bomb Damage Maps	43
ANNEXES	44
ANNEX A – GERMAN BOMBS SERIES AND MAIN CATEGORIES OF BOMBS DROPPED ON THE UK	
DURING WWII	
ANNEX B MOST USED BOMBS	
SD-2 Butterfly bomb	46
ANNEX C BRITISH ANTI AIRCRAFTS AMMUNTIONS	47
3.7" British Anti Aircraft Artillery Projectile (AAA)	47
ANNEX D – VENGEANCE WEAPONS.	48
Annex D1 The V1 Flying Bomb	
Annex D2 The V2 Rocket	48
ANNEX E THE J – CURVE	49
ANNEX F: HISTORICAL MAPS	50
SOME BOMB INCIDENTS IN THE UK IN RECENT YEARS	66

LIST OF FIGURES

- Figure 2.1 Description of the site location
- Figure 2.4 Historical borehole records
- Figure 3.4.1 Bomb density specific to the site
- Figure 3.4.2 Bomb damage map of the site

LIST OF TABLES

- Table 2.4.1 LITTLE QUEENS ROAD TWICKENHAM
- Table 2.4.2 GOVERNMENT CHEMIST LAB NPPL 11
- Table 3.2.1 Ordnance Statistic within the borough
- Table 3.3 Ordnance Survey Historical Maps Description
- Table 3.6.1
 Range of German bomb series
- Table 6.4.1 UXO Risk Calculation
- Table 6.4.2
 Risk Rating Probability and Consequence
- Table 6.4.3 Risk Scoring Categories

Acronyms and abbreviations

AAA	Anti-Aircraft Artillery	HSWA	Health and Safety at Work Act 1974
AP	Armour Piercing	IB	Incendiary Bomb
AP	Anti-Personnel	JSEODOC	Joint Services Explosive Ordnance
ARP	Air Raid Precaution (Wardens)		Disposal Operations Centre (UK)
BD	Bombing Density	LE	Low Explosive
BGL	Below Ground Level	LM	Luftmine (Germany)
BGS	British Geological Survey (UK)	LSA	Land Service Ammunition MOD
BH	Borehole		Ministry of Defence (UK)
BPD	Bomb Penetration Depth	NEQ	Net Explosive Quantity
CDM	Construction (Design and	RAF	Royal Air Force
	Management) Regulations 2015	RN	Royal Navy
	(UK)	ROF	Royal Ordnance Factory
CIRIA	Construction Industry Research	SAA	Small Arms Ammunition
	and Information Association	SAP	Semi-Armour-Piercing
СРТ	Cone Penetrometer Test	RAF	Royal Air Force
EOC	Explosive Ordnance Clearance	SI	Site Investigation
EOD	Explosive Ordnance Disposal	SIP	Self-Igniting Phosphorous
ERP	Emergency Response Plan	UXB	Unexploded Bomb
ERW	Explosive Remnants of War	UXO	Unexploded Ordnance
FFE	Free From Explosives	V1	Vengeance Weapon 1 - Flying bombs
GI	Ground Investigation	V2	Vengeance Weapon 2 - Flying bombs
GPS	Global Positioning System	WAAF	Women Auxiliary Air Force
HE	High Explosive	ROF	Small Arms Ammunition
HSE	Health and Safety Executive	SI	Site Investigation
HSWA	Health and Safety at Work Act		
	1974		
IB	Incendiary Bomb		
JSEODOC	Joint Services Explosive Ordnance		
	Disposal Operations Centre (UK)		
LE	Low Explosive		

LM Luftmine (Germany)

INTRODUCTION

Primely Ltd has been commissioned by *JOMAS ASSOCIATES* to carry out a detailed Unexploded Ordnance (UXO) Risk Assessment for the development projects at North Lane Depot East car par and Elleray Hall, Elleray Road, Teddington TW11 0HG, *United Kingdom*. The desk study provides a detailed assessment of the location with regards to the risks of encountering items of unexploded ordnance and the consequences of that encounter.

This report documents the findings of the study carried out for the assessment of the potential risk from deep buried unexploded High Explosive (HE) bombs and munitions constituents at the site, and make suitable recommendations to mitigate the risk to a level that is as low as reasonable and practicable (ALARP).

Reasonable efforts have been exerted to ensure that significant and sufficient available historical information has been accessed and checked. The evidence assessed has been, where possible, included in the report to enable *JOMAS* and its representatives to understand the basis of the risk assessment.

Primely Ltd cannot be held responsible for inaccuracies, gaps in the available historical information, or for any changes to the assessed level of risk or risk mitigation measures based on documentation or other information that may have become available or discovered later than the date of this study.

The exact location of ordnances, their nature, as well as their quantities is ambiguous to say the least with absolute exactitude because wartime records are difficult to verify. However, our study leans on the accumulation and careful analysis of a multitude of accessible evidence.

There are several sources of information through which investigations for UXO hazards can be collected; these include the national archives, MoD archives, local historical sources, historical mapping, as well as available aerial photography. Information was considered only if it reasonably correlated with the site.

1. METHODOLOGY

1.1 Method objectives

This report follows the guidelines outlined in CIRIA Report C681, '<u>Unexploded Ordnance</u> (<u>UXO): A Guide for the Construction Industry</u>' which represents best practice and has been endorsed by the HSE. The report recommends appropriate site and work-specific risk mitigation measures to reduce the risk from explosive ordnance during the envisaged works to a level that is as low as reasonably practicable (ALARP).

The ALARP principle is a key factor in efficiency and effectiveness in reducing UXO risks. Any additional mitigation that delivers low benefits but consumes disproportionate time, money, and effort, is dimmed unnecessary. It is important to note that the principle is not trying to reduce the risk to zero, but to find the balance of reducing the cost of a risk significantly without compromising safety. The assessment of UXO risk is a measure of probability of encountering a deep buried unexploded ordnance and the consequence of that encounter. If risks of an UXO were identified, the methods of mitigation recommended in this report are considered reasonably and sufficiently robust to reduce them to ALARP.

Primely Ltd has been supporting the UK construction industry with UXO Risk Management measures and can support JOMAS ASSOCIATES through the whole risk management process. We offer the complete UXO risk management process from the preliminary and detailed desk study through to on-site support.

1.2 Sources of Information

Reasonable effort has been made to ensure that relevant evidence was consulted and presented to produce a thorough and comprehensible report. To achieve this, the following records and archives material, held in the public domain, have been accessed:

- Primely Ltd in-house data base.
- The National Archives, Kew.
- Historical mapping datasets.
- British Geological Survey
- Historic England National Monuments Record.
- Available material from 33 Engineer Regiment (EOD) Archive.
- Open sources such as published books and verified online resources.

2. SITE DETAILS AND DESCRIPTION

2.1 Site location and Description

The investigation is for the sites located at North lane depot East car park and Elleray Hall, Elleray Road, Teddington TW11 0HG, United Kingdom. The site is centred approximately on National Grid Reference TQ 15689 70909.

The site is bounded on all sides by private homes, with North Lane on its West and Middle Lane centred between the two plots as seen in figure 2.1 below.

The site is currently occupied by commercial buildings in part and associated with hardstanding tarmacked ground.

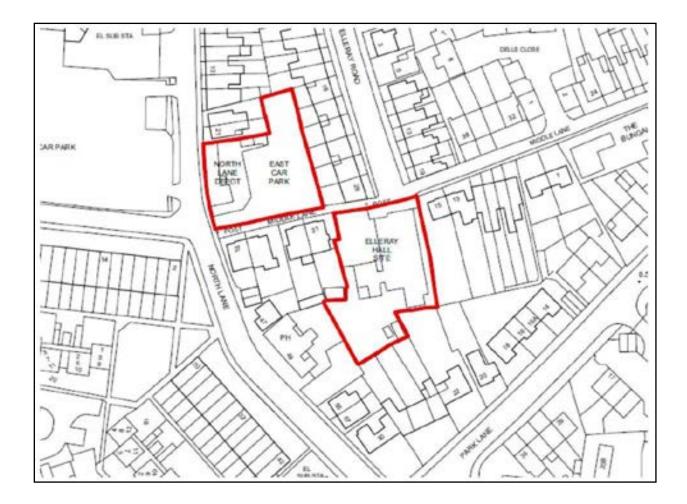


Figure 2.1: Description of the site location

2.2 Proposed Scheme of work

It is understood that a series of site investigation works are planned across the site area.

2.3 Ground Conditions - Geology

It should be noted that the maximum depth that a bomb could reach may vary across a site and will be largely dependent on the specific underlying geological strata and its density.

2.4 Historical Ground Investigation Data

The British Geological Survey Geology of Britain web map services provides access to the geographic locations and logs of historical borehole investigations and well installations located nearby, to the north and east of the site (See figure 2.4 below).

Figure 2.4: Historical borehole records (Source: BGS Web Service)

Table 2.4.1 below displays the strata succession encountered in the boreholes (See appendix for full log). No boreholes were found closer to the site.

Name: LITTLE QUEENS ROAD TWICKENHAM Reference: TQ17SE19 Length (m): 9.600000 Easting: 515500 Northing: 170800				
Geological section	Thickness	Depth		
Topsoil	0.2m	0.6		
Made ground	5.9m	6.1m		
Gravel	0.3m	6.4m		
Brown clay	0.3m	6.7m		
Blue clay	3m	9.77m		

Table 2.4.1: LITTLE QUEENS ROAD TWICKENHAM

Table 2.4.2: GOVERNMENT CHEMIST LAB NPPL 11

Name: GOVERNMENT CHEMIST LAB NPPL 11 Reference: TQ17SE64/K Length (m): 10.000000 Easting: 515470 Northing: 170750				
Geological section	Thickness	Depth		
Made ground	5.9m	1.0m		
Gravel	0.3m	1.8m		
Weathered London clay	0.3m	7.8m		
London clay	3m	8m		

3. HISTORICAL DATASETS

3.1 General

The following section presents information identified relating to the site of military value of various types. The focus of this report concerns German aerial delivered weapons dropped during WWI and WWII.

The Great War started in Belgium and France along the Western Front in 1914 but by the beginning of 1915 it had moved closer to home. During the first great war, London was targeted and bombed by Zeppelin Airships. An estimated 250 tons of ordnance were dropped upon the city, most of which fell on the City of London. The first Zeppelin raid over London came on the 31st May 1915 and the increasing threat of attack saw the establishment of a ring of defensive airfields around the city.

The country received a much-needed respite from bombing in June 1941, when Luftwaffe squadrons were ordered to concentrate on the war against Russia. The resumption of Hitler's bombing of England, a period known as The Little Blitz, did not occur until the spring of 1944, when raids were launched from Luftwaffe bases in occupied France.

WWI bombs were generally smaller in sizes and were dropped from a lower altitude which resulted in a limited penetration in depth of these ordnances. This report has placed a greater emphasis on WWII bombs as they can be found significantly deeper than the WWI ordnances.

3.2 Site History

The sites are situated in Teddington, in the London Borough of Richmond upon Thames. It is also in the historic county of Middlesex.

In 1800 the population of Teddington was under 700, in 100 houses. The number of houses had probably doubled by the 1860s, but the population was still only just over 1000. In 1861 the Manor of Teddington, which consisted of nearly half the parish, was sold for the development of desirable villas. To assist this development the railway arrived in 1863.

There were no buildings in Broad Street in 1800 although there were houses in Middle Lane backing on to Broad Street and in Park Lane, including the alms houses, built in 1739 and demolished in about 1950. Elleray Villa was built by 1820 on the corner of North Lane with an entrance in Broad Street. The house was demolished in about 1890 and the site crossed by Elleray Road. There was a house round the corner in Stanley Road in 1800. It is thought that this was the house called Maud Cottage, later called The Hollies or the Old Hollies. The house was demolished in 1965 to make way for the redevelopment of the land between Somerset Road and Walpole Road.

Built in 1911, Elleray Hall's initial purpose was to act as a parish hall. It wasn't until 1950's Teddington's Old Peoples' Welfare Committee (T.O.P.W.C.) began utilising the hall for distributing off-ration sweets to its local elderly community. T.O.P.W.C. had been formed in 1946 with the aim of aiding the elderly with fuel and food. Seventy-two years on, T.O.P.W.C. has become Elleray Community Association but its objective of combating isolation in the neighbourhood continues.

At the end of October 1940, concerns ran high when a bomb landed on the apron of Teddington Weir. The breach caused by the bomb's detonation created a reduction in the depth of water at Teddington Reach (1.6 km east of the site) by six feet, making navigation impossible except at high tides. Those dwelling on Trowlock Island were marooned temporarily. Full navigation of the Reach would not be restored for seven weeks.

In the months that followed, the aerial bombardment grew heavier. November 1940 saw the borough sustain its highest casualties. 74 people were killed, the majority in a devastating attack which took place on the night of November 29. 130 bombs and between 3,000 and 5,000 incendiary devices rained down on Twickenham and Teddington, destroying 150 houses and damaging more than 6,000 others. The worst damage was sustained just 130m north of the depot, at Church Road.

Mrs Lilian Dring, a Teddington resident, wrote: "Most of Teddington became a raging inferno. Duty rotas were abandoned and every available warden was on duty most of the night. The Baltic Timber Yard, Stanley Road (which is just over 300m north west of the site) and the Baptist Church went up in mountains of flame which almost met over our heads as we patrolled Walpole Road."

Another tragedy occurred the same night. Bombs intended to pulverize the National Physical Laboratory at Teddington exploded over a public air raid shelter in the laboratory's grounds, killing eight residents of Walpole Crescent. The NPL (circa 500m Northwest of the sites of interest) had been designated a special target by the Luftwaffe, as it was here the engineer and aeronautical designer Barnes Wallis was developing the 'Bouncing Bomb', later to be used by the RAF in the famous Dambusters raid of May 1943. The raid destroyed Germany's Mohne and Eder dams.

During the 'Little Blitz', as far as residents of the borough were concerned, the worst of these raids occurred on February 25, 1944, when 45 bombs were dropped in an effort to destroy both the National Physical Laboratory and an American army base in Bushy Park (600m south west of the site). The Luftwaffe missed their targets. Three bombs fell in Fulwell Golf Course (1.2km north) and 28 landed in Hampton and Hampton Hill (1.6km northwest).

Teddington Film Studios, one of the few British studios (2km southeast) to remain in operation during World War II, received a direct hit from a V1 on the evening of July 5, 1944. The bomb completely gutted the main studio and took the life of 'Doc' Salomon, the studio's American production manager. This effectively put an end to Teddington Studio's valiant efforts to produce morale-boosting films throughout the war. Understandably, the psychological impact these missiles had on the local population was devastating. An even greater threat was posed by the sophisticated, longer-range V2 rockets. Unlike the V1, which could be seen and heard from a distance, the V2 was silent and there was no warning

of its arrival: it simply dropped to the ground and exploded violently on impact. The only V2 to land in the area, at the rear of Fairfax Road, 1.3km southeast, left a crater 40 feet wide and 8 feet deep. Fear of this new menace from the skies led to the evacuation of 7,000 women and children from the borough in July 1944.

By the end of the war, 143 civilians had been killed in air raids, 500 houses had been destroyed, and another 32,000 residences had sustained damage.

3.2.1 Second World War Bombing Statistics

The following table summarises the quantity of German bombs (excluding 1kg incendiaries and antipersonnel bombs) falling on the borough of Richmond upon Thames between 1940 and 1945.

Record of German Ordnance Dropped on Teddington			
Area Acrea	age	N/A	
Weapons	High Explosive Bombs (all types)	59	
	Parachute Mines	-	
	Oil Bombs	-	
Phosphorus Bombs		-	
	Fire Pot	-	
	Pilotless Aircraft (V-1) incidents	-	
	Long Range Rockets (V-2) incidents	-	
Total			
Items per 1000 acres N/A			

Table 3.2.1 Ordnance Statistic within the borough¹

¹ Source: Home Office Statistics

This table does not include UXO found during or after WWII.

1kg incendiary and anti-personnel bombs were frequently considered too numerous to be recorded and their locations to be registered. They were, consequently, considered to have been dropped ubiquitously across the area. Although the risk relating to Incendiary bombs is lesser than that relating to larger HE bombs, they are still lethal as they were designed to inflict damage and injury. The risk of harm should not be dismissed.

3.3 Ordnance Survey Historical Maps

Historical maps were obtained for this report and are presented in Annex F (historical maps). These maps provide an indication of the composition of the site pre and post-WWII. See below for a summary of the site history on various mapping editions.

Pre WW1		
Date	Scale	Description
1896	1:2,500	The site is bounded by Broad street to the north, Park Lane to the
		south, North Lane to the west and Elleray road to the east. It is set in
		rural Teddington and contains two buildings that are not clearly
		defined.
1915	1:2,500	During WW1, there were developments adjacent to the site with the
		emergence of a row of terraced houses facing Elleray road and a Hall
		at the bottom of the site. The area itself illustrates a progress in
		development.

Table 3.3 – Ordnance Survey Historical Maps Description

Pre WW2	Pre WW2			
Date	Scale	Description		
1920	1:2,500	After WW1, there has been minimal changes to the area.		
1934	1:10,560	In the period before WW2, very little or no changes have taken		
		place from the previous map edition. Memorial Hospital has been		
		built west of the area, on a site that previously used to be a		
		Nursery.		

Post WW2		
Date	Scale	Description
1959	1:2,500	The site is unchanged with only the Hall being converted into Works building. The area itself is more urbanised with more building's, particularly in the open spaces south and east of the site.
1963-1979	1:2,500	No changes on the site. Nursery and allotment areas towards the south-west have been developed with more housing.
1991	1:2,500	Changes have taken place on the site with a car park built on the north and a Day Centre at the south. Buildings west of the site, adjacent to North Lane have also been replaced by a big car park.
1975	1:10,000	No discernable changes have taken place.
1987	1:10,000	No discernable changes have taken place.

3.4 Aerial Bombing

The focus of research is centered on German air-delivered ordnance dropped during WW1. However, other forms of explosive contamination will be considered. It is assessed that the risk of encountering WW1 bombs is low as they were dropped from a lower altitude and were generally smaller in sizes, resulting in a much lower penetration depth.

As for the site of interest in **figure 3.4.1** below show the concentric red lines that portray a high bombing density on and around the site area. This indicates that there has been a significant tonnage of bombs dropped in the area. This may be due to the high number of military target present in the area.

3.5 Sources of Potential Unexploded Ordnance

During WWI and WWII, many towns and cities across the UK were subjected to bombing which often resulted in extensive damage to town centres, docks, railways, industrial areas, and other infrastructures. Part of the destruction could be associated with the poor accuracy of the technology and the nature of bombing techniques.

The bombing records were gathered by the police, Air Raid Precaution (ARP) wardens, and military personnel. The records were maintained locally and/or by regions, in the form of written records, maps (depicting strikes' locations and damage to structures). Records were detailed and typically made through direct observations, or by post-raid surveys. As the immediate priority was to assist casualties and minimise damage, loss or incompletion of some records were inevitable.

UXO found at diverse sites in the UK originates from three principal sources;

- During escape of Luftwaffe aircrafts from an aerial attack, they would drop some or all their load resulting in bombs being found in unexpected locations. This is commonly referred to as tip and run. The CIRIA publication C681 suggests that approximately 10 per cent of all munitions deployed failed to function as designed. Thus, many remained buried and can present a potential risk especially to workers undertaking construction and civil engineering groundwork.
- 2. During transportation of aggregate containing munitions from a contaminated area to an area that was previously free of UXO.
- Poor precision during targeting (due to high altitude night bombing and/or poor visibility) resulted in bombs landing off target, but within the surrounding area. British decoy sites were constructed to deliberately cause incorrect targeting, often built in remote and uninhabited areas.

3.5.1 Allied as source of UXO

As the pressure mounted during WWII, the government requisitioned considerable areas of land for defence, where the armed forces would carry out training, construction of airfields and facilities for munitions production and storage. It has been estimated that at least 20 per cent of the UK's land has been used for military training at some point.

Thousands of tons of the munitions used during the war were used for the Allied Forces weapon testing, and military training. Therefore, allied UXO contamination derived from legacy munitions from military training, deliberate or accidental dumping (AXO), and ordnance that directly resulted from war fighting activities are known as Explosive Remnants of War.

There is no supporting evidence that the site had been used for military purpose or even to store resources. The closest legitimate target was the training ground at Mill green.

3.5.2 German as source of UXO

Where a bomb fails to detonate upon penetration of the ground, it leaves behind an entry hole that is not always apparent, and some were unreported, leaving the buried bomb being unrecorded. Aerial bombing of London witnessed a wide range of German bombs.

3.6 WWII German aerial Ordnance Type Description High Explosive (HE) Bombs

3.6.1 German SC50 and SC250

The SC series of High Explosive Bombs were thin cased bombs used for general demolition. In this series, most bombs were between 50kg to 500kg, with larger bombs of up to 1,800kg (see Annex A). Their fill of high explosive made up half their weight. The SC50 was made of a 'one piece drawn steel body'. The SD series were bombs made with a thicker case and a lower charge weight and were generally used against hardened targets (See table 3.6.1 below).

Weight in Kg	Weight in Ib	Series
50kg	112lb	S.C. or S.D.
250kg	550lb	S.C. or S.D.
500kg	1,000lb	S.C. or S.D.
1000kg	2,400 lb	S.C. (Herman)
1,000kg	2,400 lb	S.D. (Esau)
1,400kg	3,200 lb	S.D. (Fritz)
1,800kg	4,000 lb	S.C. (Satan)

 Table 3.6.1: Range of German bomb series

3.6.2 1Kg Incendiary Bomb SD2 'Butterfly' Bomb (Armed status)

The 1 kg B1E incendiary bomb (see annex B) consisted of a cylinder of magnesium alloy, with an incendiary filling of thermite with three steel fins. These bombs were ignited by a small percussion charge, fired upon impact. Explosive heads were later incorporated into the IB. Whilst Incendiary Bombs may have fallen within the Study Site, they were considered ubiquitous and record keeping of those were sometimes discarded if they were under 1kg.

3.6.3 The Butterfly Bomb (or Sprengbombe Dickwandig 2 kg or SD2)

These were a German 2-kilogram antipersonnel sub munition used by the Luftwaffe, made of a thin cylindrical metal outer shell which hinged open when the bomblets were deployed **(see annex B).** The design was very distinctive and easy to recognise as it had the appearance of a large butterfly. SD2 bomblets were dropped in large numbers from containers holding between 6 and 108 sub munitions. These broke open in air and scattered the sub-munitions.

3.6.4 V1s and V2s

The final phase of bombing began at the end of 1944 when the first V2 rocket exploded in addition to IBs and HE bomb strikes. The fear of the V1 flying bombs and V2 rockets was tangible. These unmanned bombs were caused when London targets were overshot. The V type rockets were thin-skinned, unmanned, and less accurate weapons (see annex C). There was no advance warning for a rocket which travelled faster than the speed of sound, reaching its target four minutes after launch. Enormously destructive, they caused huge craters and flattened whole rows of houses. Across London thousands of homeless people needed rehousing.

3.7 Consequences of interaction

A friction impact from intrusive machineries could provoke a shock-sensitive fuse explosive. The effects of chemical breakdown of the explosive fill and the general degradation over time can cause explosive compounds to crystallise and extrude out from the main body of the bomb. It may only require a limited amount of energy to initiate the extruded explosive around the fuse pocket which could detonate the main charge.

Upon detonation, factors that may be affected may vary depending on the site-specific conditions but can be summarised as:

- People site workers, local residents and general public.
- Plant and equipment construction plant on site.
- Services subsurface gas, electricity, telecommunications.
- Structures not only visible damage to above ground buildings, but potentially damage to foundations and the weakening of support structures.

The depth that an unexploded bomb will penetrate depends on several factors including:

- Size and shape of bomb
- Height of release
- Velocity and angle of bomb
- Nature of the ground cover
- The Geology.

Unexploded ordnance does not spontaneously explode as military HE. It is generally reasonably stable and requires significant energy for detonation to occur. In the case of a German UXB, discovered within the construction site, there are other potential initiation mechanisms such as a significant impact e.g. from piling machinery or large and violent mechanical excavation, onto the main body of the weapon (unless the fuse is struck).

Most German bomb and mine fuses were electric and were highly engineered compared to their British equivalents. A small proportion of German WWII bombs employed clockwork fuses. It is probable that clockwork or mechanical fuse mechanisms would have corroded since WWII and this will generally prevent them from functioning.

4. REQUIREMENT FOR UXO RISK ASSESSMENT

4.1 Background

There is currently no formal obligation for construction or development projects to undertake a UXO risk assessment in the UK and there is no specific legislation enforcing this on the management for the mitigation of UXO risk. However, the CDM legislation outlined below makes noticeably clear that those responsible for intrusive works should undertake a comprehensive and robust assessment of the potential risks to employees and implement mitigation measures to address any hazards identified.

4.2 CDM Regulations 2015

The Construction (Design and Management) Regulations 2015 defines the responsibilities of parties involved in the construction of temporary or permanent structures. The CDM 2015 establishes a duty of care extending from clients, principle coordinators, designers, and contractors to those working on, or affected by, a project. Those responsible for construction projects may therefore be accountable for the personal or proprietary loss of third parties if correct health and safety procedure has not been applied. The CDM 2015 does not specifically reference UXO. The risk presented by such items is both within the scope and purpose of the legislation. It is therefore implied that there is an obligation on parties to:

- Provide or obtain an appropriate assessment of potential UXO risks at the site.
- Emplace appropriate risk mitigation measures if necessary.
- Supply all parties with relevant risk information.
- Prepare a suitably robust emergency response plan.

4.3 Other legislations

The 1974 Health and Safety at Work Act dictates that all employers have a responsibility under this Act and the Management of Health and Safety at Work Regulations 1999, to ensure the health and safety of their employees and third parties, so far as is reasonably practicable. In the event of a casualty resulting from the failure of an employer or client to address the risks relating to UXO, the organisation may be criminally liable under the Corporate Manslaughter and Corporate Homicide Act 2007.

5. DATA ANALYSIS

The sites are situated in Teddington, in the London Borough of Richmond upon Thames. It is also in the historic county of Middlesex. The borough received a low bombing campaign during the war.

There were no buildings in Broad Street (150m northeast of the site) in 1800 although there were houses in Middle Lane backing on to Broad Street and in Park Lane, including the alms houses, built in 1739 and demolished in about 1950. Elleray Villa was built by 1820. The house was demolished in about 1890 and the site crossed by Elleray Road.

Built in 1911, Elleray Hall's initial purpose was to act as a parish hall.

At the end of October 1940, a bomb landed on the apron of Teddington Weir. The breach caused by the bomb's detonation created a reduction in the depth of water at Teddington Reach (1.6 km east of the site) by six feet, making navigation impossible.

November 1940 saw the borough sustain its highest casualties. 74 people were killed, the majority in a devastating attack which took place on the night of November 29. 130 bombs and between 3,000 and 5,000 incendiary devices rained down on Twickenham and Teddington, destroying 150 houses and damaging more than 6,000 others. The worst damage was sustained just 130m north of the depot, at Church Road.

Another tragedy occurred the same night. Bombs intended to pulverize the National Physical Laboratory at Teddington exploded over a public air raid shelter in the laboratory's grounds, killing eight residents of Walpole Crescent. The NPL (circa 500m Northwest of the sites of interest) had been designated a special target by the Luftwaffe, as it was here the engineer and aeronautical designer Barnes Wallis was developing the 'Bouncing Bomb', later to be used by the RAF in the famous Dambusters raid of May 1943. The raid destroyed Germany's Mohne and Eder dams.

There was an American army base in Bushy Park (600m south west of the site), which was hit by 45 bombs On February 25, 1944.

The National Physical Laboratory was an official Luftwaffe target, which it missed their targets. Three bombs fell in Fulwell Golf Course (1.2km north) and 28 landed in Hampton and Hampton Hill (1.6km northwest).

Teddington Film Studios, one of the few British studios (2km southeast) to remain in operation during World War II, received a direct hit from a V1 on the evening of July 5, 1944. By the end of the war, 143 civilians had been killed in air raids, 500 houses had been destroyed, and another 32,000 residences had sustained damage.

6. RISK ASSESSMENT

There is a **low** risk of encountering German air delivered HE bombs. British AAA projectiles and Incendiary bombs pose a **low** threat.

6.1 Maximum Bomb Penetration Depth

A key consideration when assessing the likelihood of finding a high explosive bomb is the depth at which they may be found. The penetration is dependent upon the:

- **Nature** of the ground;
- Weight of the ordnance;
- Type of ordnance.

6.1.1 The J-Curve Effect

When an air-delivered bomb penetrates the ground after it is dropped from height, it is slowed by its passage through underlying soils, its trajectory curves towards the surface with a final horizontal offset from the point of entry. This is typically a distance of about one third of the bomb's penetration depth but can be up to 15m. This underground trajectory is known as a **J curve (See Annex E)** and is the reason why bombs can be found under basements that were constructed before WW2.

Research during WW2 suggested that a 1000kg bomb dropped in clay could theoretically penetrate a vertical depth of 25m and 8m horizontally. It should be noted that the maximum **actual** depth of penetration observed in the research for a 1000kg bomb was 12.5m. Contemporary bomb disposal guidance indicated that only 1% of bombs (of 50kg or heavier) penetrated more than 9m.

6.1.2 WWII UXB Penetration Studies

During WWII, the Ministry of Home Security undertook a major study on actual bomb penetration depths, carrying out statistical analysis on the measured depths of 1,328 bombs as reported by Bomb Disposal. Conclusions were made as to the likely average and maximum depths of penetration of different sized bombs in different geological strata. For example, the largest common German bomb (500kg) had a likely concluded penetration depth of 6m in sand or gravel but 11m in clay. The maximum observed depth for a 500kg bomb was 11.4m and for a 1000kg bomb 12.8m. Theoretical calculations suggested that significantly greater penetration depths were probable.

6.1.3 Site Specific Bomb Penetration Considerations

Although it is possible that the Luftwaffe deployed bombs in the area, their deployment was infrequent, and to use such larger (or the largest) bombs for BPD calculations were not justifiable on either technical or risk management grounds. WWII German bombs have a greater penetration depth when compared to IBs and AAA projectiles, which are unlikely to be encountered at depths greater than 1m. Given the development of the Site after WWII, the presence of Unexploded Ordnance is significantly reduced, unless a cross contamination has taken place.

6.2 Risk Pathway

Given the types of UXO that might be present on Site, all types of aggressive intrusive engineering activities (i.e. excavations and piling) may generate a significant risk pathway. Whilst not all UXO encountered aggressively will initiate upon contact, such a discovery could lead to serious impact on the project especially in terms of critical injury to personnel, damage to equipment and project delay.

6.4 Risk Rating Calculation

This Semi-Quantitative Risk Assessment assesses and rates the risks posed by the most probable threat items when conducting many different activities on the site. Risk Rating is determined by calculating the probability of encountering UXO and the consequences of initiating it.

UXO RISK CALCULATIONS TABLE – ALL AREAS						
Activities	Threat item	Probability (SH X EM=P)	Consequence (DXPSR=C)	Risk rating (PXC=RR)		
Trial Pits (Within existing foundations)	HE Bombs	1x1=1	2x3=6	1x6=6		
	AAA projectiles	1x1=1	3x2=6	1x6=6		
	IBs	1x1=1	2x3=6	1x6=6		
Boreholes (Within existing foundations)	HE Bombs	1x2=2	2x2=4	2x4=8		
	AAA projectiles	1x1=1	2x2=4	1x4=4		
	IBs	1x1=1	2x2=4	1x4=4		
Piling (Within existing foundations)	HE Bombs	1x3=3	3x1=3	3x3=4		
	AAA Projectiles	1x1=1	3x2=6	1x6=6		
	IBs	1x1=1	2x2=4	1x4=12		

Table 6.4.1 – UXC	D Risk Calculation
-------------------	---------------------------

SH: Site History

EM: Engineering Methodology

P: Probability

D: Depth

C: Consequence PSR: Proximity to Sensitive Receptors RR: Risk Rating

Key

Low	Medium	High	Very High
-----	--------	------	-----------

Probability Calculation

The potential that an item of UXO would detonate, if encountered, relies on a number of variable factors. There are no empirical means of accurately and reasonably calculating the probability of an UXO detonation during intrusive site activities. During the semi quantitative risk assessment process, SH and IM are scored from 1 to 3 with 1 = Low, 2 = Medium and 3 = High. Probability is therefore scored 1 to 9.

		Probability					
		1	2	3	4	6	9
	1	1	2	3	4	6	9
ce	2	2	4	6	8	12	18
luen	3	3	6	9	12	18	27
Consequence	4	4	8	12	16	24	36
Col	6	6	12	18	24	36	54
	9	9	18	27	36	54	81

Table 6.4.2 - Risk Rating - Probability and Consequence

Table 6.4.3 – Risk Scoring Categories

Risk Rating (P x C)	Risk Rating (P x C)	Risk Tolerability	Action Required
1-9	Low	Partly Tolerable	Re-active measures should be employed such as a UXO "Toolbox" brief, a UXO 'Emergency
12-18	Low-Medium	Less Tolerable	Management Plan' and/or an "on-call" service.
24-27	Medium-High	intolerable	Pro-active measures should be employed such
36-81	High	Highly Intolerable	as EOD Engineer Site Supervision and Magnetometer Surveys.

In utilising table 6.4.3 above, Primely Ltd can assess the risk tolerability and devise a suitable level of risk mitigation to meet the ALARP principle.

7 RECOMMENDED RISK MITIGATION MEASURES

For the works carried out at North Lane depot East car park, Teddington TW11 0HG and Elleray Hall, Elleray Road, Teddington TW11 0HG, United Kingdom, Primely Ltd estimates that there is a LOW risk of deep buried UXO and recommends:

No further action. However, re-active measures should be employed such as a UXO "Toolbox" brief, a UXO 'Emergency Management Plan' and/or an "on-call" service. A Site Management documentation detailing the actions to undertake in the event of a suspected or real UXO discovery should be held on-site to guide, which can be supplied by Primely Ltd.

This desktop assessment is based upon analysis of historical evidence along with other data readily available. Every reasonable effort has been made to locate and present significant and pertinent information.

Primely Ltd cannot be held accountable for any changes to the assessed risk level or risk mitigation measures, based on documentation or other data that may come to light later than the date of this study or which was not available to Primely Ltd during the production of this report.

The accuracy of WWII era records sometimes proves difficult to verify. Therefore, conclusions as to the exact location and nature of a UXO risk can rarely be quantified and are to a degree subjective. To counter this, a range of sources have been consulted and analysed. Wartime records show that the quality and nature of record keeping varied between boroughs; while some local authorities maintained records with a methodical approach, others considered a more vague, dispersed, and narrow in scope. Many other records were damaged or destroyed in subsequent bombing raids. Furthermore, records of attacks on military or strategic targets were often maintained separately from the general records and those have not always survived.

BIBLIOGRAPHY

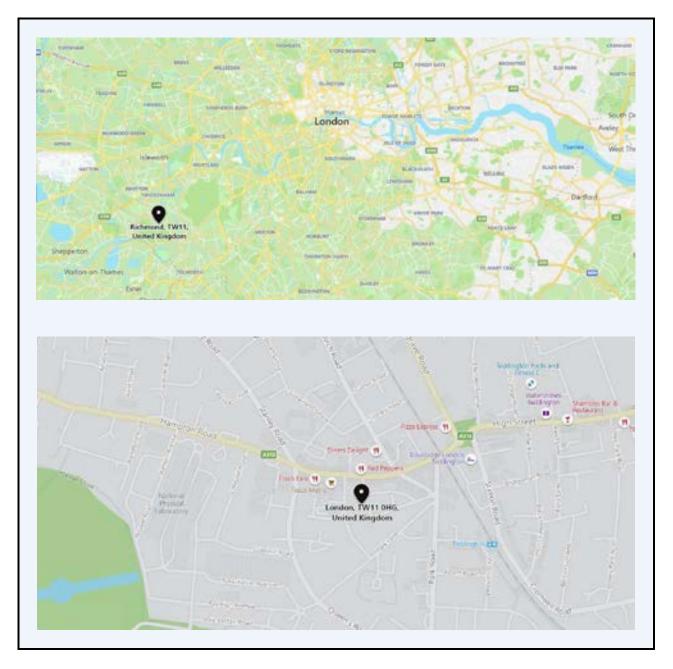
- 1. https://osmaps.ordnancesurvey.co.uk
- 2. http://bombsight.org
- 3. http://mapapps2.bgs.ac.uk/geoindex/home.html?layer=BGSBoreholes
- 4. https://www.ordnancesurvey.co.uk/shop/mapsheetfinder.html#mapsheet-viewer
- 5. https://www.telegraph.co.uk/news/2016/05/10/did-a-nazi-bomb-land-near-yourhouse-during-the-blitz/
- 6. THE BOMBING OF BRITAIN 1940-1945 EXHIBITION, university of Exeter,
- https://humanities.exeter.ac.uk/media/universityofexeter/collegeofhumanities/histor y/researchcentres/centreforthestudyofwarstateandsociety/bombing/THE_BOMBIN G_OF_BRITAIN.pdf
- <u>https://books.google.co.uk/books?id=42fFwAEACAAJ&dq=This+Semi-</u> Quantitative+Risk+Assessment+assesses+and+rates+the+risks+posed+by+the+m ost+probable+threat+items+when+conducting+many+different+activities+on+the+ Site.+Risk+Rating+is+determined+by+calculating+the+probability+of+encountering +UXO+and+the+consequences+of+initiating+it.&hl=en&sa=X&ved=0ahUKEwjY6p KdhKrjAhUBSRUIHdL8BU8Q6AEIMzAB
- 9. https://www.legislation.gov.uk/ukpga/1974/37
- 10. <u>https://books.google.co.uk/books?id=sib_sgEACAAJ&dq=The+1974+Health+and+</u> <u>Safety+at+Work+Act+dictates+that+all+employers+have+a+responsibility+under+t</u> <u>his+Act+and+the+Management+of+Health+and+Safety+at+Work+Regulations+19</u> <u>99,+to+ensure+the+health+and+safety+of+their+employees+and+third+parties,+s</u> <u>o+far+as+is+reasonably+practicable.&hl=en&sa=X&ved=0ahUKEwj3peiziqrjAhXjm</u> <u>FwKHe4ND2MQ6AEILjAB</u>
- 11. https://www.cps.gov.uk/legal-guidance/corporate-manslaughter
- 12. https://books.google.co.uk/books?id=M-

<u>6wAAAACAAJ&dq=In+the+event+of+a+casualty+resulting+from+the+failure+of+a</u> <u>n+employer+or+client+to+address+the+risks+relating+to+UXO,+the+organisation+</u> <u>may+be+criminally+liable+under+the+Corporate+Manslaughter+and+Corporate+H</u> <u>omicide+Act+2007.&hl=en&sa=X&ved=0ahUKEwjezNixjKrjAhWIgVwKHYE7AKc4</u> <u>ChDoAQhVMAg</u>

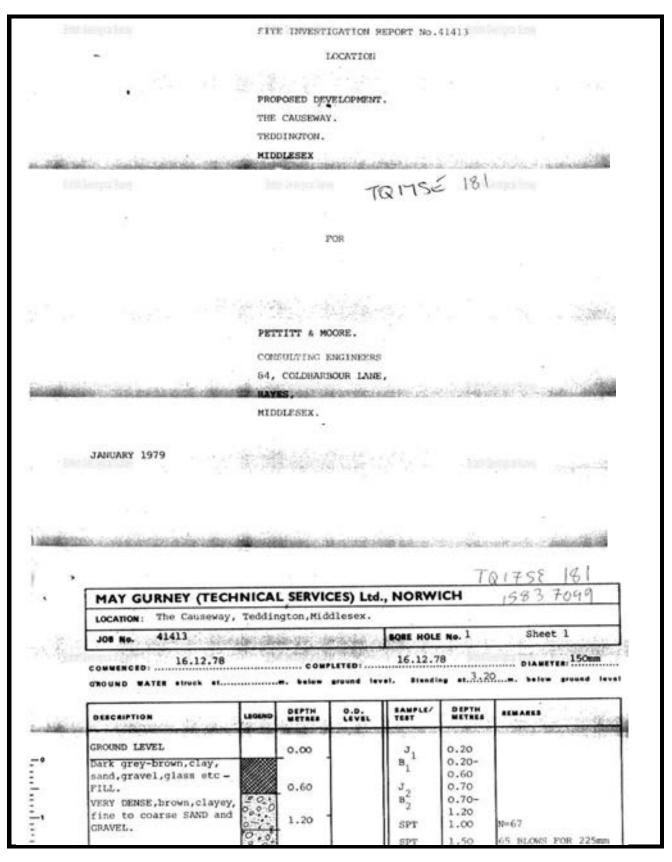
- 13. http://www.hse.gov.uk/corpmanslaughter/
- 14. http://www.hse.gov.uk/foi/internalops/ocs/100-199/165_10.htm
- 15.<u>http://www.hse.gov.uk/pubns/wrdp1.pdf</u>
- 16.<u>https://www.fieldfisher.com/publications/2014/10/corporate-manslaughter-cases-in-</u> 2014
- 17. https://www.shponline.co.uk/corporate-manslaughter/
- 18.<u>https://www.kingsleynapley.co.uk/insights/blogs/criminal-law-blog/corporate-</u> manslaughter-and-health-and-safety
- 19. http://www.hse.gov.uk/pUbns/priced/I153.pdf
- 20. http://www.hse.gov.uk/construction/cdm/2015/responsibilities.htm
- 21. <u>https://books.google.co.uk/books?id=DU08XwAACAAJ&dq=The+Construction+(Design+and+Management)+Regulations+2015+defines+the+responsibilities+of+parties+involved+in+the+construction+of+temporary+or+permanent+structures.+The+Constructors+to+these+extending+from+clients,+principle+coordients,+designers,+and+contractors+to+those+working+on,+or+affected+by,+a+project.&hl=en&sa=X&ved=0ahUKEwikwPL-j6rjAhVhnVwKHXEFDqIQ6AEIVTAH</u>
- 22. <u>https://books.google.co.uk/books?id=_wUpQwAACAAJ&dq=In+addition+to+IBs+a</u> <u>nd+HE+bomb+strikes,+two+%E2%80%98V%E2%80%99+type+weapons+strikes+</u> <u>have+been+recorded+near+the+site.&hl=en&sa=X&ved=0ahUKEwisg-</u> <u>KPkarjAhWQgVwKHVAFD64Q6AEIQTAE</u>
- 23. <u>https://books.google.co.uk/books?id=_wUpQwAACAAJ&dq=In+addition+to+IBs+a</u> nd+HE+bomb+strikes,+two+%E2%80%98V%E2%80%99+type+weapons+strikes+ <u>have+been+recorded+near+the+site.&hl=en&sa=X&ved=0ahUKEwisg-</u> <u>KPkarjAhWQgVwKHVAFD64Q6AEIQTAE</u>
- 24. https://www.flightjournal.com/germanys-v-2-rocket/
- 25. http://www.twickenham-museum.org.uk/detail.php?aid=390&ctid=4&cid=40
- 26. https://www.google.com/search?biw=993&bih=544&tbm=isch&sa=1&ei=DL4IXZqIA tyBjLsPoOO50Ag&q=german+v2+rockets&oq=german+v2+rockets&gs_l=img.3..0i 24.6067.7320..8185...0.0..0.281.421.0j1j1.....0...1..gws-wiz-img.GmqoYvV-0fU
- 27. https://www.awm.gov.au/collection/C148379
- 28. https://www.iwm.org.uk/collections/item/object/30020459

- 29. https://media.iwm.org.uk/ciim5/260/717/000000.jpg?_ga=2.35370849.117168925.1 562755539-503030435.1562172104
- 30.<u>https://www.lbhf.gov.uk/community/ve-day/how-second-world-war-changed-hf-</u> forever
- 31.<u>https://www.lbhf.gov.uk/sites/default/files/section_attachments/suds_design_and_e</u> valuation_guide.pdf
- 32.https://www.britannica.com/event/the-Blitz#ref345824

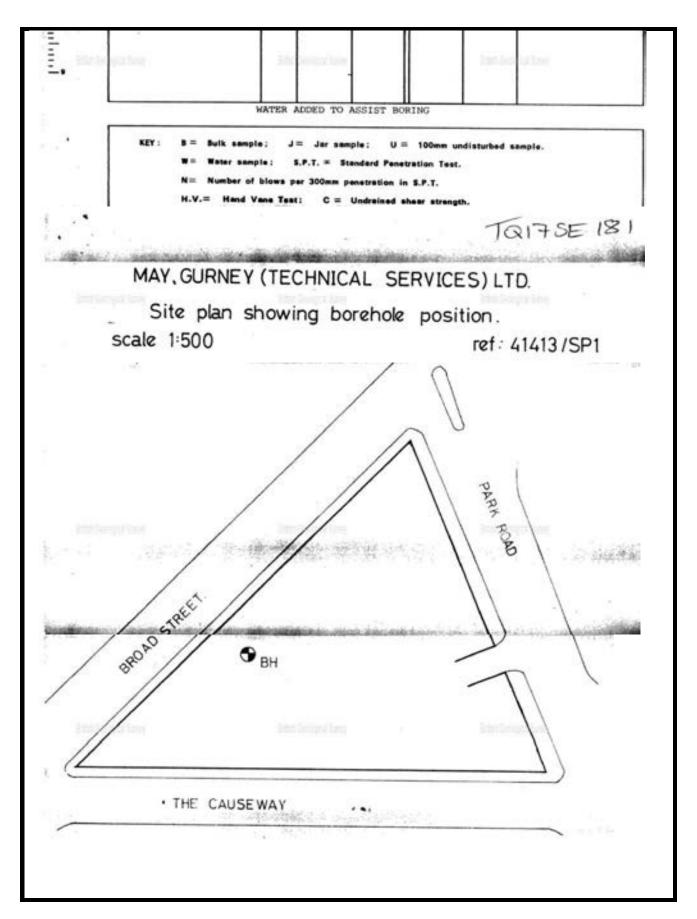
REFERENCES

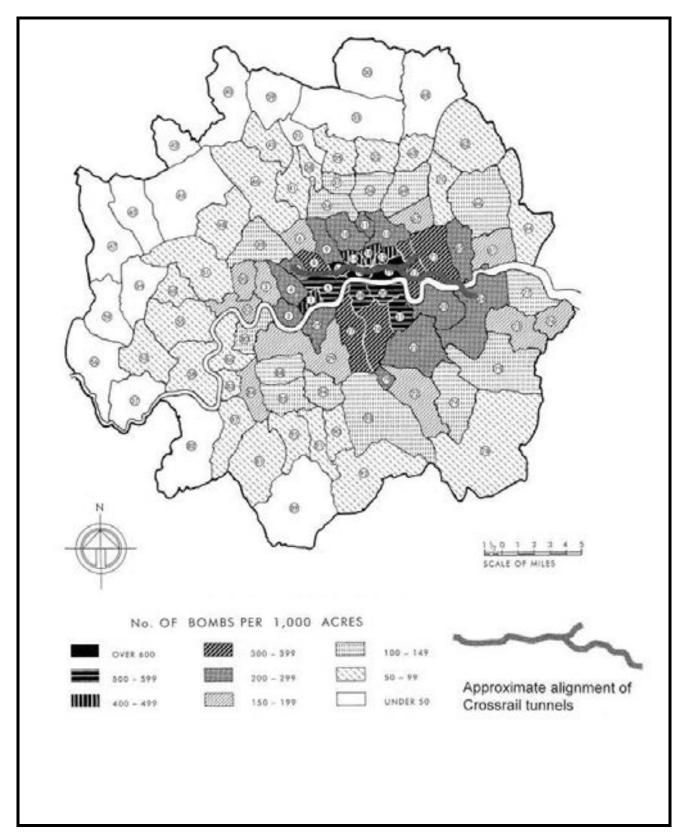

- 1. Unexploded Ordnance: A Critical Review of Risk Assessment Methods, Issue 1674, *MR (Rand Corporation)*
- 2. Unexploded Ordnance: A Critical Review of Risk Assessment Methods, Jacqueline MacDonald
- German Air-dropped Weapons to 1945, Wolfgang Fleischer, Midland, 2004, ISBN: 1857801741, 9781857801743
- Acceptable risk, Baruch Fischhoff, Sarah Lichtenstein, Steven L. Derby 1983 The Baby Killers: German Air Raids on Britain in the First World War, Thomas Fegan - 2013 The Blitz Then and Now, Volume 3, Winston G. Ramsey - 1990
- 5. https://www.legislation.gov.uk/ukpga/1974/37
- Managing Health and Safety in Construction: Construction (Design and Management) Regulations 2015: Guidance on Regulations
- Health and Safety at Work Etc. Act 1974, <u>Part 37 of Public General Acts Elizabeth</u> <u>II</u>, H.M. Stationery Office, 1974, ISBN: 0105437743, 9780105437741
- Identifying and Managing Risk, <u>Will Baker</u>, <u>Howard Reid</u>, Pearson Education Australia, 2004
- 9. http://www.hse.gov.uk/corpmanslaughter/
- 10.<u>http://www.hse.gov.uk/foi/internalops/ocs/100-199/165_10.htm</u>
- 11.<u>http://www.hse.gov.uk/pubns/wrdp1.pdf</u>
- 12. Managing health and safety in construction (Design and Management) Regulations 2015
- 13. http://www.hse.gov.uk/construction/cdm/2015/responsibilities.htm
- 14. http://www.legislation.gov.uk/uksi/2015/51/contents/made
- 15. Managing Health and Safety in Construction: Construction (Design and Management) Regulations 2015: Guidance on Regulations
- Temporary Works: Principles of Design and Construction, Murray Grant, Peter F.
 Pallett, ICE Publishing, 2012 <u>Technology & Engineering</u>
- 17. Unexploded Ordnance (UXO): A Guide for the Construction Industry, <u>Kevin Stone</u>, CIRIA,

2009 <u>https://media.iwm.org.uk/ciim5/260/717/000000.jpg?_ga=2.35370849.11716</u> 8925.1562755539-503030435.1562172104


- 18.<u>http://www.hertsgeolsoc.ology.org.uk/IntroToHertsGeology.htm</u>
- 19. historicengland.org.uk/listing/the-list/list-entry/1188970
- 20.<u>https://www.hertsmere.gov.uk/Documents/09-Planning-Building-Control/Planning-Policy/Local-Plan/SADMS-EB01-LCA-001Introduction.pdf</u>
- 21. https://www.layersoflondon.org/map/51.49986695847889,-0.19481597551930466
- 22. https://www.britannica.com/event/the-Blitz#ref345824

APPENDICES


Appendix A Site Location

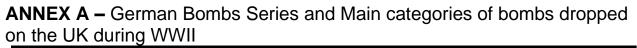


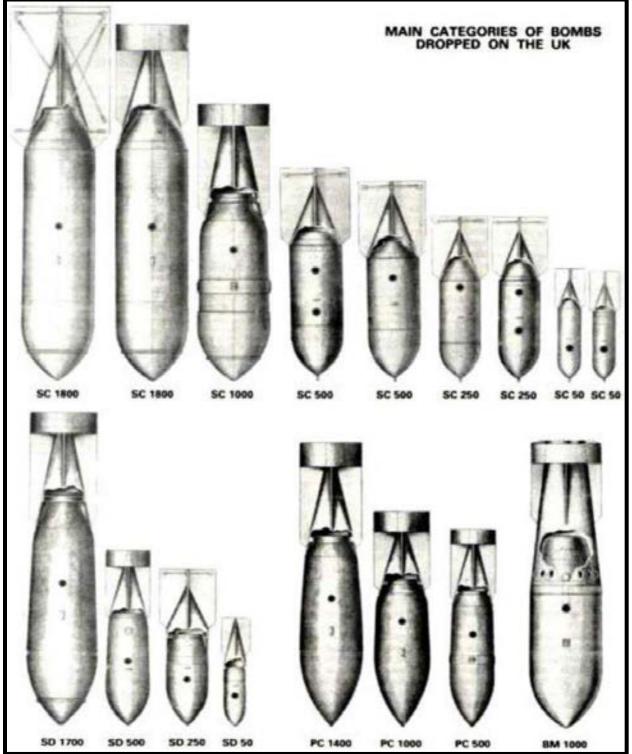
Appendix B Historical Borehole scans

	0.00	large las		B3	1.20- 3.00	when Times
WINSE, brown, fine to coarse SAND and fine to	8 . C.	-				
coarse GRAVEL.	Que -					
	20.0	a della	14	B4	3.00-	100
	00 ⁰		N. 11	111111	4.00	
	00			SPT	3.00	N=31
lana yaamaaa	00	4.00				
FIRM, brown, silty, CLAY	22	dission.	and the second second	33	4.10	Station destation
		4.40		3 0 1 3 5 3 6	4.50	20 BLOWS
FIRM to STIFF.grey-	× -		- C	35	5.00	
brown, fissured, silty	2 7			· · ·	term for	out the
CLAY	××			1		
	× -	1		U2	6.00	30 BLOWS
100mm layer of clay		1			6.50	
stone at 5.00M	<u>×_×</u>			Jy	6.30	
	× ×	-				
	XX	2000				
· · · · · · · · · · · · · · · · · · ·	XX	Sala a	建 建立。	a de Val	11, Trens	A DE MARKER
	×_	and a start of the	Sec. 21	^B 5	8.00	2 -0.25 MINESA
	× <u>×</u>					
	××	Sector Terro		1 m	Spin day	Martin Marthane
in the second state of the second state of	* *		he de la compañía de	the Store	Children .	the strength
CONTINUED		9.00				
					1.2.2	
	PER ADDED	TO ASSIS	T BORING	÷		
	mple: J:	TO ASSIS	T BORING	= 100mm ur	disturbed i	sample.
TAN .	mple: J: emple: S	= Jar samj	ple: U	= 100mm ur		sample.
WAT KEY: 8 = Buik ser W = Water s	ren Added mpie: J: ampie: S of blows p	= Jar samp L.P.T. = Sta	ple: U	stration Test.		sampte.
WAT KEY: 8 = Bulk sa W = Water s N = Number	mple; J: emple; S	= Jar sang L.P.T. = Sta er 300mm pe	ple: U inderd Pene instration (stration Test.		sample.
KEY: 0 = Bulk so W= Water s N = Number H.V.= Hand	mple; J: ample: S of blows pr d Vane Test	= Jar samp LP.T. = Sta ar 300mm pe 1: C = 1	ple: U Inderd Pene Instration I Undrained	stration Test. In S.P.T. shear strang	ch.	sample.
KEY: 8 = Bulk sa W= Water a N = Number	mpie: J: ampie: S of blows p d Vane Test CHNICA	= Jar sam .P.T. = Sta ar 300mm p : C = L SERVIO	ple; U underd Pene metration i Undesined CES) Ltd	stration Test. In S.P.T. shear strong	ch.	iample.
WAT KEY: B = Bulk so W = Watar so N = Number H.V.= Hand MAY GURNEY (TE	mpie: J: ampie: S of blows p d Vane Test CHNICA	= Jar sam .P.T. = Sta ar 300mm p : C = L SERVIO	ple; U underd Pene metration i Undesined CES) Ltd	stration Test. In S.P.T. shear strong	њ. /ICH	Sheet 2
WAT KEY: 8 = Bulk set W = Water at N = Number H.V.= Hend MAY GURNEY (TE LOCATION: The Cause JOS No. 41413	mple; J: ample; S of blows p d Vane Test CHNICA way, Tedd	= Jar sam LP.T. = Ste ar 300mm pe : C = 1 L SERVIC Lington, 1	ole: U undard Pene metration i Undrained CES) Ltd Kiddlese;	stration Test. In S.P.T. shear strong L., NORW K. BORE HOL	(h. /ICH E No. 1	Sheet 2
WAT KEY: 8 = Bulk see W = Vater se N = Number H.V.= Hend MAY GURNEY (TE LOCATION: The Cause JOS No. 41413 COMMENCED:	mple; J: ample; S of blows pr d Vane Test CHNICA way, Tedd	= Jar son 	ple: U andard Pene metration i Undrained CES) Ltd Hiddlesep	In S.P.T. shear strong I., NORW C. BORE HOL 16.12.78	(h. /ICH E No. 1	Sheet 2
WAT KEY: 8 = Bulk set W = Water at N = Number H.V.= Hend MAY GURNEY (TE LOCATION: The Cause JOS No. 41413	mple; J: ample; S of blows pr d Vane Test CHNICA way, Tedd	= Jar son 	ple: U andard Pene metration i Undrained CES) Ltd Hiddlesep	In S.P.T. shear strong I., NORW C. BORE HOL 16.12.78	(h. /ICH E No. 1	Sheet 2
WAT KEY: 8 = Bulk see W = Vater se N = Number H.V.= Hend MAY GURNEY (TE LOCATION: The Cause JOS No. 41413 COMMENCED:	mple; J: ample; S of blows pr d Vane Test CHNICA way, Tedd	= Jar son 	ple: U andard Pene metration i Undrained CES) Ltd Hiddlesep	In S.P.T. shear strong I., NORW C. BORE HOL 16.12.78	(h. /ICH E No. 1	Sheet 2
KEY: B = Bulk see W = Water se N = Number H.V.= Hand MAY GURNEY (TE LOCATION: The Cause JOS No. 41413 COMMENCED: 16.12.7 COMMENCED: 16.12.7	mple: J: ample: S of blows pr d Vane Test CHNICA way, Tedd	Jar son LP.T. = Sta ar 300mm po- : C = 1 L'SERVIA LINGTON, D Ington, D Ington, D COMJ 	ple: U andard Pene metration i Undrained CES) Ltd Hiddlesen FLETED: proved to	In S.P.T. shear strong L, NORW C. BORE HOL 16.12.78 vol. Stand	Ing 11	Sheet 2 DiAmergal50mm .20. below ground in
KEY: B = Bulk sa KEY: B = Bulk sa W = Water sc N = Number H.V.= Hand MAY GURNEY (TE LOCATION: The Cause JOS No. 41413 CONVERCED:	mple; J: ample; S of blows pr d Vane Test CHNICA Way, Tedd 6 CHNICA	Jar song LP.T. = Sta er 300mm pe : C = 1 L'SERVIA Lington, N Lington, N Server Server OSEPTH	ple: U andard Pene metration i Undrained CES) Ltd Hiddlesen FLETED: proved to	In S.P.T. shear strong L, NORW C. BORE HOL 16.12.78 vol. Stand	Ing 11	Sheet 2 DiAmeren150mm .20 below ground in
KEY: B = Bulk and W = Water at N = Number H.V.= Hand MAY GURNEY (TE LOCATION: The Cause JOB No. 41413 COMMENCED: 16.12.7 COMMENCED: 16.12.7 COMMENCED: 16.12.7	mple; J: ample; S of blows pr d Vane Test CHNICA Way, Tedd 6 CHNICA	Jar son LP.T. = Sta ar 300mm po- : C = 1 L'SERVIA LINGTON, D Ington, D Ington, D COMJ 	ple: U andard Pene metration i Undrained CES) Ltd Hiddlesen FLETED: proved to	stration Test. In S.P.T. shear strong L, NORW C. BORE HOL 16.12.78 vol. Stand	ING I	Sheet 2 Diamarra 150mm .20 below ground in REWARKS
KEY: B = Bulk and WEY: B = Bulk and W = Water at N = Number H.V.= Hand MAY GURNEY (TE LOCATION: The Cause JOB No. 41413 COMMENCED: 16.12.7 COMMENCED: 16.12.7 COMMENCED: 16.12.7 COMMENCED: 16.12.7	of blows pr of blows pr d Vane Test CHNICA way, Tedd 6 usgeno usgeno	Jar son LP.T. = Sta ar 300mm po- : C = 1 L'SERVIA LINGTON, D Ington, D Ington, D COMJ 	ple: U andard Pene metration i Undrained CES) Ltd Hiddlesen FLETED: proved to	In S.P.T. shear strong L, NORW C. BORE HOL 16.12.78 vol. Stand	Ing 11	Sheet 2 DiAmergal50mm .20. below ground in

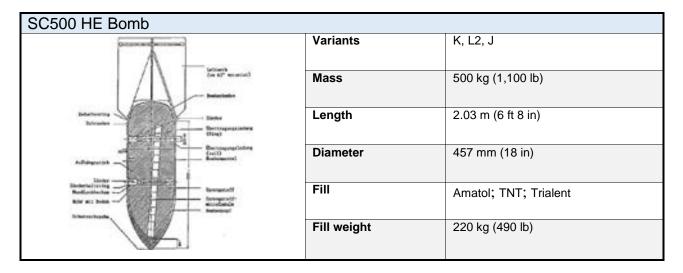
Appendix C London bombing census Map

Appendix D Bomb Damage Maps


Bombsight free public resource - bomb location map


No map available

LCC Bomb Damage Maps

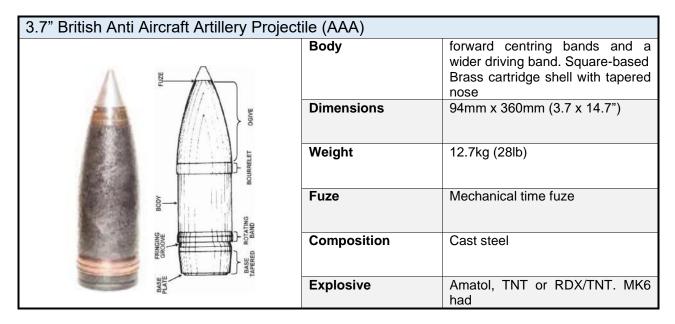

No map available.

ANNEXES

ANNEX B Most used Bombs

SC50 HE Bomb		
1. ····································	Overall Length	46.1 inches (1,171 mm)
	Body Length	30.0 inches (762 mm)
17/84	Body Diameter	7.9 inches (201 mm)
· · · · ·	Tail Width	16.1 inches (409 mm)
	Filling Weight	24.4 kilograms (54 lb)
· · · · · · · · · · · · · · · · · · ·	Total Weight	55 kilograms (121 lb)
	Charge/Weight Ratio	45.75%
An and a second se	Explosive Filling	Cast TNT, Amatol or Trialen
	Bomb Type	High Explosive

Incendiary Bomb Bomb weight 1kg Construction Electron case with steel nose cap 350mm Length Body diameter 30mm Fill 650g (1.7 lb) Thermite Fuse impact ŧ 0 1 used extensively in WW II and often in a conjunction with HE bombs.


SD-2 Butterfly bomb

	Weight	2Kg			
	Length	200mm			
N	Body diameter	80mm			
	explosive	Fp 60/40			
	NEQ	0.225Kg (0.496lb)			
	Fuse	Mechanical Clockwork/			
		Mechanical time or B1/B2			
		Harassment			
	German 2 kg anti-personnel submunition used by the				
la	Luftwaffe during ww2. They were packed into containers holding between 6 and 108 submunitions.				

Parachute Mine (Luftmine B / LMB)				
	Bomb Weight	987.017kg (2176lb)		
	ExplosiveWeight	125-130kg (276-287lb)		
	Fuze Type	Impact/ Time delay / hydrostatic pressure fuze		
	Bomb Dimensions	1640 x 512mm (64.57 x 20.16in)		
	Body Diameter	368mm (14.5in)		
	Remarks	Parachute Mines were normally carried by HE115 (Naval operations), HE 111 and JU 88 aircraft types. Deployed a parachute when dropped in order to control its descent.		

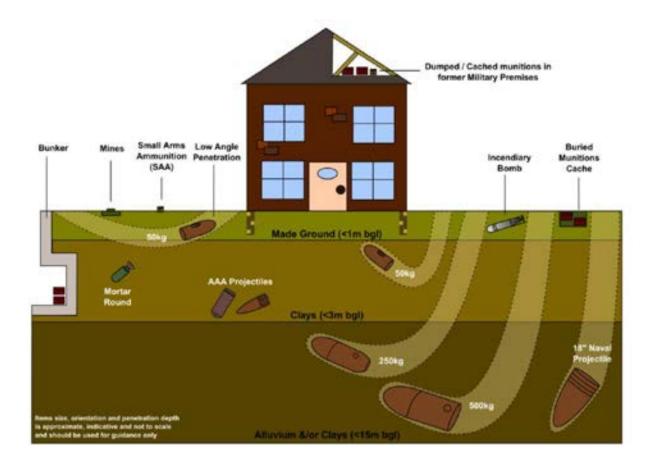
ANNEX C British Anti Aircrafts Ammuntions

40mm Bofor's Projectile		
	Weight	1.96lb (0.86kg)
CALIFORNIA MORES	Explosive Weight	300g (0.6lb)
	Fuze Type	Proximity and Mechanical Time Fuze
CLARGED THE WHEN THE WHEN THE WHEN THE THE COM FILT SAME THE COM	Rate of Fire	120 rounds per minute Projectile
	Dimensions	40mm x 310mm (1.6in x 12.2in)
Particles werks part in a Juncto e churde part in a Consta werks were in a	Ceiling	23,000ft (7000m)

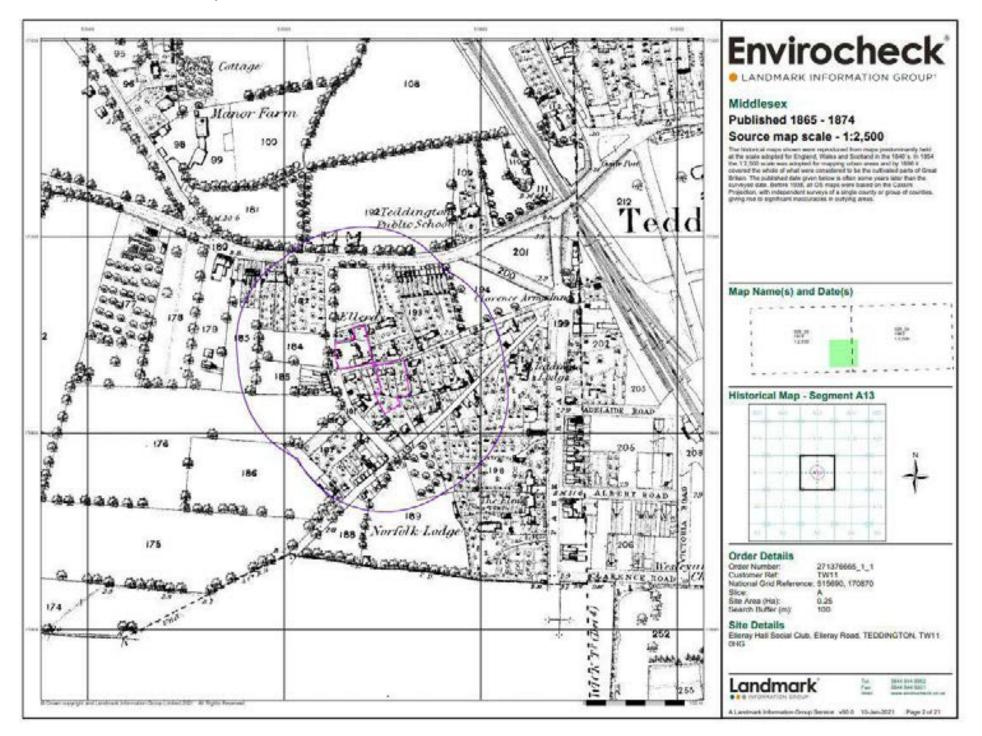
ANNEX D – Vengeance weapons

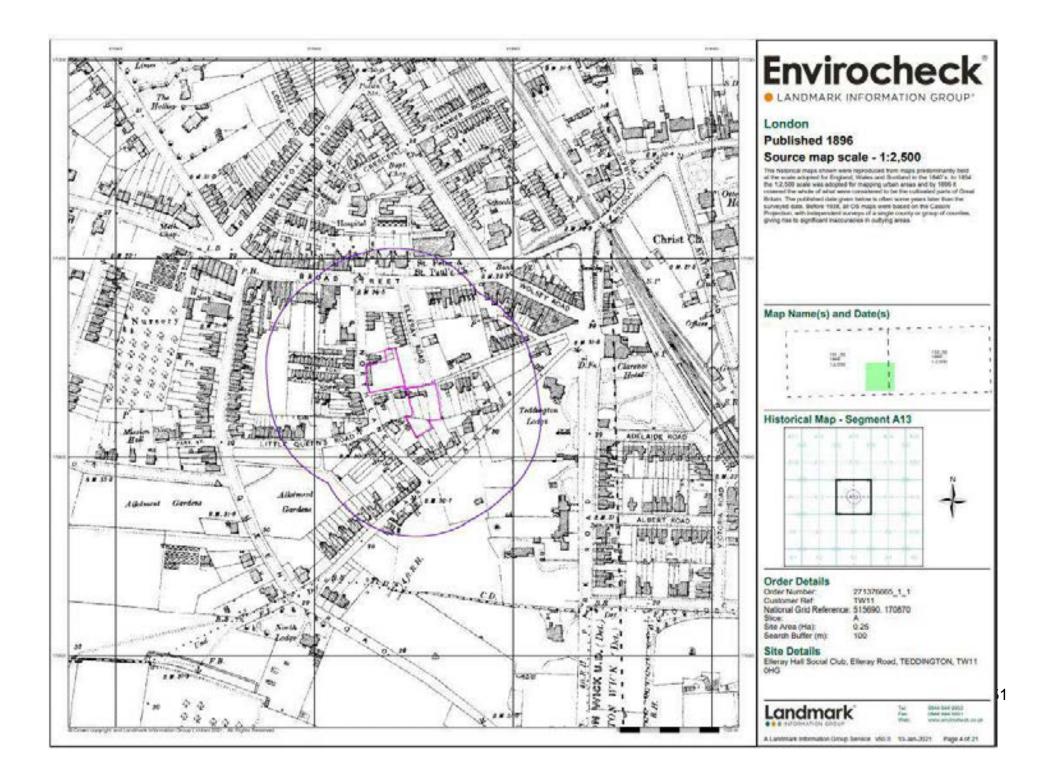
Annex D1 The V1 Flying Bomb

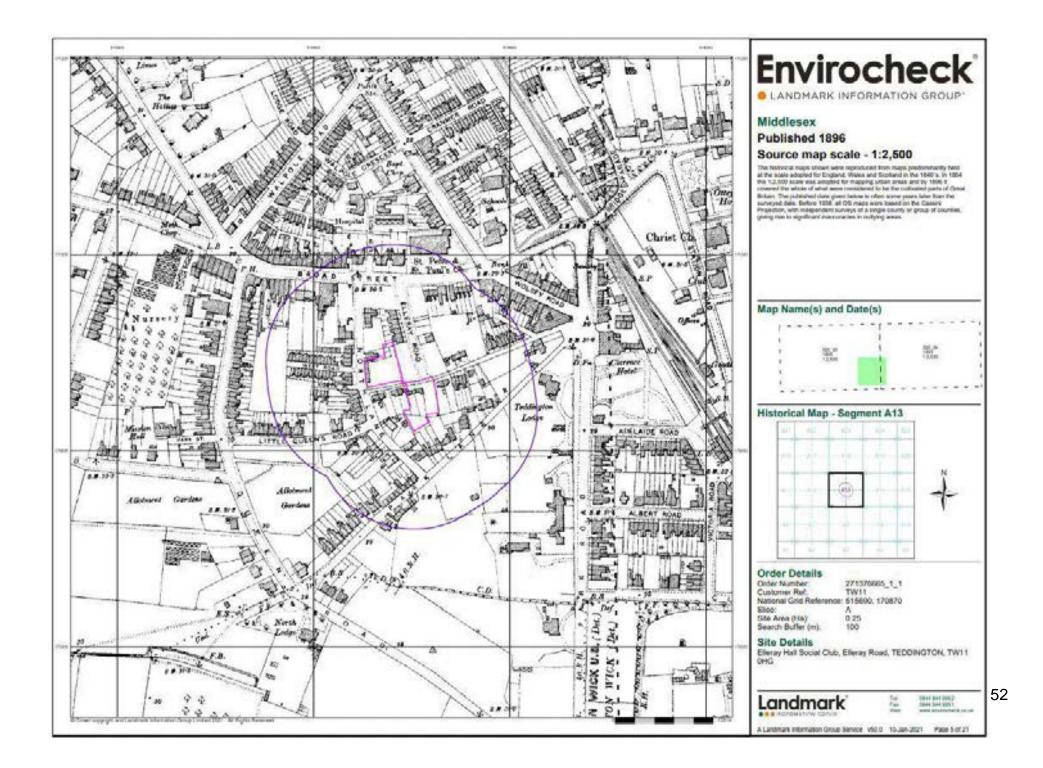
The V1 Flying bomb was the world's first cruise missile, they were also known as Doodle bugs or Vengeance weapon. The V1 was an unmanned plane that delivered a ton of high explosive. Between June 1944 and March 1945, 2419 of them exploded in London. The V1 was capable of inflicting huge damage to buildings, homes, and personnel. In the inner London suburbs where terrace houses were packed together, sometimes up to 20 houses would totally collapse, just at one hit. The blast area of a V1 extended across a radius of 400 -600 yards in each direction. <u>https://youtu.be/ro4ApX7EhJw</u>

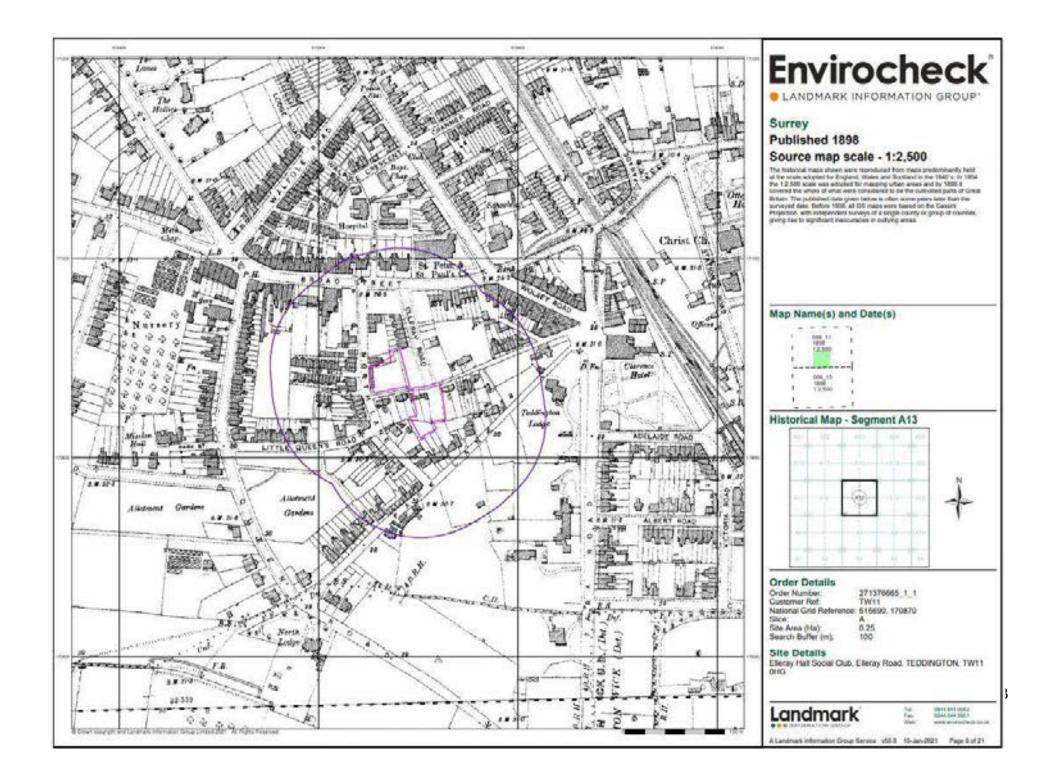


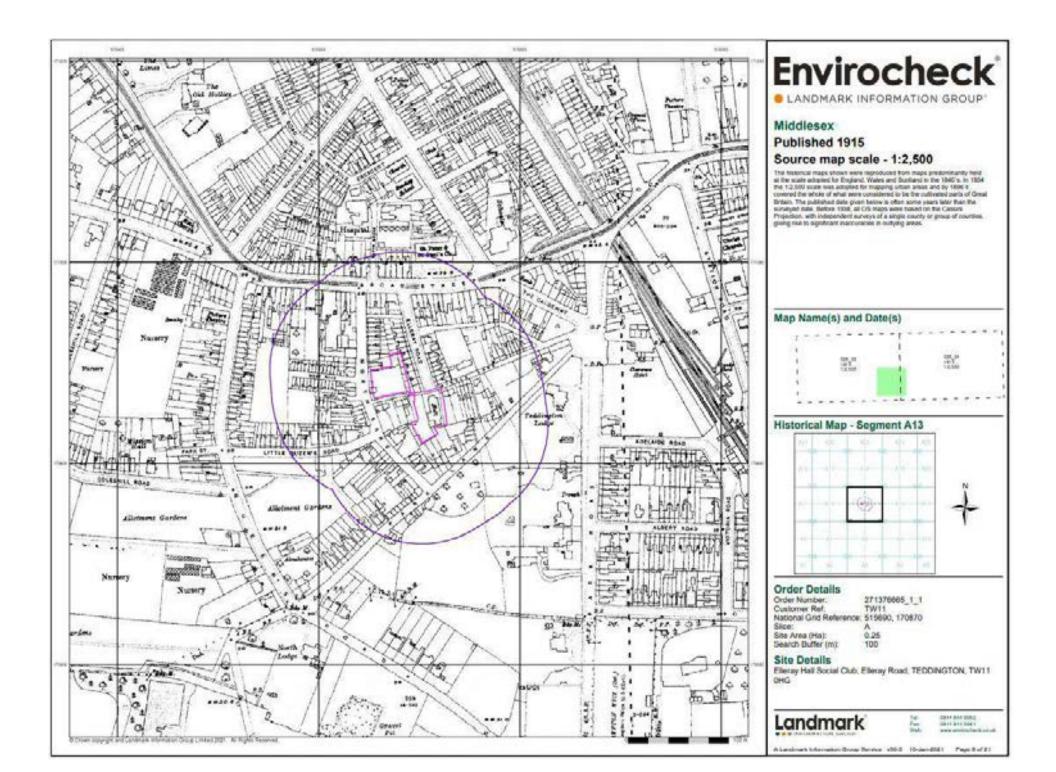
Annex D2 The V2 Rocket

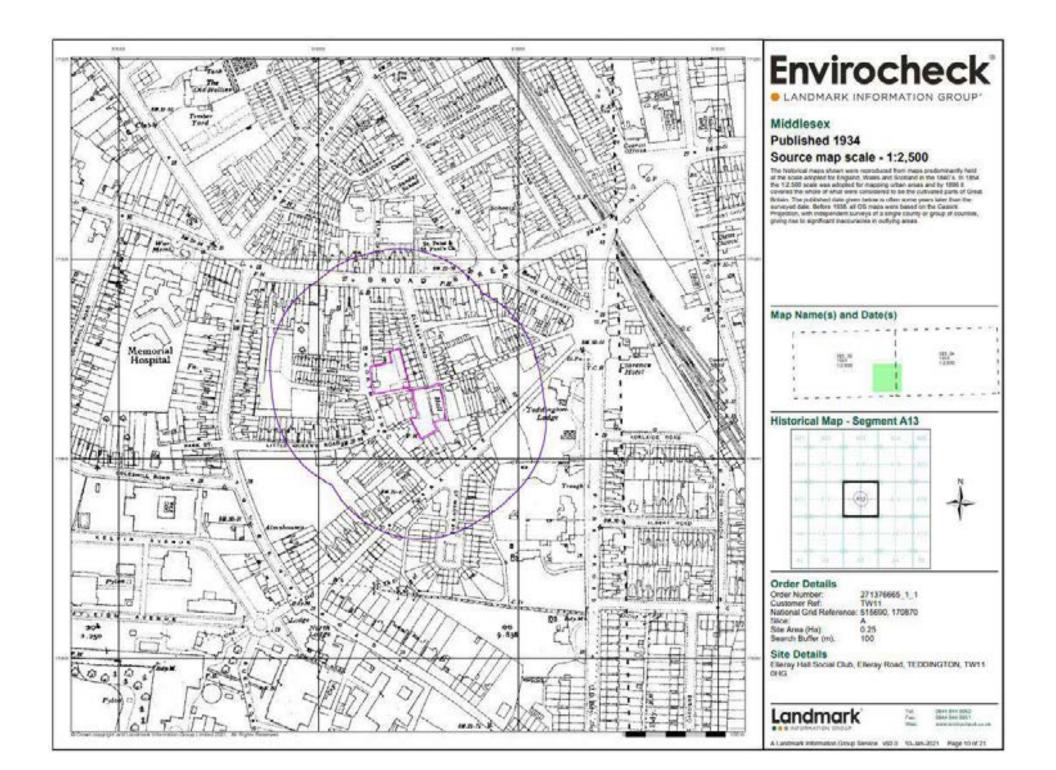

https://rarehistoricalphotos.com/v2-rocket-in-pictures/

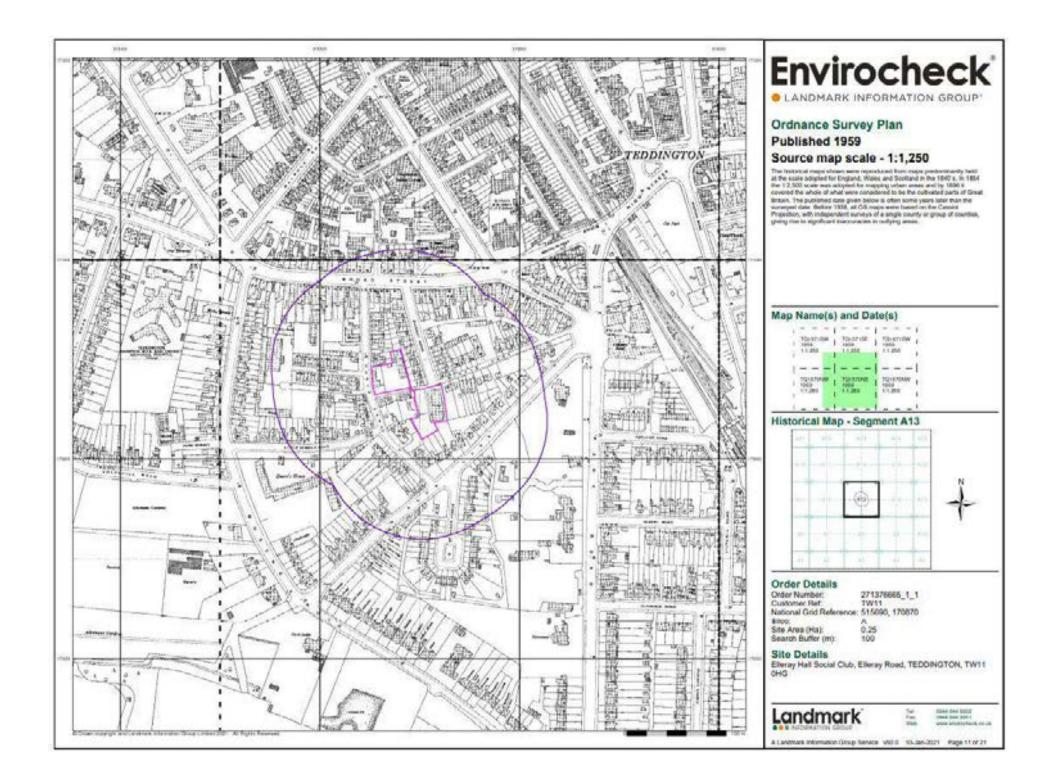

In addition to type and weight designations, HE bombs sometimes carried a suffix to indicate the type of fuse or zünder employed, i.e, mV = "mit Verzögerung" (with short delay action) and LZZ = "LangZeitZünder" (long time delay). Thus, for example, the designation SC250 LZZ identified a general purpose, high explosive bomb, weighing 250kg and fitted with a long delay fuse. The thin-cased general purpose was called the "sprengbombe cylindrich" (SC. Used for blast effect, they had a relatively high charge ratio of 55%. Used primarily for general demolition, something like 80% of German high explosive bombs dropped on the UK were of the SC type.

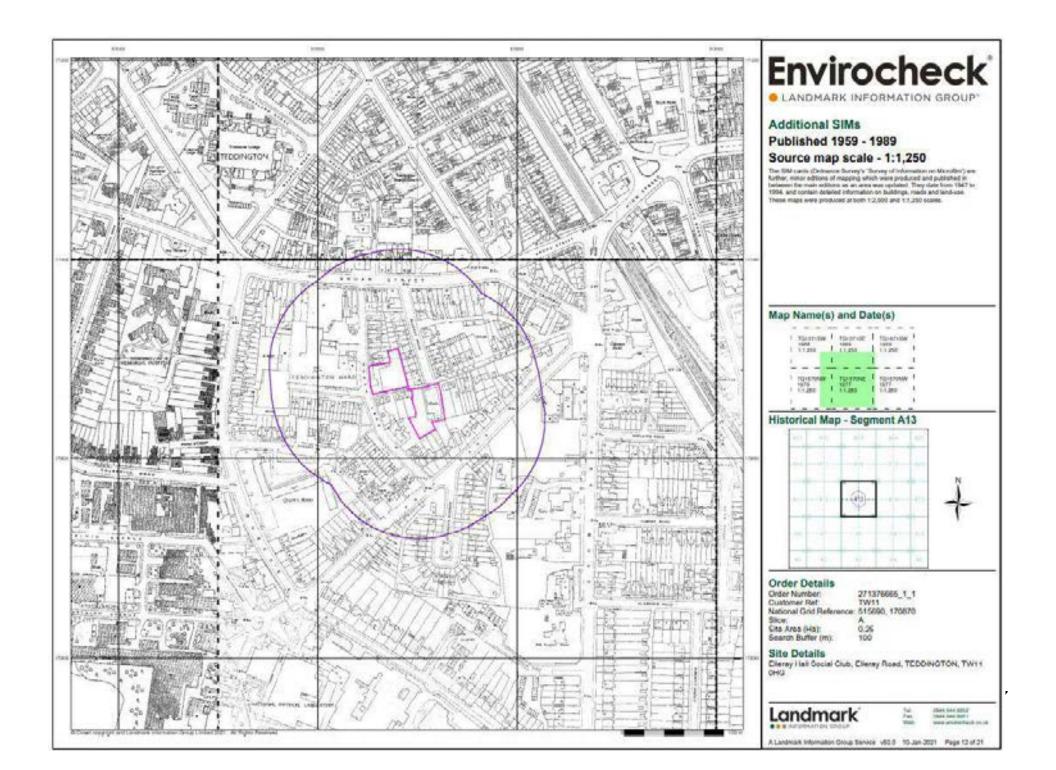

ANNEX E The J – Curve

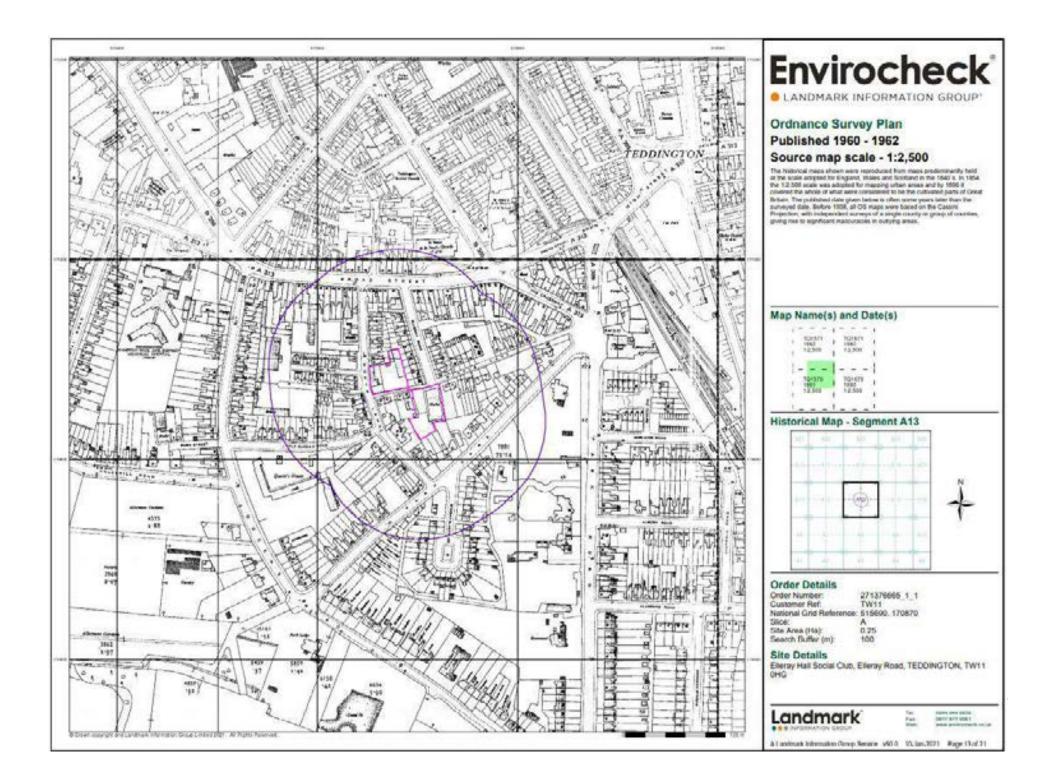


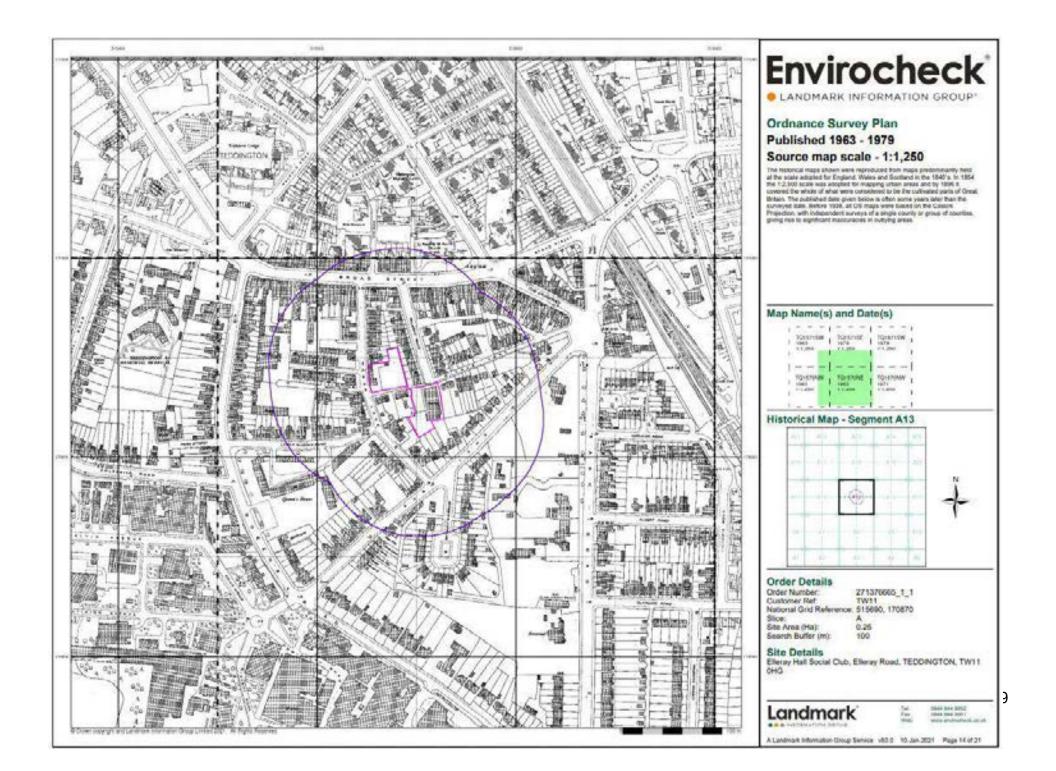

ANNEX F: Historical Maps

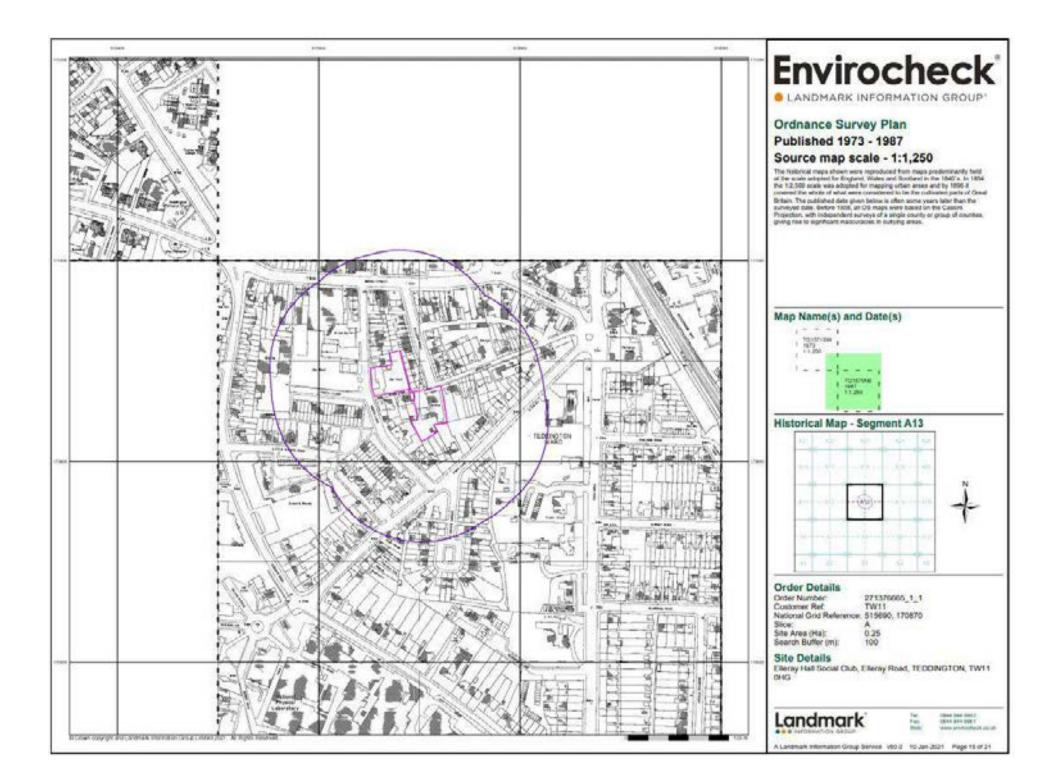


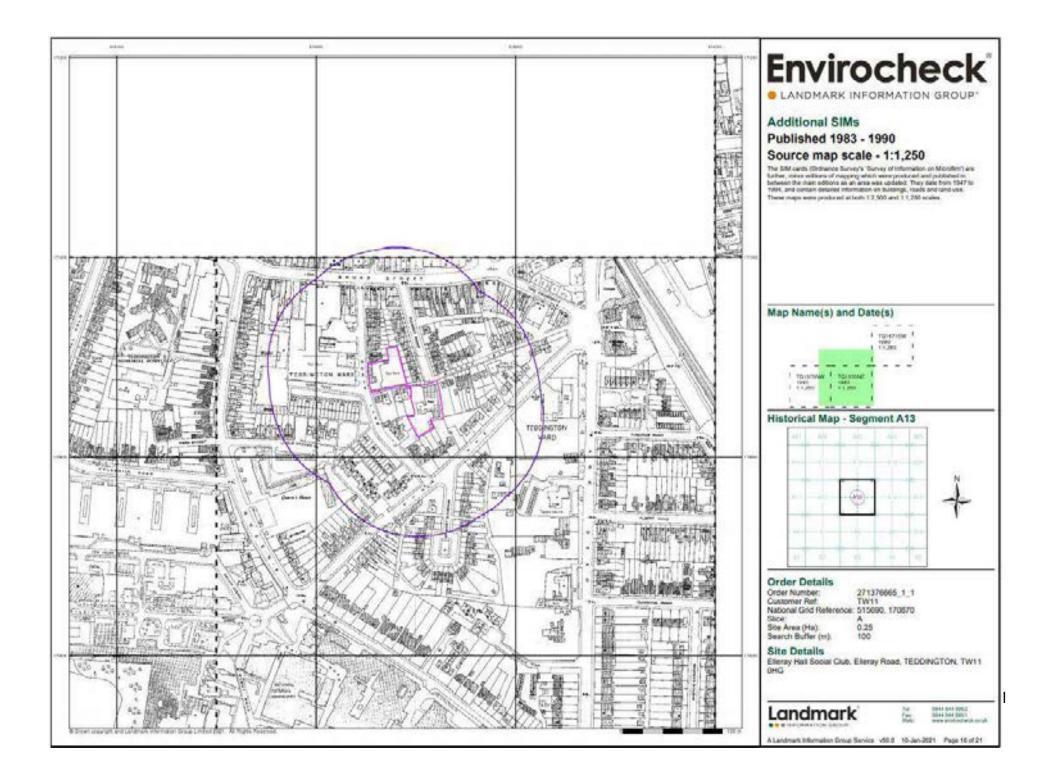


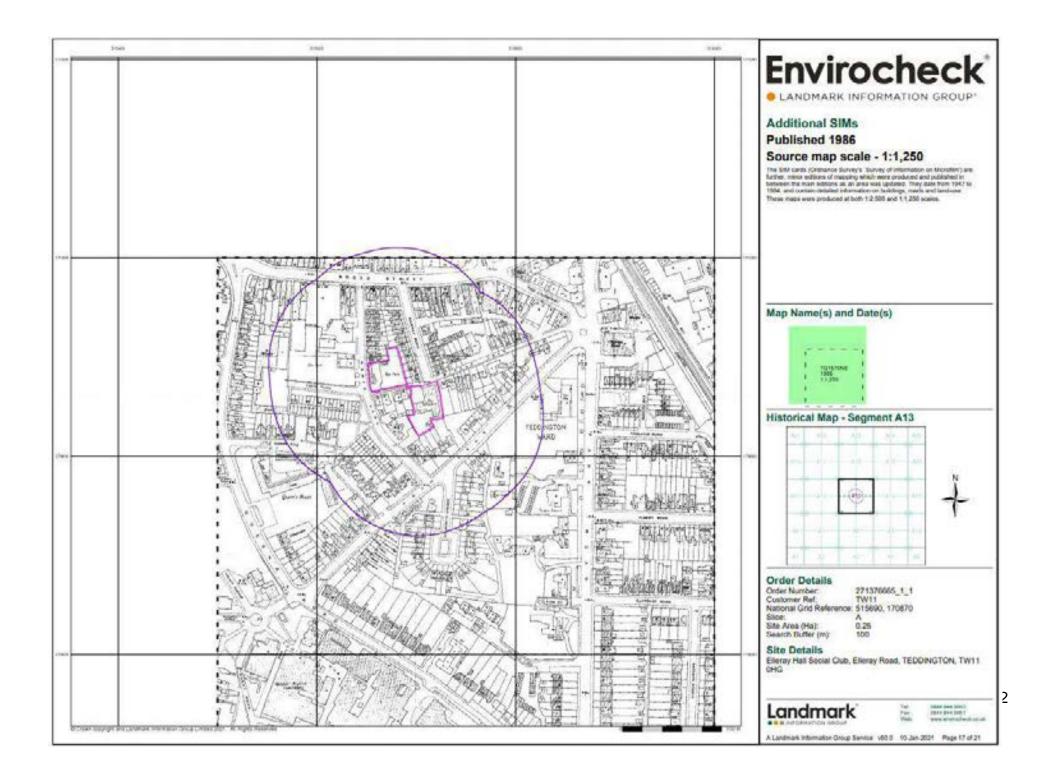


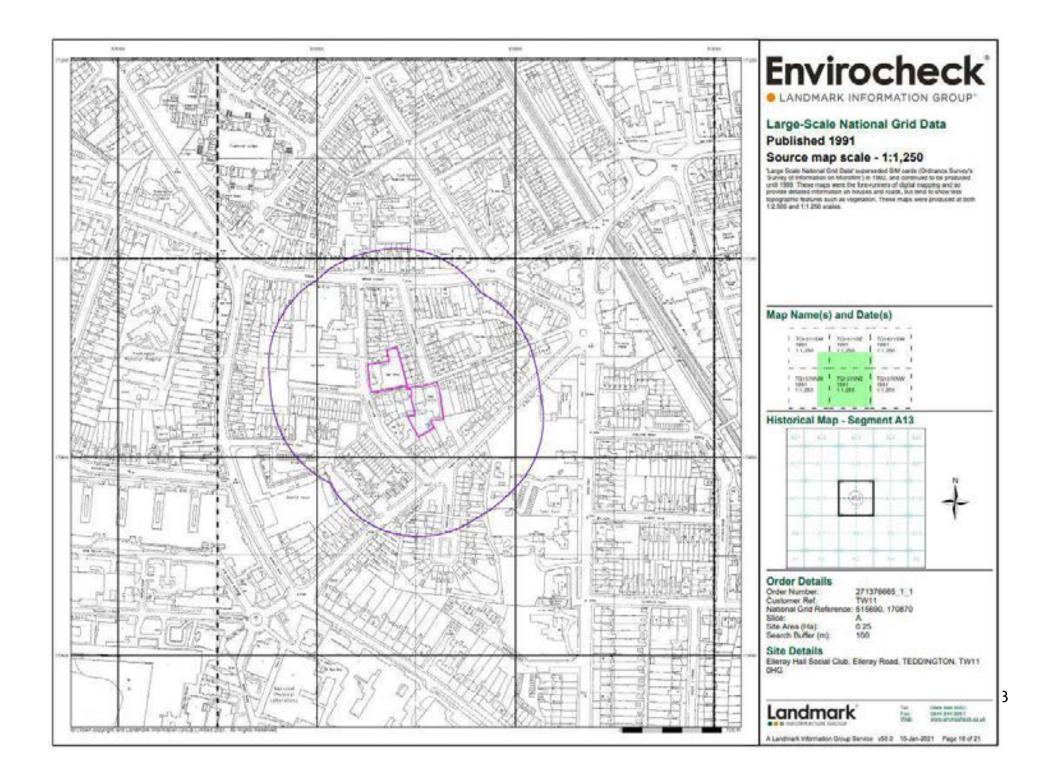


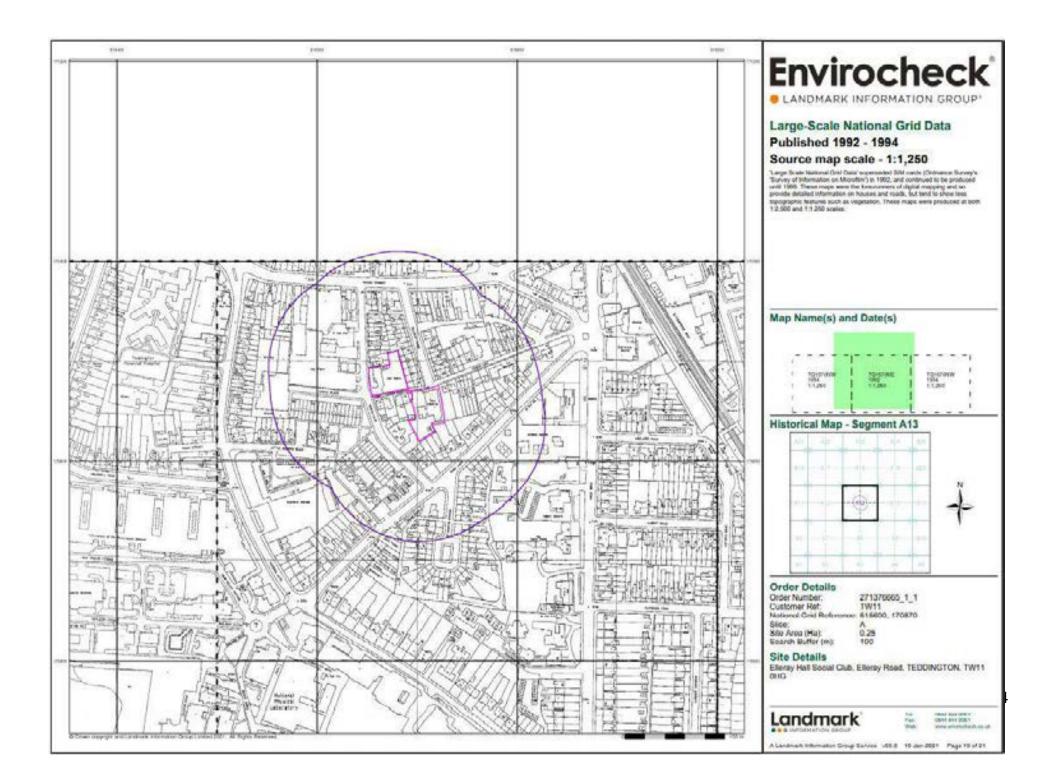


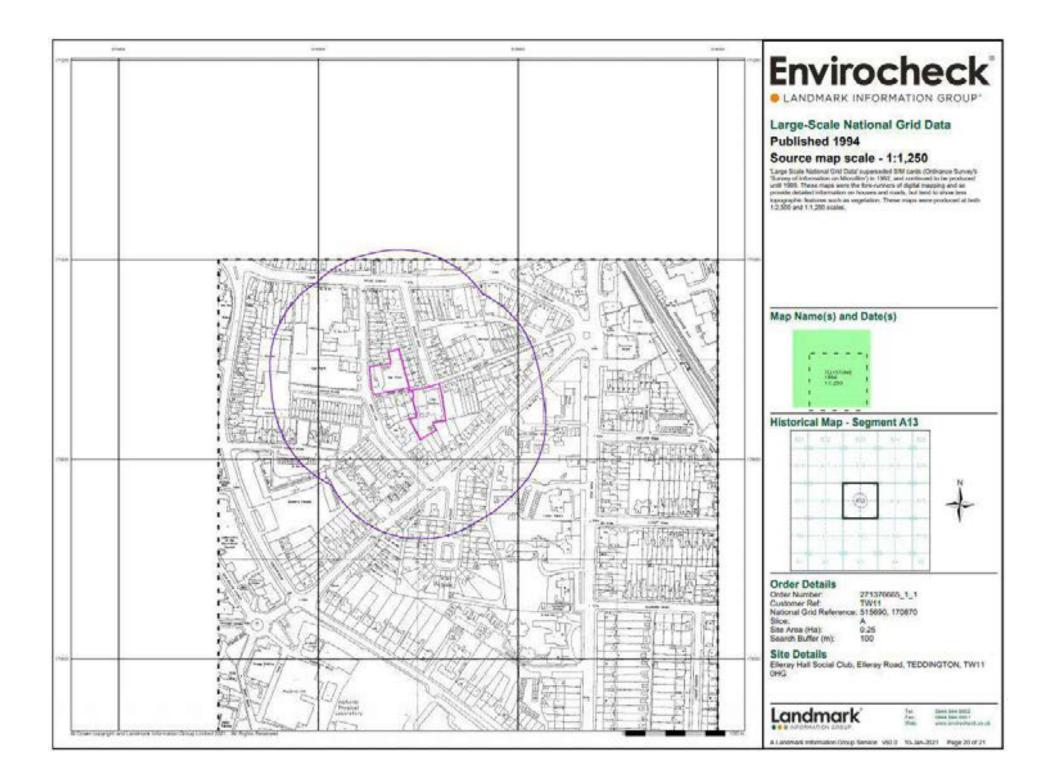


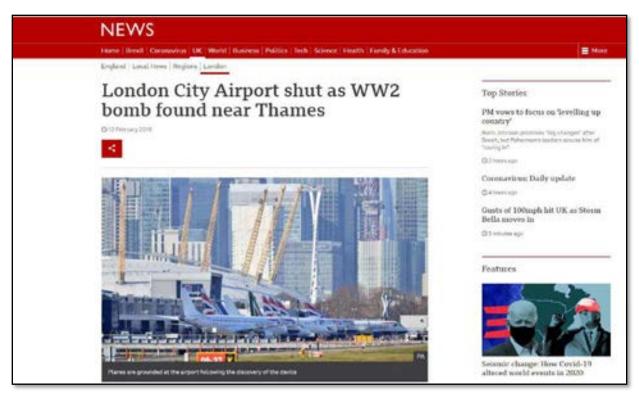


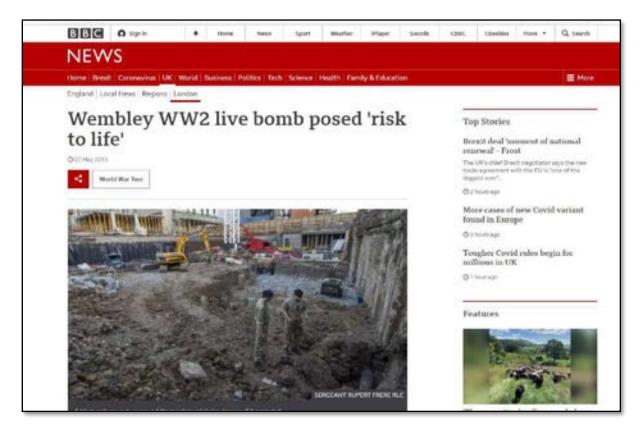




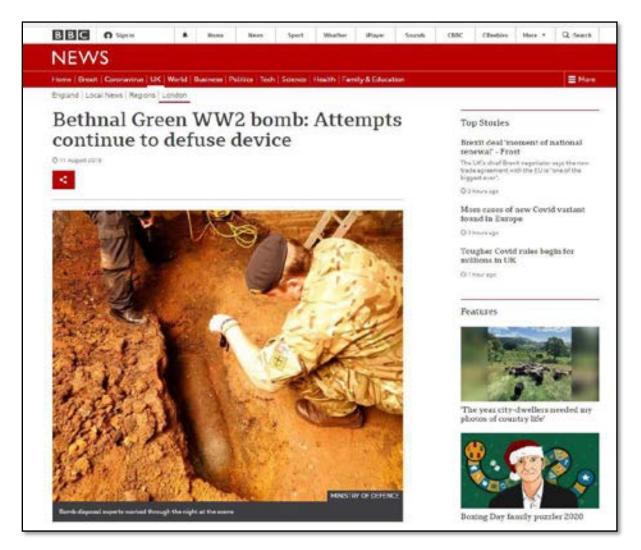







SOME BOMB INCIDENTS IN THE UK IN RECENT YEARS

Kingston (2019)


City Airport (2018)

Wembley (May 2015)

White City (July 2015)

Bethnal Green (April 2015)

JUMAS ENGINEERING ENVIRONMENTAL

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK.

JOMAS ASSOCIATES LTD

6-9 The Square Stockley Park Uxbridge UB11 1FW

CONTACT US

Website: www.jomasassociates.com Tel: 0843-289-2187

Fax: 0872-115-4505

Email: info@jomasassociates.com