New 16No. Residential Flats

Elleray Housing Development

Elleray Road, Teddington, London TWI I OHG

Energy & Sustainability Report

CLIVE CHAPMAN

A R C H I T E C T S SUSTAINABILITY CONSULTANTS

4 EEL PIE ISLAND TWICKENHAM MIDDX TWI 3DY TELEPHONE 020 8891 4837 EMAIL INFO@CCAR.CO.UK WEBSITE WWW.CCAR.CO.UK

CONTENTS

1.0 Introduction

2.0 LBRUT – Sustainable Construction Checklist

- 2.1 SCC Requirements
- 2.2 SCC Assumptions and Compliance

3.0 Water Efficiency Measures

4.0 Energy Efficiency Measures

- 4.1 Suitable Renewable/Low or Zero Carbon Technologies
- 4.2 Renewable Technologies, Options, Calculations and Results
- 4.3 Calculations SAP 2012 Assessment CO_2 Emission Data
- 4.5 Carbon Offsetting
- 4.6 Conclusion

5.0 Appendices

Appendix A - LBRUT Sustainable Construction Checklist Appendix B - SAP Assessment Worksheets - Base Case Scenario Appendix C - SAP Assessment Worksheets - Proposed Case Scenario Appendix D - Baseline Energy Demand Appendix E - Water Calculator Appendix F - Renewable Energy Technologies, Supporting Data

I.0 Introduction

Clive Chapman Architects has been appointed to carry out a sustainability assessment and energy report for a proposed housing development at Elleray Road, Teddington.

The scheme comprises of total of 16No. dwellings - 12No. 1-bed, 2-persons (1B2P) flats at 50m², 2No. 1-bed, 2-person (1B2P) for wheelchair users at 61m²; and 2No. 2-bed, 3-persons (2B3P) at 61m², with provisions of cycle storage, additional associated amenity space and landscaped garden.

For new-build major residential schemes, the London Borough of Richmond upon Thames (LBRuT) has adopted in the Local Plan 2018 (2020 amendments) policies from the Draft London Plan 2020, followed by newly updated London Plan 2021. A detailed study has been carried out to assess options to meet the current sustainability criteria are listed below:

- Endeavour for all new major residential developments (10 units or more) to achieve **net** zero carbon standards in line with LBRuT Local Plan 2018 Policy LP 22 & London Plan 2021 Policy SI 2 A. Proposals should aim to reduce greenhouse gas emissions in operation and minimise both annual and peak energy demand in accordance with the following energy hierarchy:
 - Be Lean: less energy use and demand
 - Be Clean: supply energy efficiently and cleanly
 - Be Green: producing, storing and using renewable energy on-site
- Assessment of the development using the London Borough of Richmond upon Thames Sustainable Construction Checklist (June 2020) (LBRuT Local Plan 2018 Policy LP 22)
- Be Lean Residential developments are expected to achieve carbon reduction of 10% (15% non-residential) through energy efficiency measures alone to reduce energy demand through good fabric performance (LBRuT Local Plan 2018 Policy LP 22 & London Plan 2021 Policy S1 2 C)
- Be Green A minimum on-site reduction in carbon dioxide emissions of -35% over baseline of Building Regulations Part L1A: Conservation of fuel and power in new dwellings 2013 edition (2016 amendments) (LBRuT Local Plan 2018 Policy LP 22 & London Plan 2021 Policy S1 2 C)
- A maximum water consumption of **110 litres** per person, per day (excluding an allowance of 5 litres or less per head per day for external water consumption), based on Part G2 of the Building Regulations and the Sustainability Construction Checklist (June 2020) Minimal Compliance IB (LBRuT Local Plan 2018 Policy LP 22 & London Plan 2021 Policy S1 5)
- To fully achieve the zero-carbon target Carbon Offsetting Shortfall above the 35% improvement up to 100% (Zero Carbon) should be provided as required by the LBRuT through a cash in lieu contribution to the borough's **Carbon Offset Fund** (LBRuT Local Plan 2018 Policy LP 22 & London Plan 2021 Policy S1 2 C1)

2.0 LBRUT Sustainable Construction Checklist

2.1 SCC Requirements:

The Sustainable Construction Checklist (June 2020) states that all developments and applications undertaken in the London Borough of Richmond upon Thames will be expected to be assessed against the following seven checklist items:

2.2 SCC Assumptions and Compliance:

Category	Score
Minimum Policy Compliance IB (Residential	
Energy Use and Pollution	26
Transport	7
Biodiversity	15
Flooding and Drainage	4
Improving Resource Efficiency	3
Accessibility	4
TOTAL	60

An overall score achieved of **60 credits** will be achieving an **A** rating – a major contribution towards achieving sustainable development in Richmond. Please see Appendix A for the completed Sustainable Construction Checklist.

To improve scoring, we could further suggest options for improved fabric energy performance and air-tightness plus integrated services (MVHR for heat-recovery ventilation) to bring energy demand at or below 15kWh/m²/year per unit; and/or the incorporation of rainwater harvesting systems.

3.0 Water Efficiency Standards New Homes

The LBRuT has adopted the 'optional' higher national technical standard for water consumption of 110 litres per person per day (excluding an allowance of 5 litres or less per person per day for external water consumption) in line with the national technical standard set out in Part G2 of the Building Regulations (updated 2016). All new residential developments including conversions, reversions, change of use and extensions that create one or more new dwellings must meet this target.

Within the Building Regulations Approved Document G2, maximum flow rates of specific fittings are specified, which cannot be exceeded, and are listed below:

WC full/part flush:	4/2.6	litres (dual flush)
Shower:	8	litres/minute
Bath capacity:	170	litres to overflow
Basin taps:	5	litres/minute
Kitchen taps:	6	litres/minute

This is further supported by the LBRuT Sustainable Construction Checklist (June 2020) Policy IB Minimum Policy Compliance (Residential) - Water Usage. It specifies that calculations using a 'water efficiency calculator' need to be submitted to demonstrate compliance.

Therefore, a completed water efficiency calculation has been carried out and the results page is appended to this report. It demonstrates the achieved reduction of this higher standard of water consumption efficiency of **93.1 litres person per day on average per each new dwelling**.

4.0 Energy Efficiency Measures

This section sets out the detailed analysis and results of the annual CO_2 emission calculations of the proposed dwelling. The dwelling has been modelled using the Government Standard Assessment Procedure (SAP) 2012 to determine the impact of building services options and to investigate the use of renewable energy sources, their impact on emissions, and their approximate cost of installation. The reductions of CO_2 emissions achieved through the application of renewable energy technologies have been tested and calculated in accordance with London Borough of Richmond upon Thames' Sustainable Construction Checklist Guidance adopted in June 2020 (Appendix A).

- I. Be Lean: reduce the energy demand through fabric efficiency measures
- 2. Be Clean: supply energy for space and water heating efficiently via small-scale renewable technology (air-source heat pumps)
- 3. Be Green: producing, storing and using renewable energy on-site through (PV arrays)

Notes: Please note that assumptions will need to be confirmed by an M&E Consultant and that any changes will have an impact on the SAP results and therefore the achieved reduction in CO_2 and % Renewables.

4.1 Suitable Renewable/Low or Zero Carbon Technologies

The London Plan 2021 stipulates that the development plans for all London Boroughs should eventually comply with the requirements set out in the plan. The Mayor's Energy Hierarchy, described in the London Plan, comprises three stages of application: use less energy, use renewable energy and supply energy efficiently. This hierarchy has been adopted for this project and various high efficiency communal services systems, and renewable energy systems have been investigated.

Further information, specification and information on renewables considered appropriate for the development is provided in Appendix F. This includes considerations for monitoring of energy demand and use as well as CO2 emissions and offset to ensure planning commitments are delivered (plus display Energy Certificate (DEC) and reporting to the Mayor for at least five years via an online portal to enable the GLA to identify good practice and report on the operational performance of new development in London. (London Plan 2021, Policy SI 2, paragraph 9.2.10)

The feasibility of renewable energy systems for this development has been investigated using the broad guidelines published by the Mayor of London in the document *Integrating Renewable Energy into New Developments: A toolkit for planners, Developers and Consultants* (Normally referred to as *The Toolkit*). The Toolkit includes a list of renewable energy system options which should be considered for specific building types in London.

The table below summarises the systems available and their suitability for this project:

System	Preliminary Assessment	Decision
Wind generators	Planning and local community issues associated with noise and visual	Rejected
	obstruction.	
Photovoltaic panels	The building has a flat green roof that can be used for photovoltaic panels. They will be tilted slightly to target best orientation. PV panels are a commonly used renewable technology and not prohibitively expensive.	Likely to be suitable for this site
Solar water heating panels	As above, the building has a sufficient area of flat roof that can be used for Solar Thermal tubes. However, the contribution of solar hot water towards the LBRUT 20% renewables requirement is significantly lower than the contribution of Photovoltaic Panels. The	May be suitable for this site

Renewable energy technologies suitable for London

Elleray Road Housing Development - Energy & Sustainability Report

1 0		
	reason being that the solar water panels reduce the running times of the gas boiler for space & hot water generation, whereas PVs reduce the electricity consumption of the building, and electricity generation has a larger carbon footprint.	
Biomass CHP	Biomass CHP is a renewable and energy efficient system providing electricity and space and hot water heating. As this is a small-scale development, it is not suitable for a communal biomass CHP. Micro biomass CHPs are not readily available on the open market and there are limited suppliers to the London area.	Rejected
Ground source heat pumps for heating (space and hot water)	The site is not suitable for either horizontal or vertical trench systems because the outdoor space of the site is not large enough to take up the $6 \times 50m$ trenches required for the GSHP. As the development is within close proximity to neighbouring residential buildings, boring would be strategically difficult and likely to cause disturbance. In turn the mitigation costs of the system would be proportionally inappropriate for this development.	Rejected
Ground sourced inc. borehole cooling, either direct or via a chiller	There is no need of a mechanical cooling system.	Rejected

Acceptable renewable energy technologies (not covered in detail in the toolkit); 'London renewables, Toolkit for planners, developers and consultants' September 2004

LUNUUN TENEWADIES, TUC	sint for planners, developers and consultants september 20	/07
System	Preliminary Assessment	Decision
Micro-hydro, small and	Not appropriate for this suburban London location.	Rejected
low head		
Gas from anaerobic	Technology being developed.	Rejected
digestion		
Geothermal heat, hot	Could be available in London but unlikely due to expected	Rejected
rocks	locations geology.	
Solar air collector	Very small energy contribution and difficult to calculate and	Rejected
Solar all collectors	measure.	
Ground cooling air	No experience currently in the UK.	Rejected
systems		
Fuel cells using hydrogen	Not currently commercially available.	Rejected
from renewable sources		

LZC technologies (not covered in the toolkit; www.lowcarbonbuildings.org.uk/micro/)

System	Preliminary Assessment	Decision
Air source heat pumps (ASHP) for heating (space and domestic hot water)	Air is an easily accessible means of heating especially with the use of a low temperature system such as under floor heating. As it runs on electricity, the system could use the energy generated from PV panels and it is preferred small-scale renewable tech.	Likely to be suitable for this site
Micro Combined Heat and Power (CHP)	Micro CHP units are energy efficient systems generating electricity and providing space and hot water heating. These gas fired systems are available for domestic use, in larger developments. However, the proposal is too small to gain any meaningful benefit from this type of system.	Rejected
Biomass heating. Fuels – wood, pellets, woodchips, some industrial waste products.	Biomass heating is a renewable energy technology. However, the system requires extensive space for storing the fuel (chips/pellets). The London Plan advises that the use of Biomass should be limited.	Rejected

4.2 Renewable Energy Technologies: Options, Calculations and Results

Options have been modelled using the approved by the Government NHER SAP 2012 to calculate the energy use of the property and predict the reduction of CO_2 emissions achieved through the application of renewable energy technologies.

The SAP Assessment looks into the energy performance of one individual unit, considered the 'worst' case scenario given its orientation and proportions of exposed areas to the elements. The demonstration for compliance on the chosen unit will ensure other dwellings could only score better.

Note: In most assessment situations the Base Case is set by the Model Design values (notional concurrent values above the absolute minimum) outlined in Building Regulations Part LIA: Conservation and Fuel in New Dwellings 2013 (2016 revision), as the threshold of compliance, which is to be improved upon by the specification of more efficient fabric U-values and the introduction of renewable technologies. This is typically due to the unknown fabric construction at the planning application stage of a project. However, in this case the building performance has already been evaluated, so Base Case U-values have been specified, as an improvement to Model Design. (Appendix B) Then further improvements have been assessed to achieve the enhanced LBRuT requirements with the addition of renewables. (Appendix C)

Option	Specification	DER/TER Variance BREGS LIA 2016 TARGET 0% LBRUT TARGET -35% (minimum)	% reduction through renewables
New dwelling	U-values in accordance with B.Regs Part L1A 2013 (2016 revision) concurrent notional dwelling specification	47.18%	n/a
- Base Case	 Ground floor U = 0.13 W/m²K External walls U = 0.18 W/m²K Green roof U = 0.13 W/m²K Windows (double-glazed) U = 1.4 W/m²K Rooflights (double-glazed) U = 1.4 W/m²K Front door (solid) U = 2 W/m²K Thermal bridging: standard psi values -Air tightness 10 m³/hrm² -85% energy efficient lighting Thermal bridging: minimal. Instantaneous combi boiler 89.4% efficient (Worcester Greenstar 42 CDi) No PV panels Ventilation – Passive cross-ventilation and Decentralised whole dwelling extract 		

Elleray Road H	Housing E	Development -	Energy 8	k Sustainability	Report

New	Improvements to reach LBRuT 1	fabric efficiency measures	-25.66%	
- Improved Case	 Ground floor External walls Green roof Windows (double-glazed) Rooflights (double-glazed) Front door (solid) Thermal bridging: minimal; Acc Details (ACDs) Air tightness 4 m³/hrm² Air Source Heat Pump (ASHP to U/F Heating for Space Heatin Water Heating; 100L storage cy 170L storage cylinder per 2B4P 100% energy efficient lighting Ventilation – Passive cross-ven Decentralised whole dwelling ex 	$U = 0.11 \text{ W/m}^{2}\text{K}$ $U = 0.13 \text{ W/m}^{2}\text{K}$ $U = 0.11 \text{ W/m}^{2}\text{K}$ $U = 1.2 \text{ W/m}^{2}\text{K}$ $U = 1.3 \text{ W/m}^{2}\text{K}$ $U = 1.0 \text{ W/m}^{2}\text{K}$ tredited Construction and for Domestic linder per each 1B/2P & units.	(meeting policy requirement for 10% minimum)	1%
New Dwelling - Proposed Case	Improvements to reach LBRuT (- Total of 45 No. 0.370kWp PV per panel (overall approx. 72m ² (total of 16.65kWp; mounted ho green roof and under 35 degree all panels facing South	CO ₂ reduction targets Panels; Area of 1,85m ²); 1.04kWp per dwelling prizontally on the flat e angle to hipped roofs;	-58.23%	22%

4.3 Calculations – SAP CO₂ Emission Data

	Total k	⟨gCO₂/yr
	Base Case to comply with Part L of the Building Regulations	Improved Case to achieve and exceed 35% reduction over Part L of the Building Regulations
Space Heating	244.66	125.12
Secondary Heating	0	0
Hot Water Heating	707.99	527.63
Fixed Electrical	190.89	76.36
Lighting	137.21	131.21
Appliances	17.38	17.38
Cooking	3.19	3.19
Less amount of renewables	0	-410.48
TOTAL	1301.32	470.41
DER/TER Variance % reduction overall	47.18%	-58.23%
% reduction through renewables ²	0%	22%

¹ This is the total % reduction in kgCO₂/year over Part L of the Building Regulations.
 ² This is the total % reduction in kgCO₂/year achieved through the incorporation of renewable energy installations.
 ³ The numbers refer to one dwelling only – worst case scenario Flat 5 out of 16no. total dwellings

Proposed roof layout:

4.4 Carbon Offsetting

The LBRuT Policy LP 22 in line with the London Plan 2016 Policy 5.2 and London Plan 2021 Policy S1 2 requires compliance with the Sustainability Construction Checklist and all major residential schemes to achieve zero carbon standards:

"Zero Carbon Standards apply to all new major residential development (10 or more housing units). This means that at least 35% of regulated CO₂ emission reductions (against a Building regulations Part L (20130 baseline) must be achieved on-site, with the remaining emissions, up to 100%, to be offset through a contribution to the Council's Carbon Offset Fund.

The price for offsetting carbon is regularly reviewed and changes to the suggested carbon offset price will be updated in future guidance. A nationally recognised non-traded price of \pounds 95/tonne has been tested as part of the viability assessment for the London Plan, which this borough will use to collect offset payments. Further detail can be found in the Cabinet Member Decision."

The results in the energy modelling undertaken show that the residential development achieves and exceeds the required 35% improvement on site – 58.23% via providing a number of photovoltaic arrays while preserving 70% of extensive green roof space for biodiversity benefits. A carbon shortfall is identified at approximately 7.296 tonnes CO₂ per year.

The following formula is used to calculate the Carbon Offset payment which may be required:

Carbon Shortfall (t/year) × 30 (years) × £95 (non-traded price) =

= 7.296 × 30 × 95 =

= £20,794 (total potential required contribution)

This is considered an optimal balanced proposal for the scale and location of development, whereas an additional exercise showed that maximum number of PV arrays of 83no. could be incorporated at the full extent of roof surface available achieving -86.7% on-site CO2 offset via renewables. In this scenario the monetary contribution would be less and larger investment in technology would be imposed on developers.

¹ LBRuT - Local Plan – Sustainable Design and Construction – Carbon Dioxide Emissions and Zero Carbon Standards [https://www.richmond.gov.uk/sustainable_construction_checklist]

4.5 Conclusion

The proposal gives an opportunity to provide a new residential development of 16No. units in twostorey terraced housing configuration appropriate to the scale of the site and the neighbouring buildings, improving the long term sustainability of the site. Much attention has been given to reducing the environmental impact of the building during its lifetime. The project suggests a structure of significantly improved fabric performance complemented with the incorporation of renewables that ensure less CO_2 emissions demonstrating compliance with local and regional policies.

The results show that providing PV Panels for energy generation and Air-source heat pump for space and water heating will be most appropriate and practical strategy to meet the energy-efficiency and carbon reduction targets set by the council for the major residential development. This report demonstrates compliance with the required standards and policies set out by LBRuT adopting the London Plan listed below:

- Can achieve the LBRuT requirement to reduce the carbon dioxide emissions by at least **58.23%** over Building Regulations Part L1A 2010, 2013 edition, 2016 revision;
- Provides a **22%** reduction of predicted carbon emissions through the use of small-scale Renewable Energy Technologies;
- Provides a portion of **25.66%** reduction in CO₂ emissions and CO₂ sequestration through the provision of energy efficiency measures alone;
- Achieves an A rating assessed against the LBRUT Sustainable Construction Checklist 2020
- Achieves an overall SAP Rating of A [93];
- Achieves the higher standard of water consumption efficiency of **93.1** litres person per day per one new dwelling.
- **72%** available green roof area
- LBRuT Carbon Offset Fund potential monetary contribution of £20,794

Notes: The second consultation on proposed changes to Part L (conservation of fuel and power) and Part F (ventilation) of the Building Regulations for non-domestic buildings and dwellings; and overheating in new residential buildings, closed on 13 April 2021 and it informed on the Future Homes Standard Consultation, expected to be implemented later in 2021 upon review of consultation results. The changes to regulations applying to domestic buildings propose to introduce a new overheating mitigation requirement in the regulations for new homes in Part F; an uplift on the Fabric Efficiency Standard, as well as other standards for building services in new homes; and guidance on the calibration of devices that carry out airtightness testing,

The proposal for improved case scenario achieves performance exceeding the current and the expected fabric efficiency targets specified in Part L and Part F used for the base case scenario.

Further considerations for improvements:

Triple-glazed windows could be considered to reduce the annual energy demand and fabric performance. The incorporation of a heat-recovery ventilation system (MVHR) might be appropriate to complement improved fabric performance in order to ensure better air-tightness and best ventilation rates throughout the year and reduce marginal risks for summer overheating, where the decentralised extract system and passive cross-ventilation satisfies the regulations and requirements for each separate dwelling.

5.0 Appendices

Appendix A - LBRUT Sustainable Construction Checklist

LBRUT Sustainable Construction Checklist - June 2020

This document forms part of the Sustainable Construction Checklist SPD. This document **must** be filled out as part of the planning application for the following developments: all residential development providing **one or more new residential units (including conversions leading to one or more new units)**, and all other forms of development providing **100sqm or more of non-residential floor space**. Developments including new non-residential development of less than 100sqm floor space, extensions less than 100sqm, and other conversions are strongly encouraged to comply with this checklist. Where further information is requested, please either fill in the relevant section, or refer to the document where this information may be found in detail, e.g. Flood Risk Assessment or similar. **Further guidance** on completing the Checklist may be found in the Justification and Guidance section of this SPD.

Property Name (if relevant):	Elleray Housing Development		Application No. (if known):	
Address (include, postcode)	Teddington, London, UK			
Completed by:	Todaligon, 201001, 011			
	Dayana Anastasova			
For Non-Residential			For Residential	
Size of development (m2)			Number of dwellings 16	
	ICE (RESIDENTIAL AND NON-RES	IDENTIAL)		
Energy Assessment				
Has an energy assess	ment been submitted that demonstra	tes the expected energy and carbon dioxid	le emissions saving from energy efficiency and	TRUE
renewable energy me	asures, including the feasibility of CH	P/CCHP and community neating systems?	If yes, please select TRUE.	
Carbon Dioxide emissions re	eduction			
What is the on site ca	rbon dioxide emissions reduction aga	inst a Building Regulations Part L (2013) b	aseline	-47.74 %
Policy LP 22 B. and D	raft London Plan Policy 9.2.5 require	a 35% onsite reduction in CO ₂ emissions	beyond Building Regulations 2013.	
What is the percentage	e reduction from efficiency measures	alone		21.03.%
Policy I P 22 C and D	raft I ondon Plan Policy 9 2 6 require	a 10% onsite reduction in CO2 emissions		-21.00 /0
beyond Building Reg	ulations 2013 from efficiency measure	es for residential and 15% for non-residenti	al.	
	-			
Percentage of total si	te CO2 emissions saved through rene	ewable energy installation?		18 %
What is the total rema	ining carbon to be offset			Tonn
Policy LP 22 B. and D	raft London Plan Policy 9.2.4 require	Major developments to achieve Zero Carb	on after offsetting.	
A	na naine te be effect through effect f	and an extension of the second s	idelines insued for the cost part former of COO2	TDUE
Are remaining emissio	ons going to be onset through onset it	and payment in accordance with current gu	idelines issued for the cost per tonne of CO2?	IRUE
What is the total predi	cted cost of offset?			£
The London Plan sets	this as £95/tonne per year over 30 y	ears, this should be updated based on As I	Build calculations.	
1A MINIMUM POLICY C	OMPLIANCE (NON-RESIDENTIAL A	ND DOMESTIC REFURBISHMENT)		
	Please check	the Guidance Section of this SPD for th	e policy requirements	
Environmental Rating of dev	elonment:			
Non-Residential new-build (10	Dsqm or more)			
BREEAM Level		Please Select	Have you attached a pre-assessment to support this?	
Excellent required under Policy	(LP22 A 3			
Extensions and conversions to BREEAM Domestic R	r residential dwellings	Please Select	Have you attached a pre-assessment to support this?	
Excellent required under Policy	/ LP22 A 4		have you allabled a pre-assessment to support this:	
Extensions and conversions fo	r non-residential buildings			
BREEAM Level		Please Select	Have you attached a pre-assessment to support this?	
Excellent required under Polic	y LP 22			
Score awarded for En	vironmental Rating:			Subtotal
BREEAM:	Good = 0, Very Good = 4, Exceller	nt = 8, Outstanding = 16		
	OMPLIANCE (RESIDENTIAL)			
	(Score
Water Usage				
Internal water usage a	atter gray/rainwater systems limited to	105 litres person per day. (Excluding an a	llowance 5 litres per person per day for external water	1
110l/p/d Required for	new dwellings under Policy LP22 A 2	1051/p/d required under Draft London Plan	Policy SI	· · · · ·

Subtotal 1

	ed for Cooling	Score
a.	How does the development incorporate cooling measures? Tick all that apply:	
	Energy efficient design incorporating specific heat demand to less than or equal to 15 kWh/sqm	6
	Reduce heat entering a building through providing/improving insulation and living roofs and walls	2
	Reduce heat entering a building through shading	3
	Exposed thermal mass and high ceilings	4
	Passive ventilation	3
	Mechanical ventilation with heat recovery	1
	Active cooling systems, i.e. Air Conditioning Unit	0
	See Draft London Plan SI4	
2.2 Hea	at Generation	
D .	How have the heating and cooling systems, with preference to the heating system hierarchy, been selected (defined in London Plan policy SI3) Tick all heating and	
	cooling systems that will be used in the development:	Score
	Connection to existing heating or cooling networks powered by renewable energy	6
	Connection to existing heating or cooling networks powered by gas or electricity	5
	Site wide CHP network powered by renewable energy	4
	Site wide CHP network powered by gas	3
	Communal heating and cooling powered by renewable energy	2
	Communal heating and cooling powered by gas or electricity	1
	Individual heating and cooling	0
	See Draft London Plan SI3	
2.3 Pol	lution: Air, Noise and Light	
а.	Does the development plan to implement reduction strategies for dust emissions from construction sites?	2
) .	Does the development plan to include a biomass boiler?	
	If yes, please refer to the biomass guidelines for the Borough of Richmond, please see guidance for supplementary	
	information. If the proposed boiler is of a qualifying size, you may need to complete the information request form found	
	on the Richmond website.	
.	Has an air guality impact assessment been provided	
	If ves, has 'Emissions Neutral' been achieved	1
	If yes, have occupants of new development been protected from existing pollution	1
	If no to any of the above are there any sensitive recentors as defined in Policy I.P.10 present?	-1
	see Policy I P 10	· · · · · ·
4	Please tick only one ontion below	
	Has the development taken measures to reduce existing noise and enhance the existing soundscape of the site?	3
	Has the development taken care to not create any new noise generation/transmission issues in its intended operation?	1
	see Policy LP 10	· · · · ·
а.	Has the development taken measures to reduce light pollution impacts on character, residential amenity and biodiversity?	3
	see Policy LP 10	Ŭ
	Have you attached a Lighting Pollution Report?	-
-	····· / ·-·	
		Subtotal
Please	give any additional relevant comments to the Energy Use and Pollution Section below	
3. TRA	NSPORT	
	vision for the safe efficient and sustainable movement of neonle and goods	
3.1 Pro	vision for the safe enfective and sustainable movement of people and goods	
3.1 Pro 1.	Dee your development rovide opportunities for occupants to use innovative travel technologies?	

		Score
	Does your development provide for 100% active provision for electric vehicle charging point(s) and have you successfully demonstrated that it would be able to operate satisfactorily in the future expectation of all vehicles being electrically powered?	2
	For major developments ONLY: Has a Transport Assessment been produced for your development based on TfL's Best Practice Guidance? If you have provided a Transport Assessment as part of your planning application, please tick here and move to Section 3 of this Checklist.	5
	See policy LP44 For smaller developments ONLY: Have you provided a Transport Statement?	5
	Does your development provide cycle storage? (Standard space requirements are set out in the Council's Parking Standards - Local Plan Appendix 3) If so, for how many bicycles? Is this shown on the site plans?	2 21
	See Local Plan Appendix 3 Will the development create or improve links with local and wider transport networks? If ves, please provide details,	2
		Subtotal
eas	e give any additional relevant comments to the Transport Section below	

4	RIGDIVERSITY	
4.1 Mi	nimising the threat to biodiversity from new buildings, lighting, hard surfacing and people	
a.	Does your development involve the loss of an ecological feature or habitat, including a loss of garden or other green space? (Indicate if yes)	-2
	If so, please state how much in sqm?	sqm
b.	Does your development involve the removal of any tree(s)? (Indicate if yes)	
	If so, has a tree report been provided in support of your application? (Indicate if yes)	
C.	Does your development plan to add (and not remove) any tree(s) on site? (Indicate if yes)	
д	Please indicate which features and/or habitate that your development will incorporate to improve on site biodiversity.	
u.	Predse indicate which reaches a reache or extensive native planting 6 Area provided:	sqm
	An extensive green roof 5 Area provided:	274 sqm
	An intensive green roof 4 Area provided:	sqm
	Additional native and/or wildlife friendly planting to peripheral areas 3 Area provided:	60 sqm
	Additional planting to peripheral areas 2 Area provided:	160 sqm
	A living wall 2 Area provided:	sqm
	Bird boxes 0.5	
	Swift boxes 0.5	
	Other 0.5	
e.	Does your development use a reast 70% of available fool plate as green/brown fool Policy LP 17 requires 70%	I.
		Subtotal 15
Please	give any additional relevant comments to the Biodiversity Section below	
5	FLOODING AND DRAINAGE	
5.1 Mitiga	ting the risks of flooding and other impacts of climate change in the borough Is your site located in a high flood risk zone (Zone 3)2 (Undicate if yes)	-2
u.	Have you submitted a Flood Risk Assessment? (Indicate if yes)	-
D.	which of the following measures of the drainage melarchy are incorporated onto your site? (tick all that apply) Store rainwater for later use	5
	Use of infiltration techniques such as porous surfacing materials to allow drainage on-site	3
	Attenuate rainwater in ponds or open water features	4
	Discharge rainwater directly to watercourse	2
	Discharge rainwater to surface water drain	1
	Discharge rainwater to combined sewer	0
	See Policy LP 21 and Draft London Plan SL 13	
С.	Please give the change in area of permeable surfacing which will result from your development proposal:	169 sqm
	Please provide details of the permeable suffacing below please represent a loss in permeable area as a	negative number Subtotal 4
Please	give any additional relevant comments to the Flooding and Drainage Section below	
6	IMPROVING RESOURCE EFFICIENCY	
6.1 Re	duce waste generated and amount disposed of by landfill though increasing level of re-use and recycling	
a.	vali demonition be required on your site prior to construction? [Points will only be awarded in 10% or greater or demoniton waste is reuseuriecycled]	1
	If so, what percentage of demolition waste will be reused in the new development?	%
	What percentage of demolition waste will be recycled?	%
	The provide of demonstration made the progradu :	70
Þ	Does your site have any contaminated land?	1
D.	Have you submitted an assessment of the site contamination?	2
	Are plans in place to remediate the contamination?	2
	Have you submitted a remediation plan?	1
	Are plans in place to include compositing on site?	1
C.	Will a waste management plan and facilities be in place in line with Policy LP24	
6 2 Pa	ducing levels of water waste	
a.	Will the following measures of water conservation be incorporated into the development? (Please tick all that apply):	
	Fitting of water efficient taps, shower heads etc	1
	Rainwater harvesting for internal use	4
	Greywater systems	4
	Fit a water meter	1
		Subtotal 3
Please	give any additional relevant comments to the Improving Resource Efficiency Section below	

7	ACCESSIBILITY			
7.1	Ensure flexible adapt	able and long	-term use of structures	
a.	If the development is	residential, w	ill it meet the requirements of the nationally described space standard for internal space and layout?	1
		If the standar	ds are not met, in the space below, please provide details of the functionality of the internal space and layout	
AND				1
b.	If the development is	residential, w	ill it meet Building Regulation Requirement M4 (2) 'accessible and adaptable dwellings'?	2
		If this is not m	net, in the space below, please provide details of any accessibility measures included in the development.	
				-
		For major res	idential developments, are 10% or more of the units in the development to Building Regulation Requirement	1
		M4 (3) 'wheel	Ichair user dwellings'?	
OR				
C.	If the development is	non-residenti	al, does it comply with requirements included in Richmond's Local Plan LP1, LP28.B, LP30 & LP45	2
		Please provid	le details of the accessibility measures specified in the Local Plan that will be included in the development	
		Flease provid	le details of the accessionity measures specified in the Local Franchard will be included in the development	1
				Subtotal 4
Please	give any additional relev	ant comments	to the Design Standards and Accessibility Section below	
				<u>.</u>
LBRUT Su	stainable Construction	Checklist- So	coring Matrix for New Construction (Non-Residential and domestic refurb)	TOTAL 60
	Score	Rating	Significance	
	84 or more	A+	Project strives to achieve highest standard in energy efficient sustainable development	
	75-83	A	Makes a major contribution towards achieving sustainable development in Richmond	
	50-74 40 55	В	resps to significantly improve the Borough's stock of sustainable developments	
	40-55 39 or less	FAII	Minimal effort to increase sustainability beyond general compliance	
	00 01 1035	TAIL	Bees not comply with or B Folloy	
BRUT Su	stainable Construction	Checklist- So	coring Matrix for New Construction Residential new-build	
	Scoro	Pating	Significance	
	05	Kaung	Orgini carce	
	85 or more	A++	Project surves to achieve nignest standard in energy efficient sustainable development	
	68-84	A+	Project strives to achieve nigher standard in energy efficient sustainable development	
	59-67	A	Makes a major contribution towards achieving sustainable development in Richmond	
	39-58	В	Helps to significantly improve the Borough's stock of sustainable developments	
	24-38	С	Minimal effort to increase sustainability beyond general compliance	
	23 or less	FAIL	Does not comply with SPD Policy	
Authories	tion [.]			
I herew	with declare that I have fill	ed in this form	to the best of my knowledge	

Appendix B – SAP Worksheets - Base Case Scenario

SAP Worksheet Design - Draft

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor name	Davana	Anastasova					Α	ssessor nun	nber	5		
Client								ast modified	4	10/02	/2021	
									4	10,02,	2021	
Address	Flat 5 , 1	eddington,	London									
1. Overall dwelling dir	nensions											
				A	area (m²)		Ave h	erage storey leight (m)	,	Vo	lume (m³)	
Lowest occupied					50.00	(1a) x		2.40	(2a) =		120.00	(3a)
Total floor area	(1a) + (1b) + (1	c) + (1d)(1n) =	50.00	(4)			-			_
Dwelling volume						_	(3a	a) + (3b) + (3	c) + (3d)(3	8n) =	120.00	(5)
2 Ventilation rate												
2. Ventilation rate										m	³ per bour	
Number of shines and												
Number of chimneys								0] x 40 =		0	_ (6a)
Number of open flues								0] x 20 =		0] (6b)] (= \
Number of intermitten	: fans							0] x 10 =		0] (/a)
Number of passive vent	:S							0	x 10 =		0	_ (7b)
Number of flueless gas	fires							0	x 40 =		0	(7c)
										Air c	hour	r
Infiltration due to chim	neys, flues, far	ns, PSVs		(6a)) + (6b) + (7	a) + (7b) + (7c) =	0	÷ (5) =	:	0.00	(8)
If a pressurisation test I	has been carrie	ed out or is i	ntended, p	roceed to (17), otherv	vise continu	e from (9)	to (16)				
Air permeability value,	q50, expressed	d in cubic m	etres per h	our per squ	uare metre	of envelope	e area				5.00	(17)
If based on air permeat	oility value, the	en (18) = [(17	7) ÷ 20] + (8	8), otherwi	se (18) = (1	6)					0.25	(18)
Number of sides on wh	ich the dwellir	g is sheltere	ed								2	(19)
Shelter factor								1	- [0.075 x (1	9)] =	0.85	(20)
Infiltration rate incorpo	rating shelter	factor							(18) x (2	20) =	0.21	(21)
Infiltration rate modifie	d for monthly	wind speed	:									
Jar	n Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly average wind	speed from Ta	ble U2										
5.1	0 5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	(22)
Wind factor (22)m ÷ 4												
1.2	8 1.25	1.23	1.10	1.08	0.95	0.95	0.93	1.00	1.08	1.13	1.18	(22a)
Adjusted infiltration rat	e (allowing for	shelter and	I wind fact	or) (21) x (2	22a)m							
0.2	7 0.27	0.26	0.23	0.23	0.20	0.20	0.20	0.21	0.23	0.24	0.25	(22b)
Calculate effective air c	hange rate for	the applica	ble case:									
If mechanical ventila	ation: air chan	ge rate throu	ugh system	n							0.50	(23a)
If balanced with hea	t recovery: eff	iciency in %	allowing for	or in-use fa	ctor from T	Table 4h					N/A	(23c)
c) whole house extra	act ventilation	or positive i	input venti	lation from	n outside							
0.5	2 0.52	0.51	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	(24c)
Effective air change rat	e - enter (24a)	or (24b) or	(24c) or (24	4d) in (25)								
0.5	2 0.52	0.51	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	(25)

3. Heat losses a	and heat lo	ss paramet	er										
Element			а	Gross rea, m²	Openings m ²	Net A	t area , m²	U-value W/m²K	A x U V	V/K ĸ-v kJ	value, /m².K	Ахк, kJ/K	
Window						4	.40 x	1.33	= 5.83	;			(27)
Door						1	89 x	1.00	= 1.89)			(26)
Party wall						53	3.65 x	0.00	= 0.00)			(32)
External wall						2	1.86 x	0.18	= 3.93	;			(29a)
Roof						50	0.00 x	0.13	= 6.50)			(30)
Total area of ext	ernal elem	ents ∑A, m²				78	8.15						(31)
Fabric heat loss,	W/K = ∑(A	× U)							(2	6)(30) + (32) =	18.16	(33)
Heat capacity Cr	n = ∑(А x к))						(28)	(30) + (32)	+ (32a)(3	2e) =	N/A	(34)
Thermal mass pa	arameter (1	TMP) in kJ/r	n²K									100.00	(35)
Thermal bridges	: ∑(L x Ψ) c	alculated us	sing Appen	dix K								11.72	(36)
Total fabric heat	loss									(33) + (36) =	29.88	(37)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Ventilation heat	loss calcul	ated month	ly 0.33 x (2	25)m x (5)									
	20.63	20.42	20.21	19.80	19.80	19.80	19.80	19.80	19.80	19.80	19.80	19.80	(38)
Heat transfer co	efficient, V	V/K (37)m +	- (38)m										
	50.51	50.30	50.09	49.68	49.68	49.68	49.68	49.68	49.68	49.68	49.68	49.68	
									Average =	∑(39)112,	/12 =	49.84	(39)
Heat loss param	eter (HLP),	W/m²K (39	9)m ÷ (4)										
	1.01	1.01	1.00	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	
									Average =	∑(40)112,	/12 =	1.00	(40)
Number of days	in month (Table 1a)											
	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	(40)
1 Motor booti													
4. Water neath	ng energy i	equiremen	L									4.60	
Assumed occupa	ancy, N				(25 v NI) v	20						1.69	_ (42) ☐ (42)
Annual average	not water t	Eob	es per day	vu,average	$e = (25 \times N) + $	30 Jun	1.1	Aug	Son	Oct		74.34 Doc	_ (43)
Hot water usage	jan in litros ne	ar day for ea	ch month	лрі Vdm=fac	tor from Tab		3)	Aug	Зер	000	NOV	Dec	
not water usage	01 77						5,	60.00	72.95	75.02	70 00	01 77	٦
	01.77	78.80	75.65	72.65	09.88	00.91	00.91	09.00	72.85	5.05	12 -	01.77	
Energy content	of hot wate	or used = 4.1	18 x Vd m x	nm v Tm/	3600 kWh/m	onth (see	a Tahlos 1h	1c 1d)		2(44)1	.12 –	892.08	_ (44)
Energy contents	121 27	106.06	109.45	95.42	91 56	79 01	73.21	84.01	85.01	99.08	108 15	117 //	٦
	121.27	100.00	109.45	55.42	91.50	75.01	75.21	04.01	85.01	55.08	12 -	1169 66]] (45)
Distribution loss	0 15 x (45	Jm								Z(45)1	.12 -	1109.00] (43)
Distribution 1055	18 19	15.91	16.42	1/1 31	13 73	11 85	10.98	12 60	12 75	14.86	16.22	17.62	7(46)
Storage volume	(litres) incl		10.42	HPS stora	To within can		10.98	12.00	12.75	14.80	10.22	100.00	
Water storage lo	(111103) 11101	duing any so		1113 31018	ge within san	10 003301					L	100.00](47)
h) Manufacturer	's declared	l loss factor	is not know	wn									
Hot water st	orage loss f	actor from	Table 2 (kW	vn Vh/litre/da	w)							0.06	7 (51)
Volume facto	or from Tab			vii, iiti c, uu	y)							1.06	$\left \left(52 \right) \right $
Temperature	factor from	m Table 2h										0.54] (52)] (52)
Energy lost fr	com water	storage (k)	(h/day) (45	7) v (51) v (52) v (52)							2 27] (53)] (54)
Enter (50) or (54) in (55)	Storage (KW	,uay) (4)	,	521 ~ (53)							3.37	_ (54)] (55)
Water storage lo	n in (55) Ss calculat	ed for each	month (55	5) x (41)m								5.57	_ (33)
	104 25	Q1 25	10/ 25		10/ 25	100 02	10/ 25	10/ 25	100 08	10/ 35	100 09	10/ 35	(56)
	104.55	54.25	104.55	100.98	104.55	100.98	104.55	104.55	100.98	104.55	100.98	104.55	

If the vessel contains dedicated solar storage or dedicated WWHRS (56)m x [(47) - Vs] ÷ (47), else (56)

II the vessel col		iteu solal s				III X [(47) -	vs]÷(47),						-
	104.35	94.25	104.35	100.98	104.35	100.98	104.35	104.35	100.98	104.35	100.98	104.35	_ (57)
Primary circuit I	loss for each	month fro	m Table 3										
	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59)
Combi loss for e	each month i	from Table	3a, 3b or 3o	2									
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(61)
Total heat requi	ired for wate	er heating o	alculated fo	or each mo	onth 0.85 x	(45)m + (4	6)m + (57)r	n + (59)m +	· (61)m			-	-
	248.88	221.32	237.06	218.91	219.17	202.50	200.82	211.62	208.51	226.68	231.64	245.05	(62)
Solar DHW innu	it calculated	using Anne	endix G or A	nnendix H] ()
00.0. D		0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	7 (62)
Outout from un	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00] (03)
Output from wa					2)m + (63)m							1	Ъ
	248.88	221.32	237.06	218.91	219.17	202.50	200.82	211.62	208.51	226.68	231.64	245.05	
										∑(64)1	12 = 2	:672.16	(64)
Heat gains from	water heati	ing (kWh/m	nonth) 0.25	× [0.85 ×	(45)m + (61))m] + 0.8 ×	: [(46)m + (5	57)m + (59)	m]				_
	142.41	127.47	138.48	130.52	132.53	125.06	126.43	130.02	127.06	135.03	134.75	141.14	(65)
5. Internal gai	ns	-							_				
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabolic gains	(Table 5)				,								-
	101.41	101.41	101.41	101.41	101.41	101.41	101.41	101.41	101.41	101.41	101.41	101.41	(66)
Lighting gains (c	calculated in	Appendix I	., equation	L9 or L9a),	, also see Ta	ble 5							
	37.42	33.24	27.03	20.46	15.30	12.92	13.96	18.14	24.35	30.91	36.08	38.46	(67)
Appliance gains	(calculated	in Appendi	x L, equatio	n L13 or L	13a), also se	e Table 5							
	219.75	222.03	216.29	204.05	188.61	174.10	164.40	162.12	167.87	180.10	195.54	210.06	(68)
Cooking gains (o	calculated in	Appendix	L, equation	L15 or L15	a), also see	Table 5							_
	46.83	46.83	46.83	46.83	46.83	46.83	46.83	46.83	46.83	46.83	46.83	46.83	(69)
Pump and fan g	ains (Table 5	ia)			1] ()
	2 00	2 00	2 00	2 00	2 00	2 00	2.00	2.00	2 00	2.00	2 00	2 00	7 (70)
	S.00	5.00	3.00	5.00	5.00	5.00	5.00	5.00	3.00	3.00	3.00] (70)
Losses e.g. evap			67.60	67.60	67.69		67.69	67.60	67.60	67.60	67.60	67.60	7 (74)
	-67.60	-67.60	-67.60	-67.60	-67.60	-67.60	-67.60	-67.60	-67.60	-67.60	-67.60	-67.60] (71)
Water heating g	gains (Table !	5)						1					-
	191.41	189.69	186.13	181.28	178.13	173.70	169.93	174.76	176.47	181.49	187.16	189.70	_ (72)
Total internal ga	ains (66)m +	· (67)m + (6	8)m + (69)r	n + (70)m	+ (71)m + (7	2)m							_
	532.22	528.60	513.08	489.43	465.67	444.34	431.92	438.65	452.32	476.14	502.41	521.85	(73)
6. Solar gains			A		A	Col	f l		_			Caina	
			Access to Table	actor 6d	m²	501 W	ar flux V/m²	spec	g ific data	specific d	ata	W	
								or T	able 6b	or Table	6c		
SouthWest			1.00	x	1.60	x 3	6.79 x	0.9 x 0).63 x	0.70		23.37	<mark>] (79)</mark>
SouthEast			1.00		2 80] x [3	6 79 x	09x () 63 x	0.70		40.89] (77)
Solar gains in w	atts 5(74)m	(82)m			2.00					0.10]()
		100.45	140.75	105 55	207.94	206.22	109.02	192.20	162.15	120.07	76.06	F4 00] (02)
Total asian int	04.20	109.45	149.75	185.55	207.84	200.33	198.93	182.30	102.15	120.97	76.96	54.99] (83)
i otal gains - Inte		ar (73)m +	(83)m										
	596.47	638.05	662.83	674.98	6/3.51	650.68	630.85	620.96	614.47	597.10	579.38	576.84	_ (84)
7. Mean interr	nal temperat	ture <u>(heati</u> i	ng season)										
Temperature di	Iring heating	neriods in	the living o	rea from T	Table 9 Th1	(°C)						21.00] (<u>85</u>)
i cinperature ut	lan	Fah	Mar	Δnr	мэн Мэн	lun	11	Aug	Son	Oct		<u></u>	7 (00)
	Jail	100	14101	νhι	iviay	Jun	301	Aug	Jeh	500	NUV	Det	

Utilisation facto	r for gains f	or living are	a n1,m (se	e Table 9a)									
	0.85	0.82	0.77	0.70	0.59	0.45	0.34	0.35	0.51	0.69	0.80	0.86	(86)
Mean internal to	emp of livin	g area T1 (s	teps 3 to 7	in Table 9c	:)								
	19.74	19.92	20.19	20.51	20.76	20.92	20.97	20.97	20.88	20.59	20.15	19.72	(87)
Temperature du	iring heating	g periods in	the rest of	dwelling fi	rom Table 9	∋ <i>,</i> Th2(°C)							
	20.07	20.08	20.08	20.09	20.09	20.09	20.09	20.09	20.09	20.09	20.09	20.09	(88)
Utilisation facto	r for gains f	or rest of d	welling n2,	n									_
	0.83	0.80	0.75	0.67	0.55	0.40	0.27	0.29	0.45	0.65	0.78	0.84	(89)
Mean internal to	emperature	in the rest	of dwelling	T2 (follow	steps 3 to	7 in Table 9) Jc)	1			I	I	
	18.43	18 69	19.07	19 50	19.83	20.01	20.07	20.07	19 98	19.62	19.02	18 41	(90)
Living area fract	ion	10.05	19.07	19.50	10.00	20.01	20.07	20.07		ving area ÷	(4) =	1 00] (91)
Mean internal to	emnerature	for the wh	ole dwellin	σfIΔ x T1 +	-(1 - fl Δ) x ī	г2				ing area i	(.)	1.00] (31)
			20.10	20 51		20.02	20.07	20.07	20.00	20.50	20.15	10.72	
A much s a dissature as	19.74	19.92	20.19	20.51	20.76	20.92	20.97	20.97	20.88	20.59	20.15	19.72] (92)
Apply adjustme		an internal	temperati		ible 4e whe	ere appropr			22.72				
	19.59	19.77	20.04	20.36	20.61	20.77	20.82	20.82	20.73	20.44	20.00	19.57] (93)
8. Space heating	ng requirem	ent											
	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation facto	r for gains.	nm			,								
	0.83	0.80	0.75	0.68	0.57	0.44	0.32	0.34	0.49	0.66	0.78	0.83] (94)
Useful gains nr	0.85)m x (84)m	0.75	0.08	0.57	0.44	0.52	0.54	0.45	0.00	0.78	0.85] (94)
			406.26	455.00	205 72	206.40	202 70	242.44	201.22	206.42	450.24	404.22	
Manthlyayana	492.55	507.43	490.20	455.08	385.72	280.49	203.76	212.14	301.22	390.12	450.31	481.32] (32)
wontiny average							10.00			10.00	- 10		
	4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20] (96)
Heat loss rate to	or mean inte	ernal tempe	rature, Lm	. w [(39)m	x [(93)m -	(96)mj				1		1	.
	772.20	748.10	678.42	569.14	442.51	306.32	209.83	219.50	329.37	489.07	640.74	763.52] (97)
Space heating re	equirement,	kWh/mon	th 0.024 x	[(97)m - (9	5)m] x (41)	m						r	7
	208.07	161.73	135.52	81.69	42.25	0.00	0.00	0.00	0.00	69.16	137.11	209.96	
									∑(98	3)15, 10	.12 = 1	045.48] (98) _
Space heating re	equirement	kWh/m²/ye	ear							(98)	÷ (4)	20.91	(99)
9a, Energy reg	uirements -	individual	heating sv	tems inclu	iding micro	-CHP							
Space heating	unements	marviadar	incuting sys			CIII							
Space neating	- h + f		/			`						0.00	7 (201)
Fraction of spac	e neat from	secondary,	supplement	itary system	m (table 11	.)				4 12		0.00] (201)] (202)
Fraction of spac	e heat from	main syste	m(s)							1 - (20)1) = [1.00] (202)] (202)
Fraction of spac	e heat from	main syste	m 2									0.00	ן (202) ר ר ר
Fraction of total	space heat	from main	system 1						(20	02) x [1- (20	3)] = [1.00	ן (204) ר
Fraction of total	space heat	from main	system 2							(202) x (20	03) = [0.00] (205) -
Efficiency of ma	in system 1	(%)										92.30	(206)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating fu	uel (main sy	stem 1), kW	/h/month										
	225.43	175.22	146.83	88.51	45.77	0.00	0.00	0.00	0.00	74.93	148.54	227.47]
									∑(21:	1)15, 10	.12 = 1	132.69	(211)
Water heating													
Efficiency of wat	ter heater												
	83.74	83.39	82.78	81.85	80.75	79.20	79.20	79.20	79.20	81.47	82.87	83.80	(217)
Water heating f	uel, kWh/m	onth											_ `
	297.21	265.40	286.36	267.46	271.40	255.68	253.56	267.20	263.27	278.25	279.53	292.42	1
	L					•	•			•	•	•	-

				∑(219a)112 =	3277.74	(219)
Annual totals						
Space heating fuel - main system 1					1132.69]
Water heating fuel					3277.74]
Electricity for pumps, fans and electric keep-hot (Table 4f)						
mechanical ventilation fans - balanced, extract or positive input	ut from outside		292.80			(230a)
central heating pump or water pump within warm air heating	unit		30.00			(230c)
boiler flue fan			45.00			(230e)
Total electricity for the above, kWh/year					367.80	(231)
Electricity for lighting (Appendix L)					264.37	(232)
Total delivered energy for all uses		(211	.)(221) + (231) +	(232)(237b) =	5042.60	(238)
10a. Fuel costs - individual heating systems including micro-CH	Р					
	Fuel		Fuel price		Fuel	
	kWh/year				cost £/year	
Space heating - main system 1	1132.69	x	3.48	x 0.01 =	39.42	(240)
Water heating	3277.74	x	3.48	x 0.01 =	114.07	(247)
Pumps and fans	367.80	x	13.19	x 0.01 =	48.51	(249)
Electricity for lighting	264.37	x	13.19	x 0.01 =	34.87	(250)
Additional standing charges					120.00	(251)
Total energy cost			(240)(242) -	+ (245)(254) =	356.87	(255)
11a. SAP rating - individual heating systems including micro-CH	IP					
Energy cost deflator (Table 12)					0.42	(256)
Energy cost factor (ECF)					1.58	(257)
SAP value					77.99]
SAP rating (section 13)					78	(258)
SAP band					С]
12a. CO ₂ emissions - individual heating systems including micro	D-CHP					
	Energy		Emission factor		Emissions	
	kWh/year		kg CO₂/kWh		kg CO₂/year	
Space heating - main system 1	1132.69	x	0.216	=	244.66	(261)
Water heating	3277.74	x	0.216	=	707.99	(264)
Space and water heating			(261) + (262) +	(263) + (264) =	952.65	(265)
Pumps and fans	367.80	x	0.519	=	190.89	(267)
Electricity for lighting	264.37	x	0.519	=	137.21	(268)
Total CO ₂ , kg/year				(265)(271) =	1280.75	(272)
Dwelling CO ₂ emission rate				(272) ÷ (4) =	25.61	(273)
El value					81.93]
El rating (section 14)					82	(274)

13a. Primary energy - individual heating systems including micro-CHP											
	Energy kWh/year		Primary factor	Primary Energy kWh/year							
Space heating - main system 1	1132.69	x	1.22	=	1381.89	(261)					
Water heating	3277.74	х	1.22	=	3998.84	(264)					
Space and water heating			(261) + (262) +	- (263) + (264) =	5380.73	(265)					
Pumps and fans	367.80	x	3.07	=	1129.15	(267)					

Electricity for lighting	264.37	x	3.07	=	811.60	(268)
Primary energy kWh/year					7321.48	(272)
Dwelling primary energy rate kWh/m2/year					146.43	(273)

Appendix C – SAP Worksheets - Proposed Case Scenario

SAP Worksheet Design - Draft

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor name		Assessor nur	5	5									
Client									Last modified	ł	23/02	/2021	
Address		Flat 5 Ell	eray Road	, Teddingto	on, Londo	n							
1. Overall dwelling	dimens	ions											
						Area (m²)		Δ	verage storey height (m)	,	Vo	lume (m³)	
Lowest occupied						50.00	(1a) x	Ē	2.40	(2a) =		120.00	(3a)
Total floor area		(1a)	+ (1b) + (1	c) + (1d)(1n) =	50.00	(4)						
Dwelling volume							_		(3a) + (3b) + (3	3c) + (3d)(3	sn) =	120.00	(5)
2. Ventilation rate										_			
											m ¹	³ nor hour	
										-		pernour	-
Number of chimney	S								0	x 40 =		0	(6a)
Number of open flue	es							L	0	x 20 =		0	(6b)
Number of intermitt	tent fans	5							0	x 10 =		0	(7a)
Number of passive v	/ents							Γ	0	x 10 =		0	(7b)
Number of flueless g	gas fires							F	0	x 40 =		0	(7c)
										_	Air o	hanges pe hour	r
Infiltration due to ch	nimnevs	. flues. fan	s. PSVs		(6	a) + (6b) + (7	7a) + (7b) +	(7c) = 🗌	0	÷ (5) =		0.00	(8)
If a pressurisation te	est has b	een carrie	d out or is i	ntended, p	roceed to	(17), otherv	vise continu	ie from ((9) to (16)		L		
Air permeability valu	ue a50	expressed	in cubic m	etres ner h	our ner s	quare metre	of envelop	e area	.,			4 00	(17)
If based on air perm	oshility	value ther	$(18) - [(1^{-1})]$	$7) \div 201 + (1)$	8) other	$v_{150}(18) = (1)$	16)	curcu				0.20] (12)
Number of sides on			1 (10) – [(1)	() . 20] i (i	oj, otner	vise (10) – (1	10)					0.20	_ (10) _ (10)
	which th	ie uwening	g is shellere	u						[0,075 /4		2	
Shelter factor									1	- [U.U/5 X (1)	9)] = [0.85] (20)] (20)
Infiltration rate inco	rporatin	g shelter f	actor							(18) x (2	20) =	0.17	(21)
Infiltration rate mod	lified for	monthly v	wind speed	:									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	s Sep	Oct	Nov	Dec	
Monthly average wi	nd spee	d from Tab	ole U2										_
	5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70) 4.00	4.30	4.50	4.70	(22)
Wind factor (22)m ÷	- 4												
	1.28	1.25	1.23	1.10	1.08	0.95	0.95	0.93	3 1.00	1.08	1.13	1.18	(22a)
Adjusted infiltration	rate (al	lowing for	shelter and	l wind fact	or) (21) x	(22a)m							
	0.22	0.21	0.21	0.19	0.18	0.16	0.16	0.16	6 0.17	0.18	0.19	0.20	(22b)
Calculate effective a	ir chang	e rate for t	the applica	ble case:									
If mechanical ver	ntilation	: air chang	e rate thro	ugh system	า							0.50	(23a)
If balanced with	heat rec	overy: effi	ciency in %	allowing f	or in-use	factor from	Table 4h					N/A	(23c)
c) whole house e	extract v	entilation d	or positive i	input venti	ilation fro	m outside					L		_·
	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	(24c)
Effective air change	rate - er	nter (24a) d	or (24b) or	(24c) or (24	4d) in (25)				-	-		、 _/
	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	(25)
				I				-					

3. Heat losses and heat loss pa	rameter										
Element		Gross area, m²	Openings m ²	Net A,	area m²	U-value W/m²K	A x U W	//К к-\ kJ	value, /m².K	Ахк, kJ/K	
Window				4	.40 x	1.15	= 5.04				(27)
Door				1	.89 x	1.00	= 1.89				(26)
Party wall				53	8.65 x	0.00	= 0.00				(32)
External wall				21	L.86 x	0.13	= 2.84				(29a)
Roof				50	0.00 x	0.11	= 5.50				(30)
Total area of external elements	∑A, m²			78	3.15						(31)
Fabric heat loss, $W/K = \sum (A \times U)$							(2	6)(30) + (32) =	15.27	(33)
Heat capacity Cm = ∑(А x к)						(28)	.(30) + (32)	+ (32a)(3	2e) =	N/A	(34)
Thermal mass parameter (TMP)	in kJ/m²K									100.00	(35)
Thermal bridges: $\Sigma(L \times \Psi)$ calculated	ated using Appe	ndix K								2.25	(36)
Total fabric heat loss								(33) + (36) =	17.52	(37)
Jan F	eb Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Ventilation heat loss calculated	monthly 0.33 x	(25)m x (5)									
19.80 19	9.80 19.80	19.80	19.80	19.80	19.80	19.80	19.80	19.80	19.80	19.80	(38)
Heat transfer coefficient, W/K (37)m + (38)m										
37.32 3	7.32 37.32	37.32	37.32	37.32	37.32	37.32	37.32	37.32	37.32	37.32	
							Average =	∑(39)112	/12 =	37.32	(39)
Heat loss parameter (HLP), W/m	1²K (39)m ÷ (4)										
0.75 0	.75 0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	
							Average =	∑(40)112,	/12 =	0.75	(40)
Number of days in month (Table	e 1a)										_
31.00 28	8.00 31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	(40)
4. Water heating energy requi	rement										
Assumed occupancy, N										1.69	(42)
Annual average hot water usage	e in litres per da	y Vd,average	e = (25 x N) +	36						74.34	(43)
Jan F	eb Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	_
Hot water usage in litres per day	/ for each mont	h Vd,m = fac	tor from Tab	le 1c x (43	3)						
81.77 78	8.80 75.83	72.85	69.88	66.91	66.91	69.88	72.85	75.83	78.80	81.77	
								∑(44)1	12 =	892.08	(44)
Energy content of hot water use	ed = 4.18 x Vd,m	x nm x Tm/	3600 kWh/m	onth (see	e Tables 1b	, 1c 1d)					
121.27 10	6.06 109.45	95.42	91.56	79.01	73.21	84.01	85.01	99.08	108.15	117.44	
								∑(45)1	12 =	1169.66	(45)
Distribution loss 0.15 x (45)m											
18.19 1	5.91 16.42	14.31	13.73	11.85	10.98	12.60	12.75	14.86	16.22	17.62	(46)
Storage volume (litres) including	g any solar or W	WHRS storag	ge within san	ne vessel						100.00	(47)
Water storage loss:											
b) Manufacturer's declared loss	factor is not kn	own									
Hot water storage loss factor	from Table 2 (I	wh/litre/da	y)							0.01	(51)
Volume factor from Table 2a										1.06	(52)
Temperature factor from Tak	ole 2b									0.54	(53)
Energy lost from water stora	ge (kWh/day)(47) x (51) x (52) x (53)							0.78	(54)
Enter (50) or (54) in (55)										0.78	(55)
Water storage loss calculated fo	r each month (55) x (41)m									
24.18 2	1.84 24.18	23.40	24.18	23.40	24.18	24.18	23.40	24.18	23.40	24.18	(56)

If the vessel contains dedicated solar storage or dedicated WWHRS (56)m x [(47) - Vs] ÷ (47), else (56) 24.18 21.84 24.18 23.40 24.18 23.40 24.18 24.18 23.40 24.18 23.40 24.18 (57)Primary circuit loss for each month from Table 3 23.26 21.01 23.26 22.51 23.26 22.51 23.26 23.26 22.51 23.26 22.51 23.26 (59)Combi loss for each month from Table 3a, 3b or 3c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (61)Total heat required for water heating calculated for each month 0.85 x (45)m + (46)m + (57)m + (59)m + (61)m 168.71 164.89 148.91 156.89 141.33 139.00 124.92 120.65 131.45 130.93 146.52 154.06 (62)Solar DHW input calculated using Appendix G or Appendix H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (63)Output from water heater for each month (kWh/month) (62)m + (63)m 168.71 148.91 130.93 156.89 141.33 139.00 124.92 120.65 131.45 146.52 154.06 164.89 1728.27 ∑(64)1...12 = (64)Heat gains from water heating (kWh/month) 0.25 × [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m] 78.28 69.55 74.35 68.46 68.40 63.00 62.30 65.89 65.00 70.90 72.69 77.00 (65) 5. Internal gains Feb Mar Oct Jan Apr May Jun Jul Aug Sep Nov Dec Metabolic gains (Table 5) 101.41 101.41 101.41 101.41 101.41 101.41 101.41 101.41 101.41 101.41 101.41 101.41 (66)Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 37.42 33.24 27.03 20.46 15.30 12.92 13.96 18.14 24.35 30.91 36.08 38.46 (67)Appliance gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 188.61 219.75 222.03 216.29 204.05 164.40 162.12 167.87 180.10 195.54 210.06 174.10 (68)Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 46.83 46.83 46.83 46.83 46.83 46.83 46.83 46.83 46.83 46.83 46.83 46.83 (69)Pump and fan gains (Table 5a) 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 (70) Losses e.g. evaporation (Table 5) -67.60 -67.60 -67.60 -67.60 -67.60 -67.60 -67.60 -67.60 -67.60 -67.60 -67.60 -67.60 (71) Water heating gains (Table 5) 105.21 103.49 95.08 83.73 90.27 95.29 100.96 99.93 91.93 87.50 88.56 103.50 (72) Total internal gains (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m 446.02 442.40 426.88 403.23 379.47 358.14 345.72 352.45 366.12 389.94 416.21 435.65 (73) 6. Solar gains Access factor Solar flux FF Gains Area g Table 6d m² W/m² specific data specific data w or Table 6b or Table 6c 1.00 36.79 SouthWest х 1.60 x 0.9 x 0.63 0.70 = 23.37 (79) x х SouthEast 1.00 2.80 36.79 x 0.9 x 0.63 0.70 40.89 х x = (77)х Solar gains in watts $\Sigma(74)$ m...(82)m 64.26 109.45 149.75 185.55 207.84 206.33 198.93 182.30 162.15 120.97 76.96 54.99 (83)Total gains - internal and solar (73)m + (83)m 510.27 551.85 576.63 588.78 587.31 564.48 544.65 534.76 528.27 510.91 493.18 490.64 (84) 7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1(°C) 21.00 (85) Feb Dec Jan Mar Apr May Jun Jul Aug Sep Oct Nov

Utilisation factor for gains for living area n1,m (see Table 9a)													
	0.85	0.81	0.75	0.66	0.55	0.41	0.30	0.32	0.47	0.66	0.80	0.86	(86)
Mean internal te	emp of living	g area T1 (s	teps 3 to 7	in Table 9c	:)								
	20.21	20.36	20.55	20.75	20.90	20.97	20.99	20.99	20.95	20.79	20.48	20.15	(87)
Temperature du	ring heating	g periods in	the rest of	dwelling fr	rom Table 9), Th2(°C)							-
	20.30	20.30	20.30	20.30	20.30	20.30	20.30	20.30	20.30	20.30	20.30	20.30	(88)
Utilisation factor	r for gains fo	or rest of d	welling n2,	m	1						!]
	0.83	0.79	0.73	0.64	0.51	0.37	0.25	0.27	0.42	0.63	0.78	0.85	(89)
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)], ,			
		19 46	19 73	20.00	20.18	20.27	20.29	20.29	20.25	20.05	19.63	19 18] (<u>90</u>)
Living area fraction] (91)		
Living area induction Living area \div (4) = 1.00 (91)] (31)		
	20.21	20.26	20 55	20.75	20.90	20.07	20.00	20.00	20.05	20.70	20.49	20.15] (02)
Apply adjustment	20.21	20.30	20.33	20.75	20.90			20.99	20.95	20.79	20.48	20.15] (92)
								20.00	20.05	20.70	20.48	20.15	
	20.21	20.36	20.55	20.75	20.90	20.97	20.99	20.99	20.95	20.79	20.48	20.15] (93)
8. Space heatin	ıg requirem	ent											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation factor	r for gains, r	յՠ		-	-				-				
	0.83	0.79	0.74	0.66	0.54	0.41	0.30	0.32	0.46	0.65	0.78	0.85	(94)
Useful gains, nm	Gm. W (94)m x (84)m	0.7.1	0.00	0.01	0112	0.00	0.01	0110	0.00	0.10	0.00] (0 .)
eeera game, ihr	121 31	/138.02	125 01	386.00	319.02	230.82	162.16	169.09	244 76	332.86	285 / 2	414 70] (<u>05</u>)
Monthly average	evternal to	emperature	from Tabl	۵ 1	515.02	250.02	102.10	105.05	244.70	552.00	505.42	414.70] (55)
wontiny average	4 20	4 90	6 50	8 00	11 70	14.60	16.60	16.40	14 10	10.60	7 10	4 20	(06)
Heat loss rate fo	r mean inte	4.90	u.su	0.90	v [(93)m -	(96)ml	10.00	10.40	14.10	10.00	7.10	4.20] (90)
					242.10		162.02	171.01	255.75	200.27	400.17		
Space beating re	J95.05	570.80	524.41	(0.7) (0)	545.10	257.74	105.92	1/1.51	255.75	560.27	499.17	595.25] (97)
space heating re			72.20	(97)11 - (9		0.00	0.00	0.00	0.00	25.27	01.00	124.22	1
	125.95	93.30	73.28	40.49	17.96	0.00	0.00	0.00	0.00	35.27	81.90	134.32	
									∑(98	3)15, 10	.12 =	602.46] (98)
Space heating re	quirement	kWh/m²/ye	ear							(98)	÷ (4)	12.05] (99)
9a. Energy requ	uirements -	individual	heating sys	stems inclu	iding micro	-CHP							
Space heating													
Fraction of space	e heat from	secondary	/supplemer	ntarv svster	m (table 11)						0.00	(201)
Fraction of space	e heat from	main syste	m(s)	,.,		,				1 - (2)	01) =	1.00] (202)
Fraction of space	e heat from	main syste	m 2							- (0.00] (202)
Fraction of total	snace heat	from main	system 1						(20)2) x [1- (20	3)] =	1 00] (204)
Fraction of total	snace heat	from main	system 2						(20	(202) x (20)3) = [0.00) (205)
Efficiency of mai	n system 1	(%)	System 2							(202) × (20	[] []	2/0 00] (205)] (206)
Linclency of mai	lan	(70) Eeb	Mar	Apr	May	lun	Int	Δυσ	Son	Oct	Nov	Dec] (200)
Space beating fu		stom 1) kM	/h/month	Арі	Iviay	Jun	501	Aug	Jep	000	NOV	Dec	
space heating to			20.22	16.20	7.10	0.00	0.00	0.00	0.00		22.77	F2 75	ſ
	50.40	37.33	29.32	16.20	7.19	0.00	0.00	0.00	0.00	14.11	32.77	53.75]
									∑(211	L)15, 10	.12 =	241.08] (211)
Water heating													
Efficiency of wat	er heater	,				[l			1	1	٦.
	170.00	170.00	170.00	170.00	170.00	170.00	170.00	170.00	170.00	170.00	170.00	170.00] (217)
Water heating fu	uel, kWh/m	onth					1						-
	99.24	87.60	92.29	83.14	81.76	73.48	70.97	77.33	77.02	86.19	90.62	96.99	

			7	(2102)1 12 -	1016.63	(210)	
Annual totals			2	(2198)112 -	1010.05] (219)	
Space heating fuel - main system 1					2/1 08	1	
Water heating fuel				1016.62]		
Electricity for number fans and electric keep het (Table 4f)					1010.05		
reschericel until the face belanced extract or resitive in			11712			(220-)	
mechanical ventilation fans - balanced, extract or positive inp	ut from outside		117.12			(230a)	
central heating pump or water pump within warm air heating	unit		30.00			(230c)	
Total electricity for the above, kWh/year					147.12] (231) 7	
Electricity for lighting (Appendix L)					264.37	(232)	
Energy saving/generation technologies						_	
electricity generated by PV (Appendix M)					-790.91	(233)	
Total delivered energy for all uses		(21	.1)(221) + (231) + (2	232)(237b) =	878.29	(238)	
10a. Fuel costs - individual heating systems including micro-CHP							
	Fuel		Fuel price		Fuel		
	kWh/year		·		cost £/year		
Space heating - main system 1	241.08	x	13.19	x 0.01 =	31.80	(240)	
Water heating	1016.63	x	13.19	x 0.01 =	134.09	(247)	
Pumps and fans	147.12	x	13.19	x 0.01 =	19.41	(249)	
Electricity for lighting	264.37	x	13.19	x 0.01 =	34.87	(250)	
Additional standing charges					0.00	(251)	
Energy saving/generation technologies							
pv savings	-790.91	x	13.19	x 0.01 =	-104.32	(252)	
Total energy cost			(240)(242) +	(245)(254) =	115.85	(255)	
11a. SAP rating - individual heating systems including micro-CH	IP						
Energy cost deflator (Table 12)					0.42	(256)	
Energy cost defiator (FCE)					0.42] (250)] (257)	
					0.51] (257)	
					02.00		
SAP value					92.86]	

SAP band

12a. CO₂ emissions - individual heating systems including micro-CHP

		Energy kWh/year		Emission factor kg CO₂/kWh		Emissions kg CO ₂ /year	
Space heating - main system 1		241.08	x	0.519	=	125.12	(261)
Water heating		1016.63	x	0.519	=	527.63	(264)
Space and water heating				(261) + (262) +	(263) + (264) =	652.75	(265)
Pumps and fans		147.12	x	0.519	=	76.36	(267)
Electricity for lighting		264.37	x	0.519	=	137.21	(268)
Energy saving/generation technologies							
pv savings		-790.91	x	0.519	=	-410.48	(269)
Total CO ₂ , kg/year					(265)(271) =	455.83	(272)
Dwelling CO ₂ emission rate					(272) ÷ (4) =	9.12	(273)
El value						93.57]
El rating (section 14)						94	(274)
El band						А]

13a. Primary energy - individual heating systems including micro-CHP

А

	Energy kWh/year		Primary factor	Primary Energy kWh/year		
Space heating - main system 1	241.08	x	3.07	=	740.12	(261)
Water heating	1016.63	x	3.07	=	3121.06	(264)
Space and water heating			(261) + (262) +	(263) + (264) =	3861.18	(265)
Pumps and fans	147.12	x	3.07	=	451.66	(267)
Electricity for lighting	264.37	х	3.07	=	811.60	(268)
Energy saving/generation technologies						
Electricity generated - PVs	-790.91	х	3.07	=	-2428.10	(269)
Primary energy kWh/year					2696.34	(272)
Dwelling primary energy rate kWh/m2/year					53.93	(273)

Appendix D - Baseline Energy Demand

BASE CASE TO MEET BUILDING REGS INC. APPROPRIATE SERVICES							
Associated kgCO ₂ /yr							
Space Heating	244.66	[261]					
Secondary Heating	0	[263]					
Hot Water Heating	707.99	[264]					
Fixed Electrical	190.89	[267]					
Lighting	37.2	[268]					
Appliances	17.38	Ene7 tool					
Cooking	3.19	Ene7 tool					
Savings through PVs	0	[SAP Box 269]					
TOTAL	1301.32						

IMPROVED CASE TO MEET BUILDING REGS INC. APPROPRIATE SERVICES + PVs						
Associated kgCO ₂ /yr						
Space Heating	125.12	[261]				
Secondary Heating	0	[263]				
Hot Water Heating	527.63	[264]				
Fixed Electrical	76.36	[267]				
Lighting	131.21	[268]				
Appliances	17.38	Ene7 tool				
Cooking	3.19	Ene7 tool				
Savings through PVs	-410.48	[SAP Box 269]				
TOTAL	470.41					

[...] Denotes SAP worksheet reference

Appliances and Cooking: Refer to and complete ENE07 Energy Tool

Appendix E – Water Calculator

http://www.thewatercalculator.org.uk/

Congratulations

Elleray Housing Development

You are within your target maximum consumption of potable water (110 litres per person per day).

Total water consumption from your calculation

93.1

litres per person per day

This calculator is intended to inform design choices by demonstrating the likely impact of specification changes on total water consumption. Results can only be used to demonstrate compliance with the Code for Sustainable Homes when the calculations have been verified by a suitably qualified Code for Sustainable Homes assessor.

Calculation summary

Installation type	Unit of measure	Capacity / flow rate	Use factor	Fixed use	Litres / person / day	
WCs (single flush)	Flush volume (litres)		4.40	0	12 52	
WCs (dual flush)	Average effective flushing volume (litres)	3.06	4.42	0	13.33	
Taps (excl. kitchen/utility room)	Flow rate (litres / minute)	4.9	1.58	1.58	9.32	
Bath only	Capacity to overflow (litres)		0.5	0		
Shower only	Flow rate (litres / minute)	8	5.6	0	44.8	
Kitchen/utility room sink taps	Flow rate (litres / minute)	6	0.44	10.36	13	
Washing machine	Litres / kg dry load	8.17	2.1	0	17.16	
Dishwasher	Litres / place setting	1.25	3.6	0	4.5	
Waste disposal unit	Litres / use		3.08	0		
Water softener	Litres / person / day		1	0		
Contribution from Grey Water					undefined	
Contribution from Rain Water					undefined	
			Norma	lisation factor	∑ × 0.91	

calculator & site development by Seedypea

Appendix F - Renewable Energy Technologies, Supporting Data

Photovoltaic Panels:

Photovoltaic systems convert sunlight into electricity through semi-conductor cells connected together and mounted into modules. Modules are connected to an inverter to turn their direct current (DC) output into alternating current (AC) electricity for use in the home and / or to export to the national grid. PV systems require only daylight, not sunlight to generate electricity, so energy can still be produced in overcast or cloudy conditions.

PV collectors can be 'bolted on' to a suitable roof, be integrated into the fabric of the roof and to the façade. In order to achieve the optimum results, any obstructions should be minimized and the panels could be placed on a pitch between 30-40°. Currently this report anticipates an angle of no more than 15° for the flat green roof and 35° for the hipped roofs.

Typical domestic systems range from $I - 3.5 kW_p$ rating and can provide between 750 and 3,000kWh per year. From the DTI (domestic field trial performance analysis) domestic systems contribute on average 43% of the electrical load. Depending on the system, the efficiency of PVs range up to 15%.

Fig. 3 & 4 PV Panels mounted on green flat roof

Fully installed the costs for roof mounted systems varies according the number of panels in an array, A standard 3.5kW_{P} domestic system costs on average £5,500, where cost factors in the array configuration, i.e. 3 panels providing approximately 1 kWp cost on average £3,900 or 20 panels delivering 6 kWp for larger developments would cost on average £9,100.

There should be very little maintenance required as the technology has no moving parts. Technically reliable, they are generally guaranteed to last between 20-25 years.

Smart Tariffs and Utilising Generated Electricity:

On-site electricity production from renewable sources reduces the amount of conventionally generated electricity (from the grid) that needs to be bought from suppliers, further reducing costs.

Encouraged in the Energy White Paper: Powering our Net Zero Future (December 2020) as a successor to the Feed-In Tariff (FIT, suspended in 2020) in order to continue to incentivise the generation of low carbon electricity the Government introduced **Agile Octopus Tariff, Octopus Energy.** It is a 'time-of-use' tariff, which gives the consumers access to half-hourly electricity prices, tied to wholesale prices, which are updated daily; allowing customers to adjust their consumption to times when the wholesale price of energy is cheapest. Thus, monthly and annual bills decrease when the energy prices drop. On the other hand, prices are capped at 35p/kWh* to protect consumers during price spikes; but when prices go 'negative' the consumers can be paid to use energy during that period.

*Details are set-out at: <u>https://octopus.energy/</u>

Appendix F - Renewable Energy Technologies, Supporting Data

Air-Source Heat Pump:

The Air-source heat pump could be air-to-air for space heating only or air-to-water for heating the domestic hot water. Heat pumps deliver efficiently low grade heating output (up to 55C) and have the potential to supply heating requirements alone subject to the provision of oversized/low temperature radiators or an underfloor heating system as well as appropriately sized hot water cylinder for storage of water to use when intended.

ASHPs operate on electricity and feed in could be partially supplied from integrated PV panels array for on-site consumption of solar generated energy. ASHPs external units tend to generate noise and manufacturers offer new ultra-quiet models for domestic purpose. Nevertheless, the location and space available should be carefully considered in order to prevent disturbances to the building's occupants and nearby neighbours.

In principle, the ASHP takes in air from the outside to heat a liquid refrigerant via an external fan unit suspended on a wall or on top of a flat roof. Using electricity, the pump compresses the liquid to increase its temperature. This then condenses back into a liquid to release stored heat. Heat is sent to radiators or underfloor heating – the remainder is stored in a hot water cylinder inside the thermal envelope in a utility storage area. Stored heat water can be used for domestic activities – showers, baths and taps.

Fig. 4 ASHP image of external unit (Ecodan) Fig. 5 hot water cylinder indoor unit (Ecodan)

Renewable Incentive & Payback scheme:

The installation of Air-Source Heat Pump as a small-scale renewable technology integrated with services on-site is eligible for the **Renewable Heat Incentive (RHI) scheme** introduced by the Government. Capital costs for ASHPs' incorporation can be offset and the owner/occupant can receive quarterly payments over the period of seven year after date of installation. The amount of payback is calculated based on the type of technology installed, regular metering provided and the latest tariffs adopted for the scheme. There are two parts to the RHI: Domestic RHI – open to homeowners, private landlords, social landlords, and self-builders; and Non-domestic RHI – to provide payments to industry, businesses, and public sector organisations. PV panels are not eligible for the scheme.

The current available tariff for ASHP is 7.3p/kWh.*

*Details are set out at: <u>https://www.gov.uk/government/publications/2010-to-2015-government-policy-low-carbon-technologies/2010-to-2015-government-policy-low-carbon-technologies#appendix-6-renewable-heat-incentive-rhi</u>