

Appendix E - Foul and Surface Water Drainage Strategy

Brownfield Calculations

Greenfield Calculations

Sweco drawing 66202961-SWE-ZZXX-DR-C-0100 - Surface & Foul Water Drainage Strategy

Sweco drawing 66202961-SWE-ZZXX-DR-C-0110 - Drainage Strategy Contributing Areas

Microdrainage Calculations

Richmond SuDS Proforma (this will be included once full extent of rainwater harvesting etc has been decided)

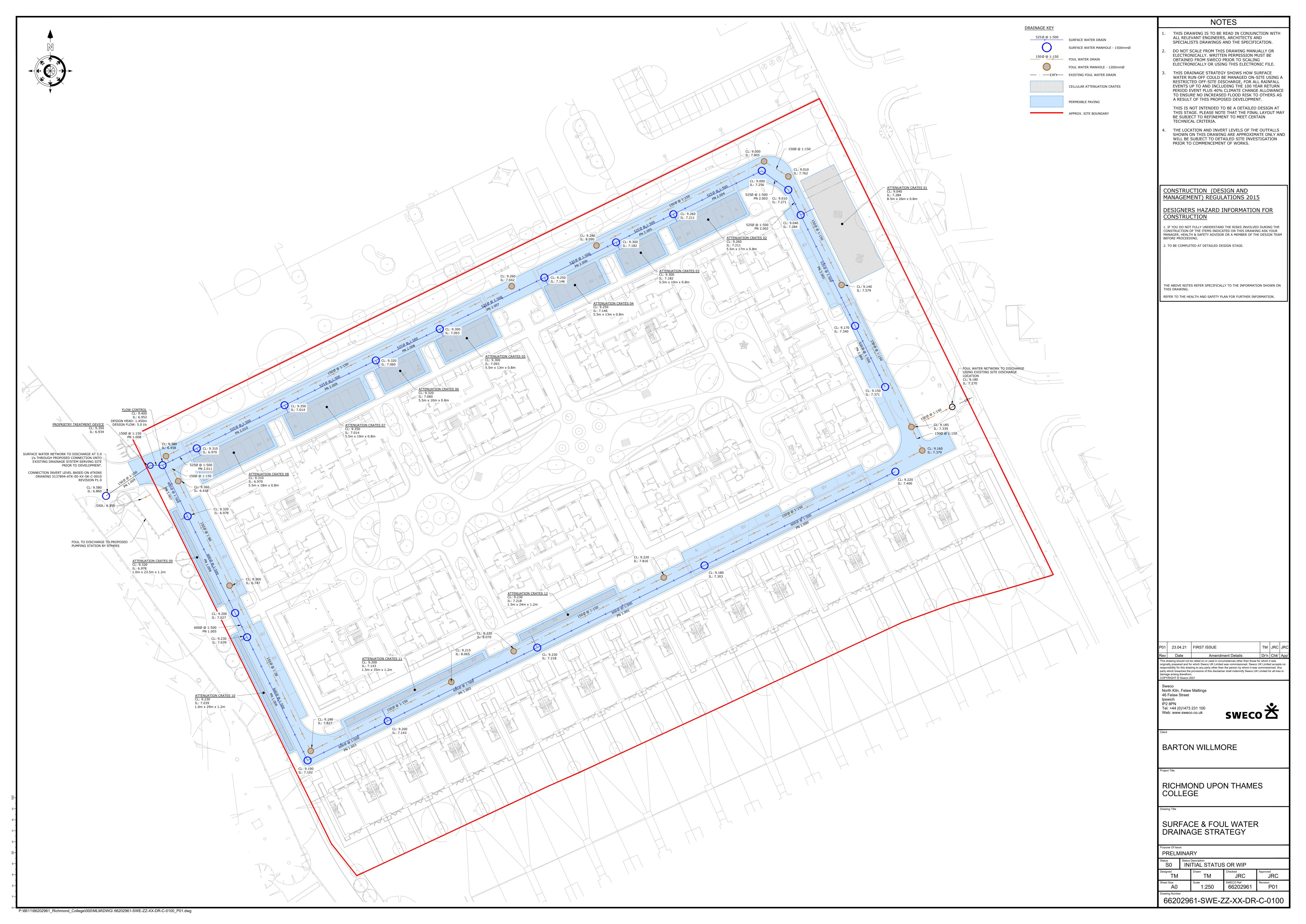
Project	Richmond	Made TM	Ref		
Section	Section Brownfield Run-off Rates				66202961 Sheet No.
Rev P01	Date 23.04.21	Description	Made	Checked	1 of 1

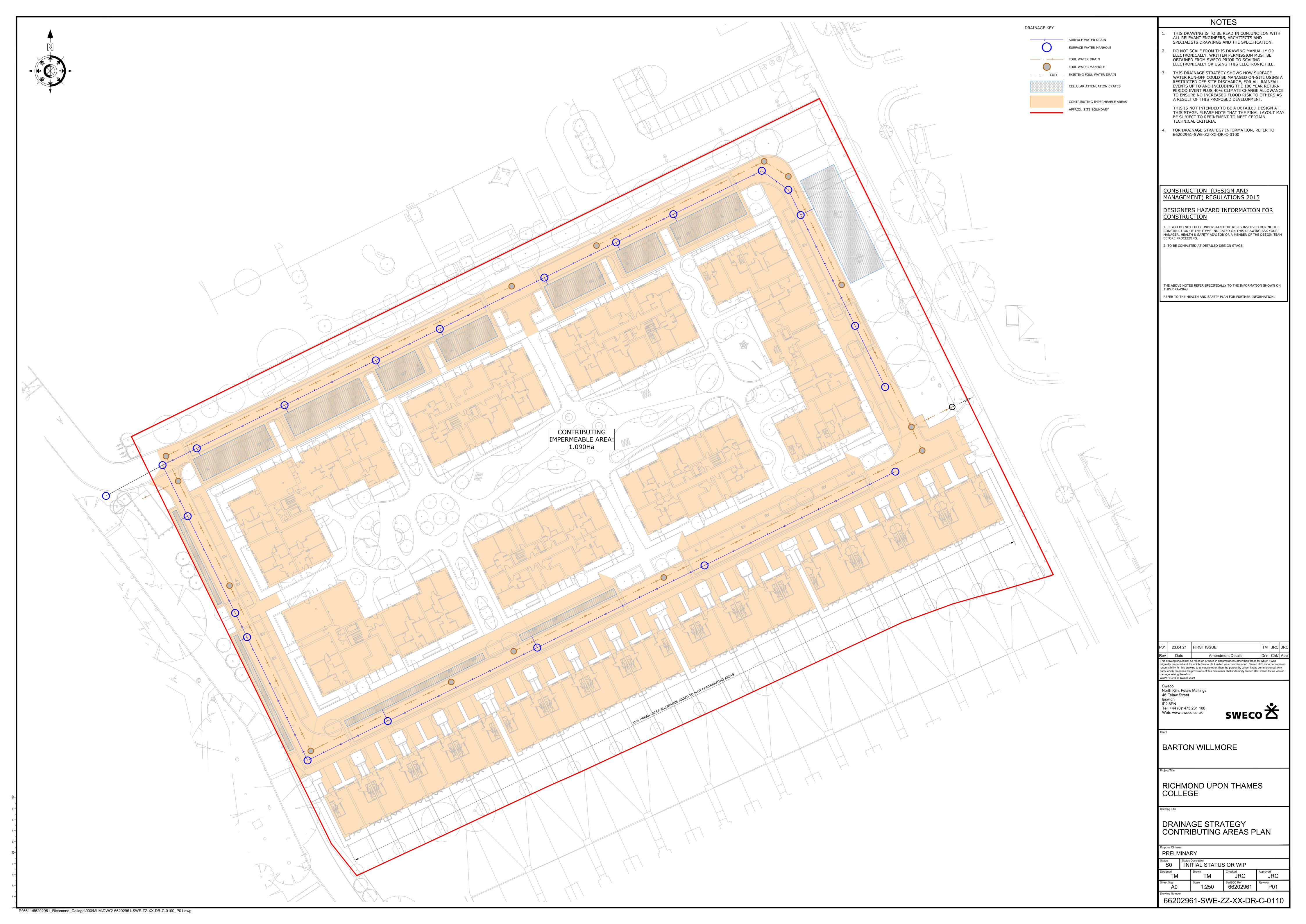
WECO		1					Sheet No.				
_	Rev P01	Date Descripti	on		Made	Checked	1 of 1				
Ref.			Calculation	n			Output				
	1. Brownfield	Run-off Calcula	tion								
	Based on the Modified Rational Method the current discharge rate from the site for the 100%, 3.3% and 1% annual exceedance probability (AEP) events (1, 30 & 100 year) can be calculated as:										
	Q = 3.61 CiA										
	C = Volumetr i = Rainfall int A = Contribut		icient	0.9 see below mm 1.523 ha	n / hr						
	Rainfall intens	sity taken from N	MicroDrainage	Rainfall Generator							
	100% 3.3%	33.467 106.360	mm / hr mm / hr								
	1%	161.135	mm / hr								
	Discharge rat	е									
	100% 3.3% 1%	165.602 526.293 797.333	/s /s /s								

MLM		Page 1
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	Greenfield Run-Off Rates	Mirro
Date 23/04/21	Designed by TM	Drainage
File	Checked by JRC	Diali larie
XP Solutions	Source Control 2019.1	<u>'</u>

ICP SUDS Mean Annual Flood

Input


Return Period (years) 100 Soil 0.300 Area (ha) 1.090 Urban 0.000 SAAR (mm) 600 Region Number Region 6


Results 1/s

QBAR Rural 1.7 QBAR Urban 1.7

Q100 years 5.3

Q1 year 1.4 Q30 years 3.8 Q100 years 5.3

MLM		Page 1
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Diali lade
XP Solutions	Network 2019.1	•

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FEH Rainfall Model

	110 00 2
Return Period (years)	100
FEH Rainfall Version	1999
Site Location	GB 516200 173750 TQ 16200 73750
C (1km)	-0.025
D1 (1km)	0.297
D2 (1km)	0.319
D3 (1km)	0.231
E (1km)	0.307
F (1km)	2.536
Maximum Rainfall (mm/hr)	0
Maximum Time of Concentration (mins)	30
Foul Sewage (1/s/ha)	0.000
Volumetric Runoff Coeff.	0.750
PIMP (%)	100
Add Flow / Climate Change (%)	0
Minimum Backdrop Height (m)	0.000
Maximum Backdrop Height (m)	0.000
Min Design Depth for Optimisation (m)	1.200
Min Vel for Auto Design only (m/s)	1.00
Min Slope for Optimisation (1:X)	500
1	

Designed with Level Soffits

Time Area Diagram for Storm

Time	Area	Time	Area		
(mins)	(ha)	(mins)	(ha)		
0-4	0.467	4-8	0.648		

Total Area Contributing (ha) = 1.115

Total Pipe Volume (m³) = 108.864

Network Design Table for Storm

PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design

Network Results Table

PN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s)

MLM		Page 2
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilade
XP Solutions	Network 2019.1	

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Ва	se	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
S1.000	48.384	0.097	500.0	0.145	3.00		0.0	0.600	0	600	Pipe/Conduit	ð
S1.001	42.410	0.085	500.0	0.141	0.00		0.0	0.600	0	600	Pipe/Conduit	Ō
S1.002	37.909	0.076	500.0	0.152	0.00		0.0	0.600	0	600	Pipe/Conduit	₩
S1.003	20.327	0.041	500.0	0.078	0.00		0.0	0.600	0	600	Pipe/Conduit	₩
S1.004	31.234	0.062	500.0	0.091	0.00		0.0	0.600	0	600	Pipe/Conduit	<u>-</u>
S1.005	6.141	0.012	500.0	0.000	0.00		0.0	0.600	0	600	Pipe/Conduit	₩
S1.006	24.525	0.049	500.0	0.030	0.00		0.0	0.600	0	600	Pipe/Conduit	₩
S1.007	12.950	0.026	500.0	0.010	0.00		0.0	0.600	0	600	Pipe/Conduit	₩
S2.000	15.506	0.031	500.2	0.022	3.00		0.0	0.600	0	525	Pipe/Conduit	0
S2.001	28.100	0.056	500.0	0.102	0.00		0.0	0.600	0	525	Pipe/Conduit	₩
S2.002	6.380	0.013	500.0	0.000	0.00		0.0	0.600	0	525	Pipe/Conduit	₩
S2.003	7.430	0.015	500.0	0.007	0.00		0.0	0.600	0	525	Pipe/Conduit	₩
S2.004	22.419	0.045	500.0	0.023	0.00		0.0	0.600	0	525	Pipe/Conduit	₩
S2.005	14.528	0.029	500.0	0.018	0.00		0.0	0.600	0	525	Pipe/Conduit	₩
S2.006	18.181	0.036	500.0	0.070	0.00		0.0	0.600	0	525	Pipe/Conduit	₩
S2.007	26.520	0.053	500.0	0.031	0.00		0.0	0.600	0	525	Pipe/Conduit	₩
S2.008	16.224	0.032	500.0	0.068	0.00		0.0	0.600	0	525	Pipe/Conduit	₩
S2.009	23.130	0.046	500.0	0.028	0.00		0.0	0.600	0	525	Pipe/Conduit	₩
S2.010	22.252	0.045	500.0	0.092	0.00		0.0	0.600	0	525	Pipe/Conduit	•
S2.011	8.682	0.017	500.0	0.007	0.00		0.0	0.600	0	525	Pipe/Conduit	<u>-</u>

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.000	0.00	3.75	7.400	0.145	0.0	0.0	0.0	1.08	306.0	0.0
S1.001	0.00	4.40	7.303	0.286	0.0	0.0	0.0		306.0	0.0
S1.002	0.00	4.98	7.218	0.438	0.0	0.0	0.0	1.08	306.0	0.0
S1.003	0.00	5.30	7.143	0.516	0.0	0.0	0.0	1.08	306.0	0.0
S1.004	0.00	5.78	7.102	0.607	0.0	0.0	0.0	1.08	306.0	0.0
S1.005	0.00	5.87	7.039	0.607	0.0	0.0	0.0	1.08	306.0	0.0
S1.006	0.00	6.25	7.027	0.637	0.0	0.0	0.0	1.08	306.0	0.0
S1.007	0.00	6.45	6.978	0.647	0.0	0.0	0.0	1.08	306.0	0.0
S2.000	0.00	3.26	7.371	0.022	0.0	0.0	0.0	0.99	215.3	0.0
S2.001	0.00	3.73	7.340	0.124	0.0	0.0	0.0	0.99	215.4	0.0
S2.002	0.00	3.84	7.284	0.124	0.0	0.0	0.0	0.99	215.4	0.0
S2.003	0.00	3.96	7.271	0.131	0.0	0.0	0.0	0.99	215.4	0.0
S2.004	0.00	4.34	7.256	0.154	0.0	0.0	0.0	0.99	215.4	0.0
S2.005	0.00	4.58	7.211	0.172	0.0	0.0	0.0	0.99	215.4	0.0
S2.006	0.00	4.89	7.182	0.242	0.0	0.0	0.0	0.99	215.4	0.0
S2.007	0.00	5.33	7.146	0.273	0.0	0.0	0.0	0.99	215.4	0.0
S2.008	0.00	5.60	7.093	0.341	0.0	0.0	0.0	0.99	215.4	0.0
S2.009	0.00	5.99	7.060	0.369	0.0	0.0	0.0	0.99	215.4	0.0
S2.010	0.00	6.36	7.014	0.461	0.0	0.0	0.0	0.99	215.4	0.0
S2.011	0.00	6.51	6.970	0.468	0.0	0.0	0.0	0.99	215.4	0.0

MLM		Page 3
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Micco
Date 23/04/21	Designed by TM	Designation
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilade
XP Solutions	Network 2019.1	

Network Design Table for Storm

PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design

S1.008 13.786 0.092 150.0 0.000 0.00 0.0 0.600 o 150 Pipe/Conduit

Network Results Table

Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) PN

MLM		Page 4
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilade
XP Solutions	Network 2019.1	

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Type	Name	(%)	Area (ha)	Area (ha)	(ha)
1.000	_	_	100	0.145	0.145	0.145
1.001	_	_	100	0.141	0.141	0.141
1.002	_	_	100	0.152	0.152	0.152
1.003	_	_	100	0.078	0.078	0.078
1.004	_	_	100	0.091	0.091	0.091
1.005	_	_	100	0.000	0.000	0.000
1.006	_	_	100	0.030	0.030	0.030
1.007	_	_	100	0.010	0.010	0.010
2.000	_	_	100	0.022	0.022	0.022
2.001	_	_	100	0.102	0.102	0.102
2.002	_	_	100	0.000	0.000	0.000
2.003	_	_	100	0.007	0.007	0.007
2.004	_	_	100	0.023	0.023	0.023
2.005	_	_	100	0.018	0.018	0.018
2.006	_	_	100	0.070	0.070	0.070
2.007	_	_	100	0.031	0.031	0.031
2.008	_	_	100	0.068	0.068	0.068
2.009	_	_	100	0.028	0.028	0.028
2.010	_	_	100	0.092	0.092	0.092
2.011	_	_	100	0.007	0.007	0.007
1.008	_	_	100	0.000	0.000	0.000
				Total	Total	Total
				1.115	1.115	1.115

Free Flowing Outfall Details for Storm

Outfall	Outfall C.	Level	I.	Level		Min	D,L	W
Pipe Number	Name	(m)		(m)	I.	Level	(mm)	(mm)
						(m)		
S1.008	S	9.650		6.860		0.000	0	0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m3/ha Storage 2.000
Hot Start (mins)	0	Inlet Coefficient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 12 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FEH

MLM		Page 5
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilade
XP Solutions	Network 2019.1	

Synthetic Rainfall Details

Return Period (years) FEH Rainfall Version		100 1999
Site Location	GB 516200	173750 TQ 16200 73750
C (1km)		-0.025
D1 (1km)		0.297
D2 (1km)		0.319
D3 (1km)		0.231
E (1km)		0.307
F (1km)		2.536
Summer Storms		Yes
Winter Storms		Yes
Cv (Summer)		0.750
Cv (Winter)		0.840
Storm Duration (mins)		30

MLM		Page 6
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Diali larie
XP Solutions	Network 2019.1	

Online Controls for Storm

Hydro-Brake® Optimum Manhole: S21, DS/PN: S1.008, Volume (m³): 9.1

Unit Reference MD-SHE-0099-5000-1450-5000 Design Head (m) 1.450 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 99 Invert Level (m) 6.952 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.450 5.0 Flush-Flo™ 0.432 5.0 Kick-Flo® 0.882 4.0 Mean Flow over Head Range 4.4

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	3.2	1.200	4.6	3.000	7.0	7.000	10.5
0.200	4.5	1.400	4.9	3.500	7.5	7.500	10.8
0.300	4.9	1.600	5.2	4.000	8.0	8.000	11.2
0.400	5.0	1.800	5.5	4.500	8.5	8.500	11.5
0.500	5.0	2.000	5.8	5.000	8.9	9.000	11.8
0.600	4.9	2.200	6.1	5.500	9.3	9.500	12.1
0.800	4.4	2.400	6.3	6.000	9.7		
1.000	4.2	2.600	6.6	6.500	10.1		

MLM		Page 7
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Diamage
XP Solutions	Network 2019.1	·

Storage Structures for Storm

Cellular Storage Manhole: S3, DS/PN: S1.002

Invert Level (m) 7.218 Safety Factor 3.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 36.0 0.0 1.201 0.0 0.0

Cellular Storage Manhole: S4, DS/PN: S1.003

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 73.0 0.0 1.201 0.0 0.0 1.200 73.0 0.0

Cellular Storage Manhole: S6, DS/PN: S1.005

Invert Level (m) 7.039 Safety Factor 3.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000		29.0			0.0	1.	201		0.0			0.0
1.	200		29.0			0.0							

Cellular Storage Manhole: S8, DS/PN: S1.007

Invert Level (m) 6.978 Safety Factor 3.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000		23.5			0.0	1	.201		0.0			0.0
1.	200		23.5			0.0							

Cellular Storage Manhole: S11, DS/PN: S2.002

MLM		Page 8
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Micco
Date 23/04/21	Designed by TM	Designation
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilade
XP Solutions	Network 2019.1	

Cellular	Storage	Manhole:	S11.	DS/	/PN:	S2.002

Depth (m)	Area (m²)	Inf. Area	(m²)	Depth (m)	Area (m²)	Inf. Area	(m²)
0.000	170.0		0.0	0.801	0.0		0.0
0.800	170.0		0.0				

Cellular Storage Manhole: S14, DS/PN: S2.005

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 93.5 0.0 0.801 0.0 0.0 0.800 93.5 0.0

Cellular Storage Manhole: S15, DS/PN: S2.006

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 55.0 0.0 0.801 0.0 0.0 0.800 55.0 0.0 0.0 0.0 0.0

Cellular Storage Manhole: S16, DS/PN: S2.007

Invert Level (m) 7.146 Safety Factor 3.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.000		71.5			0.0	0	.801		0.0			0.0
0.800		71.5			0.0							

Cellular Storage Manhole: S17, DS/PN: S2.008

Invert Level (m) 7.093 Safety Factor 3.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000		71.5			0.0	0	.801		0.0			0.0
0.	800		71.5			0.0							

MLM		Page 9
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	niairiade
XP Solutions	Network 2019.1	1

Cellular Storage Manhole: S18, DS/PN: S2.009

Invert Level (m) 7.060 Safety Factor 3.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000		55.0			0.0	0	.801		0.0			0.0
0.	800		55.0			0.0							

Cellular Storage Manhole: S19, DS/PN: S2.010

Depth (m)	Area (m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.000	104.5		0.0	0.	801		0.0			0.0
0.800	104.5		0.0							

Cellular Storage Manhole: S20, DS/PN: S2.011

Invert Level (m) 6.970 Safety Factor 3.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000		99.0			0.0	0.	801		0.0			0.0
0.	800		99.0			0.0							

MLM		Page 10
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Diali lade
XP Solutions	Network 2019.1	

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 12 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	516200	173750	TQ	16200 73750
C (1km)					-0.025
D1 (1km)					0.297
D2 (1km)					0.319
D3 (1km)					0.231
E (1km)					0.307
F (1km)					2.536
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 450.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 40

												Water
		US/MH			Return	Climate	First	(X)	First (Y)	First (Z)	Overflow	Level
	PN	Name	s	torm	Period	Change	Surch	arge	Flood	Overflow	Act.	(m)
	s1.000	S1	60	Summer	1	+0%	100/60	Winter				7.504
	S1.001	S2	60	Summer	1	+0%	100/60	Summer				7.440
	S1.002	s3	60	Summer	1	+0%	100/60	Summer				7.375
	S1.003	S4	60	Winter	1	+0%	100/60	Summer				7.312
	S1.004	S5	60	Winter	1	+0%	100/60	Summer				7.278
	S1.005	S6	480	Winter	1	+0%	100/60	Summer				7.255
	S1.006	s7	480	Winter	1	+0%	100/60	Summer				7.255
	S1.007	S8	480	Winter	1	+0%	100/60	Summer				7.255
	S2.000	S9	60	Summer	1	+0%	100/240	Winter				7.433
	S2.001	S10	60	Summer	1	+0%	100/240	Winter				7.422
	S2.002	S11	60	Winter	1	+0%	100/120	Winter				7.339
ĺ						©1982	2-2019	Innovy	ze			

MLM		Page 11
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilade
XP Solutions	Network 2019.1	,

$\frac{1 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Storm}}$

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S1.000	S1	-0.496	0.000	0.05		13.3	OK	
S1.001	S2	-0.463	0.000	0.09		23.4	OK	
S1.002	s3	-0.444	0.000	0.12		31.0	OK	
S1.003	S4	-0.430	0.000	0.13		27.6	OK	
S1.004	S5	-0.424	0.000	0.13		31.7	OK	
S1.005	S6	-0.384	0.000	0.04		9.1	OK	
S1.006	s7	-0.372	0.000	0.04		9.5	OK	
S1.007	S8	-0.323	0.000	0.06		8.8	OK	
S2.000	S9	-0.463	0.000	0.02		2.0	OK	
S2.001	S10	-0.443	0.000	0.06		10.4	OK	
S2.002	S11	-0.470	0.000	0.02		2.7	OK	

MLM		Page 12
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilade
XP Solutions	Network 2019.1	

$\frac{1 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Storm}}$

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
s2.003	S12	60 Winter	1	+0%	100/120 Winter				7.328
S2.004	S13	120 Winter	1	+0%	100/120 Winter				7.313
S2.005	S14	120 Winter	1	+0%	100/60 Winter				7.274
S2.006	S15	360 Winter	1	+0%	100/60 Winter				7.260
S2.007	S16	480 Winter	1	+0%	100/60 Summer				7.257
S2.008	S17	480 Winter	1	+0%	100/60 Summer				7.256
S2.009	S18	480 Winter	1	+0%	100/60 Summer				7.256
S2.010	S19	480 Winter	1	+0%	100/60 Summer				7.255
S2.011	S20	480 Winter	1	+0%	30/240 Winter				7.255
S1.008	S21	480 Winter	1	+0%	1/60 Summer				7.256

		Surcharged	${\tt Flooded}$			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
s2.003	S12	-0.468	0.000	0.02		2.8	OK	
S2.004	S13	-0.468	0.000	0.02		3.2	OK	
S2.005	S14	-0.462	0.000	0.03		3.1	OK	
S2.006	S15	-0.448	0.000	0.02		3.2	OK	
S2.007	S16	-0.414	0.000	0.01		2.6	OK	
S2.008	S17	-0.362	0.000	0.02		2.5	OK	
S2.009	S18	-0.330	0.000	0.01		2.3	OK	
S2.010	S19	-0.284	0.000	0.02		2.9	OK	
S2.011	S20	-0.240	0.000	0.03		3.9	OK	
S1.008	S21	0.154	0.000	0.37		4.9	SURCHARGED	

MLM		Page 13
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Micro
Date 23/04/21	Designed by TM	Designation
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilade
XP Solutions	Network 2019.1	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 12 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model		FEH
FEH Rainfall Version		1999
Site Location	GB 516200 173750 TQ 1	6200 73750
C (1km)		-0.025
D1 (1km)		0.297
D2 (1km)		0.319
D3 (1km)		0.231
E (1km)		0.307
F (1km)		2.536
Cv (Summer)		0.750
Cv (Winter)		0.840

Margin for Flood Risk Warning (mm) 450.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 40

PN	US/MH Name	s	torm		Climate Change	First Surch		First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S1.000	S1	60	Winter	30	+0%	100/60	Winter				7.609
S1.001	S2	60	Winter	30	+0%	100/60	Summer				7.604
S1.002	s3	60	Winter	30	+0%	100/60	Summer				7.588
S1.003	S4	60	Winter	30	+0%	100/60	Summer				7.557
S1.004	S5	60	Winter	30	+0%	100/60	Summer				7.540
S1.005	S6	480	Winter	30	+0%	100/60	Summer				7.526
S1.006	s7	480	Winter	30	+0%	100/60	Summer				7.526
S1.007	S8	480	Winter	30	+0%	100/60	Summer				7.524
S2.000	S9	480	Winter	30	+0%	100/240	Winter				7.525
S2.001	S10	480	Winter	30	+0%	100/240	Winter				7.525
S2.002	S11	480	Winter	30	+0%	100/120	Winter				7.525
					©1982	2-2019	Innovv	ze			

MLM		Page 14
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilade
XP Solutions	Network 2019.1	

	Surcharged	Flooded			Pipe		
US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S 1	-0 391	0 000	0 11		29 6	Oĸ	
S2	-0.299	0.000	0.21		55.5	OK	
s3	-0.230	0.000	0.30		77.3	OK	
S4	-0.185	0.000	0.35		72.4	OK	
S5	-0.162	0.000	0.34		85.7	OK	
S6	-0.113	0.000	0.07		15.0	OK	
s7	-0.101	0.000	0.07		15.9	OK	
S8	-0.054	0.000	0.09		14.5	OK	
S9	-0.371	0.000	0.01		0.9	OK	
S10	-0.340	0.000	0.03		5.1	OK	
S11	-0.283	0.000	0.02		3.7	OK	
	\$1 \$2 \$3 \$4 \$5 \$6 \$7 \$8 \$9 \$10	US/MH Depth Name (m) S1 -0.391 S2 -0.299 S3 -0.230 S4 -0.185 S5 -0.162 S6 -0.113 S7 -0.101 S8 -0.054 S9 -0.371 S10 -0.340	Name (m) (m³) S1 -0.391 0.000 S2 -0.299 0.000 S3 -0.230 0.000 S4 -0.185 0.000 S5 -0.162 0.000 S6 -0.113 0.000 S7 -0.101 0.000 S8 -0.054 0.000 S9 -0.371 0.000 S10 -0.340 0.000	US/MH Depth (m) Volume (m³) Flow / Cap. S1 -0.391 0.000 0.11 S2 -0.299 0.000 0.21 S3 -0.230 0.000 0.30 S4 -0.185 0.000 0.35 S5 -0.162 0.000 0.34 S6 -0.113 0.000 0.07 S7 -0.101 0.000 0.07 S8 -0.054 0.000 0.09 S9 -0.371 0.000 0.01 S10 -0.340 0.000 0.03	US/MH Depth (m) Volume (m³) Flow / Cap. Overflow (1/s) S1 -0.391 0.000 0.11 S2 -0.299 0.000 0.21 S3 -0.230 0.000 0.30 S4 -0.185 0.000 0.35 S5 -0.162 0.000 0.34 S6 -0.113 0.000 0.07 S7 -0.101 0.000 0.07 S8 -0.054 0.000 0.09 S9 -0.371 0.000 0.01 S10 -0.340 0.000 0.03	US/MH Depth (m) Volume (m³) Flow / Cap. Overflow (1/s) Flow (1/s) S1 -0.391 0.000 0.11 29.6 S2 -0.299 0.000 0.21 55.5 S3 -0.230 0.000 0.30 77.3 S4 -0.185 0.000 0.35 72.4 S5 -0.162 0.000 0.34 85.7 S6 -0.113 0.000 0.07 15.0 S7 -0.101 0.000 0.07 15.9 S8 -0.054 0.000 0.09 14.5 S9 -0.371 0.000 0.01 0.09 S10 -0.340 0.000 0.03 5.1	US/MH Depth Name Volume (m) Flow / Cap. Overflow (1/s) Flow / I/s Status S1 -0.391 0.000 0.11 29.6 OK S2 -0.299 0.000 0.21 55.5 OK S3 -0.230 0.000 0.30 77.3 OK S4 -0.185 0.000 0.35 72.4 OK S5 -0.162 0.000 0.34 85.7 OK S6 -0.113 0.000 0.07 15.0 OK S7 -0.101 0.000 0.07 15.9 OK S8 -0.054 0.000 0.09 14.5 OK S9 -0.371 0.000 0.01 0.09 0.0 OK S10 -0.340 0.000 0.03 5.1 OK

MLM		Page 15
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilade
XP Solutions	Network 2019.1	

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
s2.003	S12	480 Winter	30	+0%	100/120 Winte	er			7.525
S2.004	S13	480 Winter	30	+0%	100/120 Winte	er			7.525
S2.005	S14	480 Winter	30	+0%	100/60 Winte	er			7.526
S2.006	S15	480 Winter	30	+0%	100/60 Winte	er			7.526
S2.007	S16	480 Winter	30	+0%	100/60 Summe	er			7.526
S2.008	S17	480 Winter	30	+0%	100/60 Summe	er			7.525
S2.009	S18	480 Winter	30	+0%	100/60 Summe	er			7.525
S2.010	S19	480 Winter	30	+0%	100/60 Summe	er			7.525
S2.011	S20	480 Winter	30	+0%	30/240 Winte	er			7.524
S1.008	S21	480 Winter	30	+0%	1/60 Summe	er			7.524

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S2.003	S12	-0.271	0.000	0.03		4.0	OK	
S2.004	S13	-0.256	0.000	0.03		4.9	OK	
S2.005	S14	-0.211	0.000	0.03		3.2	OK	
S2.006	S15	-0.182	0.000	0.03		4.3	OK	
S2.007	S16	-0.145	0.000	0.02		3.2	OK	
S2.008	S17	-0.092	0.000	0.02		2.7	OK	
S2.009	S18	-0.060	0.000	0.02		2.8	OK	
S2.010	S19	-0.014	0.000	0.02		3.3	OK	
S2.011	S20	0.029	0.000	0.03		4.2	SURCHARGED	
S1.008	S21	0.422	0.000	0.37		5.0	SURCHARGED	

MLM		Page 16
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	niairiade
XP Solutions	Network 2019.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 12 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Doinfall Madal						DDI
Rainfall Model						FEH
FEH Rainfall Version						1999
Site Location	CP	516200	173750	ТΟ	16200	73750
Site Location	. GD	310200	1/3/30	ΤŲ	10200	13130
C (1km)					-	-0.025
D1 (1km)						0.297
D2 (1km)						0.319
D3 (1km)						0.231
E (1km)						0.307
F (1km)						2.536
Cv (Summer)						0.750
Cv (Winter)						0.840

Margin for Flood Risk Warning (mm) 450.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 40

PN	US/MH Name	s	torm		Climate Change	First Surch		First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
s1.000	S1	960	Winter	100	+40%	100/60	Winter				8.418
S1.001	S2	960	Winter	100	+40%	100/60	Summer				8.418
S1.002	s3	960	Winter	100	+40%	100/60	Summer				8.418
S1.003	S4	960	Winter	100	+40%	100/60	Summer				8.418
S1.004	S5	960	Winter	100	+40%	100/60	Summer				8.418
S1.005	S6	960	Winter	100	+40%	100/60	Summer				8.418
S1.006	s7	960	Winter	100	+40%	100/60	Summer				8.418
S1.007	S8	960	Winter	100	+40%	100/60	Summer				8.418
S2.000	S9	960	Winter	100	+40%	100/240	Winter				8.418
S2.001	S10	960	Winter	100	+40%	100/240	Winter				8.418
S2.002	S11	960	Winter	100	+40%	100/120	Winter				8.418
					©1982	2-2019	Innovy	ze			

MLM		Page 17
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Micro
Date 23/04/21	Designed by TM	Designation
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilade
XP Solutions	Network 2019.1	1

$\frac{100 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank}}{1) \text{ for Storm}}$

		Surcharged	${\tt Flooded}$			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S1.000	S1	0.418	0.000	0.02		6.2	SURCHARGED	
S1.001	S2	0.515	0.000	0.04		11.6	SURCHARGED	
S1.002	s3	0.600	0.000	0.07		19.0	SURCHARGED	
S1.003	S4	0.676	0.000	0.13		26.7	SURCHARGED	
S1.004	S5	0.716	0.000	0.11		27.5	SURCHARGED	
S1.005	S6	0.779	0.000	0.11		23.7	SURCHARGED	
S1.006	s7	0.791	0.000	0.11		27.1	SURCHARGED	
S1.007	S8	0.839	0.000	0.16		25.9	SURCHARGED	
S2.000	S9	0.522	0.000	0.02		2.6	SURCHARGED	
S2.001	S10	0.553	0.000	0.03		5.2	SURCHARGED	
S2.002	S11	0.609	0.000	0.04		6.3	SURCHARGED	

MLM		Page 18
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FEH	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilade
XP Solutions	Network 2019.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Storm		Climate Change	First Surcha		First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
s2.003	S12	960 Winte	er 100	+40%	100/120 V	Winter				8.418
S2.004	S13	960 Winte	er 100	+40%	100/120 V	Winter				8.418
S2.005	S14	960 Winte	er 100	+40%	100/60 V	Winter				8.418
S2.006	S15	960 Winte	er 100	+40%	100/60 V	Winter				8.418
S2.007	S16	960 Winte	er 100	+40%	100/60 \$	Summer				8.418
S2.008	S17	960 Winte	er 100	+40%	100/60 \$	Summer				8.418
S2.009	S18	960 Winte	er 100	+40%	100/60 \$	Summer				8.418
S2.010	S19	960 Winte	er 100	+40%	100/60 \$	Summer				8.418
S2.011	S20	960 Winte	er 100	+40%	30/240 V	Winter				8.418
S1.008	S21	960 Winte	er 100	+40%	1/60 \$	Summer				8.417

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
s2.003	S12	0.622	0.000	0.06		7.6	SURCHARGED	
S2.004	S13	0.637	0.000	0.05		7.3	SURCHARGED	
S2.005	S14	0.682	0.000	0.06		7.1	SURCHARGED	
S2.006	S15	0.711	0.000	0.05		6.6	SURCHARGED	
S2.007	S16	0.747	0.000	0.03		5.3	SURCHARGED	
S2.008	S17	0.800	0.000	0.04		5.2	SURCHARGED	
S2.009	S18	0.833	0.000	0.03		5.6	SURCHARGED	
S2.010	S19	0.879	0.000	0.05		7.3	SURCHARGED	
S2.011	S20	0.923	0.000	0.07		8.5	SURCHARGED	
S1.008	S21	1.315	0.000	0.38		5.0	SURCHARGED	

MLM		Page 19
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FSR	Micro
Date 23/04/21	Designed by TM	Designado
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilads
XP Solutions	Network 2019.1	

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 12 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.406
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 450.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 40

	US/MH		Return	Climate	Firs	t (X)	First (Y) First (Z)	Overflow	Water Level
PN	Name	Storm	Period	Change	Surc	harge	Flood	Overflow	Act.	(m)
S1.000	S1	15 Summer	1	+0%						7.534
S1.001	S2	15 Winter	1	+0%						7.463
S1.002	s3	15 Winter	1	+0%	100/60	Winter				7.388
S1.003	S4	30 Winter	1	+0%	100/60	Summer				7.322
S1.004	S5	30 Winter	1	+0%	100/60	Winter				7.281
S1.005	S6	60 Winter	1	+0%	100/60	Summer				7.246
S1.006	s7	60 Winter	1	+0%	100/60	Summer				7.242
S1.007	S8	60 Winter	1	+0%	100/60	Summer				7.229
S2.000	S9	15 Winter	1	+0%						7.453
S2.001	S10	15 Winter	1	+0%						7.443
S2.002	S11	60 Winter	1	+0%						7.340
s2.003	S12	60 Winter	1	+0%						7.328
S2.004	S13	60 Winter	1	+0%						7.313
S2.005	S14	60 Winter	1	+0%						7.272
S2.006	S15	60 Winter	1	+0%						7.244
S2.007	S16	60 Winter	1	+0%						7.215
S2.008	S17	60 Winter	1	+0%						7.208
S2.009	S18	60 Winter	1	+0%	100/60	Winter				7.207
S2.010	S19	60 Winter	1	+0%	100/60	Summer				7.206
				©1982	2-2019	Innov	yze			

MLM		Page 20
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FSR	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Diamade
XP Solutions	Network 2019.1	

$\frac{1 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Storm}}$

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
S1.000	S1	-0.466	0.000	0.08		22.6	OK	
S1.000	S2	-0.440	0.000			34.2	OK	
S1.001		-0.431				42.5		
S1.003	S4	-0.421	0.000			32.9	OK	
S1.004	S5	-0.421	0.000	0.15		36.7	OK	
S1.005	S6	-0.393	0.000	0.14		28.8	OK	
S1.006	s7	-0.385	0.000	0.12		29.6	OK	
S1.007	S8	-0.349	0.000	0.17		26.9	OK	
S2.000	S9	-0.443	0.000	0.03		3.3	OK	
S2.001	S10	-0.422	0.000	0.09		15.3	OK	
S2.002	S11	-0.469	0.000	0.02		2.8	OK	
S2.003	S12	-0.468	0.000	0.02		2.9	OK	
S2.004	S13	-0.468	0.000	0.02		3.5	OK	
S2.005	S14	-0.464	0.000	0.02		2.9	OK	
S2.006	S15	-0.463	0.000	0.03		3.9	OK	
S2.007	S16	-0.456	0.000	0.02		3.9	OK	
S2.008	S17	-0.410	0.000	0.03		4.5	OK	
S2.009	S18	-0.379	0.000	0.02		3.6	OK	
S2.010	S19	-0.333	0.000	0.02		3.2	OK	

MLM		Page 21
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FSR	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilade
XP Solutions	Network 2019.1	

$\frac{1 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Storm}}$

									Water
	US/MH		Return	${\tt Climate}$	First (X) First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharg	e Flood	Overflow	Act.	(m)
S2.011	S20	60 Winter	1	+0%	100/30 Win	ter			7.207
S1.008	S21	60 Winter	1	+0%	1/15 Sum	mer			7.223

	US/MH	Surcharged Depth		Flow /	Overflow	Pipe Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S2.011	S20	-0.288	0.000	0.03		3.9	OK	
S1.008	S21	0.121	0.000	0.36		4.8	SURCHARGED	

MLM		Page 22
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FSR	Micco
Date 23/04/21	Designed by TM	Designation
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilade
XP Solutions	Network 2019.1	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 12 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.406 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 450.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 40

	US/MH		Return	Climate	Firs	t (X)	First (Y)	First (Z)	Overflow	Water Level
PN	Name	Storm	Period	Change	Surc	harge	Flood	Overflow	Act.	(m)
\$1.000 \$1.001 \$1.002	S2 S3	15 Winter 15 Winter 15 Winter	30 30 30	+0% +0% +0%		Winter				7.635 7.589 7.526
\$1.003 \$1.004 \$1.005	S4 S5 S6	60 Winter 60 Winter	30 30 30	+0% +0% +0%	100/60 100/60	Summer Winter Summer				7.496 7.480 7.450
\$1.006 \$1.007 \$2.000		60 Winter 60 Winter 15 Summer	30 30 30	+0% +0% +0%		Summer Summer				7.445 7.423 7.527
\$2.001 \$2.002 \$2.003	S10 S11 S12	60 Winter	30 30 30	+0% +0% +0%						7.520 7.397 7.392
\$2.004 \$2.005 \$2.006	S13 S14 S15	60 Winter 60 Winter	30 30 30	+0% +0% +0%						7.395 7.396 7.397
\$2.007 \$2.008 \$2.009 \$2.010	S16 S17 S18 S19		30 30 30 30	+0% +0% +0% +0%		Winter Summer				7.398 7.399 7.401 7.404
22.010						Innov	yze			, , 10 1

MLM		Page 23
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FSR	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Diamade
XP Solutions	Network 2019.1	

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	${\tt Overflow}$	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
S1.000	S1	-0.365	0.000	0.20		53.4	OK	
S1.000	S2	-0.315	0.000	0.35		92.8	OK	
S1.001	S3	-0.292				119.4	OK	
S1.003	S4	-0.247	0.000			65.1	OK	
S1.004	S5	-0.222	0.000	0.30		76.4	OK	
S1.005	S6	-0.189	0.000	0.30		62.2	OK	
S1.006	s7	-0.182	0.000	0.27		65.0	OK	
S1.007	S8	-0.155	0.000	0.35		56.8	OK	
S2.000	S9	-0.369	0.000	0.07		8.5	OK	
S2.001	S10	-0.345	0.000	0.25		45.4	OK	
S2.002	S11	-0.412	0.000	0.07		10.8	OK	
S2.003	S12	-0.404	0.000	0.08		11.4	OK	
S2.004	S13	-0.386	0.000	0.08		13.4	OK	
S2.005	S14	-0.340	0.000	0.09		11.4	OK	
S2.006	S15	-0.310	0.000	0.10		14.2	OK	
S2.007	S16	-0.273	0.000	0.07		12.2	OK	
S2.008	S17	-0.218	0.000	0.10		13.2	OK	
S2.009	S18	-0.184	0.000	0.05		8.0	OK	
S2.010	S19	-0.135	0.000	0.04		6.6	OK	

MLM		Page 24
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FSR	Micro
Date 23/04/21	Designed by TM	Designation
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilads
XP Solutions	Network 2019.1	

									Water
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
S2.011	S20	60 Winter	30	+0%	100/30 Winter				7.410
S1.008	S21	60 Winter	30	+0%	1/15 Summer				7.415

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
s2.011	S20	-0.085	0.000	0.03		3.6	OK	
S1.008	S21	0.313	0.000	0.37		5.0	SURCHARGED	

MLM		Page 25
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FSR	Mirro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilads
XP Solutions	Network 2019.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 12 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.406 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 450.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 40

										Water
	US/MH		Return	Climate	First	t (X)	First ((Z) First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcl	narge	Flood	Overflow	Act.	(m)
S1.000	S1	60 Winter	100	+40%						8.000
S1.001	S2	30 Winter	100	+40%						7.903
S1.002	s3	60 Winter	100	+40%	100/60	Winter				7.821
S1.003	S4	60 Winter	100	+40%	100/60	Summer				7.815
S1.004	S5	60 Winter	100	+40%	100/60	Winter				7.808
S1.005	S6	60 Winter	100	+40%	100/60	Summer				7.804
S1.006	s7	60 Winter	100	+40%	100/60	Summer				7.803
S1.007	S8	60 Winter	100	+40%	100/60	Summer				7.793
S2.000	S9	60 Winter	100	+40%						7.604
S2.001	S10	60 Winter	100	+40%						7.604
S2.002	S11	60 Winter	100	+40%						7.604
S2.003	S12	60 Winter	100	+40%						7.604
S2.004	S13	60 Winter	100	+40%						7.605
S2.005	S14	60 Winter	100	+40%						7.605
S2.006	S15	60 Winter	100	+40%						7.606
S2.007	S16	60 Winter	100	+40%						7.607
S2.008	S17	60 Winter	100	+40%						7.616
S2.009	S18	60 Winter	100	+40%	100/60	Winter				7.623
S2.010	S19	60 Winter	100	+40%	100/60	Summer				7.632
				©1982	2-2019	Innov	yze			

MLM		Page 26
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FSR	Micro
Date 23/04/21	Designed by TM	Drainage
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilads
XP Solutions	Network 2019.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S1.000	S1	0.000	0.000	0.17		46.7	OK	
S1.001	S2	0.000	0.000	0.49		127.9	OK	
S1.002	s3	0.002	0.000	0.44		112.8	SURCHARGED	
S1.003	S4	0.072	0.000	0.46		95.1	SURCHARGED	
S1.004	S5	0.107	0.000	0.46		115.7	SURCHARGED	
S1.005	S6	0.164	0.000	0.50		104.1	SURCHARGED	
S1.006	s7	0.176	0.000	0.47		110.8	SURCHARGED	
S1.007	S8	0.215	0.000	0.55		87.7	SURCHARGED	
S2.000	S9	-0.292	0.000	0.06		7.2	OK	
S2.001	S10	-0.261	0.000	0.22		40.1	OK	
S2.002		-0.205	0.000	0.15		21.9	OK	
S2.003		-0.192	0.000	0.17		23.3	OK	
S2.004	S13	-0.177	0.000	0.18		28.5	OK	
S2.005	S14	-0.131	0.000	0.15		18.3	OK	
S2.006	S15	-0.101	0.000	0.19		26.4	OK	
S2.007	S16	-0.064	0.000	0.10		17.8	OK	
S2.008	S17	-0.002	0.000	0.15		19.1	OK	
S2.009		0.038	0.000	0.06			SURCHARGED	
S2.010	S19	0.093	0.000	0.05			SURCHARGED	

MLM		Page 27
North Kiln Felaw Maltings	66202961	
46 Felaw Street	Richmond Upon Thames College	
Ipswich IP2 8PN	SW Network_FSR	Micro
Date 23/04/21	Designed by TM	Designado
File 66202961-SWE-ZZ-XX-CA-C	Checked by JRC	Dialilads
XP Solutions	Network 2019.1	

$\frac{100 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank}}{1) \text{ for Storm}}$

	US/MH		Peturn	Climate	First (X)	First (V)	First (Z)	Overflow	Water Level
PN	Name	Storm		Change	Surcharge	Flood	Overflow	Act.	(m)
S2.011	S20	60 Winter	100	+40%	100/30 Winter				7.647
S1.008	S21	60 Winter	100	+40%	1/15 Summer				7.839

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S2.011	S2.0	0.153	0.000	0.01		1 3	SURCHARGED	
S1.008	S21	0.737	0.000	0.37			SURCHARGED	

GREATER LONDON AUTHORITY

The London Sustainable Drainage Proforma

Introduction

This proforma is intended to accompany a drainage strategy prepared for a planning application where required by national or local planning policy. It should be used to summarise the key outputs from the strategy to allow assessing officers at the Lead Local Flood Authority (LLFA) to quickly assess compliance with sustainable drainage (SuDS) planning ... The proforma is divided into 4 sections, which are intended to be used as follows:

- 1. Site and project information Provide summary details of the development, site and drainage
- 2. Proposed discharge arrangement Summarise site ground conditions to determine potential for infiltration. Select a surface water discharge method (or mix of methods) following the hierarchical approach set out in the London Plan.
- 3. Drainage strategy Prioritise SuDS measures that manage runoff as close to source as possible and contribute to the four main pillars of SuDS; amenity, biodiversity, water quality and water quantity.
- 4. Supporting information Provide cross references to the page or section of the drainage strategy report where the detailed information to support each element can be found. This may be more than one reference for each

Policy

Drainage strategies for developments in the London Borough of Richmond upon Thames need to comply with the following policies on SuDS:

- 1. London Borough of Richmond upon Thames Local Plan policy LP21
- 2. London Plan policy 5.13 and draft New London Plan policy SI13
- 3. The National Planning Policy Framework (NPPF)

Technical Guidance

- Post-development surface water discharge rate should be limited to greenfield runoff rates. Proposals for higher discharge rates should be agreed with the LLFA ahead of submission of the Planning Application. Clear evidence should be provided with the Planning Application to show why greenfield rates cannot be achieved.
- Greenfield runoff rate is the runoff rate from a site in its natural state, prior to any development. This should be calculated using one of the runoff estimation methods set out in Table 24.1 of CIRIA C753 The SuDS Manual.
- Attenuation storage volumes required to reduce post-development discharge rates to greenfield rates should be calculated using one of the runoff estimation methods set out in Table 24.1 of CIRIA C753 The SuDS Manual.
- 'CC' refers to climate change allowance from the current Environment Agency guidance.
- An operation and maintenance strategy for proposed SuDS measures should be submitted with the Planning Application and include the details set out in section 32.2 of CIRIA C753 The SuDS Manual. The manual should be site-specific and not directly reproduce parts of The SuDS Manual.
- Other useful sources of guidance are:
 - o Richmond upon Thames Sustainable Drainage guidance
 - o The London Plan Sustainable Design and Construction SPG
 - o DEFRA non-statutory technical standards for sustainable drainage
 - o Environment Agency climate change guidance
 - o CIRIA C753 The SuDS Manual

GREATER**LONDON**AUTHORITY

	Project / Site Name (including subcatchment / stage / phase where appropriate)	
	Address & post code	
	OS Grid ref. (Easting, Northing)	E N
tails	LPA reference (if applicable)	
1. Project & Site Details	Brief description of proposed work	
	Total site Area	m ²
	Total existing impervious area	m ²
	Total proposed impervious area	m ²
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	
	Existing drainage connection type and location	
	Designer Name	
	Designer Position	
	Designer Company	

	2a. Infiltration Feasibility			
	Superficial geology classification			
	Bedrock geology classification			
	Site infiltration rate	m/s		
	Depth to groundwater level		m belo	w ground level
	Is infiltration feasible?			
	2b. Drainage Hierarchy			
ements			Feasible (Y/N)	Proposed (Y/N)
ang	1 store rainwater for later use			
rge Arr	2 use infiltration techniques, such surfaces in non-clay areas			
2. Proposed Discharge Arrangements	3 attenuate rainwater in ponds or features for gradual release			
ropose	4 attenuate rainwater by storing in sealed water features for gradual re			
2. F	5 discharge rainwater direct to a w			
	6 discharge rainwater to a surface sewer/drain			
	7 discharge rainwater to the comb			
	2c. Proposed Discharge Details			
	Proposed discharge location			
	Has the owner/regulator of the discharge location been consulted?			

GREATER**LONDON**AUTHORITY

	3a. Discharge Rates & Required Storage							
		Greenfield (GF) runoff rate (I/s)	Existing discharge rate (I/s)	Required storage for GF rate (m ³)	Proposed discharge rate (I/s)			
	Qbar							
	1 in 1							
	1 in 30							
	1 in 100							
	1 in 100 + CC		><					
	Climate change a	llowance used	40%					
3. Drainage Strategy	3b. Principal Met Control	hod of Flow						
e St	3c. Proposed SuDS Measures							
inag			Catchment	Plan area	Storage			
Dra			area (m²)	(m²)	vol. (m³)			
3.	Rainwater harves		0	\geq	0			
	Infiltration syster							
	- 6	ns	0		0			
	Green roofs	ns	0	0	0			
	Blue roofs	ns	0	0	0			
	Blue roofs Filter strips	ns	0 0	0	0			
	Blue roofs Filter strips Filter drains		0 0	0 0	0 0			
	Blue roofs Filter strips Filter drains Bioretention / tre	ee pits	0 0 0	0 0	0 0 0			
	Blue roofs Filter strips Filter drains	ee pits	0 0	0 0	0 0 0			
	Blue roofs Filter strips Filter drains Bioretention / tre Pervious paveme Swales	ee pits	0 0 0 0	0 0 0	0 0 0			
	Blue roofs Filter strips Filter drains Bioretention / tre	ee pits nts	0 0 0 0	0 0 0	0 0 0 0 0			

	4a. Discharge & Drainage Strategy	Page/section of drainage report
	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	
	Drainage hierarchy (2b)	
n	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	
4. Supporting Information	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	
ting Inf	Proposed SuDS measures & specifications (3b)	
lodo	4b. Other Supporting Details	Page/section of drainage report
Sup	Detailed Development Layout	
4.	Detailed drainage design drawings, including exceedance flow routes	
	Detailed landscaping plans	
	Maintenance strategy	
	Demonstration of how the proposed SuDS measures improve:	
	a) water quality of the runoff?	
	b) biodiversity?	
	c) amenity?	