7	Is there a history of seasonal shrink/swell subsidence in the local area, and/or evidence of such effects at the site?	NO	No evidence of seasonal shrink/ swell subsidence was noted to the buildings surrounding the site.
8	Is the site within 100m of a watercourse?	NO	The nearest surface water feature appears to be the River Thames, approximately 1.0km to the west of the site.
9	Is the site within an area of previously worked ground?	NO	
10	Is the site within an aquifer? If so will the proposed basement extend beneath the water table such that dewatering may be required during the construction?	NO	
11	Is the site within 5m of a highway or pedestrian right of way?	YES	Lower Mortlake Road and the adjoining footpath is immediately to the front (south) of the site. An existing front garden (proposed to become a light well) provides a buffer between the basement living space and public highway.
13	Will the proposed basement significantly increase the differential depth of foundations relative to neighbouring properties?	YES	It has not been confirmed whether the adjacent terraced housing. In the event that the adjacent structures to nos. 47/49 do not have subterranean structures (as we suspect they do not) then the proposed basement will likely be founded at a depth lower than the existing foundations of the neighbouring buildings.
14	Is the site over (or within exclusion zone of) any tunnels e.g. railway lines?	NO	

17/30

SCREENING CHECKLIST: SURFACE FLOW AND FLOODING IMPACT IDENTIFICATION

CONSI	DERATION	RESPONSE	JUSTIFICATION
1	As part of the proposed site drainage, will surface water flows (eg volume of rainfall and peak run-off) be materially changed from the existing route?	YES	No survey of any existing drain runs have been completed to date, however as we are incorporating lightwells to the majority of the frontage it is expected that some reconfiguration of the existing drainage runs will be required. The public sewer running adjacent to no.51 Lower Mortlake Road will be maintained, and serve nos.49 & 49A. Nos 47 and the proposed 47A will likely require new connections, and we will take the opportunity to separate the foul and surface/storm water flows to the separate sewers in the highway. We will also take the opportunity to incorporate SUDS into the scheme to reduce the peak storm water run off rate.
2	Will the proposed basement development result in a change in the proportion of hard surfaced/paved external areas?	NO	The proposed basement is entirely within the footprint of the existing building, existing building garden area and adjacent vacant lot - with all of these areas currently comprising areas of existing hard paving.
3	Will the proposed basement result in changes to the profile of the inflows (instantaneous and long term) of the surface water being received by adjacent properties or downstream watercourses?	NO	See above
4	Will the proposed basement development result in changes to the quality of of surface water being received by adjacent properties or downstream watercourses?	NO	No changes are being proposed to any areas of soft or hard landscape

3.2. STAGE 2: SCOPING

The screening assessment identifies the following matters, which are required to be studied and justified or discussed further.

- Unconfirmed water table level but expected to be beneath proposed basement founding level.
- The foundations to the proposed basement are likely to be deeper than the neighbouring foundations.
- The sequence and characteristics of the soil underlying the specific Site have not been confirmed in-situ.
- Recent site usage indicates there is a risk of soil contamination which will be determined following a soil investigation.
- The Site and proposed works occur within 5m of the public highway or pedestrian right of way.
- A Ground Movement Assessment (GMA) may be required to assess the potential damage to neighbouring buildings.

These aspects are considered further in Stage 4 (see Section 5) and elaborated upon in Section 6 (detailed design considerations).

4. STAGE 3: SITE INVESTIGATION

4.1. WATER TABLE / AQUIFER

Prior to detailed design, a deep trial pit should be completed adjacent to the proposed works to confirm whether the water table is within the depth of our proposed excavation, and if so to trial dewatering methods and ensure the solution is viable and workable. A suitable location for this deep trial pit may be in the location of the proposed external front light well, to allow the profile and bearing depth of the existing foundations (and thus how we will interact with them) to be confirmed.

4.2. SOIL UNDERLYING THE SITE

An on-site investigation should be completed before detailed design commences, which should confirm the Site specific strata / soil build up, as well as the presence of any water (water table or perched water), hyrdo-geological flows, etc. The findings of the desktop investigations indicate we are likely to be excavating near the top of the Clay strata, so perched water may be present. The investigation should also include a basic suite of contamination testing, as the history of the Site suggests a small risk that contamination may be present. These investigations should allow a suitable and robust scheme to be developed without negatively impacting on the local environment. If ground water is encountered it may be prudent to install a standpipe and monitor levels over a period.

4.3. DEPTH OF OUR FOUNDATIONS AND THOSE OF THE NEIGHBOURING BUILDING

Prior to detailed design, trial pitting should be completed around the Site and up against neighbouring structures to confirm the profile and bearing depth of the existing foundations where this is possible. It is important that the depth of the foundations to

Project No. 2218	Revision	[B]:	February	2022	

adjacent properties is determined as it is almost certain that the new basement proposal will undermine these. As such the basement construction methodology will ensure that the structural integrity of all neighbouring property footings will be maintained, and details will be developed to ensure this.

4.4. GROUND MOVEMENT ASSESSMENT (GMA)

Once more is known about the ground conditions and neighbouring foundations a ground movement assessment will likely be opted for to help confirm the predicted movements of the neighbouring structures and highway are within agreed limits. The construction methodology will take these limits into account, along with possible actions should a trigger level be reached.

5. STAGE 4: IMPACT ASSESSMENT

5.1. SECONDARY AQUIFER & SUBTERRANEAN GROUNDWATER FLOW IMPACT

The desktop study together with knowledge of nearby investigations has indicated that groundwater levels may be between 5.0 and 6.0m below existing ground level. Whilst this suggests we should be able to construct the basement above the water table, this should be confirmed with on-site site investigations. There is a small risk of contamination in the soils on the Site due to the historic land use.

We are expecting to almost entirely be excavating within the Kempton Park gravel Formation, and due to the expectation of it being above the water table is not considered that the introduction of the proposed lower ground floor on this Site should have a negative impact on any groundwater flows.

5.2. PUBLIC HIGHWAY BOUNDARY PROXIMITY IMPACT

The implications of this matter are related to the design and construction of suitable retaining structures. This is therefore discussed and addressed in section 6, which details the considerations of how the structures will be built against the existing boundaries, and section 7, which addresses the works sequence.

5.3. GROUND MOVEMENT ANALYSIS

The proposed excavation of the basement will remove a depth of some 3.0m of soil.

A Ground Movement Analysis may be conducted as part of the next phase, in line with CIRIA C580 to determine the movement response of the subsoils as a result of the proposed excavations. The methodology will help ensure a damage category of 2 or less on the Burland Scale, both in our property and the neighbouring property. In reality we would expect the scheme to result in a category of 1 or less.

Please refer to the appendices for the calculations, design output, construction sequence illustrations and structural drawings.

Constructure has direct experience of underpinning and and the creation of lower ground floors and basements, and do not expect significant movement (if any) to occur in the neighbouring properties.

5.4. STABILITY OF EXCAVATIONS

Excavations in made ground and granular soils are more likely to be unstable and so may require temporary support, although as excavations will exceed 1.2m this will be necessary anyway for safety compliance.

Trial pits and boreholes will be completed prior to the developed design, which will help identify the ground conditions.

6. DETAILED PROPOSALS AND DESIGN CONSIDERATIONS

6.1. SITE CONSTRAINTS & SEQUENCING

The section of site occupied by nos. 47 and 49 Lower Mortlake Road is relatively constrained, with side access to the east of no. 49 required to remain open to allow for continued access to the private property at no. 49A and as such not likely to be available for access. Alternatively, there is the option of providing alternative access to no. 49A through a designated safe path/route through the area currently referred to as the vacant plot. The vacant plot section of the property is relatively open and unobstructed, with easy access from the street and should allow adequate room for a site set up, welfare, deliveries, muck away, etc, as well as providing a protected route to no.49A if required. Access can revert back to the original once the work around the houses is complete, and before the excavation of the vacant plot commences.

The basement is considered in two sections; with a section to be built under the new development, and a section under the existing buildings of nos. 47 and 49 Mortlake Road. The excavation of the basement section beneath the existing building is currently assumed to be completed by a combination of contiguous piling and underpinning the load bearing walls over the proposed basement footprint, using reinforced concrete underpins which will also serve to act as the primary retaining structure. An underpin-style sequenced approach to constructing the full perimeter basement wall will be adopted. A ground floor structure can then be reinstated. For the section of basement beneath the existing vacant plot, it is expected that contiguous piling and underpin bays will be used to stabilise the ground and provide support to the adjacent structures whilst the soil is removed and permanent RC retaining walls are constructed.

The protection of the neighbouring properties and boundary structures has been carefully considered, such to ensure that during the works, the boundary and neighbouring structures are protected from ground movement. The techniques proposed therefore are designed to conform with this.

6.2. BASEMENT SLAB

Depending on how close to the clay strata we get it is proposed to create a combined ground bearing and suspended reinforced concrete slab and provide a heave zone in the centre of the slab. This would be achieved by installing a ClayBoard void-former in the central area, which would be designed to degrade after concrete curing, such to create a sub-floor void. Edge thickenings will be present around the perimeter.

6.3. HEAVE PROTECTION

The nature of the sandy/gravel Kempton Park Formation is such that heave under the shallow excavation may not be of significance, however has been allowed for at this stage, in case we are close to the clay strata and ground recovery comes in to play. The

Project No. 2218	Revision [B]: February 2022
------------------	-----------------------------

formation of a suspended slab with nominal sub-floor void is considered to be ample precaution against minor effects of changes in ground loading condition.

6.4. WATER PRESSURE AND CONTROL

The desktop study has indicated that groundwater levels may be between 5.0m and 6.0m below existing ground level, and therefore it is unlikely that our proposed excavation will be within the water table. This should be confirmed at the earliest convenience and an appropriate construction methodology agreed. A degree of dewatering may be required, however as we will be excavating close to the clay strata and as such perched water may be encountered. This dewatering is not expected to pose a problem for the construction or surrounding buildings/highway.

For the permanent design we have assumed a high ground water level to account for a general rise in water table level or a "burst water main" scenario. This has been accounted for for the hydrostatic pressure on the lower ground floor slab, and also in terms of buoyancy.

6.5. HIGHWAYS

The front of the property is adjacent to a public highway which is also a part of the TFL roads network. A publicly accessible alleyway is to the immediate western edge of the Site.

As our excavation depth is circa 3m, the Highway surcharge (typically based on the Highways Agency Design Manual for Roads and Bridges Volume 1, Section 3, Part 14, with values of HB loading of 12.0kN/m2 or HA loading of 10.0kN/m2 being considered) has been considered on our retaining walls along this edge that frame the front light well. A calculation for this wall is appended to this report.

6.6. PARTY WALLS

The proposed development will fall within the scope of the Party Wall Act 1996 due to excavating near land belonging to another demise. We are planning to excavate within 3m of a neighbouring building, and likely within 6m of an existing building where that work would cut a line drawn at 45 degrees from the bottom of the neighbours foundation.

Procedures under the Act will be dealt with in full by the Employer's Party Wall Surveyor. The Party Wall Surveyor will prepare and serve necessary notices under the provisions of the Act and agree Party Wall Awards in the event of disputes. The Contractor will be required to provide the Party Wall Surveyor with appropriate drawings, Method Statements and other relevant information covering the works that are notifiable under the Act. The resolution of matter under the Act and provision of the Party Wall Awards will protect the interests of all owners.

The scheme for this Site will be developed so as not to preclude or inhibit similar, or indeed any, works on the adjoining properties in the street. The Surveyors will verify this as part of the process under the Act.

6.7. DESIGN CODES

The following design codes will be followed during the detailed design stage:

The Building Regulations 2010 - Approved Document A

• BS 648 - Weights of building materials

- BS 5950:1 Structural use of steelwork in building
- BS 5268 Structural use of timber
- BS 5628-1:2005 Code of practise for the use of masonry
- BS 6399:1 Loadings for buildings (Dead and imposed loads)
- BS 6399:2 Loadings for buildings (Wind loads)
- BS 8000:Section 2.2:1990 Workmanship on building sites
- BS 8002 Earth retaining structures
- BS 8004 Foundations
- BS 8102 Protection of structures against water from the ground
- . BS 8110:1 Structural use of Concrete

7. CONSTRUCTION METHODOLOGY

7.1. SEQUENCE OF WORKS

The outline construction sequence and temporary works assumed in the design and described in this report will be superseded by the Contractor's construction proposals. The Contractor will be required to provide full proposals, method statements and calculations to the engineer prior to the commencement of any works on site and these will be considered in conjunction with the permanent structures and verified as suitable before the works are implemented.

The appointed contractor will be required to provide a detailed works sequence with their tender submission. An outline sequence of the substructures works is likely to be as follows:

STAGE 1 :

- -Welfare temporarily set up in existing houses for piling phase
- Site set up, secured and established
- Two-way access to properties along Blue Anchor Alley temporarily restricted to access off A307 (subject to agreement)
- Hoarding erected in positions to allow piling to take place (agreements required)
- Masonry wall demolished along Blue Anchor Alley and to front of existing houses
- Existing single storey building to north-west corner of site carefully demolished
- Contiguous piling installed as shown around the perimeter, plus 2-4 no. temporary internal piles as indicated

STAGE 2 :

- Once piling is complete, site welfare is established in existing external area
- -Remove the ground floor structure from within the existing houses

23/30

- Existing houses underpinned along both side walls and central Party Wall, in recognised and approved underpinning sequence. Underpins to continue up to the level of the proposed GF slab, requiring the existing foundation to be removed in 1m bays during the underpinning process. This is to allow provision of a lateral head restraint to the top of the retaining wall/underpins, and also vertical support to the new GF slab

Note: underpins running adjacent to no.51 Lower Mortlake Road are to be reinforced, designed to resist the surcharge from no.51 foundations.

Note: underpins running adjacent to the external area are to be reinforced, designed to resist the surcharge from the construction requirements for the external area

STAGE 3 :

- Once the underpinning is complete, temporary steel beams are to be installed across the front and rear existing facades, and needling installed through to support the walls over

Note: It may be more viable (cost and safety) to demolish the rear outriggers and reconstruct like-for-like after the completion of the new lower ground floor structure subject to permission

STAGE 4 :

- Reduced level dig can now commence within the existing houses down to formation level, incorporating temporary propping as required. Muck-away can be transported either to the existing external space by the future no. 47A, or to the front of nos. 47/49; assumed to a roll-on-roll-off skip or suchlike
- It is assumed the contractor will continue the excavation into the proposed front and rear light wells/terraces

STAGE 5:

- Once reduced level dig is complete, install any below slab services, sumps, etc, blinding, any required heave mats, and then cast the lower ground floor RC slab, tying in with the perimeter underpinning

- Create the RC retaining/lining wall in front of the piles to the light wells/terraces

STAGE 6:

- Form the new RC ground floor slab within the existing houses
- Reinstate bases of existing masonry walls and dry pack to new GF RC slab, making good as required
- Remove the temporary steel needles and beams, and make good as required

STAGE 7:

- Relocate site welfare to the existing houses
- Underpin the side wall of no. 49A and the side wall of the building running along the northern boundary. Use reinforced underpins if permitted by Party Wall agreement
- Commence reduced level dig for the existing external area to create the new lower ground floor, installing temporary propping as required

- Excavation assumed to go from the rear of the site and work to the front to allow the front of the site to be used for roll-on-roll-off skip for as long as possible
- Temporary piles installed to assist with excavation below existing houses can be removed

STAGE 8:

- Once reduced level dig is complete, install any below slab services, sumps, etc, blinding, any required heave mats, and then cast the lower ground floor RC slab, tying in with the perimeter underpinning/piling (including the proposed sunken terrace areas)
- Create the RC retaining/lining wall in front of the piles where required
- Form the new vertical shell & core of the the proposed apartments up to ground level, and then form the new RC ground floor slab
- Once the ground floor slab is cast and cured, the groundworks should be stable and any final temporary propping removed

7.2. TEMPORARY WORKS

Temporary works design and coordination is to be carried out by a suitably qualified and experienced specialist and full design details (drawings and calculations) will be submitted to the engineer for comment. This specialist will be appointed by the Contractor who will be responsible for the design, erection and maintenance of all temporary works to ensure the stability of the existing structure, excavations and adjacent structures at all times.

7.3. MOVEMENT CONTROL

The techniques proposed are proven to produce minimal or negligible movement effects to the existing superstructure walls and to the structure of neighbouring properties, and the deflection of the retaining walls can be practically limited so as to avoid disturbance to the retained ground.

It has been demonstrated that the excavations made and the works being conducted using normal techniques it is practical to achieve a level of 1 [very slight damage] on the Burland Scale, such to limit any damage to 'slight'.

A heave response, due to the relatively minor overburden relief, is not considered to represent a practical risk. Heave protection will still be considered to further mitigate any residual risk however.

7.4. MONITORING OF ADJACENT STRUCTURES

Whilst no movement is anticipated to the neighbouring buildings, to ensure that the integrity of these structures is safeguarded it is proposed to use a system of movement monitoring. The Contractor shall appoint a specialist survey company to establish monitoring positions (targets) to key elements of the neighbouring buildings as deemed required.

The external facades will be monitored at these positions and the targets shall be firmly attached to allow 3D location measurement for the duration of the work, to a continuous and uninterrupted accuracy of +/- 1mm. Suitable remote reference bases unaffected by the works will be adopted.

Two series of baseline readings shall be taken before the work begins then readings shall be taken shortly after the start of excavation then at weekly intervals during the basement construction until the RC shell is complete and propped after which point the frequency will be reduced to then a final reading 6 months after completion.

All measurements will be plotted graphically, clearly indicating any movements over time. Results shall be submitted and circulated to all relevant parties including the appointed Party Wall Surveyors within 24 hours of being measured.

Trigger levels are to be as set out below. In the event of a 'red' value being reached the Contractor must immediately stop, make safe the works, notify the Party Wall Surveyors and only recommence when agreed by the appointed Surveyors.

Trigger Levels for movement:

Lateral or vertical movement of facades:

Amber +/- 4mm	All parties notified
Red +/- 8mm	Work stopped and reviewed

7.5. NOISE, DUST AND VIBRATION

All demolition and construction works will be carried out by a competent and qualified contractor, who will be required to accord with the Considerate Constructors Scheme, and take all necessary measures to minimise the short term disturbances in terms of noise, vibration and dust which might impact on the local environment and the neighbouring residents and businesses.

The following measures and actions will be implemented:

Noise - Neighbours will be notified in advance of noisy activity, in particular where these are on or near boundary structures. Where there is particular sensitivity, activity will be restricted to 09:00-17:00 Monday to Friday.

In all cases where possible, electrically operation tools will be used in preference to engine driven machinery.

The use of site radios will be considered carefully in terms of their locations and volume levels, and if any neighbour complaints are received, a firm prohibition of their use will be enforced.

Vibration - While the use or percussive, powered machinery upon hard construction materials in many situations will likely give rise to inevitable vibration, wherever possible and in accordance with CCS Code, unnecessary vibration will be avoided and mitigated. This will take the form of the careful planning and consideration of the hardness of the material being demolished, and the works planned and notified accordingly, and where considered particularly unavoidable, the 09:00-17:00 working hours principle be observed.

Dust — Most of the works will be internal and so can be relatively easily isolated from becoming airborne and dispersing to neighbours and the local environment. External activity shall be contained as best as possible using suitable hoardings and sheeting.

Materials stored externally would be covered or contained to avoid wind and weather disturbance to granular and particulate materials. Structural concrete will be typically

mixed off-site and delivered, but where small quantities or mortar are to be site mixed, this can be done in an enclosed area to limit cement dust from becoming airborne.

Deliveries of materials shall be covered where potential for dust is prevalent. Waste skips and excavated soils are to be covered whenever practicable.

For activities that generate dust, surface wetting-down, and water misting will be used to suppress dusting. Rotary cutters will use water as a dust suppressant.

Housekeeping - Shared driveways, external pavements on the Site and in front of, will be regular swept, and should vehicles or windows become soiled, the contractor shall arrange cleaning as the neighbour so desires.

8. SUMMARY

During construction, lateral and vertical stability of the existing structure and adjoining structures subject to the party wall act as detailed above will be maintained by a combination of contiguous piling and underpinning of the required existing load bearing walls, such that no significant adverse movement is expected. The construction sequence used, including limiting excavations to 1m bays, and incorporation of suitable temporary propping should also serve to maintain stability to the soil and foundations of nos 47 & 49, the adjoining structures, highways and the immediately surrounding area.

Environmental impacts have been assessed, and the response to geotechnical and hydrological aspects have been considered. The proposals are deemed to not have any adverse impact in this respect.

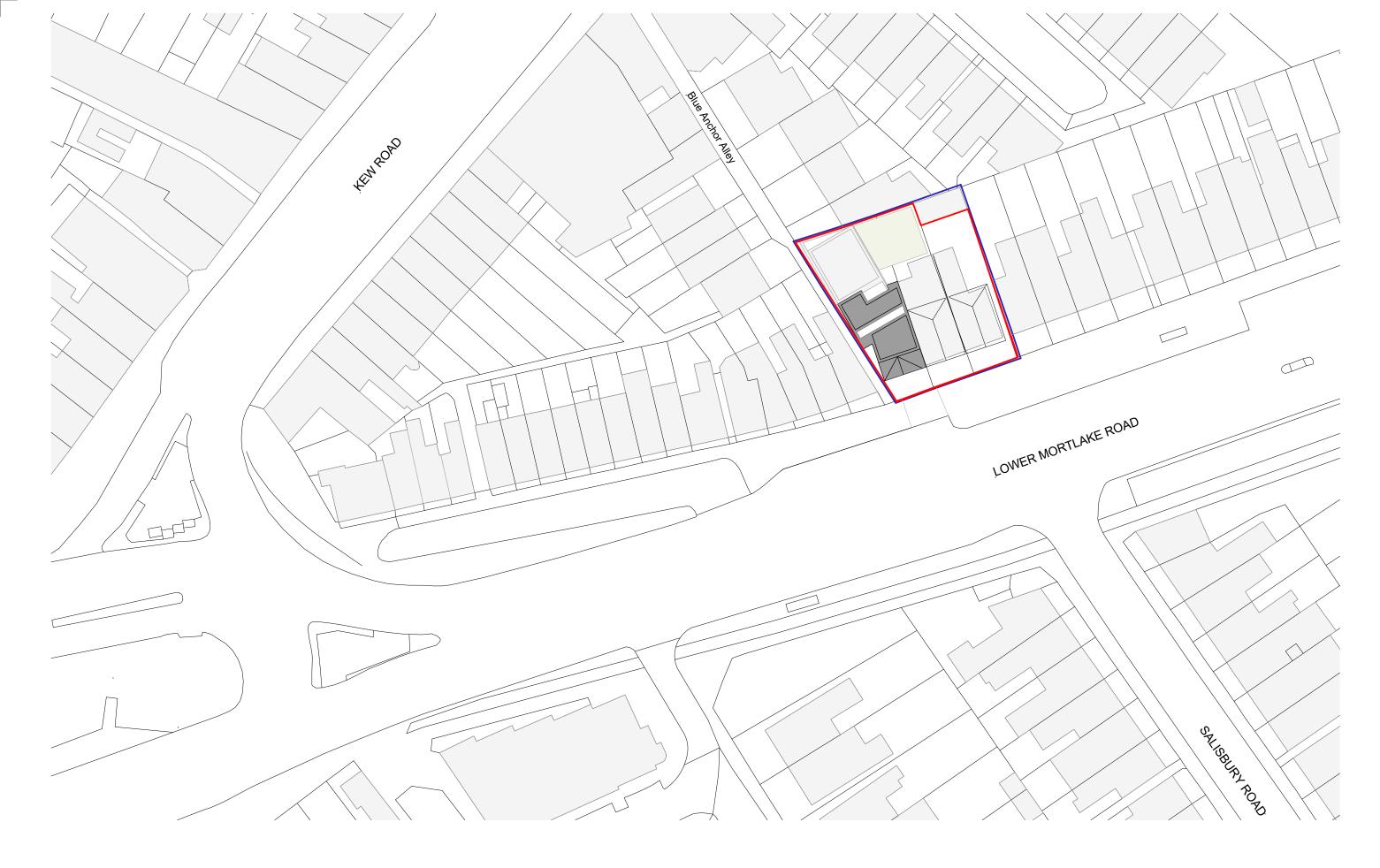
Once complete, the new structure will provide a robust and secure support for both new and existing structures without detriment to the overall stability of the building, adjoining properties or Highway.

APPENDICES.

APPENDIX A: PROPOSED DRAWINGS

Proposed Architectural Drawings

APPENDIX B: POSSIBLE CONSTRUCTION SEQUENCE

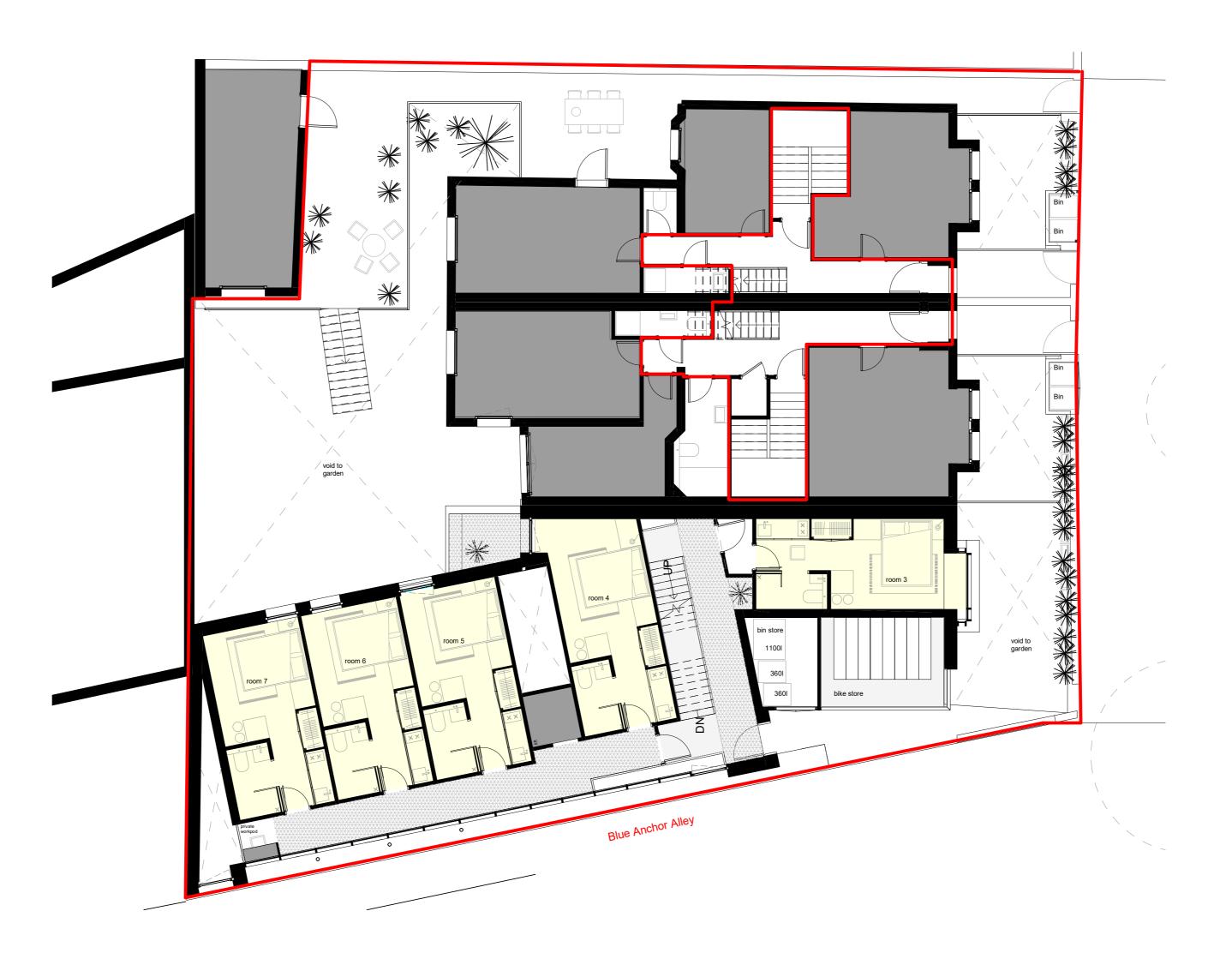

2218_SK-01: Possible Construction Sequence


APPENDIX D: STRUCTURAL CALCULATIONS

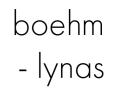
Typical Retaining Wall

Buoyancy Check

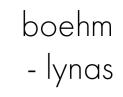
APPENDIX A: PROPOSED DRAWINGS

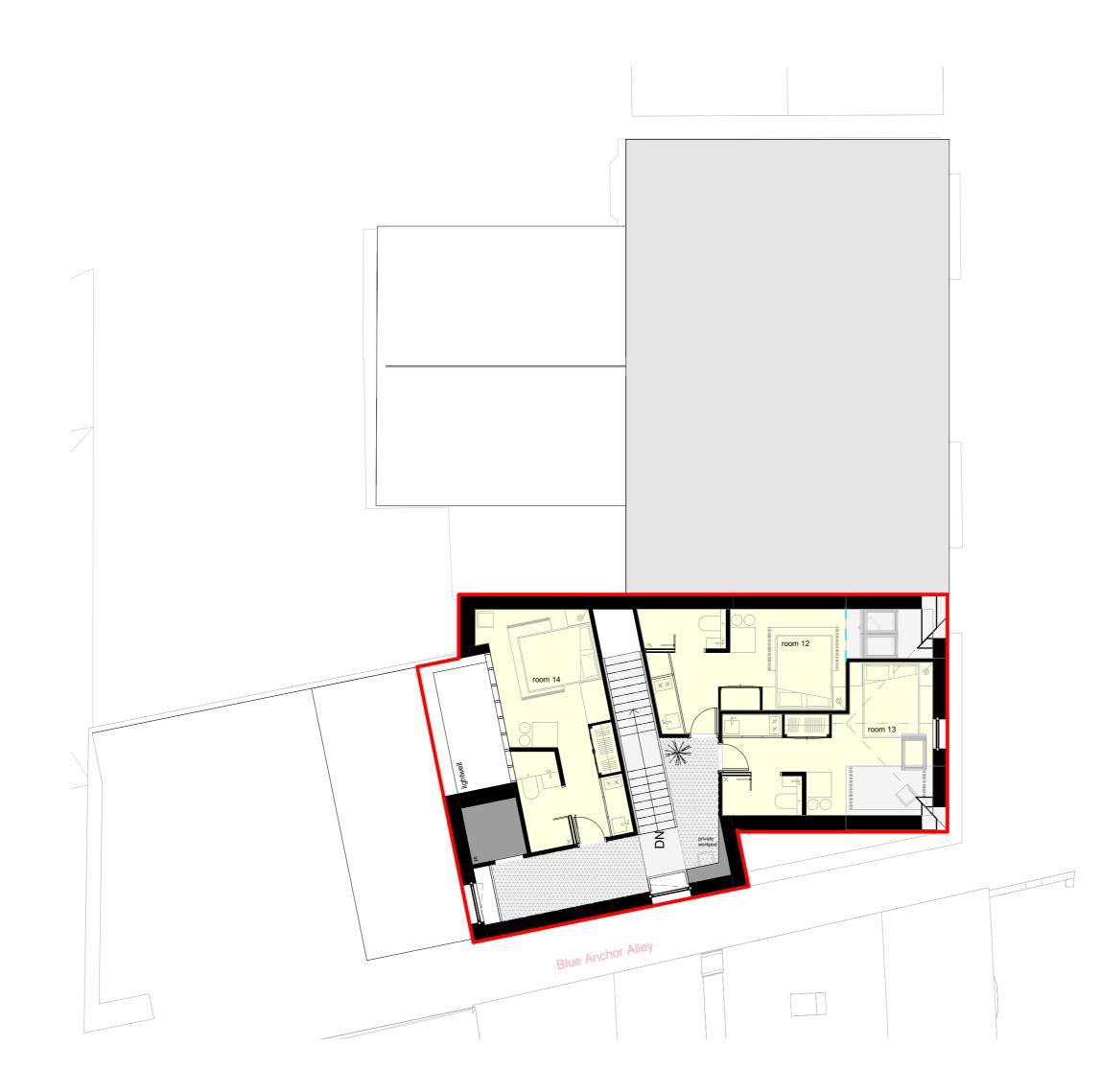


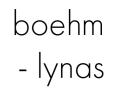
1:500 @A3 BL-10-010 - P1 Original drawing is A3. Do not scale from this drawing.

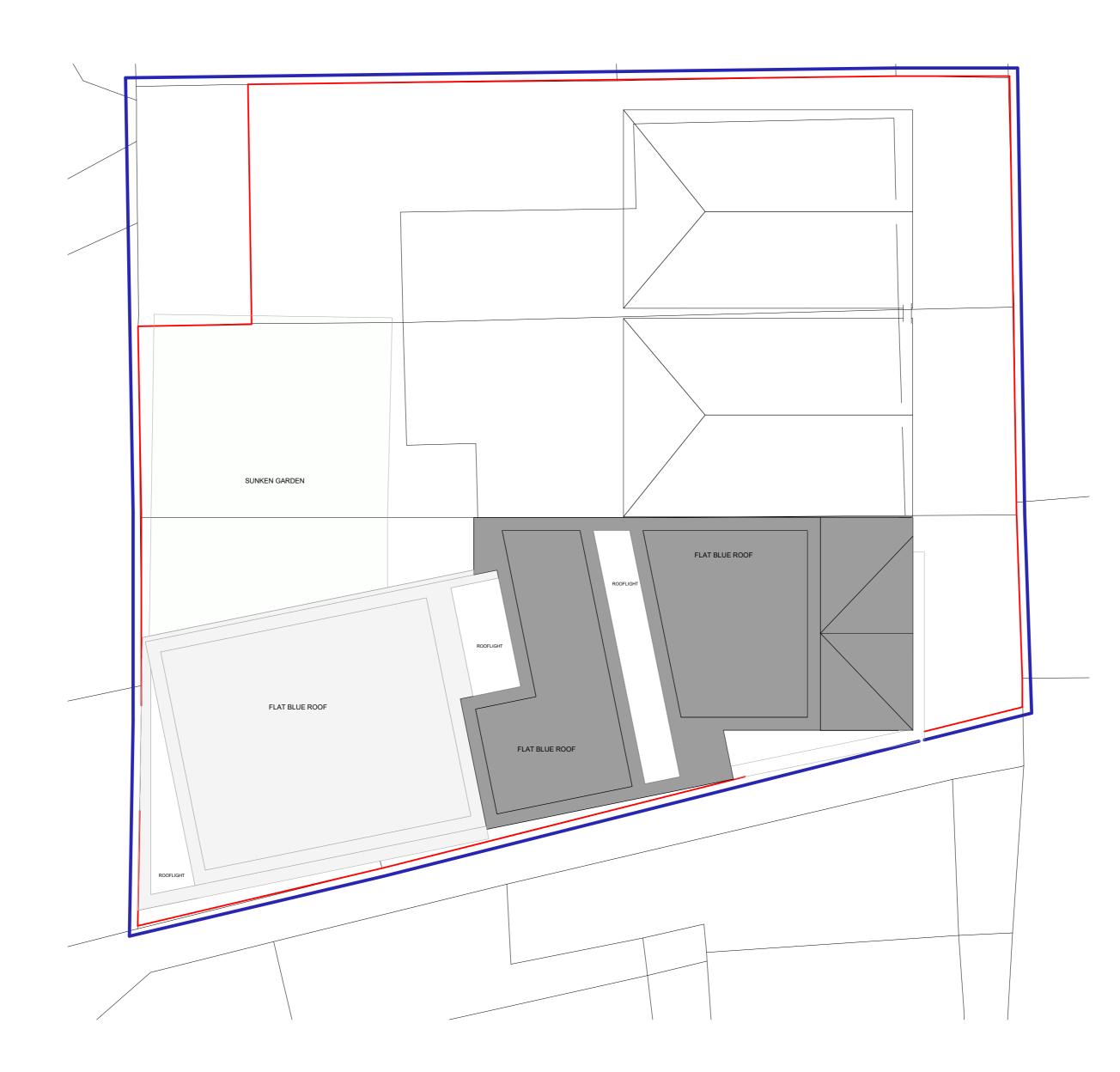

Project No: 018 Last Issued: 24.01.22 Proposed Site Plan

boehm - lynas

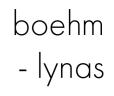

Drawn: ML Project No: 018 24.01.22

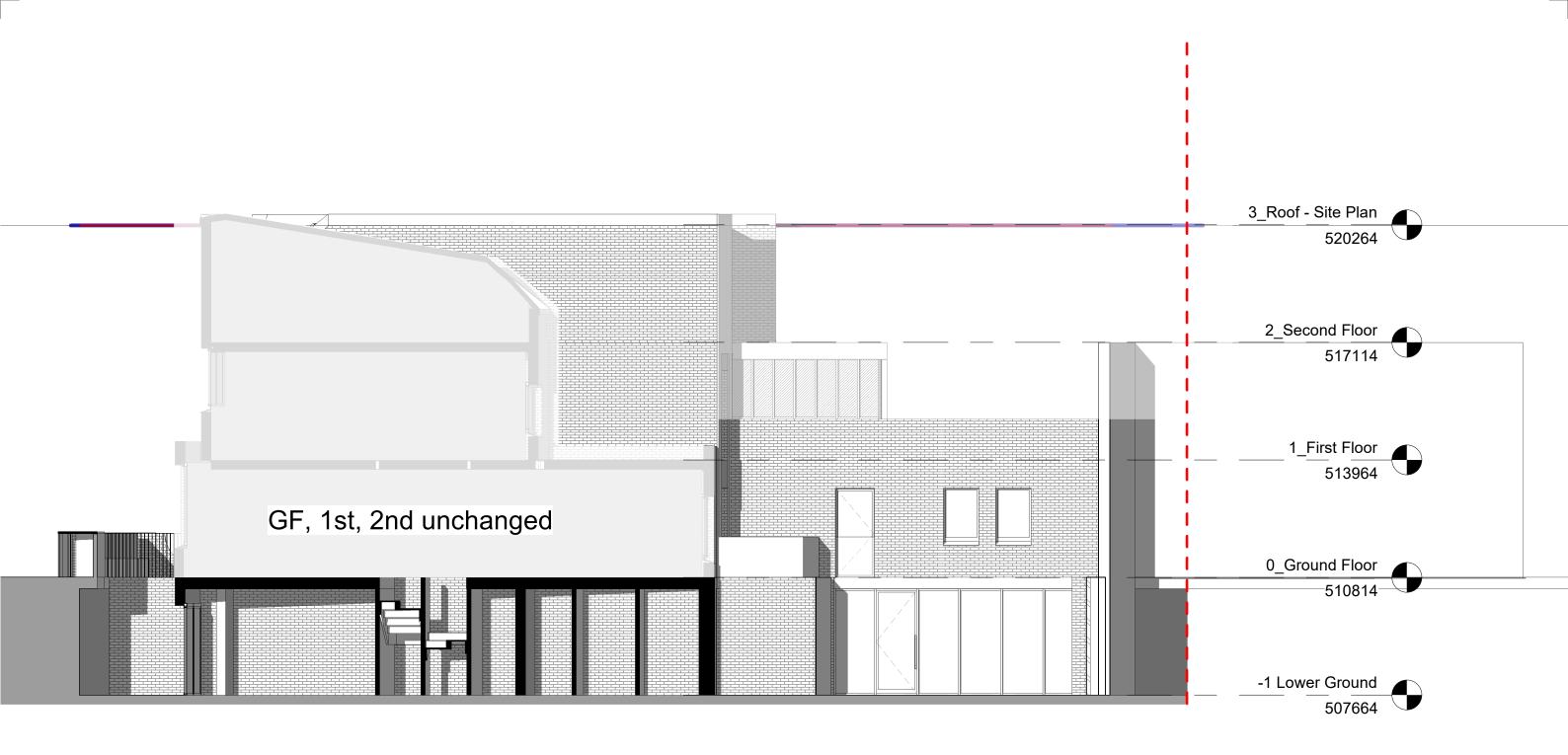



Drawn: ML Project No: 018 24.01.22 First Floor Plan



Drawn: ML Project No: 018 24.01.22 Second Floor Plan





Drawn: ML Project No: 018

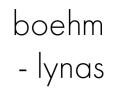
24.01.22

East Elevation

1:100

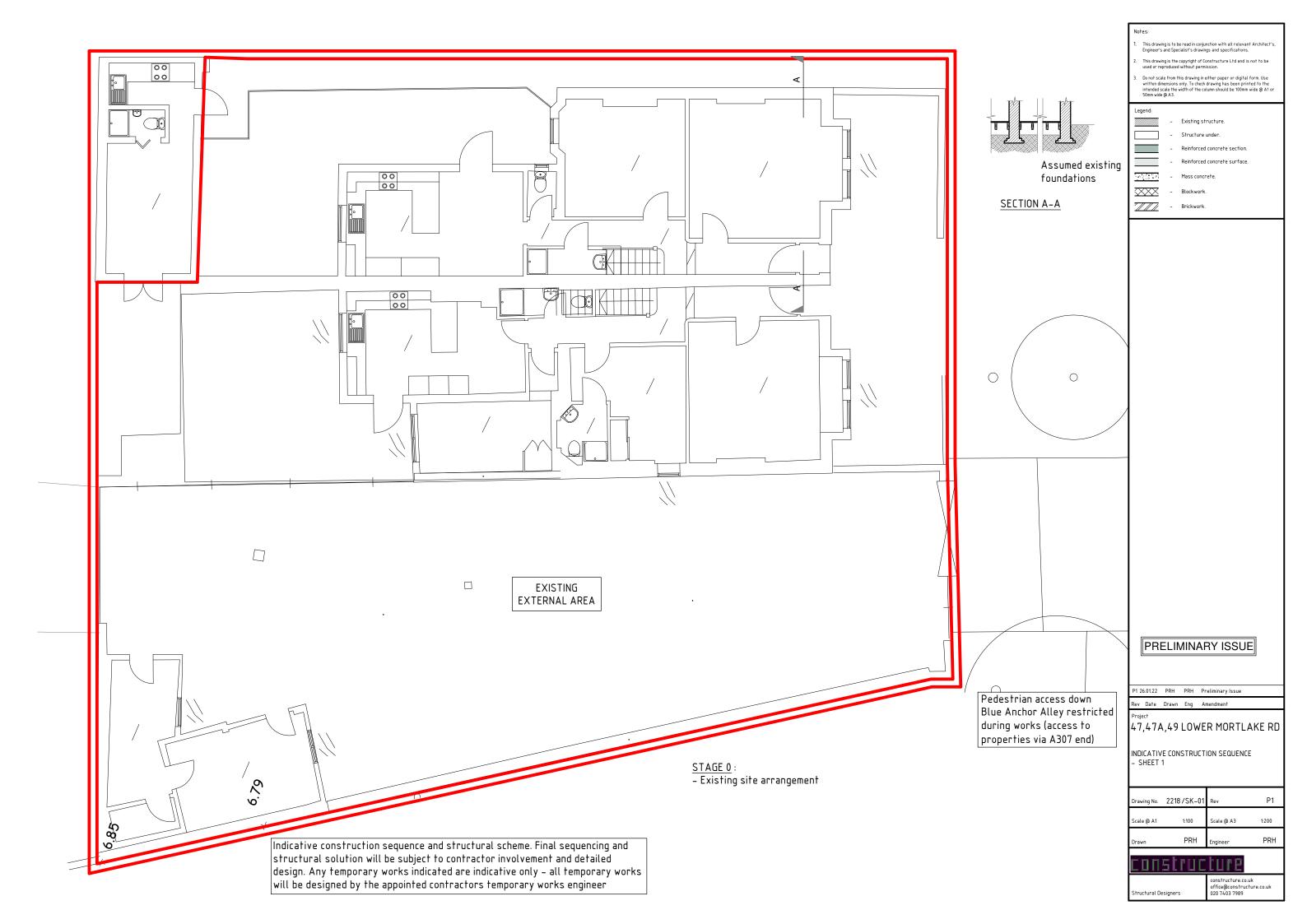
47a, 47 & 49 Lower Mortlake Road

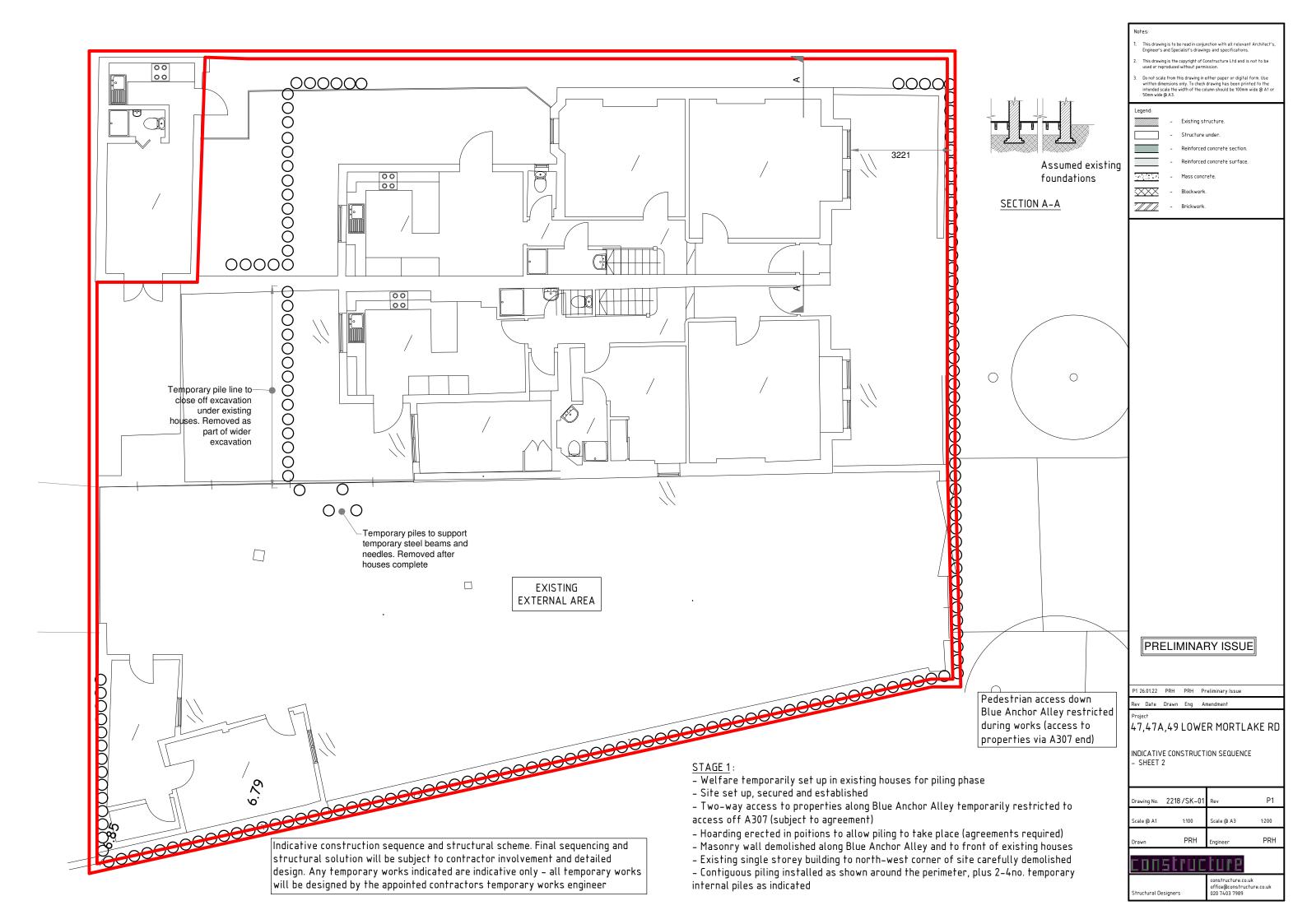
Original drawing is A3. Do not scale from this drawing

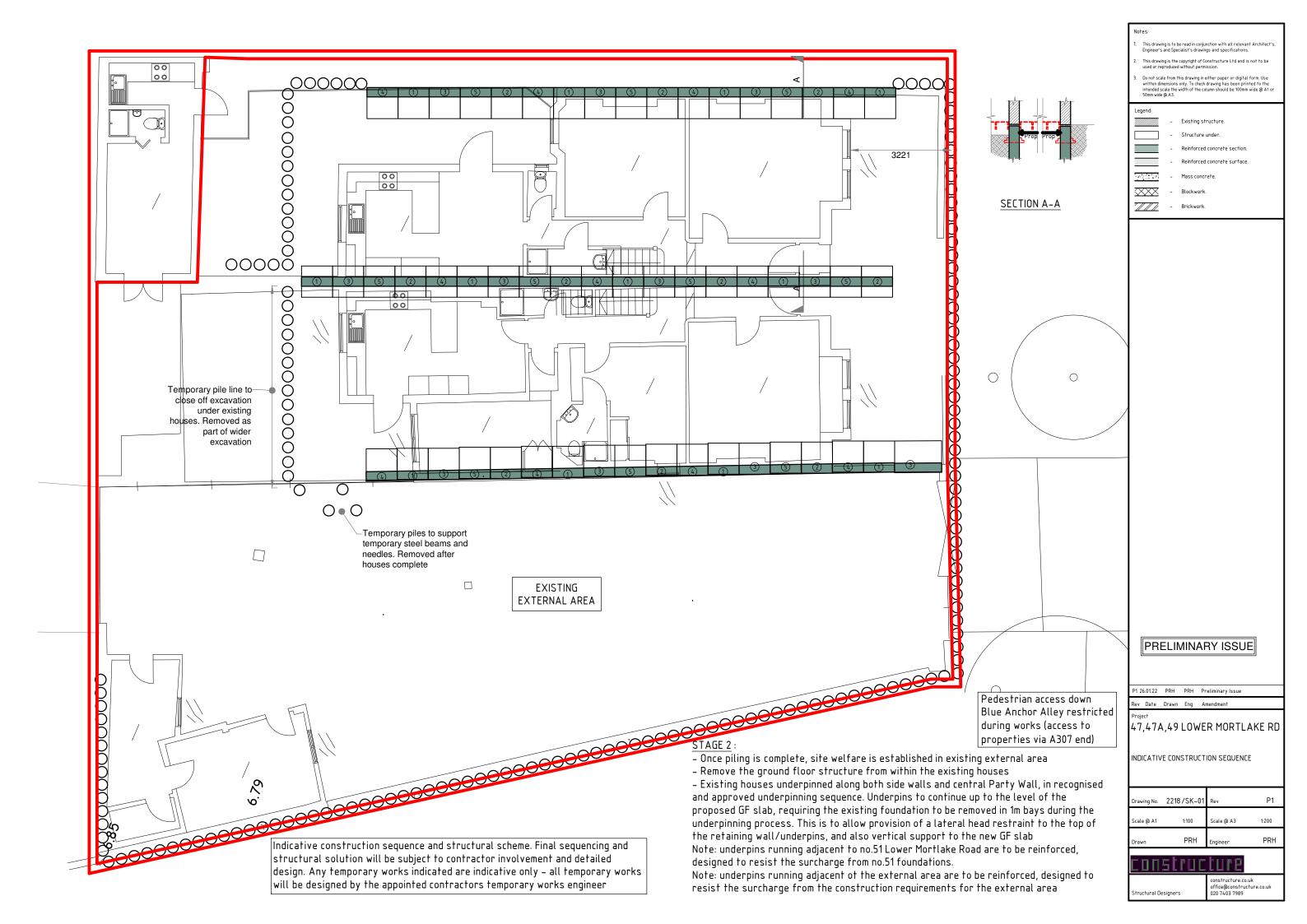

Project No: 018 Last Issued: 24.01.22

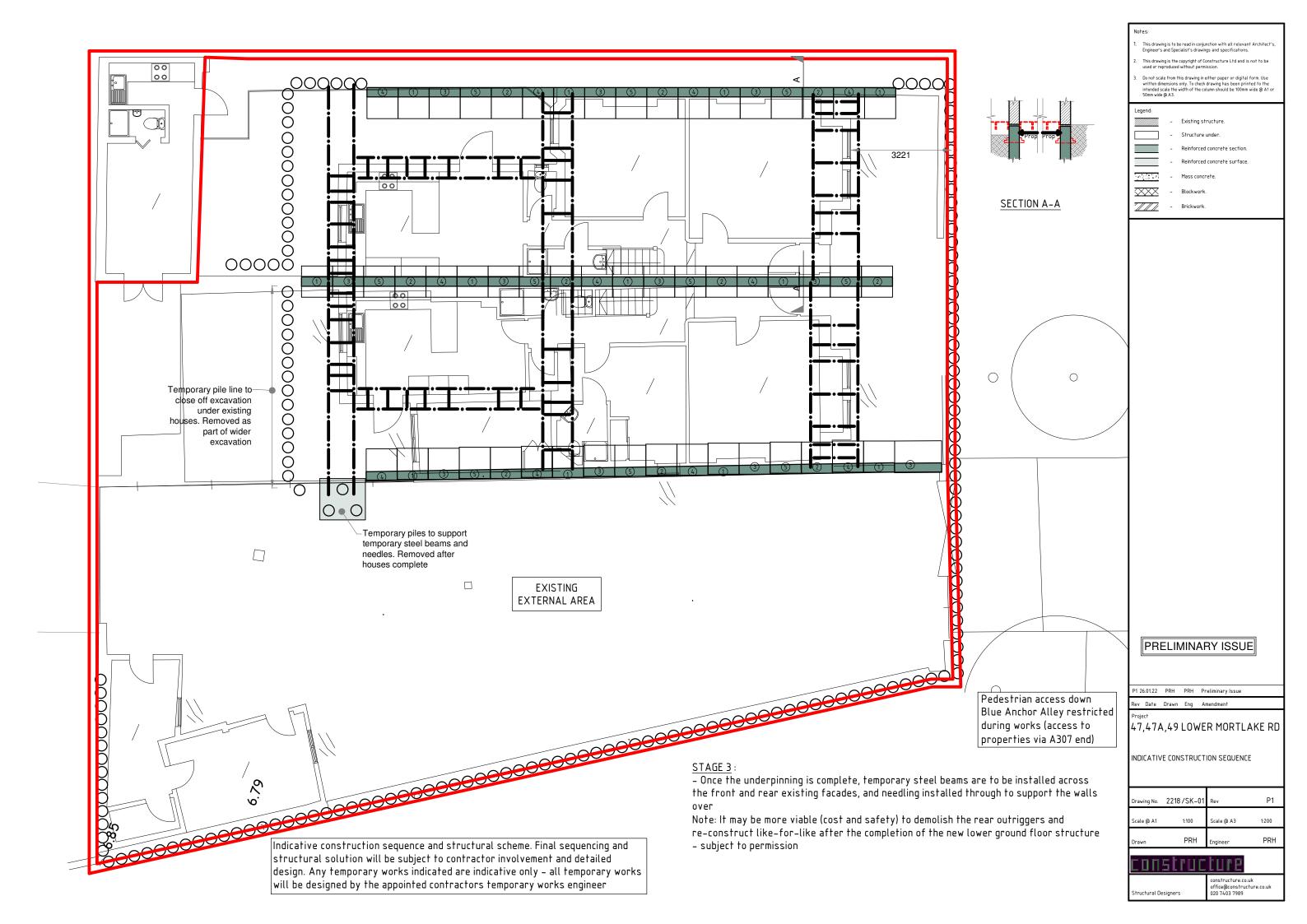
East Elevation

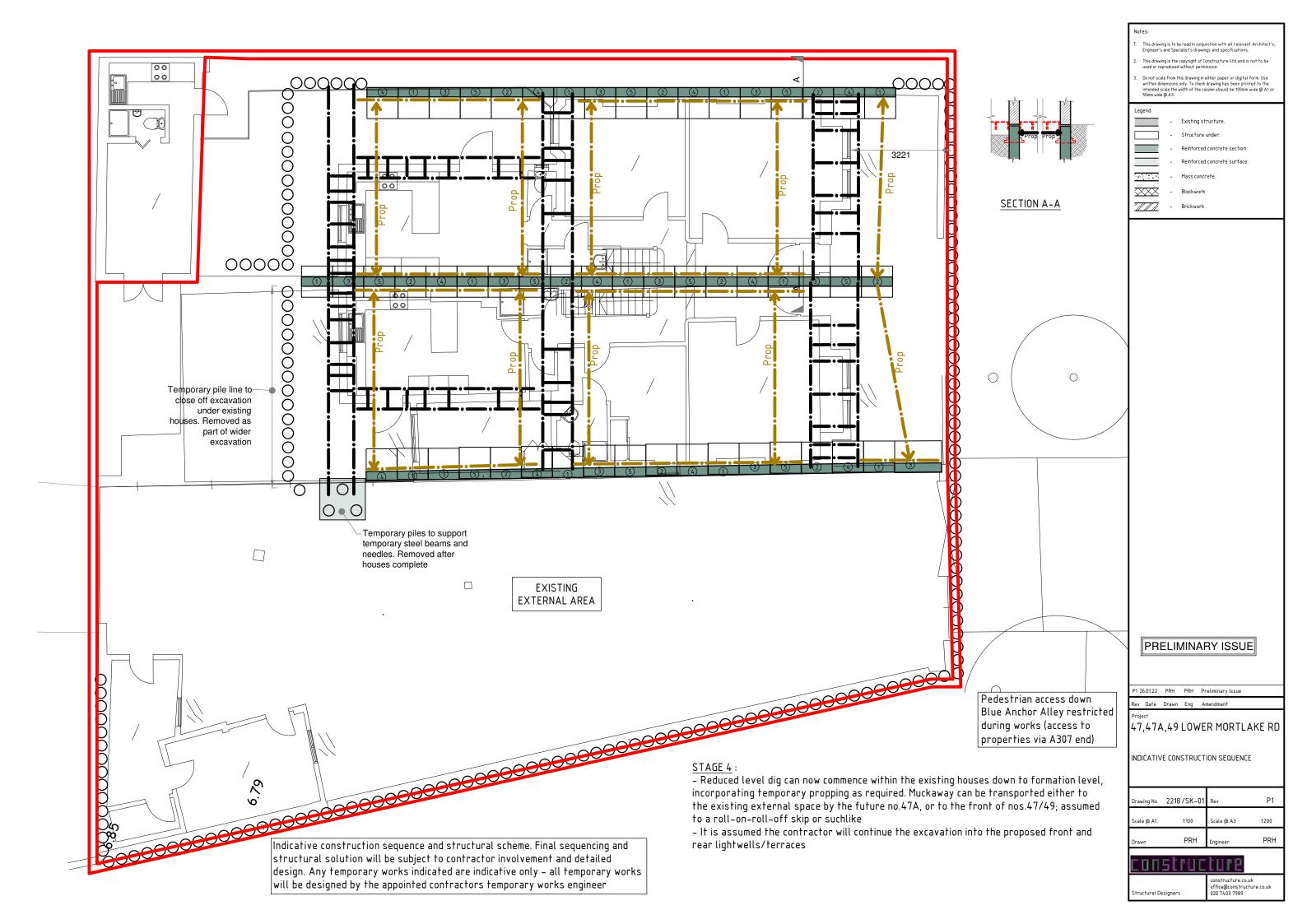
1:100 @A3 BL-15-300 - P1 boehm - lynas

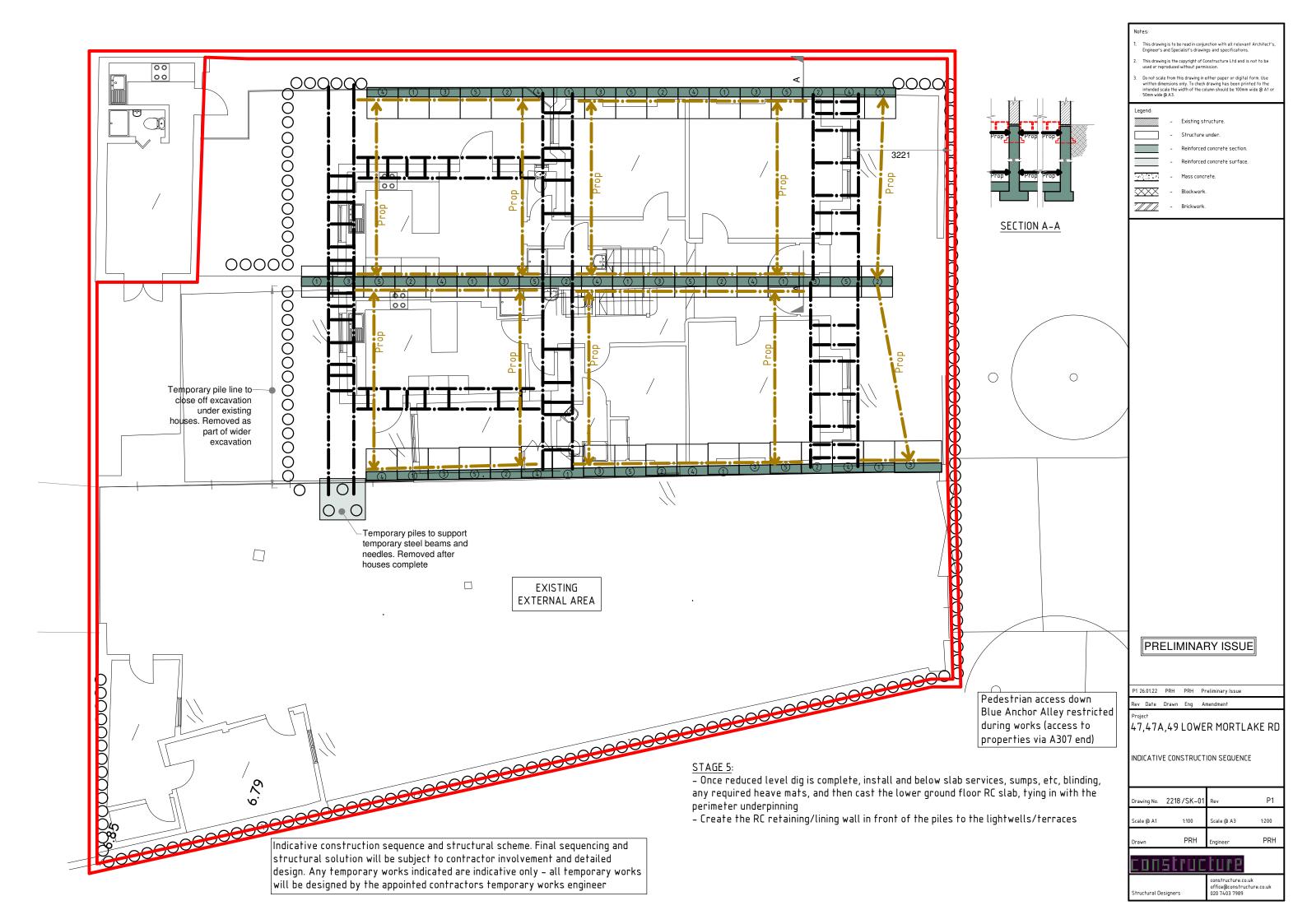

1 Planning Permission 24.01.22 ML Submission

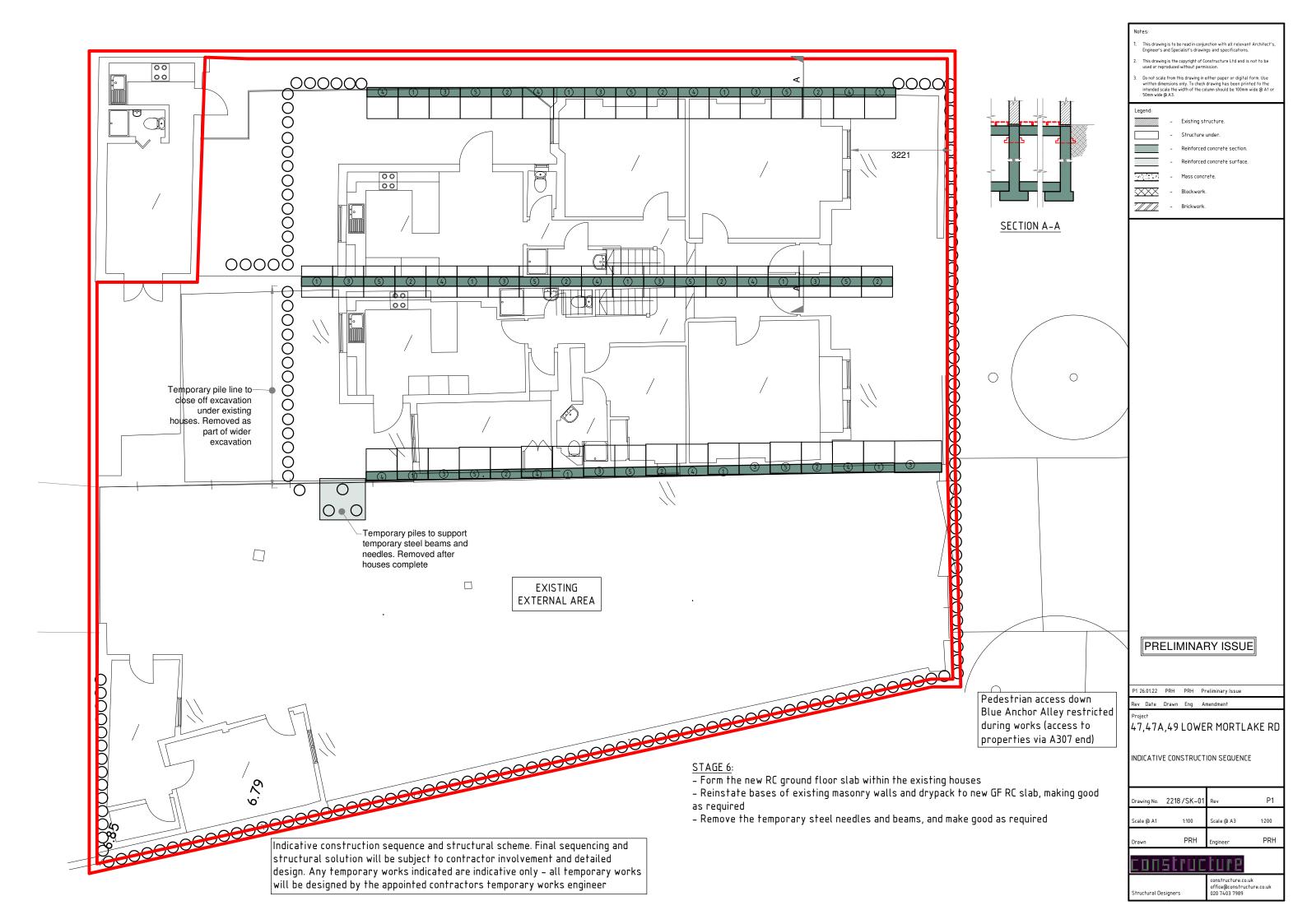

> Project No: 018 Last Issued: 24.01.22

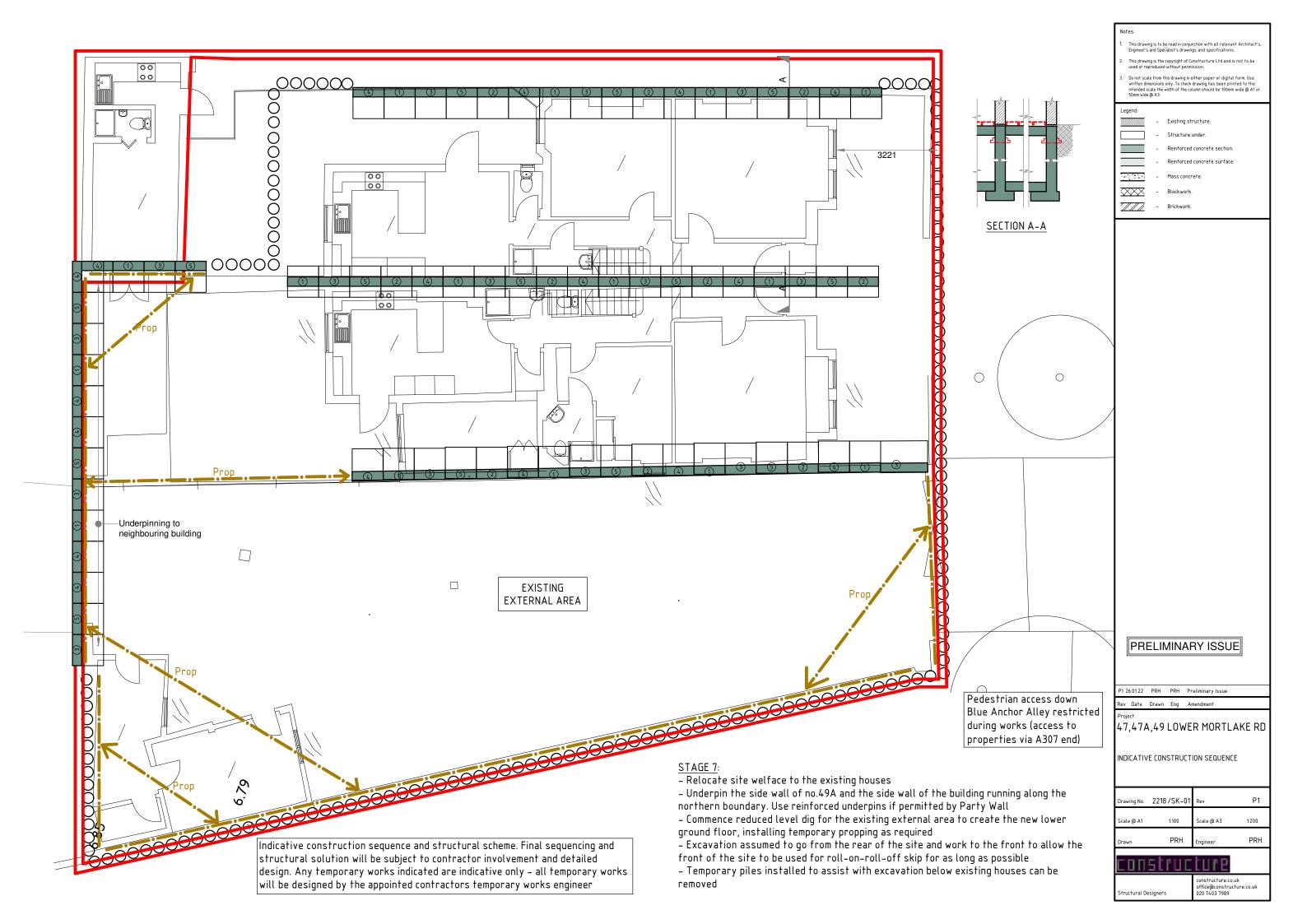

47a, 47 & 49 Lower Mortlake Road

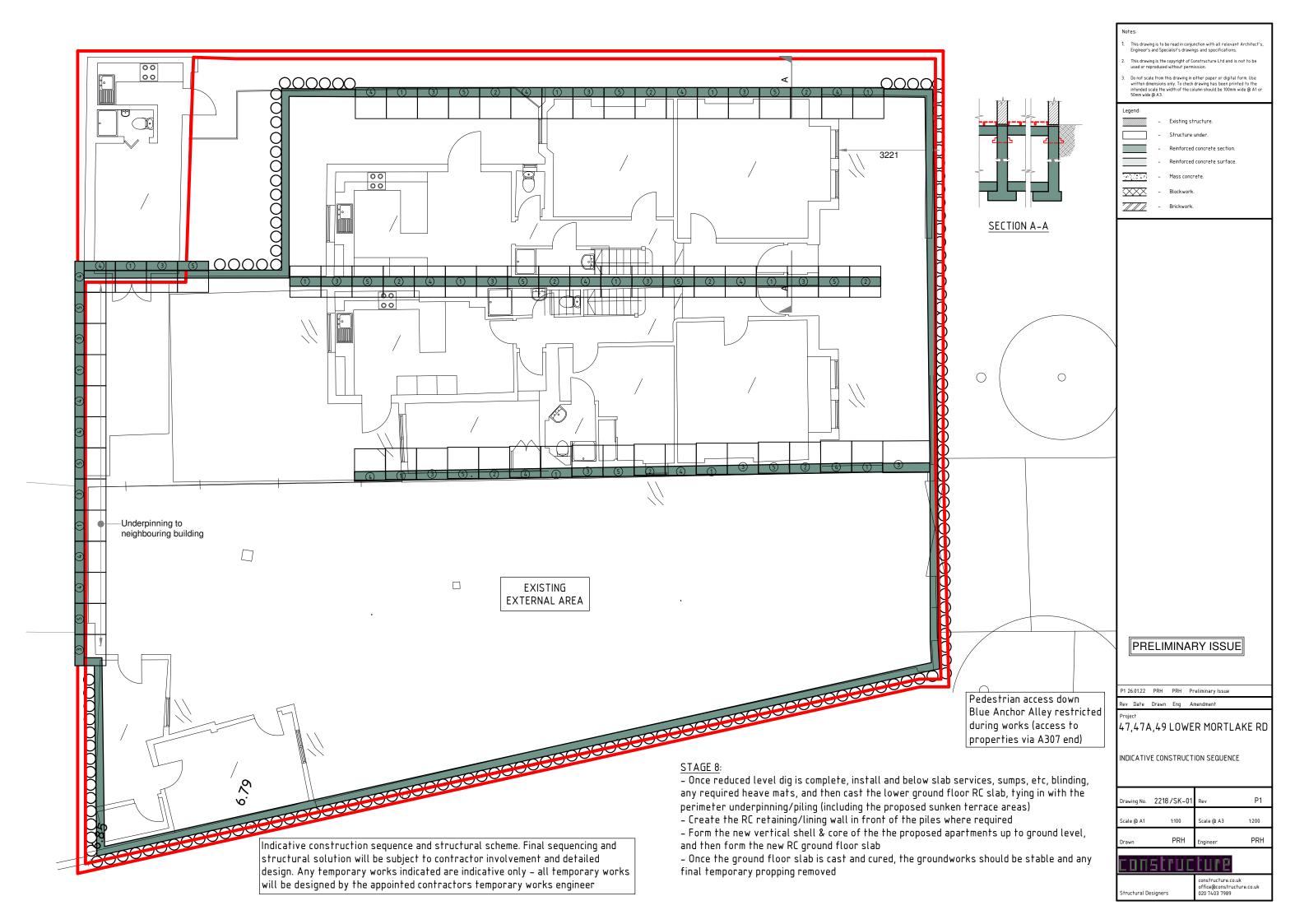

Lower Mortlake Elevation

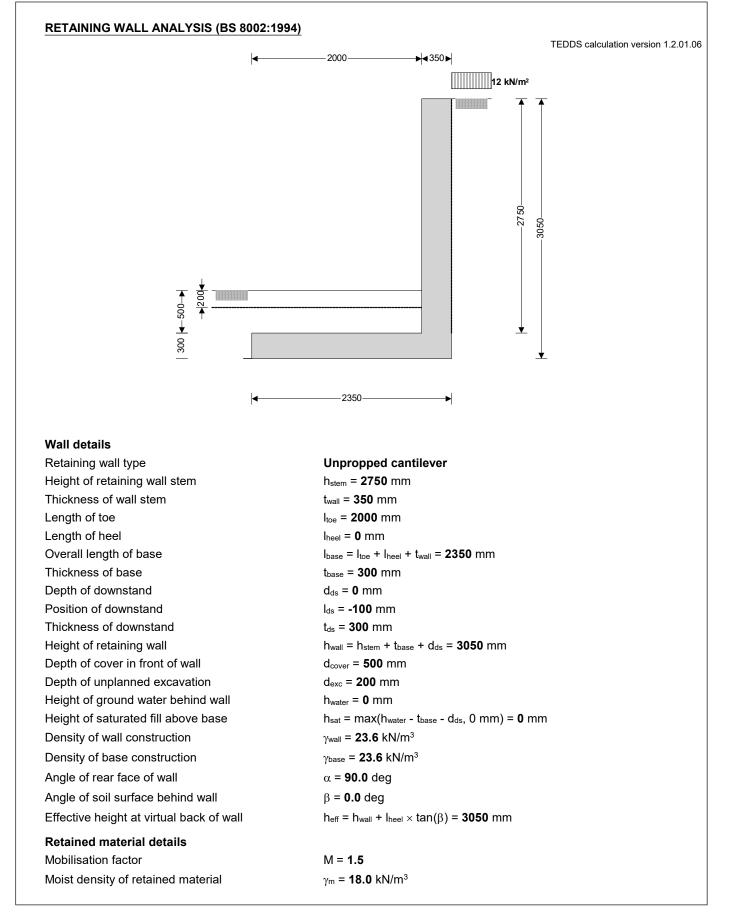

1:100 @A3 BL-15-303 - P1 boehm - lynas APPENDIX B: POSSIBLE CONSTRUCTION SEQUENCE





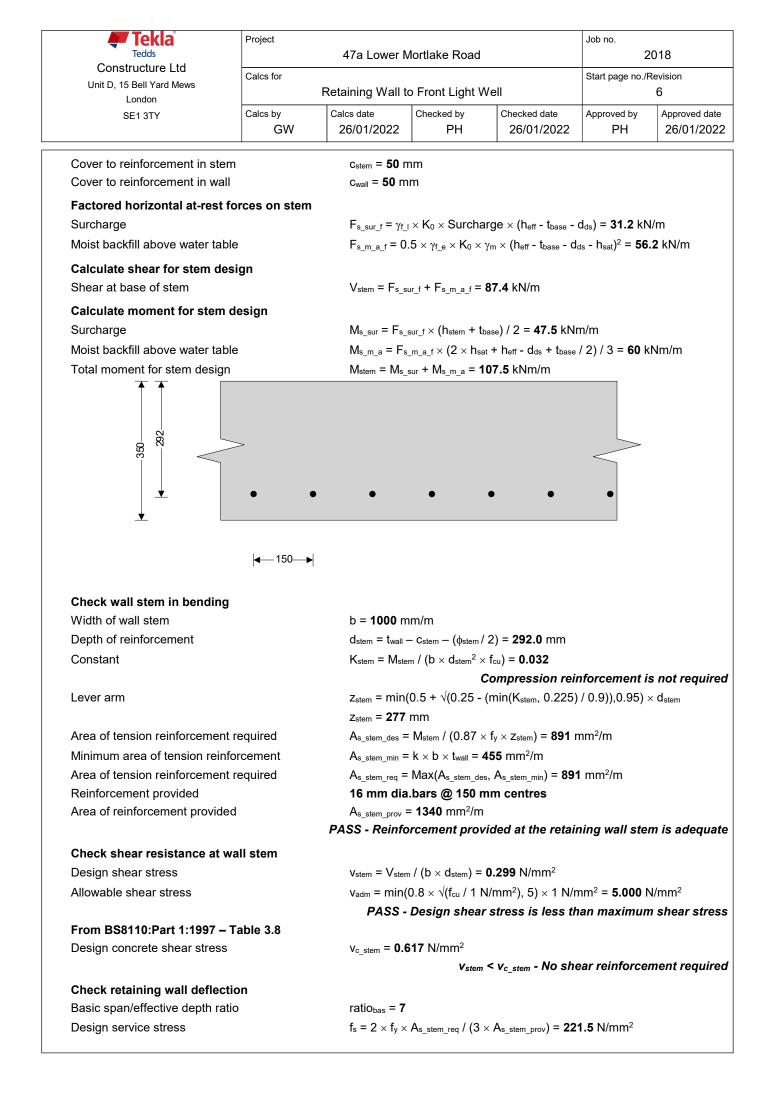




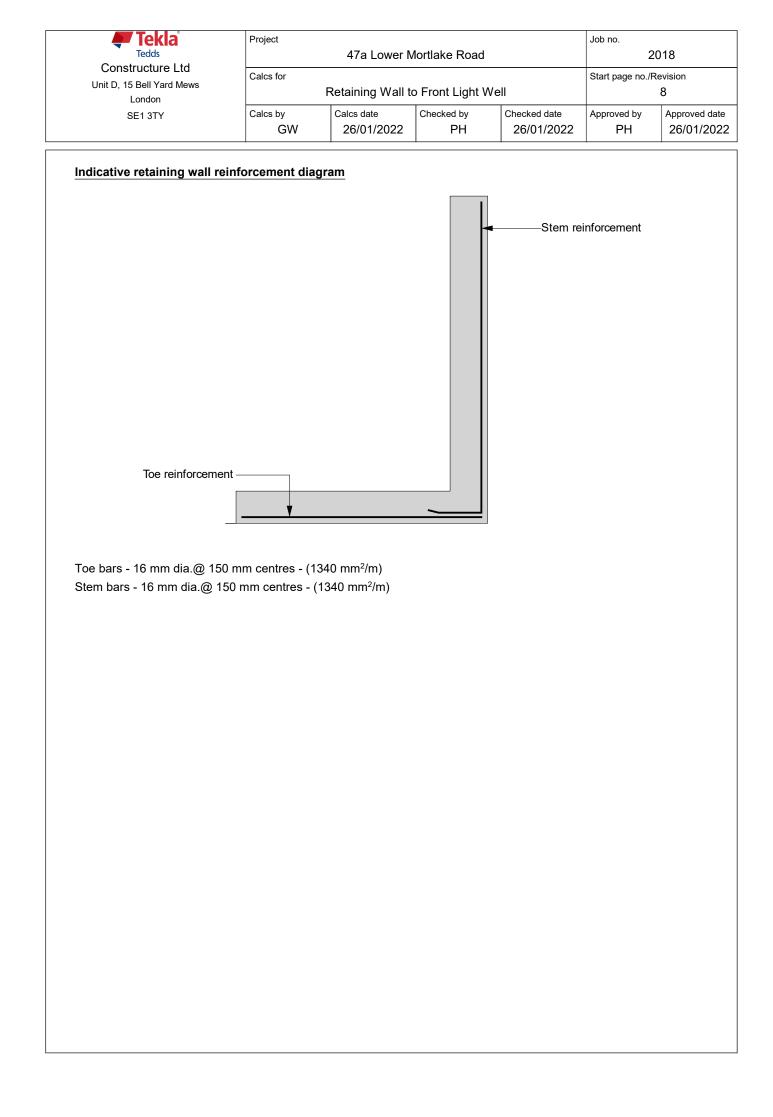


APPENDIX C: CALCULATIONS

Tekl a	Project				Job no.	
Tedds Constructure Ltd	47a Lower Mortlake Road				2018	
	Calcs for	Start page no./Revision				
Unit D, 15 Bell Yard Mews London	Retaining Wall to Front Light Well				1	
SE1 3TY	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	GW	26/01/2022	PH	26/01/2022	PH	26/01/2022



Tekla Tedds Constructure Ltd	Project	47a Lower N	/lortlake Road		Job no. 2	018
Unit D, 15 Bell Yard Mews London	Calcs for	Retaining Wall to	o Front Light V	Vell	Start page no./F	Revision 2
SE1 3TY	Calcs by GW	Calcs date 26/01/2022	Checked by PH	Checked date 26/01/2022	Approved by PH	Approved date 26/01/2022
Saturated density of retained i	material	γ _s = 21.0 kt	N/m ³			
Design shear strength		φ' = 24.2 de	-			
Angle of wall friction		δ = 0.0 deg	I			
Base material details						
Moist density		γ _{mb} = 18.0 k				
Design shear strength		φ' _b = 24.2 d	-			
Design base friction		δ _b = 18.6 de				
Allowable bearing pressure		P _{bearing} = 10)0 kN/m²			
Using Coulomb theory						
Active pressure coefficient for $k = cir(k - $						(1)(12) = 0.444
Passive pressure coefficient for $\kappa_a = \sin(\theta - \theta)$		$^{2} \times sin(\alpha - \delta) \times [1 + 1]$	- \(sin(\overline{\overlin	< sin(φ - β) / (sin(o	$(a - b) \times \sin(a + b)$	β)))]²) = 0.41
rassive pressure coenicient id		י ז(90 - φ'₅)² / (sin(90) - δh) x [1 - √(s	$\sin(d_{\rm b} + \delta_{\rm b}) \times \sin(d_{\rm b})$.)/(sin(90 +	δ _b)))] ²) = 4 18 7
A	πρ – 3π) - 00) × [1 - 1(3			00)))]) – 4.101
At-rest pressure	atorial	K. – 1. oir	(+') - 0 500			
At-rest pressure for retained n	laterial	$R_0 = 1 - SII$	n(φ') = 0.590			
Loading details			10 0 1 N// ²			
Surcharge load on plan		-	= 12.0 kN/m ²			
Applied vertical dead load on v Applied vertical live load on wa		W _{dead} = 0.0 W _{live} = 0.0				
Position of applied vertical loa		$I_{load} = 0 \text{ mm}$				
Applied horizontal dead load of		$F_{dead} = 0.0$				
Applied horizontal live load on		F _{live} = 0.0 k				
Height of applied horizontal lo		h _{load} = 0 mr				
				12		
	_					
/	1					
42.	78.4		uu-	5.0 2	23.0	
					n in kN/m massi	ros shown in LNU
				LOADS Show	н ні кім/m, pressul	res shown in kN/m


	Project	47a Lower Mortlake Road 20					
Constructure Ltd Unit D, 15 Bell Yard Mews London	Calcs for	Retaining Wall t	Start page no./Revision 3				
SE1 3TY	Calcs by GW	Calcs date 26/01/2022	Checked by PH	Checked date 26/01/2022	Approved by PH	Approved dat 26/01/202	
Vertical forces on wall							
Wall stem		w _{wall} = h _{stem}	$\times t_{wall} \times \gamma_{wall} =$	22.7 kN/m			
Wall base			\times t _{base} \times γ _{base}				
Soil in front of wall			l _{cover} × γ _{mb} = 1 8				
Total vertical load			II + Wbase + Wp =				
Horizontal forces on wall			······				
Surcharge		F _{sur} = K _a ×	Surcharge × h	_{eff} = 15.3 kN/m			
Moist backfill above water ta	ble		-	_f - h _{water}) ² = 35 kN/	/m		
Total horizontal load			+ F _{m_a} = 50.4 k				
Calculate stability against	slidina		-				
Passive resistance of soil in	•	$F_{\rm p} = 0.5 \times I$	$(h_{n} \times \cos(\delta_{h}) \times (h_{n}))$	(d _{cover} + t _{base} + d _{ds}	$- d_{exc}^2 \times \gamma_{mb} =$	12.9 kN/m	
Resistance to sliding		$F_{\text{res}} = F_p + (W_{\text{total}} - w_p) \times \tan(\delta_b) = 26.1 \text{ kN/m}$					
		FAIL - Sliding force is greater than resisting for					
Overturning moments						U	
Surcharge		M _{sur} = F _{sur} :	< (h _{eff} - 2 × dds) / 2 = 23.4 kNm/r	n		
Moist backfill above water ta	ble			_{water} - 3 × d _{ds}) / 3 =			
Total overturning moment			• M _{m_a} = 59 kN		••••		
Restoring moments			<u>-</u> u				
Wall stem		M	× (Itaa + turau / 2	2) = 49.4 kNm/m			
Wall base			\times (noe + twain / 2 se \times Ibase / 2 = 1				
Total restoring moment			$+ M_{base} = 69 k$				
C C		ivijest iviwali	· Mpase •••				
Check stability against over	erturning	M _{ot} = 59.0	kNm/m				
Total overturning moment Total restoring moment		$M_{rest} = 69.0$					
Total rootoning moment				oment is greate	r than overtu	rning mom	
Check bearing pressure			0			0	
Soil in front of wall		M = w. ~	I _{toe} / 2 = 18 kN	lm/m			
Total moment for bearing			$_{t} - M_{ot} + M_{p r} =$				
Total vertical reaction		$R = W_{total} =$					
Distance to reaction			/ R = 488 mm				
Eccentricity of reaction			_{ise} / 2) - x _{bar}) =	687 mm			
				Reaction acts of	utside middle	e third of ba	
				4 L-N1/2			
Bearing pressure at toe		$p_{toe} = R / (1)$	$.5 \times x_{bar}) = 78.$. 4 KN/m²			

Tedds						2018		
Constructure Ltd Unit D, 15 Bell Yard Mews	Calcs for				Start page no./Revision			
London		Retaining Wall to	o Front Light V	Vell		4		
SE1 3TY	Calcs by GW	Calcs date 26/01/2022	Checked by PH	Checked date 26/01/2022	Approved by PH	Approved dat 26/01/202		
RETAINING WALL DESIGN (B	6 8002:1994)							
Ultimate limit state load factor	s				TEDDS calculatio	n version 1.2.01		
Dead load factor		γ _{f_d} = 1.4						
Live load factor		γ _{f_l} = 1.6						
Earth and water pressure factor		γ _{f_e} = 1.4						
Factored vertical forces on wa	11							
Wall stem		$W_{wall_f} = \gamma_{f_d}$	imes h _{stem} $ imes$ t _{wall} $ imes$	γ _{wall} = 31.8 kN/m				
Wall base				<γ _{base} = 23.3 kN/i				
Soil in front of wall				_{mb} = 25.2 kN/m				
Total vertical load				w _{p_f} = 80.3 kN/m				
Factored horizontal at-rest for	ces on wall							
Surcharge		$F_{sur_f} = \gamma_{f_I} \times$	K ₀ × Surchar	ge × h _{eff} = 34.6 kN	l/m			
Moist backfill above water table			_	_n × (h _{eff} - h _{water}) ² =				
Total horizontal load		F _{total_f} = F _{sur}	$F_{\text{total }f} = F_{\text{sur},f} + F_{m,a,f} = 103.7 \text{ kN/m}$					
Passive resistance of soil in from	t of wall	$F_{p_f} = \gamma_{f_e} \times$	$0.5 imes K_p imes cos$	$(\delta_b) \times (d_{cover} + t_{bas})$	ase + dds - dexc) ² × γ_{mb} = 18			
kN/m								
Factored overturning moment	S							
Surcharge		$M_{sur_f} = F_{sur_f}$	$_{f} \times (h_{eff} - 2 \times c)$	d _{ds}) / 2 = 52.7 kNr	n/m			
Moist backfill above water table		$M_{m_a_f} = F_{m_a}$	$_{a_f} \times (h_{eff} + 2 \times$	h_{water} - $3 imes d_{ds}$) /	3 = 70.3 kNm/	′m		
Total overturning moment		$M_{ot_f} = M_{sur_}$	_f + M _{m_a_f} = 12	3 kNm/m				
Restoring moments								
Wall stem		$M_{wall_f} = w_{wall_f}$	$II_{f} \times (I_{toe} + t_{wall})$	/ 2) = 69.2 kNm/n	n			
Wall base		$M_{base_f} = w_b$	$_{\rm ase_f} imes I_{\rm base} / 2 =$	= 27.4 kNm/m				
Soil in front of wall		$M_{p_r_f} = w_{p_f}$	× I _{toe} / 2 = 25.	2 kNm/m				
Total restoring moment		M _{rest_f} = M _{wa}	all_f + M _{base_f} + N	M _{p_r_f} = 121.7 kNr	n/m			
Factored bearing pressure								
Total moment for bearing		$M_{total_f} = M_{re}$	est_f - M _{ot_f} = -1.	3 kNm/m				
Total vertical reaction		_	= 80.3 kN/m					
Distance to reaction		-	_{Lf} / R _f = -16 mr					
Eccentricity of reaction		e _f = abs((l _{ba}	ase / 2) - Xbar_f) =		word score	of colouio#		
Bearing pressure at toe		$\mathbf{p}_{\mathrm{exc}} = \mathbf{P}_{\mathrm{e}} / \mathbf{p}_{\mathrm{exc}}$	(15 × v) -	WARNING - Be -3368.2 kN/m ²	eyona scope	oi calculati		
Bearing pressure at heel			$N/m^2 = 0 \text{ kN/m}$					
Rate of change of base reaction		• -		70644.92 kN/m²/r	n			
Bearing pressure at stem / toe				te × I _{toe}), 0 kN/m ²				
Bearing pressure at mid stem						0 kN/m²		
Bearing pressure at stem / heel								
Design of reinforced concrete	retaining wa			(,			
	. stanning we		•••					
Material properties Characteristic strength of concre	te	f = 40 N/n	nm ²					
Characteristic strength of reinfor			f _{cu} = 40 N/mm ² f _y = 500 N/mm ²					
Base details		.y 300 i 4/i						
Minimum area of reinforcement		k = 0.13 %						

Tedds	Project Job no. 47a Lower Mortlake Road 2018					
Constructure Ltd Unit D, 15 Bell Yard Mews London	Calcs for Start page no./Revision Retaining Wall to Front Light Well 5					
	alcs by GW	Calcs date 26/01/2022	Checked by PH	Checked date 26/01/2022	Approved by PH	Approved date 26/01/202
Cover to reinforcement in toe		c _{toe} = 50 m	m			
Calculate shear for toe design						
Shear from weight of base		V _{toe_wt_base} =	= $\gamma_{f_d} \times \gamma_{base} \times I_t$	toe × t _{base} = 19.8 kN	l/m	
Shear from weight of soil		V _{toe_wt_soil} =	Wp_f - ($\gamma_{f_d} \times \gamma_m$	$1 \times I_{toe} \times d_{exc}$ = 15.	1 kN/m	
Total shear for toe design		$V_{toe} = V_{toe_v}$	vt_base - V _{toe_wt_s}	_{oil} = 4.7 kN/m		
Calculate moment for toe design	n					
Moment from weight of base		M _{toe_wt_base} :	= ($\gamma_{f_d} \times \gamma_{base} \times$	$t_{\text{base}} \times (I_{\text{toe}} + t_{\text{wall}} / 2)$	2) ² /2) = 23.4	kNm/m
Moment from weight of soil		M _{toe_wt_soil} =	(Wp_f - ($\gamma f_d \times \gamma f_d$	m× I _{toe} × d _{exc})) × (I _{toe}	e + t _{wall}) / 2 = 1	7.8 kNm/m
Total moment for toe design		$M_{toe} = M_{toe}$	wt_base - Mtoe_wt_	_{_soil} = 5.7 kNm/m		
300	• •	•	•	• •	•	
Check toe in bending Width of toe Depth of reinforcement	 150 - ►	b = 1000 m dree = trase -	1m/m - c _{toe} — (φ _{toe} / 2)) = 242.0 mm		
Constant			$(b \times d_{toe}^2 \times f_{cu})$			
				, Compression reii	nforcement is	s not requir
Lever arm		$z_{\text{top}} = \min(0)$, not requi
		z _{toe} = 230 r		min(K _{toe} , 0.225) / (0.9)),0.95) × d	-
Area of tension reinforcement requ	uired	z _{toe} = 230 r	nm	min(K _{toe} , 0.225) / (_y × z _{toe}) = 57 mm²/		-
Area of tension reinforcement requ Minimum area of tension reinforce		$z_{toe} = 230$ r $A_{s_toe_des} =$	nm	_y × z _{toe}) = 57 mm²/		-
	ement	$z_{toe} = 230 r$ $A_{s_toe_des} =$ $A_{s_toe_min} =$	nm M _{toe} / (0.87 × f_y k × b × t_{base} = 3	_y × z _{toe}) = 57 mm²/	m	-
Minimum area of tension reinforce	ement	z _{toe} = 230 r A _{s_toe_des} = A _{s_toe_min} = A _{s_toe_req} = I	nm M _{toe} / (0.87 × f_y k × b × t_{base} = 3	_y × z _{toe}) = 57 mm²/ 390 mm²/m A _{s_toe_min}) = 390 mi	m	-
Minimum area of tension reinforce Area of tension reinforcement requ	ement	z _{toe} = 230 r A _{s_toe_des} = A _{s_toe_min} = A _{s_toe_req} = 1 16 mm dia A _{s_toe_prov} =	nm M _{toe} / (0.87 × fy k × b × t _{base} = 3 Max(As_toe_des, <i>J</i> .bars @ 150 r 1340 mm ² /m	y × z _{toe}) = 57 mm²/ 390 mm²/m A _{s_toe_min}) = 390 mi nm centres	m m²/m	toe
Minimum area of tension reinforce Area of tension reinforcement requ Reinforcement provided Area of reinforcement provided	ement	z _{toe} = 230 r A _{s_toe_des} = A _{s_toe_min} = A _{s_toe_req} = 1 16 mm dia A _{s_toe_prov} =	nm M _{toe} / (0.87 × fy k × b × t _{base} = 3 Max(As_toe_des, <i>J</i> .bars @ 150 r 1340 mm ² /m	_y × z _{toe}) = 57 mm²/ 390 mm²/m A _{s_toe_min}) = 390 mi	m m²/m	toe
Minimum area of tension reinforce Area of tension reinforcement require Reinforcement provided Area of reinforcement provided Check shear resistance at toe	ement	z _{toe} = 230 r A _{s_toe_des} = A _{s_toe_min} = A _{s_toe_req} = 1 16 mm dia A _{s_toe_prov} = PASS - Rein	nm M _{toe} / (0.87 × fy k × b × t _{base} = 3 Max(As_toe_des, 7 .bars @ 150 r 1340 mm ² /m forcement pre	y × z _{toe}) = 57 mm²/ 390 mm²/m A _{s_toe_min}) = 390 mi nm centres ovided at the reta	m m²/m	toe
Minimum area of tension reinforce Area of tension reinforcement requires Reinforcement provided Area of reinforcement provided Check shear resistance at toe Design shear stress	ement	$z_{toe} = 230 \text{ m}$ $A_{s_toe_des} =$ $A_{s_toe_req} =$ 16 mm dia $A_{s_toe_prov} =$ $PASS - Rein$ $v_{toe} = V_{toe} /$	$\begin{array}{l} M_{toe} \ / \ (0.87 \times f_{y} \\ k \times b \times t_{base} = 3 \\ Max(A_{s_toe_des}, a) \\ .bars \ \textcircled{\textbf{@}} \ 150 \ r \\ 1340 \ mm^2/m \\ \mathbf{forcement} \ \mathbf{pr} \\ forcement \ \mathbf{pr} \\ (b \times d_{toe}) = 0.0 \end{array}$	y × z _{toe}) = 57 mm²/ 390 mm²/m A _{s_toe_min}) = 390 mi nm centres ovided at the reta	m m²/m aining wall to	toe e is adequa
Minimum area of tension reinforce Area of tension reinforcement requires Reinforcement provided Area of reinforcement provided Check shear resistance at toe Design shear stress Allowable shear stress	ement uired	$z_{toe} = 230 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_min} =$ $A_{s_toe_req} =$ 16 mm dia $A_{s_toe_prov} =$ $PASS - Rein$ $v_{toe} = V_{toe} /$ $v_{adm} = min($	nm $M_{toe} / (0.87 \times f_y)$ $k \times b \times t_{base} = 3$ $Max(A_{s_toe_des}, J_s)$.bars @ 150 r 1340 mm ² /m <i>forcement pro</i> $(b \times d_{toe}) = 0.0$ $0.8 \times \sqrt{f_{cu}} / 1$	y × z _{toe}) = 57 mm²/ 390 mm²/m A _{s_toe_min}) = 390 mi nm centres ovided at the reta	m m²/m aining wall to nm² = 5.000 N	ttee Ite is adequa I/mm ²
Minimum area of tension reinforce Area of tension reinforcement required Reinforcement provided Area of reinforcement provided Check shear resistance at toe Design shear stress Allowable shear stress From BS8110:Part 1:1997 – Tabl	ement uired	z _{toe} = 230 r As_toe_des = As_toe_min = As_toe_min = As_toe_req = 1 16 mm dia As_toe_prov = PASS - Rein v _{toe} = V _{toe} / v _{adm} = min(PASS -	mm $M_{toe} / (0.87 \times f_y)$ $k \times b \times t_{base} = 3$ $Max(A_{s_toe_des}, J_s)$ $Max(A_{s_toe_des}, J_s)$ $Max(A_{s_toe_des}, J_s)$ $Max(A_{s_toe_des}, J_s)$ $Max(A_{s_toe_des}, J_s)$ $Max(A_{s_toe_s}, J_s)$ Max(A	y × z _{toe}) = 57 mm²/ 390 mm²/m A _{s_toe_min}) = 390 mi nm centres ovided at the reta 119 N/mm² N/mm²), 5) × 1 N/n	m m²/m aining wall to nm² = 5.000 N	toe le is adequa
Minimum area of tension reinforce Area of tension reinforcement requires Reinforcement provided Area of reinforcement provided Check shear resistance at toe Design shear stress Allowable shear stress	ement uired	$z_{toe} = 230 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_min} =$ $A_{s_toe_req} =$ 16 mm dia $A_{s_toe_prov} =$ $PASS - Rein$ $v_{toe} = V_{toe} /$ $v_{adm} = min($	nm $M_{toe} / (0.87 \times f_y)$ $k \times b \times t_{base} = 3$ $Max(A_{s_toe_des}, J_s)$ $Max(A_s_toe_des, J_s)$ $Max(A_{s_toe_des}, J_s)$ $Max(A_{s_toe_des}, J_s)$ $Max(A_{s_toe_s}, J_s)$ $Max(A_{s_$	$y \times z_{toe}$) = 57 mm ² / 390 mm ² /m $A_{s_toe_min}$) = 390 min nm centres ovided at the reta ovided at the reta N/mm² N/mm ²), 5) × 1 N/m r stress is less th	m m²/m aining wall to nm² = 5.000 N an maximum	toe I is adequa I/mm² I shear stree
Minimum area of tension reinforce Area of tension reinforcement required Reinforcement provided Area of reinforcement provided Check shear resistance at toe Design shear stress Allowable shear stress From BS8110:Part 1:1997 – Tabl	ement uired Ie 3.8	$z_{toe} = 230 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_min} =$ $A_{s_toe_req} =$ 16 mm dia $A_{s_toe_prov} =$ $PASS - Rein$ $v_{toe} = V_{toe} /$ $v_{adm} = min($ $PASS -$ $v_{c_toe} = 0.68$	nm $M_{toe} / (0.87 \times f_y)$ $k \times b \times t_{base} = 3$ $Max(A_{s_toe_des, J})$ $Jato mm^2/m$ forcement pro- $(b \times d_{toe}) = 0.0$ $0.8 \times \sqrt{(f_{cu} / 1 N)}$ Design shear $B_{s} N/mm^2$ V_{tot}	y × z _{toe}) = 57 mm²/ 390 mm²/m A _{s_toe_min}) = 390 mi nm centres ovided at the reta 119 N/mm² N/mm²), 5) × 1 N/n	m m²/m aining wall to nm² = 5.000 N an maximum	toe I is adequa I/mm² I shear stre
Minimum area of tension reinforce Area of tension reinforcement require Reinforcement provided Area of reinforcement provided Check shear resistance at toe Design shear stress Allowable shear stress From BS8110:Part 1:1997 – Tabl Design concrete shear stress	ement uired Ie 3.8	$z_{toe} = 230 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_min} =$ $A_{s_toe_req} =$ 16 mm dia $A_{s_toe_prov} =$ $PASS - Rein$ $v_{toe} = V_{toe} /$ $v_{adm} = min($ $PASS -$ $v_{c_toe} = 0.68$	nm $M_{toe} / (0.87 \times f_y)$ $k \times b \times t_{base} = 3$ $Max(A_{s_toe_des, J})$ $Jato mm^2/m$ forcement pro- $(b \times d_{toe}) = 0.0$ $0.8 \times \sqrt{(f_{cu} / 1 N)}$ Design shear $B_{s} N/mm^2$ V_{tot}	$y \times z_{toe}$) = 57 mm ² / 390 mm ² /m $A_{s_toe_min}$) = 390 min nm centres ovided at the reta ovided at the reta N/mm² N/mm ²), 5) × 1 N/m r stress is less th	m m²/m aining wall to nm² = 5.000 N an maximum	toe I is adequa I/mm² I shear stre
Minimum area of tension reinforce Area of tension reinforcement requires Reinforcement provided Area of reinforcement provided Check shear resistance at toe Design shear stress Allowable shear stress From BS8110:Part 1:1997 – Tabl Design concrete shear stress Design of reinforced concrete resonant Material properties Characteristic strength of concrete	ement uired le 3.8 etaining wall	z _{toe} = 230 r A _{s_toe_des} = A _{s_toe_min} = A _{s_toe_req} = 1 16 mm dia A _{s_toe_prov} = <i>PASS - Rein</i> v _{toe} = V _{toe} / v _{adm} = min(<i>PASS -</i> v _{c_toe} = 0.68 <u>stem (BS 8002</u> f _{cu} = 40 N/r	nm $M_{toe} / (0.87 \times f_y)$ $k \times b \times t_{base} = 3$ $Max(A_{s_toe_des, A_s})$.bars @ 150 r 1340 mm ² /m forcement pro- (b × d_{toe}) = 0.0 0.8 × $\sqrt{(f_{cu} / 1 N)}$ Design shear 38 N/mm ² V_{to} :1994) nm ²	$y \times z_{toe}$) = 57 mm ² / 390 mm ² /m $A_{s_toe_min}$) = 390 min nm centres ovided at the reta ovided at the reta N/mm² N/mm ²), 5) × 1 N/m r stress is less th	m m²/m aining wall to nm² = 5.000 N an maximum	toe I is adequa I/mm² I shear stre
Minimum area of tension reinforce Area of tension reinforcement requires Reinforcement provided Area of reinforcement provided Check shear resistance at toe Design shear stress Allowable shear stress From BS8110:Part 1:1997 – Tabl Design concrete shear stress Design of reinforced concrete reso Material properties	ement uired le 3.8 etaining wall	$z_{toe} = 230 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_min} =$ $A_{s_toe_min} =$ 16 mm dia $A_{s_toe_prov} =$ $PASS - Rein$ $v_{toe} = V_{toe} /$ $v_{adm} = min($ $PASS -$ $v_{c_toe} = 0.68$ $stem (BS 8002)$	nm $M_{toe} / (0.87 \times f_y)$ $k \times b \times t_{base} = 3$ $Max(A_{s_toe_des, A_s})$.bars @ 150 r 1340 mm ² /m forcement pro- (b × d_{toe}) = 0.0 0.8 × $\sqrt{(f_{cu} / 1 N)}$ Design shear 38 N/mm ² V_{to} :1994) nm ²	$y \times z_{toe}$) = 57 mm ² / 390 mm ² /m $A_{s_toe_min}$) = 390 min nm centres ovided at the reta ovided at the reta N/mm² N/mm ²), 5) × 1 N/m r stress is less th	m m²/m aining wall to nm² = 5.000 N an maximum	toe I is adequa I/mm² I shear stre
Minimum area of tension reinforce Area of tension reinforcement requires Reinforcement provided Area of reinforcement provided Check shear resistance at toe Design shear stress Allowable shear stress From BS8110:Part 1:1997 – Tabl Design concrete shear stress Design of reinforced concrete resonant Material properties Characteristic strength of concrete	ement uired le 3.8 etaining wall	z _{toe} = 230 r A _{s_toe_des} = A _{s_toe_min} = A _{s_toe_req} = 1 16 mm dia A _{s_toe_prov} = <i>PASS - Rein</i> v _{toe} = V _{toe} / v _{adm} = min(<i>PASS -</i> v _{c_toe} = 0.68 <u>stem (BS 8002</u> f _{cu} = 40 N/r	nm $M_{toe} / (0.87 \times f_y)$ $k \times b \times t_{base} = 3$ $Max(A_{s_toe_des, A_s})$.bars @ 150 r 1340 mm ² /m forcement pro- (b × d_{toe}) = 0.0 0.8 × $\sqrt{(f_{cu} / 1 N)}$ Design shear 38 N/mm ² V_{to} :1994) nm ²	$y \times z_{toe}$) = 57 mm ² / 390 mm ² /m $A_{s_toe_min}$) = 390 min nm centres ovided at the reta ovided at the reta N/mm² N/mm ²), 5) × 1 N/m r stress is less th	m m²/m aining wall to nm² = 5.000 N an maximum	toe I is adequa I/mm² I shear stree

Tekla Tedds Constructure Ltd	Project	47a Lower M	/lortlake Road		Job no. 2	018		
Unit D, 15 Bell Yard Mews London	Calcs for	Calcs for Start page no./Revision Retaining Wall to Front Light Well 7						
SE1 3TY	Calcs by GW	Calcs date 26/01/2022	Checked by PH	Checked date 26/01/2022	Approved by PH	Approved of 26/01/20		
Modification factor Maximum span/effective de Actual span/effective depth	oth ratio							
				PASS - Span to	o deptin ratio	is accepta		

Project No. 2218	Sheet	Revision	12.00.000	en montlake RD
Date JAN 21	Engineer GW	Checked	Project	
				11 A 1
BUOYANCY	CHECK			
AREA O	FBASEMENT	~ 550	12 (TO OUTSIDE FI	DLE OF RETAINING UALLY
- DEPTH O	e basement	~ 3M	(to uls of G	MOUND FLOOR SLAD)
- DEPTH IN	ro worst ca	256' WATER	TABLE = 2M (1	M BELOW GL)
<i>.</i> , íc	STAL VOUSME	of water	DISPIDLED = 110	8 m
Tc	otal hydrost	ATIL UPLIFT	FORCE = 11,00	DO KN (SLS)
APProx VC	DWME OF C	on there in	THE BASEMENT:	
- WAUS	= 21+ 2	27+19+28	+ 19 + 18 + 6 =	138 m
	STEM = 2.2	M x 0.225	$1 \times 138 m = 68.3 m$	3 = 1639 KN
	GASE = 1.24	5 x 0.25 x	55m = 17.2m	= 413 KN
- WEIGH	IT OF BRUCK	work wan	s over:	
- GU	ILDING HEIGHT	(No 47-4	5) = 7.0 M	
			5m × 60n × 0.7 (1	Fon voios)
	× 22 KN/M3			
- 30	IDING HEIG	HT (NEW	DENELOFMENT)	
	3 storey =	10m x 3.6	5 KN/M2 x 25m =	900 KN
	SINGLE STORE	x = 4.0m	x 3.6 KN/n2 x 15M	= 216 KN
- V	EIGHT OF	GNOUND FU	sus noo	
	450 n × 0	.2 m× 24 Km	VIM = 2160 KN	
- W	EIGHT OF D	SASEMENT S	ILAB	
	550m × 0.	35~ × 24	KN/m2 = 4620 KN	
				constructure.co.uk
constr	UCTULE]	Structural Designers	office@constructure.co.uk 020 7403 7989

- WE	= 400 2	Checked SUPER STRUCTUR (APPROX) × 1 KN	Project	(2550ml	
	= 400 2	(appnox) × 1			
	= 400 2	(appnox) × 1			
	= 920		.15 KN/m ² x	2 FLOO	
- WEI		K N			in s
- WEI	UNT OF 6				
		PERIMETER BL	ock work In	1 BASEM	IENT
1	100 m x	2.7 × 0	.1m x 18 KN/	m ³ =	486 KN
- WEI	cht of s	tructure no	OF (ASSUM	E TIMBER	n)
	= 200 m2	× 1.3 KN/M2	= 260	KN (FUDT ROOF)
	= 160 m ²	× 1.35 KN/N	2 = 220	~~ ((TILED)
- WI	EIGHT OF C	psement sc	NEED		
	= 550 × 0	0.07 × 23 KN/ H	n = 985	KN	
TOTAL	dead load	APPLIED And	ound basene	NY =	14174 KN
	14174 K	2 7 1100	~ KN	OW	(fos = 1.3)
	1 1 1	, ,,			
constru)	Structural Designe		constructure.co.uk office@constructure.co.uk 020 7403 7989	