

APPENDIX 7 – FACTUAL REPORT

FACTUAL R	EPORT	
Elleray Hall & North Lane Depot/East C	`ar Park	
Liferay han & North Lane Depoty Last e	, ar i ark	
Prepared For: Richmond & Wandsworth) Council	
10	SSUE 01	
	SUE UI	
Concept: 20/3521- FR01	21/06/2021	
Unit 8, Warple Mews,		
Warple Way London W3 0RF		
Tel: 020 8811 2880 Fax: 020 8811 2881 e-mail: <u>si@conceptconsultants.co.uk</u>		CONCEPT
www.conceptconsultants.co.uk		C•NCEPT

CONCEPT Unit 8 Warple Mews, Warple Way, London W3 0RF Tel: 0208 811 2880, Fax: 0208 811 2881 Email: si@conceptconsultants.co.uk

DOCUMENT ISSUE REGISTER					
Project Name:	Elleray Hall & North Lane Depot/East Car Park				
Project Number:	20/3521				
Document Reference:	20/3521 - FR01	Current Issue	Issue 01		
Document Type:	Site Investigation Report				

DEVELOPMENT	Name	Signature	Date
Prepared by:	N Carsandas	Marth Garage	21/06/2021
Checked by:	O Savvidou	Bearing	21/06/2021
Approved by:	M Dedic	Malant	21/06/2021

Issued to: Jomas Associates Ltd

Date	Issue	Amendment Details/ Reason for issue	Issued to
09/04/2021	Issue 00	DRAFT	Jomas Associates
21/06/2021	Issue 01	FINAL: Monitoring and water sampling complete	Jomas Associates
1			

Notes:

CONTENTS

- 1. **PROJECT PARTICULARS**
- 2. PURPOSE AND SCOPE OF WORKS
- 3. DESCRIPTION OF WORKS
- 4. INVESTIGATION METHODS
- 4.1 Ground Penetrating Radar Survey (GPR)
- 4.2 Utilities Survey and Inspection Pits
- 4.3 Detailed Unexploded Ordnance Risk Assessment
- 4.4 Cable Percussion Drilling
 - 4.4.1 Sampling and Testing during Cable Percussion Drilling
- 4.5 Dynamic Sampling Boreholes
- 4.6 Machine Excavated Trial Trenches
- 4.7 Dynamic Cone Penetrometer Testing (DCP)
- 4.8 Soakaway Tests
- 4.9 Standpipe Installations and Backfill
- 4.10 Instrumentation Monitoring and Sampling
- 4.11 Logging / Laboratory Testing
- 4.12 Setting Out

- 5. GEOLOGICAL GROUND PROFILE
- 6. SITE LOCATION PLAN
- 7. EXPLORATORY HOLE LOCATION PLAN
- 8. CABLE PERCUSSION BOREHOLE LOGS
- 9. DYNAMIC SAMPLING BOREHOLE LOGS
- **10. TRIAL TRENCH LOGS**
- 11. DYNAMIC CONE PENETROMETER (DCP) RESULTS
- **12.** SOAKAWAY TEST RESULTS
- **13.** INSTRUMENTATION MONITORING RESULTS
- 14. GEOTECHNICAL LABORATORY TEST RESULTS
- 15. CHEMICAL LABORATORY TEST RESULTS
- 16. PHOTOGRAPHS

APPENDIX A: Unexploded Ordnance Risk Assessment

1. PROJECT PARTICULARS

Site Location:	Elleray Hall & North Lane Depot/East Car Park
Client:	Richmond & Wandsworth Council
Investigation Supervisor:	Jomas Associates Ltd
Fieldwork:	22/02/2021 – 03/03/2021
Laboratory Work:	26/02/2021 – 08/04/2021

2. PURPOSE AND SCOPE OF WORKS

The purpose of the investigation was to understand the ground and groundwater conditions at the site and to determine the nature and extent of any ground and groundwater contamination.

The site comprised two irregular-shaped plots of land to the north and south of Middle Lane, Teddington.

The south plot was situated adjacent to the junction of Elleray Road and Middle Lane and was occupied by a single storey iron-clad commercial-style building identified as Elleray Hall Social Centre.

The north plot was located adjacent to the north of Middle Lane and east of North Lane with the western section of the plot secured with hoarding enclosing a demolished building. The eastern section was car parking area accessed off North Lane.

The scope of the works comprised the following:

- 2 No. Cable Percussion Boreholes to a depth of 20.00m;
- 10 No. Dynamic Sampler Boreholes to a depth of 2.00m;
- 3 No. Machine Excavated Trial Trenches to a maximum depth of 2.70m;
- Dynamic Cone Penetrometer (DCP) Testing;
- Soakaway Tests;
- Logging and Photographing;
- Instrumentation Monitoring and Sampling;
- Geotechnical & Chemical Testing.

Table 1 – Exploratory Hole List

Hole ID	Hole Type	Depth (m)	Easting	Northing	Level (mOD)
BH1	СР	20.00	515674.60	170880.38	8.85
BH2	СР	20.00	515700.52	170863.87	8.96

Hole ID	Hole Type	Depth (m)	Easting	Northing	Level (mOD)
WS1	DS/DCP	2.00	515675.80	170903.02	8.87
WS2	DS/DCP	2.00	515656.41	170890.57	8.52
WS3	DS/DCP	2.00	515675.58	170888.52	8.78
WS4	DS/DCP	2.00	515667.17	170880.60	8.74
WS5	DS/DCP	2.00	515678.06	170872.74	9.01
WS6	DS/DCP	2.00	515719.98	170872.86	8.91
WS7	DS/DCP	2.00	515697.50	170866.14	8.98
WS8	DS/DCP	2.00	515704.96	170856.83	8.94
WS9	DS/DCP	2.00	515711.76	170835.53	9.00
WS10	DS/DCP	2.00	515703.65	170828.35	9.09
STP1	TT	2.60	515682.35	170882.26	9.00
STP2	TT	2.50	515664.87	170888.10	8.66
STP3	TT	2.70	515700.13	170858.01	8.93

Key

CP – Cable Percussion Borehole

DS/DCP – Dynamic Sampler Borehole & DCP Location TT – Trial Trench

3. DESCRIPTION OF WORKS

The works were carried out in accordance with the Jomas Associates' "Elleyray Hall & North Lane Depot/ East Car Park" Ground Investigation Specification document with reference P3152J2114/TE, Rv00, dated 26/11/2020 and Concept's Method Statement with reference no: 20/3521, Rv00, dated 01/0/2021.

The northern plot was bounded by residential property to the north and east, North Lane on the west and Middle Lane in the south. The southern plot was bounded by Middle Lane to the north and residential property to the south, east and west. The approximate centre of the site was located at National Grid Reference: E515702, N170871.

The locations of all exploratory holes are shown in the Exploratory Hole Location Plan presented in <u>Section 7</u> of this report.

4. INVESTIGATION METHODS

4.1 Ground Penetrating Radar Survey (GPR)

The GPR survey was undertaken by subcontractor Terrascan.

The survey was designed to obtain information from the subsurface on the position of any additional underground services not locatable using conventional electromagnetic locators and to identify additional ground anomalies, voids and obstructions that may be present. All the services were marked out in the ground.

4.2 Utilities Survey and Inspection Pits

Prior to boring commencing all exploratory hole locations were checked for utilities /buried services using a CAT and genny, existing utility information and hand dug inspection pits to an appropriate depth as identified by the services plans. A hand dug inspection pit was excavated at each exploratory hole location to an appropriate depth as identified by the services plans typically to a maximum depth of 1.20m.

Where surface asphalt was encountered it was broken out by hand held electric breaker.

4.3 Detailed Unexploded Ordnance Risk Assessment

A Detailed Unexploded Ordnance Risk Assessment was carried out by Primely Ltd on behalf of Jomas Associates Ltd with Document titled "Elleyray Hall & North Lane Deport, Teddington TW11 And East car Park, Teddington TW11", dated 16/01/2021. The report is included in <u>Appendix A</u>.

The site was assessed as low risk of items of unexploded German aerial delivered and other types of munitions. Therefore, a UXO survey clearance was not undertaken during drilling.

4.4 Cable Percussion Drilling

2 No Cable Percussion Boreholes (BH1 and BH2) were drilled to a depth of 20.00m using a standard cable percussion rig (Dando 175) with 150mm diameter casing.

4.4.1 Sampling and Testing during Cable Percussion Drilling

Bulk samples were taken at regular intervals in the Made Ground and thereafter at each change in strata. Undisturbed Thin Walled samples (UT) were taken in accordance with EC7 using a down-hole sliding hammer in cohesive material at regular intervals or as instructed by the Investigation Supervisor.

Standard Penetration Tests (SPT) were carried out at specified intervals or as otherwise instructed by the Investigation Supervisor. The resulting SPT "N" blowcount values are presented in the relevant borehole records. Where an SPT using a split spoon sampler was not possible, due to the granular nature of the material, a solid cone was used. The SPT hammer calibration sheet is included in <u>Section 8</u> of this report.

Small, disturbed samples were retrieved from the cutting shoe of the UT100 sampler, the SPT split spoon sampler and at intervals specified by the Investigation Supervisor.

Environmental samples (tubs, jars and vials) were taken for chemical analysis in the Made Ground or at each change of strata and where visual or olfactory evidence of contamination was noted or as instructed by the Investigation Supervisor. Headspace readings for volatile organic compound (VOC) content were taken in all the samples using a Phocheck Tiger photoionization detector.

The borehole logs are presented in <u>Section 8</u> of this report.

4.5 Dynamic Sampling Boreholes

10 No. Dynamic Sampling Boreholes (WS1-WS10) were carried out to a depth of 2.00m. The boreholes were drilled using a tracked Geo drive-tube sampling rig.

Semi-rigid plastic core liners were recovered from each borehole location. The excavated soil was logged in accordance with BS 5930:2020 and photographed.

Environmental samples (tubs, jars and vials) were taken for chemical analysis mostly from the inspection pits. Headspace readings for volatile organic compound (VOC) content were taken using a Phocheck Tiger photoionization detector. Representative bulk and disturbed samples were taken for soil analysis.

SPTs were carried out at the base of the inspection pit at 1.20m depth and at 2.00m. All boreholes were aborted at 2.00m depth due to refusal.

The borehole logs along with the SPT hammer calibration sheet are presented in <u>Section 9</u> and the core photographs are presented in <u>Section 16</u>.

4.6 Machine Excavated Trial Trenches

3 No. Trial pits (STP1-STP3) were machine excavated to a maximum depth of 2.70m using a JCB 3CX backhoe with extension arm. The pits were carried out to for sample collection and to conduct soakaway testing to determine suitability of soakaway drainage.

Environmental samples (tubs, jars and vials) were taken for chemical analysis in the Made Ground or at each change of strata and where visual or olfactory evidence of contamination was noted or as instructed by the Investigation Supervisor. Headspace readings for volatile organic compound (VOC) content were taken in all the samples using a Phocheck Tiger photoionization detector. Bulk samples were also taken for soils analysis.

The trial trenches were logged and photographed. The logs and photographs are presented respectively in <u>Section 10</u> and <u>Section 16</u> of this report.

4.7 Dynamic Cone Penetrometer Testing (DCP)

10 No. TRL DCP Tests were carried out at locations adjacent to the dynamic sampling boreholes shown on the Exploratory Site Location Plan in <u>Section 7</u>.

An 8 kg free fall hammer is lifted and dropped through a height of 575mm. The penetration distance of the cone tip is then recorded and the cycle repeated. Continuous measurements can be made down to a depth of approximately 850mm or when extension shafts are fitted to a maximum recommended depth of 2.00m. Where sub-pavement layers have different strengths, the boundaries can be identified and the thickness determined.

The DCP results and graphs are presented in <u>Section 11</u> of this report.

4.8 Soakaway Tests

Soakaway Tests were carried out in trial pits STP1-STP3 using 50mm diameter pipes installed at the base of each pit, backfield with pea shingle to 1.20m depth. Water was then rapidly pumped in the pipes using a bowser. The water levels were recorded at the

start of each test and at regular intervals. The results of the tests are presented in <u>Section 12</u> of this report.

4.9 Standpipe Installations and Backfill

Monitoring wells were installed in the boreholes as follows:

Table 2 – Monitoring Installation Details

	Base of			Base of	Response Zone		
Hole ID	Borehole (m bgl)	Installation (mm)	Installation	· · · ·		Bottom (m bgl)	
BH1	20.00	50	GMP	6.30	1.00	6.30	
BH2	20.00	50	GMP	6.60	1.00	6.60	
WS1	2.00	50	GMP	2.00	1.00	2.00	
WS2	2.00	50	GMP	2.00	1.00	2.00	
WS6	2.00	50	GMP	2.00	1.00	2.00	
WS10	2.00	50	GMP	2.00	1.00	2.00	

<u>KEY</u>

GMP – Gas and groundwater Standpipe

The boreholes were backfilled with bentonite pellets with gas/groundwater response zones backfilled with a 10mm pea shingle filter with a geosock surround. All installations were finished with bentonite pellets to the surface with concrete and a lockable stopcock cover flush with the ground.

The boreholes with no installations were backfilled with bentonite pellets upon completion.

4.10 Instrumentation Monitoring and Sampling

Groundwater monitoring was carried out during fieldworks. Gas and groundwater monitoring and sampling was carried out by Concept subsequent to completion of the boreholes on 4No scheduled visits between 10/03/2021 and 09/06/2021.

All boreholes were developed least one week prior to sampling using a Wasp pump which provides a relatively high pumping rate to remove water and entrained sediment. Development continued until either the well ran dry, the water ran clear or at least 10 well volumes were removed.

Water sampling was carried in BH2 on 17/03/2021 and in BH1 on 09/06/2021. Water samples were taken using a peristaltic pump at a low pumping rate. The pump tubing was lowered to target the standpipe response zone and a dipmeter was used during purging to ensure that the pumping rate did not reduce the water level. Generally, the water level remained steady at pumping rates of 1 litre every 3 minutes. Water

parameters (pH, conductivity, dissolved oxygen, temperature and Redox levels) were recorded during purging using a flow cell and a YSI Professional Probe. Purging was considered complete when parameters stabilised to within 10%. Generally the water was noted as clear and the purging complete after 3 litres were removed. On completion of purging, the water samples were collected in bottles Eurofins (1No glass, 1No plastic and 1No vial). They were then transferred to Concept laboratory inside cool boxes protected by bubble wrap and kept in the fridge until collection from the chemical laboratory was arranged. The borehole was purged and sampled using a new length of tubing.

An In-Situ Rugged interface was used to prove/disprove the presence LNAPL and DNAPL. However, neither LNAPL nor DNAPL were detected throughout the water column in the boreholes therefore a Geosense dipmeter was used for the subsequent visits. The gas concentrations were recorded using a Gas data GFM436 monitor. Where 0.00 is shown on the results indicates value lower than the detection limit of the machine. The accuracy of the instruments is summarised in <u>Section 13</u> where the gas monitoring reports and groundwater results are presented.

4.11 Logging / Laboratory Testing

Logging of all soil samples was carried out in accordance with BS 5930:2020.

Geotechnical testing was performed at Concept Site Investigations laboratory in accordance with BS1377:1990 unless otherwise stated in the report. Concept is accredited by UKAS for tests where the UKAS logo is appended to the individual test report or summary. Approved signatories for laboratory testing are as follows:

- LG Lynn Griffin (Quality Manager)
- KM Kasia Mazerant (Laboratory Manager)

Where subcontracted analysis has been carried out, the details of the laboratory (and accreditation where applicable) are shown in the individual test report or summary.

The results are presented in tabular format in <u>Section 14</u> of this report.

All chemical testing was specified and scheduled by Jomas Associates and carried out by Chemest in accordance with the requirements of UKAS ISO17025 and MCERTS. The results are presented in tabular format in <u>Section 15</u> of this report.

4.12 Setting Out

The locations of all exploratory holes were agreed with the Investigation Supervisor and set out prior to commencement of the site works.

Following completion of the ground works the locations and elevations of the boreholes and pits were established by Concept using GPS equipment with accuracy between +/-10mm and 30mm.

The co-ordinates and levels of the as-built locations of the boreholes and pits are shown in the Exploratory Hole Location Plan presented in <u>Section 7</u> of this report.

5. GEOLOGICAL GROUND PROFILE

The geological strata encountered during the investigation are summarised in the table below. The Top and Bottom of the strata noted in the table indicates the highest and lowest boundaries encountered in all exploratory holes.

STRATUM	TOP (mOD)	BASE (mOD)	DESCRIPTION
TOPSOIL	8.66	8.37	Soft, dark brown silty CLAY with frequent rootlets.
MADE GROUND	9.09	7.04	Asphalt/ Brickwork/ Concrete over, Dark brownish grey sandy GRAVEL with low flint and concrete cobble content, occasional roots and strong hydrocarbon odour. Gravel comprises angular to subrounded fine to coarse flint, brick, concrete, coal, glass, bone, ceramic pipe and asphalt fragments. Brown slightly gravelly clayey silty fine to coarse SAND with occasional pockets of orangish brown clayey silt, shell fragments), roots and orange and black staining. Greyish brown slightly gravelly slightly sandy clayey SILT with low flint and brick cobble content and occasional roots. Soft, greenish grey slightly gravelly slightly sandy silty CLAY with occasional pockets of reddish brown silty fine sand and orangish brown silt, frequent dark
			grey flecks, slight hydrocarbon odour and dark grey staining.
ALLUVIUM	8.34	8.34 6.86	Firm, orangish brown mottled greenish grey slightly gravelly sandy clayey SILT with occasional pockets of reddish brown silty fine sand, frequent roots and occasional dark grey staining. Gravel is angular to subangular fine to medium flint. Greenish grey slightly gravelly sandy CLAY with occasional pockets of yellowish brown silt and
			reddish brown silty fine sand and frequent dark grey staining. Gravel is angular to rounded fine to medium flint. Sand is fine to medium.
KEMPTON PARK GRAVEL MEMBER	7.96	2.36	Very dense, brown silty sandy angular to subrounded fine to medium flint GRAVEL. Sand is fine to coarse.

STRATUM	TOP (mOD)	BASE (mOD)	DESCRIPTION
			Medium dense, brown clayey gravelly fine to medium SAND with occasional pockets of greyish brown and reddish brown sandy clay. Gravel is subangular to subrounded fine to coarse flint. Firm, orangish brown gravelly sandy clayey SILT.
LONDON CLAY FORMATION	2.55	Extent not proven	Very stiff, dark brown slightly sandy slightly micaceous silty CLAY with occasional partings of light grey silty fine sand, off-white shell fragments, white flecks and dark grey staining.

REFERENCES

British Standards Institution, (2015) Code of practice for ground investigations, British Standard BS5930: 2020, BSI, London

British Standards Institution, (2011) Investigation of potentially contaminated sites, British Standard BS10175: 2011+A2:2017, BSI, London.

UK Specification for Ground Investigation, (2011) Site Investigation Steering Group, Thomas Telford, London

British Geological Survey (1996) London and the Thames Valley 4th Edition, London HMSO.

British Standards Institution BS EN ISO 22475-1, (2006) Geotechnical Investigation and Testing – Sampling Methods and Groundwater Measurements – Part 1: Technical Principles for Execution

British Standards Institution BS EN 1997:1 (2004) EuroCode 7 - Geotechnical Design. Part 1 – General Rules.

British Standards Institution BS EN 1997:2 (2007) EuroCode 7 - Geotechnical Design. Part 2 - Ground Investigation and Testing.

King C. (1981) The stratigraphy of the London Basin and associated deposits. Tertiary Research Special Paper, Vol. 6, Backhuys, Rotterdam, p158.

Aldiss, D. T. (2012) The stratigraphical framework for the Palaeogene successions of the London Basin, UK. British Geological Survey Open Report. British Geological Survey.

6. SITE LOCATION PLAN

Not to Scale / Map data ©2021 Google

7. EXPLORATORY HOLE LOCATION PLAN

8. CABLE PERCUSSION BOREHOLE LOGS

Borehole No

BH1

Project

Elleray Hall & North Lane Depot/East Car Park

Job No	Date Started	24/02/21	Ground Level (mOD)	Co-Ordinates	Final Depth
20/3521	Date Completed	26/02/21	8.85	E 515674.60 N 170880.38	20.0

20.00m

Client Richmond & Wandsworth Council

	BOREHOLE SUMMARY														
Top (m)	Base (m)	Туре	Date Started	Date Ended	Crew	Logged By	Barrel Type	Core Bit	Plant Used/ Method	SPT Hammer Reference					
0.00 1.20	1.20 20.00	IP CP	24/02/2021 24/02/2021	24/02/2021 25/02/2021	DR DR	DH/JM JM			Hand Excavated Dando 175	AR779					

	WA	TER STRIK	KES		WATEI	R ADDED	CHISELLING / SLOW DRILLING				
Strike at (m)) (m) (min) (m) (m)				From (m)	To (m)	From (m)	To (m)	Duration (hr)	Remarks	
10.00	10.00	20	6.80		2.00	6.30	10.00	10.40	01:00	Claystone	

HOLE					CASI	NG				ROTARY	Y RECOVEF	RY	
Dep	th (m)		Diameter (r	nm)	Dept	:h (m)	Dia	meter (mm)		From (m)	To (m)	Duration (hr)	Recovery (%)
0. 20	.00).00		150 150		0.0 6.8	00 80		150 150					
			ROTARY	Y FLUSH	I DE	TAIL							
From ((m) /	To (n	n) Flush T	ype F	ush R	eturn (%)	F	lush Colour					
						AH 0							
Туре	Diam	neter	INSTALL Depth of	Тор а	f	Bottom o		Date of	$\left \right $				
	(m)	m)	Installation (m)	Response (m)	Zone	(m)	Lone	Installation					
GMP			6.30	1.00		6.30		26/02/2021					
			BACK	FILL D	ЕТА	ILS		•					
Top (m)		tom n)	Mate	rial	Ba	ckfill Date		Remarks					
0.00 0.30	0.1	30 00	Concre Bentonite 1	ete Pellets	26	5/02/2021		Flush Cover					
0.30 1.00 6.30	6.	30 .00	Pea Shin Bentonite	ngle									
ssue: FI	FINAL CHD: AN APRV: OS Log Print Date & Time: 09/0							Time: 09/04/2	2021	12:46			MAGS

Borehole No

BH1

Project

Elleray Hall & North Lane Depot/East Car Park

Job No 20/3521

Date Started Date Completed 26/02/21

24/02/21 Ground Level (mOD)

8.85

Co-Ordinates

E 515674.60 N 170880.38

Final Depth 20.00m

Client **Richmond & Wandsworth Council**

		PROGR	ESS					SPT DETAILS		
Date	Hole Pepth (m)	Casing Depth (m)	Water Depth (m)	Remarks	Туре	Depth (m)	N Value	Blow Count / 75mm	Casing Depth (m)	Water Depth (m)
25/02/21	$\begin{array}{c} 0.00\\ 1.20\\ 2.00\\ 2.70\\ 3.00\\ 4.00\\ 4.50\\ 4.50\\ 4.50\\ 4.70\\ 5.70\\ 6.50\\ 10.00\\ 10.70\\ 20.00 \end{array}$	$\begin{array}{c} 2.00\\ 2.70\\ 3.00\\ 4.00\\ 4.50\\ 4.50\\ 4.70\\ 5.70\\ 6.50\\ 6.80\\ 6.80\\ 6.80\end{array}$	Dry Dry Wet 1.00 1.50 2.00 4.00 3.50 4.00 3.50 4.50 Dry 10.00 Dry Dry	Water Added Water Added Water Strike	C C C C C C C S S S S S S	$\begin{array}{c} 1.20\\ 2.00\\ 3.00\\ 4.00\\ 5.00\\ 6.00\\ 8.00\\ 10.00\\ 12.00\\ 14.00\\ 16.00\\ 18.00\\ \end{array}$	N19 N50/0.265 N50/0.29 N16 N13 N12 N20 N50/0.115 N26 N30 N38 N50/0.285	2, 3 / 5, 4, 4, 6 3, 5 / 8, 13, 18, 11 2, 5 / 8, 12, 16, 14 1, 4 / 4, 4, 3, 5 1, 3 / 4, 3, 3, 3 1, 2 / 3, 3, 3, 3 2, 3 / 4, 5, 5, 6 24 / 26, 24 3, 4 / 5, 6, 7, 8 3, 5 / 6, 7, 8, 9 6, 7 / 7, 9, 10, 12 15, 10 / 10, 11, 16, 13	2.00 3.00 4.00 5.00 6.80 6.80 6.80 6.80 6.80 6.80 6.80	Dry 1.00 1.50 2.00 3.50 4.50 Dry Dry Dry Dry Dry Dry Dry
U - 100mm Diam UT - 100mm Diam U38 - 38mm Diame D - Disturbed Sam C - Core Sample, INSTALLATION DE SPIE - Standpipe P SPGW - Groundwat SPGGW - Gas / Groundwat SPGGWO - Gas / Groundwat UCM - Inclinomete TESTS S/C-SPT/CP1	al Sample (Tub, V teter Undisturbed teter Undisturbed teter Undisturbed teter Thin Wall U W-Water Sample TAILS 'iczometer er Monitor Stand ndvater Monitor Vire Piezometer er T, V-Shear Vane,	ial, Jar) Sample Indisturbed Sample pipe, LP- Large Bulk pipe Standpipe DS DC PP-Pocket Penetror	AZCL:Assume Sample, BLK-Block TYPES -Dynamic Sampling, Diamond Coring, C neter, MP-Mackintosl	ed Zone of Core Loss	ls zee Key					
Issue: FINAL	CHD	AN AP	RV: OS	Log Print Date & Time:	09/0	4/2021	12:46			AGS

Warple M London V Telephon E-mail: s	V13 0RF e: 020 8 i@conce	Warple 8811288			81			®	*			Borehole No BH1	
Project		y Ha	all & N	lorth	Lane I	Depot/l	East Car Pa	rk					
Job No	0/253		ate Start		24/02/21		nd Level (mOD)	Co-Ordina	tes		Fin	al Depth	
	0/352		ate Com	pleted	26/02/21		8.85		74.60 N 17	/0880.33		20.00m	
Client	ichm	ond &	& Wan	dswor	th Cour	ncil		Method/ Plant Used	Cable Per	rcussion	She	et 1 of 2	
PRO	OGRE			Í	ST	FRATA		•	SAMPLI	ES & T	ESTS		nent/ II
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)		Strata Description	n	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
24/02/21		Dry	<u>8.75</u> 8.55		0.10		GROUND)	/	0.25	ES1 B2		VOC 1ppm VOC 0.7ppm	
			<u> </u>		0.35/ 0.55	with sligh	y slightly silty very sa nt hydrocarbon odour.	Gravel	0.40 0.40	ES3 B4		VOC 0.4ppm	
					(0.65)	coarse fli	s angular to subround nt, brick, concrete an	d asphalt		ES5 B6		VOC 0.5ppm	
24/02/21		Dry	7.65		1.20	(MADE	s. Sand is fine to coar GROUND)	se.	- 1.00-1.20 1.00-1.20 1.20	ES7 B8	N19	2, 3 / 5, 4, 4, 6	
				. 	- - (0.80)		GROUND)		1.20 1.20-1.65 1.20	B10 B9	NI)	2, 37 3, 7, 7, 0	
24/02/21	2.00	Wet	6.85		2.00	Gravel comprises angular to subrounded fine 1.80 D11						3, 5 / 8, 13, 18, 11	
2.002.21	2.00		0.00	0.00		fragments				265 mm			
24/02/21	2.70	1.00		.0 00		Firm, dar	k brown slightly sand		2.00-2.40	B12 D13			
24/02/21 24/02/21	2.70 3.00	1.00 1.50		0.0.0 0.000		subround fragments	ed fine to coarse flint s. Sand is fine to coar	3.00	1015	N50/	2, 5 / 8, 12, 16, 14		
24/02/21	5.00	1.50		0 0 0 0 0 0 0		0.90 b	GROUND) ecoming brown mottle	-		290 mm	_,,,,		
				0.00	7	Medium	reyish brown and sligh dense, brown clayey	gravelly fine to	3.00-3.45	B14			
24/02/21	1.00	• • • •		0 0 0 0 0 0 0 0	⊧ }	greyish b	SAND with occasiona rown and reddish bro	wn sandy clay.	- 3.70 - 4.00	D15	N16	1, 4 / 4, 4, 3, 5	
24/02/21	4.00	2.00		0.00	[] [(4.30)	coarse fli	subangular to subrou nt. ON PARK GRAVEI		4.00	B16	INIO	1, 4 / 4, 4, 5, 5	
24/02/21	4.50	4.00		000		Very den	se, light brown sandy fine to coarse GRAVI	subangular to	-				
25/02/21 25/02/21	4.50 4.70	4.00 3.50		0.00		to coarse.			4.70	D17	212	1 2 / 4 2 2 2	
				0 0. 0 . 0 0 0	-	4.00 b	rith low flint cobble c ecoming medium den	ontent se and very	5.00 5.00-5.45	B18	N13	1, 3 / 4, 3, 3, 3	
				0.00		sandy 5.00 b	ecoming sandy		-				
25/02/21	5.70	4.50		0 1.0	-				5.70	D19			
				·0 0 0					- 6.00 - 6.00-6.45	B20	N12	1, 2 / 3, 3, 3, 3	
25/02/21	6.50	Dry	2.55	<u>`````</u>	6.30 E		yish brown CLAY wi		6.50-7.00	B21			₀ Æ∘_
					4- 1- 1-		rey silt (<20mm), occ f-white shell fragmen		-				
					+ 	(THAME	ES GROUP: LONDO TION - B)	N CLAY	- 7.00-7.45	UT22	50 blows	100% Recovery	
					- - -		,		7.45	D23			
					E E	7.50 w	vith rare white flecks		7.70	D24			
					+	8.00 - 8.5	50 with frequent bi	oturbation and	8.00 8.00-8.45	D25	N20	2, 3 / 4, 5, 5, 6	
					- - -	occasiona	al shell fragments (<3	mm)	- - -				
						9 70		ta (2)	8.70	D26			
					Ę.	0./UW	vith rare shell fragmer	us (~2mm)	9.00-9.45	UT27	70 blows	100% Recovery	
				<u> </u>	}- - +-				9.45	D28			
				 	+ - +	9.50 w	vith occasional bioturt	pation	9.70	D29			
25/02/21	6.80	10.0	-	<u> </u>	[10.00 1	0.20 with band of	alaystone	10.00		N50/ 115 mm	24 / 26, 24	
				<u> </u>	+	10.00 - 1		Jaysione	10.00-10.45	D30			
25/02/21	6.80	Dry		<u> </u>	- - -	10 =-		a 1	10.00-10.40 10.70	B31 D32			
				<u> </u>	- -	10.70	with occasional white	tlecks	- 11.00-11.45	UT33	100 blows	100% Recovery	
Issue: F	FINAL		Logger:]	DH/JM	CHD	AN	APRV: OS	Log Print Date	& Time: 0	9/04/2021	1 12:46	NILA	GS
							; !						

 24/02/21

 24/02/21

 24/02/21

 24/02/21

 24/02/21

 24/02/21

 24/02/21

 24/02/21

 25/02/21

 25/02/21

 25/02/21

 25/02/21

 25/02/21

 25/02/21

 25/02/21

 25/02/21

 25/02/21

 25/02/21

 25/02/21

 25/02/21

 25/02/21

 25/02/21

 25/02/21

 25/02/21

 25/02/21

 25/02/21


 25/02/21

 25/02/21

 25/02/21

 25/02/21

Project

Borehole No

BH1

Job No 20/3521		Started		24/02/21	Ground Level (mOD)	Co-Ordinat		0000 -		al Depth
	Date	Comple	eted	26/02/21	8.85		74.60 N 17	0880.38	3	20.00m
Client Richmon	d & `	Wands	wort	th Counc	cil	Method/ Plant Used	Cable Per	cussion	Shee	et 2 of 2
PROGRES	S			ST	RATA		SAMPLE	ES & T	ESTS	
Date Date		Level mOD)	egend	Depth (Thickness)	Strata Description		Depth (m)	Type No	Test Result	Field Records
		-		-			11.45	D34		
		[-			11.50 becoming silty		11.70	D35		
					11.70 with occasional dark g 12.00 - 12.45 with frequent b		12.00 12.00-12.45	D36	N26	3, 4 / 5, 6, 7, 8
		- - -		(12.70)			- 12.70	D37		
		- - -		-	12.70 with rare off-white she (<2mm)	ll fragments	- 13.00-13.45	UT38	100 blows	100% Recovery
		F		=			13.45	D39		
		Ę-		-	13.50 with occasional pocket	ts of dark grev	- 13.70	D40		
				-	silty fine sand (<5mm) 13.70 with occasional off-wh fragments (<3mm) 14.00 with rare bioturbation		- 14.00 	D41	N30	3, 5 / 6, 7, 8, 9
		E-					- 14.70	D42		
					14.70 with 1No pyrite nodule	e (<4mm)	15.00-15.45	UT43	100 blows	100% Recovery
		[- -		-			15.45	D44		
		[-		-	15.50 becoming very closely	fissured	- 15.70	D44 D45		
				- - - - -	15.70 with occasional pocket brown silty fine sand (<25mm) 16.00 becoming very stiff wi pockets of grey silty fine sand (bioturbation	ts of light th occasional	16.00 16.00-16.45	D46	N38	6, 7 / 7, 9, 10, 12
		E-		-	0101111011		- 16.70	D47		
				-			- 17.00-17.45	UT48	100 blows	100% Recovery
		Ę-		-			17.45	D49		
		E-		-			17.70	D50		
					17.70 with rare off-white she (<2mm)	II fragments	18.00		N50/ 285 mm	15, 10 / 10, 11, 16, 13
							18.00-18.45	D51		
	-	-10.15			Very stiff, dark brown slightly s		- 19.00	D52		
		× ×	- × × · × × × . ×	(1.00)	micaceous silty CLAY with rard light grey fine sand, off-white sl (<2mm) and white flecks. (THAMES GROUP: LONDON	hell fragments	19.50-19.95	UT53	100 blows	100% Recovery
25/02/21 6.80 [Dry	<u>-11.15 ×</u>	- * ·	20.00	FORMATION - A3ii) 19.00 becoming slightly sand	ly with rare	19.90	D54		
				- \	laminae of light grey fine sand, shell fragments and foraminifera End of Borehole		- - - -			
				-			- - - 			
							- - - -			
				-			-			

Borehole No

BH2

Project

Elleray Hall & North Lane Depot/East Car Park

Job	No
	20/3521

Date Started Date Completed 24/02/21

22/02/21 Ground Level (mOD)

8.96

Co-Ordinates E 515700.52 N 170863.87

20.00m

Final Depth

Client **Richmond & Wandsworth Council**

	BOREHOLE SUMMARY														
Top (m)	Base (m)	Туре	Date Started	Date Ended	Crew	Logged By	Barrel Type	Core Bit	Plant Used/ Method	SPT Hammer Reference					
0.00 1.20	1.20 20.00	IP CP	22/02/2021 22/02/2021	22/02/2021 25/02/2021	DR DR	JM JM			Hand Excavated Dando 175	AR779					

	WA	ATER STRIK	KES		WATE	R ADDED	CHISELLING / SLOW DRILLING				
Strike at (m)	Rise to (m)	9 1			From (m)	To (m)	From (m)	To (m)	Duration (hr)	Remarks	
19.30	19.30	20	8.10		1.80	6.60	19.30	19.60	00:30	Claystone	

	H	IOL	Æ			CASI	NG		ROTARY RECOVERY				
Dept	th (m)		Diameter (r	nm)	Dept	h (m)	Dia	meter (mm)		From (m)	To (m)	Duration (hr)	Recovery (%)
0. 20	.00 0.00		150 150		0.00 15 8.10 15		150 150						
			ROTARY	Y FLUSH	I DE	TAIL							
From ((m) T	Го (n	ı) Flush T	ype Fl	ush R	eturn (%)	Fl	ush Colour					
)FT								
Туре	Diam	eter	Depth of Installation	Top o Response	f	Bottom o		Date of Installation					
	(mn	n)	(m)	(m)	Zone	(m)	one						
GMP			6.60	1.00		6.60		24/02/2021					
			BACK	FILL D	ЕТА	ILS							
Top (m)	Botto (m		Mate	rial	Ba	ckfill Date		Remarks					
0.00 0.30	0.3		Concre Bentonite l	ete Pellets	24	4/02/2021	1	Flush Cover					
1.00 6.60	6.6	50	Pea Shin Bentonite I	ngle									
ssue: FI	FINAL CHD: AN APRV: OS Log Print Date & Time: 09/0							ime: 09/04/2	2021	12:46			MAGS

Borehole No

BH2

Project

Elleray Hall & North Lane Depot/East Car Park

Job No 20/3521

Client

 Date Started
 22/02/21

 Date Completed
 24/02/21

 22/02/21
 Ground Level (mOD)

 24/02/21
 8.96

Co-Ordinates E 515700.52 N 170863.87

Final Depth

20.00m

Richmond & Wandsworth Council

		PROGR	ESS					SPT DETAILS	8	
Date	Hole Depth (m)	Casing Depth (m)	Water Depth (m)	Remarks	Туре	Depth (m)	N Value	Blow Count / 75mm	Casing Depth (m)	Water Depth (m)
22/02/21 22/02/21 22/02/21 22/02/21 22/02/21 23/02/21 23/02/21 23/02/21 23/02/21 23/02/21 23/02/21 23/02/21 24/02/21 24/02/21 24/02/21	0.00 1.20 1.80 2.50 3.50 4.95 4.95 5.20 6.20 7.50 8.20 9.50 16.95 16.95 19.30 19.50 20.00	2.20 3.50 4.50 4.95 5.20 6.20 7.50 7.00 8.10 8.10 8.10 8.10 8.10 8.10	Dry Dry Wet 1.00 2.50 4.00 4.80 4.30 4.00 6.00 6.10 6.50 Dry Dry Dry 19.30 Dry Dry Dry	Water Added Water Added	S C C C C S S S S S S C	$\begin{array}{c} 1.50\\ 2.50\\ 3.50\\ 4.50\\ 5.50\\ 6.50\\ 8.50\\ 10.50\\ 12.50\\ 14.50\\ 16.50\\ 18.50\\ 19.50\end{array}$	N14 N50/0.29 N50/0.19 N10 N12 N19 N24 N31 N33 N36 N41 N37	5, 4 / 3, 3, 3, 5 2, 3 / 7, 10, 15, 18 2, 6 / 12, 22, 16 1, 2 / 3, 2, 3, 2 1, 2 / 3, 3, 3, 3 4, 3 / 2, 3, 3, 4 2, 3 / 3, 4, 5, 7 2, 4 / 5, 6, 6, 7 3, 5 / 6, 7, 8, 10 3, 5 / 6, 8, 9, 10 4, 5 / 7, 8, 10, 11 5, 6 / 8, 10, 11, 12 22, 3 / 7, 8, 10, 12	2.20 3.50 4.50 5.50 6.50 7.00 8.10 8.10 8.10 8.10 8.10 8.10	Dry 1.00 2.50 4.00 6.00 6.50 Dry Dry Dry Dry Dry Dry Dry Dry
2. Water seep <u>KEY</u> <u>SAMPLES</u> ES - Environn U - 100mm1 UT - 100mm1 UT - 100mm1 UT - 100mm1 UT - 500 SPEC - Core Sam <u>INSTALLATION</u> SPGW - Gas/C VWP - Vibrati ICM - Inclino <u>TESTS S/C-SPT/</u>	owing in the grav age encountered age encountered by the second second second second second by the second second by the second second by the second second by the second second second second second by the second s	ial, Jar) Sample Indisturbed Sample Sample, Large Bulk pipe, LB- Large Bulk pipe IP Standpipe IP DS DC PP-Pocket Penetror	AZCL:Assum : Sample, BLK-Block 2 TYPES -Dynamic Sampling, Diamond Coring, C neter, MP-Mackintosl	ed Zone of Core Loss Sample 'rial Pit TT - Trial Trench (C-Rotary Coring, RS-Rotary/Sonic DS/R-Dynamic Sampling (Rotary P:/R-Cable Percussion Rotary follow on h Probe, VOC-Volatile Organic Compound e in minutes. For details of abbreviations se	a e Key					
Issue: FINA	L CHD	AN AP	RV: OS	Log Print Date & Time:	09/0	04/2021	12:46		V	AGS

Borehole No

Job No 2(0/352		ate Start ate Com		22/02/21 24/02/21	. ,	Co-Ordinat E 51570	es 10.52 N 17	0863.8		al Depth 20.00m	
Client R	ichm				th Coun		Method/ Plant Used	Cable Per		She		
PRO	OGRE	ESS			ST	TRATA	I	SAMPLE	ES & T	ESTS		
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description		Depth (m)	Type No	Test Result	Field Records	T
2/02/21		Dry	8.86		<u> </u>	Asphalt. (MADE GROUND)	/-	0.30	ES1		VOC 9.2ppm	Þ
			8.36		(0.50) 0.60	Light brown slightly clayey san with low flint and concrete cob	dy GRAVEL	0.30 0.60	B2 ES3		VOC 6.4ppm	Ì
			0.00			Gravel comprises angular to sub	prounded fine	0.60 0.90-1.00	B4 ES5		VOC 41.6ppm	
2/02/21			7.96	XO·X	- 1.00	to coarse flint, brick and concre Sand is fine to coarse.	te fragments.	0.90-1.00	B6 ES7		VOC 42ppm	0
2/02/21		Dry		ו•ו	-	(MADE GROUND) Soft, greenish grey slightly grav	elly slightly	1.20-1.50 1.20	B8 B9		VOC 42ppm	0
				*o~· * ;	(1.20)	sandy silty CLAY with occasio reddish brown silty fine sand (<	nal pockets of	1.50		N14	5, 4 / 3, 3, 3, 5	0
2/02/21		Wet		× .× ;	(1.20)	frequent dark grey flecks. Grav subangular to rounded fine to co	el is	1.50-1.95 2.00-2.50	D10 ES11		VOC 36.3ppm	
			6.76	$\times \cdot \times$ $\cdot_{o} \times \cdot $, $\times \cdot \times$	- 2.20	(MADE GROUND) 0.80 becoming very silty		2.20	D12		voe solsppin	0
2/02/21	2.20	1.00		000	_	Firm, orangish brown gravelly s	andy clayey	2.50		N50/	2, 3 / 7, 10, 15, 18	
				00.02 0000	-	SILT. Gravel is subangular to s fine to medium flint. Sand is fin	ne to medium. / [290 mm		0
				0.0.0	-	(KEMPTON PARK GRAVEL 1.20 with 1No flint cobble	MEMBER)	2.50	B13			0
				000	-	Very dense, brown sandy angul	ar to	3.20	D14			2
2/02/21	3.50	2.50		0 0 0 0 0 0 0 0 0	-	subrounded fine to coarse GRA fine to coarse.	Ŀ	3.50		N50/ 190 mm	2, 6 / 12, 22, 16	0
				.º . O. º 4	-	(KEMPTON PARK GRAVEL 2.50 - 2.95 becoming clayey	with	3.50	B15	190 1111		0 000
				0 0 0 0 0 0 0 0 0		occasional pockets of orangish (<25mm)	brown clay	4.20	D16			0
				1 A - 1		3.50 becoming dense	F		D10	NIO	1 2 / 2 2 2 2 2	Pc
2/02/21	4.50	4.00		0.0.0 0.0.0 0.0.0	(4.40)	4.50 becoming medium dens	e and verv	4.50 4.50	B17	N10	1, 2 / 3, 2, 3, 2	0
2/02/21	4.95	4.80		0000	-	sandy						20070
3/02/21 3/02/21	4.95 5.20	4.30		0.00	-		-	5.20	D18			2000
5/02/21	5.20	4.00		0 0. 0 . 0 0 0.	-		-	5.50		N12	1, 2 / 3, 3, 3, 3	1c
				0.0.04	-		Ē	5.50	B19			0
				000	-		-	-				Pe
3/02/21	6.20	6.00		$\frac{1}{2}$	-	6.20 with 2No flint cobbles	-	6.20	D20			0
			2.36	0.0.0	6.60	0.20 with 2No lint cobbies	-	6.50 6.50	B21	N12	4, 3 / 2, 3, 3, 4	Pe
				<u> </u>		Firm to stiff, dark greyish brow rare frequent light grey flecks a						
					-	dark grey staining. (THAMES GROUP: LONDON	F	7.20	D22			
2/02/21	7.50	C 10			-	FORMATION - B)	Ē	7.50-7.95	UT23	50 blows	100% Recovery	
3/02/21	7.50	6.10			-	7.00 with 1No off-white shel (<4mm)		1.50-1.95	0123	20 010 W3	10070 Recovery	
							F	7.95	D24			
3/02/21	7.00	6.50				8.00 with rare off-white flech	F	8.20	D25			
						8.20 with rare dark grey stain	ning	8.50	DY	N19	2, 3 / 3, 4, 5, 7	
					-		-	8.50-8.95	D26			
					-		-		D 27			
							F	9.20	D27		1000/-	
3/02/21	8.10	Dry			-		F	9.50-9.95	UT28	80 blows	100% Recovery	
							-	9.95	D29			
					-		F	10.20	D30			
							E	10.50		N24	2, 4 / 5, 6, 6, 7	
					-		-	10.50-10.95	D31		, ., ., ., , , , , , , , , , , , , , ,	
				<u>]</u>			E					

Borehole No BH2

Job No 20/3	521		te Starte		22/02/21 24/02/21	Ground Level (mOD)	Co-Ordinat		00/200		al Depth	
	521	Da	te Comp	neteu	24/02/21	8.96		00.52 N 17	0863.8		20.00m	
Client Rich	nmon	d &	k Wand	lswor	th Coun	cil	Method/ Plant Used	Cable Per	cussior	n Shee	et 2 of 2	
PROG	RES	S			ST	RATA		SAMPLE	ES & T	ESTS		ent.
Date	Casing	water	Level (mOD)	Legend	Depth (Thickness)	Strata Description		Depth (m)	Type No	Test Result	Field Records	Inctmimant
						11.20 with rare pockets of lig (<15mm) and off-white shell fra (<3mm)	ght grey silt agments	11.20 11.50-11.95	D32 UT33	100 blows	100% Recovery	
			-			()		11.95	D34			
			-		€_ -	12.00 with occasional light g 1No pyrite nodule (<24mm)	rey flecks and	- 12.20	D35			
			-		(11.90)	1No pyrite nodule (<24mm) 12.20 with frequent white fle 12.50 with occasional pocket silt (<6mm)	cks	12.50 12.50-12.95	D36	N31	3, 5 / 6, 7, 8, 10	
			-					- 13.20	D37			
			-			13.20 with occasional dark g and rare white flecks	rey staining	13.50-13.95	UT38	100 blows	100% Recovery	
			-		£			13.95	D39			ĺ
			-		ŧI	14.00 with rare shell fragmen		14.20	D40			
			-			14.20 with frequent pockets silt (<10mm) and white flecks 14.50 with occasional white	of light grey flecks	14.50 14.50-14.95	D41	N33	3, 5 / 6, 8, 9, 10	
			-					- 15.20	D42			
			-					15.50-15.95	UT43	100 blows	100% Recovery	
			-					15.95	D44			
			-			16.00 with rare white flecks		16.20	D45			
3/02/21 8.	.10 E	Dry	-					16.50 16.50-16.95	D46	N36	4, 5 / 7, 8, 10, 11	
		bry			F-			- 17.20	D47			
			-					- 17.50-17.95 -	UT48	100 blows	100% Recovery	
			-		-			17.95	D49			
			-		F	18.00 with rare pockets of light grey silty fine sand (<20m		18.20	D50			
			-9.54	 <u></u> 	18.50	18.20 with 1No off-white she (<2mm) Very stiff, dark brown slightly s	ell fragment	18.50 18.50-18.95	D51	N41	5, 6 / 8, 10, 11, 12	
		.3			(1.50)	micaceous silty CLAY with occ partings of light grey silty fine s shell fragments (<18mm) and w (THAMES GROUP: LONDON	and, off-white hite flecks.	19.20	D52			
		ory [–]		× · × · × · · × · · × · · × · · × · · × · · · × · · · · · × ·		FORMATION - A3ii) 19.20 with occasional pocket dark grey silty fine sand (<8mn off-white shell fragments (<4mi	ts of light and and rare	- 19.50 19.50-20.00	В53	N37	22, 3 / 7, 8, 10, 12	
4/02/21 8.	.10 E)ry	-11.04	<u> </u>	20.00	19.30 - 19.60 with band of c End of Borehole		<u>-</u> - -				
								<u>-</u> - - -				
								F - - -				
Issue: FIN			Logger: J		CHD:	AN APRV: OS		Ē				G

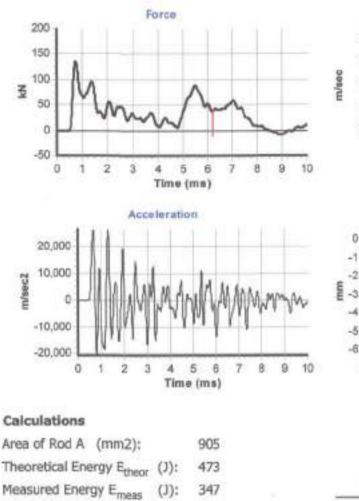
SPT Hammer Energy Test Report

In accordance with BSEN ISO 22476-3:2005

ARCHWAY ENGINEERING (UK) LTD AINLEYS INDUSTRIAL ESTATE ELLAND WEST YORKSHIRE HX5 93P

Instrumented Rod Data

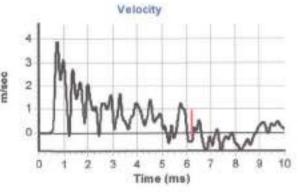
Diameter d _r (mm):	54
Wall Thickness tr (mm):	6.0
Assumed Modulus Ea (GPa):	200
Accelerometer No.1:	7080
Accelerometer No.2:	11609

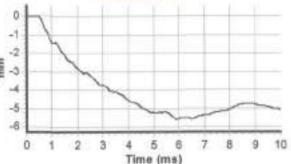

SPT Hammer Ref:AR779Test Date:11/06/2020Report Date:11/06/2020File Name:AR779.sptTest Operator:CM

SPT Hammer Information

Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 10.0

Comments / Location


CONCEPT ENGINEERING/71108


Energy Ratio E r (%):

The recommended calibration interval is 12 months

73

Signed: C.McCLUSKEY Title: FITTER

9. DYNAMIC SAMPLING BOREHOLE LOGS

5

Borehole No

Project El	lerav	Ha	all & N	orth	Lane D	Depot/East Car Pa	ark			I		
Job No	J		ate Start		26/02/21	-		ates		Fi	nal Depth	
20	/3521	D	ate Comj	pleted	26/02/21	8.87	E 5156	675.80 N 17	70903.0)2	2.00m	
Client Ri	chmo	nd &	& Wand	dswor	th Coun	cil	Method/ Plant Used	Dynamic	Samplii		eet 1 of 1	
PRO	GRES	SS			ST	RATA		SAMPL	ES & 1	TESTS		
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Descript	ion	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
26/02/21		Dry	8.77		0.10	Asphalt.		0.10-0.20	ES1 B2		VOC 10ppm	
			8.57		(0.20) 0.30 (0.25) 0.55	(MADE GROUND) Dark grey sandy GRAVE comprises angular to subr coarse flint and asphalt fra fine to coarse.	ounded fine to	0.30-0.40	ES3 B4		VOC 10.5ppm	×.
			8.07	××××× × · · · · · · · · · · · · · · · · · · ·	- 0.55 - (0.25) - 0.80	(MADE GROUND) Dark grey slightly gravell CLAY with slight hydroc black staining. Gravel con to subrounded fine to coar	arbon odour and nprises angular	0.60-0.70 - 0.60-0.70 - -	ES5 B6		VOC 9.7ppm	
				^.×`^.;	-	and concrete fragments. S coarse.	and is fine to	- 1.00-1.10 - 1.00-1.10	ES7 B8		VOC 4.8ppm	
26/02/21	:	Dry			- (1.10) -	(MADE GROUND) Greenish grey slightly gra CLAY with occasional po brown silty fine sand (<25 frequent dark grey stainin angular to rounded fine to Sand is fine to medium. (ALLUVIUM) Firm, yellowish brown sli	beckets of reddish formm) and g. Gravel is b medium flint. ghtly gravelly	- 1.20 - 1.20-1.65 - - -	D9	N8	2, 2 / 2, 2, 2, 2	
26/02/21	2.00	Dry	<u>6.97</u> <u>6.87</u>	× · · · · · · · · · · · · · · · · · · ·	<u>1.90</u> 2.00	sandy clayey SILT with fi of dark grey silty fine to r and occasional pockets of silty clay (<25mm). Grave to rounded fine to medium (ALLUVIUM) Medium dense to dense, c gravelly fine to medium S subangular to rounded fin (KEMPTON PARK GRA MEMBER) End of Borehole	nedium sand greenish grey el is subangular n flint. orangish brown SAND. Gravel is e to coarse flint.	2.00		N50/ 195 mm	9, 16 / 17, 22, 11 Borehole aborted at 2.00m depth (see Remarks)	
					- - - - - - - - - - - - -			-				
DY	NAMIC	SA	MPLING	RECO	VERY	GENERAL RE	MARKS					
From 1.20	<u>To</u> 2.00	D	iameter (m 87	um) F	Recovery (9 100	 Borehole aborted Borehole aborted Ø50mm gas and g depth. Borehole backfill 	used from ground le at 2.00 depth due groundwater monito led with pea shingle m depth. Concrete	evel to 2.00m de to refusal. oring pipe install e between 2.00m	epth. led at 2.00 1 and 1.00)m, slotted m, and ben	mencing. between 1.00m and 2.0 tonite pellets between 0.20m to ground level.	00m
C-Co V-Sł	ore Sample near Vane,	e, W-W PP-Po	Vater Sample, ocket Penetro	R-Root Sa meter, MP	mple AZC -Mackintosh F	-38mm Diameter Undisturbed Sam L: Assumed Zone of Core Loss Probe, VOC-Volatile Organic Com strike rise time in minutes. For deta	pounds		mple D-Dis	sturbed Samp	le, B-Bulk Sample,	
Issue: F	INAL		Driller: D	N	Logger: J	M CHD: AN	APRV: OS	Log Print Date	e & Time	[:] 09/04/20	021 12:49 MA	GS

Borehole No

Ī	Project El	llera	v H	[all & N	orth	Lane D) epot/Ea	st Car Pa	ark			•		
┢	Job No		-	Date Start		25/02/21	-	Level (mOD		ates		Fi	nal Depth	
	20	/352	1 I	Date Comj	pleted	25/02/21		8.52	E 5150	656.41 N 1	70890.5	7	2.00m	
	Client Ri	ichm	ond	& Wand	dswor	th Coun	cil		Method/ Plant Used	l Dynamic	Samplin		eet 1 of 1	
1	PRO	GRF	ISS			ST	RATA			SAMPL	ES & T	TESTS		
	Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)		Strata Descripti	on	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
	25/02/21		Dry	8.37		- 0.15 (0.75) 0.90	frequent roo (TOPSOIL) Dark brown SAND with comprises s coarse flint, (MADE GF 0.35 with leather frag) n silty gravelly n frequent roots ubrounded to r brick and cera ROUND) n rare shell frag ment (<100mm	fine to coarse . Gravel ounded fine to mic fragments. ments and 1No	0.00-0.15 0.10 0.30 0.30 0.60 0.60	B1 ES2 ES3 B4 ES5 B6		VOC 0.7ppm VOC 0.5ppm VOC 0.4ppm	
- בטבו. טבט טמופ. ט קטווו בטבו	25/02/21		Dry	7.04	0 	(0.58) 1.48 (0.52)	gravelly silt angular to s and brick fr (MADE GF 1.20 beco sandy with Sand is fine Medium de gravelly fine	y CLAY. Grav ubrounded fine agments. (OUND) oming slightly is occasional dark to medium mse to dense, o e to coarse SAI	e to coarse flint gravelly and c grey staining. angish brown	1.00-1.20 - 1.00-1.20 - 1.20 - 1.20 	ES7 B8 D9	N16	VOC 0.4ppm 2, 3 / 2, 2, 5, 7	
20002 ו ברבבואתו ווארב מיואטאיוו באואב מברטו סרט בומומוץ. כטואכבר ו בומאמאו -	25/02/21	2.00	Dry	6.52		2.00	(KEMPTO MEMBER)	becoming gr avelly				N25/ 100 mm	17, 8 / Borehole aborted at 2.00m depth (see Remarks)	
	DY From 1.20	T C 2.0	, 1	AMPLING Diameter (m 87		VERY Recovery (% 100	(%) 1. Ai 2. Ø 3. Be 4. Ø depth 5. Be 1.00r	110mm casing u orehole aborted a 50mm gas and g u orehole backfille	was hand excavate sed from ground l at 2.00 depth due roundwater monit- ed with pea shingl- n depth. Concrete	evel to 2.00m de to refusal. oring pipe install e between 2.00m	epth. led at 2.00 1 and 1.001	m, slotted	mencing. between 1.00m and 2.0 tonite pellets between 0.20m to ground level.	00m
	C-C V-S	ore Sam hear Vai	ple, W- ne, PP-	-Water Sample, Pocket Penetro	R-Root Sa meter, MP	ample AZC -Mackintosh F	L: Assumed Zon Probe, VOC-Vol	e of Core Loss atile Organic Comp	ils of abbreviations se	e Key				
	Issue: I	FINAL		Driller: D	N	Logger: [DH/JM	CHD: AN	APRV: OS	Log Print Date	e & Time:	09/04/20	21 12:49	GS

C

Borehole No

Job No 20	/3521		ite Start		26/02/21 26/02/21	. ,	Co-Ordinat		70000 -		nal Depth	
Client						8.78	E 5156 Method/ Plant Used	75.58 N 1' Dynamic		Sh	2.00m eet 1 of 1	
			x wan	aswor	th Coun		I lant Oscu	-	-	<u> </u>	1 01 1	_
PRO	GRE	SS		<u> </u>		RATA		SAMPL	<u>ES & T</u>	ESTS	Field	
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	L	Depth (m)	Type No	Test Result	Records	
26/02/21		Dry	8.68		0.10 - (0.40) - 0.50 - (0.30)	Asphalt. (MADE GROUND) Dark grey sandy GRAVEL v hydrocarbon odour. Gravel c angular to subrounded fine to brick and concrete fragments to coarse. (MADE GROUND)	comprises	- 0.25 _ 0.25 - 0.60 - 0.60	ES1 B2 ES3 B4		VOC 12.6ppm VOC 11.5ppm	
26/02/21		Dry	7.98		(0.50) 0.80 (0.70) 1.50 (0.50)	Dark greyish brown very gra coarse SAND. Gravel is ang subrounded fine to coarse fli (MADE GROUND) Stiff, greyish brown slightly slightly sandy CLAY with fi pockets of yellowish brown a and dark grey silty fine sand Gravel is subangular to subro to medium flint. (ALLUVIUM) 1.00 becoming orangish b sandy with frequent pockets grey clay (<30mm)	ular to nt. gravelly equent silt (<30mm) (<25mm). punded fine rown and of greenish	- - - 1.00 - 1.10 1.20 - 1.20-1.65 - - - - - - - -	ES5 B6 ES7 D8 B9	N30	VOC 13ppm VOC 12.7ppm 1, 3 / 4, 6, 10, 10	
26/02/21	2.00	Dry	6.78	- · ·· a · .	2.00	Medium dense to dense, gre slightly clayey gravelly fine SAND. Gravel is subangular subrounded fine to coarse fli (KEMPTON PARK GRAVI MEMBER) 1.65 becoming yellowish 1.85 becoming reddish bro End of Borehole	to coarse to nt. EL brown			N50/ 150 mm	12, 13 / 24, 26 Borehole aborted at 2.00m depth (see Remarks)	
DY	NAMI	C SA	MPLING	RECO	VERY	GENERAL REM	ARKS		1	1	I	<u> </u>
From 1.20	<u>To</u> 2.00	Di	ameter (n 87		Recovery (9 100	1 An inspection pit wa	s hand excavated d from ground lev 2.00 depth due to	vel to 2.00m de refusal.	ptĥ.	poring com	mencing.	
C-C	ore Samp	ole, W-W	ater Sample	, R-Root Sa	mple AZC			er Undisturbed Sa	mple D-Dist	turbed Samp	le, B-Bulk Sample,	

6

Borehole No

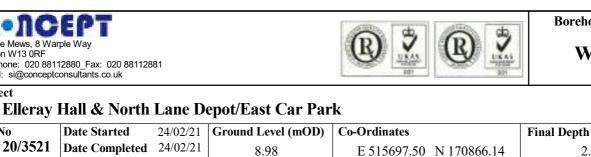
Job No 20	/3521		ate Start ate Com		25/02/21 25/02/21	· · · · ·	Co-Ordinat E 51566	z es 57.17 N 1′	70880.6		nal Depth 2.00m
Client Ri	chmo	nd &	& Wan	dswor	th Coun	cil	Method/ Plant Used	Dynamic	Samplin	g Sh	neet 1 of 1
PRO	GRE	SS			ST	RATA		SAMPL	ES & T	ESTS	
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description		Depth (m)	Type No	Test Result	Field Records
25/02/21		Dry	8.64		0.10	Asphalt. (MADE GROUND)		0.10-0.20	ES1 B2		VOC 0.8ppm
			8.24		(0.40) 0.50	Blackish grey sandy GRAVI hydrocarbon odour. Gravel c angular to subangular fine to brick, clinker and asphalt fra	omprises coarse flint,	- 0.30 - 0.30 -	ES3 B4		VOC 0.6ppm
			8.04		(0.20) 0.70	is fine to coarse. (MADE GROUND) 0.25 becoming brown and Greyish brown silty gravelly		0.60 - 0.60 -	ES5 B6		VOC 0.5ppm
25/02/21		Dry			(0.64)	coarse SAND. Gravel compr subangular to subrounded fir flint and brick fragments. (MADE GROUND) Firm, orangish brown mottle	ises e to coarse	- 1.00-1.20 - 1.00-1.20 - 1.20	ES7 B8	N17/ 225 mm	VOC 0.4ppm 2, 4 / 5, 5, 7
			7.40	×0	1.34 (0.46)	slightly gravelly sandy SILT comprises angular to subroun coarse flint and brick fragme fine to coarse. (MADE GROUND)	Gravel aded fine to nts. Sand is	1.20-1.65	D9	223 11111	
25/02/21	2.00	Dry	6.94 6.74	× • × . • × . • • . • • . • . • • . •	1.80 (0.20) 2.00	Medium dense, yellowish br gravelly fine to medium SAN angular to subrounded fine to (KEMPTON PARK GRAVI MEMBER)	D. Gravel is coarse flint.	- 2.00		N50/ 150 mm	16,9/25,25
					-	Medium dense to dense, oran slightly clayey sandy angular fine to coarse flint GRAVEL to coarse. (KEMPTON PARK GRAVI MEMBER)	to rounded . Sand is fine	2.00			Borehole aborted at 2.00m depth (see Remarks)
					-	End of Borehole	-	-			
					-		-	 - -			
					-		-	-			
					-		-	-			
			MPLING			GENERAL REM 1. An inspection pit wa		to 1.20m dent	h prior to b	oring con	mencing
From 1.20	<u>To</u> 2.00		ameter (n 87	<u>11m) 1</u>	Recovery (9 100	 A. Mi hispection pit wa 2. ØI 10mm casing used 3. Borehole aborted at 1 4. Borehole backfilled 5. SPT Hammer: 0037 	from ground lev 2.00 depth due to	vel to 2.00m de refusal.	pth.		
C-C	ore Samp	le, W-W	ater Sample/	, R-Root Sa	ample AZC			er Undisturbed Sa	mple D-Dist	urbed Samp	e, B-Bulk Sample,

6

Borehole No

Job No 20	/352		ate Start		26/02/21 26/02/21	Ground Level (mOD)	Co-Ordinat				nal Depth
	1332		ate Com	pieted	20/02/21	9.01		78.06 N 1	70872.7		2.00m
Client Ri	chm	ond &	& Wan	dswor	th Coun	cil	Method/ Plant Used	Dynamic	Samplir	ng Sh	eet 1 of 1
PRO	GRE	SS			ST	RATA		SAMPL	ES & T	ESTS	
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	L	Depth (m)	Type No	Test Result	Field Records
26/02/21 26/02/21 26/02/21	2.00	Dry	8.95 8.81 8.26 7.31 7.01	2015 - 20	0.06 0.20 (0.55) 0.75 (0.95) (0.95) (0.30) 2.00 - - - - - - - - - - - - -	Asphalt. (MADE GROUND) Light grey CONCRETE. Dark brownish grey sandy G strong hydrocarbon odour. G comprises angular to subrour coarse flint and concrete frag- is fine to coarse. (MADE GROUND) 0.20 - 0.22 with pockets of substance 0.50 becoming greyish bro- clayey. Gravel comprises sul- subrounded fine to coarse flint concrete fragments Orangish brown slightly grav CLAY with occasional dark staining. Gravel comprises au rounded fine to coarse flint a fragments. Sand is fine to ma (MADE GROUND) Medium dense to dense, yell slightly silty slightly gravelly medium SAND. Gravel is sur- rounded fine to medium flint (KEMPTON PARK GRAVI MEMBER) 1.78 - 1.85 becoming grav End of Borehole	inavel anded fine to gments. Sand of black tar own and bangular to nt, brick and relly sandy grey ngular to nd brick edium. owish brown / fine to ibangular to EL	- 0.25 0.25 0.40 0.40 0.70 0.70 1.00 1.00-1.20 1.20-1.65 1.40-1.60 2.00 2.00	ES1 B2 ES3 B4 ES5 B6 ES7 B8 D9 ES10	N16 N50/ 135 mm	VOC 115.8ppm VOC 40.8ppm VOC 32.6ppm VOC 20.7ppm 1, 2 / 2, 4, 5, 5 VOC 0.3ppm 8, 17 / 23, 27 Borehole aborted at 2.00m depth (see Remarks)
DY From	NAM To		MPLING		VERY Recovery (%	GENERAL REM 1. An inspection pit wa 2. Ø110mm casing use	s hand excavated	to 1.20m dept	h prior to	boring com	mencing.
1.20	2.00	0	87		90	3. Borehole aborted at 4. Borehole backfilled 5. SPT Hammer: 0037	2.00 depth due to with bentonite pe	refusal. llets upon com	pletion.		
C-C V-S	ore Samj near Var	ple, W-W ne, PP-Po	/ater Sample ocket Penetro	, R-Root Sa ometer, MP	mple AZCI -Mackintosh P	38mm Diameter Undisturbed Sample, L: Assumed Zone of Core Loss trobe, VOC-Volatile Organic Compou strike rise time in minutes. For details of	nds		ample D-Dist	turbed Samp	le, B-Bulk Sample,

6


Borehole No

Client Richmond & Wandsworth CouncilMethod/ Plant UsedDynamic SamplingSheetPROGRESSSTRATASAMPLES & TESTSDate $\frac{10}{90}$ $\frac{10}{90}$ Level (mOD)Depth (Thickness)Depth (Thickness)Test (MADE GROUND)Depth (m)Type (n)Test (Record)Field (Record)25/02/21Dry8.810.10 (0.45)Asphalt. (0.45)Asphalt. (0.45)Asphalt. (MADE GROUND)0.10-0.20 (0.25)ES3 (0.45)VOC 7.2p (0.40)25/02/21Dry8.810.10 (0.45)Asphalt. (0.45)MADE GROUND) (0.45)0.10-0.20 (0.45)ES3 (0.45)VOC 6.1p (0.45)25/02/21Dry8.810.80 (0.45)(0.45) (0.45)Greyish Prown slightly gravelly sandy sity CLAY with rare pockets of orangish brown slightly gravelly sandy sity CLAY with repokets of orangish brown slightly gravelly sandy sandy clayey SILT with frequent dark grey staining. Gravel is angular to sandy clayey SILT with frequent dark grey staining. Gravel is angular to sand (clauped fine to coarse fint, (ALLUVIUM) (ALLUVIUM) (ALLUVIUM) (ALLUVIUM) (ALLUVIUM) (ALLUVIUM) (ALLUVIUM) (ALLUVIUM) (ALLUVIUM) (ALLUVIUM) (ALLUVIUM) (ALLUVIUM) (ALLUVIUM) (CRAPEL (CRAPTON PAPK GPAVEI2.00N50/ (A 4/11, 14, 	Job No 20)/3521		ate Start ate Comj		25/02/21 25/02/21			ntes 719.98 N 1	70872.8		nal Depth 2.00m	
Date B g g g g D g g Level (mOD) Legend (mod) Depth (mean) Type (m) Test (m) Fiel (m) 25:0221 by 8.81 0.10 Applet1 Strata Description 0.10.0.20 E3 VOC 7.2p 25:0221 by 8.56 0.25 Bown sandy GRAVEL with high flatt, first and concret fungments. 0.10.0.20 E3 VOC 6.1p 25:0221 by 8.56 0.05 Gravit hown slightly gravelly sandy town said (C3mn). Gravel comprises angular to subrown slightly gravelly sandy clayey SLT with frequent data trappendiate to salvand find to coarse. 0.00 ES5 VOC 9.2p 25:0221 bry exc. (1.10VIM) exc. exc. (1.10VIM) town said (23mn) 1.20 1.30 B1 VOC 9.2p 25:0221 2.00 bry 6.01 27.62 2.00 Vy dens to dense, hown slightly gravelly andy tabue and concret fingments 1.20 1.30 B10 1.2/2.2.2.2 25:0221 2.00 bry 6.01 27.62 2.00 Vy dens to dense, hown slightly gravelly andy tabue and concret fingments 1.20 1.20 <td< th=""><th></th><th>ichmo</th><th>nd ð</th><th>& Wan</th><th>dswor</th><th>th Coun</th><th></th><th>Method/</th><th></th><th></th><th>Sh</th><th></th><th></th></td<>		ichmo	nd ð	& Wan	dswor	th Coun		Method/			Sh		
Date B E Depth (mOD) Legend Depth (moon) Type Strata Description Depth (m) Type No Test Result 250221 Dry 8.81 0.10 Applait Strata Description 0.10.20 E3 0.00 E3 VOC 6.1p 250221 Dry 8.51 0.05 Grayabi 0.00 E3 0.00 E3 VOC 6.1p 250221 Dry 8.51 0.05 Grayabi Noron slightly gravelly sandy corprise angular to subround fine to coarse. In more slight proven slightly gravelly andy clayey SLT with frequent dark subround fine to coarse. (LLUVIUM) 0.00 ES VOC 9.2p 250221 Dry 6.01 C.20 EX VOC 9.2p 250221 Dry 6.01 C.20 N9 1.2/2.2.2.2 250221 Dry 6	PRO	GRES	SS			ST	RATA		SAMPL	ES & 1	TESTS		
Display Display (MADE GROUND) (0.45) (0.405) (0.45) (0.405) (0.90-1.100) (0.405) (0.90-1.100) (0.405) (0.90-1.100) (0.405) (0.90-1.100) (0.405) (0.90-1.100) (0.405) (0.90-1.100) (0.405) (0.90-1.100) (0.405) (0.90-1.100) (0.405) (0.90-1.100) (0.415) (0.90-1.100)	Date	Casing	Water		Legend	-	Strata Description	on	Depth	Туре	Test	Field Records	Instrument/
Dry 0.25 8.56 0.25 9.02 Brown sandy GRAVEL with high filt. cornse filt. Nrick and concrete foble control. Goved cornse filt. Nrick and concrete fragments. Sand is fine to coarse. (MADE GROUND) 0.30 0.30 ES3 8.4 VOC 6.1p 25.02.21 Dry 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.45 0.46	25/02/21		Dry	8.81		0.10						VOC 7.2ppm	A. 5
25.02/21 Dry 0.45 (MADE GROUND) (Greysh brown slightly gravelly sandy silly (LAV with rare pockets of orangish muglar to subrounded line to coarse finit and brick fragments. (MADE GROUND) (MADE GROUND) (MADE GROUND) 0.60 (0.60 (0.60 (0.60) ES5 B6 (0.90-1.00) VOC 4.1p (0.90-1.00) 25.02/21 Dry S 1.00 (0.90) N9 1.2/2,2,2, (0.45) 25.02/21 Dry S VOC 9.2p (0.90) N9 1.2/2,2,2, (0.45) 25.02/21 Dry S VOC 9.2p (0.90) N9 1.2/2,2,2, (0.47) 25.02/21 Dry Org S N9 1.2/2,2,2, (0.47) 25.02/21 Dry Org Org N9 1.2/2,2,2,2, (0.47) 25.02/21 Dry Org Org N9 1.2/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2				8.56			Brown sandy GRAVEL wi brick and concrete cobble c comprises angular to subro	content. Gravel unded fine to	- 0.30	ES3		VOC 6.1 ppm	17.
25.02/21 Dry So X X Y With The Pockets of Inguest So Undugsting and Direct So Undugsting and Direct So Undugsting Technology Source Compression of Source Compressing Source Compression of Source Compressing Source Compres				0.11			Sand is fine to coarse. (MADE GROUND) Greyish brown slightly grav	velly sandy				VOC 4.1 ppm	
25:02/21 Dry Dry Image: Comparison of the co				8.11	*•• • × • × • • × • • × • • × • • × • • × • • • ×	0.80	silty CLAY with rare pock brown silt (<15mm). Grave angular to subrounded fine	ets of orangish el comprises				VOC 9.2ppm	0
25/02/21 2.00 Dry 0.01 0.02 2.00 Very dense to dense, brown clayey sandy subangular to rounded fine to coarse flint of GRAVEL. 2.00 N50/ 245 mm 4, 4/11, 14, 14, 14, 14, 14, 14, 14, 14, 14,	25/02/21		Dry			⊁` ́ I	(MADE GRÕUND) Firm, orangish brown sligh sandy clayey SILT with fre grey staining. Gravel is ang subrounded fine to medium (ALLUVIUM) 1.50 with occasional poor yellowish brown silty fine to	equent dark gular to 1 flint. ckets of	- 1.20		N9	1, 2 / 2, 2, 2, 3	
DYNAMIC SAMPLING RECOVERY GENERAL REMARKS From To Diameter (mm) Recovery (%) 1.20 2.00 87 75 Softman and ground water monitoring pipe installed at 2.00m, slotted between 1.00m depth. 3. Borchole backfilled with pea shingle between 2.00m and hentonite pellets be 1.00m and bentonite pellets be 1.00m and bentonite pellets be 1.00m and between 1.00m	25/02/21	2.00	Dry	/101		1 1	subangular to rounded fine GRAVEL. (KEMPTON PARK GRA)	to coarse flint	l-			4, 4 / 11, 14, 18, 7 Borehole aborted at 2.00m depth	o ())
From To Diameter (mm) Recovery (%) 1. An inspection pit was hand excavated to 1.20m depth prior to boring commencing. 2.00 87 75 1. An inspection pit was hand excavated to 2.00m depth. 3. Borehole aborted at 2.00 depth due to refusal. 3. Borehole aborted at 2.00 depth due to refusal. 4. Ø50mm gas and groundwater monitoring pipe installed at 2.00m, slotted between 1.00m depth. 5. Borehole backfilled with pea shingle between 2.00m and 1.00m, and bentonite pellets be 1.00m and and 0.20m depth. Concrete with a stopcock cover installed from 0.20m to ground						-	End of Borenole		-				
From 10 Diameter (mm) Recovery (%) 2. Ø110mm casing used from ground level to 2.00m depth. 1.20 2.00 87 75 3. Borehole aborted at 2.00 depth due to refusal. 4. Ø50mm gas and groundwater monitoring pipe installed at 2.00m, slotted between 1.00m depth. 5. Borehole backfilled with pea shingle between 2.00m and 1.00m, and bentonite pellets be 1.00m and and 0.20m depth. Concrete with a stopcock cover installed from 0.20m to ground	DY	NAMIC	C SAI	MPLING	RECO	VERY							
			Di		nm) F		 2. Ø110mm casing us 3. Borehole aborted a 4. Ø50mm gas and gr depth. 5. Borehole backfille 1.00m and and 0.20m 	sed from ground le at 2.00 depth due to roundwater monito d with pea shingle d depth. Concrete	evel to 2.00m de to refusal. oring pipe install e between 2.00m	epth. led at 2.00 1 and 1.00)m, slotted m, and ben	between 1.00m and 2.0	
KEY: Drilled By: ES-Environmental Sample (Tub, Vial, Jar), U38-38mm Diameter Undisturbed Sample, U36-36mm Diameter Undisturbed Sample D-Disturbed Sample, B-Bulk Sample C-Core Sample, W-Water Sample, R-Root Sample AZCL: Assumed Zone of Core Loss V-Shear Vane, PP-Pocket Penetrometer, MP-Mackintosh Probe, VOC-Volatile Organic Compounds All depths are in metres, all diameters in millimetres, water strike rise time in minutes. For details of abbreviations see Key	C-Core Sample, W-Water Sample, R-Root Sample AZCL: Ass					ample AZC -Mackintosh I	L: Assumed Zone of Core Loss Probe, VOC-Volatile Organic Compo	ounds		imple D-Dis	sturbed Samp	le, B-Bulk Sample,	

Job No

20/3521

Method/

Client **Richmond & Wandsworth Council**

Driller: DN

Logger: DH/JM

Date Completed 24/02/21

Date Started

К	ciiii		x wan	uswor	in Cou			Dynamic	Jampin	5	1 01 1	
PRO	GRI	ESS			S	ГКАТА		SAMPLI	ES & T	ESTS		
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description		Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
24/02/21		Dry	8.88		0.10	Asphalt.		0.10-0.30	ES1 B2		VOC 17.8ppm	
			8.58		(0.30) 0.40	(MADE GROUND) Dark grey sandy angular to subrounded fine to medium flint GRAVEL. Sand is fine to coarse.		- 0.10-0.30 - 0.30 - 0.30 - 0.30	ES3 B4		VOC 6.5ppm	
					(0.50)	(MADE GROUND) 0.20 becoming light brown and slightly clayey Greyish brown slightly gravelly slightly	y /	- 0.60 - 0.60 -	ES5 B6		VOC 6.1 ppm	
			8.08	×o, ·×	- 0.90 -	sandy clayey SILT with low flint and brick cobble content and occasional roots Gravel comprises angular to rounded find to coarse flint, brick and concrete	e	- 0.90 - 0.90 -	ES7 B8		VOC 6.8ppm	
24/02/21		Dry		×	-	fragments. (MADE GROUND) Firm, orangish brown mottled greenish		- 1.20 - 1.20 - 1.20-1.65	B10 D9	N10	1, 2 / 2, 2, 3, 3	
				· · · · · · · · · · · · · · · · · · ·	(0.85)	grey slightly gravelly sandy clayey SILT with occasional pockets of reddish brown silty fine sand (<25mm), frequent roots and occasional dark grey staining. Grave	ı	1.40-1.70	ES11		VOC 7.7ppm	
			7.23	×0	<u> </u>	is angular to subangular fine to medium flint. (ALLUVIUM)		-				
24/02/21	2.00	Dry	6.98		2.00	1.40 with occasional pockets of greyis brown and yellowish brown fine sandy clay (<25mm)		- 2.00		N50/ 240 mm	7, 8 / 10, 14, 22, 4	
					- - - -	Very dense, brown slightly silty gravelly fine to medium SAND. Gravel is subangular to rounded fine to medium flint. (KEMPTON PARK GRAVEL MEMBER) 1.80 - 1.90 becoming slightly gravelly		2.00 			Borchole aborted at 2.00m depth (see Remarks)	
					-	End of Borehole		-				
					-			-				
					- -			-				
					-			-				
			MPLING	DECO		GENERAL REMARKS			1	1	1	I
						1. An inspection pit was hand excava				poring com	mencing.	
From 1.20	2.0		iameter (n 87		Recovery (100	 2. Ø110mm casing used from ground 3. Borehole aborted at 2.00 depth du 4. Borehole backfilled with bentonit 5. SPT Hammer: 0037 	l lev ie to	vel to 2.00m dej o refusal.	ptĥ.	c	-	
C-C V-S	ore San hear Va	nple, W-V ne, PP-P	Vater Sample ocket Penetro	, R-Root Sa ometer, MP	mple AZ Mackintosh	3-38mm Diameter Undisturbed Sample, U36-36mm Dia 2L: Assumed Zone of Core Loss Probe, VOC-Volatile Organic Compounds strike rise time in minutes. For details of abbreviations			nple D-Dist	urbed Sampl	e, B-Bulk Sample,	
	a-puis a	m meti	es, un ularite			state the time in minutes. For details of abore viations	1					

CHD: AN

APRV: OS

Issue:

FINAL

Log Print Date & Time: 09/04/2021 12:49

AGS

2.00m

1 of 1

Sheet Plant Used Dynamic Sampling

WS7

Borehole No

E C

Borehole No

ob No 20	12571		ate Start		24/02/21	. ,	Co-Ordina				nal Depth	
	/3521	Da	ate Comj	pleted	24/02/21	8.94		04.96 N 17	70856.8	33	2.00m	
lient Ri	chmo	nd &	& Wan	dswor	th Coun	cil	Method/ Plant Used	Dynamic	Sampli	ng Sh	eet 1 of 1	
PRO	GRE	SS			ST	RATA		SAMPL	ES & 1	TESTS		
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	L	Depth (m)	Type No	Test Result	Field Records	Instrument/
4/02/21		Dry	8.84		0.10	Asphalt. (MADE GROUND)		0.10-0.20	ES1 B2		VOC 4.9ppm	
					(0.50)	Dark brown slightly gravelly sandy clayey SILT. Gravel c angular to rounded fine to co brick and concrete fragments	omprises arse flint,	0.30-0.40	ES3 B4		VOC 5.4ppm	
			8.34		0.60	to medium. (MADE GROUND) Greyish brown mottled orang		0.60-0.70 - 0.60-0.70 -	ES5 B6		VOC 7.9ppm	
			7.94	× · · × · · · · · · · · · · · · · · · ·	- (0.40) 	slightly gravelly slightly sand CLAY with frequent dark gr Gravel is angular to subround coarse flint.	ly silty ey staining.	- 0.90-1.00 - 0.90-1.00	ES7 B8		VOC 7.7ppm	
4/02/21		Dry	7.39	× · · · · · · · · · · · · · · · · · · ·	- 1.55	(ALLUVIUM) 0.70 becoming orangish b Stiff to very stiff, orangish b gravelly sandy clayey SILT occasional pockets of reddish fine sand (<25mm), frequent staining and 1No flint cobble	rown slightly with h brown silty dark grey c. Gravel is	- 1.20 - 1.20-1.30 - 1.20-1.65 -	B10 D9	N34	1, 2 / 2, 12, 10, 10	
			7.14	× · · · · · · · · · · · · · · · · · · ·	$ \begin{array}{r} (0.25) \\ 1.80 \\ - (0.20) \\ 2.00 \\ \end{array} $	subangular to rounded fine to flint. (ALLUVIUM)		-				
4/02/21	2.00	Dry	6.94	. <u>,</u> .a.	2.00 - - - - - - -	Dense, brown silty sandy and subrounded fine to medium f GRAVEL. Sand is fine to co (KEMPTON PARK GRAVI MEMBER) Very dense, orangish brown gravelly silty fine to medium Gravel is subangular to round coarse flint. (KEMPTON PARK GRAVI MEMBER) 1.95 becoming gravelly End of Borehole	lint arse. EL slightly SAND. ded fine to	2.00		N50/ 210 mm	9, 13 / 16, 16, 18 Borehole aborted at 2.00m depth (see Remarks)	
					-			-				
DY	NAMI	C SAI	MPLING	RECO	VERY	GENERAL REM		L		, .		
<u>From</u> 1.20	<u>To</u> 2.00	Di	iameter (n 87	<u>um)</u> F	Recovery (9 95	 An inspection pit wa Ø110mm casing used Borehole aborted at Borehole backfilled SPT Hammer: 0037 	d from ground le 2.00 depth due t	vel to 2.00m de o refusal.	pth.	boring com	mencing.	
KEY: Drilled By: ES-Environmental Sample (Tub, Vial, Jar), U38-38mr C-Core Sample, W-Water Sample, R-Root Sample AZCL: Ass V-Shear Vane, PP-Pocket Penetrometer, MP-Mackintosh Probe, All depths are in metres, all diameters in millimetres, water strike					imple AZC	L: Assumed Zone of Core Loss		ter Undisturbed Sa	mple D-Dis	turbed Sampl	e, B-Bulk Sample,	

Warple Mews, 8 Warple Way London W13 0RF Telephone: 020 88112880_Fax: 020 88112881 E-mail: si@conceptconsultants.co.uk

CH E

C

Borehole No

WS9

Job No 20	/352]		ate Start ate Com		24/02/21 24/02/21		Co-Ordinat	tes 11.76 N 1	70835 5		nal Depth 2.00m		
Client Ri	chmo				th Coun	2100	Method/ Plant Used	Dynamic		Sh	eet 1 of 1		
PRO	GRE	SS			ST	TRATA	•	SAMPL	ES & 1	TESTS			
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description		Depth (m)	Type No	Test Result	Field Records	Instrument/	
24/02/21 24/02/21 24/02/21	2.00	Dry Dry	8.90 8.35 8.00 7.35 7.00			Paving slabs (0.04m) over lig brown slightly gravelly fine t SAND. Gravel is angular to s fine to medium flint. (MADE GROUND) Dark brown gravelly sandy s Gravel comprises angular to fine to coarse flint, brick, cor ceramic fragments. (MADE GROUND) Dark greyish brown mottled brown slightly gravelly sandy with frequent dark grey stain comprises angular to subrour coarse flint, brick and concre Sand is fine to coarse. (MADE GROUND) 0.80 becoming orangish br frequent pockets of dark grey (<30mm) Orangish brown slightly grar clayey SILT with occasional staining. Gravel is angular to fine to coarse flint. Sand is fi medium. (ALLUVIUM) 1.50 becoming gravelly Very dense, brown silty sand subrounded fine to medium f GRAVEL. Sand is fine to co (KEMPTON PARK GRAVI MEMBER) End of Borehole	o coarse subangular ilty CLAY. subrounded icrete and orangish y silty CLAY ing. Gravel aded fine to te fragments. rown with y silt velly sandy dark grey subrounded ne to y angular to lint arse.	- 0.10 0.10 - 0.40 - 0.40 - 0.60 - 0.90 - 1.20 - 1.20-1.65 - 1.40-1.70 - 2.00 - 2.00 	ES1 B2 ES3 B4 ES5 B6 ES7 B8 D9 ES10	N18 N50/ 180 mm	VOC 11.6ppm VOC 20.2ppm VOC 27.6ppm VOC 19.4ppm 1, 1 / 1, 3, 7, 7 VOC 4.5ppm 12, 16 / 18, 20, 12 Borehole aborted at 2.00m depth (see Remarks)		
DV		CGA		DECO	VEDV	CENEDAL DEM	ADVS	_					
From 1.20	<u>То</u> 2.00	D	MPLING iameter (m 87		Recovery (9 100	GENERAL REM. 1. An inspection pit wa: 2. Ø110nm casing used 3. Borehole aborted at 2 4. Borehole backfilled 5. SPT Hammer: 0037	s hand excavated 1 from ground lev 2.00 depth due to	vel to 2.00m de o refusal.	eptĥ.	boring com	mencing.		
C-C	ore Samp	le, W-V	Vater Sample	, R-Root Sa	mple AZC			er Undisturbed Sa	ample D-Dis	turbed Sampl	le, B-Bulk Sample,		

Warple Mews, 8 Warple Way London W13 0RF Telephone: 020 88112880_Fax: 020 88112881 E-mail: si@conceptconsultants.co.uk

Borehole No

WS10

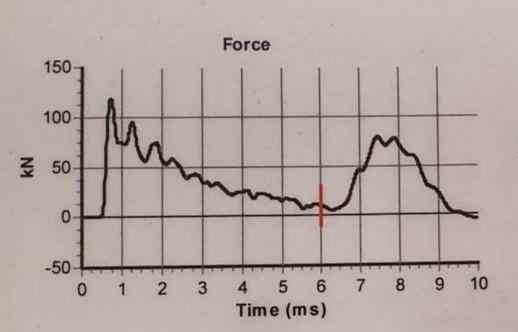
E STRATASheetSheetClient Richmond & Wandsworth CouncilMethod/ Plant UsedDynamic SamplingSheetPROGRESSSTRATASAMPLES & TESTSDate $\frac{50}{12}$ $\frac{50}{12}$ $\frac{50}{12}$ $\frac{10}{12}$ Depth (Thickness)Type ResultTest ResultField Records	Job No 20	/3521		ite Start ite Com		24/02/21 24/02/21	Ground Level (mOD) 9.09	Co-Ordinat		70828 2		nal Depth 2.00m	
Date B Level (moDD) Legend (moLanov) Check (moLanov) Strata Description Depth (m) Test (m) Test Records 24.0221 Dy 8.99 0.10 Grass over dark frown slightly gravelly (most molar models) 0.10 <	Client				-			Method/			Sh	eet	
Date B E Level (mOD) Legen (mod) Legen (mod) Depth (mod) Depth (mod) Test (mod) Test Records 240221 Dy 8.99 0.10 Grass over dark frow slightly gravelly (assert of an ords and noteles. Gravel is inglate to structured line to corse finit, (MADE GROUND) 0.10 0.20 FS1 VOC 5.4ppm 240221 Dy 8.34 0.57 corrain fragments (assert of an ords and noteles. Gravel is inglate to structured line to corse finit, (MADE GROUND) 0.30 ES3 VOC 6.8ppm 240221 Dy State Description 0.30 IS3 VOC 6.7pm 240221 Dy State COUND) 0.30 IS3 VOC 6.7pm 240221 Dy State COUND) 0.30 IS3 VOC 6.7pm 240221 Dy To Finite stiff congright frown slightly gravelly sandy clayey SILT visit frequent doc corse finit, into stiff congright brown slightly gravelly sandy clayey SILT visit frequent doc corse finit, into corse SAND. Gravel is angular to rown and yellowise state or structure is an	PRO	GRES	SS			ST	RATA		SAMPL	ES & T	ESTS		7
24/02/21 Dry					Legend	Depth		1	Depth	Туре	Test		
24/02/21 Dry	24/02/21]	Dry	8.99		0.10	Grass over dark brown slight clavey fine to medium SAN	tly gravelly D with				VOC 5.4ppm	
240221 Dry 0.01 (Srwel compress angular to subrounded fine to coarse find, bries, concret and sever this, concret and sever this, bries, concret and sever this, bries, concret and sever this, bries, concret and sever this, sever this, sever this, sever sever this, sever this, severe sever this, severe sever this, severe sever severe the severe severe severe and severe						(0.65)	frequent roots and rootlets. C angular to subrounded fine to (MADE GROUND)	Gravel is coarse flint.				VOC 8.4ppm	
24/02/21 Dry So X X X X X X X X X X X X X X X X X X X				8.34			Gravel comprises angular to fine to coarse flint, brick, con ceramic fragments.	subrounded				VOC 6.8ppm	
24/02/21 Dry Dry Image: Solution of the solution of th					×o. × .× × .× × .×		(MADE GROUND) 0.30 with 1No glass fragm (<10mm)	/ [VOC 6.7ppm	
24/02/21 2.00 Dry 7.09 (0.20) 2.00 Very dense, brown slightly sity gravelly rounded fine to coarse SAND. Gravel is singular to rounded fine to medium flint. 2.00 N50/ 165 mm 7, 18 / 21, 22, 7 24/02/21 2.00 Dry 7.09 0.200 rounded fine to medium flint. 2.00 N50/ 165 mm 7, 18 / 21, 22, 7 24/02/21 2.00 Dry Dry Borehole aborted a 2.00m depth (see Remarks) 24/02/21 2.00 Dry Borehole Borehole 1.00 Dry Borehole Borehole Borehole Borehole Borehole	24/02/21		Dry		× × × × × × × × × × × × × × × × × × ×		gravelly sandy clayey SILT dark grey staining and occas Gravel is subangular to subro to coarse flint. (ALLUVIUM) 1.40 with occasional pock brown and yellowish brown	with frequent ional roots. ounded fine tets of greyish	1.20		N15	1, 3 / 2, 2, 3, 8	
From To Diameter (mm) Recovery (%) 1. An inspection pit was hand excavated to 1.20m depth prior to boring commencing. 2. Ø110mm casing used from ground level to 2.00m depth. 3. Borehole aborted at 2.00 depth due to refusal. 4. Ø50mm gas and groundwater monitoring pipe installed at 2.00m, slotted between 1.00m and 2.00 depth. 5. Borehole backfilled with pea shingle between 2.00m and 1.00m, and bentonite pellets between 1.00m and and 0.20m depth. 6. SPT Hammer: 0037	24/02/21	2.00	Dry		хо		fine to coarse SAND. Grave rounded fine to medium flint (KEMPTON PARK GRAV MEMBER) 1.90 becoming slightly gra becoming fine to medium	l is angular to EL				Borehole aborted at 2.00m depth	
From To Diameter (mm) Recovery (%) 1. An inspection pit was hand excavated to 1.20m depth prior to boring commencing. 2. Ø110mm casing used from ground level to 2.00m depth. 3. Borehole aborted at 2.00 depth due to refusal. 4. Ø50mm gas and groundwater monitoring pipe installed at 2.00m, slotted between 1.00m and 2.00 depth. 5. Borehole backfilled with pea shingle between 2.00m and 1.00m, and bentonite pellets between 1.00m and and 0.20m depth. 6. SPT Hammer: 0037						- - - - - - - - - -		- - - - - - - - - - - - - - - - - -	-				
From To Diameter (mm) Recovery (%) 1. An inspection pit was hand excavated to 1.20m depth prior to boring commencing. 2. Ø110mm casing used from ground level to 2.00m depth. 3. Borehole aborted at 2.00 depth due to refusal. 4. Ø50mm gas and groundwater monitoring pipe installed at 2.00m, slotted between 1.00m and 2.00 depth. 5. Borehole backfilled with pea shingle between 2.00m and 1.00m, and bentonite pellets between 1.00m and and 0.20m depth. 6. SPT Hammer: 0037						_		-	-				
From 10 Diameter (mm) Recovery (%) 2. Ø110mm casing used from ground level to 2.00m depth. 1.20 2.00 87 75 3. Borehole aborted at 2.00 depth due to refusal. 4. Ø50mm gas and groundwater monitoring pipe installed at 2.00m, slotted between 1.00m and 2.00 depth. 1.20 2.00 87 75 5. Borehole backfilled with pea shingle between 2.00m and 1.00m, and bentonite pellets between 1.00m and and 0.20m depth. 5. Borehole backfilled with pea shingle between 2.00m and 1.00m, and bentonite pellets between 1.00m and and 0.20m depth. Concrete with a stopcock cover installed from 0.20m to ground level. 6. SPT Hammer: 0037	DY	NAMIC	C SAI	MPLING	RECO	VERY							_
KEV: Drilled Ry: FS. Environmental Sample (Tub. Vial. Jar). 1/38-38mm Diameter Undisturbed Sample, 1/36-26mm Diameter Undisturbed Sample, D. Dully Sample, D. D			Di	· · · · ·	nm) I		 2. Ø110mm casing used Borehole aborted at 4. Ø50mm gas and groudepth. 5. Borehole backfilled 1.00m and and 0.20m d 	d from ground lev 2.00 depth due to undwater monitor with pea shingle b	rel to 2.00m de refusal. ing pipe install between 2.00m	pth. ed at 2.001 1 and 1.00n	m, slotted	between 1.00m and 2.0 tonite pellets between	
KC 1. Druke By: ES-Environmental sample (Tub, viat, Jar), USe-Softin Diameter Ondstureed Sample, USe-Softin Diameter Ondstureed Sample, B-Burk Sample, C-Core Sample, W-Water Sample, R-Root Sample AZCL: Assumed Zone of Core Loss V-Shear Vane, PP-Pocket Penetrometer, MP-Mackintosh Probe, VOC-Volatile Organic Compounds All depths are in metres, all diameters in millimetres, water strike rise time in minutes. For details of abbreviations see Key	C-C V-S	ore Sample hear Vane,	e, W-W PP-Po	ater Sample ocket Penetro	, R-Root Sa ometer, MP	ample AZCI -Mackintosh P	.: Assumed Zone of Core Loss robe, VOC-Volatile Organic Compou	nds		mple D-Dist	urbed Samp	le, B-Bulk Sample,	=

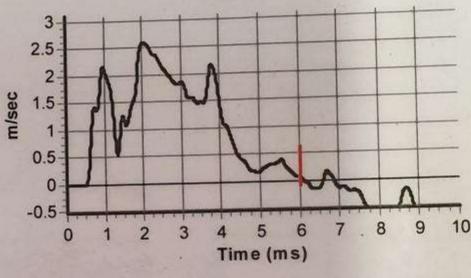
SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

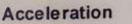
Southern Testing	
Jnit 11	
Charlwood Road	
ast Grinstead	
Vest Sussex	
RH19 2HU	

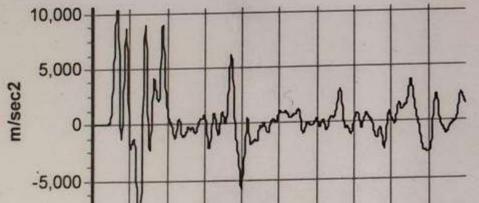
Instrumented Rod Data

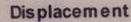

Diameter dr (mm):	54
Wall Thickness tr (mm):	6.3
Assumed Modulus E _a (GPa):	208
Accelerometer No.1:	6458
Accelerometer No.2:	9607

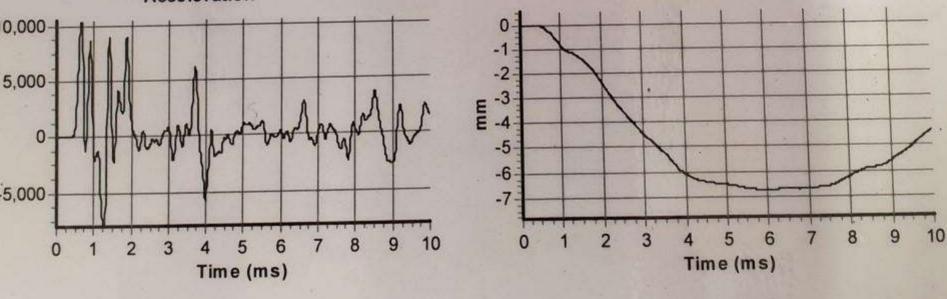

SPT Hammer Ref:	0037
Test Date:	12/02/2021
Report Date:	12/02/2021
File Name:	0037.spt
Test Operator:	NPB

SPT Hammer Information


Hammer Mass m (kg):	63.5
Falling Height h (mm):	760
SPT String Length L (m):	14.5


Comments / Location CHARLWOODS





Velocity

Calculations

- Area of Rod A (mm2): 944 Theoretical Energy E_{theor} (J): 473 leasured Energy E_{meas} (J): 278
- Energy Ratio E r (%):
- 59

simmonds Signe Field Operations Tech Title:

he recommended calibration interval is 12 months

SPTMAN ver. 1.92 All rights reserved, Testconsult @2010

10. TRIAL TRENCH LOGS

CONCEPT Warple Mews, 8 Warple Way London W13 0RF Telephone: 020 88112880_Fax: 020 88112881 E-mail: si@conceptconsultants.co.uk

Trial Pit No

STP1

ob N	o 20/3521		e Started Comple	25/02/21 ted 03/03/21	Ground Level (n 9.00	nOD) Co	-Ordinates E 515682		70882.26	Final Depth 2.60m
lien		ond & '	Wandsy	worth Counci			thod/ nt Used			Sheet 1 of 1
				STR	ATA	l	SAMP	LES & T	ESTS	
water	Level (mOD)	Legend	Depth (Thickness)	Sta	ta Description		Depth	Type No	Test Result	Field Records
	8.75		(0.25)	sandy GRAVEL w		carbon	- 0.10 0.15	ES1		VOC 30.3ppm Concrete encountered on the NE side of the pit between
	8.60		(0.15) 0.40	Gravel comprises a coarse flint, brick a fine to coarse.	htly silty sandy GRA ingular to subrounded and concrete fragment	fine to	0.25 - 0.25	ES2 B3		0.15m and V2Cm1ppm
	8 10		(0.50)	SAND with occasi clayey silt (<50mn Gravel comprises a	velly clayey silty fine onal pockets of orang a) and shell fragments ingular to subrounded coal, glass, bone and	ish brown s (<30mm). fine to	- - 0.70 0.70 -	ES4 B5		VOC 0.8ppm
	8.10		0.90 - (0.50)	gravelly slightly sa dark brown stainin	wn mottled greyish br indy silty CLAY with g. Gravel comprises s coarse brick and glas))	occasional ubangular to		B6		
	7.60		1.40	Vallar-11	Kababa 214	·	- 1.30	БО		
		x0	(0.60)	coarse SAND. Gra fin to coarse flint.	lightly silty gravelly f vel is subangular to su K GRAVEL MEMBI	ubrounded	- 1.60 - -	B7		
	7.00		2.00	to coarse flint GRA	andy subangular to ro AVEL. Sand is fine to K GRAVEL MEMBI	coarse.	- 2.30	В8		
	6.40	0.0.0 0.0.0 0.0.0	2.60	End of Trial Pit			- - -			
1. 2. 3. 4. rei	Ø50mm sl noved after	vas cloudy y and unst sions: 2.50 ottled star r testing.	able. m x 0.35m idpipe was		epth to facilitate infilt and 1.20m depth and	-		-		n and 1.20m depth. Pipe sting.

Warple Mews, 8 Warple Way London W13 0RF Telephone: 020 88112880_Fax: 020 88112881 E-mail: si@conceptconsultants.co.uk

Trial Pit No

STP2

ob N	lo 20/3521		Started Comple	25/02/21 eted 02/03/21		Level (mOD) 8.66	·	Ordinates		70000 10	Final Depth 2.50m
Clien	t			worth Counc		8.00	Met	E 515664 thod/ nt Used M		Excavated	2.50m Sheet 1 of 1
			, unus		RATA			SAMPI			
Water	Level (mOD)	egend	Depth (Thickness)	St	tata Descrip	tion		Depth	Type No	Test Result	Field Records
	8.56		0.10	Brown sandy silty (TOPSOIL) Dark brown and of frequent rootlets a	lark grey san and slight hy	dy GRAVEL wi	ith	0.00 0.10 0.10	ES1 B2		Asphalt encounted on the Eastern side of the pit between GL and 0.10m VOC 1.5ppm
	8.36		0.30	Gravel comprises coarse flint, brick fine to coarse. (MADE GROUN 0.20 becoming	and asphalt D) orangish bro	fragments. Sand	l is	0.40	ES3 B4		VOC 2ppm
	8.06		(0.30) <u>0.60</u>	Dark grey slightly SAND with freque Gravel comprises flint and brick fra (MADE GROUN	ent orange and angular to read agments.	nd black staining	g. [D4		VOC 0.8ppm
			(0.40)	Orangish brown c occasional roots. subrounded fine t ceramic pipe frag (MADE GROUN	Gravel comp to coarse flint ments. Sand	rises subangular t, brick, glass an	d	0.70 0.70 0.70	ES5 B6		2No Ø150-200mm clay pipes infilled with clay and roots encountered running diagonally at 0.70m depth
	7.66X	·	1.00	Firm, orangish br gravelly sandy cl rounded fine to c (ALLUVIUM)	ayey SILT. C	dravel is subangu	ılar to	- · 1.20	B7		
	· . ·×	ο	(0.80)				-				
		0.00	-	Brownish orange to coarse flint GR (KEMPTON PA)	AVEL. Sand	d is fine to coars	fine e.	- 1.80 - 2.00	B8		Pit collapsing at 1.80m depth
	0 0 0	0.0 0.0 0.0 0.0 0.0 0.0	(0.70)				-				
	6.16	2 · 4 ? 6 0	2.50	End of Trial Pit				2.50	В9		
		-					-	-			
1. 2. 3. 4. ren	Pit dimensio Ø50mm slott moved after to	s cloudy. and unsta ns: 2.50 tled stan esting.	able. m x 0.35m dpipe was	x 2.50m deep. installed to 2.50m ngle between 2.50n	•		-				n and 1.40m depth. Pipe sting.

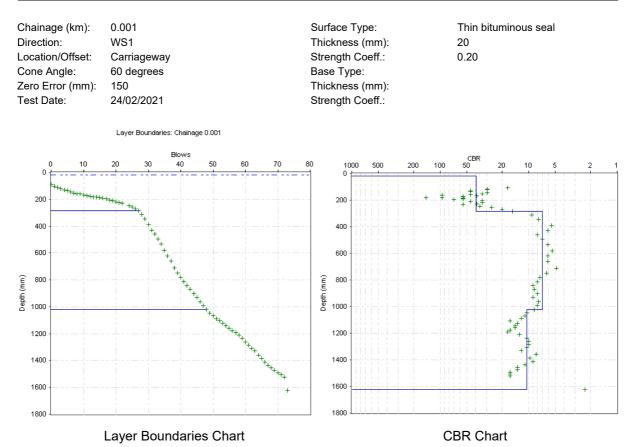
5 C. Warple Mews, 8 Warple Way London W13 0RF Telephone: 020 88112880_Fax: 020 88112881 E-mail: si@conceptconsultants.co.uk

Trial Pit No

STP3

ob N	lo 20/3521		Started Comple	25/02/21 eted 03/03/21	Ground Level (mOD) 8.93		Ordinates E 515700		70858.01	Final Depth 2.70m		
lien		ond & V	Wandsv	worth Cound	bil		thod/ nt Used	Machine	Excavated	ated Sheet 1 of 1		
	i			ST	RATA		SAMPI	LES & T	ESTS	Field		
Water	Level (mOD) Legend Depth (Thickness) Stata Description					Depth	Type No	Test Result	Field Records			
			(0.50)	silty gravelly fine fragments (<2mm		nell io	0.20	ES1 B2		VOC 0.6ppm		
	8.43		0.50	sandy silty CLAY	brown slightly gravelly sligh / with occasional pockets of 1 und (<40mm). Gravel compri- nded fine to coarse flint and 1 D)	brown ses	- 0.50 0.50	ES3 B4		VOC 0.5ppm		
	7.93	× · · · ·	1.00	coarse SAND. Gi to coarse flint.	slightly gravelly silty fine to avel is angular to subrounded RK GRAVEL MEMBER)	l fine	- 1.00-1.10 1.00-1.10 -	ES5 B6		VOC 0.6ppm		
		x	(1.20)	1.50 with occa clayey silt (<300	sional pockets of light grey s mm)	andy	- 1.50	В7				
	6.73	· · · × · · · · · · · · · · · · · · · ·	- 2.20	Yellowish brown	slightly silty and gravelly very sandy subangular to rou	nded	- 2.00	B8				
			(0.50)	fine to coarse flir	t GRAVEL. Sand is fine to c RK GRAVEL MEMBER)	oarse.	- 2.50	В9				
	6.23	<u></u> -	2.70	End of Trial Pit			- - -					
1. 2. 3. 4.	Weather v Pit was dr Pit dimen Ø50mm s nd arisings	lottled stan from 1.20r	able. m x 0.35m dpipe was n to 0.80m	depth. Pipe remov	depth to facilitate infiltration ed after testing. 1 and 1.20m depth and soil ar	-	-					

Issue: FINAL	Driller: DN	Logger: DH	CHD: AN	APRV: OS	Log Print Date & Time: 09/04/2021 12:48	MAGS
--------------	-------------	------------	---------	----------	--	------


11. DYNAMIC CONE PENETROMETER (DCP) RESULTS

Penetration Data Report

Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

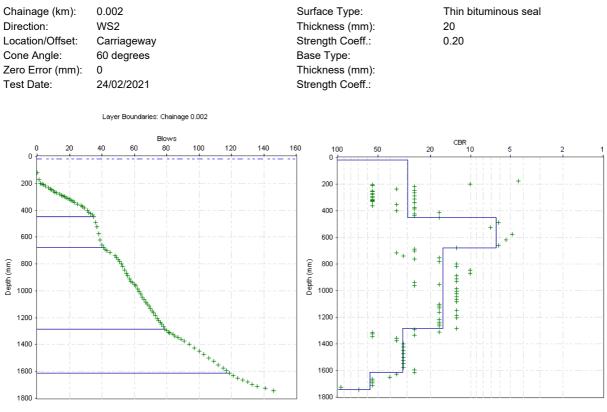
Chainage (km): 0.001 Direction: WS1 Location/Offset: Carriageway Cone Angle: 60 degrees Zero Error (mm): 150 Location 04/00/0004				Surface Type:Thin bituminous sealThickness (mm):20Strength Coeff.:0.20Base Type:Thickness (mm):Thickness (mm):2true of feet							
Fest Da	ate:	24/02/2021			Strengt	h Coeff.:					
No.	Blows	Cumulative Blows	Penetration	Penetration	No.	Blows	Cumulative	Penetration	Penetration		
		BIOWS	Depth (mm)	Rate			Blows	Depth (mm)	Rate		
				(mm/blow)				440	(mm/blow)		
1	0	0	240	0.00	26	1	26 27	419	13.00		
2	1	1 2	255 264	15.00 9.00	27 28	1	27	436 463	17.00 27.00		
		3	204	9.00		1	20		32.00		
4	1	4	273	6.00	29 30	1	30	495 539	44.00		
5 6	1	5	279	6.00	30	1	30	539	44.00		
7	1	6	205	9.00	31	1	32	610	31.00		
8	1	7	302		33	1	33				
8 9		8	302	8.00 6.00	33	1	33	645 685	35.00		
	1	9			34	1			40.00		
10	1	9 10	311 318	3.00		1	35 36	730	45.00		
11 12	1	10	318	7.00	36	1	36		40.00		
12	1	11	323	5.00 5.00	37	0	37	810 20	40.00		
13	1	12	328	2.00	38	0	37	70	50.00		
					_						
15	1	14	333	3.00	40	1	39	109	39.00		
16	1	15	338	5.00	41	1	40	142	33.00		
17	1	16	343	5.00	42	1	41	173	31.00		
18	1	17	347	4.00	43	1	42	201	28.00		
19	1	18	355	8.00	44	1	43	230	29.00		
20	1	19	361	6.00	45	1	44	261	31.00		
21	1	20	369	8.00	46	1	45	289	28.00		
22	1	21	376	7.00	47	1	46	321	32.00		
23	1	22	381	5.00	48	1	47	352	31.00		
24	2	24	396	7.50	49	1	48	381	29.00		
25	1	25	406	10.00	50	1	49	405	24.00		
51	1	50	428	23.00	_						
52	1	51	449	21.00	_						
53	1	52	465	16.00	_						
54	1	53	484	19.00	_						
55	1	54	502	18.00	_	-					
56	1	55	520	18.00	_						
57	1	56	536	16.00	_						
58	1	57	551	15.00	_						
59	1	58	571	20.00	_						
60	1	59	595	24.00	_	-					
61	1	60	620	25.00	_						
62	1	61	645	25.00	_						
63	1	62	669	24.00	_						
64	1	63	690	21.00	_						
65	1	64	720	30.00	_						
66	1	65	746	26.00	_						
67	1	66	774	28.00	_						
68	1	67	797	23.00	_						
69	1	68	816	19.00							
70	1	69	835	19.00							
71	1	70	851	16.00							
72	1	71	867	16.00							
73	1	72	883	16.00							
74	1	73	983	100.00							

Point 38 Extension Rod Added

Layer Properties

No.	Penetration Rate	CBR (%)	Thickness (mm)	Depth to layer bottom
	(mm/blow)	(7-7)	()	(mm)
1	6.92	39	266	286
2	35.00	7	735	1021
3	24.08	10	602	1623

CBR Relationship:


TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

Penetration Data Report

Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

Chainage (km): 0.002 Direction: WS2 Location/Offset: Carriageway Cone Angle: 60 degrees Zero Error (mm): 0 Test Date: 24/02/2021				Surface Type:Thin bituminous sealThickness (mm):20Strength Coeff.:0.20Base Type:Thickness (mm):Strength Coeff.:Strength Coeff.:					
No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate	No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate
		Diolic	Doptii (iiiii)				Diolio	Doptii (iiiii)	(mm/blow)
1	0	0	120	(mm/blow) 0.00	26	1	29	385	10.00
2	1	1	175	55.00	27	2	31	400	7.50
3	1	2	200	25.00	28	1	32	415	15.00
4	1	3	205	5.00	29	1	33	425	10.00
5	1	4	210	5.00	30	1	34	435	10.00
6	1	5	220	10.00	31	1	35	450	15.00
7	2	7	235	7.50	32	1	36	490	40.00
8	1	8	245	10.00	33	1	37	525	35.00
9	1	9	250	5.00	34	1	38	575	50.00
10	1	10	255	5.00	35	1	39	620	45.00
11	1	11	265	10.00	36	1	40	660	40.00
12	1	12	270	5.00	37	1	41	680	20.00
13	2	14	280	5.00	38	1	42	690	10.00
14	1	15	290	10.00	39	1	43	700	10.00
15	1	16	295	5.00	40	2	45	715	7.50
16	1	17	300	5.00	41	3	48	740	8.33
17	1	18	310	10.00	42	1	49	755	15.00
18	1	19	315	5.00	43	1	50	765	10.00
19	1	20	320	5.00	44	1	51	780	15.00
20	1	21	325	5.00	45	1	52	800	20.00
21	1	22	330	5.00	46	1	53	820	20.00
22	1	23	340	10.00	47	1	54	845	25.00
23	2	25	355	7.50	48	1	55	870	25.00
24	2	27	365	5.00	49	0	55	65	
25	1	28	375	10.00	50	1	56	85	20.00
51	1	57	105	20.00	76	1	82	510	5.00
52	1	58	125	20.00	77	2	84	520	5.00
53	1	59	135	10.00	78	1	85	530	10.00
54	1	60	150	15.00	79	2	87	540	5.00
55	1	61	160	10.00	80	2	89	555	7.50
56	1	62	180	20.00	81	2	91	570	7.50
57	1	63	200	20.00	82	3	94	595	8.33
58	1	64	220	20.00	83	3	97	620	8.33
59	1	65	240	20.00	84	3	100	645	8.33
60	1	66	260	20.00	85	3	103	670	8.33
61	1	67	280	20.00	86	3	106	695	8.33
62	1	68	295	15.00	87	3	109	720	8.33
63	1	69	310	15.00	88	3	112	745	8.33
64	1	70	325	15.00	89	3	115	770	8.33
65	1	71	345	20.00	90	2	117	790	10.00
66	1	72	360	15.00	91	2	119	810	10.00
67	1	73	380	20.00	92	2	121	825	7.50
68	1	74	400	20.00	93	3	124	845	6.67
69	1	75	415	15.00	94	3	127	860	5.00
70	1	76	430	15.00	95	3	130	875	5.00
71	1	77	445	15.00	96	3	133	890	5.00
72	1	78	460	15.00	97	3	136	905	5.00
73	1	79	480	20.00	98	5	141	920	3.00
74	1	80	490	10.00	99	5	146	940	4.00
75	1	81	505	15.00					

Point 49 Extension Rod Added

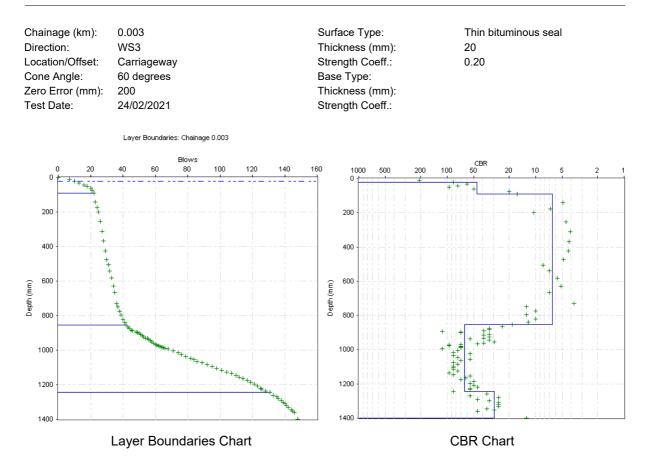
Layer Boundaries Chart

CBR Chart

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	8.95	30	430	450
2	38.33	6	230	680
3	15.92	16	605	1285
4	8.25	32	330	1615
5	4.81	57	130	1745

CBR Relationship:


TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

Penetration Data Report

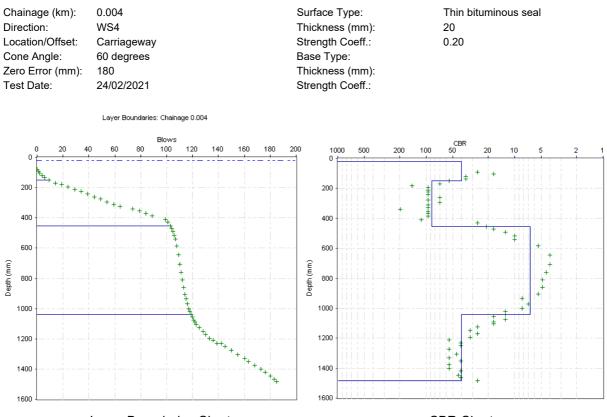
Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

Chainage (km): 0.003 Direction: WS3 Location/Offset: Carriageway Cone Angle: 60 degrees Zero Error (mm): 200 Test Date: 24/02/2021			Surface Type:Thin bituminous sealThickness (mm):20Strength Coeff.:0.20Base Type:Thickness (mm):Strength Coeff.:						
No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate	No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate
		DIOWS	Deptil (iiiii)				Diows	Deptil (iiiii)	
1	0	0	200	(mm/blow) 0.00	26	1	38	130	(mm/blow) 25.00
2	7	7	210	1.43	20	1	39	150	20.00
3	3	10	220	3.33	28	1	40	175	25.00
4	3	13	234	4.67	29	1	41	196	21.00
5	3	16	245	3.67	30	1	42	210	14.00
6	2	18	251	3.00	31	1	43	221	11.00
7	2	20	262	5.50	32	1	44	229	8.00
8	1	20	275	13.00	33	1	45	237	8.00
9	1	22	291	16.00	34	1	46	244	7.00
<u> </u>	1	23	340	49.00	35	2	40	249	2.50
11	1	23	376	36.00	36	1	40	253	4.00
12	1	24	400	24.00	37	1	50	257	4.00
13	1	26	453	53.00	38	1	51	265	8.00
14	1	27	512	59.00	39	1	52	272	7.00
15	1	28	569	57.00	40	1	53	280	8.00
16	1	29	625	56.00	40	1	54	287	7.00
17	1	30	675	50.00	42	1	55	287	0.00
18	1	31	705	30.00	43	1	56	292	5.00
19	1	32	740	35.00	44	1	57	300	8.00
20	1	33	783	43.00	45	1	58	309	9.00
20	1	34	830	47.00	46	1	59	316	7.00
22	1	35	865	35.00	40	1	60	322	6.00
23	0	35	20		48	1	61	326	4.00
24	1	36	85	65.00	49	1	62	329	3.00
25	1	37	105	20.00	50	1	63	332	3.00
51	1	64	336	4.00	76	2	125	575	6.00
52	1	65	340	4.00	77	1	125	580	5.00
53	1	66	340	4.00	78	2	128	590	5.00
54	2	68	349	2.50	79	3	131	600	3.33
55	3	71	360	3.67	80	2	133	615	7.50
56	3	74	370	3.33	81	2	135	625	5.00
57	2	76	380	5.00	82	1	135		
58	3	70	390	3.33	83	2	138	635 647	10.00 6.00
50 59	3	82	401	3.67	84	1	130	655	8.00
60	2	84	401	5.00	85	1	139	665	10.00
61	2	86	411 419	4.00	86	1	140	675	10.00
62	3	89	419	3.33	87	1	141	685	10.00
63	3	92	429 440	3.67	88	2	142	700	7.50
64	3	95	440	3.33	89	1	145	709	9.00
65	3	98	460	3.33	90	1	145	715	6.00
66	3	101	400	3.33	90	2	140	755	20.00
67	3	101	470	3.67	- 31	-	140	100	20.00
68	3	104	401	3.00	-				
69	3	110	500	3.33					
70	2	112	510	5.00	-	+			
70	2	112	519	4.50	-				
72	3	114	519	4.00	-	+			
72	2	117	531	5.50					+
73	2	119	542	5.00	-				
74	2	121	563	5.50	-				+

Remarks: Start at 260mm Point 23 Extension Rod Added

Layer Properties

No.	Penetration	CBR	Thickness	Depth to	
	Rate	(%)	(mm)	layer bottom	
	(mm/blow)			(mm)	
1	5.92	46	71	91	
2	38.20	6	764	855	
3	4.38	63	390	1245	
4	9.12	29	155	1400	


CBR Relationship:

TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

Penetration Data Report

Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

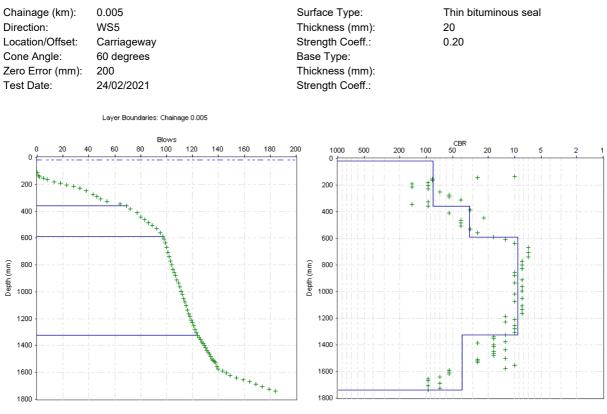
Directio Locatio Cone A	on/Offset: Angle: rror (mm):	0.004 WS4 Carriagewa 60 degrees 180 24/02/2021	-		Thickn Streng Base T Thickn Streng	e Type: ess (mm): th Coeff.: ype: ess (mm): th Coeff.:		Thin bituminous 20 0.20	s seal
No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate	No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate
				(mm/blow)					(mm/blow)
1	0	0	260	0.00	26	1	105	670	20.00
2	1	1	270	10.00	27	1	106	695	25.00
3	1	2	285	15.00	28	1	107	720	25.00
4	2	4	300	7.50	29	1	108	765	45.00
5	2	6	315	7.50	30	1	109	825	60.00
6	3	9	330	5.00	31	0	109	30	
7	5	14	350	4.00	32	1	110	90	60.00
8	5	19	360	2.00	33	1	111	145	55.00
9	5	24	375	3.00	34	1	112	195	50.00
10	5	29	390	3.00	35	1	113	245	50.00
11	5	34	405	3.00	36	1	114	290	45.00
12	5	39	420	3.00	37	1	115	320	30.00
13	5	44	440	4.00	38	1	116	355	35.00
14	5	49	455	3.00	39	1	117	385	30.00
15	5	54	475	4.00	40	1	118	405	20.00
16	5	59	490	3.00	41	1	119	425	20.00
17	5	64	505	3.00	42	1	120	440	15.00
18	10	74	520	1.50	43	1	121	460	20.00
19	5	79	535	3.00	44	1	122	475	15.00
20	5	84	550	3.00	45	1	123	490	15.00
21	5	89	565	3.00	46	2	125	510	10.00
22	10	99	590	2.50	47	3	128	535	8.33
23	2	101	610	10.00	48	2	130	555	10.00
24	2	103	635	12.50	49	3	133	580	8.33
25	1	103	650	15.00	50	3	136	595	5.00
	3					3	150	333	5.00
51		139	615	6.67	_				
52	3	142	615	0.00	_				
53	3	145	635	6.67	_				
54	5	150	660	5.00	_				
55	5	155	690	6.00	_				
56	5	160	715	5.00	_				
57	3	163	735	6.67	_				
58	5	168	760	5.00	_				
59	5	173	785	5.00	_				
60	3	176	805	6.67	_	-			
61	4	180	830	6.25	_				
62	3	183	850	6.67	_				
63	2	185	870	10.00	_				
				1			1		
	+					-		-	+

Layer Boundaries Chart

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	6.82	40	130	150
2	3.24	87	305	455
3	36.56	7	585	1040
4	6.74	40	445	1485

CBR Relationship:


TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

Penetration Data Report

Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

Chainage (km): 0.005 Direction: WS5 Location/Offset: Carriageway Cone Angle: 60 degrees Zero Error (mm): 200 Test Date: 24/02/2021 No. Blows Cumulative			Surface Type: Thin bituminous seal Thickness (mm): 20 Strength Coeff.: 0.20 Base Type: Thickness (mm): Strength Coeff.: 5						
No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate	No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate
				(mm/blow)					(mm/blow)
1	0	0	310	0.00	26	2	97	790	15.00
2	1	1	335	25.00	27	1	98	810	20.00
3	1	2	345	10.00	28	1	99	835	25.00
4	3	5	355	3.33	29	1	100	870	35.00
5	3	8	365	3.33	30	0	100	65	
6	5	13	380	3.00	31	1	101	100	35.00
7	5	18	390	2.00	32	1	102	135	35.00
8	5	23	405	3.00	33	1	103	165	30.00
9	5	28	415	2.00	34	1	104	195	30.00
10	5	33	430	3.00	35	1	105	225	30.00
11	5	38	450	4.00	36	1	106	250	25.00
12	5	43	475	5.00	37	1	107	275	25.00
13	3	46	490	5.00	38	1	108	305	30.00
14	3	49	510	6.67	39	1	109	330	25.00
15	5	54	525	3.00	40	1	110	360	30.00
16	10	64	545	2.00	41	1	111	390	30.00
17	5	69	560	3.00	42	1	112	415	25.00
18	3	72	585	8.33	43	1	113	445	30.00
19	5	77	610	5.00	44	1	114	470	25.00
20	3	80	645	11.67	45	1	115	500	30.00
21	3	83	665	6.67	46	1	116	530	30.00
22	3	86	685	6.67	47	1	117	560	30.00
23	3	89	705	6.67	48	1	118	580	20.00
24	3	92	730	8.33	49	1	119	605	25.00
25	3	95	760	10.00	50	1	120	625	20.00
51	1	121	650	25.00	76	5	164	1065	3.00
52	1	121	675	25.00	70	5	169	1085	4.00
53	1	122	700	25.00	78	5	174		3.00
		123	700			5	174	1100	
54	1			20.00	79		179		4.00
55	1	125	735	15.00	80	5	184	1135	3.00
56	1	126	750	15.00	_				
57	1	127	770	20.00					
58	1	128	780	10.00	_				
59	1	129	795	15.00	_				
60	1	130	810	15.00	-				
61	1	131	830	20.00	_				
62	1	132	845	15.00	_				
63	1	133	860	15.00	_				
64	1	134	875	15.00					
65	1	135	895	20.00					
66	1	136	905	10.00					
67	1	137	915	10.00					
68	1	138	925	10.00					
69	1	139	950	25.00					
70	1	140	970	20.00					
71	3	143	985	5.00					
72	3	146	1000	5.00					
73	3	149	1015	5.00					
74	5	154	1035	4.00					
75	5	159	1050	3.00		1	1	1	1

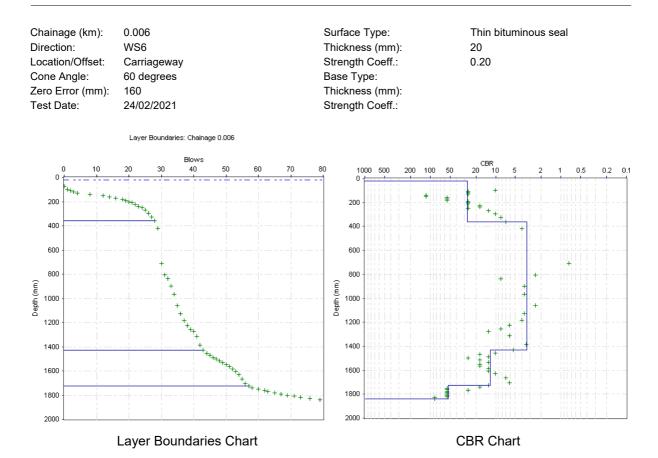
Remarks: Start at 220mm Point 30 Extension Rod Added

Layer Boundaries Chart

CBR Chart

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	3.37	84	340	360
2	8.21	33	230	590
3	27.22	9	735	1325
4	6.92	39	415	1740


CBR Relationship:

TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

Penetration Data Report

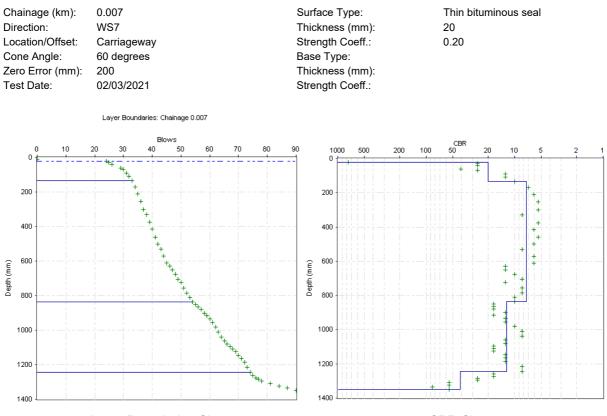
Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

Directio Locatio Cone A Zero E Test D	on/Offset: Angle: rror (mm): ate:	24/02/2021	1		Thickn Streng Base T Thickn Streng	ess (mm): th Coeff.:		Thin bituminous 20 0.20	
No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate	No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate
				(mm/blow)					(mm/blow)
1	0	0	235	0.00	26	1	33	275	65.00
2	1	1	260	25.00	27	1	34	340	65.00
3	1	2	270	10.00	28	1	35	435	95.00
4	1	3	280	10.00	29	1	36	500	65.00
5	1	4	290	10.00	30	1	37	560	60.00
6	4	8	300	2.50	31	1	38	600	40.00
7	4	12	310	2.50	32	1	39	630	30.00
8	2	14	320	5.00	33	1	40	650	20.00
9	2	16	330	5.00	34	1	41	690	40.00
10	2	18	340	5.00	35	1	42	760	70.00
11	1	19	350	10.00	36	1	43	805	45.00
12	1	20	360	10.00	37	1	44	830	25.00
13	1	21	370	10.00	38	1	45	845	15.00
14	1	22	385	15.00	39	1	46	865	20.00
15	1	23	400	15.00	40	1	47	875	10.00
16	1	24	410	10.00	41	1	48	890	15.00
17	1	25	430	20.00	42	1	49	910	20.00
18	1	26	455	25.00	43	1	50	925	15.00
19	1	27	485	30.00	44	1	51	940	15.00
20	1	28	520	35.00	45	1	52	960	20.00
21	1	29	580	60.00	46	1	53	980	20.00
22	1	30	870	290.00	47	1	54	1005	25.00
23	0	30	85		48	1	55	1040	35.00
24	1	31	180	95.00	49	1	56	1080	40.00
25	1	32	210	30.00	50	1	57	1100	20.00
51	1	58	1115	15.00					
52	2	60	1125	5.00					
53	2	62	1135	5.00					
54	1	63	1145	10.00					
55	2	65	1155	5.00					
56	2	67	1165	5.00					
57	2	69	1175	5.00					
58	2	71	1185	5.00					
59	2	73	1195	5.00					
60	3	76	1205	3.33					
61	3	79	1215	3.33					

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	9.74	27	340	360
2	71.33	3	1070	1430
3	21.07	12	295	1725
4	5.23	53	115	1840

CBR Relationship:


TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

Penetration Data Report

Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

Chainage (km): 0.007 Direction: WS7 Location/Offset: Carriageway Cone Angle: 60 degrees Zero Error (mm): 200 Test Date: 02/03/2021					Surface Type: Thin bituminous seal Thickness (mm): 20 Strength Coeff.: 0.20 Base Type: Thickness (mm): Strength Coeff.: Strength Coeff.:					
No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate	No.	Blows	Cumulative Blows	Penetration Depth (mm)	Penetration Rate	
				(mm/blow)					(mm/blow)	
1	0	0	210	0.00	26	1	49	110	30.00	
2	24	24	220	0.42	27	1	50	130	20.00	
3	1	25	230	10.00	28	1	51	160	30.00	
4	1	26	240	10.00	29	1	52	190	30.00	
5	3	29	260	6.67	30	1	53	215	25.00	
6	1	30	270	10.00	31	1	54	240	25.00	
7	1	31	290	20.00	32	1	55	255	15.00	
8	1	32	310	20.00	33	1	56	270	15.00	
9	1	33	335	25.00	34	1	57	285	15.00	
10	1	34	370	35.00	35	1	58	305	20.00	
11	1	35	410	40.00	36	1	59	320	15.00	
12	1	36	455	45.00	37	1	60	340	20.00	
13	1	37	500	45.00	38	1	61	360	20.00	
14	1	38	530	30.00	39	1	62	385	25.00	
15	1	39	575	45.00	40	1	63	415	30.00	
16	1	40	615	40.00	41	1	64	445	30.00	
17	1	41	660	45.00	42	1	65	465	20.00	
18	1	42	700	40.00	43	1	66	485	20.00	
19	1	43	730	30.00	44	1	67	500	15.00	
20	1	44	770	40.00	45	1	68	515	15.00	
21	1	45	810	40.00	46	1	69	530	15.00	
22	0	45	15		47	1	70	550	20.00	
23	1	46	35	20.00	48	1	71	570	20.00	
24	1	47	55	20.00	49	1	72	590	20.00	
25	1	48	80	25.00	50	1	73	620	30.00	
51	1	74	650	30.00			10	020	00.00	
52	1	75	665	15.00	_					
53	1	76	680	15.00	_					
54	1	70	690	10.00	_					
55	1	78	700	10.00	_					
56	3	81	715	5.00	_					
57	3	84	715	5.00	_					
57 58	3	87	730		_					
50 59	3			3.33	_					
59	3	90	755	5.00	_					
					_					
					_					
					_					
					_					
					_					
					_					
					_					
					_					
	İ						1			

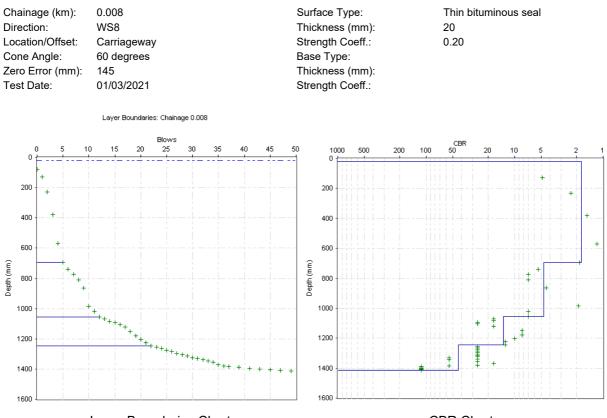
Remarks: Start at 310mm Point 22 Extension Rod Added

Layer Boundaries Chart

CBR Chart

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	13.13	20	115	135
2	33.33	7	700	835
3	20.50	12	410	1245
4	6.56	41	105	1350


CBR Relationship:

TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

Penetration Data Report

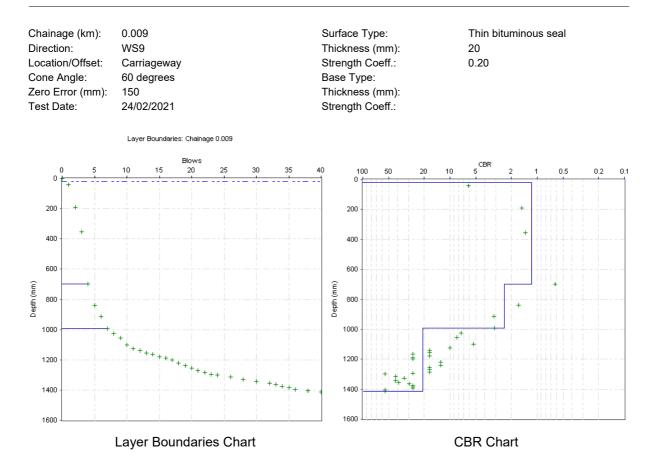
Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

Chainage (km): 0.008		Surface Type:		Thin bituminous seal					
Direction: WS8 1		Thickness (mm):			20				
Locatio	on/Offset:	Carriagewa	V			h Coeff.:		0.20	
Cone A	Anale:	60 degrees	•		Base T				
	rror (mm):	0				ess (mm):			
Test D	. ,	01/03/2021				h Coeff.:			
			1			1			
No.	Blows	Cumulative	Penetration	Penetration	No.	Blows	Cumulative	Penetration	Penetration
		Blows	Depth (mm)	Rate			Blows	Depth (mm)	Rate
				(mm/blow)					(mm/blow)
1	0	0	225	0.00	26	1	24	285	10.00
2	1	1	275	50.00	27	1	25	295	10.00
3	1	2	375	100.00	28	1	26	305	10.00
4	1	3	525	150.00	29	1	27	315	10.00
5	1	4	715	190.00	30	1	28	325	10.00
6	1	5	840	125.00	31	1	29	335	10.00
7	1	6	885	45.00	32	1	30	345	10.00
8	1	7	920	35.00	33	1	31	350	5.00
9	1	8	955	35.00	34	1	32	360	10.00
10	1	9	1010	55.00	35	1	33	365	5.00
11	1	10	1130	120.00	36	1	34	375	10.00
12	1	11	1165	35.00	37	1	35	390	15.00
13	0	11	40		38	1	36	400	10.00
14	1	12	75	35.00	39	1	37	405	5.00
15	1	13	90	15.00	40	2	39	410	2.50
16	1	14	105	15.00	41	2	41	415	2.50
17	1	15	115	10.00	42	2	43	420	2.50
18	1	16	125	10.00	43	2	45	425	2.50
19	1	17	140	15.00	44	2	47	430	2.50
20	1	18	170	30.00	45	2	49	435	2.50
21	1	19	200	30.00					
22	1	20	225	25.00					
23	1	21	245	20.00					
24	1	22	265	20.00					
25	1	23	275	10.00					

Layer Boundaries Chart

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	129.35	2	675	695
2	51.43	5	360	1055
3	19.00	13	190	1245
4	6.30	43	170	1415


CBR Relationship:

TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

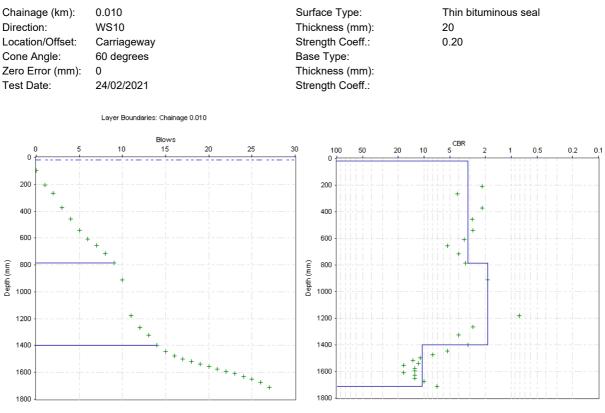
Penetration Data Report

Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

Chainage (km): 0.009		Surface Type:			Thin bituminous seal				
S ()		Thickness (mm):			20				
Locatio	on/Offset:	Carriagewa	v			h Coeff.:		0.20	
Cone A	Angle.	60 degrees			Base T				
	rror (mm):					ess (mm):			
Test D	• •	24/02/2021				h Coeff.:			
No.	Blows	Cumulative	Penetration	Penetration	No.	Blows	Cumulative	Penetration	Penetration
		Blows	Depth (mm)	Rate			Blows	Depth (mm)	Rate
				(mm/blow)					(mm/blow)
1	0	0	150	0.00	26	1	24	100	5.00
2	1	1	190	40.00	27	2	26	113	6.50
3	1	2	340	150.00	28	2	28	129	8.00
4	1	3	505	165.00	29	2	30	142	6.50
5	1	4	850	345.00	30	2	32	156	7.00
6	1	5	990	140.00	31	1	33	165	9.00
7	1	6	1065	75.00	32	1	34	175	10.00
8	1	7	1142	77.00	33	1	35	185	10.00
9	1	8	1175	33.00	34	1	36	195	10.00
10	1	9	1205	30.00	35	2	38	205	5.00
11	1	10	1250	45.00	36	2	40	215	5.00
12	1	11	1275	25.00					
13	1	12	1290	15.00					
14	1	13	1305	15.00					
15	1	14	1315	10.00					
16	1	15	1330	15.00					
17	1	16	1340	10.00					
18	1	17	1350	10.00					
19	1	18	1370	20.00					
20	1	19	1390	20.00					
21	0	19	40						
22	1	20	55	15.00					
23	1	21	70	15.00					
24	1	22	85	15.00					
25	1	23	95	10.00					

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	194.29	1	680	700
2	97.33	2	292	992
3	12.82	20	423	1415


CBR Relationship:

TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

Penetration Data Report

Project Name: 203521 - Elleray Hall & North Lane Depot-East Car Park

Chaina	ac (km):	0.010			Surface				
- 3 ()		Surface Type:			Thin bituminous seal				
						Thickness (mm): 20			
	on/Offset:	Carriagewa	У		-	h Coeff.:		0.20	
Cone A	0	60 degrees			Base T				
	rror (mm):					ess (mm):			
Test D	ate:	24/02/2021			Strengt	h Coeff.:			
No.	Blows	Cumulative Penetration		Penetration	No.	Blows	Cumulative	Penetration	Penetration
		Blows	Depth (mm)	Rate			Blows	Depth (mm)	Rate
				(mm/blow)					(mm/blow)
1	0	0	100	0.00	26	1	24	830	20.00
2	1	1	207	107.00	27	1	25	850	20.00
3	1	2	265	58.00	28	1	26	875	25.00
4	1	3	372	107.00	29	1	27	910	35.00
5	1	4	456	84.00					
6	1	5	541	85.00					
7	1	6	610	69.00					
8	1	7	655	45.00					
9	1	8	715	60.00					
10	1	9	786	71.00					
11	1	10	910	124.00					
12	0	10	110						
13	1	11	380	270.00					
14	1	12	465	85.00					
15	1	13	525	60.00					
16	1	14	600	75.00					
17	1	15	645	45.00					
18	1	16	676	31.00					
19	1	17	699	23.00					
20	1	18	718	19.00					
21	1	19	740	22.00					
22	1	20	755	15.00					
23	1	21	775	20.00					
24	1	22	795	20.00					
25	1	23	810	15.00					

Layer Boundaries Chart

CBR Chart

Layer Properties

No.	Penetration	CBR	Thickness	Depth to
	Rate	(%)	(mm)	layer bottom
	(mm/blow)			(mm)
1	75.57	3	766	786
2	122.80	2	614	1400
3	23.85	11	310	1710

CBR Relationship:

TRL equation: $\log_{10}(CBR) = 2.48 - 1.057 \times \log_{10}(Strength)$

12. SOAKAWAY TEST RESULTS

Site Name:	Elleray Hall 8	North Lane D	epot/East (Car Park		
Job No.:	20/3521					
Date:	26/02/2021					
		Soakawa	y Design			
	BRE Digest 365	(September 1991 ir	ncl. revisions,	2003, 2007 and 20)16)	
Trial Pit No.:	STP1					
Date Excavated:	25/02/2021					
Date Backfilled:	03/03/2021					
Pit Dimensions:	Length (m) Width (m) Depth (m)	2.50 0.35 2.60				
Level:						
Soil Infiltration Ra	te:	$f = \frac{1}{a_{\mu}}$	V_{p75-25}	5 - 25		
Effective depth V _p 75-25 a _p 50 t _p 75-25	<u>Test 1</u> 1.81 0.523 6.034 10.90	m m ³ m ² min	<u>Test 2</u> 1.77 0.511 5.920 17.03	m m ³ m ² min	<u>Test 3</u> 1.70 0.491 5.370 19.72	m m ³ m ² min
Result (<i>f</i>)	1.32E-0)4 m/sec	8.45E-	05 m/sec	7.73E-	05 m/sec
REMARKS:						
Weather:	Cloudy					
Installation Construction:		alled to base of p th pea shingle to		• •	n above groun	d level. D
Notes:	It is assumed th	nat voids in grave	l are 33% of	total volume		

Site Name: Elleray Hall & North Lane Depot/East Car Park

Dry

Job No.: 20/3521

26/02/2021 Test No.: 1 Date:

Standing Water Level (m)

Date	Time	Minutes	Depth to Water	Depth to Water	
Date	(h:mm:ss)	winutes	(mbgl)	(mOD)	
26/02/2021	0:00:00	0.00	0.79		
26/02/2021	0:00:30	0.50	0.87		
26/02/2021	0:01:00	1.00	0.95		
26/02/2021	0:01:30	1.50	1.03		
26/02/2021	0:02:00	2.00	1.11		
26/02/2021	0:02:30	2.50	1.25		
26/02/2021	0:03:00	3.00	1.39		
26/02/2021	0:03:30	3.50	1.50		
26/02/2021	0:04:00	4.00	1.59		
26/02/2021	0:04:30	4.50	1.67		
26/02/2021	0:05:00	5.00	1.74		
26/02/2021	0:06:00	6.00	1.85		
26/02/2021	0:07:00	7.00	1.94		
26/02/2021	0:09:00	9.00	2.04		
26/02/2021	0:10:00	10.00	2.08		
26/02/2021	0:15:00	15.00	2.18		
26/02/2021	0:20:00	20.00	2.27		
26/02/2021	0:25:00	25.00	2.33		
26/02/2021	0:30:00	30.00	2.38		
26/02/2021	0:35:00	35.00	2.43		
26/02/2021	0:40:00	40.00	2.46		
26/02/2021	0:45:00	45.00	2.48		
26/02/2021	0:50:00	50.00	2.51		
26/02/2021	0:55:00	55.00	2.53		
26/02/2021	1:00:00	60.00	2.55		

REMARKS:

All measurements taken from he top of standpipe at 0.30m above ground level.
 Pit filled with water above top of gravel.

Site Name: Elleray Hall & North Lane Depot/East Car Park

Job No.: 20/3521

Date: 26/02/2021 Test No.: 2

Standing Water Level (m)

Date	Time	Minuteo	Depth to Water	Depth to Water (mOD)	
Date	(h:mm:ss)	Minutes	(mbgl)		
26/02/2021	0:00:00	0.00	0.83		
26/02/2021	0:00:30	0.50	0.91		
26/02/2021	0:01:00	1.00	0.98		
26/02/2021	0:01:30	1.50	1.04		
26/02/2021	0:02:00	2.00	1.09		
26/02/2021	0:02:30	2.50	1.20		
26/02/2021	0:03:00	3.00	1.31		
26/02/2021	0:03:30	3.50	1.40		
26/02/2021	0:04:00	4.00	1.47		
26/02/2021	0:04:30	4.50	1.54		
26/02/2021	0:05:00	5.00	1.59		
26/02/2021	0:06:00	6.00	1.67		
26/02/2021	0:07:00	7.00	1.74		
26/02/2021	0:09:00	9.00	1.83		
26/02/2021	0:10:00	10.00	1.88		
26/02/2021	0:15:00	15.00	2.07		
26/02/2021	0:20:00	20.00	2.16		
26/02/2021	0:25:00	25.00	2.23		
26/02/2021	0:30:00	30.00	2.29		
26/02/2021	0:35:00	35.00	2.34		
26/02/2021	0:40:00	40.00	2.38		
26/02/2021	0:45:00	45.00	2.42		
26/02/2021	0:50:00	50.00	2.45		
26/02/2021	0:55:00	55.00	2.48		
26/02/2021	1:00:00	60.00	2.50		

REMARKS:

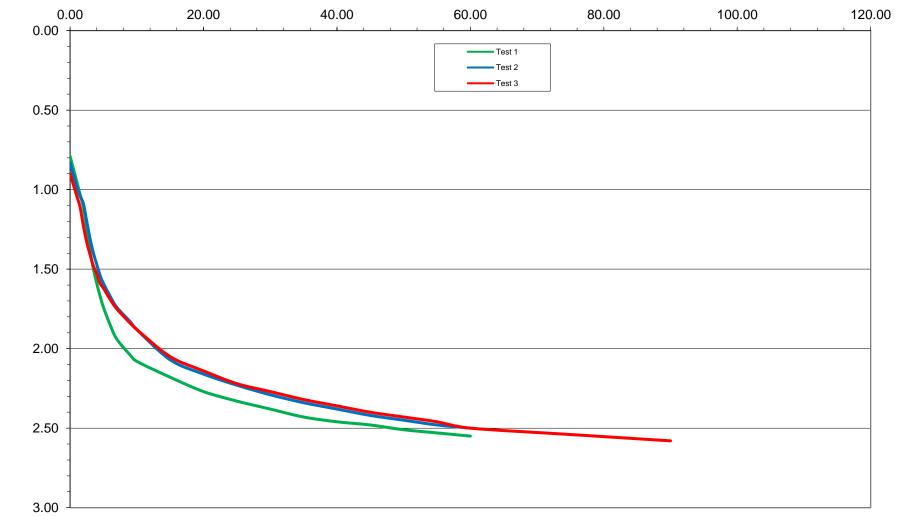
All measurements taken from the top of standpipe at 0.30m above ground level.
 Pit filled with water above top of gravel.

Site Name: Elleray Hall & North Lane Depot/East Car Park

Job No.: 20/3521

Date: 26/02/2021 Test No.: 3

Standing Water Level (m)


Date	Time	Minutes	Depth to Water	Depth to Water	
Date	(h:mm:ss)	winnutes	(mbgl)	(mOD)	
26/02/2021	0:00:00	0.00	0.90		
26/02/2021	0:00:30	0.50	0.97		
26/02/2021	0:01:00	1.00	1.04		
26/02/2021	0:01:30	1.50	1.11		
26/02/2021	0:02:00	2.00	1.23		
26/02/2021	0:02:30	2.50	1.33		
26/02/2021	0:03:00	3.00	1.41		
26/02/2021	0:03:30	3.50	1.48		
26/02/2021	0:04:00	4.00	1.53		
26/02/2021	0:04:30	4.50	1.59		
26/02/2021	0:05:00	5.00	1.62		
26/02/2021	0:06:00	6.00	1.69		
26/02/2021	0:07:00	7.00	1.75		
26/02/2021	0:09:00	9.00	1.84		
26/02/2021	0:10:00	10.00	1.88		
26/02/2021	0:15:00	15.00	2.05		
26/02/2021	0:20:00	20.00	2.14		
26/02/2021	0:25:00	25.00	2.22		
26/02/2021	0:30:00	30.00	2.27		
26/02/2021	0:35:00	35.00	2.32		
26/02/2021	0:40:00	40.00	2.36		
26/02/2021	0:45:00	45.00	2.40		
26/02/2021	0:50:00	50.00	2.43		
26/02/2021	0:55:00	55.00	2.46		
26/02/2021	1:00:00	60.00	2.50		
26/02/2021	1:15:00	75.00	2.54		
26/02/2021	1:30:00	90.00	2.58		

REMARKS:

1) All measurements taken from the top of standpipe at 0.30m above ground level.

STP1 Soakaway

Minutes

Water Level (m)

Site Name:	Elleray Hall & North Lane Depot/East Car Park				
Job No.:	20/3521				
Date:	26/02/2021				
Soakaway Design BRE Digest 365 (September 1991 incl. revisions, 2003, 2007 and 2016)					
Trial Pit No.:	STP2				
Date Excavated:	25/02/2021				
Date Backfilled:	02/03/2021				
Pit Dimensions:	Length (m)2.50Width (m)0.35Depth (m)2.60				
Level:					
Soil Infiltration Ra	te: $f = \frac{V_{p75-25}}{a_{p50} * t_{p75-25}}$				
Effective depth V _p 75-25 a _p 50 t _p 75-25	Test 1 0.83 m 0.240 m ³ 4.352 m ² 137.04 min	Test 2 0.62 m 0.179 m ³ 3.953 m ² 106.50 min			
Result (<i>f</i>)	6.70E-06 m/sec 7.09E-06 m/sec				
REMARKS:					
Weather:	Cloudy				
Installation Construction:	50mm pipe installed to base of pit, with pipe protruding 0.4 Pit backfield with pea shingle to 1.20m depth	0m above ground level.			
Notes:	Soakaway did not reach 75% of effective storage depth. Infiltration rate calculated for the fall of water level from 75% to 25% of actual maximium water depth achieved in the test. Gravel assumed to occupy 66% of volume.				
AGS measure remain					

Elleray Hall & North Lane Depot/East Car Park Site Name:

Dry

Job No.: 20/3521

26/02/2021 Test No.: 1 Date:

Standing Water Level (m)

Date	Time	Minuteo	Depth to Water	Depth to Water
	(h:mm:ss)	Minutes	(mbgl)	(mOD)
26/02/2021	0:00:00	0.00	1.38	
26/02/2021	0:00:30	0.50	1.39	
26/02/2021	0:01:00	1.00	1.39	
26/02/2021	0:01:30	1.50	1.40	
26/02/2021	0:02:00	2.00	1.41	
26/02/2021	0:02:30	2.50	1.42	
26/02/2021	0:03:00	3.00	1.43	
26/02/2021	0:03:30	3.50	1.43	
26/02/2021	0:04:00	4.00	1.44	
26/02/2021	0:04:30	4.50	1.44	
26/02/2021	0:05:00	5.00	1.45	
26/02/2021	0:06:00	6.00	1.46	
26/02/2021	0:07:00	7.00	1.47	
26/02/2021	0:08:00	8.00	1.48	
26/02/2021	0:09:00	9.00	1.49	
26/02/2021	0:10:00	10.00	1.50	
26/02/2021	0:15:00	15.00	1.53	
26/02/2021	0:20:00	20.00	1.56	
26/02/2021	0:25:00	25.00	1.59	
26/02/2021	0:30:00	30.00	1.61	
26/02/2021	0:40:00	40.00	1.64	
26/02/2021	0:50:00	50.00	1.69	
26/02/2021	1:00:00	60.00	1.72	
26/02/2021	1:15:00	75.00	1.75	
26/02/2021	1:30:00	90.00	1.79	
26/02/2021	1:45:00	105.00	1.85	
26/02/2021	2:00:00	120.00	1.91	
26/02/2021	2:30:00	150.00	2.00	
26/02/2021	3:30:00	210.00	2.11	
26/02/2021	5:10:00	310.00	2.21	

REMARKS:

1) All measurements taken from the top of standpipe at 0.40m above ground level.

2) Water level filled the hole to approximately 0.40m above pea shingle.
3) Test 2 started on the 26/02/2021 and completed on the 01/03/2021. Results recorded by diver. Base of diver at 2.83m below the top of standpipe.

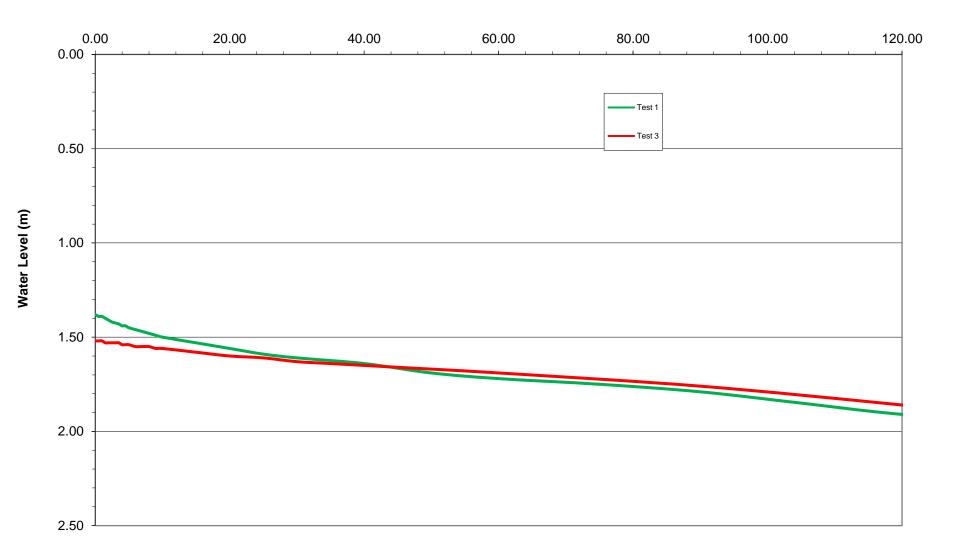
Site Name: Elleray Hall & North Lane Depot/East Car Park

Dry

Job No.: 20/3521

Date: 26/02/2021 Test No.: 3

Standing Water Level (m)


Date	Time	Minutes	Depth to Water	Depth to Water
Date	(h:mm:ss)	winnutes	(mbgl)	(mOD)
26/02/2021	0:00:00	0.00	1.52	, , ,
26/02/2021	0:00:30	0.50	1.52	
26/02/2021	0:01:00	1.00	1.52	
26/02/2021	0:01:30	1.50	1.53	
26/02/2021	0:02:00	2.00	1.53	
26/02/2021	0:02:30	2.50	1.53	
26/02/2021	0:03:00	3.00	1.53	
26/02/2021	0:03:30	3.50	1.53	
26/02/2021	0:04:00	4.00	1.54	
26/02/2021	0:04:30	4.50	1.54	
26/02/2021	0:05:00	5.00	1.54	
26/02/2021	0:06:00	6.00	1.55	
26/02/2021	0:07:00	7.00	1.55	
26/02/2021	0:08:00	8.00	1.55	
26/02/2021	0:09:00	9.00	1.56	
26/02/2021	0:10:00	10.00	1.56	
26/02/2021	0:15:00	15.00	1.58	
26/02/2021	0:20:00	20.00	1.60	
26/02/2021	0:25:00	25.00	1.61	
26/02/2021	0:30:00	30.00	1.63	
26/02/2021	0:35:00	35.00	1.64	
26/02/2021	0:40:00	40.00	1.65	
26/02/2021	0:45:00	45.00	1.66	
26/02/2021	1:00:00	60.00	1.69	
26/02/2021	1:30:00	90.00	1.76	
26/02/2021	2:00:00	120.00	1.86	
26/02/2021	2:30:00	150.00	1.97	
26/02/2021	3:00:00	180.00	2.02	
26/02/2021	3:30:00	210.00	2.07	
26/02/2021	4:00:00	240.00	2.10	
26/02/2021	4:30:00	270.00	2.14	

REMARKS:

1) All measurements taken from the top of standpipe at 0.40m above ground level.

STP2 Soakaway

Minutes

Site Name:	Elleray Hall & North Lane Depot/East Car Park
------------	---

Job No.: 20/3521

Date: 26/02/2021

Soakaway Design

2.30 0.35 2.70

BRE Digest 365 (September 1991 incl. revisions, 2003, 2007 and 2016)

Trial Pit No.:	STP3
Date Excavated:	25/02/2021
Date Backfilled:	03/03/2021
Pit Dimensions:	Length (m) Width (m) Depth (m)

Level:

Soil Infiltration Rate:

f	_	V _{p 75 - 25}
J	_	$\overline{a_{p50}} * t_{p75-25}$

	<u>Test 1</u>		<u>Test 2</u>		Test 3			
Effective depth	1.44	m	1.47	m	1.16	m		
V _p 75-25	0.383	m ³	0.391	m ³	0.308	m ³		
a _p 50	4.621	m²	4.701	m²	3.879	m²		
t _p 75-25	25.83	min	31.29	min	15.83	min		
Result (<i>f</i>)	5.34E-	5.34E-05 m/sec		05 m/sec	8.36E-05 m/sec			

REMARKS:

Weather:

Cloudy

Installation50mm pipe installed to base of pit, with pipe protruding 0.35m above ground level.Construction:Pit backfield with pea shingle to 1.20m depth

Notes:

Volume of water in the hole reduced by 66% to account for gravel.

Y:\Concept System\2020\203521 - Elleray Hall & North Lane Depot\DRAFT LOGS\IN-SITU TESTING\SOAKAWAY\checked by Form Sl018 Dan\Soakaway - STP3

Site Name: Elleray Hall & North Lane Depot/East Car Park

Job No.: 20/3521

Date: 26/02/2021 Test No.: 1

Standing Water Level (m)

Dry

Date	Time	Minutes	Depth to Water	Depth to Water	
	(h:mm:ss)	Minutes	(mbgl)	(mOD)	
26/02/2021	0:00:00	0.00	1.26		
26/02/2021	0:00:30	0.50	1.32		
26/02/2021	0:01:00	1.00	1.39		
26/02/2021	0:01:30	1.50	1.44		
26/02/2021	0:02:00	2.00	1.48		
26/02/2021	0:02:30	2.50	1.51		
26/02/2021	0:03:00	3.00	1.55		
26/02/2021	0:03:30	3.50	1.58		
26/02/2021	0:04:00	4.00	1.61		
26/02/2021	0:04:30	4.50	1.64		
26/02/2021	0:05:00	5.00	1.67		
26/02/2021	0:05:30	5.50	1.70		
26/02/2021	0:06:00	6.00	1.72		
26/02/2021	0:06:30	6.50	1.75		
26/02/2021	0:07:00	7.00	1.77		
26/02/2021	0:07:30	7.50	1.80		
26/02/2021	0:08:00	8.00	1.82		
26/02/2021	0:08:30	8.50	1.84		
26/02/2021	0:09:00	9.00	1.86		
26/02/2021	0:09:30	9.50	1.88		
26/02/2021	0:10:00	10.00	1.90		
26/02/2021	0:11:00	11.00	1.94		
26/02/2021	0:12:00	12.00	1.98		
26/02/2021	0:13:00	13.00	2.01		
26/02/2021	0:14:00	14.00	2.05		
26/02/2021	0:15:00	15.00	2.08		
26/02/2021	0:16:00	16.00	2.10		
26/02/2021	0:17:00	17.00	2.13		
26/02/2021	0:18:00	18.00	2.15		
26/02/2021	0:19:00	19.00	2.17		
26/02/2021	0:20:00	20.00	2.19		
26/02/2021	0:22:00	22.00	2.23		
26/02/2021	0:24:00	24.00	2.26		
26/02/2021	0:26:00	26.00	2.29		
26/02/2021	0:28:00	28.00	2.32		
26/02/2021	0:30:00	30.00	2.34		
26/02/2021	0:35:00	35.00	2.39		
26/02/2021	0:40:00	40.00	2.43		
26/02/2021	0:45:00	45.00	2.45		
26/02/2021	0:50:00	50.00	2.47		

REMARKS:

1) All measurements taken from the top of standpipe at 0.35m above ground level.

2) Water level filled to the top of pea shingle at approximately 1.20m.

Site Name: Elleray Hall & North Lane Depot/East Car Park

Job No.: 20/3521

Date: 26/02/2021 Test No.: 2

Standing Water Level (m)

Dry

Date	Time	Minutes	Depth to Water	Depth to Water		
Duto	(h:mm:ss)	minutes	(mbgl)	(mOD)		
26/02/2021	0:00:00	0.00	1.23			
26/02/2021	0:00:30	0.50	1.28			
26/02/2021	0:01:00	1.00	1.34			
26/02/2021	0:01:30	1.50	1.39			
26/02/2021	0:02:00	2.00	1.44			
26/02/2021	0:02:30	2.50	1.47			
26/02/2021	0:03:00	3.00	1.50			
26/02/2021	0:03:30	3.50	1.52			
26/02/2021	0:04:00	4.00	1.55			
26/02/2021	0:04:30	4.50	1.57			
26/02/2021	0:05:00	5.00	1.60			
26/02/2021	0:05:30	5.50	1.62			
26/02/2021	0:06:00	6.00	1.64			
26/02/2021	0:06:30	6.50	1.66			
26/02/2021	0:07:00	7.00	1.68			
26/02/2021	0:07:30	7.50	1.70			
26/02/2021	0:08:00	8.00	1.72			
26/02/2021	0:08:30	8.50	1.75			
26/02/2021	0:09:00	9.00	1.77			
26/02/2021	0:09:30	9.50	1.78			
26/02/2021	0:10:00	10.00	1.80			
26/02/2021	0:11:00	11.00	1.84			
26/02/2021	0:12:00	12.00	1.87			
26/02/2021	0:13:00	13.00	1.90			
26/02/2021	0:14:00	14.00	1.93			
26/02/2021	0:15:00	15.00	1.96			
26/02/2021	0:16:00	16.00	1.96			
26/02/2021	0:17:00	17.00	2.02			
26/02/2021	0:18:00	18.00	2.05			
26/02/2021	0:19:00	19.00	2.07			
26/02/2021	0:20:00	20.00	2.10			
26/02/2021	0:22:00	22.00	2.14			
26/02/2021	0:24:00	24.00	2.13			
26/02/2021	0:24:00	24.00	2.22			
26/02/2021	0:28:00	28.00	2.22			
26/02/2021	0:30:00	30.00	2.24			
26/02/2021	0:35:00	35.00	2.20			
26/02/2021	0:40:00	40.00	2.32			
26/02/2021	0:45:00	40.00	2.37			
			2.40			
26/02/2021	0:50:00	50.00	2.43			

REMARKS:

1) All measurements taken from the top of standpipe at 0.35m above ground level.

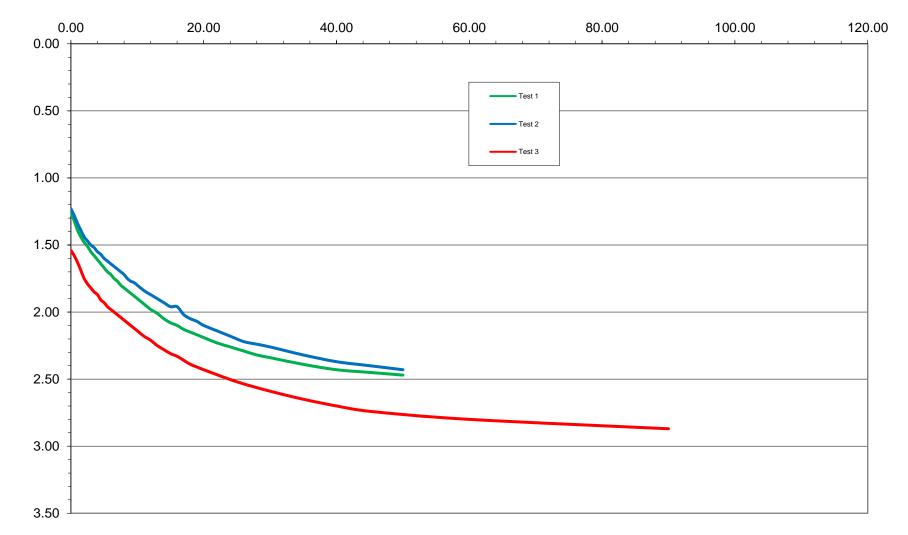
2) Water level filled to the top of pea shingle at approximately 1.20m.

Site Name: Elleray Hall & North Lane Depot/East Car Park

Job No.: 20/3521

Date: 01/03/2021 Test No.: 3

Standing Water Level (m)


Date	Time	Minutes	Depth to Water	Depth to Water
	(h:mm:ss)		(mbgl)	(mOD)
26/02/2021	0:00:00	0.00	1.54	
26/02/2021	0:00:30	0.50	1.58	
26/02/2021	0:01:00	1.00	1.63	
26/02/2021	0:01:30	1.50	1.69	
26/02/2021	0:02:00	2.00	1.75	
26/02/2021	0:02:30	2.50	1.79	
26/02/2021	0:03:00	3.00	1.82	
26/02/2021	0:03:30	3.50	1.85	
26/02/2021	0:04:00	4.00	1.87	
26/02/2021	0:04:30	4.50	1.91	
26/02/2021	0:05:00	5.00	1.93	
26/02/2021	0:05:30	5.50	1.96	
26/02/2021	0:06:00	6.00	1.98	
26/02/2021	0:06:30	6.50	2.00	
26/02/2021	0:07:00	7.00	2.02	
26/02/2021	0:07:30	7.50	2.04	
26/02/2021	0:08:00	8.00	2.06	
26/02/2021	0:08:30	8.50	2.08	
26/02/2021	0:09:00	9.00	2.10	
26/02/2021	0:09:30	9.50	2.12	
26/02/2021	0:10:00	10.00	2.14	
26/02/2021	0:11:00	11.00	2.18	
26/02/2021	0:12:00	12.00	2.21	
26/02/2021	0:13:00	13.00	2.25	
26/02/2021	0:14:00	14.00	2.28	
26/02/2021	0:15:00	15.00	2.31	
26/02/2021	0:16:00	16.00	2.33	
26/02/2021	0:17:00	17.00	2.36	
26/02/2021	0:18:00	18.00	2.39	
26/02/2021	0:19:00	19.00	2.41	
26/02/2021	0:20:00	20.00	2.43	
26/02/2021	0:25:00	25.00	2.52	
26/02/2021	0:30:00	30.00	2.59	
26/02/2021	0:35:00	35.00	2.65	
26/02/2021	0:40:00	40.00	2.70	
26/02/2021	0:45:00	45.00	2.74	
26/02/2021	1:00:00	60.00	2.80	
26/02/2021	1:30:00	90.00	2.87	

REMARKS:

1) All measurements taken from below top of standpipe at 0.35m above ground level.

STP3 Soakaway

Minutes

Water Level (m)

13. INSTRUMENTATION MONITORING RESULTS

Borehole	Depth of Installation (mbgl)	Date of Installation	Туре	Top (mbgl)	Bottom (mbgl)	Date & Time	Water Level (mbgl)	Water Level (mOD)	Remarks
BH1	6.30	26/02/2021	GMP	1.00	6.30	25/02/2021	4.00	4.85	
	6.30	26/02/2021	GMP	1.00	6.30	03/03/2021	4.05	4.80	
	6.30	26/02/2021	GMP	1.00	6.30	10/03/2021 09:35:00	No Access		Car parked
	6.30	26/02/2021	GMP	1.00	6.30	17/03/2021 09:32:00	4.06	4.79	
	6.30	26/02/2021	GMP	1.00	6.30	24/03/2021 10:10:00	No Access		Car parked
	6.30	26/02/2021	GMP	1.00	6.30	09/06/2021 12:27:00	4.15	4.70	
BH2	6.60	24/02/2021	GMP	1.00	6.60	23/02/2021	4.30	4.66	
	6.60	24/02/2021	GMP	1.00	6.60	03/03/2021	4.14	4.82	
	6.60	24/02/2021	GMP	1.00	6.60	10/03/2021 08:30:00	4.15	4.81	
	6.60	24/02/2021	GMP	1.00	6.60	17/03/2021 10:16:00	4.15	4.81	
	6.60	24/02/2021	GMP	1.00	6.60	24/03/2021 10:00:00	4.16	4.80	
	6.60	24/02/2021	GMP	1.00	6.60	09/06/2021 14:32:00	4.24	4.72	
WS1	2.00	26/02/2021	GMP	1.00	2.00	03/03/2021	Dry		
	2.00	26/02/2021	GMP	1.00	2.00	10/03/2021 09:40:00	Dry		
	2.00	26/02/2021	GMP	1.00	2.00	17/03/2021 09:38:00	Dry		
	2.00	26/02/2021	GMP	1.00	2.00	24/03/2021 10:20:00	Dry		
	2.00	26/02/2021	GMP	1.00	2.00	09/06/2021 13:20:00	Dry		
WS2	2.00	25/02/2021	GMP	1.00	2.00	03/03/2021	Dry		
	2.00	25/02/2021	GMP	1.00	2.00	10/03/2021 09:55:00	Dry		
	2.00	25/02/2021	GMP	1.00	2.00	17/03/2021 10:00:00	Dry		
	2.00	25/02/2021	GMP	1.00	2.00	24/03/2021 10:15:00	Dry		
	2.00	25/02/2021	GMP	1.00	2.00	09/06/2021 13:45:00	Dry		
WS6	2.00	25/02/2021	GMP	1.00	2.00	03/03/2021	Dry		
	2.00	25/02/2021	GMP	1.00	2.00	10/03/2021 09:00:00	Dry		
	2.00	25/02/2021	GMP	1.00	2.00	17/03/2021 10:20:00	Dry		
	2.00	25/02/2021	GMP	1.00	2.00	24/03/2021 09:50:00	Dry		
	2.00	25/02/2021	GMP	1.00	2.00	09/06/2021 14:20:00	Dry		
WS10	2.00	24/02/2021	GMP	1.00	2.00	03/03/2021	Dry		
	2.00	24/02/2021	GMP	1.00	2.00	10/03/2021 09:25:00	Dry		
	2.00	24/02/2021	GMP	1.00	2.00	17/03/2021 10:38:00	Dry		
	2.00	24/02/2021	GMP	1.00	2.00	24/03/2021 09:40:00	Dry		
	2.00	24/02/2021	GMP	1.00	2.00	09/06/2021 14:05:00	Dry		

<u>KEY</u> GMP - Gas monitoring point GWMP - Groundwater monitoring point SPIE - Standpipe piezometer EPIE - Electronic Piezometer SP - Standpipe

GROUNDWATER MONITORING

Job No: 20/3521

Project: Elleray Hall & North Lane Depot/East Car Park

Client: Richmond & Wandsworth Council

Date: 1003/2021 Job Number: 20/3521 Time: 08:10 METEOROLOGICAL AND SITE INFORMATION State of ground: Dry Moist Wet Delete As Required State of ground: Calim Light Moderate Strong Ground Level Cloud over: None Slight Cloudy Overcast Basement Level Memority pressure (nb) Before: None Slight Cloud over, remearture (') Tick Instrument Level None Slight Cloud over, remearture (') Tick Instrument Level Basement Level None Slight Cloud over, remearture (') Tick Instrument Level Basement Level None Slight Cloud over, remearture (') Tick Instrument used MSTRUMENTATION USED Tick Instrument used None, remearture (') None None, remearture (') None None BH BH aP After dt/a, Accurscy: CH = 0.50, 6.05 %, s.05 % (at 100%), r.02 = 0.5%, (at 00%), r.02 = 0.5%, (at 00%)	JOB DETAILS												
Meteore is a sequence of the sequen	Location:	Elleray Hall						Engineer:					
State of ground: Dry Moist Wind: Other are state of ground Level Delete As Required Ground Level Cloud cover: None Stight Cloudy Overcast Basement Level Precipitation None Stight Moderate Heavy Heavy Barometric presure (mb) Before It is bus GPM 456, Accuracy: CH4 0.05 %b, s.3.0% (at 10%b); C22.0.3% (in 5%b, s.3.0% (at 40%b); O2 a0.2%; It Trck Instrument used INSTRUMENTATION It is bus GPM 456, Accuracy: CH4 0.05 %b, s.3.0% (at 10%b); C22.0.3% (in 5%b); s.3.0% (at 40%b); O2 a0.2%; It Trck Instrument used Base ment Level It is bus GPM 456, Accuracy: CH4 0.05 %b); s.3.0% (at 10%b); C22.0.3% (in 5%b); s.3.0% (at 40%b); O2 a0.2%; It Trck Instrument used Base ment Level It is bus GPM 456, Accuracy: CH4 0.05 %b, s.3.0% (at 10%b); C22.0.3% (in 5%b); s.3.0% (at 40%b); O2 a0.2%; It Trck Instrument used Base ment Level It is bus GPM 456, Accuracy: CH4 0.05 %b, s.3.0% (at 10%b); C22.0.3% (in 5%b); s.3.0% (at 40%b); O2 a0.2%; It Trck Instrument used Base ment Level It is bus GPM 456, Accuracy: CH4 0.05 %b, s.3.0% (at 10%b); C22.0.3%; It is bus GPM 456, Accuracy: GPM 456, Ac	Date:	10/03/2021			Job Nur	nber:	20/3521		Time:	08:10			
State of ground: Dry Moist Wind: Other are state of ground Level Delete As Required Ground Level Cloud cover: None Stight Cloudy Overcast Basement Level Precipitation None Stight Moderate Heavy Heavy Barometric presure (mb) Before It is bus GPM 456, Accuracy: CH4 0.05 %b, s.3.0% (at 10%b); C22.0.3% (in 5%b, s.3.0% (at 40%b); O2 a0.2%; It Trck Instrument used INSTRUMENTATION It is bus GPM 456, Accuracy: CH4 0.05 %b, s.3.0% (at 10%b); C22.0.3% (in 5%b); s.3.0% (at 40%b); O2 a0.2%; It Trck Instrument used Base ment Level It is bus GPM 456, Accuracy: CH4 0.05 %b); s.3.0% (at 10%b); C22.0.3% (in 5%b); s.3.0% (at 40%b); O2 a0.2%; It Trck Instrument used Base ment Level It is bus GPM 456, Accuracy: CH4 0.05 %b, s.3.0% (at 10%b); C22.0.3% (in 5%b); s.3.0% (at 40%b); O2 a0.2%; It Trck Instrument used Base ment Level It is bus GPM 456, Accuracy: CH4 0.05 %b, s.3.0% (at 10%b); C22.0.3% (in 5%b); s.3.0% (at 40%b); O2 a0.2%; It Trck Instrument used Base ment Level It is bus GPM 456, Accuracy: CH4 0.05 %b, s.3.0% (at 10%b); C22.0.3%; It is bus GPM 456, Accuracy: GPM 456, Ac	METEOROLOGI	CAL AND SI	TE INFORM	ATION									
Wind: Cam Light Moderate Strong Ground Level Cloud cover: None Slight Cloudy Overcast Basement Level Precipitation None Slight Moderate Overcast Basement Level Basement resume (nb) Eure If Gas Dan GPM 456, Accuracy: CH 40.5% (0 5%), ±30% (at 10%); C2 ±0.3% (0 to 5%), ±30% (at 40%); O 2 ±0.2% Image: CH 40.5% (0 to 5%		CAL AND SI					Moist		Wat				Delete Ag Degwined
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-						1					Cture a	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							-						
Temperature (*) Temperature (*) Temperature (*) INSTRUMENTATION USED Temperature (*) (*) Temperature (*) Temperature (*) Temperature (*) Temperature (*) Temperature (*) Temperature (*) Temperature (*) Temperature (*) Temperature (*) Text to 5%) ±3.0% (at 3%) ±3.0% (at 3%) ±3.0% (at 40%); C0 2=0.3% (at 40%); C0 2=0.2%; Text to 5%) ±3.0% (at 40%); C0 2=0.2%; Text to 5%) ±3.0% (at 3%) ±3.0% (at 3%) ±3.0% (at 10%); CO 2=0.3% (at 40%); C0 2=0.2%; Text to 5%) for 5%) ±3.0% (at 40%); C0 2=0.2%; Text to 5%) for 5%) ±3.0% (at 40%); C0 2=0.2%; Text to 5%) for 5%) ±3.0% (at 40%); C0 2=0.2%; Text to 5%) for 5%) ±3.0% (at 40%); C0 2=0.2%; Text to 5%) for 5%) ±3.0% (at 40%); C0 2=0.2%; Text to 5%) for 5%) ±3.0% (at 40%); C0 2=0.2%; Text to 5%) for 5%) ±3.0% (at 40%); C0 2=0.2%; Text to 5%) for 5%) ±3.0% (at 40%); C0 2=0.2%; Text to 5%) for 5%) ±3.0% (at 40%); C0 2=0.2%; Text to 5%) for 5%) ±3.0% (at 40%); C0 2=0.2%; Text to 5%) for 5%) ±3.0% (at 40%); C0 2=0.2%;													Basement Level
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	-		None	•			Slight			r		Heavy	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Barometric pressure (mb)) Before:						Temper	ature (°)				
$ \begin{array}{ $	INSTRUMENTAT	ION USED											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			M 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0	% (at 30%)), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0	.2%;		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gas concentration:												Tick Instrument used
(No.) (mb)	ВН											CO(nnm)	Comments
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		DIII		up (r a)			CII ₄ (70)	LEL (70)	$CO_2(70)$	$O_2(70)$	11 ₂ 5(ppiii)	CO (ppiii)	Comments
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(110.)		(IIIO)		(1/11)								No access
Depth to GW: (m)Image: marked mar												ł	110 access
Image: style sty	Depth to GW: (m)												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						-							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
Image: style sty						90							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						105							
Image: style sty													
Image: Sector													
Image: Constraint of the system of the sy						150							
Image: Constraint of the system of the sy						DEAK	PID(ppm)						
30 30 1 1 1 1 45 45 1 1 1 1 60 1 1 1 1 1 75 1 1 1 1 1													
Image: Constraint of the second se													
60 75 1													
						75							
						90							
105													
120						120							

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	10/03/2021			Job Nur	nber:	20/3521		Time:	08:10			
METEOROLOGI	CAL AND S	ITE INFODM	ATION									
	CAL AND 5					Matu		XX7.4				Delete An Description 1
State of ground:		X Dry				Moist		Wet			1	Delete As Required
Wind:		Calm				Light	X	Moderate			Strong	Ground Level
Cloud cover:		None				Slight	Х	Cloudy			Overcast	
Precipitation		X None	e			Slight		Moderate	-		Heavy	
Barometric pressure (mb)) Before:	1010					Temper	rature (°)	7			
INSTRUMENTAT	TION USED											
		FM 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0)% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0	.2%;		
Gas concentration:		FM 436, Accuracy:									Х	Tick Instrument used
ВН	BH2	aP After		Flow rate		CH ₄ (%)	LEL (%)	$CO_2(\%)$	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(No.)	D 112	(mb)	up (1 a)	(l/h)	(s)	CII4 (70)	LEL (70)	$CO_2(70)$	$O_2(70)$	11 ₂ 5(ppiii)	CO (ppiii)	Comments
(100)		1010	0.0	0.0	0	0.0	0.0	0.2	19.2	0.0	0.0	
			0.0	0.0	15	0.0	0.0	0.4	19.9	0.0	0.0	
Depth to GW: (m)	4.15				30	0.0	0.0	0.4	19.6	0.0	0.0	
		P			45	0.0	0.0	0.4	19.5	0.0	0.0	
					60	0.0	0.0	0.4	19.5	0.0	0.0	
					75	0.0	0.0	0.4	19.5	0.0	0.0	Constant readings
					90							
					105							
					120							
					135							
					150							
					PEAK	PID(ppm)						
					15	0.4 0.3						
					30	0.3						
					45	0.2						
					60	0.1						
					75	0.1						
					90	0.1						
					105							
		ļ			120							
						l						
	1											

aP: Atmospheric Pressure

NR: Not Recorded

Note: Where 0.0 is shown on the results indicates value lower than the detection limit of the instrument.

dP: Differential Pressure

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	10/03/2021			Job Nur	nber:	20/3521		Time:	09:30			
METEOROLOGI		ITE INFODM	ATION									
	CAL AND 5				V	No. 14		XX7.4				Delete An Description 1
State of ground:		Dry			X	Moist		Wet		r	1	Delete As Required
Wind:		Calm			Х	Light		Moderate			Strong	Ground Level
Cloud cover:		None				Slight		Cloudy		Х	Overcast	
Precipitation		None	e		X	Slight		Moderate	-		Heavy	
Barometric pressure (mb)) Before:	1009					Temper	rature (°)	7		J	
INSTRUMENTAT	TON USED											
		FM 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0	% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0	.2%:		
Gas concentration:		FM 436, Accuracy:									Х	Tick Instrument used
BH	WS1	aP After		Flow rate	Time	CH ₄ (%)					CO (mmm)	Comments
бн (No.)	W51	(mb)	ap (Pa)	rlow rate (l/h)	(s)	$CH_4(\%)$	LEL (%)	CO ₂ (%)	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(140.)			0.0	· · /		0.0	0.0	0.5	10.0	0.0	0.0	
		1009	0.0	0.0	0	0.0	0.0	0.5	18.8	0.0	0.0	
Depth to GW: (m)	Dry				15	0.0	0.0	0.8	18.9	0.0	0.0	
· · · · · · · · · · · · · · · · · · ·	,				30	0.0	0.0	0.9	18.3	0.0	0.0	
					45	0.0	0.0	0.9	18.2	0.0	0.0	
					60 75	0.0	0.0	0.9	18.2 18.2	0.0	0.0	Constant and lines
					75 90	0.0	0.0	0.9	16.2	0.0	0.0	Constant readings
					90 105							
					103							
					135							
			1		150							
						PID(ppm)						
					PEAK							
					15	0.6						
					30	0.5						
					45	0.5						
					60	0.4						
					75 90	0.4						
			+		90 105	0.4						
			1		103							
			1		120							
		İ	1			1					İ	

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	10/03/2021			Job Nur	nber:	20/3521		Time:	09:45			
METEOROLOGI		TE INFORM	ATION									
	CAL AND S				r	1						
State of ground:		X Dry				Moist		Wet			1 -	Delete As Required
Wind:		Calm			X	Light		Moderate	:		Strong	Ground Level
Cloud cover:		X None				Slight		Cloudy			Overcast	
Precipitation		None	e		Х	Slight		Moderate	-		Heavy	
Barometric pressure (mb)) Before:						Temper	rature (°)	7			
INSTRUMENTAT	TION LISED											
		M 436, Accuracy:	CH4 +0 3%	(0 to 5%) + 3.0)% (at 30%) +3.0% (at 10	0%): CO2 +0 3%	(0 to 5%) + 3.0%	(at 40%): O2 +0	2%.		
Gas concentration:		FM 436, Accuracy:									Х	Tick Instrument used
BH		aP After							-	-	CO (mmm)	Comments
ВН (No.)	WS2	aP After (mb)	ap (Pa)	Flow rate (l/h)	Time (s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(110.)			0.0	· /		0.0	0.0	0.0	0.5	0.0	0.0	
		1009	0.0	0.0	0	0.0	0.0	0.8	8.5	0.0	0.0	
Depth to GW: (m)	Dry				15	0.0	0.0	4.5	16.2	0.0	0.0	
	5				30	0.0	0.0	4.6	15.1	0.0	0.0	
					45	0.0	0.0	4.7	14.9	0.0	0.0	
					60	0.0	0.0	4.7 4.7	14.8	0.0	0.0	
					75 90	0.0	0.0	4.7	14.8 14.7	0.0	0.0	
					90 105	0.0	0.0	4.7	14.7	0.0	0.0	
					103	0.0	0.0	4.7	14.7	0.0	0.0	Constant readings
					135	0.0			1.1.7			Constant readings
					150							
						PID(ppm)						
					PEAK	0.4						
					15	0.2						
					30	0.2						
					45	0.2						
					60	0.2						
					75 90							
					90 105							
					105							
					120							
			1									

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	10/03/2021			Job Nur	nber:	20/3521		Time:	09:00			
METEOROLOGI		TE INFORM	ATION									
	CAL AND S				N	1		XX7 .				
State of ground:		Dry			Х	Moist		Wet			1 -	Delete As Required
Wind:		Calm			X	Light		Moderate	:		Strong	Ground Level
Cloud cover:		None	è			Slight		Cloudy		X	Overcast	
Precipitation		None	e		Х	Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1010					Temper	ature (°)	7			
INSTRUMENTAT	TON USED	· · · · ·									-	
INSTRUMENTAL		M 436, Accuracy:	CH4 +0.20/	(0 to 5%) +2.0	0/ (at 200/	+2.0% (at 10)	00/ > CO2 + 0.20/	(0 ± 50) ± 2.00	$(at 40\%)$, $O2 \pm 0$	20/ -		
Gas concentration:		FM 436, Accuracy:									Х	Tick Instrument used
										-		-
BH	WS6	aP After	dp (Pa)	Flow rate		CH ₄ (%)	LEL (%)	CO ₂ (%)	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1010	0.0	0.0	0	0.0	0.0	0.3	19.2	0.0	0.0	
Depth to GW: (m)	Dry				15	0.0	0.0	0.0	19.9	0.0	0.0	
Deptil to G W. (iii)	DIJ				30	0.0	0.0	0.0	19.7	0.0	0.0	
					45	0.0	0.0	0.0	19.6	0.0	0.0	
					60	0.0	0.0	0.0	19.5	0.0	0.0	
					75	0.0	0.0	0.0	19.5	0.0	0.0	-
					90	0.0	0.0	0.0	19.5	0.0	0.0	Constant readings
					105							
					120 135							
					155							
						PID(ppm)						
					PEAK	2.0						
					15	1.3						
					30	1.1						
					45	1.0						
					60	1.8						
					75	1.9						
					90	2.0						
					105	2.0					ļ	
					120	2.0					ļ	
			 									
	1		1						I	1	1	

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	10/03/2021			Job Nur	nber:	20/3521		Time:	09:15			
METEOROLOGI		TE INFORM	ATION									
	CAL AND SI				N							
State of ground:		Dry			Х	Moist		Wet			1 ~	Delete As Required
Wind:		Calm			X	Light		Moderate			Strong	Ground Level
Cloud cover:		None	•			Slight		Cloudy		X	Overcast	
Precipitation		None	•		Х	Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1010					Temper	rature (°)	7			
INSTRUMENTAT	TON USED											
INSTRUMENTAL		M 436, Accuracy:	CU14 + 0.20/	(0 to 50/) +2.0	0/ (=+ 200/) +2.00/ (=4.10)	00/ >- CO2 +0.20/	(0 to 50()) + 2.00((=+ 40%): 02 +0	20/-		
Gas concentration:		M 436, Accuracy: M 436, Accuracy:									х	Tick Instrument used
										T		
BH	WS10	aP After	dp (Pa)	Flow rate	Time	CH ₄ (%)	LEL (%)	$CO_2(\%)$	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1010	0.0	0.0	0	0.0	0.0	0.0	19.2	0.0	0.0	
Depth to GW: (m)	Dry				15	0.0	0.0	0.5	19.3	0.0	0.0	
Deptil to G W. (iii)	Diy				30	0.0	0.0	0.5	18.6	0.0	0.0	
					45	0.0	0.0	0.5	18.5	0.0	0.0	
					60	0.0	0.0	0.5	18.5	0.0	0.0	
					75	0.0	0.0	0.5	18.4	0.0	0.0	
					90	0.0	0.0	0.5	18.4	0.0	0.0	-
					105	0.0	0.0	0.5	18.4	0.0	0.0	Constant readings
					120							
					135							
					150	PID(ppm)						
					PEAK	0.9						
	1				1 EAK	0.9						
					30	0.9						
					45	0.9						
					60	0.9						
			1		75	0.9						
					90	0.9						
					105	0.9						
					120	0.9						

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	17/03/2021			Job Nur	nber:	20/3521		Time:	09:25			
METEOROLOGI		TTE INFORM	ATION									
	CAL AND S							***				
State of ground:		X Dry				Moist		Wet			1 -	Delete As Required
Wind:		X Calm				Light		Moderate	:		Strong	Ground Level
Cloud cover:		None			X	Slight		Cloudy			Overcast	
Precipitation		X None	e			Slight		Moderate	-		Heavy	
Barometric pressure (mb)) Before:	1032					Temper	ature (°)	8			
INSTRUMENTAT	TON USED											
		FM 436, Accuracy:	CH4 +0 3%	(0 to 5%) + 3.0)% (at 30%) +3.0% (at 10	0%)· CO2 +0 3%	(0 to 5%) + 3.0%	(at 40%): O2 +0	2%.		
Gas concentration:		FM 436, Accuracy:									Х	Tick Instrument used
BH	BH1	aP After		Flow rate		CH ₄ (%)	LEL (%)		-	-	CO(nnm)	Comments
бн (No.)	DHI	(mb)	ap (Pa)	r low rate (l/h)	(s)	$CH_4(\%)$	LEL (%)	CO ₂ (%)	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(110.)		1032	0.0	0.0	0	0.0	0.0	0.6	18.7	0.0	0.0	
		1032	0.0	0.0	-	0.0	0.0	4.1		0.0	0.0	
Depth to GW: (m)	4.06				15 30	0.0	0.0	4.1	15.5 14.0	0.0	0.0	
					<u> </u>	0.0	0.0	4.3	14.0	0.0	0.0	
					45 60	0.0	0.0	4.4	13.5	0.0	0.0	
					75	0.0	0.0	4.5	13.5	0.0	0.0	
					90	0.0	0.0	4.5	13.1	0.0	0.0	
					105	0.0	0.0	4.5	13.2	0.0	0.0	
					120	0.0	0.0	4.5	13.2	0.0	0.0	
					135	0.0	0.0	4.6	13.1	0.0	0.0	
					150	0.0	0.0	4.6	13.0	0.0	0.0	Constant readings
						PID(ppm)						
					PEAK							
					15	1.0						
					30	1.1						
					45	1.1						
					60	1.1						
					75 90	1.1 1.1						
		<u> </u>	+		90 105	1.1						
			1		103	1.1						
			1		140	1.1						

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	17/03/2021			Job Nur	nber:	20/3521		Time:	10:08			
METEOROLOGI		ITE INFODM	ATION									
	CAL AND SI					Matu		XX7.4				Delete An Description 1
State of ground:		X Dry				Moist		Wet			1	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		None			X	Slight		Cloudy			Overcast	
Precipitation		X None	e			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1032					Temper	rature (°)	8		J	
INSTRUMENTAT	ION USED											
		FM 436, Accuracy:	CH4 +0.3%	(0 to 5%), +3.0	% (at 30%), +3.0% (at 10	0%): CO2 +0.3%	(0 to 5%), +3.0%	(at 40%): O2 +0	.2%:		
Gas concentration:		FM 436, Accuracy:									Х	Tick Instrument used
BH	BH2	aP After		Flow rate		CH ₄ (%)	LEL (%)	CO ₂ (%)		$H_2S(ppm)$	CO (ppm)	Comments
ын (No.)	DH2	(mb)	ap (Pa)	rlow rate (l/h)	(s)	$CH_4(\%)$	LEL (%)	$CO_2(\%)$	$O_2(\%)$	$H_2S(ppm)$	CO (ppm)	Comments
(110.)			0.0	· · /		0.0	0.0	4.1	17.1	0.0	0.0	
		1032	0.0	0.0	0	0.0	0.0	4.1	17.1	0.0	0.0	
Depth to GW: (m)	4.15				15	0.0	0.0	0.7	18.2	0.0	0.0	
· · · · · · · · · · · · · · · · · · ·					30	0.0	0.0	0.6	19.0	0.0	0.0	
					45	0.0	0.0	0.6	19.1	0.0	0.0	
					60 75	0.0	0.0	0.6 0.6	19.1 19.1	0.0	0.0	Constant and lines
	-				75 90	0.0	0.0	0.0	19.1	0.0	0.0	Constant readings
					90 105							
					103							
					135							
			1		150							
						PID(ppm)						
					PEAK	0.4						
					15	0.3						
					30	0.3						
					45	0.2						
					60	0.2						
					75 90	0.2						
			+		90 105	0.2						
	1		1		103							
			1		120							
		1	1			1					1	

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	17/03/2021			Job Nur	nber:	20/3521		Time:	10:30			
METEOROLOGI		TE INFODM	ATION									
	CAL AND 5.											
State of ground:		X Dry				Moist		Wet			1 -	Delete As Required
Wind:		X Calm				Light		Moderate	:		Strong	Ground Level
Cloud cover:		None			X	Slight		Cloudy			Overcast	
Precipitation		X None	e			Slight		Moderate	-		Heavy	
Barometric pressure (mb) Before:	1033					Temper	rature (°)	8			
INSTRUMENTAT	TION USED											
		M 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0	% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0	.2%:	Х	
Gas concentration:		FM 436, Accuracy:										Tick Instrument used
ВН	WS1	aP After		Flow rate		CH ₄ (%)	LEL (%)	$CO_2(\%)$	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(No.)	W51	(mb)	up (1 a)	(l/h)	(s)	CII4 (70)		$CO_2(70)$	$O_2(70)$	11 ₂ 5(ppiii)	CO (ppm)	Comments
(100)		1033	0.0	0.0	0	0.0	0.0	0.1	19.8	0.0	0.0	
			0.0	0.0	15	0.0	0.0	1.2	17.7	0.0	0.0	
Depth to GW: (m)	Dry				30	0.0	0.0	1.2	17.2	0.0	0.0	
					45	0.0	0.0	1.4	17.2	0.0	0.0	
					60	0.0	0.0	1.4	17.0	0.0	0.0	
					75	0.0	0.0	1.4	16.9	0.0	0.0	
					90	0.0	0.0	1.4	17.1	0.0	0.0	
					105	0.0	0.0	1.4	17.1	0.0	0.0	
					120	0.0	0.0	1.4	17.1	0.0	0.0	Constant readings
					135							
					150							
					PEAK	PID(ppm)						
					15	0.4						
					30	0.4						
					45	0.5						
					60	0.5						
					75	0.5						
					90	0.5						
					105	0.5						
					120	0.5						
			L									
			1									

aP: Atmospheric Pressure dP: Differential Pressure NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	17/03/2021			Job Nur	nber:	20/3521		Time:	09:50			
METEOROLOGI		TTE INFORM	ATION									
	CAL AND 5					1		1				
State of ground:		X Dry				Moist		Wet			-	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		None	e		Х	Slight		Cloudy			Overcast	
Precipitation		Х				Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1033					Temper	rature (°)	8		1	
INSTRUMENTAT		7	GTT 4 0 0 0							2.4	37	
Gas concentration:		FM 436, Accuracy: FM 436, Accuracy:									Х	Tick Instrument used
									$(at 40\%); 02 \pm 0$.2%;		
BH (No.)	WS2	aP After (mb)	dp (Pa)	Flow rate (l/h)	Time (s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(110.)		1033	0.0	0.0	0	0.0	0.0	1.3	18.4	0.0	0.0	
	_				15	0.0	0.0	5.4	14.7	0.0	0.0	
Depth to GW: (m)	Dry				30	0.0	0.0	5.7	14.4	0.0	0.0	
					45	0.0	0.0	5.8	14.4	0.0	0.0	
					60	0.0	0.0	5.8	14.4	0.0	0.0	
					75	0.0	0.0	5.8	14.1	0.0	0.0	
					90	0.0	0.0	5.8	14.1	0.0	0.0	
					105	0.0	0.0	5.8	14.2	0.0	0.0	
					120	0.0	0.0	5.8	14.3	0.0	0.0	
					135	0.0	0.0	5.8	14.3	0.0	0.0	
					150	0.0	0.0	5.8	14.3	0.0	0.0	Constant readings
						PID(ppm)						
					PEAK	1.0						
					15	1.0						
					30 45	0.4						
					45 60	0.3						
		<u> </u>	+		60 75	0.3					 	
					<u> </u>	0.5					<u> </u>	
			1		105						1	
		1			100							
		1										
			1									

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	17/03/2021			Job Nur	nber:	20/3521		Time:	10:10			
METEOROLOGI		TTE INFODM	ATION									
	CAL AND 5					Matu		XX7.4				Delete A - Decordant I
State of ground:		X Dry				Moist		Wet				Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		None			X	Slight		Cloudy			Overcast	
Precipitation		X None	e			Slight		Moderate	-		Heavy	
Barometric pressure (mb) Before:	1033					Temper	rature (°)	8			
INSTRUMENTAT	TION USED											
		M 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0	% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0	.2%;	Х	
Gas concentration:	#2 Gas Data GI	M 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0	% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0	.2%;		Tick Instrument used
BH	WS6	aP After	dn (Pa)	Flow rate	Time	CH ₄ (%)	LEL (%)	$CO_2(\%)$	$O_2(\%)$	$H_2S(ppm)$	CO (ppm)	Comments
(No.)	1150	(mb)	up (1 a)	(l/h)	(s)	CII4 (70)	LEL (70)	$CO_2(70)$	$O_2(70)$	1120(ppiii)	CO (ppm)	Comments
(1.00)		1033	0.0	0.0	0	0.0	0.0	5.3	17.0	0.0	0.0	
					15	0.0	0.0	0.2	19.3	0.0	0.0	
Depth to GW: (m)	Dry	-			30	0.0	0.0	0.1	19.9	0.0	0.0	
					45	0.0	0.0	0.1	19.9	0.0	0.0	
					60	0.0	0.0	0.0	20.0	0.0	0.0	
					75	0.0	0.0	0.0	20.2	0.0	0.0	
					90	0.0	0.0	0.0	20.2	0.0	0.0	
					105	0.0	0.0	0.0	20.2	0.0	0.0	Constant readings
					120							
					135							
					150							
					PEAK	PID(ppm)						
					15	1.3 1.0						
					30	1.0						
					45	1.1						
					60	1.2						
					75	1.2					1	
					90	1.3						
					105	1.3						
					120	1.3						

aP: Atmospheric Pressure dP: Differential Pressure NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JM+JI				
Date:	17/03/2021			Job Nur	nber:	20/3521		Time:	10:30			
METEOROLOGI		TTE INFODM	ATION									
	CAL AND 5							XX7 .				
State of ground:		X Dry				Moist		Wet			1 ~	Delete As Required
Wind:		X Calm				Light		Moderate	:		Strong	Ground Level
Cloud cover:		None				Slight	X	Cloudy			Overcast	
Precipitation		X None	e			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1032					Temper	ature (°)	8		J	
INSTRUMENTAT	TION USED											
		FM 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0	% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0	.2%:		
Gas concentration:		FM 436, Accuracy:									Х	Tick Instrument used
ВН	WS10	aP After		Flow rate		CH ₄ (%)	LEL (%)	CO ₂ (%)	-	H ₂ S(ppm)	CO (ppm)	Comments
ын (No.)	W310	(mb)	up (ra)	(l/h)	(s)	$CH_4(70)$	LEL (70)	$CO_2(70)$	$O_2(\%)$	$H_2S(ppin)$	CO (ppm)	Comments
(110.)		1032	0.0			0.0	0.0	0.7	10.7	0.0	0.0	
		1052	0.0	0.0	0	0.0			19.7			
Depth to GW: (m)	Dry				15	0.0	0.0	0.6	19.2	0.0	0.0	
,	2				30	0.0	0.0	0.6	19.1	0.0	0.0	
					45	0.0	0.0	0.6	19.1	0.0	0.0	Constant and lines
					60 75	0.0	0.0	0.0	19.1	0.0	0.0	Constant readings
					<u> </u>							
					105							
					100							
					135							
					150							
						PID(ppm)						
					PEAK	1.7						
					15	0.6						
					30	0.6						
					45	0.6						
					60	0.6						
					75 90	0.6 0.6						
			+		90 105	0.0					}	
					105							
			1		140							
			1								1	

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI & JM				
Date:	24/03/2021			Job Nur	nber:	20/3521		Time:	10:20			
METEOROLOGI		TE INFORM	ATION									
	CAL AND SI				r	1		XX 7 .				
State of ground:		Dry				Moist		Wet			1 _	Delete As Required
Wind:		Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		None				Slight		Cloudy			Overcast	
Precipitation		None	•			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:						Temper	ature (°)				
INSTRUMENTAT	TION LISED											
		M 436, Accuracy:	CH4 ±0.3%	(0 to 5%) + 3.0	0% (at 30%)) ±3.0% (at 10	0%)· CO2 ±0 3%	(0 to 5%) + 3.0%	(at 40%). O2 ±0	204.		
Gas concentration:		FM 436, Accuracy:										Tick Instrument used
										-		÷
BH	BH1	aP After	dp (Pa)	Flow rate		CH ₄ (%)	LEL (%)	CO ₂ (%)	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
					0							No Access
Depth to GW: (m)					15							
Deptil to G (() (iii)					30							
					45							
					60							
					75 90							
					90 105							
					103							
					135							
					150							
						PID(ppm)						
					PEAK							
					15							
					30							
					45							
					60							
					75 90							
			+		90 105							
	1		1		103							
					120							
	1		1			1				İ		1

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI & JM				
Date:	24/03/2021			Job Nur	nber:	20/3521		Time:	10:00			
METEODOLOGI			ATION									
METEOROLOGI	CAL AND S											
State of ground:		X Dry				Moist		Wet			•	Delete As Required
Wind:		X Calm	1			Light		Moderate			Strong	Ground Level
Cloud cover:		None	•		Х	Slight		Cloudy			Overcast	
Precipitation		X None	•			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1020				_	Temper	ature (°)	10		1	
INSTRUMENTAT												
Gas concentration:		M 436, Accuracy:										Tick Instrument used
	#2 Gas Data GF	FM 436, Accuracy:	CH4 ±0.3%	$(0 \text{ to } 5\%), \pm 3.0$	9% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0	.2%;	Х	
BH	BH2	aP After	dp (Pa)	Flow rate	Time	CH ₄ (%)	LEL (%)	CO ₂ (%)	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1020	0.0	0.0	0	0.0	0.0	0.0	19.2	0.0	0.0	
Depth to GW: (m)	4.16				15	0.0	0.0	0.9	19.2	0.0	0.0	
Deptil to Gw: (III)	4.10				30	0.0	0.0	0.9	18.7	0.0	0.0	
					45	0.0	0.0	0.9	18.6	0.0	0.0	
					60	0.0	0.0	0.9	18.6	0.0	0.0	
					75	0.0	0.0	0.9	18.6	0.0	0.0	Constant readings
					90							
					105							
					120							
					135							
					150							
					PEAK	PID(ppm)						
					<u>РЕАК</u> 15	0.3 0.2						
	-				30	0.2						
					45	0.2						
					60	0.2						
					75	0.2				1	1	
					90							
			1		105							
					120						1	
											1	
	1		1			Ī						

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI & JM				
Date:	24/03/2021			Job Nur	nber:	20/3521		Time:	10:15			
METEOROLOGI		TE INFORM	ATION									
	CAL AND SI				r							
State of ground:		X Dry				Moist		Wet			1 ~	Delete As Required
Wind:		X Calm				Light		Moderate	•		Strong	Ground Level
Cloud cover:		None	•		X	Slight		Cloudy			Overcast	
Precipitation		X None	•			Slight		Moderate			Heavy	
Barometric pressure (mb) Before: 1020 Temperature (°) 10												
INSTRUMENTAT	TON LIGED										-	
INSTRUMENTAL		DI 426 A	CU14 + 0.20/	(0 + 50() + 2.0	0/ / / 200/	> .2.00/ ((0.1. 50()	(201		
Gas concentration: $\frac{\#1 \text{ Gas Data GFM 436, Accuracy: CH4 \pm 0.3\% (0 to 5\%), \pm 3.0\% (at 30\%), \pm 3.0\% (at 10\%)}{\#2 \text{ Gas Data GFM 436, Accuracy: CH4 \pm 0.3\% (0 to 5\%), \pm 3.0\% (at 30\%), \pm 3.0\% (at 10\%)}$											Х	Tick Instrument used
											-	
BH	WS1	aP After	dp (Pa)	Flow rate		CH ₄ (%)	LEL (%)	$CO_2(\%)$	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1020	-1.0	-0.3	0	0.0	0.0	5.2	15.6	0.0	0.0	
Depth to GW: (m)	DRY		0.0	0.0	15	0.0	0.0	1.0	17.2	0.0	0.0	
Deptil to G W. (III)	DRI		0.0	0.0	30	0.0	0.0	0.9	17.6	0.0	0.0	
					45	0.0	0.0	0.8	17.9	0.0	0.0	
					60	0.0	0.0	0.8	18.0	0.0	0.0	
					75	0.0	0.0	0.7	18.1	0.0	0.0	
					90	0.0	0.0	0.8	18.0	0.0	0.0	
					105	0.0	0.0	0.8	18.0	0.0	0.0	
					120	0.0	0.0	0.8	18.0	0.0	0.0	Constant readings
					135							
					150							
					PEAK	PID(ppm) 0.6						
	-				15	0.0			ł			
					30	0.2			1			
					45	0.2						
					60	0.2						
			1		75							
					90							
			1		105							
					120							

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI & JM				
Date:	24/03/2021			Job Nur	nber:	20/3521		Time:	10:05			
METEOROLOGI		TE INFORM	ATION									
	CAL AND SI				r			XX7 .				
State of ground:		X Dry				Moist		Wet			1 ~	Delete As Required
Wind:		X Calm				Light		Moderate	:		Strong	Ground Level
Cloud cover:		None	•		X	Slight		Cloudy			Overcast	
Precipitation		X None	•			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1020					Temper	ature (°)	10			
INSTRUMENTAT	TON LIGED										-	
INSTRUMENTAL		N 426 A	CU14 + 0.20/	(0 + 50() + 2.0	0/ / / 200/	> .2.00/ ((0.1. 50()	(201		
Gas concentration:		M 436, Accuracy: M 436, Accuracy:									Х	Tick Instrument used
BH	WS2	aP After	dp (Pa)	Flow rate		CH ₄ (%)	LEL (%)	$CO_2(\%)$	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1020	0.0	0.0	0	0.0	0.0	0.0	19.9	0.0	0.0	
Depth to GW: (m)	DRY				15	0.0	0.0	4.8	16.6	0.0	0.0	
Deptil to Gw. (iii)	DRT				30	0.0	0.0	5.6	14.8	0.0	0.0	
					45	0.0	0.0	5.7	14.5	0.0	0.0	
					60	0.0	0.0	5.7	14.4	0.0	0.0	
					75	0.0	0.0	5.7	14.4	0.0	0.0	
					90	0.0	0.0	5.7	14.3	0.0	0.0	
					105	0.0	0.0	5.7	14.3	0.0	0.0	a
					120	0.0	0.0	5.7	14.3	0.0	0.0	Constant readings
					135							
					150	PID(ppm)						
					PEAK	0.5						
					15	0.2						
					30	0.2						
					45	0.2						
					60	0.2						
					75							
					90							
					105							
					120							

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI & JM				
Date:	24/03/2021			Job Nur	nber:	20/3521		Time:	09:45			
METEODOLOCI		TE INFORM	ATION									
METEOROLOGI	CAL AND SI											
State of ground:		X Dry				Moist		Wet			•	Delete As Required
Wind:		X Calm				Light		Moderate	:		Strong	Ground Level
Cloud cover:		None	•		Х	Slight		Cloudy			Overcast	
Precipitation		X None	•			Slight		Moderate	:		Heavy	
Barometric pressure (mb)	Before:	1020				_	Temper	ature (°)	10			
INSTRUMENTAT												
Gas concentration:		FM 436, Accuracy:										Tick Instrument used
	#2 Gas Data GF	FM 436, Accuracy:	CH4 ±0.3%	(0 to 5%), ±3.0	9% (at 30%), ±3.0% (at 10	0%); CO2 ±0.3%	(0 to 5%), ±3.0%	(at 40%); O2 ±0	.2%;	Х	
BH	WS6	aP After	dp (Pa)	Flow rate	Time	CH ₄ (%)	LEL (%)	$CO_2(\%)$	$O_2(\%)$	$H_2S(ppm)$	CO (ppm)	Comments
(No.)		(mb)	- · ·	(l/h)	(s)				- · ·			
		1020	0.0	0.0	0	0.0	0.0	0.8	18.8	0.0	0.0	
	DRY				15	0.0	0.0	0.0	19.7	0.0	0.0	
Depth to GW: (m)	DKI				30	0.0	0.0	0.0	19.6	0.0	0.0	
					45	0.0	0.0	0.0	19.6	0.0	0.0	
					60	0.0	0.0	0.0	19.6	0.0	0.0	
					75	0.0	0.0	0.0	19.6	0.0	0.0	Constant readings
					90							
					105							
					120							
					135							
					150							
						PID(ppm)						
					PEAK	0.9						
					15	0.8						
					<u>30</u> 45	0.9						
					45 60	0.9						
			1		75	0.7						
					90							
 		1	1		105					1	1	
			1		120							1
			1									
			1									

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI & JM				
Date:	24/03/2021			Job Nur	nber:	20/3521		Time:	09:30			
METEOROLOGI		TTE INFORM	ATION									
	CAL AND SI				37			XX7 .				
State of ground:		Dry			Х	Moist		Wet			1 ~	Delete As Required
Wind:		X Calm				Light		Moderate	:		Strong	Ground Level
Cloud cover:		None	•		Х	Slight		Cloudy			Overcast	
Precipitation		X None	•			Slight		Moderate	:		Heavy	
Barometric pressure (mb)	Before:	Before: 1020 Temperature (°) 10										
INSTRUMENTATION USED												
Gas concentration:											Х	Tick Instrument used
								(0 to 5%), ±3.0%	$(at 40\%); 02 \pm 0$		Λ	
BH	WS10	aP After	dp (Pa)	Flow rate	Time	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1020	0.0	0.0	0	0.0	0.0	0.4	19.1	0.0	0.0	
Depth to GW: (m)	DRY				15	0.0	0.0	0.8	19.3	0.0	0.0	
Deptil to G W. (III)	DKI				30	0.0	0.0	0.8	18.9	0.0	0.0	
					45	0.0	0.0	0.8	18.8	0.0	0.0	
					60	0.0	0.0	0.8	18.8	0.0	0.0	
					75	0.0	0.0	0.8	18.7	0.0	0.0	
					90	0.0	0.0	0.8	18.7	0.0	0.0	
					105	0.0	0.0	0.8	18.7	0.0	0.0	Constant readings
					120							
					135							
					150							
					DEAT	PID(ppm)						
					PEAK	0.7						
					15 30	0.5 0.5						
					45	0.3						
					60	0.4						
					75	0.4						
					90	0						
			1		105							
					120							
			1									

aP: Atmospheric Pressure

NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI				
Date:	09/06/2021			Job Nur	nber:	20/3521		Time:	12:18			
METEOROLOGI			ATION									
	CAL AND SI		ATION			1						
State of ground:		X Dry				Moist		Wet			•	Delete As Required
Wind:		X Calm	l			Light		Moderate			Strong	Ground Level
Cloud cover:		X None	;			Slight		Cloudy			Overcast	
Precipitation		X None	;			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1024				_	Temper	ature (°)	23			
INSTRUMENTAT	TON USED											
#1 Gas Data GFM 436, Accuracy: CH4 ±0.3% (0 to 5%), ±3.0% (at 30%), ±3.0% (at 100%); CO2 ±0.3% (0 to 5%), ±3.0% (at 40%); O2 ±0.2%;									204.			
Gas concentration:	Bas concentration: #2 Gas Data GFM 436, Accuracy: CH4 =										x	Tick Instrument used
												a i
BH	BH1	aP After	dp (Pa)	Flow rate		CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)	-	(l/h)	(s)							
		1024	0.0	0.0	0	0.0	0.0	0.0	19.3	0.0	0.0	
Depth to GW: (m)	4.15				15	0.0	0.0	0.0	19.5	0.0	0.0	
Deptil to G W. (III)	4.15				30	0.0	0.0	0.0	19.6	0.0	0.0	
					45	0.0	0.0	0.0	19.6	0.0	0.0	
					60	0.0	0.0	0.0	19.6	0.0	0.0	
					75	0.0	0.0	0.0	19.6	0.0	0.0	Constant readings
					90							
					105							
					120							
					135							
					150							
	ł				PEAK	PID(ppm) 1.7						
					15	0.5						
					30	0.1						
					45	0.0						
					60	0.0						
					75							
					90							
					105							
					120							
			1									

aP: Atmospheric Pressure dP: Differential Pressure

re NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI				
Date:	09/06/2021			Job Nur	nber:	20/3521		Time:	14:25			
METEODOLOGI			ATION									
METEOROLOGI	CAL AND SI		ATION			1						
State of ground:		X Dry				Moist		Wet				Delete As Required
Wind:		X Calm	1			Light		Moderate			Strong	Ground Level
Cloud cover:		X None				Slight		Cloudy			Overcast	
Precipitation		X None	,			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1018				_	Temper	ature (°)	24			
INSTRUMENTAT	TON USED											
I TOTROMENTAL		M 436, Accuracy:	CH4 +0 3%	$(0 \text{ to } 5\%) \pm 3.0$	% (at 30%)) +3.0% (at 10	0%). CO2 +0 3%	(0 to 5%) + 3.0%	(at 40%)• O2 ±0	2%		
Gas concentration:		M 436, Accuracy: M 436, Accuracy:									Х	Tick Instrument used
BH	BH2	aP After		Flow rate							CO (mmm)	Comments
ын (No.)	BH2	(mb)	ap (Pa)	r low rate (l/h)	Time (s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(1101)		1018	0.0	0.0	0	0.0	0.0	0.0	20.1	0.0	0.0	
		1010	0.0	0.0	-							
Depth to GW: (m)	4.24	_			15	0.0	0.0	0.0	20.1	0.0	0.0	
					30	0.0	0.0	0.0	20.1	0.0	0.0	
					45	0.0	0.0	0.0	20.1	0.0	0.0	
					60 75	0.0	0.0	0.0	20.1	0.0	0.0	Constant readings
	-				75 90							
	ł				105							
					103							
					135							
					150							
						PID(ppm)						
					PEAK	2.7						
					15	0.8						
					30	0.6						
					45	0.6						
					60	0.6						
					75							
L			 		90							
L					105							
L					120							
	1		1									

aP: Atmospheric Pressure dP: Differential Pressure

re NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI				
Date:	09/06/2021			Job Nur	nber:	20/3521		Time:	13:08			
METEOROLOGI		TE INFORM	ATION									
	CAL AND SI		ATION		r	1						
State of ground:		X Dry				Moist		Wet			7	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		X None	;			Slight		Cloudy			Overcast	
Precipitation		X None	;			Slight		Moderate			Heavy	
Barometric pressure (mb)	Before:	1026					Temper	ature (°)	24			
INSTRUMENTATION USED												
#1 Gas Data GFM 436, Accuracy: CH4 ±0.3% (0 to 5%), ±3.0% (at 30%), ±3.0% (at 100%); CO2 ±0.3% (0 to 5%), ±3.0% (at 40%); O2 ±0.2%;									20/ -			
Gas concentration:		M 436, Accuracy: M 436, Accuracy:									v	Tick Instrument used
										-	л	
BH	WS1	aP After	dp (Pa)	Flow rate		CH ₄ (%)	LEL (%)	CO ₂ (%)	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1026	0.0	0.0	0	0.0	0.0	0.0	19.0	0.0	0.0	
Depth to GW: (m)	Dry				15	0.0	0.0	0.0	19.6	0.0	0.0	
Deptil to G W: (III)	DIy				30	0.0	0.0	0.0	19.8	0.0	0.0	
					45	0.0	0.0	0.0	19.8	0.0	0.0	
					60	0.0	0.0	0.0	19.8	0.0	0.0	
					75	0.0	0.0	0.0	19.8	0.0	0.0	Constant readings
					90							
					105							
					120							
					135							
					150							
					DE L V	PID(ppm)						
					PEAK 15	4.3 1.5						
	ł				<u> </u>	1.3						
					45	1.3						
					60	1.2						
<u> </u>					75	1.2				1		
			1		90							
					105							
					120							

aP: Atmospheric Pressure dP: Differential Pressure

re NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI				
Date:	09/06/2021			Job Nur	nber:	20/3521		Time:	13:35			
METEOROLOGI		TE INFORM	ATION									
	CAL AND SI							XX7 .				
State of ground:		X Dry				Moist		Wet			7	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		X None	;			Slight		Cloudy			Overcast	
Precipitation		X None	e			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1020					Temper	ature (°)	24			
INSTRUMENTATION USED												
#1 Gas Data GFM 436, Accuracy: CH4 ±0.3% (0 to 5%), ±3.0% (at 30%), ±3.0% (at 100%); CO2 ±0.3% (0 to 5%), ±3.0% (at 40%); O2 ±0.2%;									20/ .			
Gas concentration:		M 436, Accuracy: M 436, Accuracy:									v	Tick Instrument used
		•							-	-	А	
BH	WS2	aP After	dp (Pa)	Flow rate		CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1021	1.0	0.1	0	0.0	0.0	0.0	19.6	0.0	0.0	
Depth to GW: (m)	Dry		0.0	0.0	15	0.0	0.0	0.0	19.7	0.0	0.0	
Deptil to G W: (III)	DIy				30	0.0	0.0	0.0	19.8	0.0	0.0	
					45	0.0	0.0	0.0	19.8	0.0	0.0	
					60	0.0	0.0	0.0	19.7	0.0	0.0	
					75	0.0	0.0	0.0	19.7	0.0	0.0	
					90	0.0	0.0	0.0	19.7	0.0	0.0	Constant readings
					105							
					120							
					135							
					150							
						PID(ppm)						
					PEAK 15	2.8 0.6						
					30	0.6						
					45	0.0						
					60	0.5						
			1		75	0.5				1		
			1		90							
			1		105							
	1		1		120							

aP: Atmospheric Pressure dP: Differential Pressure

re NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI				
Date:	09/06/2021			Job Nur	nber:	20/3521		Time:	14:10			
METEODOLOCI		TE INFORM	ATION									
METEOROLOGI	CAL AND SI		ATION			1						
State of ground:		X Dry				Moist		Wet				Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		X None	;			Slight		Cloudy			Overcast	
Precipitation		X None	;			Slight		Moderate			Heavy	
Barometric pressure (mb)) Before:	1020				_	Temper	ature (°)	24			
INSTRUMENTAT	TON USED											
#1 Gas Data GFM 436, Accuracy: CH4 ±0.3% (0 to 5%), ±3.0% (at 30%), ±3.0% (at 100%); CO2 ±0.3% (0 to 5%), ±3.0% (at 40%); O2 ±0.2%;									20%			
Gas concentration:	Gas concentration: #2 Gas Data GFM 436, Accuracy: CH4 ±										x	Tick Instrument used
									-	-		-
BH	WS6	aP After	dp (Pa)	Flow rate		CH ₄ (%)	LEL (%)	CO ₂ (%)	$O_2(\%)$	H ₂ S(ppm)	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1020	0.0	0.0	0	0.0	0.0	0.0	20.1	0.0	0.0	
Depth to GW: (m)	Dry				15	0.0	0.0	0.0	20.1	0.0	0.0	
Deptil to G W. (III)	Diy				30	0.0	0.0	0.0	20.1	0.0	0.0	
					45	0.0	0.0	0.0	20.1	0.0	0.0	
					60	0.0	0.0	0.0	20.1	0.0	0.0	Constant readings
					75							
					90							
					105							
					120							
					135							
					150							
						PID(ppm) 4.6						
					PEAK 15	4.0						
					<u> </u>	1.3						
					45	1.3						
					60	1.3						
			1		75							
					90							
					105							
					120							

aP: Atmospheric Pressure dP: Differential Pressure

re NR: Not Recorded

JOB DETAILS												
Location:	Elleray Hall						Engineer:	JI				
Date:	09/06/2021			Job Nur	nber:	20/3521		Time:	13:55			
METEOROLOGI			ATION									
	CAL AND SI		ATION		-	1						
State of ground:		X Dry				Moist		Wet			•	Delete As Required
Wind:		X Calm				Light		Moderate			Strong	Ground Level
Cloud cover:		X None	;			Slight		Cloudy			Overcast	
Precipitation		X None	;			Slight		Moderate			Heavy	
Barometric pressure (mb)	Before:	1021					Temper	ature (°)	24			
INSTRUMENTAT	NSTRUMENTATION USED											
#1 Gas Data GFM 436, Accuracy: CH4 ±0.3% (0 to 5%), ±3.0% (at 30%), ±3.0% (at 100%); CO2 ±0.3% (0 to 5%), ±3.0% (at 40%); O2 ±0.2%;									204			
Gas concentration:		M 436, Accuracy: M 436, Accuracy:									x	Tick Instrument used
									-	-		-
BH	WS10	aP After	dp (Pa)	Flow rate		CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	$H_2S(ppm)$	CO (ppm)	Comments
(No.)		(mb)		(l/h)	(s)							
		1021	0.0	0.0	0	0.0	0.0	0.0	20.0	0.0	0.0	
Depth to GW: (m)	Dry				15	0.0	0.0	0.0	20.1	0.0	0.0	
Deptil to G W. (III)	Diy				30	0.0	0.0	0.0	20.2	0.0	0.0	
					45	0.0	0.0	0.0	20.2	0.0	0.0	
					60	0.0	0.0	0.0	20.2	0.0	0.0	
					75	0.0	0.0	0.0	20.2	0.0	0.0	Constant readings
					90							
					105							
					120							
					135							
					150							
					DEAV	PID(ppm) 3.9						
					PEAK 15	0.6						
	1				30	0.0						
					45	0.3						
					60	0.3						
			1		75	0.2				1		1
					90	0.2						
					105	0.2						
					120							

aP: Atmospheric Pressure dP: Differential Pressure

re NR: Not Recorded

	CONCEPT												
					SITU ANA	LYSIS &	SAMPLING	3					
		Site: Job No.:	Elleray Ha	11									
			20/3521 09/06/2021	1									
	Tec	hnician:											
	Sampling r			peristaltic)									
	BHN	lo.	Base of well (mbgl)	Top of slotted (mbgl)	Depth to GW (mbgl)								
	BH	1	6.30	1.00	4.15								
Purge Volume (L)	Time	Temp (°C)	DO (mg/L)	SPC (mS/cm)	рН	pH (mV)	Redox Potential (mV)	Sample Detail (Colour/Odour/ Turbidity)					
1.0	12:35	20.4	6.50	0.79	7.23	-42.8	175.9	Clear					
2.0	12:39	19.9	6.55	0.79	7.25	-43.4	178.1	Clear					
3.0	12:42	19.8	6.57	0.79	7.27	-44.6	176.4	Clear					
4.0	12:45	19.8	6.56	0.79	7.25	-43.7	173.3	Clear					

	C.DCEPT												
			DUNDWA Elleray Ha		SITU ANA	LYSIS &	SAMPLING	ì					
	_	Job No.:		11									
			17/03/2021										
	Tec	hnician:											
ę	Sampling r			peristaltic)									
	BH N		Base of well (mbgl)	Top of slotted (mbgl)	Depth to GW (mbgl)								
	BH	2	6.60	1.00	4.15								
Purge Volume (L)	Time	Temp (°C)	DO (mg/L)	SPC (mS/cm)	рН	pH (mV)	Redox Potential (mV)	Sample Detail (Colour/Odour/ Turbidity)					
1.0	10:31	12.0	5.66	0.95	7.03	-21.0	192.5	Slightly brown					
2.0	10:33	12.0	5.58	0.95	7.01	-19.6	194.1	Slightly brown					
3.5	10:36	12.0	5.48	0.95	6.98	-18.4	196.9	Slightly brown					
4.5	10:39	12.0	5.48	0.95	6.97	-17.9	198.4	Slightly brown					

TEST DATE AN	D CONDITIONS		
Date	11/08/2020		
Atmospheric Pressu	re 997 mB		
Ambient Temperatu	re 21.6 °C		
Environics Serial No	5089		

GFM436 Final Inspection & Calibration Check Certificate

Customer	Concept Site Investigations
Certificate Number	121930
Order Number	326344

Serial Number	13240		
Software Version	G436-00.0027/0010		

GAS DATA LTD	
Unit 4, Fairfield Court	
Seven Stars Estate	
Wheler Rd	
Coventry	
CV3 4LI	
Tel 02476303311	Fax 02476307711

Recalibration DUE Date	
Recalibration DUE Date 11/08/21	

		Instrume	ent Checks		
Keyboard	*		Display Contrast	1	
Pump Flow In	400	Accept > 200 cc/min	Pump Flow @ -200mB	250	Accept> 200 cc/min
Clock Set / Running	10	1	Labels Fitted		4

		$\frac{1}{140 \cdot 635} = \frac{1}{140 \cdot 635} + \frac{1}{140 \cdot$				
	CH ,		CO 2		02	
	Instrument Gas		Readings %	True Gas	Instrument Gas	and the second sec
	Readings %			Value %	Readings %	
Sensor	59.8	20		40	20.9	20.0
I I	Accept ±3.8	00	decept x1.0		Aritigat ed.5	40.9
	4.9		5	-	6	
	Accept ±0.3	3	Accept.t0.3	3	Accept #8.3	0
lero	0	0	0	0	0	0
leading 100% NZ	Accept #0.0	0	Accept_10.0	0	Accept #0.1	0

Optional Gas Checks							
Applied Gas & Range		Concentration Tested @		Instrument Readings (ppm)			
Gas Type Range (ppm)		(ppm)		Zero Reading		Instrument Gas Reading	
H2S	5000	1500	0	Accept ±0.0	1500	Accept 15.0	
co	2000	1000	0	Accept ±0.0	1000	Ассерт x5.0	
Hexane	2.0%	2.0%	0	Accept =0.0	1.99	Accept #10.0	

		14. 4.11	_	Cross Gas	Effects		and the second	-	
Applied	i Gas (ppm)	Instrument Readings (ppm)							
Gas Type	Concentration	Tosic 1:	H25	Toxic 2:	co	Texic 3:	HEX		
HZS	1500	150	90	0		0			
co	2.000	40)	1000		0			
Hexane	2.0%	0	0	0		1.9	9		

Pressure Checks

Atmom	harie 1	Pressure	LAP1	(mR

Current Atmospheric	Pressure (mB)	Instrument Atmospher	ic Pressure Reading (mill)
AP Open Po	orts	997	Accept ±2.0
	+300 mB	800	Accept ±5.0
AP Port (Internal)	+1200mh	1200	Arrept ±5.0

		Flow	Checks	12		
Be	rebole Flow	and the second second	Differential Pressure			
Applied Reading (1/h)	Instrum	ent Reading (1/h)	Applied Pressure (Pa)	Instrument Reading (Pa)		
-319	-30.1	Accept ±3.0	-328	-330	Accept.x50	
4	-3	Accept £1.0	-15	-15	Accept 26.0	
0.	0	Accept ±0.0	0	0	Accept ±0.5	
3	3	Accept ±0.5	16	16	Accept ±1.0	
.30	30	Accept ±3.0	328	328	Accept_150	
60	60	Accept ±6.0	971	968	Accept ±130	
90	90.7	Accept ±9.0	1894	1933	Accept ±150	

Temper	rature Checks	and the second s
Calibration Temperature		
Applied Temperature [®] C	instrument T	emperature Reading [®] C
-10	-10	Accept_s2.0
0	0	Accept ±1.0
30	30	Accept +2.0
60	60	Accept ±2.0
160	100	Accept±1.0

Technician:	Date Tested:
Jack Rutland	12/08/2020

The instrument identified by the serial number stated above has been tested by Gas Data personnel for calibration accuracy on the date and under the ambient conditions stated. Gas Data Ltd internal BS EN ISO9001:2015 compliant workshop procedures were followed to apply known calibration test gases, gas flow rates, pressures and temperatures of the values stated. The results displayed on the instrument at each stage are recorded above.

Gas Data Ltd is certified to BS EN ISO9001:2015. Certificate NQA 8374. Valid until 21/03/2022

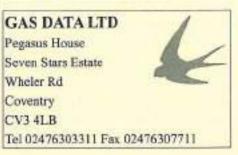
TEST DATE AND CON	NDITIONS
Date	03/03/21
Atmospheric Pressure	1013mB
Ambient Temp	24.7°C
Environics Serial No.	2518

GAS DATA LTD Pegasus House Seven Stars Estate Wheler Rd

Coventry CV3 4LB Tel 02476303311 Fax 02476307711

GFM436-3 FINAL INSPECTION & CALIBRATION CHECK CERTIFICATE

Serial No	Customer	
12224	Concept Site Investigations	


INSTRUMENT CHECKS						
Keyboard	1	Pump Flow	500ec/min			
Display Contrast	1	Pump Flow @ -200mB	300cc/min			
Clock Set / Running	1	S/W Version	G436.0027/0011			
Labels Fitted		Recalibration Date	03/03/22			

	11	-	GAS CHECK	S	and the second			
Calibrat		Instrument Gas Channels Read						
Gas Type	Applied Conc.	CH4 (%)	tol. (% vol.)	CO2 (%)	tol. (% vol.)	O2 (%)	tol. (% vol.)	
N2	100%	0.0	0.0	0.0	0.0	0.0	+/-0.1	
	5%	4.9	+/-0.3	0.0	0.0	0.0	+/-0.1	
CH4	60%	59.7	+/-3.0	0.0	0.0	0.0	+/-0.1	
	5%	0.0	0.0	5.0	+/-0.3	0.0	+/-0.1	
C02	40%	0.0	0.0	40.2	+/-3.0	0.0	+/-0.1	
O2	20.9%	0.0	0.0	0.1	+0.1	20.8	+/-0.5	

			OPTI	ONAL GAS	CHECKS	-		
Calibration Gas Instrument Gas Channels Read								
Gas Type Applied	Label	H2S CO				Hexane	tol.	
	Conc.	Range	5000ppm	2000ppm	Contraction of the	a glasser	2.00%	(% vol.
N2	100%	1	0	0			0	0.0
H2S	1500ppm	1000070	1500	0		ISSN 1 MARIN	THE PARTY OF	+/- 5.0
CO	1000ppm		70	998		a second and	- A A.	+/- 5.0
Hexane	2.00%	1 W	(Internet)	and the second	and the state of the	E- 21/1	1.966	+/- 10.0

		PRESS	SURE CH	and the second se				
Calibratio	n Pressure		Instrument Pressure Channels Read					
Pressure @	Applied Pressure	Atmospheric [Ap] (mB)	tol. (mB)				Not the second	
All Ports	Current Atmospheric	1012	+/-2.0					
Ap Port	+800mB(a)	802	+/-5.0		131 11 111	C. C. C. C. C. C. C. C. C. C. C. C. C. C	1000	
(Internal)	+1200mB(a)	1197	+/-5.0	24-1-1-155	10	A A A A A A A A A A A A A A A A A A A		

TEST DATE AND CON	NDITIONS
Date	03/03/21
Atmospheric Pressure	1013mB
Ambient Temp	24.7°C
Environics Serial No.	2518

GFM436-3 FINAL INSPECTION & CALIBRATION CHECK CERTIFICATE FLOW CHECKS

Calibra	tion Flow	Instrument Flow Channels Read						
Applied Flow (l/hour)	Applied Pressure (Pa)	Flow [Flow] (Vhour)	tol. (1/hour)	Differential Pressure [Dp] (Pa)	tol. (Pa)			
-30.0	-305	-28.6	+/-3.0	-319	+/-50			
-3.0	-10	-2.7	+/-1.0	-10	+/-6			
0.0	0	0.0	0.0	0	0.0			
+3.0	9	3.1	+/-0.5	11	+/-3			
+30.0	283	29.7	+/-3.0	287	+/-50			
+60.0	840	60,1	+/-6.0	847	+/-130			
+90.0	1642	90.1	+/-9.0	1676	+/-250			

	TEMPERATURE CHECK	
Calibration Temperature	ead	
Applied Equivalent Temperature (°C)	Temperature [Temp] (°C)	tol. (°C)
-10.0	-10,5	+/- 2.0
0.0	0.0	+/- 1.0
30.0	30.0	+/- 1.0
60.0	60.0	+/- 1.0
100.0	99.5	+/- 1.0

Notes:

The instrument identified by the serial number stated above has been tested by Gas Data personnel for calibration accuracy on the date and under the ambient conditions stated. Gas Data Ltd internal BS EN ISO9001:2015 compliant workshop procedures were followed to apply known calibration test gases, gas flow rates, pressures and temperatures of the values stated. The results displayed on the instrument at each stage are recorded above.

Gas Data Ltd is certified to BS EN ISO9001:2015. Certificate NQA 8374. Valid until 22/03/2019

CERTIFICATE OF CALIBRATION Phocheck Tiger

CALIBRATION CERTIFICATE NO:

ISSUED BY:	SHAWCITY LIMITED
DATE:	09.09.20
APPROVED SIGNATORY:	Madage
NAME:	Matt Jordison
CUSTOMER:	Concept Engineering Consultants
INSTRUMENT:	Tiger
SERIAL NUMBER:	T-107908
CALIBRATION METHOD:	CM03
AMBIENT CONDITIONS:	20°C ± 2°C and 50% (± 20%) RH

Prior to calibration the instrument was allowed to stabilise in the laboratory for at least 30 minutes.

The instrument was calibrated by exposing the sensor to known values of gas concentrations.

All gases were sampled through the complete probe and in line filter, where applicable.

The reference value is that generated by the certified source and the indicated value is that measured by the instrument.

CALIBRATION RESULTS

GAS	LOT No	REF. VALUE	INDICATED VALUE
Isobutylene	WO241578-1	100 ppm	100 ppm
Isobutylene	WO229476-2	1000 ppm	1000 ppm

COMMENTS:

The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2.

This provides a level of confidence of uncertainty of approximately 95%.

The uncertainty of measurement is ±2 %

The results indicate that the instrument conforms to the applicable parts of the published specification.

HEALTH & SAFETY, OCCUPATIONAL HYGIENE AND ENVIRONMENTAL MONITORING INSTRUMENTS

Tel: 01793 780622 www.shawcity.co.uk Instrument House, 91-92 Shrivenham Hundred Business Park Watchfield, Oxfordshire, SN6 8TY

Fax: 01793 784466 service@shawcity.co.uk

14. GEOTECHNICAL LABORATORY TEST RESULTS

Site Na	me.		Ellerav	Hall & North Lane Depot/East Ca	r Park			Job No.		20/3521
Client:	ine.		-	nd & Wandsworth Council				Date Reported: 08/04/2021		
ment.			Richino	Summary 1	est Ren	ort		Date Net	Jonteu.	00/04/2021
0)etern	ninati	on of N	Noisture Content and Liqui	-		.imits b	ov 4 Poir	nt Cone	Method
Borehole	Sample		Depth	Description	Natural Moisture	Passing 425 μm	Liquid Limit	Plastic Limit	Plasticity Index	Remarks
No.	Туре	No.	m		Content %	sieve %	%	%	%	
BH1						61	30	18	12	
BH1	В	10	1.20	Brown clayey silty gravelly SAND. Gravel is fine to coarse flint	10	62	30	19	11	
BH1	D	24	7.70	Greyish brown slightly micaceous silty CLAY	27	100	68	26	42	
BH1 UT 53 19.		19.50	Very stiff, extremely closely fissured dark brown slightly sandy slightly micaceous silty CLAY with rare partings (<1mm) of silty sand and white flecks		100	69	25	44		
S 1377:	Part 2: Cl Part 2: Cl	ause 5: 1 ause 3.2	990 Deterr : 1990 Dete	D Determination of the liquid limit by the cons nination of the plastic limit and plasticity inde ermination of the moisture content by the ove	ex			AGS		
	ples receiv			09/03/2021						
	ple testing		ed :	29/03/2021 Checked / Approv	ved by:	LG		Unit D, Herald	OOROEPT Way, Coventr	ry CV3 2RQ
ate - sam	ple testing	completed	d :	06/04/2021 Date Approved:		08/04/2021		Tel	02477087673	

				CONCEPT SITE IN	VESTIC	GATIO	ns			
Site Na	ame:		Elleray H	all & North Lane Depot/East Car Pa	rk			Job No.:		20/3521
Client:			Richmon	d & Wandsworth Council				Date Rep	orted:	08/04/2021
	Dete	ermin	ation of	Summary Te Moisture Content and Liquid	-		nits by	4 Point	Cone N	lethod
Borehole	Sample	Sample		Description	Natural Moisture Content %	Passing 425 μm sieve	Liquid Limit	Plastic Limit	Plasticity Index	Remarks
No. BH2	Type B					<u>%</u> 85	<u>%</u> 24	<u>%</u> 12	<u>%</u> 12	
BH2	D	10	1.50	Orangish brown slightly gravelly slightly sandy SILT. Gravel is fine and medium flint	16	83	25	15	10	
BH2	D	24	7.95	Greysih brown slightly micaceous silty CLAY	27	100	72	26	46	
BH2	D	40	14.20	Greyish brown slightly micaceous silty CLAY	25	100	77	28	49	
BH2	D	52	19.20	Dark brown slightly micaceous silty CLAY with rare pockets of grey silty sand	24	100	73	26	47	
3S 1377:	Part 2: Cl	lause 5: 1	1990 Determir	Determination of the liquid limit by the cone pene nation of the plastic limit and plasticity index nination of the moisture content by the oven dryir		hod		AGS:	and of Policity and A	
emarks:	The resu	lts report	ed relate only	to the items tested or sampled.						
	ples receiv			09/03/2021					COROEPT	
	ple testing			29/03/2021 Checked / Appro		LG		Unit D, Herald Te	l Way, Covent 1: 0247708767	
	ple testing			06/04/2021 Date Approved: QA Technical & Lab Mngr) – K Mazerant KM (Lab Mng		08/04/2021	E			nsultants.co.uk

Site Na	me:		Elleray	Hall & North Lane Depot/East Ca	r Park			Job No.		20/3521
Client:	-		-	nd & Wandsworth Council				Date Rep	orted:	08/04/2021
				Summary 1	Fest Repo	ort				
[Deteri	minati	on of l	Moisture Content and Liqu	-		imits b	y 4 Poin	t Cone	Method
Borehole	Sample	Sample	Depth	Description	Natural Moisture Content	Passing 425 μm sieve	Liquid Limit	Plastic Limit	Plasticity Index	Remarks
No.	Туре	No.	m		%	%	%	%	%	
STP1	В	5	0.70	Dark brown clayey silty slightly gravelly SAND. Gravel comprises fine to medium flint and brick fragments	17	68	23	12	11	
STP2	В	7	1.20	Orangish brown mottled brownish grey slightly gravelly sandy silty CLAY. Gravel is fine to medium flint	20	80	36	20	16	
STP3	В	7	1.50	Yellowish brown very sandy slightly gravelly silty CLAY. Gravel is fine to coarse flint	13	77	34	14	20	
WS1	D	9	1.20	Yellowish brown slightly sandy slightly gravelly clayey SILT. Gravel comprises fine to medium flint	19	58	40	29	11	
WS2	В	8	1.00	Orangish brown slightly sandy slightly gravelly silty CLAY. Gravel comprises fine to coarse flint, brick and concrete fragments		60	32	17	15	
WS3	В	6	1.00	Greyish brown slightly sandy slightly gravelly silty CLAY. Gravel is fine to medium flint	22	75	28	20	8	
WS5	В	8	1.00	Orangish brown slightly sandy slightly gravelly silty CLAY .Gravel is fine to medium flint	21	46	30	19	11	
WS6	D	9	1.20	Orangish brown sandy slightly gravelly silty CLAY. Gravel is fine to medium flint	14	61	39	15	24	
8S 1377: 8S 1377:	Part 2: C Part 2: C	lause 5: 1 lause 3.2	990 Deterr 1990 Dete	D Determination of the liquid limit by the cone nination of the plastic limit and plasticity inde ermination of the moisture content by the over nly to the items tested or sampled.	x		1	AGS		
	ples receiv			09/03/2021						
		commenc	ed :	31/03/2021 Checked / Appro	ved by:	LG	1	Unit D, Herald	OONOUPT Way, Covent	rv CV3 2RQ

Form Läb/00n/cept System/2020/203521 - Elleray Hall & North Lane Depot/LAB RESULTS/Geotechnical/Concept/SCH 2/203521 NMC PI (STP1,STP2,STP3,WS1,WS2,WS3,WS5,WS6,WS8,WS9,WS10) Rev 01/20 02 July 2020

				CONCEPT SITE I	NVESTI	GATIO	ns					
Site Na	me:		Elleray Ha	all & North Lane Depot/East Car Pa	ark			Job No.:		20/3521		
Client:			Richmond	d & Wandsworth Council			Date Reported: 08/04/2021			08/04/2021		
				Summary To	est Repor	t		•				
	Determination of Moisture Content and Liquid and Plastic Limits by 4 Point Cone Method											
Borehole	Sample		Depth	Description	Natural Moisture Content	Passing 425 μm sieve	Liquid Limit	Plastic Limit	Plasticity Index	Remarks		
No. WS8	Type B	<u>No.</u> 4	m 0.30	Dark brown slightly sandy gravelly silty CLAY. Gravel comprises fine to coarse flint, brick and concrete fragments	<u>%</u> 21	<u>%</u> 45	<u>%</u> 28	<u>%</u> 16	<u>%</u> 12			
WS9	В	4	0.40	Dark brown slightly sandy gravelly silty CLAY. Gravel comprises fine to medium flint, brick and concrete fragments	20	44	38	26	12			
WS10	D	9	1.20	Orangish brown sandy slightly gravelly silty CLAY. Gravel is fine to coarse flint	13	70	27	16	11			
				Determination of the liquid limit by the cone pen nation of the plastic limit and plasticity index	etrometer me	thod		AGS=	INTER PROPERTY.			
				ination of the moisture content by the oven dry to the items tested or sampled.	ing method					4503		
Date - sam	oles receiv	/ed:		09/03/2021								
Date - sam			ed :	31/03/2021 Checked / App	roved by:	LG		Unit D, Herald				
Date - sam Approved	-			06/04/2021 Date Approved DA Technical & Lab Mngr) – K Mazerant KM (Lab Mn		08/04/2021	E		: 0247708767 b@conceptco	73 onsultants.co.uk		

		CONC	EPT SITE	INVESTIG	ATIONS			
		<u>PAR</u>	TICLE SIZE TEST R		JTION			
Site Name:	Elleray Hall &	North Lane Depot	t/East Car Park			Job Number:	20/3521	
Client:	Richmond &	Wandsworth Coun	cil			Date Reported:	08/04/2021	
Borehole No:	BH1	Sample Type/No.	B 16	Top Depth:	4.00 m	Bottom Depth:	4.45 m	
Soil Description: Brown very sandy fine to coarse flint GRAVEL								
BS Test Sieves Size (mm) % Passi 75.000 100 63.000 100 50.000 95 37.500 92 28.000 82 20.000 69 14.000 54 10.000 43 6.300 35 5.000 31 3.350 27 2.000 23 1.180 20 0.600 14 0.425 9 0.300 4 0.212 1 0.150 1 0.063 0	ng		0.0100		1.0000	10.0000	100.0 90.0 80.0 70.0 60.0 50.0 50.0 30.0 20.0 10.0 100.0000	
Size (mm) % Pass 0.020 0.006 0.002 0.002		CLAY	F M SILT	C F	Size (mm) M C SAND	F M GRAVEL	C COBBE	
Method/type: Dry Sievin Particle Proportions % Cobbles Gravel 76.7 Sand 23.1 Silt and Clay 0.1 Remarks:		2: Clause 9.3: 1990 De	etermination of particl	e size distribution ·	- dry sieving method.	AGS		
The results reported relate of Date - samples received: Date - sample testing commend Date - sample testing complete Approved Signatories: L C	09/03/2021 eed: 31/03/2021 d: 01/04/2021	Che Dat		LG)8/04/2021 gr)		CONCLP 47-49 Brunel Road, Lo Tel: 0208740 Email: lab@conceptco	ondon W3 7XR 1553	

		CONC	EPT SITE	INVESTI	GATIONS		
		PAR	TICLE SIZE	DISTRI	BUTION		
			TEST R	EPORT			
Site Name:	Elleray Hall 8	North Lane Depot	t/East Car Park			Job Number:	20/3521
Client:	Richmond &	Wandsworth Coun	icil			Date Reported:	08/04/2021
Borehole No:	BH2	Sample Type/No.	B 13	Top Depth:	2.50 m	Bottom Depth:	m
Soil Description:		I	Brown slightly claye	y very gravell <u>y</u>	v SAND. Gravel is fine	to coarse flint	
BS Test Sieves Size (mm) % Pass 75.000 100 63.000 100 50.000 100 50.000 100 37.500 95 28.000 91 20.000 87 14.000 81 10.000 76 6.300 69 5.000 66 3.350 61 2.000 56 1.180 51 0.600 41 0.425 31 0.300 19 0.212 11 0.150 7 0.063 3 Sedimentation ("if applicable) Size (mm) % Pass	0.0001				icle Size (mm)		90.0 80.0 70.0 60.0 50.0 30.0 20.0 10.0 100.0000
0.020 0.006 0.002		CLAY	F M SILT	C	M C	F M C	COBBLES
Method/type: Wet Siev Particle Proportions 9 Cobbles Gravel 43.8 Sand 53.0 Silt and Clay 3.2	% 3)	2: Clause 9.2: 1990 De	etermination of particl	e size distributi	on - wet sieving method.	A68	
Remarks: The results reported relate	only to the items teste	ed or sampled.					4503
Date - samples received: Date - sample testing commen Date - sample testing complete Approved Signatories: L	ed : 01/04/2021	Dat		LG 08/04/2021 Igr)		47-49 Brunel Road, Lond Tel: 020874015 Email: lab@conceptcons	553

	CON	CEPT SITE	INVESTIGATIONS		
	<u>PA</u>	RTICLE SIZE TEST R	DISTRIBUTION EPORT		
Site Name:	Elleray Hall & North Lane De	oot/East Car Park		Job Number:	20/3521
Client:	Richmond & Wandsworth Co	uncil		Date Reported:	08/04/2021
Borehole No:	STP1 Sample Type/No.	B 7	Top Depth: 1.60 m	Bottom Depth:	m
Soil Description:		/ silty SAND with occa	sional pockets of sandy clay. Gravel	comprises fine to coarse	e flint and sandstone
BS Test Sieves Size (mm) % Passing 75.000 100 63.000 100 50.000 100 37.500 100 28.000 100 28.000 95 14.000 91 10.000 87 6.300 85 5.000 83 3.350 82 2.000 80 1.180 77 0.600 72 0.425 64 0.300 52 0.212 35 0.150 20 0.063 13 Sedimentation ('if applicable) Size (mm) Size (mm) % Passing 0.020 0.006		F M F M	0.1000 Particle Size (mm) 0.1000 Particle Si	10.0000	100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 100.0000 100.0000
Method/type: Wet Sieving Particle Proportions % Cobbles Gravel 20.3 Sand 67.2 Silt and Clay 12.5 Remarks:		Determination of particl	e size distribution - wet sieving method.	AGS	
Date - sample testing commenced : Date - sample testing completed :	01/04/2021		LG 08/04/2021)gr)	CONCEPT 47-49 Brunel Road, Lond Tel: 020874019 Email: lab@conceptcons	553

		CONC	EPT SITE	INVES	TIGATIC	SUC			
		PAR	TICLE SIZE		RIBUTION	<u>1</u>			
			TEST F	REPORT					
Site Name:	Elleray Hall 8	North Lane Depot	t/East Car Park				Job Number:	20/3521	
Client:	Richmond &	Wandsworth Coun	icil				Date Reported:	08/04/2021	
Borehole No:	STP3	3 Sample B 9 Top Depth: 2.50 m) m	Bottom Depth:	m	
Soil Description:									
		(Orangish brown sli	ghtly clayey	very sandy fine	to coarse fli	nt GRAVEL		
BS Test Sieves								1 00.0	
Size (mm) % Pas									
75.000 10 63.000 10							1 1 1 1 1 9	90.0	
50.000 10								80.0	
37.500 90 28.000 76									
20.000 56	6							70.0	
14.000 44 10.000 38								60.0	
6.300 34									
5.000 32								S0.0 Sing	
3.350 30 2.000 27									
1.180 25								40.0	
0.600 2'								30.0	
0.425 16 0.300 1 ⁻						0			
0.212 7								20.0	
0.150 5									
0.063 3				•	*			10.0	
Sedimentation (*if applicable)	0.0001	0.0010	0.0100		0.1000 Darticle Size (mm)	1.0000	10.0000	0.0	
Size (mm) % Pas	ssing								
0.020			F M	С	F M	С	F M C	E	
0.006		CLAY	SILT		SAND	,	GRAVEL	COBBLES	
0.002			ļ						
Method/type: Wet Sie	eving BS 1377: Part 2	2: Clause 9.2: 1990 D	etermination of partic	le size distri	bution - wet sievir	ng method.			
Particle Proportions	%							Sto	
Cobbles								(A)	
Gravel 72 Sand 24							AGS		
Sand 24 Silt and Clay 3.							A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF	UKAS	
								4503	
Remarks:									
The results reported relate	-	ed or sampled.							
Date - samples received: Date - sample testing comme	09/03/2021 enced : 01/04/2021	Ch	ecked / Approved by:	LG		-	OOROEPT		
Date - sample testing comple			te Approved:	08/04/2021		4	47-49 Brunel Road, Lond Tel: 020874015		
Approved Signatories: L	Griffin LG (QA Techn	ical & Lab Mngr) – K I	Mazerant KM (Lab M	ngr)			Email: lab@conceptconst		

🔅 eurofins

Final Report

Chemtest Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-08106-1		
Initial Date of Issue:	19-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Kasia Mazerant Lab		
Project	20/3521		
Quotation No.:	Q21-22809	Date Received:	15-Mar-2021
Order No.:	L2462	Date Instructed:	15-Mar-2021
No. of Samples:	10		
Turnaround (Wkdays):	5	Results Due:	19-Mar-2021
Date Approved:	19-Mar-2021		
Approved By:			

Ulp Mary

Details:

Glynn Harvey, Technical Manager

<u> Results - Soil</u>

Project: 20/3521

Client: Concept Consultants		Che	mtest J	ob No.:	21-08106	21-08106	21-08106	21-08106	21-08106	21-08106	21-08106	21-08106	21-08106
Quotation No.: Q21-22809	(Chemtest Sample ID.:			1159838	1159839	1159840	1159841	1159842	1159843	1159844	1159845	1159846
		Client Sample ID.:				28	41	53	9	14	23	30	46
		Sample Location:				BH1	BH1	BH1	BH2	BH2	BH2	BH2	BH2
		Sample Type:				SOIL							
		Top Depth (m):			4.70	9.45	14.00	19.50	1.20	3.20	7.50	10.20	16.50
		Bot	ttom De	oth (m):			14.45	19.95			7.95		16.95
			Date Sa	ampled:	10-Mar-2021	10-Mar-2021	10-Mar-2021	10-Mar-2021	10-Mar-2021	10-Mar-2021	10-Mar-2021	10-Mar-2021	10-Mar-2021
Determinand	Accred.	SOP	Units	LOD									
Moisture	Ν	2030	%	0.020	13	18	18	18	14	10	23	22	18
рН	U	2010		4.0	9.0	8.8	8.7	8.8	8.7	9.0	8.7	8.7	8.9
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	0.038	0.076	0.11	< 0.010	< 0.010	0.038	0.088	0.052

Project: 20/3521

Client: Concept Consultants		Che	ntest Jo	ob No.:	21-08106		
Quotation No.: Q21-22809	(Chemte	st Sam	ple ID.:	1159847		
		Clie	ple ID.:	53			
		Sa	ample Lo	ocation:	BH2		
			e Type:	SOIL			
		Top Depth (m)					
		Bot	tom Dep	oth (m):	20.00		
			Date Sa	ampled:	10-Mar-2021		
Determinand	Accred.	SOP	Units	LOD			
Moisture	Ν	2030	%	0.020	18		
рН	U	U 2010 4.0					
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.26		

Test Methods

SOP	Title	Parameters included	Method summary				
2010	pH Value of Soils	рН	pH Meter				
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.				
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930				
	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES				

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently

corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Amended Report

Report No.:	21-08014-2		
Initial Date of Issue:	19-Mar-2021	Date of Re-Issue:	30-Mar-2021
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Kasia Mazerant Lab Lynn Griffin		
Project	20/3521		
Quotation No.:	Q21-22809	Date Received:	15-Mar-2021
Order No.:	L2463	Date Instructed:	15-Mar-2021
No. of Samples:	6		
Turnaround (Wkdays):	5	Results Due:	19-Mar-2021
Date Approved:	19-Mar-2021		
Approved By:			
Ulipe Mary			

Details:

<u> Results - Soil</u>

Project: 20/3521

Client: Concept Consultants		Che	mtest Jo	ob No.:	21-08014	21-08014	21-08014	21-08014	21-08014	21-08014
Quotation No.: Q21-22809	(Chemtest Sample ID.: 17		1159289	1159290	1159291	1159292	1159293	1159294	
		Client Sample ID.:			7	7	8	8	6	8
		Sample Location:				STP2	STP2	WS1	WS3	WS10
		Sample Type:				SOIL	SOIL	SOIL	SOIL	SOIL
		Top Depth (m):				1.20	2.0	1.00	1.00	0.90
		Bot	tom Dep	oth (m):				1.10		
			Date Sa	ampled:	11-Mar-2021	11-Mar-2021	11-Mar-2021	11-Mar-2021	11-Mar-2021	11-Mar-2021
Determinand	Accred.	SOP	Units	LOD						
Moisture	Ν	2030	%	0.020	15	22	14	18	18	17
рН	U	2010		4.0	8.5	8.4	8.8	8.3	8.4	7.6
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.025	< 0.010	< 0.010	< 0.010	0.034	< 0.010

Test Methods

SOP	Title	Parameters included	Method summary				
2010	pH Value of Soils	рН	pH Meter				
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.				
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930				
	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES				

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently

corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

C	ONCE	PT SI	τε ιυλ	ESTIGATIONS	Summary Te	(S	Undrain ingle-Sta	ige)	ial Compre	ession		eported:	08/04/2021 20/3521		
Sit	te Locatio	on:	Elleray H	Hall & North Lane Depot/E	ast Car Park	Client:	Richmond	& Wands	sworth Cour	ncil					
BH No.	Sample Type	Sample No	Depth top (m)	Description	Description			Bulk Density Mg/m3	Dry Density Mg/m3	NMC %	Max Dev. Stress kPa	Shear Strength kPa	Mode of failure/Comments		
BH1	UT	22	7.00	Very stiff, very closely fissu slightly micaceous silty CLA	140	9.0	1.99	1.55	28	180	90	Brittle with slight plastic deformation			
BH1	UT	33	11.00	Very stiff, very closely fissu slightly micaceous silty CLA flecks	220	6.8	1.99	1.55	29	211	106	Brittle			
BH1	UT	43	15.00	Very stiff, extremely closely brown slightly micaceous si	300	2.8	1.98	1.53	29	234	117	Brittle			
BH1	UT	53	19.50	brown slightly sandy slightly	Very stiff, extremely closely fissured dark brown slightly sandy slightly micaceous silty CLAY with rare partings (<1mm) of silty sand and white flecks			2.05	1.65	24	645	323	Brittle		
Remarks: T	The results r	eported rela	ate only to th	e items tested or sampled.		•					I	•			
Date - sam	te - samples received: 09/03/2021												sta		
Date - sam			Ŀ	29/03/2021	Checked/Approved by:			47-49 Brun	CONCEPT lel Road, Londor	n W3 7XR		AGS	- 30-		
	Date - sample testing completed: 31/03/2021 Approved Signatories: L Griffin LG (QA Technical & Lab Mng				Date Approved: - K Mazerant KM (Lal	08/04/2021 b Mngr)		Te	Tel: 02087401553 ab@conceptconsultants.co.uk				AGS		

C	ONCE	PT SI	ΓΕ ΙΛΥ	ESTIGATIONS	Summary Te	(S	Undrain ingle-Sta	ige)	al Compre	ession		eported:	08/04/2021 20/3521
Sit	te Locatio	on:	Elleray H	all & North Lane Depot/E	ast Car Park	Client:	Richmond	d & Wands	sworth Cour	ncil		110	20/0021
BH No.	Sample Type	Sample No	Depth top (m)	Description	Description			Bulk Density Mg/m3	Dry Density Mg/m3	NMC %	Max Dev. Stress kPa	Shear Strength kPa	Mode of failure/Comments
BH2	UT	28	9.50	Very stiff, extremely closely brown slightly micaceous si	190	7.7	1.99	1.54	29	214	107	Brittle	
BH2	UT	33	11.50	Very stiff, very closely fissur slightly micaceous silty CLA pockets of shell fragments	230	5.3	1.99	1.57	27	316	158	Brittle	
BH2	UT	43	15.50	Very stiff, very closely fissur brown slightly micaceous si	310	2.9	2.01	1.57	27	280	140	Brittle	
BH2	UT	48	17.50	Very stiff, very closely fissur brown slightly micaceous si pockets of grey silty sand		360	2.6	2.04	1.64	25	407	204	Brittle
Remarks: 1	The results r	eported rela	ate only to th	e items tested or sampled.				l			L		
	ate - samples received: 09/03/2021								000000				ŝ
	ple testing c		:	29/03/2021	Checked/Approved by:				CONCEPT el Road, Londor			AGS	- (><) -
		Date - sample testing completed: 31/03/2021 Approved Signatories: L Griffin LG (QA Technical & Lab Mng				e Approved: 08/04/2021 Em				Tel: 02087401553 Email: Lab@conceptconsultants.co.uk			4503

15. CHEMICAL LABORATORY TEST RESULTS

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-05672-1		
Initial Date of Issue:	08-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Chris Hustler Kasia Mazerant		
Project	20/3521 Elleray Hall		
Quotation No.:	Q21-23032	Date Received:	24-Feb-2021
Order No.:	CL2727	Date Instructed:	01-Mar-2021
No. of Samples:	2		
Turnaround (Wkdays):	5	Results Due:	05-Mar-2021
Date Approved:	08-Mar-2021		
Approved By:			

Ulip Mary

Details:

2183

20121010

Final Report

Glynn Harvey, Technical Manager

Client: Concept Consultants	Chemtest Job No.:				21-05672	
Quotation No.: Q21-23032	(est Sam		1147935	1147936
	Sample Location:			WS1	WS1	
	Sample Type:			SOIL	SOIL	
			Top Dep	, ,	0.30	0.60
		Bot	ttom Dep			0.70
			Date Sa		22-Feb-2021	22-Feb-2021
				os Lab:	COVENTRY	
Determinand	Accred.	SOP	Units	LOD	-	
АСМ Туре	0	2192		N/A		
Asbestos Identification	U	2192		N/A	No Asbestos Detected	
ACM Detection Stage	U	2192		N/A	-	
Moisture	N	2030	%	0.020	13	13
Soil Colour	N	2040		N/A	Black	Black
Other Material	N	2040		N/A	Stones	Stones
Soil Texture	N	2040		N/A	Clay	Clay
pH	M	2010		4.0	8.4	8.3
Boron (Hot Water Soluble)	M	2120	0 0	0.40	1.7	1.8
Sulphate (2:1 Water Soluble) as SO4	M	2120	g/l	0.010	0.060	0.060
Cyanide (Total)	M	2300	0 0	0.50	0.90	8.4
Sulphate (Total)	M	2430	%	0.010	0.29	0.35
Arsenic	M	2450 2450		1.0	24	23 0.38
Cadmium	M	2450	0 0	0.10	0.36 22	28
Chromium Copper	M	2450	0 0	0.50	56	92
Mercury	M	2450		0.30	0.64	0.62
Nickel	M	2450	0 0	0.10	22	24
Lead	M	2450	0 0	0.50	300	370
Selenium	M	2450	0 0	0.20	0.26	0.34
Zinc	M	2450	0 0		160	430
Chromium (Hexavalent)	Ν	2490		0.50	< 0.50	< 0.50
Aliphatic TPH >C5-C6	Ν	2680		1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	0 0	1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	М	2680		1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	М	2680		1.0	19	< 1.0
Aliphatic TPH >C12-C16	М	2680		1.0	25	< 1.0
Aliphatic TPH >C16-C21	М	2680		1.0	41	4.5
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0	130	17
Aliphatic TPH >C35-C44	Ν	2680	mg/kg	1.0	51	< 1.0
Total Aliphatic Hydrocarbons	N	2680	00	5.0	270	22
Aromatic TPH >C5-C7	N	2680		1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	М	2680	0 0	1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	М	2680		1.0	21	< 1.0
Aromatic TPH >C12-C16	M	2680	mg/kg	1.0	180	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	870	27

Client: Concept Consultants	Chemtest Job No.:			21-05672	21-05672	
Quotation No.: Q21-23032	(Chemte	est Sam	ple ID.:	1147935	1147936
	Sample Location:				WS1	WS1
	Sample Type:			SOIL	SOIL	
		Top Depth (m):			0.30	0.60
		Bot	tom Dep	. ,		0.70
			Date Sa	-	22-Feb-2021	22-Feb-2021
				os Lab:	COVENTRY	
Determinand	Accred.	SOP		LOD		
Aromatic TPH >C21-C35	M	2680	0 0	1.0	2600	97
Aromatic TPH >C35-C44	N	2680	0 0	1.0	300	< 1.0
Total Aromatic Hydrocarbons	N	2680	0 0	5.0	4000	120
Total Petroleum Hydrocarbons	N	2680	0 0	10.0	4200	150
Naphthalene	M	2700	00	0.10	2.5	0.41
Acenaphthylene	M	2700	mg/kg	0.10	17	1.0
Acenaphthene	M	2700	mg/kg	0.10	11 28	0.83
Fluorene	M	2700	mg/kg	0.10	-	1.9
Phenanthrene	M	2700	0 0	0.10	170	9.9
Anthracene	M	2700	00	0.10	55	3.1
Fluoranthene Pyrene	M	2700 2700		0.10	200 190	13 12
	M	2700	3.3	0.10	92	5.6
Benzo[a]anthracene Chrysene	M	2700	0 0	0.10	92 79	5.0
Benzo[b]fluoranthene	M	2700		0.10	96	6.4
Benzo[k]fluoranthene	M	2700	0 0	0.10	38	2.9
Benzo[a]pyrene	M	2700		0.10	83	5.5
Indeno(1,2,3-c,d)Pyrene	M	2700		0.10	64	3.5
Dibenz(a,h)Anthracene	M	2700		0.10	14	1.1
Benzo[g,h,i]perylene	M	2700		0.10	51	2.9
Total Of 16 PAH's	M	2700	0	2.0	1200	75
Dichlorodifluoromethane	U	2760	µg/kg	1.0	< 1.0	< 1.0
Chloromethane	M	2760	µg/kg	1.0	< 1.0	< 1.0
Vinyl Chloride	М	2760	µg/kg	1.0	< 1.0	< 1.0
Bromomethane	М	2760	µg/kg	20	< 20	< 20
Chloroethane	U	2760		2.0	< 2.0	< 2.0
Trichlorofluoromethane	М	2760		1.0	< 1.0	< 1.0
1,1-Dichloroethene	М	2760	mg/kg	1.0	< 1.0	< 1.0
Trans 1,2-Dichloroethene	М	2760	mg/kg	1.0	< 1.0	< 1.0
1,1-Dichloroethane	М	2760	µg/kg	1.0	< 1.0	< 1.0
cis 1,2-Dichloroethene	М	2760	µg/kg	1.0	< 1.0	< 1.0
Bromochloromethane	U	2760	µg/kg	5.0	< 5.0	< 5.0
Trichloromethane	М	2760	µg/kg	1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	М	2760	µg/kg	1.0	< 1.0	< 1.0
Tetrachloromethane	М	2760		1.0	< 1.0	< 1.0
1,1-Dichloropropene	U	2760	µg/kg	1.0	< 1.0	< 1.0
Benzene	М	2760	µg/kg	1.0	< 1.0	< 1.0
1,2-Dichloroethane	М	2760	µg/kg	2.0	< 2.0	< 2.0

Client: Concept Consultants	Chemtest Job No.:			21-05672	21-05672	
Quotation No.: Q21-23032	(est Sam		1147935	1147936
	Sample Location:				WS1	WS1
	Sample Type:			SOIL	SOIL	
			Top Dep		0.30	0.60
		Bot	tom Dep			0.70
			Date Sa		22-Feb-2021	22-Feb-2021
			Asbest		COVENTRY	
Determinand	Accred.	SOP	Units	LOD	1.0	1.0
Trichloroethene	N	2760	µg/kg	1.0	< 1.0	< 1.0
1,2-Dichloropropane	M	2760	µg/kg	1.0	< 1.0	< 1.0
Dibromomethane	M	2760	µg/kg	1.0	< 1.0	< 1.0
Bromodichloromethane	N	2760	µg/kg	5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene Toluene	M	2760 2760	µg/kg	10 1.0	< 10 < 1.0	< 10
Trans-1,3-Dichloropropene	N	2760	µg/kg µg/kg	1.0	< 1.0	< 1.0 < 10
1,1,2-Trichloroethane	M	2760	µg/kg µg/kg	10	< 10	< 10
Tetrachloroethene	M	2760	µg/kg	1.0	< 1.0	< 1.0
1,3-Dichloropropane	U	2760	µg/kg	2.0	< 2.0	< 2.0
Dibromochloromethane	U	2760	µg/kg	10	< 10	< 10
1.2-Dibromoethane	0	2760	µg/kg	5.0	< 5.0	< 5.0
Chlorobenzene	M	2760	µg/kg	1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	M	2760	µg/kg	2.0	< 2.0	< 2.0
Ethylbenzene	M	2760	µg/kg	1.0	< 1.0	< 1.0
m & p-Xylene	M	2760	µg/kg	1.0	< 1.0	< 1.0
o-Xylene	М	2760	µg/kg	1.0	< 1.0	< 1.0
Styrene	М	2760	µg/kg	1.0	< 1.0	< 1.0
Tribromomethane	U	2760	µg/kg	1.0	< 1.0	< 1.0
Isopropylbenzene	М	2760	µg/kg	1.0	< 1.0	< 1.0
Bromobenzene	М	2760	µg/kg	1.0	< 1.0	< 1.0
1,2,3-Trichloropropane	N	2760	µg/kg	50	< 50	< 50
N-Propylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0
2-Chlorotoluene	М	2760	µg/kg	1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	М	2760	µg/kg	1.0	< 1.0	< 1.0
4-Chlorotoluene	U	2760	µg/kg	1.0	< 1.0	< 1.0
Tert-Butylbenzene	U	2760		1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	М	2760	µg/kg	1.0	< 1.0	< 1.0
Sec-Butylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	M	2760	µg/kg	1.0	< 1.0	< 1.0
4-Isopropyltoluene	U	2760	µg/kg	1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	M	2760	µg/kg	1.0	< 1.0	< 1.0
N-Butylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	M	2760	µg/kg	1.0	< 1.0	< 1.0
1,2-Dibromo-3-Chloropropane	U	2760	µg/kg	50	< 50	< 50
1,2,4-Trichlorobenzene	M	2760	µg/kg	1.0	< 1.0	< 1.0
Hexachlorobutadiene	U	2760	µg/kg	1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	U	2760	µg/kg	2.0	< 2.0	< 2.0

Client: Concept Consultants	Chemtest Job No.:			b No.:	21-05672	21-05672
Quotation No.: Q21-23032	(Chemte	est Sam	ple ID.:	1147935	1147936
		Sa	ample Lo	ocation:	WS1	WS1
	Sample Type:			SOIL	SOIL	
	Top Depth (m):			0.30	0.60	
	Bottom Depth (m):				0.70	
			Date Sa	mpled:	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY	
Determinand	Accred. SOP Units LOD					
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0	< 1.0	< 1.0
Total Phenols	М	2920	mg/kg	0.30	0.48	< 0.30

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-05674-1		
Initial Date of Issue:	05-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Chris Hustler Kasia Mazerant		
Project	20/3521 Elleray Road		
Quotation No.:	Q21-23032	Date Received:	24-Feb-2021
Order No.:	CL2727	Date Instructed:	01-Mar-2021
No. of Samples:	2		
Turnaround (Wkdays):	5	Results Due:	05-Mar-2021
Date Approved:	05-Mar-2021		
Approved By:			

Ulip Mary

Details:

2183

20121010

Final Report

Glynn Harvey, Technical Manager

Project: 20/3521 Elleray Road

Client: Concept Consultants	Chemtest Job No.:			21-05674	21-05674	
Quotation No.: Q21-23032	(Chemtest Sample ID.:			1147940	1147942
		Sa	ample Lo		WS2	WS2
	Sample Type:			SOIL	SOIL	
			Top Dep		0.30	1.00
		Bot	ttom Dep			1.20
			Date Sa	ampled:	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
АСМ Туре	U	2192		N/A	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-
Moisture	N	2030	%	0.020	14	13
Soil Colour	Ν	2040		N/A	Brown	Brown
Other Material	Ν	2040		N/A	Stones	Stones
Soil Texture	Ν	2040		N/A	Sand	Sand
рН	М	2010		4.0	8.4	8.5
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	1.1	0.83
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.011	0.035
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	< 0.50
Sulphate (Total)	М	2430	%	0.010	0.11	0.042
Arsenic	М	2450	mg/kg	1.0	30	22
Cadmium	М	2450	mg/kg	0.10	< 0.10	< 0.10
Chromium	М		mg/kg	1.0	25	25
Copper	М	2450		0.50	2000	53
Mercury	М	2450	mg/kg	0.10	1.7	0.26
Nickel	М	2450	mg/kg	0.50	31	25
Lead	М	2450		0.50	1200	130
Selenium	М	2450		0.20	0.37	0.28
Zinc	М	2450	mg/kg	0.50	800	84
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50
Total Organic Carbon	М	2625		0.20		0.53
TPH >C6-C8	N	2670	mg/kg	1.0	< 1.0	< 1.0
TPH >C8-C10	N		mg/kg	1.0	< 1.0	< 1.0
TPH >C10-C12	N	2670		1.0	< 1.0	< 1.0
TPH >C12-C16	N	2670		1.0	< 1.0	12
TPH >C16-C21	N	2670		1.0	15	24
TPH >C21-C25	N	2670		1.0	22	14
TPH >C25-C35	N	2670		1.0	17	14
TPH >C35-C40	N	2670		1.0	< 1.0	< 1.0
Total TPH >C6-C40	M	-	mg/kg	10	54	63
Naphthalene	M		mg/kg	0.10	< 0.10	< 0.10
Acenaphthylene	M		mg/kg	0.10	< 0.10	< 0.10
Acenaphthene	M	2700	0 0	0.10	< 0.10	< 0.10
Fluorene	M	2700	mg/kg	0.10	< 0.10	< 0.10
Phenanthrene	M	2700	0 0	0.10	3.5	2.8

Project: 20/3521 Elleray Road

Client: Concept Consultants		Che	mtest Jo	ob No.:	21-05674	21-05674
Quotation No.: Q21-23032	(Chemtest Sample ID.:			1147940	1147942
		Sa	ample Lo		WS2	WS2
				e Type:	SOIL	SOIL
			Тор Dep	oth (m):	0.30	1.00
		Bot	tom Dep	oth (m):		1.20
			Date Sa	ampled:	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
Anthracene	М	2700	mg/kg	0.10	1.1	1.2
Fluoranthene	М	2700	mg/kg	0.10	11	6.7
Pyrene	М	2700	mg/kg	0.10	10	5.4
Benzo[a]anthracene	М	2700	mg/kg	0.10	6.9	3.9
Chrysene	М	2700	mg/kg	0.10	5.7	3.1
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	9.0	4.2
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	3.6	1.9
Benzo[a]pyrene	М	2700	mg/kg	0.10	6.9	3.1
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.10	5.3	2.1
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	1.5	0.59
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	4.2	1.7
Total Of 16 PAH's	М	2700	mg/kg	2.0	69	37
Total Phenols	М	2920	mg/kg	0.30	< 0.30	< 0.30

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently

corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-05677-1		
Initial Date of Issue:	05-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Chris Hustler Kasia Mazerant		
Project	20/3521 Elleray Hall		
Quotation No.:	Q21-23032	Date Received:	24-Feb-2021
Order No.:	CL2727	Date Instructed:	01-Mar-2021
No. of Samples:	3		
Turnaround (Wkdays):	5	Results Due:	05-Mar-2021
Date Approved:	05-Mar-2021		
Approved By:			

Ulip Mary

Details:

2183

20121010

Final Report

Glynn Harvey, Technical Manager

Client: Concept Consultants		Che	mtest Jo	b No.:	21-05677	21-05677	21-05677
Quotation No.: Q21-23032	(Chemte	est Sam	ole ID.:	1147952	1147953	1147955
		Sa	ample Lo		BH1	BH1	BH1
				е Туре:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.25	0.40	1.00
		Bot	tom Dep	oth (m):			1.20
			Date Sa	mpled:	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY		COVENTRY
Determinand	Accred.	SOP	Units	LOD			
АСМ Туре	U	2192		N/A	-		-
Asbestos Identification	U	2192		N/A	No Asbestos Detected		No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-		-
Moisture	N	2030	%	0.020	2.8	2.5	13
Soil Colour	N	2040		N/A	Brown	Brown	Brown
Other Material	Ν	2040		N/A	Stones	Stones	Stones
Soil Texture	Ν	2040		N/A	Sand	Sand	Sand
рН	М	2010		4.0	9.3	9.3	7.2
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.70	0.75	0.86
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.066	0.052	0.12
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Sulphate (Total)	М	2430	%	0.010	0.28	0.10	0.043
Arsenic	М	2450	mg/kg	1.0	19	18	11
Cadmium	М	2450	mg/kg	0.10	0.10	< 0.10	< 0.10
Chromium	М	2450	mg/kg	1.0	25	22	17
Copper	М	2450	mg/kg	0.50	60	30	16
Mercury	М	2450	mg/kg	0.10	0.36	3.2	0.15
Nickel	М	2450	mg/kg	0.50	24	21	13
Lead	М	2450	mg/kg	0.50	1200	130	58
Selenium	М	2450	mg/kg	0.20	0.21	0.23	0.25
Zinc	М	2450	mg/kg	0.50	89	62	35
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Total Organic Carbon	М	2625	%	0.20	4.8		
TPH >C6-C8	N	2670	mg/kg	1.0	-	< 1.0	< 1.0
TPH >C8-C10	N	2670	mg/kg	1.0		6.7	< 1.0
TPH >C10-C12	N	2670	mg/kg	1.0		10	< 1.0
TPH >C12-C16	N	2670	mg/kg	1.0		200	6.2
TPH >C16-C21	N	2670	mg/kg	1.0		1200	11
TPH >C21-C25	N	2670	mg/kg	1.0		520	9.3
TPH >C25-C35	N	2670	mg/kg	1.0		1000	7.4
TPH >C35-C40	N	2670	mg/kg	1.0		230	< 1.0
Total TPH >C6-C40	M	2670	mg/kg	10		3200	34
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0		
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0		
Aliphatic TPH >C8-C10	M	2680	mg/kg	1.0	< 1.0		
Aliphatic TPH >C10-C12	M	2680	mg/kg	1.0	13		
Aliphatic TPH >C12-C16	M	2680	mg/kg	1.0	14		

Client: Concept Consultants			mtest Jo		21-05677	21-05677	21-05677
Quotation No.: Q21-23032	(Chemte	est Sam	ole ID.:	1147952	1147953	1147955
		Sa	ample Lo		BH1	BH1	BH1
			Sample		SOIL	SOIL	SOIL
			Тор Dep		0.25	0.40	1.00
		Bot	tom Dep	oth (m):			1.20
			Date Sa	mpled:	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY		COVENTRY
Determinand	Accred.	SOP	Units	LOD			
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0	28		
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0	150		
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	49		
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	250		
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0	81		
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0	38		
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0	270		
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	1500		
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	3700		
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	350		
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	5900		
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	6100		
Naphthalene	М	2700	mg/kg	0.10	20	26	< 0.10
Acenaphthylene	М	2700	mg/kg	0.10	65	66	< 0.10
Acenaphthene	М	2700	mg/kg	0.10	12	12	< 0.10
Fluorene	М	2700	mg/kg	0.10	75	83	< 0.10
Phenanthrene	М	2700	mg/kg	0.10	560	710	< 0.10
Anthracene	М	2700	mg/kg	0.10	150	160	< 0.10
Fluoranthene	М	2700	mg/kg	0.10	660	760	< 0.10
Pyrene	М	2700	mg/kg	0.10	560	620	< 0.10
Benzo[a]anthracene	М	2700	mg/kg	0.10	300	31	< 0.10
Chrysene	М	2700	mg/kg	0.10	240	230	< 0.10
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	320	340	< 0.10
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	130	140	< 0.10
Benzo[a]pyrene	M	2700	mg/kg	0.10	260	270	< 0.10
Indeno(1,2,3-c,d)Pyrene	M	2700	mg/kg	0.10	190	180	< 0.10
Dibenz(a,h)Anthracene	M	2700	mg/kg	0.10	45	47	< 0.10
Benzo[g,h,i]perylene	M	2700	mg/kg	0.10	160	160	< 0.10
Total Of 16 PAH's	M	2700	mg/kg	2.0	3700	3800	< 2.0
Dichlorodifluoromethane	U	2760	µg/kg	1.0	< 1.0		. 2.0
Chloromethane	M	2760	µg/kg	1.0	< 1.0		
Vinyl Chloride	M	2760	µg/kg	1.0	< 1.0		
Bromomethane	M	2760	µg/kg	20	< 20		
Chloroethane	U	2760	µg/kg	2.0	< 2.0		
Trichlorofluoromethane	M	2760	µg/kg	1.0	< 1.0		
1,1-Dichloroethene	M	2760	mg/kg	1.0	< 1.0		

Client: Concept Consultants			ntest Jo		21-05677	21-05677	21-05677
Quotation No.: Q21-23032	(est Sam		1147952	1147953	1147955
		Sa	ample Lo		BH1	BH1	BH1
				e Type:	SOIL	SOIL	SOIL
			Тор Dep	oth (m):	0.25	0.40	1.00
		Bot	tom Dep	oth (m):			1.20
			Date Sa	impled:	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY		COVENTRY
Determinand	Accred.	SOP	Units	LOD			
Trans 1,2-Dichloroethene	М	2760	mg/kg	1.0	< 1.0		
1,1-Dichloroethane	М	2760	µg/kg	1.0	< 1.0		
cis 1,2-Dichloroethene	М	2760	µg/kg	1.0	< 1.0		
Bromochloromethane	U	2760	µg/kg	5.0	< 5.0		
Trichloromethane	М	2760	µg/kg	1.0	< 1.0		
1,1,1-Trichloroethane	М	2760	µg/kg	1.0	< 1.0		
Tetrachloromethane	М	2760	µg/kg	1.0	< 1.0		
1,1-Dichloropropene	U	2760	µg/kg	1.0	< 1.0		
Benzene	М	2760	µg/kg	1.0	< 1.0		
1,2-Dichloroethane	М	2760	µg/kg	2.0	< 2.0		
Trichloroethene	N	2760	µg/kg	1.0	< 1.0		
1,2-Dichloropropane	М	2760	µg/kg	1.0	< 1.0		
Dibromomethane	М	2760	µg/kg	1.0	< 1.0		
Bromodichloromethane	М	2760	µg/kg	5.0	< 5.0		
cis-1,3-Dichloropropene	N	2760	µg/kg	10	< 10		
Toluene	М	2760	µg/kg	1.0	< 1.0		
Trans-1,3-Dichloropropene	N	2760	µg/kg	10	< 10		
1,1,2-Trichloroethane	М	2760	µg/kg	10	< 10		
Tetrachloroethene	М	2760	µg/kg	1.0	< 1.0		
1,3-Dichloropropane	U	2760	µg/kg	2.0	< 2.0		
Dibromochloromethane	U	2760	µg/kg	10	< 10		
1,2-Dibromoethane	М	2760	µg/kg	5.0	< 5.0		
Chlorobenzene	М	2760	µg/kg	1.0	< 1.0		
1,1,1,2-Tetrachloroethane	М	2760	µg/kg	2.0	< 2.0		
Ethylbenzene	М	2760	µg/kg	1.0	< 1.0		
m & p-Xylene	М	2760	µg/kg	1.0	< 1.0		
o-Xylene	М	2760	µg/kg	1.0	< 1.0		
Styrene	М	2760	µg/kg	1.0	< 1.0		
Tribromomethane	U	2760	µg/kg	1.0	< 1.0		
Isopropylbenzene	М	2760	µg/kg	1.0	< 1.0		
Bromobenzene	М	2760	µg/kg	1.0	< 1.0		
1,2,3-Trichloropropane	N	2760	µg/kg	50	< 50		
N-Propylbenzene	U	2760	µg/kg	1.0	< 1.0		
2-Chlorotoluene	M	2760	µg/kg	1.0	< 1.0		
1,3,5-Trimethylbenzene	М	2760	µg/kg	1.0	< 1.0		
4-Chlorotoluene	U	2760	µg/kg	1.0	< 1.0		
Tert-Butylbenzene	U	2760	µg/kg	1.0	< 1.0		
1,2,4-Trimethylbenzene	M	2760	µg/kg	1.0	< 1.0		

Client: Concept Consultants		Che	mtest Jo	ob No.:	21-05677	21-05677	21-05677
Quotation No.: Q21-23032	(Chemtest Sample ID.:			1147952	1147953	1147955
		Sa	ample Lo	ocation:	BH1	BH1	BH1
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.25	0.40	1.00
		Bot	ttom Dep	oth (m):			1.20
			Date Sa	ampled:	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY		COVENTRY
Determinand	Accred.	SOP	Units	LOD			
Sec-Butylbenzene	U	2760	µg/kg	1.0	< 1.0		
1,3-Dichlorobenzene	М	2760	µg/kg	1.0	< 1.0		
4-Isopropyltoluene	U	2760	µg/kg	1.0	< 1.0		
1,4-Dichlorobenzene	М	2760	µg/kg	1.0	< 1.0		
N-Butylbenzene	U	2760	µg/kg	1.0	< 1.0		
1,2-Dichlorobenzene	М	2760	µg/kg	1.0	< 1.0		
1,2-Dibromo-3-Chloropropane	U	2760	µg/kg	50	< 50		
1,2,4-Trichlorobenzene	М	2760	µg/kg	1.0	< 1.0		
Hexachlorobutadiene	U	· · · · ·					
1,2,3-Trichlorobenzene	U	U 2760 µg/kg 2.0			< 2.0		
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0	< 1.0		
Total Phenols	М	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-05752-1		
Initial Date of Issue:	05-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Chris Hustler Kasia Mazerant		
Project	20/3521 Elleray Hall		
Quotation No.:	Q21-23032	Date Received:	24-Feb-2021
Order No.:	CL2727	Date Instructed:	01-Mar-2021
No. of Samples:	3		
Turnaround (Wkdays):	5	Results Due:	05-Mar-2021
Date Approved:	05-Mar-2021		
Approved By:			

Up nez

Details:

2183

20121010

Final Report

Glynn Harvey, Technical Manager

Client: Concept Consultants			mtest Jo		21-05752	21-05752	21-05752
Quotation No.: Q21-23032	(est Sam		1148288	1148289	1148292
		Sa	ample Lo		WS5	WS5	WS3
				e Type:	SOIL	SOIL	SOIL
			Тор Dep		0.25	0.40	1.00
			Date Sa	mpled:	22-Feb-2021	22-Feb-2021	22-Feb-2027
			Asbest	os Lab:		COVENTRY	
Determinand	Accred.	SOP	Units	LOD			
АСМ Туре	U	2192		N/A		-	
Asbestos Identification	U	2192		N/A		No Asbestos Detected	
ACM Detection Stage	U	2192		N/A		-	
Asbestos by Gravimetry	U	2192	%	0.001		-	
Total Asbestos	U	2192	%	0.001		-	
Moisture	N	2030	%	0.020	3.6	9.2	16
Soil Colour	Ν	2040		N/A	Black	Brown	Brown
Other Material	N	2040		N/A	Stones	Stones	None
Soil Texture	N	2040		N/A	Chalk	Clay	Clay
pH	М	2010		4.0	8.9		
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	< 0.40		
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.010		
Cyanide (Total)	М	2300	mg/kg	0.50	4.7		
Sulphate (Total)	М	2430	%	0.010	0.11		
Arsenic	М	2450	mg/kg	1.0	11		
Cadmium	М	2450		0.10	0.25		
Chromium	М	2450	0	1.0	3.5		
Copper	М	2450	mg/kg	0.50	8.4		
Mercury	М	2450	00	0.10	0.15		
Nickel	М	2450	mg/kg	0.50	3.7		
Lead	М	2450		0.50	50		
Selenium	М	2450	mg/kg	0.20	0.28		
Zinc	M	2450	0 0	0.50	33		
Chromium (Hexavalent)	N	2490		0.50	< 0.50		
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0	72	43	< 1.0
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0	120	15	< 1.0
Aliphatic TPH >C12-C16	M	2680	mg/kg	1.0	450	11	6.5
Aliphatic TPH >C16-C21	M	2680	0 0	1.0	570	14	6.9
Aliphatic TPH >C21-C35	M	2680	mg/kg	1.0	1100	62	29
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	460	13	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	2700	160	42
Aromatic TPH >C5-C7	N	2680	0 0	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	M	2680		1.0	280	< 1.0	< 1.0
Aromatic TPH >C10-C12	M	2680	mg/kg	1.0	5200	16	< 1.0
Aromatic TPH >C12-C16	M	2680	0 0	1.0	9900	41	6.1

Client: Concept Consultants			mtest Jo			21-05752	21-05752
Quotation No.: Q21-23032	(est Sam		1148288	1148289	1148292
		Sa	ample Lo		WS5	WS5	WS3
			Sample		SOIL	SOIL	SOIL
			Тор Dep		0.25	0.40	1.00
			Date Sa	mpled:	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:		COVENTRY	
Determinand	Accred.	SOP	Units	LOD			
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	19000	170	38
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	27000	620	160
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	2800	48	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	64000	900	210
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	67000	1100	250
Naphthalene	М	2700	mg/kg	0.10	370	18	7.0
Acenaphthylene	М	2700	mg/kg	0.10	58	7.5	1.4
Acenaphthene	М	2700	mg/kg	0.10	59	4.8	1.6
Fluorene	М	2700	mg/kg	0.10	150	15	3.3
Phenanthrene	М	2700	mg/kg	0.10	580	71	14
Anthracene	М	2700	mg/kg	0.10	140	19	3.5
Fluoranthene	М	2700	mg/kg	0.10	380	61	10
Pyrene	М	2700	mg/kg	0.10	340	56	9.4
Benzo[a]anthracene	М	2700	mg/kg	0.10	140	27	4.0
Chrysene	М	2700	mg/kg	0.10	120	25	3.8
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	130	28	4.3
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	56	12	2.1
Benzo[a]pyrene	М	2700	mg/kg	0.10	120	23	3.5
Indeno(1,2,3-c,d)Pyrene	М	2700		0.10	83	15	3.8
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	20	4.3	0.98
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	69	11	2.2
Total Of 16 PAH's	М	2700	mg/kg	2.0	2800	400	74
Dichlorodifluoromethane	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Chloromethane	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Bromomethane	М	2760	µg/kg	20	< 20	< 20	< 20
Chloroethane	U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0
Trichlorofluoromethane	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	М	2760	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Trans 1,2-Dichloroethene	М	2760	mg/kg	1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
cis 1,2-Dichloroethene	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Bromochloromethane	U	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0
Trichloromethane	M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Benzene	M	2760	µg/kg	1.0	510	< 1.0	< 1.0
1,2-Dichloroethane	M	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0

Client: Concept Consultants		Che	ntest Jo	ob No.:	21-05752	21-05752	21-05752
Quotation No.: Q21-23032	(est Sam		1148288	1148289	1148292
		Sa	ample Lo		WS5	WS5	WS3
				e Type:	SOIL	SOIL	SOIL
			Top Dep		0.25	0.40	1.00
			Date Sa		22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest			COVENTRY	
Determinand	Accred.	SOP	Units	LOD			
Trichloroethene	N	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	M	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene	N	2760	µg/kg	10	< 10	< 10	< 10
	M	2760	µg/kg	1.0	2200	4.5	< 1.0
Trans-1,3-Dichloropropene	N	2760	µg/kg	10	< 10	< 10	< 10
1,1,2-Trichloroethane	M	2760	µg/kg	10	< 10	< 10	< 10
Tetrachloroethene	<u>М</u> U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	U U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0
Dibromochloromethane	M	2760 2760	µg/kg	10	< 10	< 10	< 10
1,2-Dibromoethane Chlorobenzene	M	2760	µg/kg µg/kg	5.0 1.0	< 5.0 < 1.0	< 5.0 < 1.0	< 5.0 < 1.0
	M	2760	µg/kg µg/kg	2.0	< 2.0	< 2.0	< 2.0
1,1,1,2-Tetrachloroethane Ethylbenzene	M	2760	μg/kg μg/kg				
m & p-Xylene	M	2760	μg/kg μg/kg	1.0 1.0	160 2200	< 1.0 5.8	< 1.0 < 1.0
o-Xylene	M	2760	µg/kg µg/kg	1.0	1200	3.4	< 1.0
Styrene	M	2760	µg/kg	1.0	730	< 1.0	< 1.0
Tribromomethane	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	M	2760	µg/kg	1.0	14	< 1.0	< 1.0
Bromobenzene	M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane	N	2760	µg/kg	50	< 50	< 50	< 50
N-Propylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	M	2760	µg/kg	1.0	180	1.8	< 1.0
4-Chlorotoluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	М	2760	µg/kg	1.0	1100	4.4	< 1.0
Sec-Butylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
4-Isopropyltoluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
N-Butylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-Chloropropane	U	2760	µg/kg	50	< 50	< 50	< 50
1,2,4-Trichlorobenzene	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0

<u> Results - Soil</u>

Client: Concept Consultants	Chemtest Job No.:		21-05752	21-05752	21-05752		
Quotation No.: Q21-23032	Chemtest Sample ID.:		1148288	1148289	1148292		
	Sample Location:			WS5	WS5	WS3	
	Sample Type:				SOIL	SOIL	SOIL
	Top Depth (m):			0.25	0.40	1.00	
			Date Sa	mpled:	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:		COVENTRY	
Determinand	Accred.	SOP	Units	LOD			
Total Phenols	М	2920	mg/kg	0.30	170	< 0.30	< 0.30

Project: 20/3521 Elleray Hall	21-05752					Nacto Accontano	Criteria
Chemtest Job No:					Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1148288					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	14/05					reactive	
Sample Location:	WS5					hazardous	Hazardous
Top Depth(m):	0.25				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	22-Feb-2021					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	М	%	6.3	3	5	6
Loss On Ignition	2610	М	%	9.7			10
Total BTEX	2760	М	mg/kg	6.3	6		
Total PCBs (7 Congeners)	2815	М	mg/kg	< 0.10	1		
TPH Total WAC (Mineral Oil)	2670	М	mg/kg	67000	500		
Total (Of 17) PAH's	2700	N	mg/kg	2800	100		
рН	2010	М		8.9		>6	
Acid Neutralisation Capacity	2015	Ν	mol/kg	0.0060		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching		
			mg/l	mg/kg	using B	S EN 12457 at L/S	6 10 l/kg
Arsenic	1455	U	0.0009	0.0092	0.5	2	25
Barium	1455	U	0.013	0.13	20	100	300
Cadmium	1455	U	< 0.00012	< 0.00012	0.04	1	5
Chromium	1455	U	0.0039	0.039	0.5	10	70
Copper	1455	U	0.0018	0.018	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0007	0.0070	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0017	0.017	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	0.005	0.051	4	50	200
Chloride	1220	U	5.9	59	800	15000	25000
Fluoride	1220	U	0.27	2.7	10	150	500
Sulphate	1220	U	7.2	72	1000	20000	50000
Total Dissolved Solids	1020	N	290	2900	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	4.2	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	3.6

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	pН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection

Test Methods

SOP	Title	Parameters included	Method summary
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-05756-1		
Initial Date of Issue:	05-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Chris Hustler Kasia Mazerant		
Project	20/3521 Elleray Hall		
Quotation No.:	Q21-23032	Date Received:	24-Feb-2021
Order No.:	CL2727	Date Instructed:	01-Mar-2021
No. of Samples:	4		
Turnaround (Wkdays):	5	Results Due:	05-Mar-2021
Date Approved:	05-Mar-2021		
Approved By:			

Up nez

Details:

2183

20121010

Final Report

Glynn Harvey, Technical Manager

Client: Concept Consultants		Chemtest Job No.:				21-05756	21-05756
Quotation No.: Q21-23032	(Chemtest Sample ID.:			1148308	1148310	1148311
		Sa	ample Lo	ocation:	BH2	BH2	BH2
				e Type:	SOIL	SOIL	SOIL
			Тор Dep		0.3	0.9	1.2
		Bot	tom Dep	oth (m):		1.0	
			Date Sa	ampled:	22-Feb-2021	22-Feb-2021	22-Feb-202
			Asbest	os Lab:	COVENTRY	COVENTRY	
Determinand	Accred.	SOP	Units	LOD			
АСМ Туре	U	2192		N/A	-	-	
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	
ACM Detection Stage	U	2192		N/A	-	-	
Moisture	N	2030	%	0.020	11	14	13
Soil Colour	Ν	2040		N/A	Brown	Brown	Brown
Other Material	N	2040		N/A	Stones	Stones	Stones
Soil Texture	N	2040		N/A	Sand	Clay	Clay
pH	М	2010		4.0	8.6	8.3	, í
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.58	0.64	
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	< 0.010	0.019	
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	< 0.50	
Sulphate (Total)	М	2430	%	0.010	0.084	0.052	
Arsenic	М		mg/kg	1.0	39	9.9	
Cadmium	М	2450		0.10	1.0	< 0.10	
Chromium	М	2450	mg/kg	1.0	17	17	
Copper	М	2450	mg/kg	0.50	61	11	
Mercury	М	2450		0.10	0.88	< 0.10	
Nickel	М	2450	mg/kg	0.50	18	9.6	
Lead	М	2450	mg/kg	0.50	620	41	
Selenium	М	2450		0.20	< 0.20	0.26	
Zinc	М	2450		0.50	230	72	
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	
Total Organic Carbon	М	2625	%	0.20	1.4		
TPH >C6-C8	N	2670	mg/kg	1.0	< 1.0		
TPH >C8-C10	N	2670	mg/kg	1.0	< 1.0		
TPH >C10-C12	N	2670		1.0	< 1.0		
TPH >C12-C16	N	2670	mg/kg	1.0	< 1.0		
TPH >C16-C21	N	2670	0 0	1.0	4.7		
TPH >C21-C25	Ν	2670		1.0	7.5		
TPH >C25-C35	Ν	2670		1.0	7.0		
TPH >C35-C40	N	2670		1.0	< 1.0		
Total TPH >C6-C40	М	2670	mg/kg	10	19		
Aliphatic TPH >C5-C6	Ν	2680	0 0	1.0		< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	00	1.0		< 1.0	< 1.0
Aliphatic TPH >C8-C10	М	2680		1.0		< 1.0	< 1.0
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0		< 1.0	< 1.0
Aliphatic TPH >C12-C16	М	2680	0 0	1.0		< 1.0	< 1.0

Client: Concept Consultants			mtest Jo		21-05756	21-05756	21-05756
Quotation No.: Q21-23032	(Chemtest Sample ID.:				1148310	1148311
		Sa	ample Lo		BH2	BH2	BH2
			Sample		SOIL	SOIL	SOIL
			Top Dep		0.3	0.9	1.2
		Bot	tom Dep	. ,		1.0	
			Date Sa		22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY	COVENTRY	
Determinand	Accred.	SOP	Units	LOD			
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0		< 1.0	< 1.0
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0		< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0		< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0		< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0		< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0		< 1.0	< 1.0
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0		< 1.0	< 1.0
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0		< 1.0	< 1.0
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0		< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0		< 1.0	< 1.0
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0		< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0		< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0		< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0		< 10	< 10
Naphthalene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluorene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	М	2700	mg/kg	0.10	1.9	< 0.10	< 0.10
Anthracene	М	2700	mg/kg	0.10	0.45	< 0.10	< 0.10
Fluoranthene	М	2700	mg/kg	0.10	5.2	0.34	0.42
Pyrene	М	2700	mg/kg	0.10	4.8	0.34	0.43
Benzo[a]anthracene	М	2700	mg/kg	0.10	2.8	< 0.10	< 0.10
Chrysene	М	2700	mg/kg	0.10	2.8	< 0.10	< 0.10
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	4.1	< 0.10	< 0.10
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	1.6	< 0.10	< 0.10
Benzo[a]pyrene	М	2700	mg/kg	0.10	2.9	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.10	2.4	< 0.10	< 0.10
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	0.56	< 0.10	< 0.10
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	2.1	< 0.10	< 0.10
Total Of 16 PAH's	М	2700	mg/kg	2.0	32	< 2.0	< 2.0
Dichlorodifluoromethane	U	2760	µg/kg	1.0		< 1.0	< 1.0
Chloromethane	М	2760	µg/kg	1.0		< 1.0	< 1.0
Vinyl Chloride	М	2760	µg/kg	1.0		< 1.0	< 1.0
Bromomethane	М	2760	µg/kg	20		< 20	< 20
Chloroethane	U	2760	µg/kg	2.0		< 2.0	< 2.0
Trichlorofluoromethane	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,1-Dichloroethene	M	2760	mg/kg	1.0		< 1.0	< 1.0

Client: Concept Consultants			ntest Jo		21-05756	21-05756	21-05756
Quotation No.: Q21-23032		Chemtest Sample ID.:			1148308	1148310	1148311
		Sa	ample Lo		BH2	BH2	BH2
				e Type:	SOIL	SOIL	SOIL
			Тор Dep		0.3	0.9	1.2
		Bot	tom Dep			1.0	
			Date Sa	impled:	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY	COVENTRY	
Determinand	Accred.	SOP	Units	LOD			
Trans 1,2-Dichloroethene	М	2760	mg/kg	1.0		< 1.0	< 1.0
1,1-Dichloroethane	М	2760	µg/kg	1.0		< 1.0	< 1.0
cis 1,2-Dichloroethene	М	2760	µg/kg	1.0		< 1.0	< 1.0
Bromochloromethane	U	2760	µg/kg	5.0		< 5.0	< 5.0
Trichloromethane	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,1,1-Trichloroethane	М	2760	µg/kg	1.0		< 1.0	< 1.0
Tetrachloromethane	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,1-Dichloropropene	U	2760	µg/kg	1.0		< 1.0	< 1.0
Benzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,2-Dichloroethane	М	2760	µg/kg	2.0		< 2.0	< 2.0
Trichloroethene	N	2760	µg/kg	1.0		< 1.0	< 1.0
1,2-Dichloropropane	М	2760	µg/kg	1.0		< 1.0	< 1.0
Dibromomethane	М	2760	µg/kg	1.0		< 1.0	< 1.0
Bromodichloromethane	М	2760	µg/kg	5.0		< 5.0	< 5.0
cis-1,3-Dichloropropene	N	2760	µg/kg	10		< 10	< 10
Toluene	М	2760	µg/kg	1.0		< 1.0	< 1.0
Trans-1,3-Dichloropropene	N	2760	µg/kg	10		< 10	< 10
1,1,2-Trichloroethane	М	2760	µg/kg	10		< 10	< 10
Tetrachloroethene	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,3-Dichloropropane	U	2760	µg/kg	2.0		< 2.0	< 2.0
Dibromochloromethane	U	2760	µg/kg	10		< 10	< 10
1,2-Dibromoethane	М	2760	µg/kg	5.0		< 5.0	< 5.0
Chlorobenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	М	2760	µg/kg	2.0		< 2.0	< 2.0
Ethylbenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
m & p-Xylene	М	2760	µg/kg	1.0		< 1.0	< 1.0
o-Xylene	М	2760	µg/kg	1.0		< 1.0	< 1.0
Styrene	М	2760	µg/kg	1.0		< 1.0	< 1.0
Tribromomethane	U	2760	µg/kg	1.0		< 1.0	< 1.0
Isopropylbenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
Bromobenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,2,3-Trichloropropane	N	2760	µg/kg	50		< 50	< 50
N-Propylbenzene	U	2760	µg/kg	1.0		< 1.0	< 1.0
2-Chlorotoluene	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,3,5-Trimethylbenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
4-Chlorotoluene	U	2760	µg/kg	1.0		< 1.0	< 1.0
Tert-Butylbenzene	U	2760	µg/kg	1.0		< 1.0	< 1.0
1,2,4-Trimethylbenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0

Client: Concept Consultants		Che	mtest Jo	b No.:	21-05756	21-05756	21-05756
Quotation No.: Q21-23032	(Chemtest Sample ID.: Sample Location:		1148308	1148310	1148311	
				BH2	BH2	BH2	
			Sample	е Туре:	SOIL	SOIL	SOIL
			Тор Dep	oth (m):	0.3	0.9	1.2
		Bot	tom Dep	oth (m):		1.0	
			Date Sa	mpled:	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:	COVENTRY	COVENTRY	
Determinand	Accred.	SOP	Units	LOD			
Sec-Butylbenzene	U	2760	µg/kg	1.0		< 1.0	< 1.0
1,3-Dichlorobenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
4-Isopropyltoluene	U	2760	µg/kg	1.0		< 1.0	< 1.0
1,4-Dichlorobenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
N-Butylbenzene	U	2760	µg/kg	1.0		< 1.0	< 1.0
1,2-Dichlorobenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
1,2-Dibromo-3-Chloropropane	U	2760	µg/kg	50		< 50	< 50
1,2,4-Trichlorobenzene	М	2760	µg/kg	1.0		< 1.0	< 1.0
Hexachlorobutadiene	U	2760	µg/kg	1.0		< 1.0	< 1.0
1,2,3-Trichlorobenzene	U	2760	µg/kg	2.0		< 2.0	< 2.0
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0		< 1.0	< 1.0
Total Phenols	М	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30

Project: 20/3521 Elleray Hall Chemtest Job No:	21-05756					Nacto Accontono	Critoria
	1148309				Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1140309					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	BH2					reactive	Henrydeine
Sample Location:					In and Manda	hazardous	Hazardous
Top Depth(m):	0.6				Inert Waste	waste in non-	Waste
Bottom Depth(m):	00 E-k 0004				Landfill	hazardous	Landfill
Sampling Date:	22-Feb-2021					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	M	%	1.3	3	5	6
Loss On Ignition	2610	M	%	3.6			10
Total BTEX	2760	М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg	< 0.10	1		
TPH Total WAC (Mineral Oil)	2670	М	mg/kg	25	500		
Total (Of 17) PAH's	2700	N	mg/kg	30	100		
рН	2010	М		8.4		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.017		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching		
			mg/l	mg/kg	using B	S EN 12457 at L/S	6 10 l/kg
Arsenic	1455	U	0.0042	0.042	0.5	2	25
Barium	1455	U	0.010	0.10	20	100	300
Cadmium	1455	U	< 0.00012	< 0.00012	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0018	0.018	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.026	0.26	0.5	10	30
Nickel	1455	U	0.0007	0.0065	0.4	10	40
Lead	1455	U	0.0032	0.032	0.5	10	50
Antimony	1455	U	0.014	0.14	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	0.006	0.064	4	50	200
Chloride	1220	U	7.5	75	800	15000	25000
Fluoride	1220	U	1.2	12	10	150	500
Sulphate	1220	U	63	630	1000	20000	50000
Total Dissolved Solids	1020	N	120	1200	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	22	220	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	17

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	pН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection

Test Methods

SOP	Title	Parameters included	Method summary
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-05764-1		
Initial Date of Issue:	05-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Chris Hustler Kasia Mazerant		
Project	20/3521 Elleray Hall		
Quotation No.:	Q21-23032	Date Received:	24-Feb-2021
Order No.:	CL2727	Date Instructed:	01-Mar-2021
No. of Samples:	4		
Turnaround (Wkdays):	5	Results Due:	05-Mar-2021
Date Approved:	05-Mar-2021		
Approved By:			

Up nez

Details:

2183

20121010

Final Report

Glynn Harvey, Technical Manager

Client: Concept Consultants			mtest J		21-05764	21-05764	21-05764	21-05764
Quotation No.: Q21-23032	(Chemte	est Sam	ple ID.:	1148334	1148335	1148336	1148338
		Sa	ample Lo	ocation:	WS4	WS4	WS4	WS3
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL
			Top De	oth (m):	0.1	0.3	0.6	0.25
		Bot	ttom De	oth (m):	0.2			
			Date Sa	ampled:	22-Feb-2021	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:		COVENTRY		COVENTRY
Determinand	Accred.	SOP	Units	LOD				
АСМ Туре	U	2192		N/A		-		-
Asbestos Identification	U	2192		N/A		No Asbestos Detected		No Asbestos Detected
ACM Detection Stage	U	2192		N/A		-		-
Moisture	N	2030	%	0.020	8.5	8.7	13	3.9
Soil Colour	Ν	2040		N/A	Brown		Brown	Brown
Other Material	Ν	2040		N/A	Stones		None	Stones
Soil Texture	Ν	2040		N/A	Sand		Sand	Sand
рН	М	2010		4.0	8.9		8.8	8.8
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.64		1.1	1.1
Sulphate (2:1 Water Soluble) as SO4	M	2120	g/l	0.010	0.013		< 0.010	0.070
Cyanide (Total)	M	2300	mg/kg	0.50	3.1		2.1	12
Sulphate (Total)	М	2430	%	0.010	0.18		0.050	0.40
Arsenic	M	2450	mg/kg	1.0	24		11	30
Cadmium	M	2450	mg/kg	0.10	0.15		< 0.10	0.33
Chromium	М	2450	mg/kg	1.0	27		17	24
Copper	М	2450		0.50	40		21	88
Mercury	М	2450	mg/kg	0.10	0.69		< 0.10	0.32
Nickel	М	2450	mg/kg	0.50	26		16	36
Lead	M	2450	mg/kg	0.50	290		50	250
Selenium	M	2450	mg/kg	0.20	0.27		0.28	0.34
Zinc	M	2450	mg/kg	0.50	81		47	140
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50		< 0.50	< 0.50
Total Organic Carbon	М	2625	%	0.20		3.7		
TPH >C6-C8	N	2670	mg/kg	1.0			< 1.0	
TPH >C8-C10	N	2670	mg/kg	1.0			< 1.0	
TPH >C10-C12	N	2670	mg/kg	1.0			< 1.0	
TPH >C12-C16	N	2670	mg/kg	1.0			< 1.0	
TPH >C16-C21	N	2670	mg/kg	1.0			13	
TPH >C21-C25	Ν	2670	mg/kg	1.0			26	
TPH >C25-C35	N	2670	mg/kg	1.0			18	
TPH >C35-C40	N	2670	mg/kg	1.0			1.7	
Total TPH >C6-C40	М	2670	mg/kg	10			60	
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0	< 1.0			< 1.0
Aliphatic TPH >C6-C8	Ν	2680		1.0	< 1.0			< 1.0
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0			55
Aliphatic TPH >C10-C12	М	2680		1.0	< 1.0			26
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0			44

Client: Concept Consultants			mtest Jo		21-05764	21-05764	21-05764	21-05764
Quotation No.: Q21-23032	(st Sam		1148334	1148335	1148336	1148338
		Sa	ample Lo		WS4	WS4	WS4	WS3
			Sample		SOIL	SOIL	SOIL	SOIL
			Тор Dep		0.1	0.3	0.6	0.25
		Bot	tom Dep	. ,	0.2			
			Date Sa	•	22-Feb-2021	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest			COVENTRY		COVENTRY
Determinand	Accred.	SOP		LOD				
Aliphatic TPH >C16-C21	M	2680	0 0	1.0	20			82
Aliphatic TPH >C21-C35	M	2680	mg/kg	1.0	86			320
Aliphatic TPH >C35-C44	N	2680	0 0	1.0	< 1.0			180
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	110			710
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0			< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0			< 1.0
Aromatic TPH >C8-C10	M	2680	mg/kg	1.0	< 1.0			15
Aromatic TPH >C10-C12	M	2680	mg/kg	1.0	18			63
Aromatic TPH >C12-C16	M	2680	mg/kg	1.0	120			530
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	580			2900
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	1500			8800
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	190			1100
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	2400			13000
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	2500			14000
Naphthalene	М	2700	mg/kg	0.10	2.4		0.21	24
Acenaphthylene	М	2700	mg/kg	0.10	9.0		0.75	2.6
Acenaphthene	М	2700	mg/kg	0.10	2.8		0.30	24
Fluorene	М	2700	mg/kg	0.10	8.6		0.65	100
Phenanthrene	M	2700	mg/kg	0.10	61		5.9	610
Anthracene	М	2700	mg/kg	0.10	17		1.5	200
Fluoranthene	М	2700	mg/kg	0.10	96		5.2	760
Pyrene	М	2700	mg/kg	0.10	90		4.8	680
Benzo[a]anthracene	М	2700	mg/kg	0.10	45		1.9	360
Chrysene	М	2700	mg/kg	0.10	37		1.6	270
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	66		1.4	380
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	26		1.0	160
Benzo[a]pyrene	М	2700	mg/kg	0.10	54		2.2	340
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.10	40		1.5	220
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	11		0.63	59
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	34		1.1	200
Total Of 16 PAH's	М	2700	mg/kg	2.0	600		31	4400
Dichlorodifluoromethane	U	2760	µg/kg	1.0	< 1.0			< 1.0
Chloromethane	М	2760	µg/kg	1.0	< 1.0			< 1.0
Vinyl Chloride	М	2760	µg/kg	1.0	< 1.0			< 1.0
Bromomethane	М	2760	µg/kg	20	< 20			< 20
Chloroethane	U	2760	µg/kg	2.0	< 2.0			< 2.0
Trichlorofluoromethane	М	2760	µg/kg	1.0	< 1.0			< 1.0
1,1-Dichloroethene	М	2760	mg/kg	1.0	< 1.0			< 1.0

Client: Concept Consultants			ntest Jo		21-05764	21-05764	21-05764	21-05764
Quotation No.: Q21-23032		Chemte	st Samp	ole ID.:	1148334	1148335	1148336	1148338
		Sa	ample Lo		WS4	WS4	WS4	WS3
			Sample		SOIL	SOIL	SOIL	SOIL
			Тор Dep	oth (m):	0.1	0.3	0.6	0.25
		Bot	tom Dep	oth (m):	0.2			
			Date Sa	mpled:	22-Feb-2021	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbesto	os Lab:		COVENTRY		COVENTRY
Determinand	Accred.	SOP	Units	LOD				
Trans 1,2-Dichloroethene	М	2760	5	1.0	< 1.0			< 1.0
1,1-Dichloroethane	М	2760	µg/kg	1.0	< 1.0			< 1.0
cis 1,2-Dichloroethene	М	2760	µg/kg	1.0	< 1.0			< 1.0
Bromochloromethane	U	2760	µg/kg	5.0	< 5.0			< 5.0
Trichloromethane	М	2760	µg/kg	1.0	< 1.0			< 1.0
1,1,1-Trichloroethane	М	2760	µg/kg	1.0	< 1.0			< 1.0
Tetrachloromethane	М	2760	µg/kg	1.0	< 1.0			< 1.0
1,1-Dichloropropene	U	2760	µg/kg	1.0	< 1.0			< 1.0
Benzene	М	2760	µg/kg	1.0	< 1.0			2.4
1,2-Dichloroethane	М	2760	µg/kg	2.0	< 2.0			< 2.0
Trichloroethene	N	2760	µg/kg	1.0	< 1.0			< 1.0
1,2-Dichloropropane	М	2760	µg/kg	1.0	< 1.0			< 1.0
Dibromomethane	М	2760	µg/kg	1.0	< 1.0			< 1.0
Bromodichloromethane	М	2760	µg/kg	5.0	< 5.0			< 5.0
cis-1,3-Dichloropropene	N	2760	µg/kg	10	< 10			< 10
Toluene	М	2760	µg/kg	1.0	< 1.0			1.5
Trans-1,3-Dichloropropene	N	2760	µg/kg	10	< 10			< 10
1,1,2-Trichloroethane	М	2760	µg/kg	10	< 10			< 10
Tetrachloroethene	М	2760	µg/kg	1.0	< 1.0			< 1.0
1,3-Dichloropropane	U	2760	µg/kg	2.0	< 2.0			< 2.0
Dibromochloromethane	U	2760	µg/kg	10	< 10			< 10
1,2-Dibromoethane	М	2760	µg/kg	5.0	< 5.0			< 5.0
Chlorobenzene	М	2760	µg/kg	1.0	< 1.0			< 1.0
1,1,1,2-Tetrachloroethane	М	2760	µg/kg	2.0	< 2.0			< 2.0
Ethylbenzene	М	2760	µg/kg	1.0	< 1.0			< 1.0
m & p-Xylene	М	2760	µg/kg	1.0	< 1.0			< 1.0
o-Xylene	М	2760	µg/kg	1.0	< 1.0			1.1
Styrene	М	2760	µg/kg	1.0	< 1.0			< 1.0
Tribromomethane	U	2760	µg/kg	1.0	< 1.0			< 1.0
Isopropylbenzene	М	2760	µg/kg	1.0	< 1.0			< 1.0
Bromobenzene	М	2760	µg/kg	1.0	< 1.0			< 1.0
1,2,3-Trichloropropane	N	2760	µg/kg	50	< 50			< 50
N-Propylbenzene	U	2760	µg/kg	1.0	< 1.0			< 1.0
2-Chlorotoluene	M	2760	µg/kg	1.0	< 1.0			< 1.0
1,3,5-Trimethylbenzene	М	2760	µg/kg	1.0	< 1.0			2.0
4-Chlorotoluene	U	2760	µg/kg	1.0	< 1.0			< 1.0
Tert-Butylbenzene	U	2760	µg/kg	1.0	< 1.0			< 1.0
1,2,4-Trimethylbenzene	M	2760		1.0	< 1.0			6.5

Results - Soil

Client: Concept Consultants		Cher	ntest Jo	ob No.:	21-05764	21-05764	21-05764	21-05764
Quotation No.: Q21-23032	(hemte	st Sam	ple ID.:	1148334	1148335	1148336	1148338
		Sa	ample Lo	ocation:	WS4	WS4	WS4	WS3
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL
			Top Dep			0.3	0.6	0.25
		Bot	tom Dep	oth (m):	0.2			
			Date Sa	ampled:	22-Feb-2021	22-Feb-2021	22-Feb-2021	22-Feb-2021
			Asbest	os Lab:		COVENTRY		COVENTRY
Determinand	Accred.	SOP	Units	LOD				
Sec-Butylbenzene	U	2760	µg/kg	1.0	< 1.0			< 1.0
1,3-Dichlorobenzene	М	2760	µg/kg	1.0	< 1.0			< 1.0
4-Isopropyltoluene	U	2760	µg/kg	1.0	< 1.0			< 1.0
1,4-Dichlorobenzene	М	2760	µg/kg	1.0	< 1.0			< 1.0
N-Butylbenzene	U	2760	µg/kg	1.0	< 1.0			< 1.0
1,2-Dichlorobenzene	М	2760	µg/kg	1.0	< 1.0			< 1.0
1,2-Dibromo-3-Chloropropane	U	2760	µg/kg	50	< 50			< 50
1,2,4-Trichlorobenzene	М	2760	µg/kg	1.0	< 1.0			< 1.0
Hexachlorobutadiene	U	2760	µg/kg	1.0	< 1.0			< 1.0
1,2,3-Trichlorobenzene	U	2760	µg/kg	2.0	< 2.0			< 2.0
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0	< 1.0			< 1.0
Total Phenols	М	2920	mg/kg	0.30	< 0.30		< 0.30	0.85

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 st.com

Final Report			Email: info@chemtest.cc
Report No.:	21-05789-1		
Initial Date of Issue:	11-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Kasia Mazerant		
Project	20/3521 Elleray Hall		
Quotation No.:	Q21-23032	Date Received:	25-Feb-2021
Order No.:	CL2732	Date Instructed	: 05-Mar-2021
No. of Samples:	6		
Turnaround (Wkdays):	5	Results Due:	11-Mar-2021
Date Approved:	11-Mar-2021		
Approved By:			

Mips Mary

Details:

2183

18

Glynn Harvey, Technical Manager

Client: Concept Consultants	Chemtest Job No.:				21-05789	21-05789	21-05789	21-05789	21-05789	21-05789
Quotation No.: Q21-23032	Chemtest Sample ID.:				1148464	1148469	1148473	1148474	1148478	1148481
	Sample Location:				WS6	WS7	WS8	WS8	WS9	WS10
	Sample Type:				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Top Depth (m):				0.10	0.30	0.30	0.60	0.60	0.30
	Bottom Depth (m):				0.20	0.30	0.40	0.70	0.60	0.30
	Date Sampled:				23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021
	Asbestos Lab:			COVENTRY	COVENTRY	COVENTRY			COVENTRY	
Determinand	Accred.	SOP	Units	LOD						
АСМ Туре	U	2192		N/A	-	-	-			-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected			No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-	-			-
Moisture	Ν	2030	%	0.020	9.5	12		18	18	18
Soil Colour	N	2040		N/A	Brown	Brown		Brown	Brown	Brown
Other Material	Ν	2040		N/A	Stones	Stones		None	None	Stones
Soil Texture	Ν	2040		N/A	Sand	Sand		Clay	Clay	Sand
рН	М	2010		4.0	9.6	8.5		7.8	7.8	7.7
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.63	0.90		0.68	0.63	0.64
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.13	0.048		< 0.010	< 0.010	0.017
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	< 0.50		< 0.50	< 0.50	0.50
Sulphate (Total)	М	2430	%	0.010	0.19	0.12		0.035	0.026	0.12
Arsenic	М	2450	mg/kg	1.0	19	31		15	13	23
Cadmium	М	2450	mg/kg	0.10	0.22	0.87		0.13	0.11	0.80
Chromium	М	2450	mg/kg	1.0	12	14		15	17	23
Copper	М	2450	mg/kg	0.50	14	79		41	25	89
Mercury	М	2450	mg/kg	0.10	< 0.10	0.61		0.90	0.40	1.1
Nickel	М	2450	mg/kg	0.50	13	15		15	15	23
Lead	М	2450	mg/kg	0.50	33	430		170	130	500
Selenium	М	2450	mg/kg	0.20	< 0.20	< 0.20		0.36	0.33	0.67
Zinc	М	2450	mg/kg	0.50	61	190		69	68	430
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50		< 0.50	< 0.50	< 0.50
TPH >C6-C8	N	2670	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0
TPH >C8-C10	N		mg/kg	1.0	1.2	< 1.0		1.4		< 1.0
TPH >C10-C12	N		mg/kg	1.0	18	< 1.0		20		< 1.0
TPH >C12-C16	Ν		mg/kg	1.0	49	< 1.0		52		4.7
TPH >C16-C21	Ν		mg/kg	1.0	29	< 1.0		25		25
TPH >C21-C25	Ν	2670	mg/kg	1.0	120	< 1.0		110		100
TPH >C25-C35	Ν		mg/kg	1.0	3300	< 1.0		37		51
TPH >C35-C40	N	2670	mg/kg	1.0	1900	< 1.0		< 1.0		< 1.0
Total TPH >C6-C40	М		mg/kg	10	5500	< 10		240		180
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0					< 1.0	
Aliphatic TPH >C6-C8	Ν		mg/kg	1.0					< 1.0	
Aliphatic TPH >C8-C10	М		mg/kg	1.0					< 1.0	
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0					< 1.0	
Aliphatic TPH >C12-C16	М		mg/kg	1.0					< 1.0	
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0					< 1.0	

Client: Concept Consultants		Chemtest Job No.:				21-05789	21-05789	21-05789	21-05789	21-05789
Quotation No.: Q21-23032	0	Chemtest Sample ID.:			1148464 WS6	1148469	1148473	1148474	1148478	1148481
		Sample Location:				WS7	WS8	WS8	WS9	WS10
		Sample Type:				SOIL	SOIL	SOIL	SOIL	SOIL
		Top Depth (m):				0.30	0.30	0.60	0.60	0.30
		Bottom Depth (m): Date Sampled:				0.30	0.40	0.70	0.60	0.30
						23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021
		Asbestos Lab:			COVENTRY	COVENTRY	COVENTRY			COVENTRY
Determinand	Accred.	SOP		LOD						
Aliphatic TPH >C21-C35	M		mg/kg	1.0					< 1.0	
Aliphatic TPH >C35-C44	N		mg/kg	1.0					< 1.0	
Total Aliphatic Hydrocarbons	N		mg/kg	5.0					< 5.0	
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0					< 1.0	
Aromatic TPH >C7-C8	N		mg/kg	1.0					< 1.0	
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0					< 1.0	
Aromatic TPH >C10-C12	М		mg/kg	1.0					< 1.0	
Aromatic TPH >C12-C16	М		mg/kg	1.0					< 1.0	
Aromatic TPH >C16-C21	U		mg/kg	1.0					< 1.0	
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0					< 1.0	
Aromatic TPH >C35-C44	N	2680		1.0					< 1.0	
Total Aromatic Hydrocarbons	N		mg/kg	5.0					< 5.0	
Total Petroleum Hydrocarbons	N		mg/kg	10.0					< 10	
Naphthalene	М		mg/kg	0.10	< 0.10	0.63		< 0.10	< 0.10	0.43
Acenaphthylene	М		mg/kg	0.10	< 0.10	0.80		< 0.10	< 0.10	0.81
Acenaphthene	М		mg/kg	0.10	< 0.10	0.11		< 0.10	< 0.10	0.14
Fluorene	М		mg/kg	0.10	< 0.10	0.43		< 0.10	< 0.10	0.23
Phenanthrene	М		mg/kg	0.10	< 0.10	3.4		0.86	0.54	3.0
Anthracene	М		mg/kg	0.10	< 0.10	0.70		0.16	0.13	0.74
Fluoranthene	М		mg/kg	0.10	0.35	10		1.2	1.2	7.7
Pyrene	М		mg/kg	0.10	0.42	9.4		1.2	1.2	7.5
Benzo[a]anthracene	М		mg/kg	0.10	< 0.10	4.5		0.49	0.69	4.2
Chrysene	М		mg/kg	0.10	< 0.10	4.3		0.64	0.72	4.2
Benzo[b]fluoranthene	М		mg/kg	0.10	< 0.10	7.1		< 0.10	0.54	6.2
Benzo[k]fluoranthene	М		mg/kg	0.10	< 0.10	2.8		< 0.10	0.35	2.9
Benzo[a]pyrene	М		mg/kg	0.10	< 0.10	5.5		< 0.10	0.77	4.7
Indeno(1,2,3-c,d)Pyrene	М		mg/kg	0.10	< 0.10	3.9		< 0.10	0.66	3.4
Dibenz(a,h)Anthracene	М		mg/kg	0.10	< 0.10	0.97		< 0.10	0.34	1.1
Benzo[g,h,i]perylene	М		mg/kg	0.10	< 0.10	4.2		< 0.10	0.58	2.8
Total Of 16 PAH's	М	2700	mg/kg	2.0	< 2.0	59		4.6	7.7	50
Dichlorodifluoromethane	U	2760	µg/kg	1.0					< 1.0	
Chloromethane	М	2760		1.0					< 1.0	
Vinyl Chloride	М	2760		1.0					< 1.0	
Bromomethane	М	2760	µg/kg	20					< 20	
Chloroethane	U	2760	µg/kg	2.0					< 2.0	
Trichlorofluoromethane	М	2760	µg/kg	1.0					< 1.0	
1,1-Dichloroethene	М		mg/kg	1.0					< 1.0	
Trans 1,2-Dichloroethene	М	2760	mg/kg	1.0					< 1.0	

Client: Concept Consultants			ntest J		21-05789	21-05789	21-05789	21-05789	21-05789	21-05789
Quotation No.: Q21-23032	0		est Sam	-	1148464	1148469	1148473	1148474	1148478	1148481
		Sa	ample Lo		WS6	WS7	WS8	WS8	WS9	WS10
			Sample Type:		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De		0.10	0.30	0.30	0.60	0.60	0.30
		Bot	tom De	oth (m):	0.20	0.30	0.40	0.70	0.60	0.30
			Date Sa	ampled:	23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY			COVENTRY
Determinand	Accred.	SOP	Units	LOD						
1,1-Dichloroethane	М	2760	µg/kg	1.0					< 1.0	
cis 1,2-Dichloroethene	М	2760		1.0					< 1.0	
Bromochloromethane	U	2760	µg/kg	5.0					< 5.0	
Trichloromethane	М	2760	µg/kg	1.0					< 1.0	
1,1,1-Trichloroethane	М	2760	µg/kg	1.0					< 1.0	
Tetrachloromethane	М	2760	µg/kg	1.0					< 1.0	
1,1-Dichloropropene	U	2760	µg/kg	1.0					< 1.0	
Benzene	М	2760	µg/kg	1.0					< 1.0	
1,2-Dichloroethane	М	2760	µg/kg	2.0					< 2.0	
Trichloroethene	N	2760	µg/kg	1.0					< 1.0	
1,2-Dichloropropane	М	2760	µg/kg	1.0					< 1.0	
Dibromomethane	М	2760	µg/kg	1.0					< 1.0	
Bromodichloromethane	М	2760	µg/kg	5.0					< 5.0	
cis-1,3-Dichloropropene	N	2760		10					< 10	
Toluene	М	2760	µg/kg	1.0					< 1.0	
Trans-1,3-Dichloropropene	N	2760	µg/kg	10					< 10	
1,1,2-Trichloroethane	М	2760		10					< 10	
Tetrachloroethene	М	2760		1.0					< 1.0	
1,3-Dichloropropane	U	2760	µg/kg	2.0					< 2.0	
Dibromochloromethane	U	2760	µg/kg	10					< 10	
1,2-Dibromoethane	М	2760	µg/kg	5.0					< 5.0	
Chlorobenzene	М	2760	µg/kg	1.0					< 1.0	
1,1,1,2-Tetrachloroethane	М	2760	µg/kg	2.0					< 2.0	
Ethylbenzene	М	2760	µg/kg	1.0					< 1.0	
m & p-Xylene	М	2760	µg/kg	1.0					< 1.0	
o-Xylene	М	2760	µg/kg	1.0					< 1.0	
Styrene	М	2760		1.0					< 1.0	
Tribromomethane	U	2760	µg/kg	1.0			I		< 1.0	
Isopropylbenzene	М	2760	µg/kg	1.0			I		< 1.0	
Bromobenzene	М	2760		1.0			I		< 1.0	
1,2,3-Trichloropropane	N	2760	µg/kg	50					< 50	
N-Propylbenzene	U	2760	µg/kg	1.0					< 1.0	
2-Chlorotoluene	М	2760	µg/kg	1.0					< 1.0	
1,3,5-Trimethylbenzene	М	2760		1.0			I		< 1.0	
4-Chlorotoluene	U	2760	µg/kg	1.0			1		< 1.0	
Tert-Butylbenzene	U	2760	µg/kg	1.0					< 1.0	
1,2,4-Trimethylbenzene	M	2760	µg/kg	1.0			1		< 1.0	
Sec-Butylbenzene	U	2760		1.0			İ		< 1.0	

<u> Results - Soil</u>

Client: Concept Consultants		Che	ntest Jo	b No.:	21-05789	21-05789	21-05789	21-05789	21-05789	21-05789
Quotation No.: Q21-23032	(Chemte	st Sam	ole ID.:	1148464	1148469	1148473	1148474	1148478	1148481
		Sample Location: Sample Type: Top Depth (m): Bottom Depth (m): Date Sampled:		WS6	WS7	WS8	WS8	WS9	WS10	
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
				0.10	0.30	0.30	0.60	0.60	0.30	
				0.20	0.30	0.40	0.70	0.60	0.30	
				23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021	23-Feb-2021	
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY			COVENTRY
Determinand	Accred.	SOP	Units	LOD						
1,3-Dichlorobenzene	М	2760	µg/kg	1.0					< 1.0	
4-Isopropyltoluene	U	2760	µg/kg	1.0					< 1.0	
1,4-Dichlorobenzene	М	2760	µg/kg	1.0					< 1.0	
N-Butylbenzene	U	2760	µg/kg	1.0					< 1.0	
1,2-Dichlorobenzene	М	2760	µg/kg	1.0					< 1.0	
1,2-Dibromo-3-Chloropropane	U	2760	µg/kg	50					< 50	
1,2,4-Trichlorobenzene	М	2760	µg/kg	1.0					< 1.0	
Hexachlorobutadiene	U	2760	µg/kg	1.0					< 1.0	
1,2,3-Trichlorobenzene	U	2760	µg/kg	2.0					< 2.0	
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0					< 1.0	
Total Phenols	М	2920	mg/kg	0.30	< 0.30	< 0.30		< 0.30	< 0.30	< 0.30

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-06275-1		
Initial Date of Issue:	11-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Chris Hustler Kasia Mazerant		
Project	20/3521 Elleray Hall		
Quotation No.:	Q21-23032	Date Received:	01-Mar-2021
Order No.:	CL2732	Date Instructed:	05-Mar-2021
No. of Samples:	4		
Turnaround (Wkdays):	5	Results Due:	11-Mar-2021
Date Approved:	11-Mar-2021		
Approved By:			

Ulip Mary

Details:

2183

20121010

Final Report

Glynn Harvey, Technical Manager

Results - Soil

Client: Concept Consultants			ntest Jo		21-06275	21-06275	21-06275	21-06275
Quotation No.: Q21-23032	(Chemte	st Sam	ple ID.:	1151026	1151028	1151029	1151032
		Sa	ample Lo	ocation:	STP3	STP1	STP1	STP2
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.50	0.10	0.25	0.40
		Bot	tom Dep	oth (m):	0.50	0.10	0.25	0.40
			Date Sa	ampled:	25-Feb-2021	25-Feb-2021	25-Feb-2021	25-Feb-202
			Asbest	os Lab:	COVENTRY		COVENTRY	
Determinand	Accred.	SOP	Units	LOD				
АСМ Туре	U	2192		N/A	-		-	
Asbestos Identification	U	2192		N/A	No Asbestos Detected		No Asbestos Detected	
ACM Detection Stage	U	2192		N/A	-		-	
Moisture	N	2030	%	0.020	15	7.8		11
Soil Colour	N	2040		N/A	Brown	Brown		Brown
Other Material	Ν	2040		N/A	Stones	Stones		Stones
Soil Texture	Ν	2040		N/A	Sand	Sand		Sand
рН	М	2010		4.0	8.0	9.0		8.8
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.65	0.74		0.53
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	< 0.010	0.37		0.064
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	0.60		< 0.50
Sulphate (Total)	М	2430	%	0.010	0.020	1.1		0.13
Arsenic	М	2450	mg/kg	1.0	11	26		11
Cadmium	М	2450	mg/kg	0.10	< 0.10	3.2		0.19
Chromium	М	2450	mg/kg	1.0	14	38		15
Copper	М	2450	mg/kg	0.50	15	170		25
Mercury	М	2450	mg/kg	0.10	0.17	5.3		0.39
Nickel	М	2450	mg/kg	0.50	11	35		16
Lead	М	2450	mg/kg	0.50	52	770		100
Selenium	М	2450	mg/kg	0.20	0.26	0.31		< 0.20
Zinc	М	2450	mg/kg	0.50	32	470		59
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50		< 0.50
TPH >C6-C8	N	2670	mg/kg	1.0	< 1.0			< 1.0
TPH >C8-C10	N	2670	mg/kg	1.0	< 1.0			< 1.0
TPH >C10-C12	N	2670	mg/kg	1.0	< 1.0			18
TPH >C12-C16	N	2670	mg/kg	1.0	< 1.0			33
TPH >C16-C21	N	2670	mg/kg	1.0	< 1.0			70
TPH >C21-C25	Ν	2670	mg/kg	1.0	< 1.0			150
TPH >C25-C35	Ν	2670	mg/kg	1.0	< 1.0			160
TPH >C35-C40	Ν	2670	mg/kg	1.0	< 1.0			32
Total TPH >C6-C40	М	2670	mg/kg	10	< 10			460
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0		< 1.0		
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0		< 1.0		
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0		< 1.0		
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0		25		
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0		22		
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0		51		

Client: Concept Consultants		Che	mtest Jo	b No.:	21-06275	21-06275	21-06275	21-06275
Quotation No.: Q21-23032	(Chemte	est Samp	ole ID.:	1151026	1151028	1151029	1151032
		Sa	ample Lo	ocation:	STP3	STP1	STP1	STP2
			Sample	e Type:	SOIL	SOIL	SOIL	SOIL
			Тор Dep	oth (m):	0.50	0.10	0.25	0.40
		Bot	tom Dep	oth (m):	0.50	0.10	0.25	0.40
			Date Sa		25-Feb-2021	25-Feb-2021	25-Feb-2021	25-Feb-202
			Asbesto	os Lab:	COVENTRY		COVENTRY	
Determinand	Accred.	SOP		LOD				
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0		370		
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0		60		
Total Aliphatic Hydrocarbons	N		mg/kg	5.0		520		
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0		< 1.0		
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0		< 1.0		
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0		21		
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0		36		
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0		69		
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0		220		
Aromatic TPH >C21-C35	М	2680	0 0	1.0		2100		
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0		410		
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0		2800		
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0		3400		
Naphthalene	М	2700	mg/kg	0.10	< 0.10	3.3		1.9
Acenaphthylene	М	2700	mg/kg	0.10	< 0.10	6.6		2.4
Acenaphthene	М	2700	mg/kg	0.10	< 0.10	5.4		4.9
Fluorene	М	2700	mg/kg	0.10	< 0.10	11		7.5
Phenanthrene	М	2700	mg/kg	0.10	< 0.10	63		54
Anthracene	М	2700	mg/kg	0.10	< 0.10	23		15
Fluoranthene	М	2700	mg/kg	0.10	< 0.10	130		67
Pyrene	М	2700	mg/kg	0.10	< 0.10	120		62
Benzo[a]anthracene	М	2700		0.10	< 0.10	58		30
Chrysene	М	2700	mg/kg	0.10	< 0.10	57		28
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	< 0.10	78		36
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	< 0.10	31		15
Benzo[a]pyrene	М	2700	mg/kg	0.10	< 0.10	62		31
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.10	< 0.10	42		< 0.10
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	< 0.10	11		< 0.10
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	< 0.10	35		< 0.10
Total Of 16 PAH's	М	2700	mg/kg	2.0	< 2.0	740		350
Dichlorodifluoromethane	U	2760	µg/kg	1.0		< 1.0		
Chloromethane	М	2760	µg/kg	1.0		< 1.0		
Vinyl Chloride	М	2760	µg/kg	1.0		< 1.0		
Bromomethane	М	2760	µg/kg	20		< 20		
Chloroethane	U	2760	µg/kg	2.0		< 2.0		
Trichlorofluoromethane	М	2760	µg/kg	1.0		< 1.0		
1,1-Dichloroethene	М	2760	mg/kg	1.0		< 1.0		
Trans 1,2-Dichloroethene	М	2760		1.0		< 1.0		

Client: Concept Consultants			ntest Jo		21-06275	21-06275	21-06275	21-06275
Quotation No.: Q21-23032	0	Chemte	st Samp	ole ID.:	1151026	1151028	1151029	1151032
		Sa	ample Lo		STP3	STP1	STP1	STP2
			Sample		SOIL	SOIL	SOIL	SOIL
			Тор Dep		0.50	0.10	0.25	0.40
		Bot	tom Dep	, ,	0.50	0.10	0.25	0.40
			Date Sa		25-Feb-2021	25-Feb-2021	25-Feb-2021	25-Feb-2021
		_	Asbesto	os Lab:	COVENTRY		COVENTRY	
Determinand	Accred.	SOP		LOD				
1,1-Dichloroethane	M	2760	µg/kg	1.0		< 1.0		
cis 1,2-Dichloroethene	M	2760	µg/kg	1.0		< 1.0		
Bromochloromethane	U	2760	µg/kg	5.0		< 5.0		
Trichloromethane	М	2760	µg/kg	1.0		< 1.0		
1,1,1-Trichloroethane	М	2760	µg/kg	1.0		< 1.0		
Tetrachloromethane	М	2760	µg/kg	1.0		< 1.0		
1,1-Dichloropropene	U	2760	µg/kg	1.0		< 1.0		
Benzene	М	2760	µg/kg	1.0		< 1.0		
1,2-Dichloroethane	М	2760	µg/kg	2.0		< 2.0		
Trichloroethene	N	2760	µg/kg	1.0		< 1.0		
1,2-Dichloropropane	М	2760	µg/kg	1.0		< 1.0		
Dibromomethane	M	2760	µg/kg	1.0		< 1.0		
Bromodichloromethane	М	2760	µg/kg	5.0		< 5.0		
cis-1,3-Dichloropropene	N	2760	µg/kg	10		< 10		
Toluene	М	2760	µg/kg	1.0		< 1.0		
Trans-1,3-Dichloropropene	N	2760	µg/kg	10		< 10		
1,1,2-Trichloroethane	М	2760	µg/kg	10		< 10		
Tetrachloroethene	M	2760	µg/kg	1.0		< 1.0		
1,3-Dichloropropane	U	2760	µg/kg	2.0		< 2.0		
Dibromochloromethane	U	2760	µg/kg	10		< 10		
1,2-Dibromoethane	M	2760	µg/kg	5.0		< 5.0		
Chlorobenzene	M	2760	µg/kg	1.0		< 1.0		
1,1,1,2-Tetrachloroethane	M	2760	µg/kg	2.0		< 2.0		
Ethylbenzene	М	2760	µg/kg	1.0		< 1.0		
m & p-Xylene	М	2760	µg/kg	1.0		< 1.0		
o-Xylene	M	2760	µg/kg	1.0		< 1.0		
Styrene	M	2760	µg/kg	1.0		< 1.0		
Tribromomethane	U	2760	µg/kg	1.0		< 1.0		
Isopropylbenzene	М	2760	µg/kg	1.0		< 1.0		
Bromobenzene	М	2760	µg/kg	1.0		< 1.0		
1,2,3-Trichloropropane	N	2760	µg/kg	50		< 50		
N-Propylbenzene	U	2760	µg/kg	1.0		< 1.0		
2-Chlorotoluene	М	2760	µg/kg	1.0		< 1.0		
1,3,5-Trimethylbenzene	M	2760	µg/kg	1.0		< 1.0		
4-Chlorotoluene	U	2760	µg/kg	1.0		< 1.0		
Tert-Butylbenzene	U	2760	µg/kg	1.0		< 1.0		
1,2,4-Trimethylbenzene	М	2760	µg/kg	1.0		< 1.0		
Sec-Butylbenzene	U	2760	µg/kg	1.0		< 1.0		

<u> Results - Soil</u>

Client: Concept Consultants		Che	ntest Jo	ob No.:	21-06275	21-06275	21-06275	21-06275
Quotation No.: Q21-23032	0	Chemte	st Sam	ple ID.:	1151026	1151028	1151029	1151032
		Sa	ample Lo	ocation:	STP3	STP1	STP1	STP2
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.50	0.10	0.25	0.40
		Bot	tom Dep	oth (m):	0.50	0.10	0.25	0.40
			Date Sa	ampled:	25-Feb-2021	25-Feb-2021	25-Feb-2021	25-Feb-2021
			Asbest	os Lab:	COVENTRY		COVENTRY	
Determinand	Accred.	SOP	Units	LOD				
1,3-Dichlorobenzene	М	2760	µg/kg	1.0		< 1.0		
4-Isopropyltoluene	U	2760	µg/kg	1.0		< 1.0		
1,4-Dichlorobenzene	М	2760	µg/kg	1.0		< 1.0		
N-Butylbenzene	U	2760	µg/kg	1.0		< 1.0		
1,2-Dichlorobenzene	М	2760	µg/kg	1.0		< 1.0		
1,2-Dibromo-3-Chloropropane	U	2760	µg/kg	50		< 50		
1,2,4-Trichlorobenzene	М	2760	µg/kg	1.0		< 1.0		
Hexachlorobutadiene	U	2760	µg/kg	1.0		< 1.0		
1,2,3-Trichlorobenzene	U	2760	µg/kg	2.0		< 2.0		
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0		< 1.0		
Total Phenols	М	2920	mg/kg	0.30	< 0.30	< 0.30		< 0.30

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Final Report

Chemtest Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-08859-1		
Initial Date of Issue:	25-Mar-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Kasia Mazerant		
Project	20/3521 Elieray Hall & North Lake Depot		
Quotation No.:	Q21-23032	Date Received:	19-Mar-2021
Order No.:	CL2776	Date Instructed:	19-Mar-2021
No. of Samples:	1		
Turnaround (Wkdays):	5	Results Due:	26-Mar-2021
Date Approved:	25-Mar-2021		
Approved By:			

Min Mary

Details:

Glynn Harvey, Technical Manager

Project: 20/3521 Elieray Hall & North Lake Depot

Client: Concept Consultants			ob No.:	21-08859	
Quotation No.: Q21-23032	(Chemte	st Sam	ple ID.:	1163651
		Sa	ample Lo		BH2
				e Type:	WATER
				ampled:	17-Mar-2021
Determinand	Accred.	SOP	Units		
рН	U	1010		N/A	8.2
Sulphate	U	1220	Ŭ,	1.0	89
Cyanide (Total)	U	1300	mg/l	0.050	< 0.050
Arsenic (Dissolved)	U	1455	µg/l	0.20	0.57
Boron (Dissolved)	U	1455	µg/l	10.0	110
Cadmium (Dissolved)	U	1455	µg/l	0.12	< 0.12
Chromium (Dissolved)	U	1455	µg/l	0.50	6.9
Copper (Dissolved)	U	1455	µg/l	0.50	1.5
Mercury (Dissolved)	U	1455	µg/l	0.05	< 0.05
Nickel (Dissolved)	U	1455	µg/l	0.50	1.0
Lead (Dissolved)	U	1455	µg/l	0.50	< 0.50
Selenium (Dissolved)	U	1455	µg/l	0.50	1.2
Zinc (Dissolved)	U	1455	µg/l	3.0	4.0
Chromium (Hexavalent)	U	1490	µg/l	20	< 20
Aliphatic TPH >C5-C6	N	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C6-C8	N	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C8-C10	N	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C10-C12	N	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C12-C16	N	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C16-C21	N	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C21-C35	N	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C35-C44	N	1675	µg/l	0.10	< 0.10
Total Aliphatic Hydrocarbons	N	1675	µg/l	5.0	< 5.0
Aromatic TPH >C5-C7	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C7-C8	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C8-C10	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C10-C12	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C12-C16	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C16-C21	N N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C21-C35 Aromatic TPH >C35-C44	N N	1675	µg/l	0.10	< 0.10
Total Aromatic Hydrocarbons	N N	1675 1675	µg/l	0.10 5.0	< 0.10 < 5.0
Total Petroleum Hydrocarbons	N N	1675	μg/l μg/l	5.0 10	< 5.0 < 10
Naphthalene	U	1700		0.10	< 0.10
	U		µg/l	0.10	< 0.10
Acenaphthylene	U	1700 1700	µg/l µg/l	0.10	< 0.10
Acenaphthene Fluorene	U	1700		0.10	< 0.10
Phenanthrene	U	1700	μg/l μg/l	0.10	< 0.10
Anthracene	U U	1700	μg/i μg/l	0.10	< 0.10
Fluoranthene	U	1700		0.10	< 0.10
	U	1700	µg/l	0.10	< 0.10
Pyrene	U	1700	µg/l	0.10	< 0.10

Project: 20/3521 Elieray Hall & North Lake Depot

Client: Concept Consultants	Chemtest Job No.				
Quotation No.: Q21-23032	(est Sam		1163651
		Sa	ample Lo	ocation:	BH2
			Sampl	e Type:	WATER
			Date Sa	ampled:	17-Mar-2021
Determinand	Accred.	SOP	Units	LOD	
Benzo[a]anthracene	U	1700	µg/l	0.10	< 0.10
Chrysene	N	1700	µg/l	0.10	< 0.10
Benzo[b]fluoranthene	U	1700	µg/l	0.10	< 0.10
Benzo[k]fluoranthene	U	1700	µg/l	0.10	< 0.10
Benzo[a]pyrene	U	1700	µg/l	0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	µg/l	0.10	< 0.10
Dibenz(a,h)Anthracene	U	1700	µg/l	0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	µg/l	0.10	< 0.10
Total Of 16 PAH's	Ν	1700	µg/l	2.0	< 2.0
Dichlorodifluoromethane	U	1760	µg/l	1.0	< 1.0
Chloromethane	U	1760	µg/l	1.0	< 1.0
Vinyl Chloride	N	1760	µg/l	1.0	< 1.0
Bromomethane	U	1760	µg/l	5	< 5
Chloroethane	U	1760	µg/l	2.0	< 2.0
Trichlorofluoromethane	U	1760	µg/l	1.0	< 1.0
1,1-Dichloroethene	U	1760	µg/l	1.0	< 1.0
Trans 1,2-Dichloroethene	U	1760	µg/l	1.0	< 1.0
1,1-Dichloroethane	U	1760	µg/l	1.0	< 1.0
cis 1,2-Dichloroethene	U	1760	µg/l	1.0	< 1.0
Bromochloromethane	U	1760	µg/l	5	< 5
Trichloromethane	U	1760	µg/l	1.0	< 1.0
1,1,1-Trichloroethane	U	1760	µg/l	1.0	< 1.0
Tetrachloromethane	U	1760	µg/l	1.0	< 1.0
1,1-Dichloropropene	U	1760	µg/l	1.0	< 1.0
Benzene	U	1760	µg/l	1.0	< 1.0
1,2-Dichloroethane	U	1760	µg/l	2.0	< 2.0
Trichloroethene	N	1760	µg/l	1.0	< 1.0
1,2-Dichloropropane	U	1760	µg/l	1.0	< 1.0
Dibromomethane	U	1760	µg/l	10	< 10
Bromodichloromethane	U	1760	µg/l	5	< 5
cis-1,3-Dichloropropene	N	1760	µg/l	10	< 10
Toluene	U	1760	µg/l	1.0	< 1.0
Trans-1,3-Dichloropropene	N	1760	µg/l	10	< 10
1,1,2-Trichloroethane	U	1760	µg/l	10	< 10
Tetrachloroethene	U	1760	µg/l	1.0	< 1.0
1,3-Dichloropropane	U	1760	µg/l	2.0	< 2.0
Dibromochloromethane	U	1760	µg/l	10	< 10
1,2-Dibromoethane	U	1760	µg/l	5	< 5
Chlorobenzene	N	1760	µg/l	1.0	< 1.0
1,1,1,2-Tetrachloroethane	U	1760	µg/l	2.0	< 2.0
Ethylbenzene	Ŭ	1760	µg/l	1.0	< 1.0

Project: 20/3521 Elieray Hall & North Lake Depot

Client: Concept Consultants		Chei	ob No.:	21-08859	
Quotation No.: Q21-23032	(Chemte	st Sam	ple ID.:	1163651
		Sa	mple Lo	ocation:	BH2
				e Type:	WATER
			Date Sa	ampled:	17-Mar-2021
Determinand	Accred.	SOP	Units	LOD	
m & p-Xylene	U	1760	µg/l	1.0	< 1.0
o-Xylene	U	1760	µg/l	1.0	< 1.0
Styrene	U	1760	µg/l	1.0	< 1.0
Tribromomethane	U	1760	µg/l	1.0	< 1.0
Isopropylbenzene	U	1760	µg/l	1.0	< 1.0
Bromobenzene	U	1760	µg/l	1.0	< 1.0
1,2,3-Trichloropropane	N	1760	µg/l	50	< 50
N-Propylbenzene	U	1760	µg/l	1.0	< 1.0
2-Chlorotoluene	U	1760	µg/l	1.0	< 1.0
1,3,5-Trimethylbenzene	U	1760	µg/l	1.0	< 1.0
4-Chlorotoluene	U	1760	µg/l	1.0	< 1.0
Tert-Butylbenzene	U	1760	µg/l	1.0	< 1.0
1,2,4-Trimethylbenzene	U	1760	µg/l	1.0	< 1.0
Sec-Butylbenzene	U	1760	µg/l	1.0	< 1.0
1,3-Dichlorobenzene	N	1760	µg/l	1.0	< 1.0
4-Isopropyltoluene	U	1760	µg/l	1.0	< 1.0
1,4-Dichlorobenzene	U	1760	µg/l	1.0	< 1.0
N-Butylbenzene	U	1760	µg/l	1.0	< 1.0
1,2-Dichlorobenzene	U	1760	µg/l	1.0	< 1.0
1,2-Dibromo-3-Chloropropane	U	1760	µg/l	50	< 50
1,2,4-Trichlorobenzene	U	1760	µg/l	1.0	< 1.0
Hexachlorobutadiene	U	1760	µg/l	1.0	< 1.0
1,2,3-Trichlorobenzene	U	1760	µg/l	2.0	< 2.0
Methyl Tert-Butyl Ether	N	1760	µg/l	1.0	< 1.0
Total Phenols	U	1920	mg/l	0.030	< 0.030

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	pН	pH Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8– C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Pentane extraction / GCxGC FID detection
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

🔅 eurofins

Final Report

Chemtest Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-19966-1		
Initial Date of Issue:	18-Jun-2021		
Client	Concept Consultants		
Client Address:	Unit D, Herald Way Binley Industrial Estate Coventry CV3 2RQ		
Contact(s):	Ana Gonzalez Kasia Mazerant		
Project	20/3521 Elleray Hall & North Lane Depot		
Quotation No.:	Q21-23032	Date Received:	11-Jun-2021
Order No.:	CL2904	Date Instructed:	11-Jun-2021
No. of Samples:	1		
Turnaround (Wkdays):	5	Results Due:	17-Jun-2021
Date Approved:	18-Jun-2021		
Approved By:			

Man Mary

Details:

Glynn Harvey, Technical Manager

Project: 20/3521 Elleray Hall & North Lane Depot

Client: Concept Consultants			ob No.:	21-19966	
Quotation No.: Q21-23032	(Chemte	st Sam	ple ID.:	1219867
Order No.: CL2904		Clier	nt Samp	le Ref.:	1A
		Sa	ample Lo		BH1
				e Type:	WATER
			Date Sa		09-Jun-2021
Determinand	Accred.	SOP	Units		
рН	U	1010		N/A	8.3
Sulphate	U	1220	mg/l	1.0	110
Cyanide (Total)	U	1300	mg/l	0.050	< 0.050
Arsenic (Dissolved)	U	1455	µg/l	0.20	0.57
Boron (Dissolved)	U	1455	µg/l	10.0	84
Cadmium (Dissolved)	U	1455	µg/l	0.11	< 0.11
Chromium (Dissolved)	U	1455	µg/l	0.50	7.0
Copper (Dissolved)	U	1455	µg/l	0.50	1.5
Mercury (Dissolved)	U	1455	µg/l	0.05	< 0.05
Nickel (Dissolved)	U	1455	µg/l	0.50	0.59
Lead (Dissolved)	U	1455	µg/l	0.50	< 0.50
Selenium (Dissolved)	U	1455	µg/l	0.50	1.4
Zinc (Dissolved)	U	1455	µg/l	2.5	< 2.5
Chromium (Hexavalent)	U	1490	µg/l	20	< 20
Aliphatic TPH >C5-C6	N	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C6-C8	N	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C8-C10	Ν	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C10-C12	Ν	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C12-C16	Ν	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C16-C21	N	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C21-C35	N	1675	µg/l	0.10	< 0.10
Aliphatic TPH >C35-C44	Ν	1675	µg/l	0.10	< 0.10
Total Aliphatic Hydrocarbons	Ν	1675	µg/l	5.0	< 5.0
Aromatic TPH >C5-C7	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C7-C8	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C8-C10	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C10-C12	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C12-C16	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C16-C21	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C21-C35	N	1675	µg/l	0.10	< 0.10
Aromatic TPH >C35-C44	N	1675	µg/l	0.10	< 0.10
Total Aromatic Hydrocarbons	N	1675	µg/l	5.0	< 5.0
Total Petroleum Hydrocarbons	N	1675	µg/l	10	< 10
Naphthalene	U	1700	µg/l	0.10	< 0.10
Acenaphthylene	U	1700	µg/l	0.10	< 0.10
Acenaphthene	U	1700	µg/l	0.10	< 0.10
Fluorene	U	1700	µg/l	0.10	< 0.10
Phenanthrene	U	1700	µg/l	0.10	< 0.10
Anthracene	U	1700	µg/l	0.10	< 0.10
Fluoranthene	U	1700	µg/l	0.10	< 0.10

Project: 20/3521 Elleray Hall & North Lane Depot

Client: Concept Consultants	Chemtest Job No				21-19966
Quotation No.: Q21-23032	(Chemte	ple ID.:	1219867	
Order No.: CL2904		Clie	nt Samp	le Ref.:	1A
		Sa	ample Lo	ocation:	BH1
				e Type:	WATER
			Date Sa	ampled:	09-Jun-2021
Determinand	Accred.	SOP			
Pyrene	U	1700	µg/l	0.10	< 0.10
Benzo[a]anthracene	U	1700	µg/l	0.10	< 0.10
Chrysene	N	1700	µg/l	0.10	< 0.10
Benzo[b]fluoranthene	U	1700	µg/l	0.10	< 0.10
Benzo[k]fluoranthene	U	1700	µg/l	0.10	< 0.10
Benzo[a]pyrene	U	1700	1.2	0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	µg/l	0.10	< 0.10
Dibenz(a,h)Anthracene	U	1700	µg/l	0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	µg/l	0.10	< 0.10
Total Of 16 PAH's	N	1700	µg/l	2.0	< 2.0
Dichlorodifluoromethane	U	1760	µg/l	1.0	< 1.0
Chloromethane	U	1760	µg/l	1.0	< 1.0
Vinyl Chloride	N	1760	µg/l	1.0	< 1.0
Bromomethane	U	1760	µg/l	5	< 5
Chloroethane	U	1760	µg/l	2.0	< 2.0
Trichlorofluoromethane	U	1760	µg/l	1.0	< 1.0
1,1-Dichloroethene	U	1760	µg/l	1.0	< 1.0
Trans 1,2-Dichloroethene	U	1760 1760	µg/l	1.0	< 1.0
1,1-Dichloroethane	U	1760	µg/l	1.0 1.0	< 1.0 < 1.0
cis 1,2-Dichloroethene Bromochloromethane	U	1760	μg/l μg/l	5	< 5
Trichloromethane	U	1760		1.0	< 1.0
1,1,1-Trichloroethane	U	1760	µg/l	1.0	< 1.0
Tetrachloromethane	U	1760	µg/l µg/l	1.0	< 1.0
1,1-Dichloropropene	U	1760	µg/l	1.0	< 1.0
Benzene	U	1760	µg/l	1.0	< 1.0
1,2-Dichloroethane	U	1760	µg/l	2.0	< 2.0
Trichloroethene	N	1760	µg/l	1.0	< 1.0
1,2-Dichloropropane	U	1760	µg/l	1.0	< 1.0
Dibromomethane	U	1760	μg/l	10	< 10
Bromodichloromethane	U	1760	μg/l	5	< 5
cis-1,3-Dichloropropene	N	1760	µg/l	10	< 10
Toluene	U	1760	µg/l	1.0	< 1.0
Trans-1,3-Dichloropropene	N	1760	µg/l	10	< 10
1,1,2-Trichloroethane	U	1760	µg/l	10	< 10
Tetrachloroethene	U	1760	µg/l	1.0	< 1.0
1,3-Dichloropropane	U	1760	µg/l	2.0	< 2.0
Dibromochloromethane	U	1760	µg/l	10	< 10
1,2-Dibromoethane	U	1760	µg/l	5	< 5
Chlorobenzene	Ν	1760	µg/l	1.0	< 1.0

Project: 20/3521 Elleray Hall & North Lane Depot

Client: Concept Consultants		Chei	ob No.:	21-19966	
Quotation No.: Q21-23032	(Chemte	st Sam	ple ID.:	1219867
Order No.: CL2904		Clier	nt Samp	le Ref.:	1A
		Sa	ample Lo	ocation:	BH1
			Sampl	e Type:	WATER
		Date Sampled:			
Determinand	Accred.	Accred. SOP Units LOD			
1,1,1,2-Tetrachloroethane	U	1760	µg/l	2.0	< 2.0
Ethylbenzene	U	1760	µg/l	1.0	< 1.0
m & p-Xylene	U	1760	µg/l	1.0	< 1.0
o-Xylene	U	1760	µg/l	1.0	< 1.0
Styrene	U	1760	µg/l	1.0	< 1.0
Tribromomethane	U	1760	µg/l	1.0	< 1.0
Isopropylbenzene	U	1760	µg/l	1.0	< 1.0
Bromobenzene	U	1760	µg/l	1.0	< 1.0
1,2,3-Trichloropropane	N	1760	µg/l	50	< 50
N-Propylbenzene	U	1760	µg/l	1.0	< 1.0
2-Chlorotoluene	U	1760	µg/l	1.0	< 1.0
1,3,5-Trimethylbenzene	U	1760	µg/l	1.0	< 1.0
4-Chlorotoluene	U	1760	µg/l	1.0	< 1.0
Tert-Butylbenzene	U	1760	µg/l	1.0	< 1.0
1,2,4-Trimethylbenzene	U	1760	µg/l	1.0	< 1.0
Sec-Butylbenzene	U	1760	µg/l	1.0	< 1.0
1,3-Dichlorobenzene	N	1760	µg/l	1.0	< 1.0
4-Isopropyltoluene	U	1760	µg/l	1.0	< 1.0
1,4-Dichlorobenzene	U	1760	µg/l	1.0	< 1.0
N-Butylbenzene	U	1760	µg/l	1.0	< 1.0
1,2-Dichlorobenzene	U	1760	µg/l	1.0	< 1.0
1,2-Dibromo-3-Chloropropane	U	1760	µg/l	50	< 50
1,2,4-Trichlorobenzene	U	1760	µg/l	1.0	< 1.0
Hexachlorobutadiene	U	1760	µg/l	1.0	< 1.0
1,2,3-Trichlorobenzene	U	1760	µg/l	2.0	< 2.0
Methyl Tert-Butyl Ether	N	1760	µg/l	1.0	< 1.0
Total Phenols	U	1920	mg/l	0.030	< 0.030

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	pН	pH Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8– C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Pentane extraction / GCxGC FID detection
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

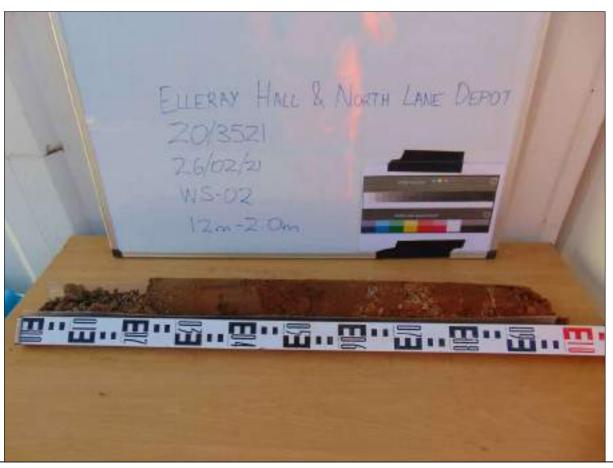
For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

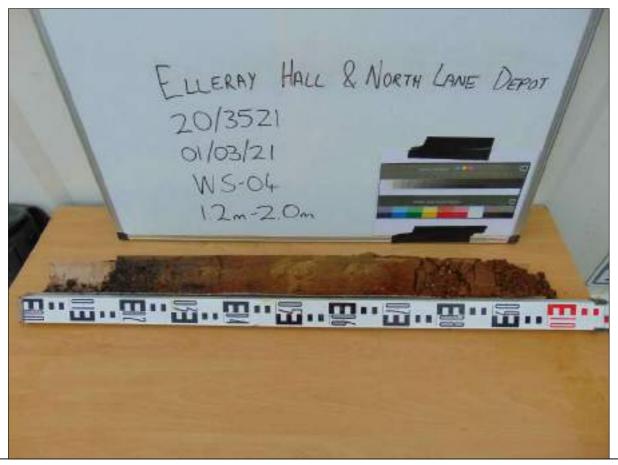
Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage


If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com 16. PHOTOGRAPHS

Project No	20/3521	Hole ID	WS1	C.	NC	EP
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	001 & 002	@ ?	MAGS	em [
Client	Richmond & Wandsworth Council	Date	February 2021	HEAD OFFICE: Unit 8 Warple Mews Warple Way London V3 0RF si@conceptconsultants.co.ui +44(0) 20 8811 2880	LABORATORY: 47-49 Brunel Road Old Oak Common Acton London W3 7XR k Isb@conceptoorsullants.co.uk +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Herlad Way Binley Industrial Estate Coventry CV3 2RQ coventry @conceptions +44(0) 24 7708 7670

Project No	20/3521	Hole ID	WS2	C.	NC	EP
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	003 & 004	@ ?	MAGS	em []
Client	Richmond & Wandsworth Council	Date	February 2021	HEAD OFFICE: Lhit 8 Warple Mews Warple Way London W3 0RF si@conceptoonsultants.co.ul +44(0) 20 8811 2880	LABORATORY: 47-49 Brunel Road Old Oak Common Acton London W3 7XR k Iab@conceptconsultants.co.uk +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Hertad Way Binley Industrial Esta Coventry CV3 2RQ k coventry@conceptco +44(0) 24 7708 7670



Project No	20/3521	Hole ID	WS3	C.JCE	ſ
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	005 & 006	@ 2 mars WAGS CH	19
Client	Richmond & Wandsworth Council	Date	February 2021	Lhit 8 Warple Mews 47-49 Brunel Road Unit D Warple Way Old Oak Common Binley London W3 0RF Acton London W3 7XR Coven si@conceptonsultants.co.uk lab@conceptoorsultants.co.uk covert	LANDS OFFI D Herlad Wa ey Industrial E entry CV3 2R entry@concep (0) 24 7708 7

Project No	20/3521	Hole ID	WS4	C.	nc	EPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	007 & 008	@ 2 mm	. WAGS	000 III
Client	Richmond & Wandsworth Council	Date	February 2021	HEAD OFFICE: Lhit 8 Warpie Mews Warpie Way London W3 0RF si@conceptconsultants.co.uk +44(0) 20 8811 2880		MIDLANDS OFFICE: Unit D Heritad Way Binley Industrial Estate Covently (2013 2RQ covently)(2conceptconsultants +44(0) 24 7708 7670

Project No	20/3521	Hole ID	WS5	C.	nc	EPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	009 & 010	@ 2	MAG5	000
Client	Richmond & Wandsworth Council	Date	February 2021	HEAD OFFICE: Unit 8 Warple Mews Warple Way London W3 0RF si@conceptoonsultants.co.uk +44(0) 20 8811 2880	LABORATORY: 47-49 Brunel Road Old Oak Common Acton London W3 7XR Idb@conceptoonsultants.co.uk +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Herfad Way Binley Industrial Estate Coventy CV3 2RQ coverity@concepticonsulta +44(0) 24 7708 7670

Project No	20/3521	Hole ID	WS6	C.	NC	EP'
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	011 & 012	02	MAG5	99 I
Client	Richmond & Wandsworth Council	Date	February 2021	HEAD OFFICE: Unit 8 Warple Mews Warple Way London W3 0RF si@conceptoonsultants.co.ul +44(0) 20 8811 2880	LABORATORY: 47-49 Brunel Road Old Oak Common Acton London W3 7XR k Isb@conceptoorsullants.co.uk +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Heriad Way Binley Industrial Estate Coventry CV3 2RQ coventry@conceptions: +44(0) 24 7708 7670

Project No	20/3521	Hole ID	WS7	Col	nc	Eſ
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	013 & 014	@ 2 mm	. WAGS	699
Client	Richmond & Wandsworth Council	Date	February 2021	Unit 8 Warple Mews Warple Way London W3 0RF	47-49 Brunel Road Old Oak Common Acton London W3 7XR	MIDLANDS OFFI Unit D Herlad Way Binley Industrial E Coventry CV3 2R coventry@concep +44(0) 24 7708 78

Project No	20/3521	Hole ID	WS8	C.	NC	EPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	015 & 016	@ 2 mm	MAGS	000 E
Client	Richmond & Wandsworth Council	Date	February 2021	HEAD OFFICE: Unit 8 Warple Mews Warple Way London W3 0RF si@conceptoonsultants.co.ui +44(0) 20 8811 2880	LABORATORY: 47-49 Brunel Road Old Oak Common Acton London W3 7XR (Isb@conceptconsultants.co.uk +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Hertad Way Binley Industrial Estate Coventy CV3 2RQ coventry@conceptionsuita +44(0) 24 7708 7670

F	Project No	20/3521	Hole ID	WS9	C.	NC	EP
F	Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	017 & 018	@ ? ***	MAGS	em [
0	Client	Richmond & Wandsworth Council	Date	February 2021	HEAD OFFICE: Unit 8 Warple Mews Warple Way London W3 0RF si@conceptconsultants.co.uk +44(0) 20 8811 2880	LABORATORY: 47-49 Brunel Read Old Oak Common Acten London W3 7XR belgeconceptoorsullants.co.uk +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Herlad Way Binley Industrial Estate Coventry CV3 2RQ coventry@conceptcon +44(0) 24 7708 7670

Project No	20/3521	Hole ID	WS10	C.	nc	EPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	019 & 020	@ 2 mm	. WAGS	000
Client	Richmond & Wandsworth Council	Date	February 2021	HEAD OFFICE: Uhit 8 Warple Mews Warple Way London W3 0RF si@conceptoonsultants.co.uk +44(0) 20 8811 2880		MIDLANDS OFFICE: Unit D Herkad Way Binley Industrial Estate Covently (V3 2RQ covertly (@conceptconsultants +44(0) 24 7708 7670

Project No 20/3521		Hole ID	STP1	C.	nC	EPT
Project Name Elleray Hall	& North Lane Depot/East Car Park	Photograph No	021 & 022	0 2	104035	
Client Richmond &	& Wandsworth Council	Date	25/02/2021	HEAD OFFICE: Unit 8 Warple Way Varple Way London W3 GRF si@conceptornsultants.co.uk +44(0) 20 8811 2880	LABORATORY: 47:49 Brunel Road Old Oak Common Acton London W3 7XR Iabi@conceptoonsulfants.co.uk +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Herlad Way Binley Industrial Estate Coventry CV3 2RQ covertry@conceptoonsuitant +44(0) 24 7708 7670

Project No	20/3521	Hole ID	STP1	C.NCEPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	023 & 024	0 3 man WAGS CHAP TIME
Client	Richmond & Wandsworth Council	Date	25/02/2021	IEAD OFFICE LBORATORY MICLANDS OFFICE Unit 8 Wrays IEAD 17-8 Bissips Moduli 21 Head Way Birsip Moduli 21 Head Way Using Wrays CG Dia Common "Common" Birsip Moduli 21 Head Way Landen Wrays Miclands All Common "Common" Birsip Moduli 21 Head Way Landen Wrays Miclands All Common "Common" Birsip Moduli 21 Head Way Landen Wrays Miclands All Common "Common" Birsip Moduli 21 Head Way Landen Wrays Miclands All Common "Common" Birsip Moduli 21 Head Way Landen Wrays Miclands All Common "Common" Birsip Moduli 21 Head Way Landen Wrays Miclands All Common "Common" Birsip Moduli 21 Head Way Landen Wrays Miclands All Common "Common" Birsip Moduli 21 Head Way Landen Wrays Head Way Birsip Moduli 21 Head Way Landen Wrays Landen Wrays Landen Wrays Landen Wr
	Phograph No 023			

Project No	20/3521	Hole ID	STP2	C.	NC	EP'
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	025 & 026	@ 2 mm	MAG5	999 II
Client	Richmond & Wandsworth Council	Date	25/02/2021	HEAD OFFICE: Unit 8 Warple Mews Warple Way London W3 0RF si@conceptornsultants.co.uk +44(0) 20 8811 2880	LABORATORY: 47-49 Brunel Road Old Oak Common Actan London W3 7XR k Isb@conceptoorsullants.co.uk +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Herlad Way Binley Industrial Estate Coventry CV3 2RQ coventry@conceptions +44(0) 24 7708 7670

Project No	20/3521	Hole ID	STP2	C.	nc	EPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	027 & 028	@ ? ***	. WAGS	000 III
Client	Richmond & Wandsworth Council	Date	25/02/2021	HEAD OFFICE: Unit 8 Warple Mews Warple Way London W3 0RF si@conceptconsultants.co.uk +44(0) 20 8811 2880	LABORATORY: 47-49 Brunel Read Old Oak Common Acton London W3 7XR Isb@conceptionsulfants.co.uk +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Hertad Way Binley Industrial Estate Coventry CV3 2RQ covertry@conceptconsultants. +44(0) 24 7708 7670

Project Name Elleray Hall & North Lane Depot/East Car Park Client Richmond & Wandsworth Council	Project No	20/3521	Hole ID	STP3	C.	nc	EPT
Client Richmond & Wandsworth Council Date 25/02/2021	Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	031 & 032	03	MAG5	er 📰
	Client	Richmond & Wandsworth Council	Date	25/02/2021	Unit 8 Warple Mews Warple Way London W3 ORF si@conceptconsultants.co.ui	47-49 Brunel Road Old Oak Common Acton London W3 7XR k lab@conceptconsultants.co.uk	Unit D Heriad Way Binley Industrial Estate Coventry CV3 2RQ coventry@conceptconsultants.c

Project No	20/3521	Hole ID	STP3	C.	nc	EPT
Project Name	Elleray Hall & North Lane Depot/East Car Park	Photograph No	033 & 034	@ 2 mm	. WAGS	999 🖿
Client	Richmond & Wandsworth Council	Date	25/02/2021	HEAD OFFICE: Linit 8 Warple Mews Warple Way London W3 0F6F si®conceptionsultants.co.uk +44(0) 20 8811 2880	LABORATORY: 47-49 Brunel Road Old Oak Common Acton London W3 7XR Isb@conceptconsultants.co.uk +44(0) 20 8740 1553	MIDLANDS OFFICE: Unit D Herlad Way Binley Industrial Estate Coventry CV3 2RQ coventry@conceptconsult +44(0) 24 7708 7670

APPENDIX A: Unexploded Ordnance Risk Assessment

JUMAS ENGINEERING ENVIRONMENTAL

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK.

DETAILED UNEXPLODED ORDNANCE (UXO) RISK ASSESSMENT

FOR THE SITE AT

Elleray Hall & North Lane Depot, Teddington TW11 And East Car Park, Teddington TW11

This report has been produced by Primely on behalf of JOMAS

6-9 The Square, Stockley Park, Uxbridge, UB11 1FW www.jomasassociates.com 0843-289-2187 info@jomasassociates.com

EXECUTIVE SUMMARY

Site location and general description

Primely Ltd has been commissioned by *JOMAS ASSOCIATES Ltd* to carry out a detailed Unexploded Ordnance (UXO) Risk Assessment for the development projects at North lane depot East car park, Teddington TW11 0HG and Elleray Hall, Elleray Road, Teddington TW11 0HG. The sites are centred approximately on National Grid Reference TQ 15689 70909.

The site is bounded on all sides by private homes, with North Lane on its West and Middle Lane centred between the two plots as seen in figure 2.1.

The site is currently occupied by commercial buildings in part and associated with hardstanding tarmacked ground.

TW11 0HG is currently in Coronavirus (Covid-19) England Tier 5 (Stay at home) Data from NHSX, correct as of 16th January 2021

Scope of proposed works

It is understood that a series of site investigation works are planned across the site area.

Risk assessment

Primely Ltd has assessed that there is a **LOW** risk of items of unexploded German aerial delivered. Other types of munitions also constitute a **LOW** risk.

- The site is located within the London Borough of Richmond upon Thames, historic county of Middlesex, which sustained a low-density bombing campaign during the Blitz.
- Official records show that 59 high explosive (HE) bombs were dropped in Teddington throughout the war.
- November 1940 saw the borough sustain its highest casualties. 74 people were killed.
- On the night of November 29,130 bombs and between 3,000 and 5,000 incendiary devices rained down on Twickenham and Teddington, destroying 150 houses and damaging more than 6,000 others.

- The National Physical Laboratory had been designated a special target by the Luftwaffe, as it was here the engineer and aeronautical designer Barnes Wallis was developing the 'Bouncing Bomb', later to be used by the RAF in the famous Dambusters raid of May 1943. The raid destroyed Germany's Mohne and Eder dams.
- There was an American army base in Bushy Park (600m south west of the site).
- Teddington Film Studios, one of the few British studios (2km southeast), received a direct hit from a V1 on the evening of July 5, 1944.
- By the end of the war, 143 civilians had been killed in air raids, 500 houses had been destroyed, and another 32,000 residences had sustained damage.

Recommended risk mitigation measures

To support the proposed works, Primely Ltd suggests the following risk mitigation measures:

 No further action. However, re-active measures should be employed such as a UXO "Toolbox" brief, a UXO 'Emergency Management Plan' and/or an "on-call" service.

Primely Ltd can supply the above services.

Table of Contents

EXECUTIVE SUMMARY	1
SITE LOCATION AND GENERAL DESCRIPTION	
	1
TABLE OF CONTENTS	3
INTRODUCTION	7
1. METHODOLOGY	8
1.1 METHOD OBJECTIVES	
1.2 Sources of Information	9
2. SITE DETAILS AND DESCRIPTION	10
2.1 SITE LOCATION AND DESCRIPTION	
2.2 PROPOSED SCHEME OF WORK	
2.3 GROUND CONDITIONS - GEOLOGY.	
2.4 HISTORICAL GROUND INVESTIGATION DATA	.11
3. HISTORICAL DATASETS	13
3.1 GENERAL	
3.2 SITE HISTORY	
3.2.1 Second World War Bombing Statistics	
3.3 ORDNANCE SURVEY HISTORICAL MAPS	
3.5 SOURCES OF POTENTIAL UNEXPLODED ORDNANCE	
3.5.1 Allied as source of UXO	
3.5.2 German as source of UXO	
3.6 WWII GERMAN AERIAL ORDNANCE TYPE DESCRIPTION HIGH EXPLOSIVE (HE) BOMBS	
3.6.1 German SC50 and SC250	
3.6.2 1Kg Incendiary Bomb SD2 'Butterfly' Bomb (Armed status)	
3.6.3 The Butterfly Bomb (or Sprengbombe Dickwandig 2 kg or SD2)	
3.6.4 V1s and V2s 3.7 Consequences of interaction	
4. REQUIREMENT FOR UXO RISK ASSESSMENT	
4.1 BACKGROUND	
4.2 ODM REGULATIONS 2015	
5. DATA ANALYSIS	
6. RISK ASSESSMENT	-
6.1 MAXIMUM BOMB PENETRATION DEPTH	
6.1.1 The J-Curve Effect	
6.1.2 WWII UXB Penetration Studies 6.1.3 Site Specific Bomb Penetration Considerations	
6.2 RISK PATHWAY	
6.4 RISK RATING CALCULATION	.30
7 RECOMMENDED RISK MITIGATION MEASURES	
BIBLIOGRAPHY	33
REFERENCES	30

APPENDICES	38
APPENDIX A SITE LOCATION	38
Appendix B Historical Borehole scans	39
APPENDIX C LONDON BOMBING CENSUS MAP	
Appendix D Bomb Damage Maps	43
ANNEXES	44
ANNEX A – GERMAN BOMBS SERIES AND MAIN CATEGORIES OF BOMBS DROPPED ON THE UK	
DURING WWII	
ANNEX B MOST USED BOMBS	45
SD-2 Butterfly bomb	46
ANNEX C BRITISH ANTI AIRCRAFTS AMMUNTIONS	47
3.7" British Anti Aircraft Artillery Projectile (AAA)	47
ANNEX D – VENGEANCE WEAPONS.	48
Annex D1 The V1 Flying Bomb	48
Annex D2 The V2 Rocket	48
ANNEX E THE J – CURVE	49
ANNEX F: HISTORICAL MAPS	50
SOME BOMB INCIDENTS IN THE UK IN RECENT YEARS	66

LIST OF FIGURES

- Figure 2.1 Description of the site location
- Figure 2.4 Historical borehole records
- Figure 3.4.1 Bomb density specific to the site
- Figure 3.4.2 Bomb damage map of the site

LIST OF TABLES

- Table 2.4.1 LITTLE QUEENS ROAD TWICKENHAM
- Table 2.4.2 GOVERNMENT CHEMIST LAB NPPL 11
- Table 3.2.1 Ordnance Statistic within the borough
- Table 3.3 Ordnance Survey Historical Maps Description
- Table 3.6.1
 Range of German bomb series
- Table 6.4.1 UXO Risk Calculation
- Table 6.4.2
 Risk Rating Probability and Consequence
- Table 6.4.3 Risk Scoring Categories

Acronyms and abbreviations

AAA	Anti-Aircraft Artillery	HSWA	Health and Safety at Work Act 1974
AP	Armour Piercing	IB	Incendiary Bomb
AP	Anti-Personnel	JSEODOC	Joint Services Explosive Ordnance
ARP	Air Raid Precaution (Wardens)		Disposal Operations Centre (UK)
BD	Bombing Density	LE	Low Explosive
BGL	Below Ground Level	LM	Luftmine (Germany)
BGS	British Geological Survey (UK)	LSA	Land Service Ammunition MOD
BH	Borehole		Ministry of Defence (UK)
BPD	Bomb Penetration Depth	NEQ	Net Explosive Quantity
CDM	Construction (Design and	RAF	Royal Air Force
	Management) Regulations 2015	RN	Royal Navy
	(UK)	ROF	Royal Ordnance Factory
CIRIA	Construction Industry Research	SAA	Small Arms Ammunition
	and Information Association	SAP	Semi-Armour-Piercing
СРТ	Cone Penetrometer Test	RAF	Royal Air Force
EOC	Explosive Ordnance Clearance	SI	Site Investigation
EOD	Explosive Ordnance Disposal	SIP	Self-Igniting Phosphorous
ERP	Emergency Response Plan	UXB	Unexploded Bomb
ERW	Explosive Remnants of War	UXO	Unexploded Ordnance
FFE	Free From Explosives	V1	Vengeance Weapon 1 - Flying bombs
GI	Ground Investigation	V2	Vengeance Weapon 2 - Flying bombs
GPS	Global Positioning System	WAAF	Women Auxiliary Air Force
HE	High Explosive	ROF	Small Arms Ammunition
HSE	Health and Safety Executive	SI	Site Investigation
HSWA	Health and Safety at Work Act		
	1974		
IB	Incendiary Bomb		
JSEODOC	Joint Services Explosive Ordnance		
	Disposal Operations Centre (UK)		
LE	Low Explosive		

LM Luftmine (Germany)

INTRODUCTION

Primely Ltd has been commissioned by *JOMAS ASSOCIATES* to carry out a detailed Unexploded Ordnance (UXO) Risk Assessment for the development projects at North Lane Depot East car par and Elleray Hall, Elleray Road, Teddington TW11 0HG, *United Kingdom*. The desk study provides a detailed assessment of the location with regards to the risks of encountering items of unexploded ordnance and the consequences of that encounter.

This report documents the findings of the study carried out for the assessment of the potential risk from deep buried unexploded High Explosive (HE) bombs and munitions constituents at the site, and make suitable recommendations to mitigate the risk to a level that is as low as reasonable and practicable (ALARP).

Reasonable efforts have been exerted to ensure that significant and sufficient available historical information has been accessed and checked. The evidence assessed has been, where possible, included in the report to enable *JOMAS* and its representatives to understand the basis of the risk assessment.

Primely Ltd cannot be held responsible for inaccuracies, gaps in the available historical information, or for any changes to the assessed level of risk or risk mitigation measures based on documentation or other information that may have become available or discovered later than the date of this study.

The exact location of ordnances, their nature, as well as their quantities is ambiguous to say the least with absolute exactitude because wartime records are difficult to verify. However, our study leans on the accumulation and careful analysis of a multitude of accessible evidence.

There are several sources of information through which investigations for UXO hazards can be collected; these include the national archives, MoD archives, local historical sources, historical mapping, as well as available aerial photography. Information was considered only if it reasonably correlated with the site.

1. METHODOLOGY

1.1 Method objectives

This report follows the guidelines outlined in CIRIA Report C681, '<u>Unexploded Ordnance</u> (<u>UXO): A Guide for the Construction Industry</u>' which represents best practice and has been endorsed by the HSE. The report recommends appropriate site and work-specific risk mitigation measures to reduce the risk from explosive ordnance during the envisaged works to a level that is as low as reasonably practicable (ALARP).

The ALARP principle is a key factor in efficiency and effectiveness in reducing UXO risks. Any additional mitigation that delivers low benefits but consumes disproportionate time, money, and effort, is dimmed unnecessary. It is important to note that the principle is not trying to reduce the risk to zero, but to find the balance of reducing the cost of a risk significantly without compromising safety. The assessment of UXO risk is a measure of probability of encountering a deep buried unexploded ordnance and the consequence of that encounter. If risks of an UXO were identified, the methods of mitigation recommended in this report are considered reasonably and sufficiently robust to reduce them to ALARP.

Primely Ltd has been supporting the UK construction industry with UXO Risk Management measures and can support JOMAS ASSOCIATES through the whole risk management process. We offer the complete UXO risk management process from the preliminary and detailed desk study through to on-site support.

1.2 Sources of Information

Reasonable effort has been made to ensure that relevant evidence was consulted and presented to produce a thorough and comprehensible report. To achieve this, the following records and archives material, held in the public domain, have been accessed:

- Primely Ltd in-house data base.
- The National Archives, Kew.
- Historical mapping datasets.
- British Geological Survey
- Historic England National Monuments Record.
- Available material from 33 Engineer Regiment (EOD) Archive.
- Open sources such as published books and verified online resources.

2. SITE DETAILS AND DESCRIPTION

2.1 Site location and Description

The investigation is for the sites located at North lane depot East car park and Elleray Hall, Elleray Road, Teddington TW11 0HG, United Kingdom. The site is centred approximately on National Grid Reference TQ 15689 70909.

The site is bounded on all sides by private homes, with North Lane on its West and Middle Lane centred between the two plots as seen in figure 2.1 below.

The site is currently occupied by commercial buildings in part and associated with hardstanding tarmacked ground.

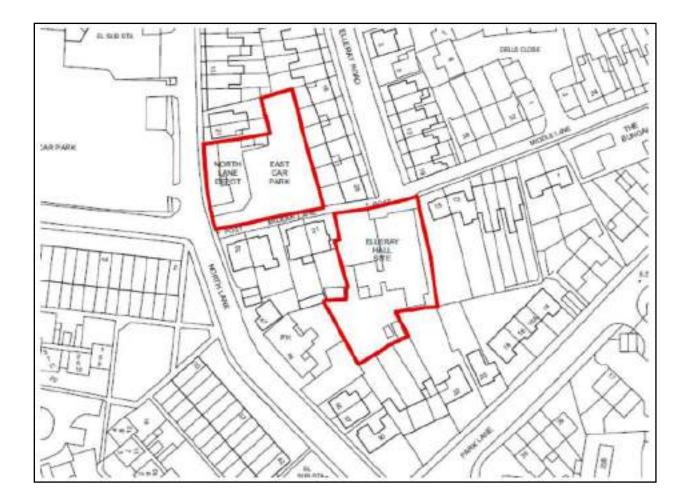


Figure 2.1: Description of the site location

2.2 Proposed Scheme of work

It is understood that a series of site investigation works are planned across the site area.

2.3 Ground Conditions - Geology

It should be noted that the maximum depth that a bomb could reach may vary across a site and will be largely dependent on the specific underlying geological strata and its density.

2.4 Historical Ground Investigation Data

The British Geological Survey Geology of Britain web map services provides access to the geographic locations and logs of historical borehole investigations and well installations located nearby, to the north and east of the site (See figure 2.4 below).

Figure 2.4: Historical borehole records (Source: BGS Web Service)

Table 2.4.1 below displays the strata succession encountered in the boreholes (See appendix for full log). No boreholes were found closer to the site.

Name: LITTLE QUEENS ROAD TWICKENHAM Reference: TQ17SE19 Length (m): 9.600000 Easting: 515500 Northing: 170800						
Geological section	Thickness	Depth				
Topsoil	0.2m	0.6				
Made ground	5.9m	6.1m				
Gravel	0.3m	6.4m				
Brown clay	0.3m	6.7m				
Blue clay	3m	9.77m				

Table 2.4.1: LITTLE QUEENS ROAD TWICKENHAM

Table 2.4.2: GOVERNMENT CHEMIST LAB NPPL 11

Name: GOVERNMENT CHEMIST LAB NPPL 11 Reference: TQ17SE64/K Length (m): 10.000000 Easting: 515470 Northing: 170750					
Geological section	Thickness	Depth			
Made ground	5.9m	1.0m			
Gravel	0.3m	1.8m			
Weathered London clay	0.3m	7.8m			
London clay	3m	8m			

3. HISTORICAL DATASETS

3.1 General

The following section presents information identified relating to the site of military value of various types. The focus of this report concerns German aerial delivered weapons dropped during WWI and WWII.

The Great War started in Belgium and France along the Western Front in 1914 but by the beginning of 1915 it had moved closer to home. During the first great war, London was targeted and bombed by Zeppelin Airships. An estimated 250 tons of ordnance were dropped upon the city, most of which fell on the City of London. The first Zeppelin raid over London came on the 31st May 1915 and the increasing threat of attack saw the establishment of a ring of defensive airfields around the city.

The country received a much-needed respite from bombing in June 1941, when Luftwaffe squadrons were ordered to concentrate on the war against Russia. The resumption of Hitler's bombing of England, a period known as The Little Blitz, did not occur until the spring of 1944, when raids were launched from Luftwaffe bases in occupied France.

WWI bombs were generally smaller in sizes and were dropped from a lower altitude which resulted in a limited penetration in depth of these ordnances. This report has placed a greater emphasis on WWII bombs as they can be found significantly deeper than the WWI ordnances.

3.2 Site History

The sites are situated in Teddington, in the London Borough of Richmond upon Thames. It is also in the historic county of Middlesex.

In 1800 the population of Teddington was under 700, in 100 houses. The number of houses had probably doubled by the 1860s, but the population was still only just over 1000. In 1861 the Manor of Teddington, which consisted of nearly half the parish, was sold for the development of desirable villas. To assist this development the railway arrived in 1863.

There were no buildings in Broad Street in 1800 although there were houses in Middle Lane backing on to Broad Street and in Park Lane, including the alms houses, built in 1739 and demolished in about 1950. Elleray Villa was built by 1820 on the corner of North Lane with an entrance in Broad Street. The house was demolished in about 1890 and the site crossed by Elleray Road. There was a house round the corner in Stanley Road in 1800. It is thought that this was the house called Maud Cottage, later called The Hollies or the Old Hollies. The house was demolished in 1965 to make way for the redevelopment of the land between Somerset Road and Walpole Road.

Built in 1911, Elleray Hall's initial purpose was to act as a parish hall. It wasn't until 1950's Teddington's Old Peoples' Welfare Committee (T.O.P.W.C.) began utilising the hall for distributing off-ration sweets to its local elderly community. T.O.P.W.C. had been formed in 1946 with the aim of aiding the elderly with fuel and food. Seventy-two years on, T.O.P.W.C. has become Elleray Community Association but its objective of combating isolation in the neighbourhood continues.

At the end of October 1940, concerns ran high when a bomb landed on the apron of Teddington Weir. The breach caused by the bomb's detonation created a reduction in the depth of water at Teddington Reach (1.6 km east of the site) by six feet, making navigation impossible except at high tides. Those dwelling on Trowlock Island were marooned temporarily. Full navigation of the Reach would not be restored for seven weeks.

In the months that followed, the aerial bombardment grew heavier. November 1940 saw the borough sustain its highest casualties. 74 people were killed, the majority in a devastating attack which took place on the night of November 29. 130 bombs and between 3,000 and 5,000 incendiary devices rained down on Twickenham and Teddington, destroying 150 houses and damaging more than 6,000 others. The worst damage was sustained just 130m north of the depot, at Church Road.

Mrs Lilian Dring, a Teddington resident, wrote: "Most of Teddington became a raging inferno. Duty rotas were abandoned and every available warden was on duty most of the night. The Baltic Timber Yard, Stanley Road (which is just over 300m north west of the site) and the Baptist Church went up in mountains of flame which almost met over our heads as we patrolled Walpole Road."

Another tragedy occurred the same night. Bombs intended to pulverize the National Physical Laboratory at Teddington exploded over a public air raid shelter in the laboratory's grounds, killing eight residents of Walpole Crescent. The NPL (circa 500m Northwest of the sites of interest) had been designated a special target by the Luftwaffe, as it was here the engineer and aeronautical designer Barnes Wallis was developing the 'Bouncing Bomb', later to be used by the RAF in the famous Dambusters raid of May 1943. The raid destroyed Germany's Mohne and Eder dams.

During the 'Little Blitz', as far as residents of the borough were concerned, the worst of these raids occurred on February 25, 1944, when 45 bombs were dropped in an effort to destroy both the National Physical Laboratory and an American army base in Bushy Park (600m south west of the site). The Luftwaffe missed their targets. Three bombs fell in Fulwell Golf Course (1.2km north) and 28 landed in Hampton and Hampton Hill (1.6km northwest).

Teddington Film Studios, one of the few British studios (2km southeast) to remain in operation during World War II, received a direct hit from a V1 on the evening of July 5, 1944. The bomb completely gutted the main studio and took the life of 'Doc' Salomon, the studio's American production manager. This effectively put an end to Teddington Studio's valiant efforts to produce morale-boosting films throughout the war. Understandably, the psychological impact these missiles had on the local population was devastating. An even greater threat was posed by the sophisticated, longer-range V2 rockets. Unlike the V1, which could be seen and heard from a distance, the V2 was silent and there was no warning

of its arrival: it simply dropped to the ground and exploded violently on impact. The only V2 to land in the area, at the rear of Fairfax Road, 1.3km southeast, left a crater 40 feet wide and 8 feet deep. Fear of this new menace from the skies led to the evacuation of 7,000 women and children from the borough in July 1944.

By the end of the war, 143 civilians had been killed in air raids, 500 houses had been destroyed, and another 32,000 residences had sustained damage.

3.2.1 Second World War Bombing Statistics

The following table summarises the quantity of German bombs (excluding 1kg incendiaries and antipersonnel bombs) falling on the borough of Richmond upon Thames between 1940 and 1945.

	Record of German Ordnance Dropped on Teddington						
Area Acrea	age	N/A					
Weapons	High Explosive Bombs (all types)	59					
	Parachute Mines	-					
	Oil Bombs	-					
	Phosphorus Bombs	-					
Fire Pot		-					
	Pilotless Aircraft (V-1) incidents	-					
	Long Range Rockets (V-2) incidents	-					
Total							
Items per	1000 acres	N/A					

Table 3.2.1 Ordnance Statistic within the borough¹

¹ Source: Home Office Statistics

This table does not include UXO found during or after WWII.

1kg incendiary and anti-personnel bombs were frequently considered too numerous to be recorded and their locations to be registered. They were, consequently, considered to have been dropped ubiquitously across the area. Although the risk relating to Incendiary bombs is lesser than that relating to larger HE bombs, they are still lethal as they were designed to inflict damage and injury. The risk of harm should not be dismissed.

3.3 Ordnance Survey Historical Maps

Historical maps were obtained for this report and are presented in Annex F (historical maps). These maps provide an indication of the composition of the site pre and post-WWII. See below for a summary of the site history on various mapping editions.

Pre WW1		
Date	Scale	Description
1896	1:2,500	The site is bounded by Broad street to the north, Park Lane to the
		south, North Lane to the west and Elleray road to the east. It is set in
		rural Teddington and contains two buildings that are not clearly
		defined.
1915	1:2,500	During WW1, there were developments adjacent to the site with the
		emergence of a row of terraced houses facing Elleray road and a Hall
		at the bottom of the site. The area itself illustrates a progress in
		development.

Table 3.3 – Ordnance Survey Historical Maps Description

Pre WW2					
Date	Scale	Description			
1920	1:2,500	After WW1, there has been minimal changes to the area.			
1934	1:10,560	In the period before WW2, very little or no changes have taken			
plac		place from the previous map edition. Memorial Hospital has been			
		built west of the area, on a site that previously used to be a			
		Nursery.			

Post WW2						
Date	Scale	Description				
1959	1:2,500	The site is unchanged with only the Hall being converted into Works building. The area itself is more urbanised with more building's, particularly in the open spaces south and east of the site.				
1963-1979	1:2,500	No changes on the site. Nursery and allotment areas towards the south-west have been developed with more housing.				
1991	1:2,500	Changes have taken place on the site with a car park built on the north and a Day Centre at the south. Buildings west of the site, adjacent to North Lane have also been replaced by a big car park.				
1975	1:10,000	No discernable changes have taken place.				
1987	1:10,000	No discernable changes have taken place.				

3.4 Aerial Bombing

The focus of research is centered on German air-delivered ordnance dropped during WW1. However, other forms of explosive contamination will be considered. It is assessed that the risk of encountering WW1 bombs is low as they were dropped from a lower altitude and were generally smaller in sizes, resulting in a much lower penetration depth.

As for the site of interest in **figure 3.4.1** below show the concentric red lines that portray a high bombing density on and around the site area. This indicates that there has been a significant tonnage of bombs dropped in the area. This may be due to the high number of military target present in the area.

3.5 Sources of Potential Unexploded Ordnance

During WWI and WWII, many towns and cities across the UK were subjected to bombing which often resulted in extensive damage to town centres, docks, railways, industrial areas, and other infrastructures. Part of the destruction could be associated with the poor accuracy of the technology and the nature of bombing techniques.

The bombing records were gathered by the police, Air Raid Precaution (ARP) wardens, and military personnel. The records were maintained locally and/or by regions, in the form of written records, maps (depicting strikes' locations and damage to structures). Records were detailed and typically made through direct observations, or by post-raid surveys. As the immediate priority was to assist casualties and minimise damage, loss or incompletion of some records were inevitable.

UXO found at diverse sites in the UK originates from three principal sources;

- During escape of Luftwaffe aircrafts from an aerial attack, they would drop some or all their load resulting in bombs being found in unexpected locations. This is commonly referred to as tip and run. The CIRIA publication C681 suggests that approximately 10 per cent of all munitions deployed failed to function as designed. Thus, many remained buried and can present a potential risk especially to workers undertaking construction and civil engineering groundwork.
- 2. During transportation of aggregate containing munitions from a contaminated area to an area that was previously free of UXO.
- Poor precision during targeting (due to high altitude night bombing and/or poor visibility) resulted in bombs landing off target, but within the surrounding area. British decoy sites were constructed to deliberately cause incorrect targeting, often built in remote and uninhabited areas.

3.5.1 Allied as source of UXO

As the pressure mounted during WWII, the government requisitioned considerable areas of land for defence, where the armed forces would carry out training, construction of airfields and facilities for munitions production and storage. It has been estimated that at least 20 per cent of the UK's land has been used for military training at some point.

Thousands of tons of the munitions used during the war were used for the Allied Forces weapon testing, and military training. Therefore, allied UXO contamination derived from legacy munitions from military training, deliberate or accidental dumping (AXO), and ordnance that directly resulted from war fighting activities are known as Explosive Remnants of War.

There is no supporting evidence that the site had been used for military purpose or even to store resources. The closest legitimate target was the training ground at Mill green.

3.5.2 German as source of UXO

Where a bomb fails to detonate upon penetration of the ground, it leaves behind an entry hole that is not always apparent, and some were unreported, leaving the buried bomb being unrecorded. Aerial bombing of London witnessed a wide range of German bombs.

3.6 WWII German aerial Ordnance Type Description High Explosive (HE) Bombs

3.6.1 German SC50 and SC250

The SC series of High Explosive Bombs were thin cased bombs used for general demolition. In this series, most bombs were between 50kg to 500kg, with larger bombs of up to 1,800kg (see Annex A). Their fill of high explosive made up half their weight. The SC50 was made of a 'one piece drawn steel body'. The SD series were bombs made with a thicker case and a lower charge weight and were generally used against hardened targets (See table 3.6.1 below).

Weight in Kg	Weight in Ib	Series
50kg	112lb	S.C. or S.D.
250kg	550lb	S.C. or S.D.
500kg	1,000lb	S.C. or S.D.
1000kg	2,400 lb	S.C. (Herman)
1,000kg	2,400 lb	S.D. (Esau)
1,400kg	3,200 lb	S.D. (Fritz)
1,800kg	4,000 lb	S.C. (Satan)

 Table 3.6.1: Range of German bomb series

3.6.2 1Kg Incendiary Bomb SD2 'Butterfly' Bomb (Armed status)

The 1 kg B1E incendiary bomb (see annex B) consisted of a cylinder of magnesium alloy, with an incendiary filling of thermite with three steel fins. These bombs were ignited by a small percussion charge, fired upon impact. Explosive heads were later incorporated into the IB. Whilst Incendiary Bombs may have fallen within the Study Site, they were considered ubiquitous and record keeping of those were sometimes discarded if they were under 1kg.

3.6.3 The Butterfly Bomb (or Sprengbombe Dickwandig 2 kg or SD2)

These were a German 2-kilogram antipersonnel sub munition used by the Luftwaffe, made of a thin cylindrical metal outer shell which hinged open when the bomblets were deployed **(see annex B).** The design was very distinctive and easy to recognise as it had the appearance of a large butterfly. SD2 bomblets were dropped in large numbers from containers holding between 6 and 108 sub munitions. These broke open in air and scattered the sub-munitions.

3.6.4 V1s and V2s

The final phase of bombing began at the end of 1944 when the first V2 rocket exploded in addition to IBs and HE bomb strikes. The fear of the V1 flying bombs and V2 rockets was tangible. These unmanned bombs were caused when London targets were overshot. The V type rockets were thin-skinned, unmanned, and less accurate weapons (see annex C). There was no advance warning for a rocket which travelled faster than the speed of sound, reaching its target four minutes after launch. Enormously destructive, they caused huge craters and flattened whole rows of houses. Across London thousands of homeless people needed rehousing.

3.7 Consequences of interaction

A friction impact from intrusive machineries could provoke a shock-sensitive fuse explosive. The effects of chemical breakdown of the explosive fill and the general degradation over time can cause explosive compounds to crystallise and extrude out from the main body of the bomb. It may only require a limited amount of energy to initiate the extruded explosive around the fuse pocket which could detonate the main charge.

Upon detonation, factors that may be affected may vary depending on the site-specific conditions but can be summarised as:

- People site workers, local residents and general public.
- Plant and equipment construction plant on site.
- Services subsurface gas, electricity, telecommunications.
- Structures not only visible damage to above ground buildings, but potentially damage to foundations and the weakening of support structures.

The depth that an unexploded bomb will penetrate depends on several factors including:

- Size and shape of bomb
- Height of release
- Velocity and angle of bomb
- Nature of the ground cover
- The Geology.

Unexploded ordnance does not spontaneously explode as military HE. It is generally reasonably stable and requires significant energy for detonation to occur. In the case of a German UXB, discovered within the construction site, there are other potential initiation mechanisms such as a significant impact e.g. from piling machinery or large and violent mechanical excavation, onto the main body of the weapon (unless the fuse is struck).

Most German bomb and mine fuses were electric and were highly engineered compared to their British equivalents. A small proportion of German WWII bombs employed clockwork fuses. It is probable that clockwork or mechanical fuse mechanisms would have corroded since WWII and this will generally prevent them from functioning.

4. REQUIREMENT FOR UXO RISK ASSESSMENT

4.1 Background

There is currently no formal obligation for construction or development projects to undertake a UXO risk assessment in the UK and there is no specific legislation enforcing this on the management for the mitigation of UXO risk. However, the CDM legislation outlined below makes noticeably clear that those responsible for intrusive works should undertake a comprehensive and robust assessment of the potential risks to employees and implement mitigation measures to address any hazards identified.

4.2 CDM Regulations 2015

The Construction (Design and Management) Regulations 2015 defines the responsibilities of parties involved in the construction of temporary or permanent structures. The CDM 2015 establishes a duty of care extending from clients, principle coordinators, designers, and contractors to those working on, or affected by, a project. Those responsible for construction projects may therefore be accountable for the personal or proprietary loss of third parties if correct health and safety procedure has not been applied. The CDM 2015 does not specifically reference UXO. The risk presented by such items is both within the scope and purpose of the legislation. It is therefore implied that there is an obligation on parties to:

- Provide or obtain an appropriate assessment of potential UXO risks at the site.
- Emplace appropriate risk mitigation measures if necessary.
- Supply all parties with relevant risk information.
- Prepare a suitably robust emergency response plan.

4.3 Other legislations

The 1974 Health and Safety at Work Act dictates that all employers have a responsibility under this Act and the Management of Health and Safety at Work Regulations 1999, to ensure the health and safety of their employees and third parties, so far as is reasonably practicable. In the event of a casualty resulting from the failure of an employer or client to address the risks relating to UXO, the organisation may be criminally liable under the Corporate Manslaughter and Corporate Homicide Act 2007.

5. DATA ANALYSIS

The sites are situated in Teddington, in the London Borough of Richmond upon Thames. It is also in the historic county of Middlesex. The borough received a low bombing campaign during the war.

There were no buildings in Broad Street (150m northeast of the site) in 1800 although there were houses in Middle Lane backing on to Broad Street and in Park Lane, including the alms houses, built in 1739 and demolished in about 1950. Elleray Villa was built by 1820. The house was demolished in about 1890 and the site crossed by Elleray Road.

Built in 1911, Elleray Hall's initial purpose was to act as a parish hall.

At the end of October 1940, a bomb landed on the apron of Teddington Weir. The breach caused by the bomb's detonation created a reduction in the depth of water at Teddington Reach (1.6 km east of the site) by six feet, making navigation impossible.

November 1940 saw the borough sustain its highest casualties. 74 people were killed, the majority in a devastating attack which took place on the night of November 29. 130 bombs and between 3,000 and 5,000 incendiary devices rained down on Twickenham and Teddington, destroying 150 houses and damaging more than 6,000 others. The worst damage was sustained just 130m north of the depot, at Church Road.

Another tragedy occurred the same night. Bombs intended to pulverize the National Physical Laboratory at Teddington exploded over a public air raid shelter in the laboratory's grounds, killing eight residents of Walpole Crescent. The NPL (circa 500m Northwest of the sites of interest) had been designated a special target by the Luftwaffe, as it was here the engineer and aeronautical designer Barnes Wallis was developing the 'Bouncing Bomb', later to be used by the RAF in the famous Dambusters raid of May 1943. The raid destroyed Germany's Mohne and Eder dams.

There was an American army base in Bushy Park (600m south west of the site), which was hit by 45 bombs On February 25, 1944.

The National Physical Laboratory was an official Luftwaffe target, which it missed their targets. Three bombs fell in Fulwell Golf Course (1.2km north) and 28 landed in Hampton and Hampton Hill (1.6km northwest).

Teddington Film Studios, one of the few British studios (2km southeast) to remain in operation during World War II, received a direct hit from a V1 on the evening of July 5, 1944. By the end of the war, 143 civilians had been killed in air raids, 500 houses had been destroyed, and another 32,000 residences had sustained damage.

6. RISK ASSESSMENT

There is a **low** risk of encountering German air delivered HE bombs. British AAA projectiles and Incendiary bombs pose a **low** threat.

6.1 Maximum Bomb Penetration Depth

A key consideration when assessing the likelihood of finding a high explosive bomb is the depth at which they may be found. The penetration is dependent upon the:

- **Nature** of the ground;
- Weight of the ordnance;
- Type of ordnance.

6.1.1 The J-Curve Effect

When an air-delivered bomb penetrates the ground after it is dropped from height, it is slowed by its passage through underlying soils, its trajectory curves towards the surface with a final horizontal offset from the point of entry. This is typically a distance of about one third of the bomb's penetration depth but can be up to 15m. This underground trajectory is known as a **J curve (See Annex E)** and is the reason why bombs can be found under basements that were constructed before WW2.

Research during WW2 suggested that a 1000kg bomb dropped in clay could theoretically penetrate a vertical depth of 25m and 8m horizontally. It should be noted that the maximum **actual** depth of penetration observed in the research for a 1000kg bomb was 12.5m. Contemporary bomb disposal guidance indicated that only 1% of bombs (of 50kg or heavier) penetrated more than 9m.

6.1.2 WWII UXB Penetration Studies

During WWII, the Ministry of Home Security undertook a major study on actual bomb penetration depths, carrying out statistical analysis on the measured depths of 1,328 bombs as reported by Bomb Disposal. Conclusions were made as to the likely average and maximum depths of penetration of different sized bombs in different geological strata. For example, the largest common German bomb (500kg) had a likely concluded penetration depth of 6m in sand or gravel but 11m in clay. The maximum observed depth for a 500kg bomb was 11.4m and for a 1000kg bomb 12.8m. Theoretical calculations suggested that significantly greater penetration depths were probable.

6.1.3 Site Specific Bomb Penetration Considerations

Although it is possible that the Luftwaffe deployed bombs in the area, their deployment was infrequent, and to use such larger (or the largest) bombs for BPD calculations were not justifiable on either technical or risk management grounds. WWII German bombs have a greater penetration depth when compared to IBs and AAA projectiles, which are unlikely to be encountered at depths greater than 1m. Given the development of the Site after WWII, the presence of Unexploded Ordnance is significantly reduced, unless a cross contamination has taken place.

6.2 Risk Pathway

Given the types of UXO that might be present on Site, all types of aggressive intrusive engineering activities (i.e. excavations and piling) may generate a significant risk pathway. Whilst not all UXO encountered aggressively will initiate upon contact, such a discovery could lead to serious impact on the project especially in terms of critical injury to personnel, damage to equipment and project delay.

6.4 Risk Rating Calculation

This Semi-Quantitative Risk Assessment assesses and rates the risks posed by the most probable threat items when conducting many different activities on the site. Risk Rating is determined by calculating the probability of encountering UXO and the consequences of initiating it.

UXO RISK CALCULATIONS TABLE – ALL AREAS					
Activities	Threat item	Probability (SH X EM=P)	Consequence (DXPSR=C)	Risk rating (PXC=RR)	
Trial Pits	HE Bombs	1x1=1	2x3=6	1x6=6	
(Within existing foundations)	AAA projectiles	1x1=1	3x2=6	1x6=6	
	IBs	1x1=1	2x3=6	1x6=6	
Boreholes	HE Bombs	1x2=2	2x2=4	2x4=8	
(Within existing foundations)	AAA projectiles	1x1=1	2x2=4	1x4=4	
	IBs	1x1=1	2x2=4	1x4=4	
Piling	HE Bombs	1x3=3	3x1=3	3x3=4	
(Within existing foundations)	AAA Projectiles	1x1=1	3x2=6	1x6=6	
	IBs	1x1=1	2x2=4	1x4=12	

Table 6.4.1 – UXC	D Risk Calculation
--------------------------	---------------------------

SH: Site History

EM: Engineering Methodology

P: Probability

D: Depth

C: Consequence PSR: Proximity to Sensitive Receptors RR: Risk Rating

Key

Low	Medium	High	Very High
-----	--------	------	-----------

Probability Calculation

The potential that an item of UXO would detonate, if encountered, relies on a number of variable factors. There are no empirical means of accurately and reasonably calculating the probability of an UXO detonation during intrusive site activities. During the semi quantitative risk assessment process, SH and IM are scored from 1 to 3 with 1 = Low, 2 = Medium and 3 = High. Probability is therefore scored 1 to 9.

		Probability					
		1	2	3	4	6	9
	1	1	2	3	4	6	9
ce	2	2	4	6	8	12	18
luen	3	3	6	9	12	18	27
Consequence	4	4	8	12	16	24	36
Col	6	6	12	18	24	36	54
	9	9	18	27	36	54	81

Table 6.4.2 - Risk Rating - Probability and Consequence

Table 6.4.3 – Risk Scoring Categories

Risk Rating (P x C)	Risk Rating (P x C)	Risk Tolerability	Action Required
1-9	Low	Partly Tolerable	Re-active measures should be employed such as a UXO "Toolbox" brief, a UXO 'Emergency
12-18	Low-Medium	Less Tolerable	Management Plan' and/or an "on-call" service.
24-27	Medium-High	intolerable	Pro-active measures should be employed such
36-81	High	Highly Intolerable	as EOD Engineer Site Supervision and Magnetometer Surveys.

In utilising table 6.4.3 above, Primely Ltd can assess the risk tolerability and devise a suitable level of risk mitigation to meet the ALARP principle.

7 RECOMMENDED RISK MITIGATION MEASURES

For the works carried out at North Lane depot East car park, Teddington TW11 0HG and Elleray Hall, Elleray Road, Teddington TW11 0HG, United Kingdom, Primely Ltd estimates that there is a LOW risk of deep buried UXO and recommends:

No further action. However, re-active measures should be employed such as a UXO "Toolbox" brief, a UXO 'Emergency Management Plan' and/or an "on-call" service. A Site Management documentation detailing the actions to undertake in the event of a suspected or real UXO discovery should be held on-site to guide, which can be supplied by Primely Ltd.

This desktop assessment is based upon analysis of historical evidence along with other data readily available. Every reasonable effort has been made to locate and present significant and pertinent information.

Primely Ltd cannot be held accountable for any changes to the assessed risk level or risk mitigation measures, based on documentation or other data that may come to light later than the date of this study or which was not available to Primely Ltd during the production of this report.

The accuracy of WWII era records sometimes proves difficult to verify. Therefore, conclusions as to the exact location and nature of a UXO risk can rarely be quantified and are to a degree subjective. To counter this, a range of sources have been consulted and analysed. Wartime records show that the quality and nature of record keeping varied between boroughs; while some local authorities maintained records with a methodical approach, others considered a more vague, dispersed, and narrow in scope. Many other records were damaged or destroyed in subsequent bombing raids. Furthermore, records of attacks on military or strategic targets were often maintained separately from the general records and those have not always survived.

BIBLIOGRAPHY

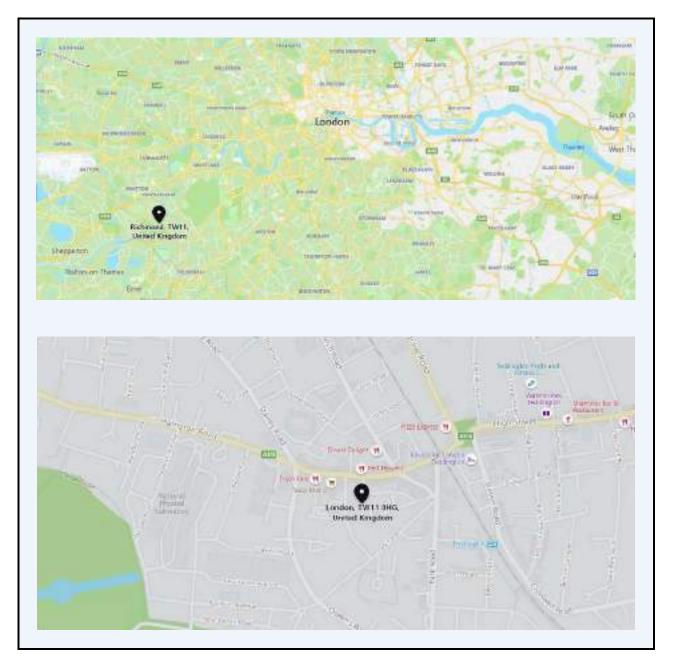
- 1. https://osmaps.ordnancesurvey.co.uk
- 2. http://bombsight.org
- 3. http://mapapps2.bgs.ac.uk/geoindex/home.html?layer=BGSBoreholes
- 4. https://www.ordnancesurvey.co.uk/shop/mapsheetfinder.html#mapsheet-viewer
- 5. https://www.telegraph.co.uk/news/2016/05/10/did-a-nazi-bomb-land-near-yourhouse-during-the-blitz/
- 6. THE BOMBING OF BRITAIN 1940-1945 EXHIBITION, university of Exeter,
- https://humanities.exeter.ac.uk/media/universityofexeter/collegeofhumanities/histor y/researchcentres/centreforthestudyofwarstateandsociety/bombing/THE_BOMBIN G_OF_BRITAIN.pdf
- <u>https://books.google.co.uk/books?id=42fFwAEACAAJ&dq=This+Semi-</u> Quantitative+Risk+Assessment+assesses+and+rates+the+risks+posed+by+the+m ost+probable+threat+items+when+conducting+many+different+activities+on+the+ Site.+Risk+Rating+is+determined+by+calculating+the+probability+of+encountering +UXO+and+the+consequences+of+initiating+it.&hl=en&sa=X&ved=0ahUKEwjY6p KdhKrjAhUBSRUIHdL8BU8Q6AEIMzAB
- 9. https://www.legislation.gov.uk/ukpga/1974/37
- 10. <u>https://books.google.co.uk/books?id=sib_sgEACAAJ&dq=The+1974+Health+and+</u> <u>Safety+at+Work+Act+dictates+that+all+employers+have+a+responsibility+under+t</u> <u>his+Act+and+the+Management+of+Health+and+Safety+at+Work+Regulations+19</u> <u>99,+to+ensure+the+health+and+safety+of+their+employees+and+third+parties,+s</u> <u>o+far+as+is+reasonably+practicable.&hl=en&sa=X&ved=0ahUKEwj3peiziqrjAhXjm</u> <u>FwKHe4ND2MQ6AEILjAB</u>
- 11. https://www.cps.gov.uk/legal-guidance/corporate-manslaughter
- 12. https://books.google.co.uk/books?id=M-

<u>6wAAAACAAJ&dq=In+the+event+of+a+casualty+resulting+from+the+failure+of+a</u> <u>n+employer+or+client+to+address+the+risks+relating+to+UXO,+the+organisation+</u> <u>may+be+criminally+liable+under+the+Corporate+Manslaughter+and+Corporate+H</u> <u>omicide+Act+2007.&hl=en&sa=X&ved=0ahUKEwjezNixjKrjAhWIgVwKHYE7AKc4</u> <u>ChDoAQhVMAg</u>

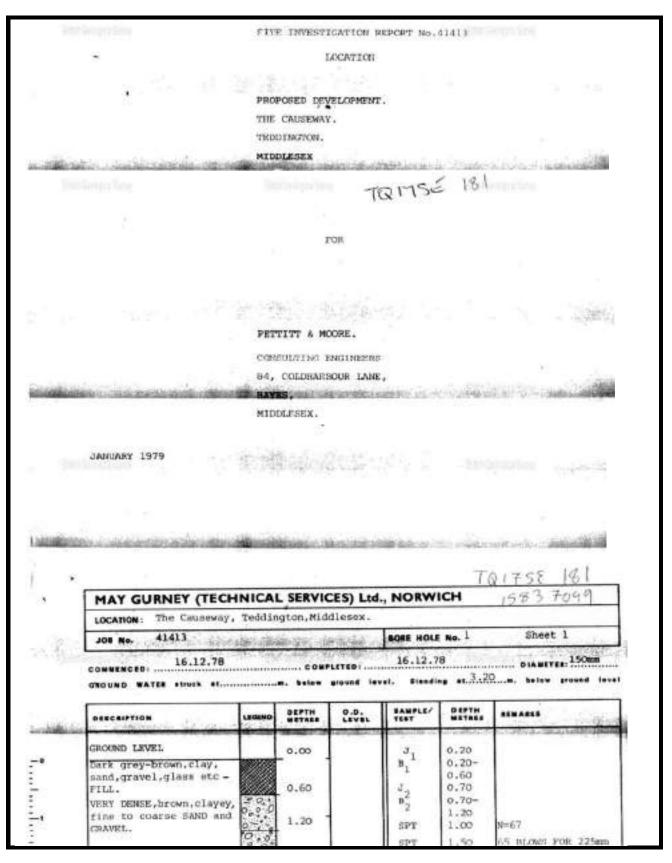
- 13. http://www.hse.gov.uk/corpmanslaughter/
- 14. http://www.hse.gov.uk/foi/internalops/ocs/100-199/165_10.htm
- 15.<u>http://www.hse.gov.uk/pubns/wrdp1.pdf</u>
- 16.<u>https://www.fieldfisher.com/publications/2014/10/corporate-manslaughter-cases-in-</u> 2014
- 17. https://www.shponline.co.uk/corporate-manslaughter/
- 18.<u>https://www.kingsleynapley.co.uk/insights/blogs/criminal-law-blog/corporate-</u> manslaughter-and-health-and-safety
- 19. http://www.hse.gov.uk/pUbns/priced/I153.pdf
- 20. http://www.hse.gov.uk/construction/cdm/2015/responsibilities.htm
- 21. <u>https://books.google.co.uk/books?id=DU08XwAACAAJ&dq=The+Construction+(Design+and+Management)+Regulations+2015+defines+the+responsibilities+of+parties+involved+in+the+construction+of+temporary+or+permanent+structures.+The+Constructors+to+these+extending+from+clients,+principle+coordients,+designers,+and+contractors+to+those+working+on,+or+affected+by,+a+project.&hl=en&sa=X&ved=0ahUKEwikwPL-j6rjAhVhnVwKHXEFDqIQ6AEIVTAH</u>
- 22. <u>https://books.google.co.uk/books?id=_wUpQwAACAAJ&dq=In+addition+to+IBs+a</u> <u>nd+HE+bomb+strikes,+two+%E2%80%98V%E2%80%99+type+weapons+strikes+</u> <u>have+been+recorded+near+the+site.&hl=en&sa=X&ved=0ahUKEwisg-</u> <u>KPkarjAhWQgVwKHVAFD64Q6AEIQTAE</u>
- 23. <u>https://books.google.co.uk/books?id=_wUpQwAACAAJ&dq=In+addition+to+IBs+a</u> nd+HE+bomb+strikes,+two+%E2%80%98V%E2%80%99+type+weapons+strikes+ <u>have+been+recorded+near+the+site.&hl=en&sa=X&ved=0ahUKEwisg-</u> <u>KPkarjAhWQgVwKHVAFD64Q6AEIQTAE</u>
- 24. https://www.flightjournal.com/germanys-v-2-rocket/
- 25. http://www.twickenham-museum.org.uk/detail.php?aid=390&ctid=4&cid=40
- 26. https://www.google.com/search?biw=993&bih=544&tbm=isch&sa=1&ei=DL4IXZqIA tyBjLsPoOO50Ag&q=german+v2+rockets&oq=german+v2+rockets&gs_l=img.3..0i 24.6067.7320..8185...0.0..0.281.421.0j1j1.....0...1..gws-wiz-img.GmqoYvV-0fU
- 27. https://www.awm.gov.au/collection/C148379
- 28. https://www.iwm.org.uk/collections/item/object/30020459

- 29. https://media.iwm.org.uk/ciim5/260/717/000000.jpg?_ga=2.35370849.117168925.1 562755539-503030435.1562172104
- 30.<u>https://www.lbhf.gov.uk/community/ve-day/how-second-world-war-changed-hf-</u> forever
- 31.<u>https://www.lbhf.gov.uk/sites/default/files/section_attachments/suds_design_and_e</u> valuation_guide.pdf
- 32.https://www.britannica.com/event/the-Blitz#ref345824

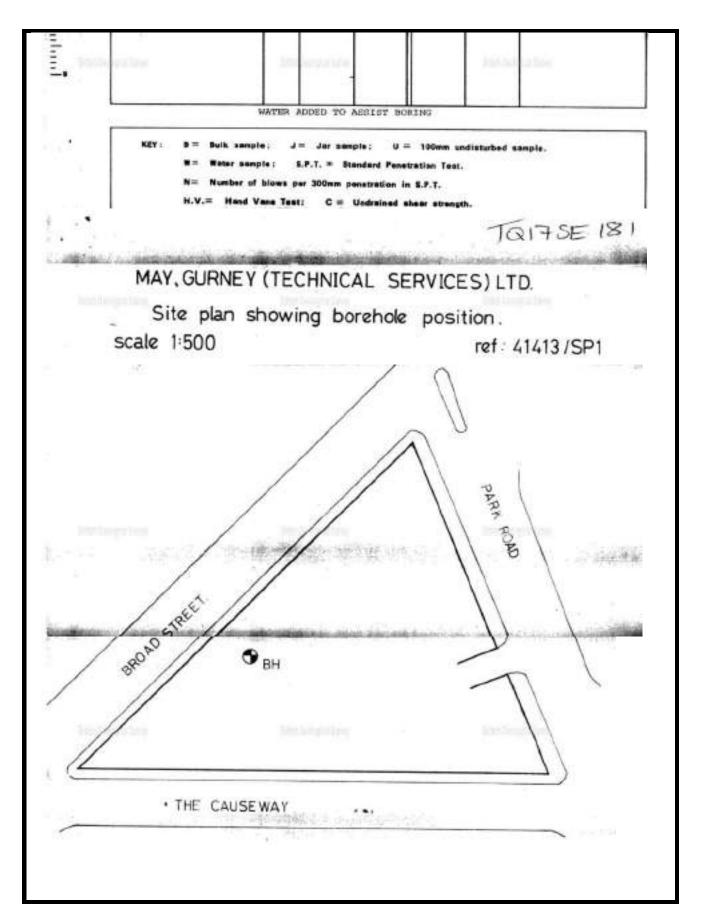
REFERENCES

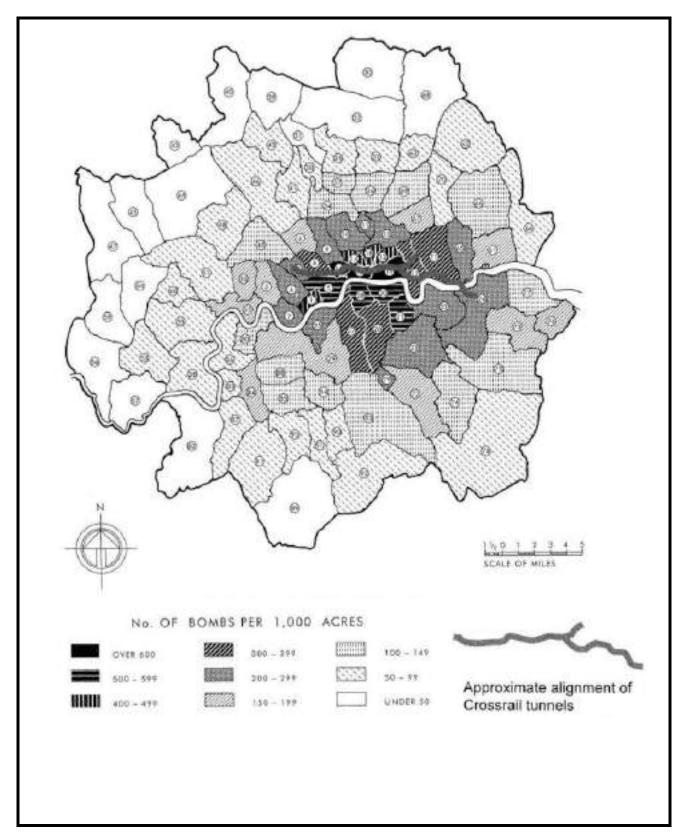

- 1. Unexploded Ordnance: A Critical Review of Risk Assessment Methods, Issue 1674, *MR (Rand Corporation)*
- 2. Unexploded Ordnance: A Critical Review of Risk Assessment Methods, Jacqueline MacDonald
- German Air-dropped Weapons to 1945, Wolfgang Fleischer, Midland, 2004, ISBN: 1857801741, 9781857801743
- Acceptable risk, Baruch Fischhoff, Sarah Lichtenstein, Steven L. Derby 1983 The Baby Killers: German Air Raids on Britain in the First World War, Thomas Fegan - 2013 The Blitz Then and Now, Volume 3, Winston G. Ramsey - 1990
- 5. https://www.legislation.gov.uk/ukpga/1974/37
- Managing Health and Safety in Construction: Construction (Design and Management) Regulations 2015: Guidance on Regulations
- Health and Safety at Work Etc. Act 1974, <u>Part 37 of Public General Acts Elizabeth</u> <u>II</u>, H.M. Stationery Office, 1974, ISBN: 0105437743, 9780105437741
- Identifying and Managing Risk, <u>Will Baker</u>, <u>Howard Reid</u>, Pearson Education Australia, 2004
- 9. http://www.hse.gov.uk/corpmanslaughter/
- 10.<u>http://www.hse.gov.uk/foi/internalops/ocs/100-199/165_10.htm</u>
- 11.<u>http://www.hse.gov.uk/pubns/wrdp1.pdf</u>
- 12. Managing health and safety in construction (Design and Management) Regulations 2015
- 13. http://www.hse.gov.uk/construction/cdm/2015/responsibilities.htm
- 14. http://www.legislation.gov.uk/uksi/2015/51/contents/made
- 15. Managing Health and Safety in Construction: Construction (Design and Management) Regulations 2015: Guidance on Regulations
- 16. Temporary Works: Principles of Design and Construction, Murray Grant, Peter F. Pallett, ICE Publishing, 2012 - <u>Technology & Engineering</u>
- 17. Unexploded Ordnance (UXO): A Guide for the Construction Industry, <u>Kevin Stone</u>, CIRIA,

2009 <u>https://media.iwm.org.uk/ciim5/260/717/000000.jpg?_ga=2.35370849.11716</u> 8925.1562755539-503030435.1562172104


- 18.<u>http://www.hertsgeolsoc.ology.org.uk/IntroToHertsGeology.htm</u>
- 19. historicengland.org.uk/listing/the-list/list-entry/1188970
- 20.<u>https://www.hertsmere.gov.uk/Documents/09-Planning-Building-Control/Planning-Policy/Local-Plan/SADMS-EB01-LCA-001Introduction.pdf</u>
- 21. https://www.layersoflondon.org/map/51.49986695847889,-0.19481597551930466
- 22. https://www.britannica.com/event/the-Blitz#ref345824

APPENDICES


Appendix A Site Location

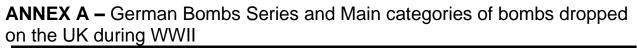


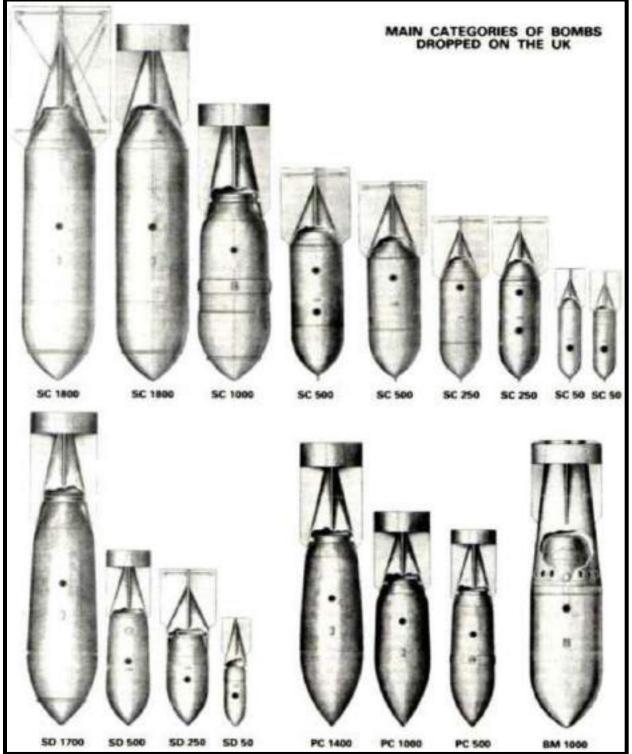
Appendix B Historical Borehole scans

	0.00	Inclusion		B	1.20-	aparting.
DENSE, brown, fine to coarse SAND and fine to	2.0	-				
coarse GRAVEL.	5209					
	195	1.304	da 13			
	18.00		5	¹⁹ 4	3.00-	그 5월
	200			SPT	3.00	N=31
	10					
	100	4.00		3.	4.10	
FIRM, brown, silty, CLAY	100	Sint ton	UNCHER N.	33 34 01	4.40	the loss water and
	4	4.40		01	4,50	20 BLOWS
	× -			J 5 J 6	5.00	
FIRM to STIFF, grey- brown, fissured, ailty	1 × 1	1		3.00		1
CLAY	£_×					and they
A CONTRACT	XX	Sec. 1	12	E		
	K K		1	U2	6.00	30 BLOWS
100mm layer of clay	× -			3.	6.50	
stone at 5.00M	12×1			77	12.1012	
	××					
	XX					
State of the second state	1	in an an an an an an an an an an an an an	in the second	3354	W.S.	A SCHLORING MAL
- Shuge Shuge	× ×	ACCRED AND	1000	85	8.00	一一 医心神道的 医
	× ×	1		-5	27440	
	×					
1 - The second second	E A -	Service Maria		S	38654	all the superior and the
CONTINUED	-	9.00	Al and a state	ALC: SHOW	Children in	THE ALL DEPENDENCE
CONTINUES						
WW	TER ADDED	TO ASSIST	T BORING			
KEY: 8 = Bulk sa	mole: J:	= Jar same	ile: U	= 100mm w	disturbed	sample.
W= Water a	ample: S	LP.T. = \$10		stration Test.		
N= Number	of blows p					
1	d Vana Test	NY 2011년 1		sheer strengt	uh.	
	- TORONA	a successing	and the second	10-12-14-14	2	
MAY GURNEY (TE	CHNICA	L SERVI	CES) Ltd	., NORW	ICH	방송가 제 .
LOCATION : The Cause			The second second second second second second second second second second second second second second second se	the second second second second second second second second second second second second second second second se		
JOS No. 41413				BORE HOL	E No. 1	Sheet 2
	18	Service States	Sangeson -	-		
16 12 2				10,12.78		20
CONVENCED 16.12.7		.m. below	around fe	vel. Stand	itt efammen	man.M. balow ground lay
		DEPTH	0.D.	RAMPLE/	DEPTH	
COMMENCED 16.12.7	LEGENG		0.D. LEVIL	EAMPLE/ TEST		
		DEPTH METHES	U.P.			
	LEGEND	DEPTH	0.D. LIVIL			
CONTINUED	LEGEND	DEPTH METHES	B.B. LEVIL	TEST	NETIES	
CONTINUED		DEPTH METHES	8.B. LEVIL			36 Internal
CONTINUED		DEPTH METHES	B.B.	TEST	NETIES	

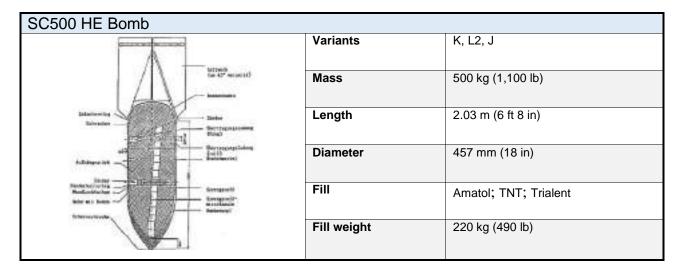
Appendix C London bombing census Map

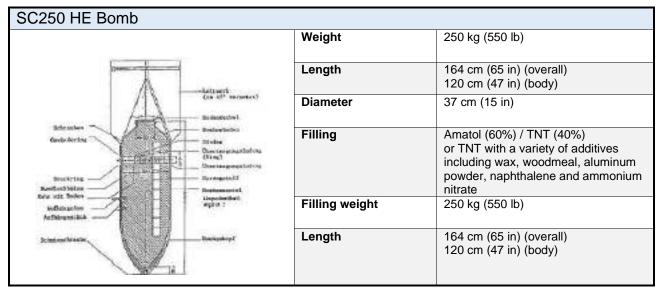
Appendix D Bomb Damage Maps


Bombsight free public resource - bomb location map


No map available

LCC Bomb Damage Maps


No map available.


ANNEXES

ANNEX B Most used Bombs

SC50 HE Bomb		
100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100	Overall Length	46.1 inches (1,171 mm)
	Body Length	30.0 inches (762 mm)
	Body Diameter	7.9 inches (201 mm)
o Certit	Tail Width	16.1 inches (409 mm)
54. 5 5 5 5 7 10 r al month during	Filling Weight	24.4 kilograms (54 lb)
s. (m) (3	Total Weight	55 kilograms (121 lb)
	Charge/Weight Ratio	45.75%
43	Explosive Filling	Cast TNT, Amatol or Trialen
**	Bomb Type	High Explosive

Incendiary Bomb Bomb weight 1kg Construction Electron case with steel nose cap 350mm Length Body diameter 30mm Fill 650g (1.7 lb) Thermite Fuse impact 4.0.1 used extensively in WW II and often in a conjunction with HE bombs. £

SD-2 Butterfly bomb

10	Weight	2Kg	
	Length	200mm	
1	Body diameter	80mm	
	explosive	Fp 60/40	
	NEQ	0.225Kg (0.496lb)	
	Fuse	Mechanical Clockwork/	
		Mechanical time or B1/B2 Harassment	
	German 2 kg anti-pe	rsonnel submunition used by the	
di	Luftwaffe during ww2. They were packed into containers holding between 6 and 108 submunitions.		

Parachute Mine (Luftmine B / LMB)				
· •	Bomb Weight	987.017kg (2176lb)		
	ExplosiveWeight	125-130kg (276-287lb)		
	Fuze Type	Impact/ Time delay / hydrostatic pressure fuze		
	Bomb Dimensions	1640 x 512mm (64.57 x 20.16in)		
	Body Diameter	368mm (14.5in)		
	Remarks	Parachute Mines were normally carried by HE115 (Naval operations), HE 111 and JU 88 aircraft types. Deployed a parachute when dropped in order to control its descent.		


ANNEX C British Anti Aircrafts Ammuntions

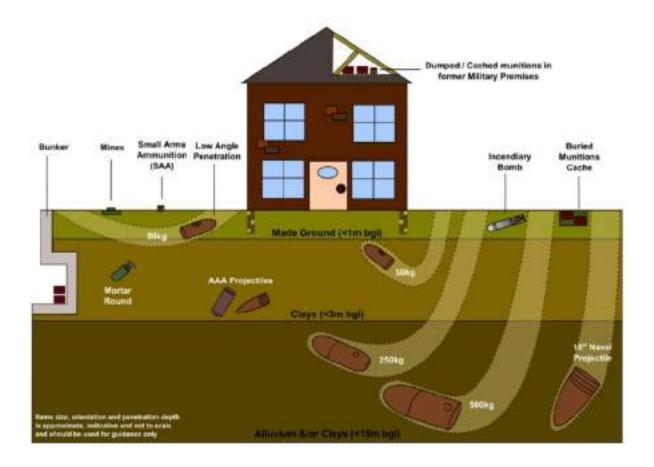
3.7" British Anti Aircraft Artillery Projectile (AAA)				
	Body	forward centring bands and a wider driving band. Square-based Brass cartridge shell with tapered nose		
	Dimensions	94mm x 360mm (3.7 x 14.7")		
	Weight	12.7kg (28lb)		
2→ že	Fuze	Mechanical time fuze		
	Composition	Cast steel		
	Explosive	Amatol, TNT or RDX/TNT. MK6 had		

40mm Bofor's Projectile		
A manager A	Weight	1.96lb (0.86kg)
Customere water	Explosive Weight	300g (0.6lb)
	Fuze Type	Proximity and Mechanical Time
12 UNITATI		Fuze
TERMORE THE	Rate of Fire	120 rounds per minute
and a state of the second seco		Projectile
And And And And And And And And And And	Dimensions	40mm x 310mm (1.6in x 12.2in)
Vacative species assume and and and assume and a second species assume and a second species assume and a second species assume and a second species assume as a second species assume as a second species assume as a second species assume as a second species assume as a second species assume as a second species assume as a second species assume as a second species assume as a second species assume as a second species assume as a second species as a second species as a second species assume as a second species assume as a second species assume as a second species	Ceiling	23,000ft (7000m)

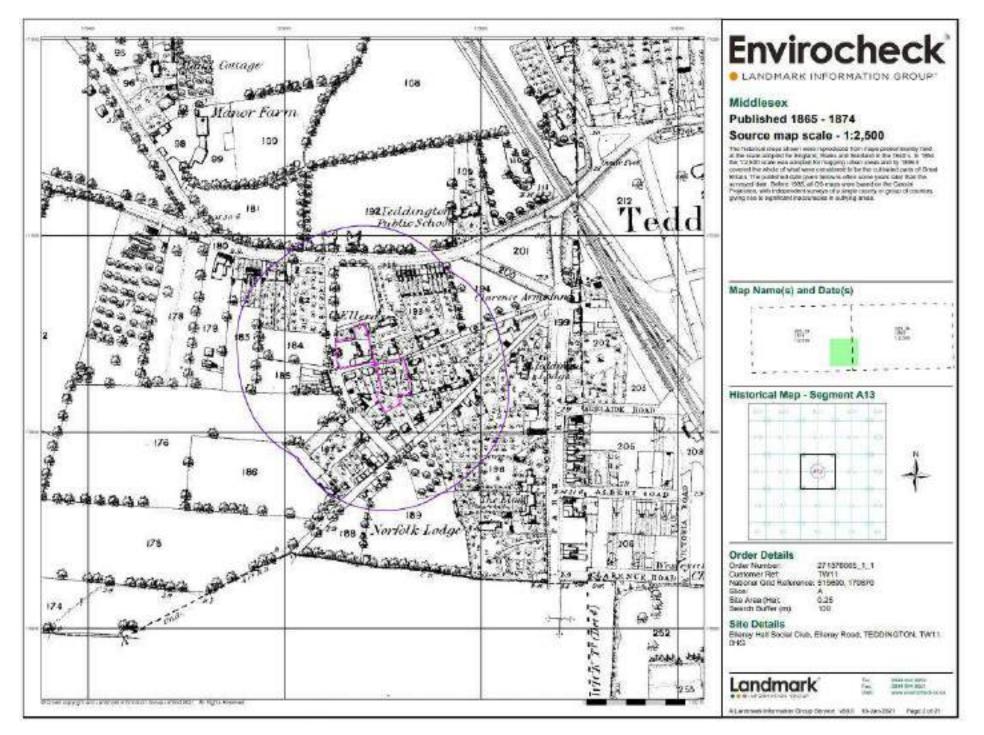
ANNEX D – Vengeance weapons

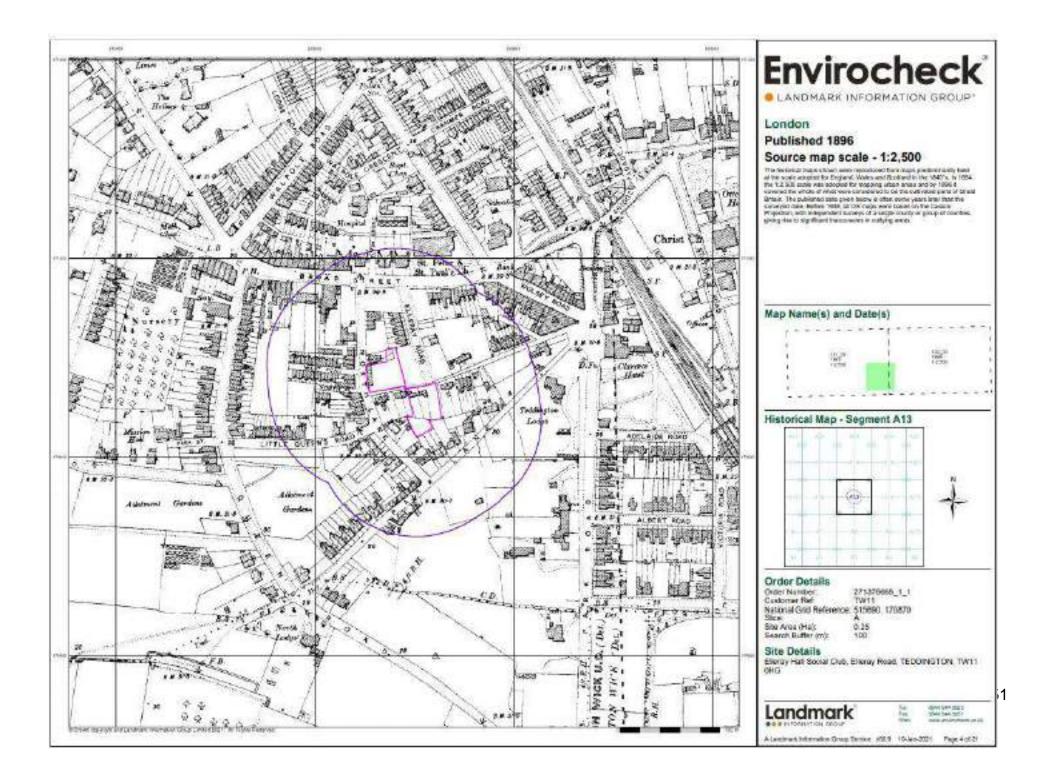
Annex D1 The V1 Flying Bomb

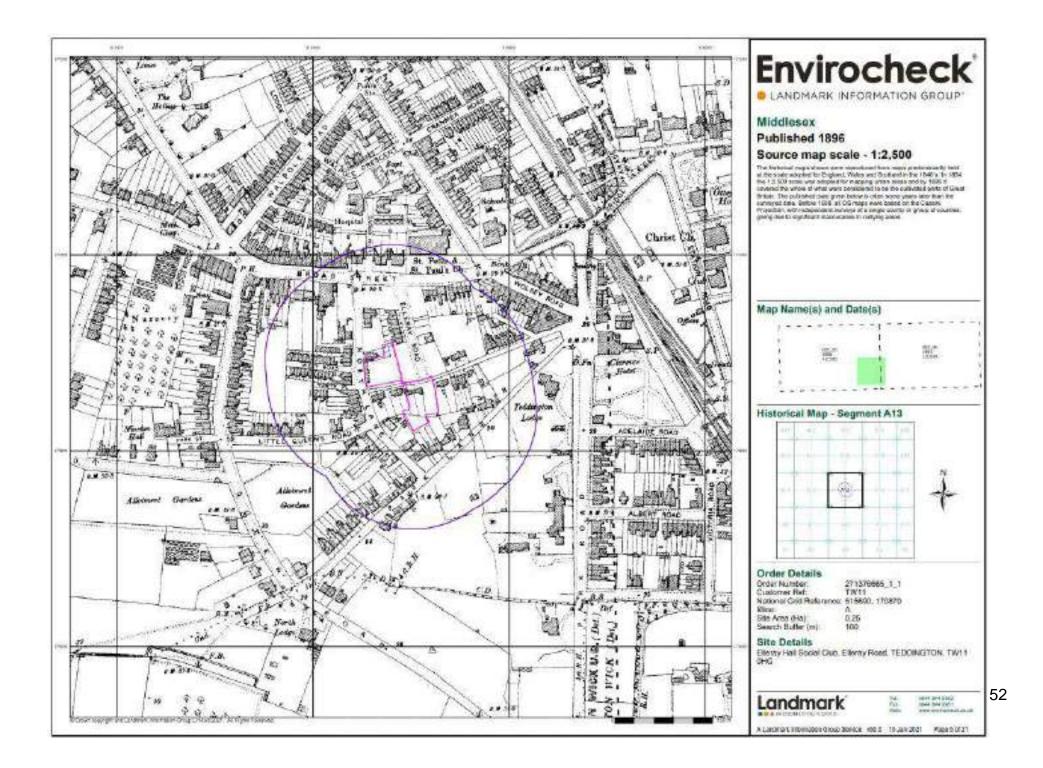
The V1 Flying bomb was the world's first cruise missile, they were also known as Doodle bugs or Vengeance weapon. The V1 was an unmanned plane that delivered a ton of high explosive. Between June 1944 and March 1945, 2419 of them exploded in London. The V1 was capable of inflicting huge damage to buildings, homes, and personnel. In the inner London suburbs where terrace houses were packed together, sometimes up to 20 houses would totally collapse, just at one hit. The blast area of a V1 extended across a radius of 400 -600 yards in each direction. <u>https://youtu.be/ro4ApX7EhJw</u>

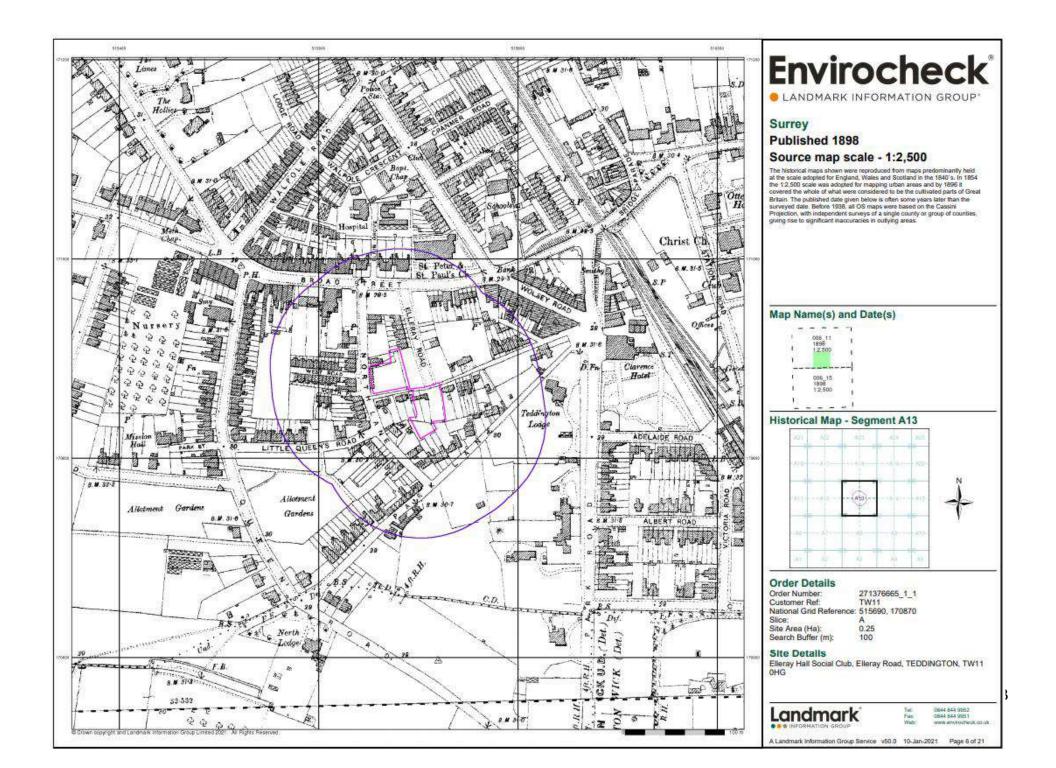


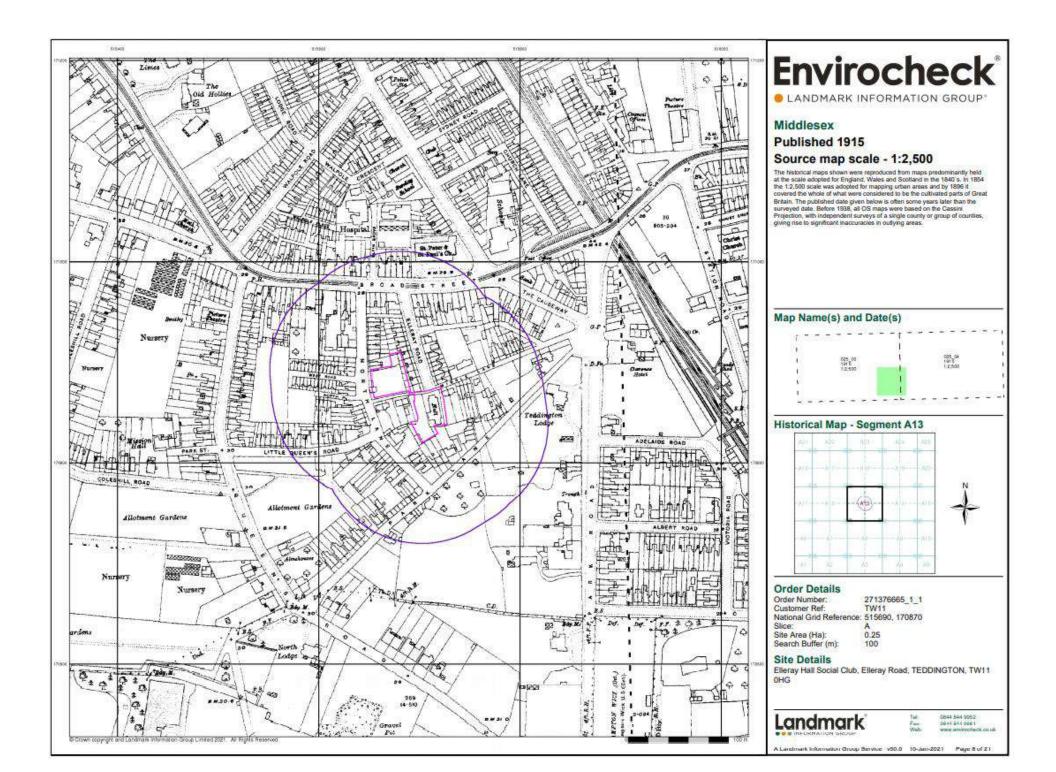
Annex D2 The V2 Rocket

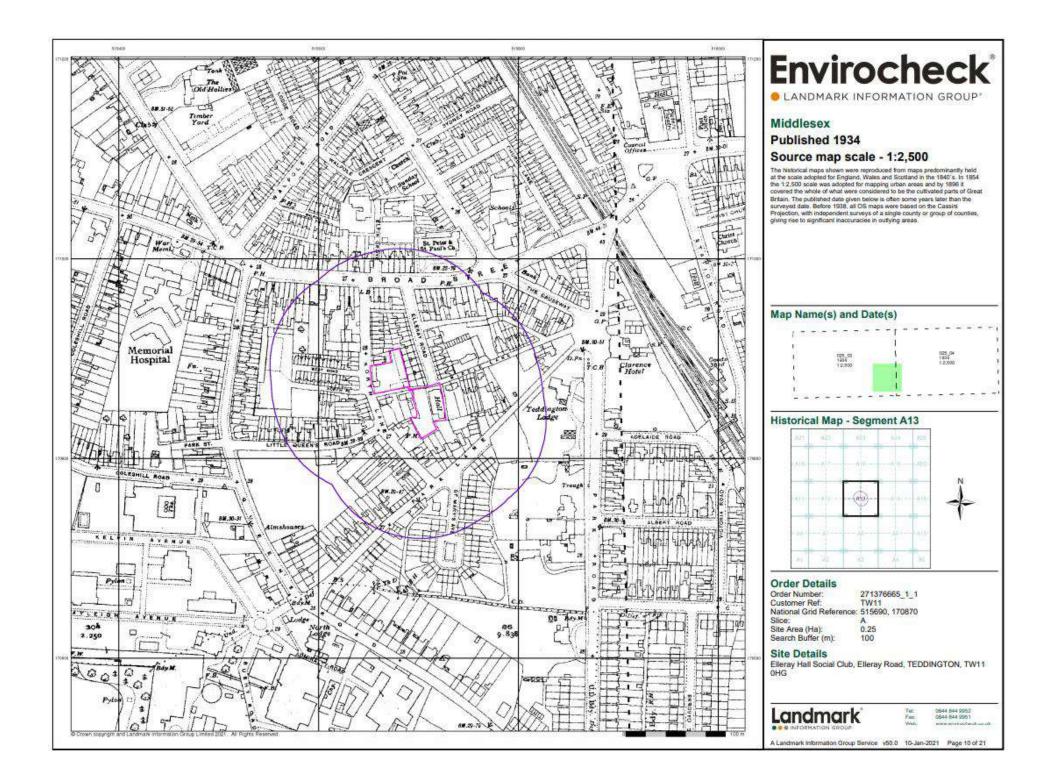

https://rarehistoricalphotos.com/v2-rocket-in-pictures/

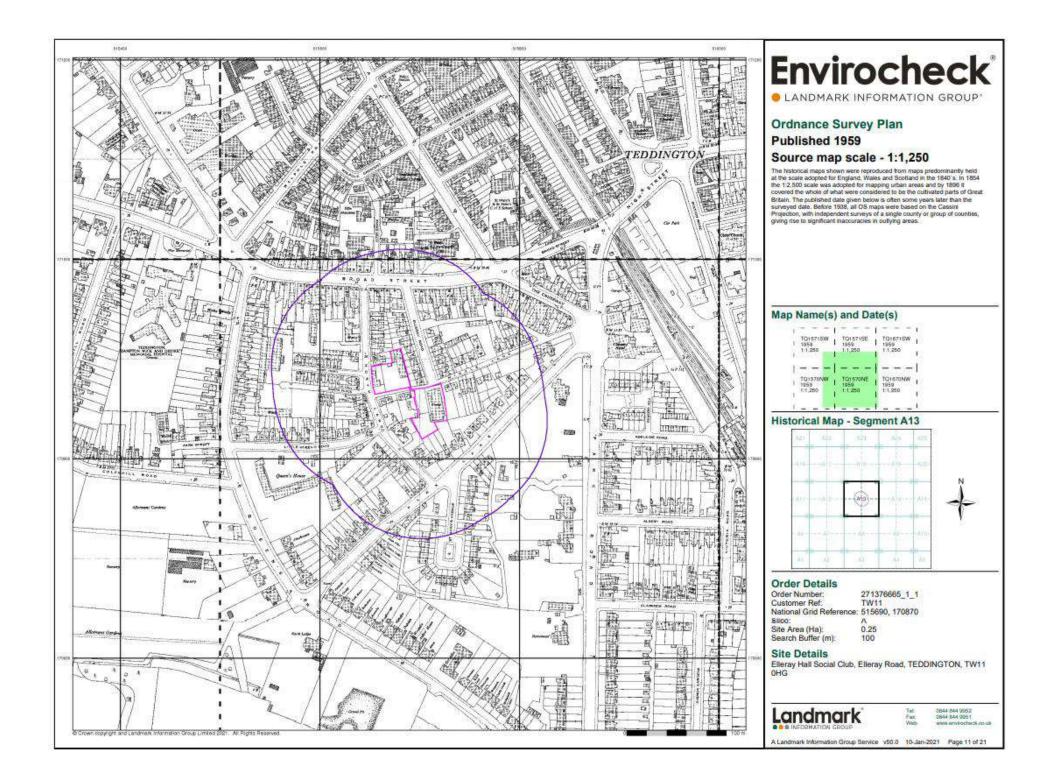

In addition to type and weight designations, HE bombs sometimes carried a suffix to indicate the type of fuse or zünder employed, i.e, mV = "mit Verzögerung" (with short delay action) and LZZ = "LangZeitZünder" (long time delay). Thus, for example, the designation SC250 LZZ identified a general purpose, high explosive bomb, weighing 250kg and fitted with a long delay fuse. The thin-cased general purpose was called the "sprengbombe cylindrich" (SC. Used for blast effect, they had a relatively high charge ratio of 55%. Used primarily for general demolition, something like 80% of German high explosive bombs dropped on the UK were of the SC type.

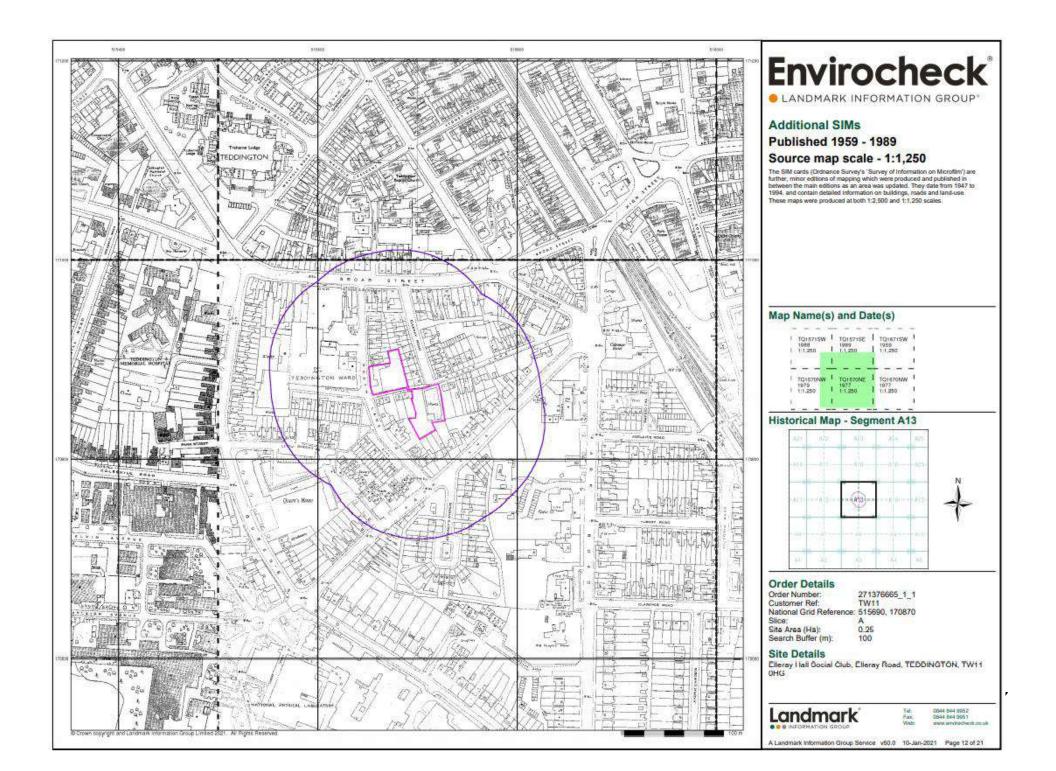

ANNEX E The J – Curve

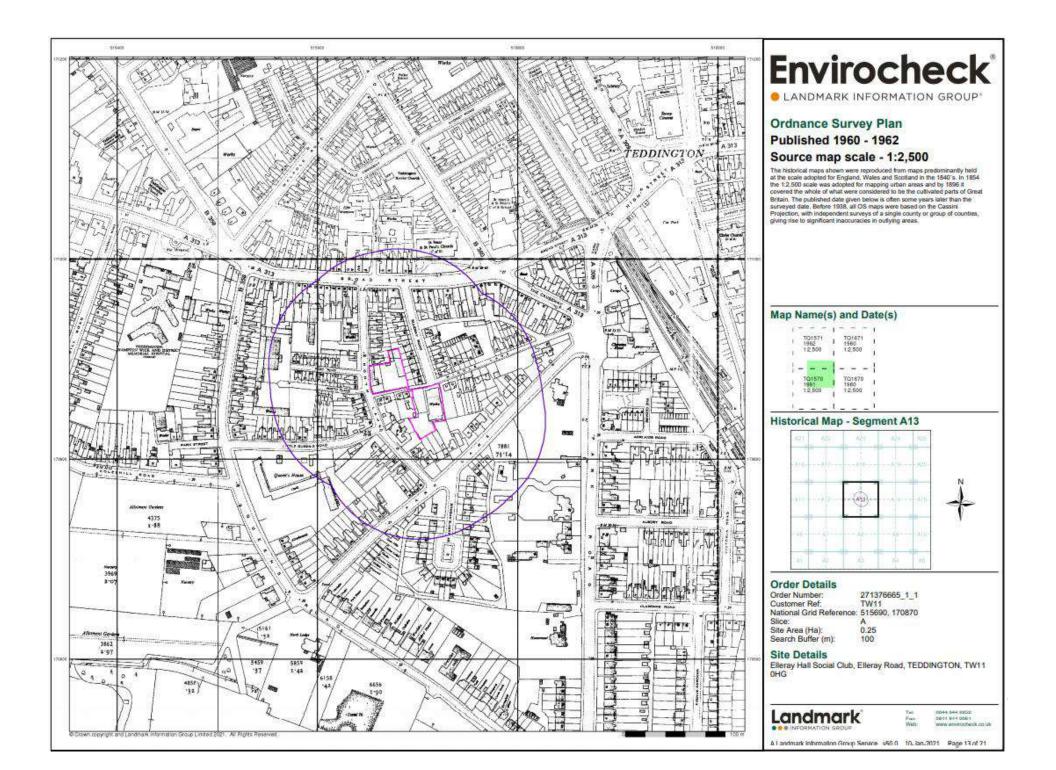


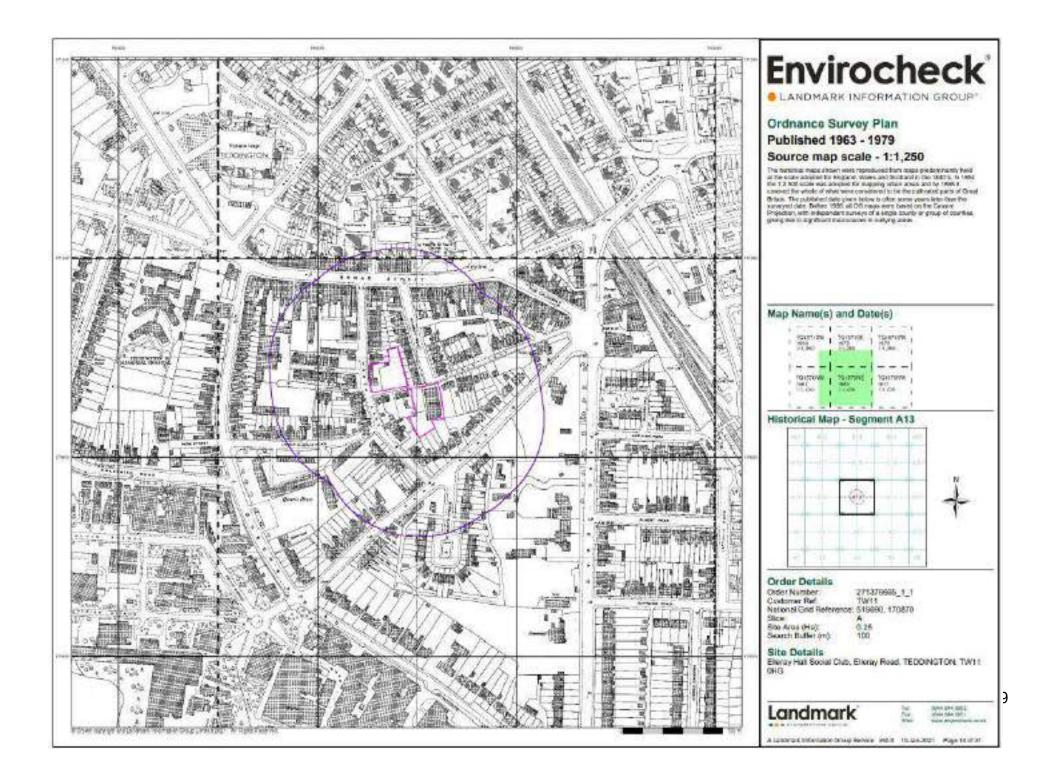

ANNEX F: Historical Maps

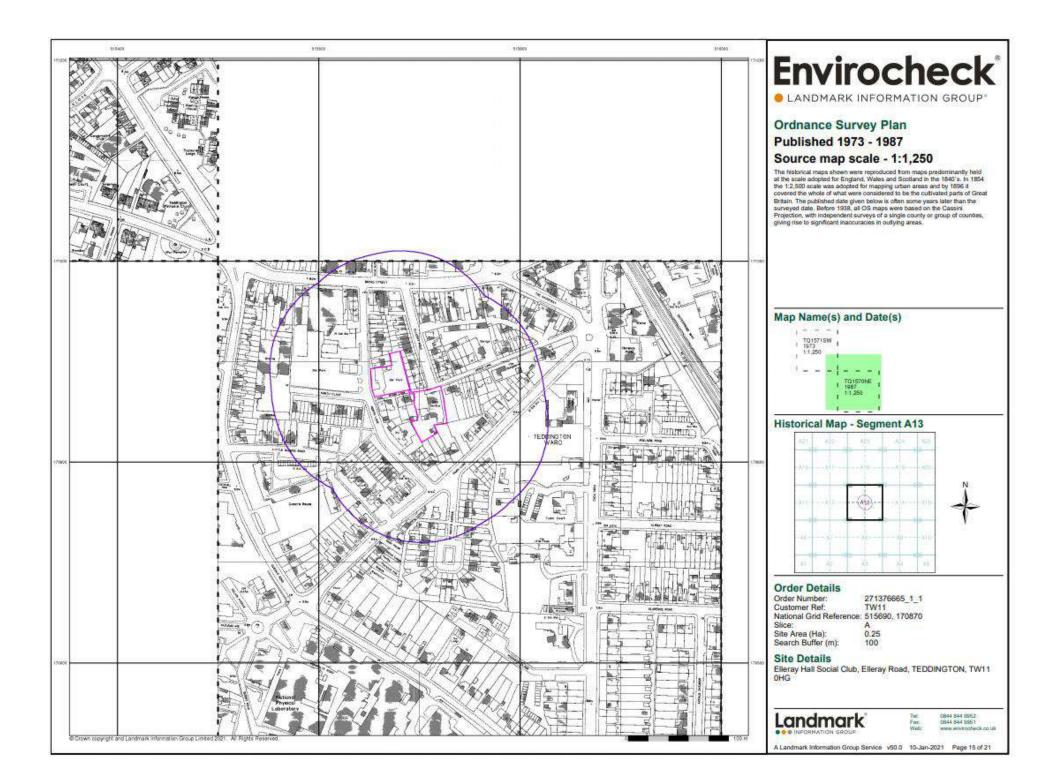


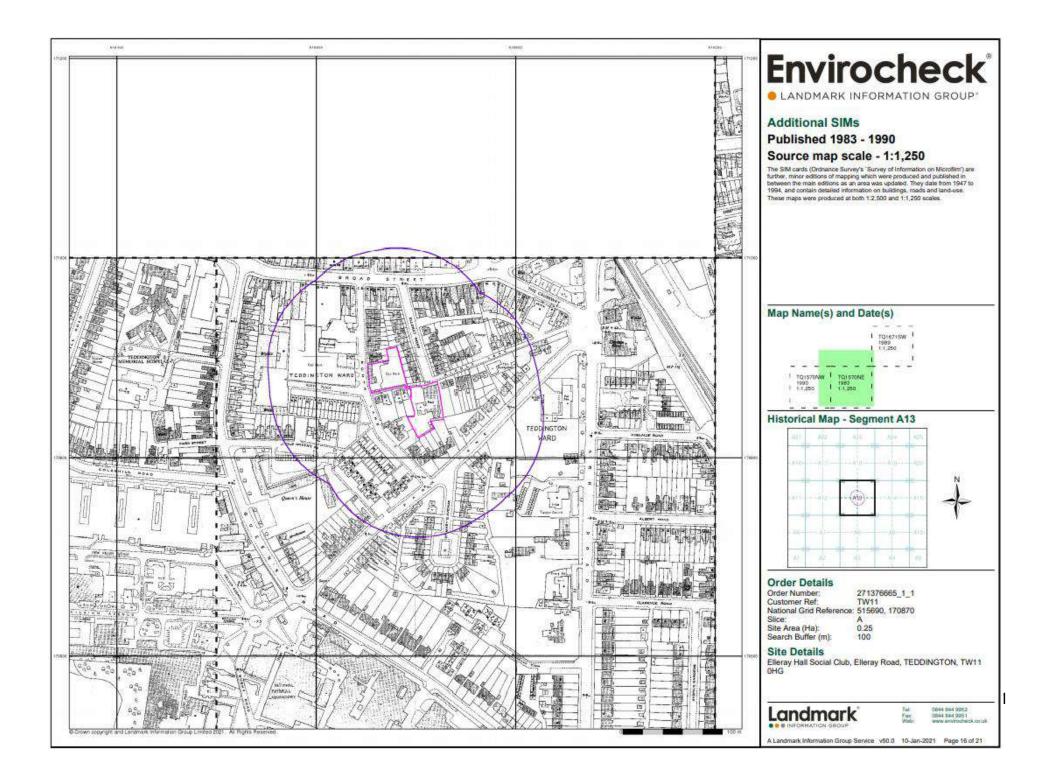


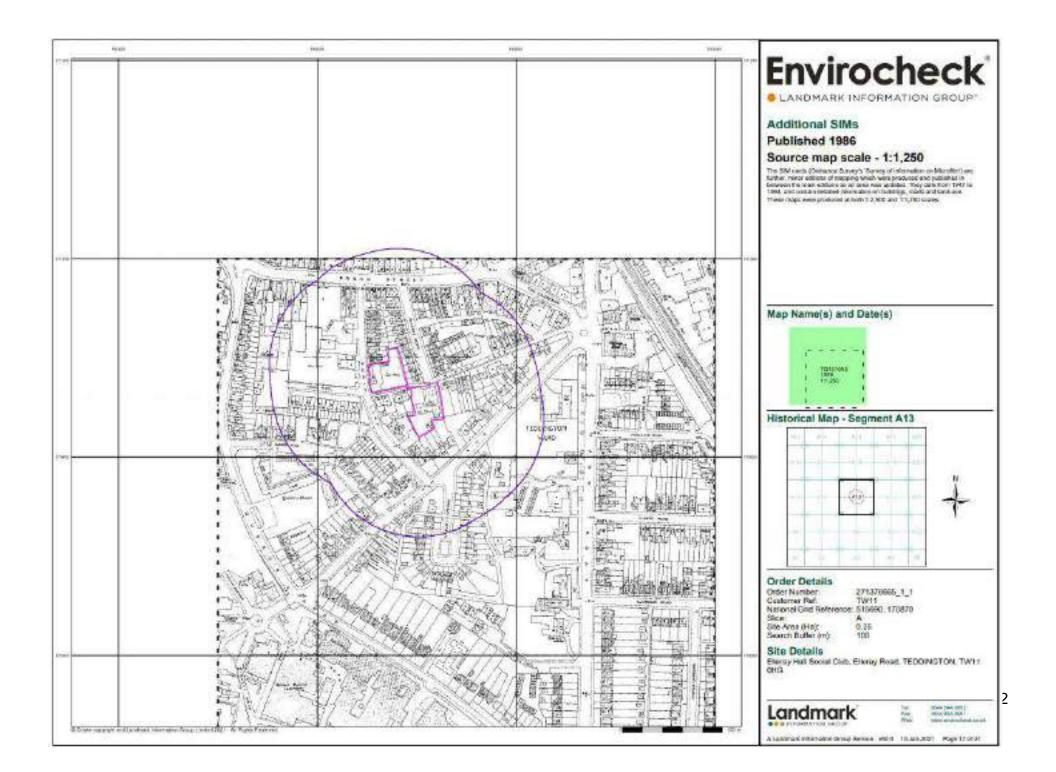


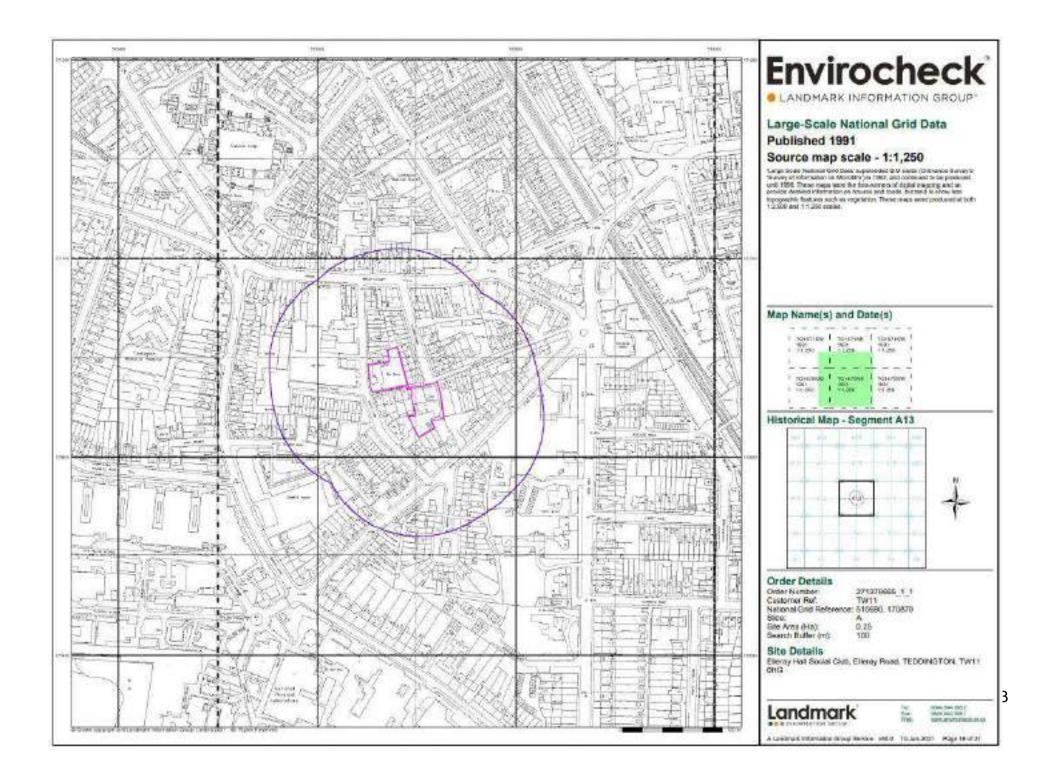


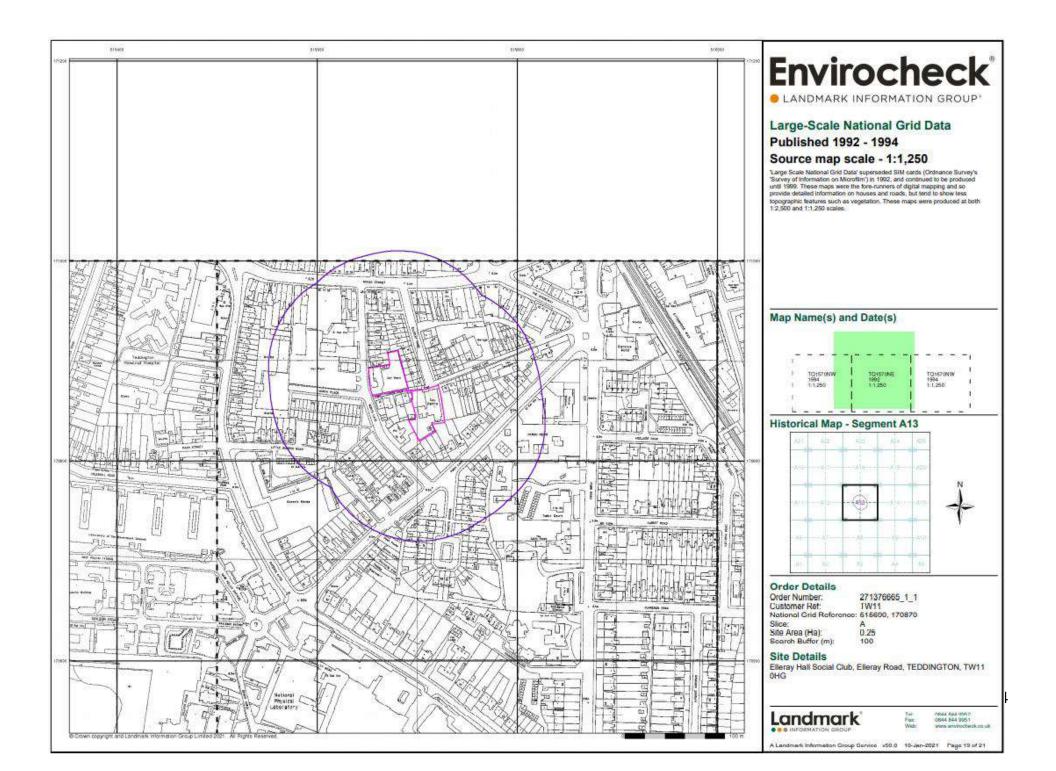


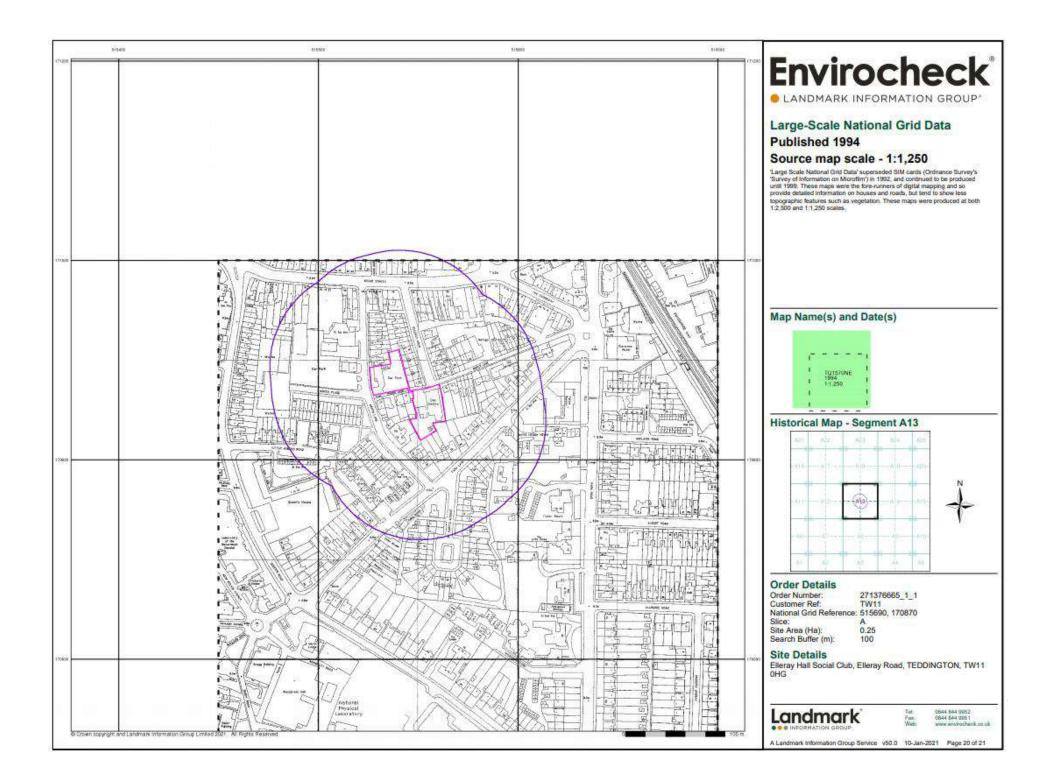


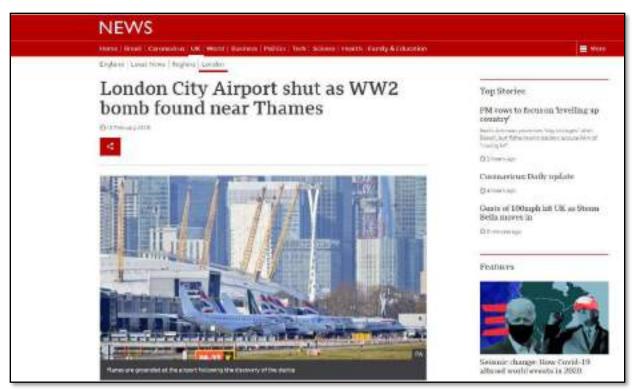






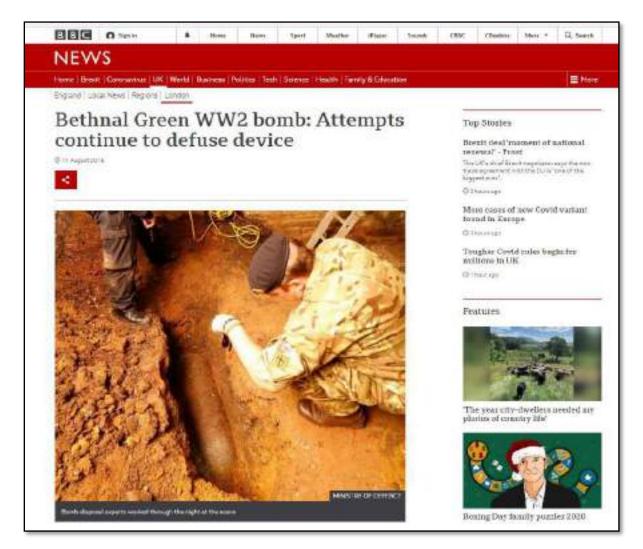






SOME BOMB INCIDENTS IN THE UK IN RECENT YEARS

Kingston (2019)


City Airport (2018)

Wembley (May 2015)

White City (July 2015)

Bethnal Green (April 2015)

JUMAS ENGINEERING ENVIRONMENTAL

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK.

JOMAS ASSOCIATES LTD

6-9 The Square Stockley Park Uxbridge UB11 1FW

CONTACT US

Website: www.jomasassociates.com

Tel: 0843-289-2187

Fax: 0872-115-4505

Email: info@jomasassociates.com