






15582-WIE-ZZ-XX-M1-D-92001, 18125_C645_MP_P_00_001_C - GF, A1-W

File Path |||Hhrs\wiel||Projects\|WIE15582\(106 - Drainage and River Wall\]_CAD\[92_

F. London Borough Richmond upon Thames (LBRuT) Correspondence

O'Donovan, Donal

From: Brian Humphris <bri>drian.humphris@richmond.gov.uk>

 Sent:
 03 March 2016 15:32

 To:
 O'Donovan, Donal

Subject: RE: WIE10667 160122 DOBH Stag Brewery Flood Risk Enquiry

Attachments: Gully reports.xlsx

Donal

In response to your questions below:-

- Not sure who would be the best contact but they have area teams, so any enquiry relating to Stag site would be referred to them.
- I can find no record of a name either. OS plan indicates that the culvert is fed by open ditches along both sides of Sheen Common, but nothing is indicated south of the common, within Richmond Park.
- 3 Please see attached reports as logged on our system.

Regards Brian

Brian Humphris Highway Asset Co-ordinator

020 8891 7738

From: O'Donovan, Donal [mailto:donal.odonovan@watermangroup.com]

Sent: 03 March 2016 12:03

To: Brian Humphris

Subject: RE: WIE10667 160122 DOBH Stag Brewery Flood Risk Enquiry

Hi Brian.

Many thanks for the response, I have a few follow up queries that I hope you will be able to answer.

- 1. You mentioned that we would need to confirmed if the Site had passed the Sequential Test with the Planners. Do you have the contact details for the best person/team to contact in relation to this.
- 2. You provided plan showing a culverted watercourse that has an outlet adjacent to the Site. Do you know what this watercourse is called? I have had a look online but not had any luck.
- 3. You mentioned that there have been some records of flooding due to blocked gullies. Can you provide any further information in relation to these (ie. extent, date, location etc.).

If you have any queries please feel free to give me a call.

Cheers,

Donal

From: Brian Humphris [mailto:brian.humphris@richmond.gov.uk]

Sent: 24 February 2016 16:23

To: O'Donovan, Donal <<u>donal.odonovan@watermangroup.com</u>> **Subject:** RE: WIE10667 160122 DOBH Stag Brewery Flood Risk Enquiry

Hi Donal

Please accept my apologies for the delay in responding to your enquiry. Unfortunately some of the information that you requested has taken some time to obtain. Please see comments below.

Regards Brian

Brian Humphris Highway Asset Co-ordinator

020 8891 7738

From: O'Donovan, Donal [mailto:donal.odonovan@watermangroup.com]

Sent: 22 January 2016 14:34

To: Brian Humphris

Subject: WIE10667 160122 DOBH Stag Brewery Flood Risk Enquiry

Hi Brian,

Thanks for speaking to me earlier.

Stag Brewery - Flood Risk Enquiry

I'm writing regarding the proposed redevelopment of Stag Brewery, located within the London Borough of Richmond upon Thames. The Site is approximately 9ha in size, and is located at approximate postcode SW14 7ET, please find attached a location plan for your information. The proposals comprise construction of a residential led mixed use development.

We have been commissioned to investigate the risk of flooding to the proposed development. I would be grateful if you could provide information relating to the following:

- The Environment Agency mapping shows that the Site lies within Flood Zones 2 and 3, and is generally shown as being defended The River Thames defences are identified as being continuous in this location, please could you confirm that the Site is fully defended from tidal and fluvial flooding.
 We do not have detailed records of River Defences. However photographs on pages 24 & 25 of the SPD show that there are no defences at Ship Lane. Street View images from the river appear to show river levels approx. 1m below the towpath level, although there is no way of knowing what the Tide Status was at that time. There are defences at Bulls Alley, as indicated on Page 13 of the SPD.
- 2. The Stag Brewery SPD sets out the planning brief for potential development at the Site. Please could you confirm that the Sequential Test has been passed.

 This would need to be confirmed by our Planners.
- 3. As it is very early in the decision process it is currently unknown where development would be located. However, the design would ensure that appropriate mitigation steps would be incorporated. In line with other Sites within London we currently assume that commercial and retail ('less vulnerable') uses would be acceptable on the ground floor. We also assume that duplex residential uses would be acceptable on the ground and first floor (bedrooms location on the first floor), as a means of egress would be available to ensure safety. Please could you confirm this. We will further consul once the scheme plans have evolved. This approach is reasonable but Planners would make final approval. At other developments within Flood Zones floor levels are usually raised to at least 300mm above ground level to reduce flood risk.
- 4. Could you please provide a map showing the location of any Ordinary Watercourses near the Site, and note any development restrictions that would therefore apply.

Please note plans attached. Watercourses plan shows a watercourse under the site, although the alignment is probably only indicative. OS plan is marked with the known extents of relevant section – 'outlet' is marked on the plan.

- 5. Please could you confirm whether or not there are any 'lost rivers' in the vicinity of the Site. Please could you provide any information you have relating to this, to include a map.

 See above
- 6. Please could you provide your Risk of Flooding from Surface Water map in the vicinity of the Site, as the EA's online version is difficult to interpret due to the scale.

 Richmond does not have its own Flood risk maps, we use the EA plans.
- 7. Please provide us with details of any historic tidal, fluvial, groundwater, surface water or sewer flooding affecting or in the vicinity of the Site. Alternatively, please confirm that you have no records of flooding in the vicinity.
 - Our Highways Enquiry System has no record of any flooding reports at Mortlake High Street, Lower Richmond Road, Ship Lane or Williams Lane, other than blocked gully reports.
- 8. Please could you confirm the likely groundwater levels in the vicinity of the Site. Unfortunately we do not have records of likely Groundwater Levels.
- 9. It is still very early in the design process and at this stage the drainage strategy is still being developed. We are currently looking at all options available to drain surface water runoff from the Site. Our approach will follow the drainage hierarchy where possible, with the preference of draining the site to the River Thames (unrestricted due to the tidal nature of the River). Should it not be possible to drain to the River Thames due to Site constraints, we would connect to the public sewer network. Following the requirements of the London Plan, we would limit surface water runoff from the Site to 50% of the existing rate, for the 1 in 100 year event, including for the predicted increase in rainfall intensity over the lifetime of the development due to climate change. Please could you confirm that this approach is acceptable.

 This approach is acceptable.

We are also writing to the Environment Agency and Thames Water requesting details of recorded flooding incidents and relevant information. If you are aware of any other parties that may have useful information please let me know.

This information is required as soon as possible and we would be grateful if you could provide your written response by 5th February 2016. If this is unlikely to be achievable or you require any further information please feel free to get in contact.

Please feel free to give me a call if you wish to discuss the above.

Cheers,

Donal

C. Donal O'Donovan Engineer Waterman Infrastructure & Environment Ltd

Pickfords Wharf | Clink Street | London SE1 9DG t +44 207 928 7888 | d +44 3300 602 316 www.watermangroup.com | LinkedIn | Twitter

🍂 Please consider the environment before printing this e-mail. Thank you!

This message contains confidential information and is intended only for the individual named. If you are not the named addressee you should not disseminate, distribute or copy this email. Please notify the sender immediately if you have received this email by mistake and delete it from your system. Email transmission cannot be guaranteed to be secure or error-free as information could be intercepted, corrupted, delayed, lost, destroyed, incomplete, or contain viruses. The sender does not accept liability for any errors or omissions in the contents of this message, which arise as a result of email transmission. All reasonable precautions have been taken to see that no viruses are present in this email. Waterman Group cannot accept liability for loss, disruption or damage however caused, arising from the use of this email or attachments and recommend that you subject these to virus checking procedures prior to use. Email messages may be monitored and by replying to this message the recipient gives their consent to such monitoring.

Waterman Group Plc., Pickfords Wharf, Clink Street, London SE1 9DG, is a company registered in England and Wales with company registration number 2188844.

If you have received this message in error you must not print, copy, use or disclose the contents, but must delete it from your system and inform the sender of the error. You should be aware that all emails received and sent by the London Borough of Richmond upon Thames may be stored or monitored, or disclosed to authorised third parties, in accordance with relevant legislation.

If you have received this message in error you must not print, copy, use or disclose the contents, but must delete it from your system and inform the sender of the error. You should be aware that all emails received and sent by the London Borough of Richmond upon Thames may be stored or monitored, or disclosed to authorised third parties, in accordance with relevant legislation.

G. Tide Locking Calculations

Company: WIE Office: London

 Sheet No:
 1 of 1
 Project No:
 WIE10667

 By
 N Balboni
 Date
 27.09.2017

Checked: D O'Donovan Date 27.09.2017

Project Title: Former Stag Brewery, Mortlake
Calculations Title: Tide Locking Calculation

									CA	LCU	LAT	ONS												
Т	The 'rule	of t	welf	ths	' is a	a rul	le of	thuml	that	allov	vs th	e tide	leve	el to	be e	estir	nated	base	d on	the h	nigh	and	low v	vate
	evels. T						xiar	ntion a	ssum	ing s	six ho	urs t	etwe	en l	nigh	and	d low	water	, and	d doe	s no	t tak	e acc	ou
C	of geogr	aphi [,]	cal l	loca	atior	١.																		
	Sou	rce: I	Port	of	Lon	don	Au	thority,	2017	7. Tia	le Ta	bles	and I	Port	Info	rma	ation							
								es and																
		nes N						4.13																
		swick			•			4.08	+ +															1
	0	, more			· (.,	,	1.00																
	Inpu	ıtc													Diil	0.01	f Twe	lfthc						+
	шрс	112	-	\dashv											Kui	e 0	iwe	111115						+
	N4	11:	ula V	A/-+	C	`				F '	22	AOE				الما	_	Cha		10/	otor	1 01/4	.I	+
		ın Hiç						=								Hou	ſ	Cha	ige	VV		Leve	el .	
	Mea	ın Lo	w V	ate	er S	prin	g	=		-1.(J∠ M	AOE				0		-	40		-1.0			4
																1			12		-0.5		\perp	4
	Inve	rt Le	vel	of C	Outf	all		=		2.6	i0 m	AOE				2		1/			0.5			_
			_													3		1/			2.1			4
																4		1/			3.6			
																5		1/			4.7			
																6		1/	12		5.2	23		
																7		1/	12		4.7	' 1		
																8		1/	6		3.6	67		
																9		1/	4		2.1	1		
																10		1/	4		0.5	54		
																11		1/	6		-0.5	50		
	Out	put														12		1/	12		-1.0	02		
		6 - 5 -												_										
	1004	3 -							/	/														
	Water Level (m AOD)	2 -																						
	Wate	0 -				/																		
		-1	0		1		2	3		4			6		7		8	9		10		11_	12	
		-2										Tim	e (Ho	urs)										
	Time	e tha	t ou	ıtfal	l he	com	es s	subme	raed i	(hrs)		=				3.3								
								unsubr	-			=	1			8.6							-	+
	l Im				·		, U U U	สถางนมโ	110190	,u (III	· • /	_	1			U.U			1	1 1		1		
								ubme	_	•	•	=				5.3								

Waterman Infrastructure & Enviro	nment	Page 1
Pickfords Wharf		
Clink Street		4
London SE1 9DG		Micco
Date 29/09/2017 11:44	Designed by CSNB2	Desinado
File 170926 CULVERT CHECK.MDX	Checked by	Diali laye
Micro Drainage	Network 2017.1.2	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FEH Rainfall Model Return Period (years) 100 FEH Rainfall Version 1999 Site Location GB 520450 176000 TQ 20450 76000 C (1km) -0.024 D1 (1km) 0.322 D2 (1km) 0.262 D3 (1km) 0.219 E (1km) 0.306 F (1km) 2.539 Maximum Rainfall (mm/hr) 0 Maximum Time of Concentration (mins) 5 0.000 Foul Sewage (1/s/ha) Volumetric Runoff Coeff. 0.750 PIMP (%) 100 Add Flow / Climate Change (%) 40 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00

500

Designed with Level Soffits

Min Slope for Optimisation (1:X)

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Ва	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
1.000	124.000	0.012	10333.3	0.300	5.00		0.0	0.600	[]	-1	Pipe/Conduit	ð
1.001	2.949	0.590	5.0	0.000	0.00		0.0	0.600	0	675	Pipe/Conduit	
1.002	7.594	0.051	150.0	0.000	0.00		0.0	0.600	0	675	Pipe/Conduit	ĕ
1.003	25.890	1.295	20.0	0.000	0.00		0.0	0.600	0	675	Pipe/Conduit	

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base		Foul	Foul Add Flow		Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
1.000	0.00	5.00	5.480	0.300		0.0	0.0	0.0	0.14	67.5	0.0
1.001	0.00	5.00	4.945	0.300		0.0	0.0	0.0	11.77	4211.0	0.0
1.002	0.00	5.00	4.355	0.300		0.0	0.0	0.0	2.14	765.0	0.0
1.003	0.00	5.00	4.305	0.300		0.0	0.0	0.0	5.88	2103.1	0.0

Waterman Infrastructure & Enviro	onment	Page 2		
Pickfords Wharf				
Clink Street		4		
London SE1 9DG		Misso		
Date 29/09/2017 11:44	Designed by CSNB2	Desinage		
File 170926 CULVERT CHECK.MDX	Checked by	Dialilade		
Micro Drainage	Network 2017.1.2	·		

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
1.000	[]	-1	1	6.030	5.480	0.400	Open Manhole	3000
1.001	0	675	2	6.030	4.945	0.410	Open Manhole	3000
1.002	0	675	3	6.030	4.355	1.000	Open Manhole	1500
1.003	0	675	3	6.030	4.305	1.050	Open Manhole	2100

<u>Downstream Manhole</u>

PN	N Length Slope MH		MH	C.Level I.Level		D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
1.000	124.000	10333.3	2	6.030	5.468	0.412	Open Manhole	3000
1.001	2.949	5.0	3	6.030	4.355	1.000	Open Manhole	1500
1.002	7.594	150.0	3	6.030	4.305	1.050	Open Manhole	2100
1.003	25.890	20.0		4.500	3.010	0.815	Open Manhole	675

Surcharged Outfall Details for Storm

Outfall	Outfall C.		Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
						(m)			

1.003 4.500 3.010 2.625 675 0

Datum (m) 0.000 Offset (mins) 0

Time	Depth										
(mins)	(m)										
30	5.230	90	5.230	150	5.230	210	5.230	270	5.230	330	5.230
60	5.230	120	5.230	180	5.230	240	5.230	300	5.230	360	5.230

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

©1982-2017 XP Solutions

Waterman Infrastructure & Enviro	onment	Page 3
Pickfords Wharf		
Clink Street		4
London SE1 9DG		Micco
Date 29/09/2017 11:44	Designed by CSNB2	Desipage
File 170926 CULVERT CHECK.MDX	Checked by	niailiada
Micro Drainage	Network 2017.1.2	

Synthetic Rainfall Details

Rainfall Model					FEH
Return Period (years)					100
FEH Rainfall Version					1999
Site Location	GB	520450	176000	TQ	20450 76000
C (1km)					-0.024
D1 (1km)					0.322
D2 (1km)					0.262
D3 (1km)					0.219
E (1km)					0.306
F (1km)					2.539
Summer Storms					Yes
Winter Storms					No
Cv (Summer)					0.750
Cv (Winter)					0.840
Storm Duration (mins)					30

Waterman Infrastructure & Enviro	nment	Page 4
Pickfords Wharf		
Clink Street		4
London SE1 9DG		Micco
Date 29/09/2017 11:44	Designed by CSNB2	Desinage
File 170926 CULVERT CHECK.MDX	Checked by	Dialilade
Micro Drainage	Network 2017.1.2	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	-				FEH
FEH Rainfall Version					1999
Site Location	GB	520450	176000	TQ	20450 76000
C (1km)					-0.024
D1 (1km)					0.322
D2 (1km)					0.262
D3 (1km)					0.219
E (1km)					0.306
F (1km)					2.539
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

PN	US/MH Name	5	Storm		Climate Change	First	t (X)	First (Y)	First (Z) Overflow	Overflow Act.	Water Level (m)	
					090	5 4 2 6 2	90		0.02220		\ /	
1.000	1	15	Winter	100	+40%	100/15	Summer				5.824	
1.001	2	60	Summer	100	+40%						5.274	
1.002	3	60	Summer	100	+40%	100/30	Summer				5.267	
1.003	3	60	Summer	100	+40%	100/30	Summer				5.254	

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.000	1	0.194	0.000	1.29		285.9	FLOOD RISK	
1.001	2	-0.346	0.000	0.15		147.8	OK	
1.002	3	0.237	0.000	0.35		148.7	SURCHARGED	
			01000	010	~ 7 . '			

©1982-2017 XP Solutions

Waterman Infrastructure & Enviro	nment	Page 5
Pickfords Wharf		
Clink Street		4
London SE1 9DG		Mirera
Date 29/09/2017 11:44	Designed by CSNB2	Desinado
File 170926 CULVERT CHECK.MDX	Checked by	Diamage
Micro Drainage	Network 2017.1.2	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.003	3	0.274	0.000	0.10		149.6	SURCHARGED	

©1982-2017 XP Solutions

CHART DATUMS & STANDARD LEVELS IN THE PORT OF LONDON

 Chart Datum is set to approximately the level of Lowest Astronomical Tide (L.A.T.)

Low Water levels in the upper reaches of the tidal Thames are greatly
affected by the land water flow at Teddington Weir. They frequently fall
below chart datum when this flow is significantly reduced, typically
during the summer months.

3. Maintained level and chart datum above Richmond half tide weir are

both 1.72 metres above Ordnance Datum (Newlyn).

 Trinity High Water (T.H.W.) is deemed, by the Port of London Act, 1968, to be a level having a value of 11.4 feet (i.e. 3.475 metres) above Ordnance Datum (Newlyn).

100 100 100 100	Level of Chart Datum below	St	andard I	evels abo	ove local	C.D.
Tidal Station	Ordnance Datum (Newlyn) m	Mean Low Water Springs MLWS	Mean Low Water Neaps MLWN	Mean High Water Neaps MHWN	Mean High Water Springs MHWS	Highest Astronomica Tide (HAT)
WALTON	2.16	0.5	1.1	3.5	4.3	4.7
MARGATE	2.50	0.6	1.3	4.0	4.8	5.1
SHIVERING SAND	10=3	0.6	1.4	4.4	5.4	5.7
SOUTHEND	2.90	0.6	1.4	4.8	5.9	6.3
CANVEY	2.97	0.6	1.4	5.0	6.1	6.6
CORYTON	3.05	0.6	1.5	5.1	6.2	6.7
TILBURY	3.12	0.6	1.5	5.4	6.6	7.0
GREENHITHE	3.20	0.6	1.6	5.6	6.7	7.2
DAGENHAM	3.28	0.6	1.6	5.8	7.0	7.5
NORTH WOOLWICH	3.35	0.6	1.6	5.9	7.2	7.7
TOWER	3.20	0.5	1.5	5.9	7.1	7.6
BLACKFRIARS	3.05	0.5	1.4	5.8	7.0	7.5
WESTMINSTER	2.90	0.5	1.3	5.7	6.9	7.4
VAUXHALL	2.59	0.3	1.0	5.4	6.6	7.1
VICTORIA RAIL	2.44	0.3	0.9	5.3	6.5	6.9
ALBERT BRIDGE	2.29	0.3	0.9	5.1	6.3	6.8
WANDSWORTH	2.13	0.3	0.9	5.0	6.2	6.7
PUTNEY	1.98	0.3	8.0	4.9	6.1	6.6
HAMMERSMITH	1.68	0.3	0.7	4.7	5.8	6.4
BARNES	1.37	0.2	0.6	4.4	5.5	6.1
CHISWICK	1.22	0.2	0.5	4.3	5.3	6.0
KEW	1.07	0.2	0.5	4.2	5.2	5.9
BRENTFORD	0.91	0.1	0.4	4.0	5.0	5.7
RICHMOND	0.61	0.1	0.2	3.8	4.8	5.5
TWICKENHAM	Note 3	9=		1.5	2.5	3.2

H. Surface Water Calculations

Company: WIE Office: London

 Sheet No:
 1 of 11
 Project No:
 WIE15582

 By
 N Balboni
 Date 10/09/2019

Checked: D O'Donovan Date 10/09/2019

Project Title Former Stag Brewery, Mortlake

Calculations Title Surface Water Management - Summary Sheet

LOCATION			CALCUL	ATIONS			OPTIONS
	Surface water at th	ne Site will be	e managed in acc	cordance with th	e Local Auth	nority requirement	5,
	i.e. surface water o	discharge res	stricted to the exi	sting existing ra	te, including	for the impacts of	
	climate change.						
	Existing Surface	Water Disch	_ · · · ·				
		Area (h	,	ation method		rge Rate	
	Site Area*	4.82	,	ford (Page 2)		688 l/s	
	,	vith PIMP of	,			143 l/s/ha	
	Site Area**	5.89		ford (Page 3)		841 l/s	
	`	vith PIMP of	•			143 l/s/ha	
	*excludes area		nes				
	**area that disc	charges into	the Thames Wa	ter network in th	e existing ca	ase	
	Proposed Surface						
			% of existing rate			20.4 l/s	
	Attenuation is i	maximised w	ithin each catchi	ment, providing	the following	reduction in flows	3:
	Catchment	Area (ha)	Ex. Rate (I/s)	Pr. Rate (I/s)		Betterment (%)	
	East - 1	0.30	42.8	20.0	143	53	
	East - 2	0.25	35.7	17.8	117	50	
	East - 3	0.18	25.7	12.8	84	50	
	West - school West - 4	1.31	187.0	16.0	992	91	
	West - 5	1.07	152.7	76.2	499	50 62	
	West - 6	0.92	131.3	49.5	465		
	Sub-Total	0.79 4.82	112.8	56.3 249	369 2667	50 64	
	Sub-10tal	4.02	688	249	2007	04	
		•	ategy maximises				
			g surface water in the Thames Wa				
			e water discharg				
	Total	5.89*	841	249	2667	70	
	I Otal	3.03	041	243	2007	70	
			hich is proposed				

Company: WIE Office: London

 Sheet No:
 2 of 11
 Project No:
 WIE15582

 By
 N Balboni
 Date
 10/09/2019

Checked: D O'Donovan Date 10/09/2019

Project Title Former Stag Brewery, Mortlake

Calculations Title Existing Discharge Rate (excluding area proposed to discharge into River Thames) - Modified Rational Method

LOCATION												CAL	CUI	ATIONS									OF	PTIO	NS
												of u	ırba	n storm d	rainage	. Th	e Wa	allingfo	rd P	roce	dure	,			
	Volur	ne	1 Prin	ıci	ples	me	thoo	ls a	nd p	ract	ice.														
	User	Inp	ut Da	ata	<u>a</u>																				
	Total	site	e area	3														4	4.82	ha					
	SAAF	R (F	rom l	FE	H)														605						
	Rainf	all I	ntens	sity	y (Fr	om	FEH	H)										5	1.80						
	PIME) (%	impe	erv	/ious	;)													100	%					
	Soil 7	Гуре	Э															(0.40						
	Very	Lov	v Run	of	f (we	ell c	Irain	ed s	sand	y, Ic	amy	or (eart	hy peat so	oils)			(0.15						
	Low I	Rur	off (\	/eı	ry pe	rm	eabl	e so	oils (e.g.	grav	/el, s	sand	d)				(0.30						
	Mode	erate	e (Ve	ry	fine	sar	nds,	silts	and	se	dime	entar	y cl	ays)				(0.40						
	High	Rui	noff (0	Cla	ayey	or	loan	าy s	oils)									(0.45						
	Very	Hig	h Rui	10	ff (S	oils	of t	he v	vet u	plar	nds)							(0.50						
Fig. 9.7	UCW	/I (F	rom l	Fiç	gure	9.7	of \	Vall	ingfo	ord I	Meth	nod)							52						
															<u>'</u>										
Eqn. 13	Qp (p	peal	k disc	ha	arge)) = 2	2.78	Cv	CR	iΑ															
	Wher	re:	Q	р	(Pea	k D	isch	arg	e)		j =	rainf	all i	ntensity			A =	Total A	Area						
From FEH	Avera	age	rainfa	all	Inte	nsit	y (i)																		
		ſ	M100	_6	0 is:			5	1.80	mm	1														
Eqn 7.20	Cv =	PR	/100																						
Eqn 7.3	Р	R =	(0.8	29	PIN	1P)	+ (2	5.0	SOI	L) +	(0.0)78 l	JCV	VI) - 20.7											
		F	PIMP	(F	erce	enta	age (of ca	atchi	nen	t wh	ich i	s im	pervious)		100	%							
Page 52			N	ote	e: Pl	MP	car	no	t be	less	tha	n 40	%				40	%							
-			TI	hu	s va	lue	of P	IMF	o to b	e u	sed						100	%							
			S	oil	:	0.	40			UC	WI:	5	2												
	P	R=	=														1	76.26							
	Thus	Cv	=															0.76							
Sec 7.10	CR (F	Rec	omm	en	ded	for	sim	ulat	ion a	ind (desi	gn)						1.3							
	Qp fc	or 1	in 10	0	year	60	min	ute	dura	atio	n =				688.1	l/s		14	42.8	I/s/l	ha				
		T																							

Company: WIE Office: London

 Sheet No:
 3 of 11
 Project No:
 WIE15582

 By
 N Balboni
 Date
 10/09/2019

Checked: D O'Donovan Date 10/09/2019

Project Title Former Stag Brewery, Mortlake

Calculations Title Existing Discharge Rate (whole site currently draining to Thames Water network) - Modified Rational Method

LOCATION													CAL	.CUI	ATIONS	3								OPT	IONS
	Cal	cula	tio	ns b	ase	d o	n: [Des	ign	and	Ana	lysis	s of ı	ırba	n storm (drainag	e. Th	e W	allingfo	rd P	roce	dure,			
	Vol	ume	1	Prin	cipl	es i	met	thoc	ls a	nd p	ract	ice.													
	Use	er In	ıpı	ıt Da	ıta																				
	+==			area																5.89	ha			+	
	+	-		om F		1)														605				+	
	_		•	tens		,	om l	FEH	H)										5	1.80					
	_			mpe		_	-													100	%				
	+	l Typ		Ť		T	,													0.40					
	_			Run	off	(we	ll di	rain	ed s	sanc	ly, lo	oam	v or	eart	ny peat s	oils)				0.15					
		•				•					•		vel, s		• •					0.30					
	-			•	<u> </u>						_	_	entar		<u> </u>					0.40				1	
	_			off (C	-						1									0.45				1	
				Run					•			nds)								0.50				1	
		_	Ĭ			Ì					İ													1	
ig. 9.7	UC	WI (Fr	om F	igu	ıre 9	9.7	of \	Vall	ingf	ord I	Meth	nod)							52					
<u> </u>					Ť								,				-								
Eqn. 13	Qp	(pea	ak	disc	narg	ge)	= 2	2.78	Cv	CR	iΑ														
·	+ -	ere:	_		_				arg			j =	rainf	all i	ntensity			A =	Total A	\rea					
				1																					
From FEH	Ave	erag	e r	ainfa	ıll Ir	nter	nsity	y (i)																	
			_	100			ĺ	, ()		1.80	mn	า													
Eqn 7.20	Cv	= PI	- R/1	00																					
		PR	=	(0.82	29 F	РΙΜ	P) -	+ (2	5.0	SOI	L) +	(0.0)78 I	JCV	VI) - 20.7										
•				•				<u> </u>							pervious			100	%						
Page 52					_			_					n 40					40	%						
				Th	us	valı	ue d	of P	IMF	o to	be u	sed						100							
				Sc			0.4					WI:	_	2											
		PR	=																76.26						
	Thu	ıs C		:															0.76						
Sec 7.10				mme	end	ed 1	for :	sim	ulati	ion a	and	desi	gn)						1.3					1	
-													,											1	
	Qp	for	1 iı	100) ує	ear	60 ı	min	ute	dur	atio	n =				840.8	l/s		14	42.8	l/s/	ha			
	50%	% of	th	e exi	stin	ıg rı	uno	ff ra	ate=							420.	4 I/s		•	71.4	I/s/	ha			
·						I																			

Company: WIE Office: London

Sheet No: 4 of 11 Project No: WIE15582

 By
 N Balboni
 Date
 10/09/2019

 Checked:
 D O'Donovan
 Date
 10/09/2019

Project Title Former Stag Brewery, Mortlake

Calculations Title Greenfield Runoff Rate (IoH 124)

LOCATION	CALCULATIONS		OPT	IONS
	In order to calculate the rate of surface water discharge from the per			
	Windes Microdrainage version 2017.1.2 Source Control module has been calculated using the IoH 124 Methodology. The input and outp			
	Deen calculated using the form 124 Methodology. The input and outp	ut data for willor are shown below,		
	An area of 50ha has been used in the calculations as this is the lowe	est catchment area which the IoH		
	124 method can calculate. The 50ha output is then prorated as set			
	Waterman Group	Page 1 _		
	Pickfords Wharf			
	Clink Street			
	London, SE1 9DG	Micro		
	Date 10/09/2019 09:37 Designed by csnb2	Drainage		
	File Checked by			
	Innovyze Source Control 201	19.1		
	TH 104 Mann Januar 3 733	-		
	<u>IH 124 Mean Annual Flood</u>	-		
	Input	-		
	<u> </u>	-		
	14	oil 0.400		
	Area (ha) 50.000 Urb SAAR (mm) 605 Region Numb			
	Results 1/s			
	QBAR Rural 143.4			
	QBAR Urban 143.4	-		
	Q100 years 457.5	-		
1	Q100 years 457.5	-		
	Q1 year 121.9	-		
	Q2 years 126.4 Q5 years 183.6	_		
	Q10 years 232.4			
	Q20 years 287.3			
	Q25 years 308.1 Q30 years 325.1			
	Q50 years 375.8			
	Q100 years 457.5	-		
	Q200 years 537.9 Q250 years 563.7	-		
	Q1000 years 740.1	-		_
	1 in 1 121.9 l/s/50ha 2.4 l/s/ha	11.8 l/s		
	Qbar (1 in 2.333) 143.4 l/s/50ha 2.9 l/s/ha	13.8 l/s		
	1 in 100 457.5 l/s/50ha 9.2 l/s/ha	44.1 l/s		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
				+
1				

Company: WIE Office: London

Sheet No: 5 of 11 Project No: WIE15582

By N Balboni Date 10/09/2019

Checked: O O'Donovan Date 10/09/2019

Project Title Former Stag Brewery, Mortlake

Calculations Title Surface water attenuation volume - catchment East 1

LOCATION		CAL	CULATIONS	OPTIONS
			red for the Site, Windes Microdrainage version 2018.1, Source t and output data for which are shown below;	
	Drainage Catchment - East 1			
	Area	0.30 ha		
	Attenuation available	143 m3		
	Discharge rate	20.0 l/s		
	Neturn Period (years) 100 C	/ (Summer) / (Winter) / (Winter) / (Winter) / (Winter) / (Winter) / (0.840 / 0.300 / 0	Results Global Variables require approximate storage of between 117 m³ and 168 m². These values are estimates only and should not be used for design purposes.	
		Analyse OK Cancel Help	Analyse OK Cancel Help	
	Enter Maximum Allowable Discharg	e between 0.0 and 999999.0	Enter Maximum Allowable Discharge between 0.0 and 999999.0	4
	Required volume to achieve 20.0 l/s	<u>3</u>		
	Attenuation volume (m3)	143		

Company: WIE Office: London

Sheet No: 6 of 11 Project No: WIE15582

 By
 N Balboni
 Date
 10/09/2019

 Checked:
 O O'Donovan
 Date
 10/09/2019

Project Title Former Stag Brewery, Mortlake

Calculations Title Surface water attenuation volume - catchment East 2

LOCATION	CALCULATIONS	OPTIONS										
	In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage version 2016.1, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;											
	Drainage Catchment - East 2											
	Area 0.25 ha											
	Attenuation available 117 m3											
	Discharge rate 17.8 l/s											
	Quick Storage Estimate											
	Analyse OK Cancel Help Analyse OK C Enter Maximum Allowable Discharge between 0.0 and 999999.0 Enter Maximum Allowable Discharge between 0.0 and 999999.0	ancel Help										
	Required volume to achieve 17.8 l/s Attenuation volume (m3) 117											

Company: WIE Office: London

Sheet No: 7 of 11 Project No: WIE15582

By N Balboni Date 10/09/2019

Checked: O O'Donovan Date 10/09/2019

Project Title Former Stag Brewery, Mortlake

Calculations Title Surface water attenuation volume - catchment East 3

LOCATION	CALCULATIONS										
	In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage versions Control module, Quick Storage Estimate has been used. The input and output data for which are shown belo										
	Drainage Catchment - East 3		#								
	Area 0.18 ha										
	Attenuation available 84 m3										
	Discharge rate 12.8 l/s										
	✓ Quick Storage Estimate		×								
	Variables FEH Rainfall Variables FEH Rainfall Version 1999 Variables Results Results Results Results C (1km) 0.024 D3 (1km) 0.219 Infiltration Coefficient (m/hr) 0.00000 D1 (1km) 0.322 E (1km) 0.306 Safety Factor D2 (1km) 0.262 F (1km) 2.539 Climate Change (%) Analyse OK Cancel Help Cancel Cancel Help Cancel Cancel Help Cancel Cancel Help Cancel Cancel Help Cancel Cancel Help Cancel Help Cancel Cancel Help Cancel Help Cancel Cancel Help Cancel Cancel Cancel Help Cancel Cancel Help Cancel Canc	imate storage y and should not be used for design purposes. Analyse OK Cancel Help									
		able Discharge between 0.0 and 999999.0									
	Required volume to achieve 12.8 l/s Attenuation volume (m3) 84										

Company: WIE Office: London

Sheet No: 8 of 11 Project No: WIE15582

By N Balboni Date 10/09/2019

Checked: O O'Donovan Date 10/09/2019

Project Title Former Stag Brewery, Mortlake

Calculations Title Surface water attenuation volume - catchment West School

LOCATION	CALCULATIONS										(OPTI			
	In order to calculate the volume of s Control module, Quick Storage Estin		•				-)18.1,	Source				
	Drainage Catchment - West School	ol				+							+		
	Area	1.31 h	ıa												
	Attenuation available	992 m	n3												
	Discharge rate	16.0 1/5	's												
	Variables Return Period (years) 100 C	v (Summer) v (Winter) upermeable Area (ha) permeable Discharge filtration Coefficient (m/hr) afety Factor imate Change (%)	0.750 0.840 1.310 16.0 0.00000		Micro Glo Drainage of	sults obal Variables between 841 r	require approximate m³ and 1142 m³. e estimates only and		be used fo	r design pu					
	Enter Maximum Allowable Discharg	Analyse OK e between 0.0 and 999999.0				Ente	r Maximum Allowable Dis		Analyse een 0.0 and 9	OK 999999.0	Cancel	Help			
	Required volume to achieve 16.0 l/s	T											\perp	<u> </u>	
	Attenuation volume (m3)	992											\perp	<u> </u>	
															i

Company: WIE Office: London

Sheet No: 9 of 11 Project No: WIE15582

By N Balboni Date 10/09/2019

Checked: O O'Donovan Date 10/09/2019

Project Title Former Stag Brewery, Mortlake

Calculations Title Surface water attenuation volume - catchment West 4

LOCATION		01 120	JLATION	_							OPTION:	
	In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage version 2016.1, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;											
	Drainage Catchment - West 4											
	Area	1.07 ha										
	Attenuation available	499 m3										
	Discharge rate	76.3 l/s										
	→ Quick Storage Estimate			Quick Storage	Estimate							
	Variables FEH Rainfall Variables FEH Rainfall Variables FEH Rainfall Version 1999 Version	Cv (Summer) 0.750 Cv (Winter) 0.840 Impermeable Area (ha) 1.070 Maximum Allowable Discharge (f/s) 76.3 Infiltration Coefficient (m/hr) 0.00000 Safety Factor 2.0 Climate Change (%) 40		Variables Results Design Overview 2D Overview 3D		ables require appr 408 m³ and 589 m es are estimates o			d for design purp	oses.		
	_	Analyse OK Cancel H	Help					Analyse	ОК	Cancel	Help	
	Enter Maximum Alfowable D	scharge between 0.0 and 999999.0				Enter Maximum Allov	wable Discharge	between 0.0 ar	nd 999999.0			
	Required volume to achieve 76.3 la	e										
	Attenuation volume (m3)	499										