

WS102 @ 0.3m	Lead	200	1400
WS104 @ 0.3m	Lead	200	510
WS105 @ 0.35m	Lead	200	320

9.7 No other exceedances were recorded.

Controlled Waters

- 9.8 Risk to groundwater resources is dismissed due to the absence of any significant source of mobile contamination.
- 9.9 The risk to surface waters risk has been dismissed within the Initial Conceptual Model. No new risks are identified.

Ground Gas

- 9.10 Following the guidance provided in Section 3 of CIRIA C665 an initial assessment is undertaken to determine if there are any significant sources of potential ground gas. Such sources include landfills, organic clays and made ground incorporating putrescible materials such as rags, paper and wood. Where no significant source is identified no further assessment is necessary.
- 9.11 This approach is further supported by supplementary guidance given in RB17, published by CL:AIRE which confirms that gas monitoring is not generally required on sites where Made Ground is less than 5m thick and with low organic matter content or on natural soils such as alluvial clays and Chalk as the ground gas sources are not considered significant. The supplementary guidance given in RB17 also takes account of the current requirements for sealing of floor slabs and substructures to meet air tightness requirements under Part L of the Building Regulations which were not considered in CIRIA C665. The advice given in RB17 is consistent with CIRIA C665 and the Local Authority Guide to Ground Gas published by CIEH.
- 9.12 Where significant potential risk from ground gas is identified from the Initial Conceptual Model and the intrusive ground investigation works ground gas monitoring is undertaken and the results of the monitoring are compared against the Gas Screening Values given in CIRIA Report 665. From this the Characteristic Situation is identified and remedial measures proposed.
- 9.13 When assessing the risk and type of remedial measures appropriate consideration is given to the likely construction of the development, the nature of the gas posing a risk and the nature of the likely source. The use of engineering judgement when determining risk from

- ground gas is consistent with the recommendations given in CIRIA C665 using a pollutant linkage model.
- 9.14 Gas monitoring was undertaken during return visits which has not recorded elevated concentrations of Methane and no flow. Based on the gas monitoring undertake the Gas Screening Value is less than 0.07l/hr and therefore falls within Characteristic Situation 1 (CS1).
- 9.15 Additional monitoring is being undertaken.

Revised Conceptual Model

9.16 The Initial Conceptual Model presented in Section 6 has been revised based on the findings of the ground investigation and the revised Conceptual Model is presented below:

Source	Location	Exposure Pathway	Potential Receptor	Probability of Exposure	Details	
Human Health						
Asbestos, Hydrocarbon and metals.	Made Ground.	Ingestion dermal and inhalation.	Construction Workers.	Low	Management procedures proposed.	
and metals.		and initialation.	Site users.	Low	Remediation proposed.	
Asbestos, Hydrocarbon and metals.	Unforeseen Contamination.	Ingestion dermal	Construction Workers.	Dismissed.	Normal PPE will address risk.	
and metals.			Site users.	Negligible.	No source identified.	
Hydrocarbon and metals.	Potential migration from off-site source.	Ingestion dermal and inhalation.	Construction Workers.	Dismissed.	No source and no exceedance of GAC.	
			Site users.			
	Historic Landfill.	Inhalation & Explosive.	Construction Workers.			
Ground Gas.		2	Site users.	Dismissed.	No significant source identified and	
C. Gana Gas.	Potential Made Ground.	Inhalation & Explosive.	Construction Workers.	Distributed.	no significant ground gas measured.	
Groundwater			Site users.			
Groundwater			T			
Hydrocarbon and metals.	Potential spillage on site	Vertical Migration.	Groundwater	Dismissed.	No mobile source identified.	
Surface Water						
Hydrocarbon and metals.	Potential spillage on site	Horizontal Migration.	River Network	Dismissed.	No source or credible receptor.	
Environmental Receptors	3					
		Ingestion dermal and inhalation.	Ecology.	Dismissed.	No sensitive ecology designation.	
		Direct.	Archaeology.	Dismissed.	None present.	
On site cont	taminants	Direct.	Geology.	Dismissed.	No sensitive receptor present.	
222		Phytotoxic.	Woodland.	Dismissed.	None present.	
		Phytotoxic. Ingestion dermal and inhalation.	Crops. Livestock.	Dismissed. Dismissed.	No source identified. No source identified.	
Building Services					<u></u>	
		Direct.	Historic Buildings.	Dismissed.	None present.	
On site cont	taminants	Direct.	Proposed Buildings.	Dismissed.	No source identified.	
		Permeate into pipework.	Water Pipes.	Dismissed.	No significant source identified.	

- 9.17 Elevated Lead, Arsenic and PAH have been identified and it is recommended that remediation is undertaken.
- 9.18 Within areas of buildings and pavements the use of hardstanding will provide remediation by breaking the potential pollutant linkage. Within proposed soft landscape areas it is

recommended that clean cover soils are provided comprising 600mm in domestic garden areas and 400mm in communal areas over a geotextile no dig layer. Validation of the cover soils should be undertaken using hand pits with testing of cover soils.


- 9.19 Asbestos contaminated material has been identified during the ground investigation and it is possible that further material could be encountered during construction works. The use of clean cover soils discussed above will provide remediation to protect future site users. Measures should to be incorporated in to the Contractors Construction Stage Health and Safety Plan and asbestos management plan as required under the Construction Design and Management (CDM) Regulations to mitigate risk to construction works. Measures may include:
 - Designing temporary works to minimise disturbance of the Back fill material;
 - Separating material and disposal of soils containing asbestos;
 - Wetting down during excavation;
 - Sheeting of stockpiles where asbestos is suspected;
 - Testing of soils and off-site disposal of any soils found or suspected of containing asbestos;
 - Preventing access to the construction site by members of the public;
 - Use of good hygiene measures, including washing down of plant; and
 - Use of appropriate PPE, including face masks...
- 9.20 If unforeseen contamination is encountered during construction works such as localised spillage outside the areas investigated an Environmental consultant will be available on a 'call out' basis to undertake an assessment of risk. If 'unforeseen contamination' is encountered such as hydrocarbon contamination or solvent odours the discovery strategy will be to remove the source as it is likely to be very limited in extent or encapsulate it on site as appropriate and the Local Planning Authority advised.
- 9.21 As part of this discovery strategy it is recommended that additional investigation by trial pits is undertaken in areas of existing hardstanding where access can not currently be obtained to identify potential areas of contamination. This supplementary investigation is best undertaken following demolition works where safe access can be gained.

Waste Classification

- 9.22 Two part WAC test has been undertaken, the results of which are included in Appendix C. These show no exceedances above the inert threshold values PAH, TPH or TOC. Exceedance above leachable thresholds for Inert Waste by Antimony and Lead were recorded. In addition, asbestos above 0.1% has been recorded.
- 9.23 The Waste Management paper 2 has been updated to version 3 which states that sites which previously could be considered 'uncontaminated land' surplus soils if they did not exceed the GAC values now requires the landfill to make an appropriate assessment of the waste classification. As such final assessment, will be undertaken by the receiving landfill based on the requirements of their permit.
- 9.24 Based on the results received it is considered that Made Ground is likely to be classified as Stable Non Reactive Waste.

10.0 GEOTECHNICAL ASSESSMENT

Proposed Development

- 10.1 This document is a report of this survey and has been produced to support a planning submission for the site which seeks the demolition of the existing buildings on-site and phased mixed-use development comprising 452 residential homes (Class C3) up to six storeys, a Community/Leisure Facility (Class F2) of up to three storeys in height, a "MakersLab" (sui generis) of up to two storeys together with basement car parking and site wide landscaping.
- 10.2 It is considered that the scheme meets the criteria of Geotechnical Category 1 of Eurocode 7.

Ground Conditions

- 10.3 Ground Conditions comprise Made Ground over firm clay and loose becoming dense with depth sand and gravel. This is underlain by London Clay comprising stiff clay.
- 10.4 Additional groundwater monitoring is being undertaken shortly pre-planning application and that the basement will be designed accordingly with the groundwater flood risk in mind.

Site Preparation

- 10.5 The site should be cleared and any vegetation below areas of proposed development stripped in accordance with Series 200 of the Specification for Highway Works. This should include:
 - Any redundant services should be sealed off and grubbed out and replaced with suitable compacted engineered fill; and
 - Any tree roots should be grubbed out.

Foundations

10.6 It is considered that conventional strip foundations should be suitable for low rise buildings with wall loadings of 75kN/m or les assuming an allowable bearing capacity of 100kN/m² for natural soils at depths of 1.5m bgl. Within the natural firm clay or medium dense sand and gravel. An assessment of likely settlements has been undertaken and these are estimated to be less than 25mm.

- 10.7 Foundations may need to be stepped down locally where Made Ground is deeper. Foundations may also need to be deepened in accordance with NHBC requirements for building near trees. Foundations should be designed assuming soils of moderate shrinkage potential. It is recommended that foundations are reinforced to allow them to span both clay and granular soils.
- 10.8 No evidence of desiccation was noted.
- 10.9 It is likely that apartment blocks and structures with wall loadings above 75kN per m will require piled foundations.
- 10.10 For preliminary purposes and an initial pile assessment has been undertaken using the following assumptions:
 - Upper 1.5m is ignored.
 - Soil properties have been taken from the ground investigation and laboratory testing.
 - A global factor of safety of 2.5 has been used, together with factors of 1.5 on shaft resistance and 3 on base resistance.
- 10.11 The following preliminary pile working loads have been calculated:

Dila danth (m. hal)		Working Load kN						
Pile depth (m bgl)	200mm	250mm	300mm	350mm	450mm	600mm		
10	80	100	125	150	200	300		
15	150	180	235	280	370	530		
20	220	290	350	420	560	770		
25	320	400	500	590	780	1080		

10.12 Final design should be undertaken by a specialist piling contractor who ca use case studies to negotiate more economic pile designs.

Ground Floor Slab

10.13 Based on thickness of Made Ground suspended floor slabs are recommended.

Pavement Construction

- 10.14 An assessment of the likely California Bearing Ratio (CBR) has been assessed from the following sources:
 - Description of the materials encountered in the exploratory holes; and

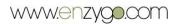
- Guidance given in HD25/94.
- 10.15 Based on the above it is considered that an equilibrium CBR of 3% is suitable.
- 10.16 It is recommended that the sub-formation is proof rolled with any soft materials being excavated and replaced with suitable compacted capping.
- 10.17 Soils are not considered to be frost susceptible.

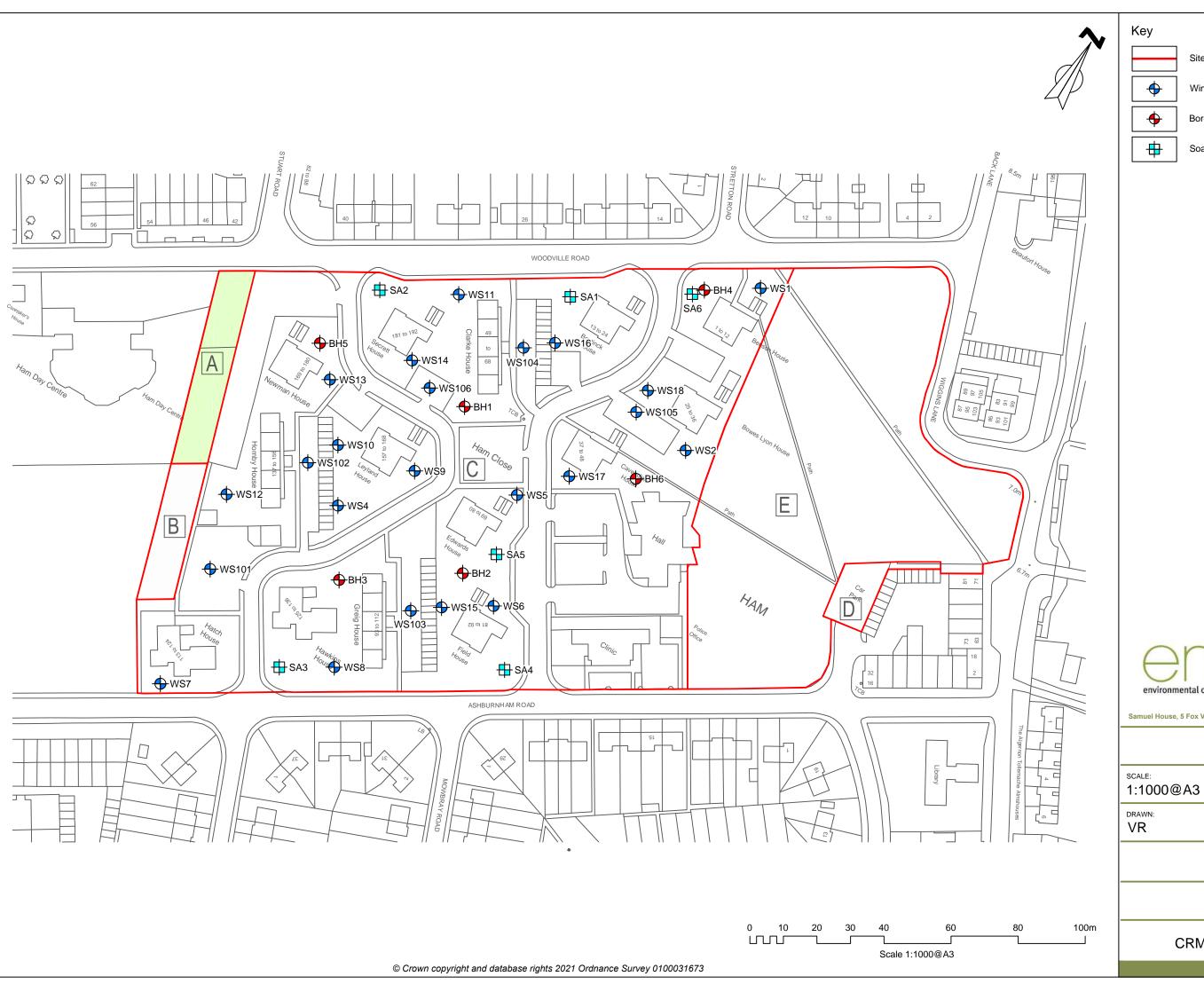
Drainage

- 10.18 Soakaway testing identified poor soil infiltration rates due to the clay content of the sand and gravel deposits. Soakaway drainage is not considered feasible.
- 10.19 Chemical results should be provided to the water authority to confirm the design of potable water supply pipes.

Buried Concrete

10.20 Results of the sulphate and pH testing indicate that shallow soils have soluble sulphate concentrations are generally less than 0.5 g/l consistent with DS1 Conditions. Samples from the London Clay below 6m bgl recorded a concentration above 0.5 g/l within the London Clay at 25m bgl but the soils have a neutral pH. Taking account of pH and sulphate concentrations it is considered that shallow buried concrete can be deigned to Class AC1-s.


Excavation and Materials Re-Use


- 10.21 Site observations indicated that excavations should be feasible in the near surface. Where access is required the excavations should be designed in accordance with CIRIA RR97.
- 10.22 Significant dewatering of excavations is not likely to be required.

DRAWINGS

Site Boundary

Window Sampler Locations (WS)

Borehole Locations (BH)

Soakaway Locations (SA)

Samuel House, 5 Fox Valley Way, Stocksbridge, Sheffield, S36 2AA

Hill Partnership

PROJECT REF: CRM.1027.087

CHECKED: MG

DATE: October 2021

PROJECT:

Richmond

Site Plan

DRAWING NO:

CRM.1027.087.GE.D.001.B

Desk Top Study Report

Site Ham Close

Richmond Upon Thames

London

TW10 7PG

Client | Richmond Housing Partnership

Date 11th August 2017

Our Ref DTS/9324

PHASE 1 ENVIRONMENTAL REPORT of a site at HAM CLOSE, RICHMOND UPON THAMES, LONDON, TW10 7PG for RICHMOND HOUSING PARTNERSHIP

Project No 9324

Report ref: 9324-P1E-1 Issued: 11 August 2017

Revision:

CONTENTS

- 1 EXECUTIVE SUMMARY
- 2 BRIEF
- 3 SITE VISIT
- 4 SITE LOCATION
- 5 SITE DESCRIPTION
- 6 GROUND CONDITIONS
 - 6.1 Geology
 - 6.2 Hydrogeology
 - 6.3 Hydrology
 - 6.4 Ground Stability Hazards
 - 6.5 Mining Activities
 - 6.6 Radon Gas
 - 6.7 Sensitive Land Use
- 7 SITE HISTORY
- 8 PROPOSED DEVELOPMENT
- 9 POTENTIAL CONTAMINATION
 - 9.1 General
 - 9.2 Off Site Contamination
 - 9.3 On Site Contamination
 - 9.4 Preliminary Conceptual Model
- 10 RISK ASSESSMENT
- 11 SITE WORK
 - 11.1 Investigations
 - 11.2 Site Preparation
 - 11.3 External Works
- 12 SITE DEVELOPMENT CONSIDERATIONS
- 13 CONCLUSIONS
- 14 REFERENCES
 - Appendix A Site Location Plan
 - Appendix B Photographs
 - Appendix C Landmark Report Extracts
 - Appendix D Historical Maps
 - Appendix E Owner's Questionnaire
 - Appendix F Contacts

1 EXECUTIVE SUMMARY

Details	Summary			
Proposed Development	Residential with soft land	Iscaping		
Current Site Use	Residential and commerc	ial		
Site History		vs site initially used as farm land ential and commercial use		
Surrounding Area	Residential			
Environmental Setting	Geology Forr Bedi	erficial: Kempton Park Gravel mation rock: London Clay Formation erficial: Secondary A Aquifer		
3		rock: Unproductive Strata		
Potential Contamination Sources	The site walkover, historical mapping and environmental searches have identified the following potential sources of contamination. • Car park, lock up garages, electricity substations on site • Demolition debris & imported hard core • Nearby commercial activity • Naturally occurring contaminants • Unknown nature of fill material on-site & off site			
Risk Assessment Findings	Risk ratings of moderate or greater indicate potentially complete source-pathway-receptor linkages that can require further investigation and remedial measures. The following moderate or greater risks have been identified at the site. • Migration, build up in buildings and explosion of hazardous gases • Site users in contact with contaminated soil • Site users inhaling contaminated dust • Proposed buildings in contact with contaminated soil			
Recommendations	Some preliminary intrusing is recommended to deter or, landfill gas are present it is not considered that required, however it is provided to the water supif any, that they require. It is considered that proving report are implemented to	kers inhaling fibres (asbestos) we environmental site investigation mine if either contamination and, t on the property. an upgraded water supply pipe is recommended that this report is plier with a request for the testing, wided the recommendations of this here is no increased risk to human nt of the site for the proposed use.		

Risk Summary

Very Low Low	Moderate / Low	Moderate	High
--------------	-------------------	----------	------

				Recep	tors		
		Residents & Site Users	Construction & Maintenance Operatives	Neighbours	Proposed Building	Aquifer	Watercourse
	Car park, lock up garages, electricity substations, demolition debris & imported hard core on site		<u> </u>			7	
Sources	Demolition debris & imported hard core (asbestos)						
	Unknown nature of fill material on-site & off site						
	Nearby commercial activity						
	Nursery (off site)						
	Naturally occurring contaminants						

2 BRIEF

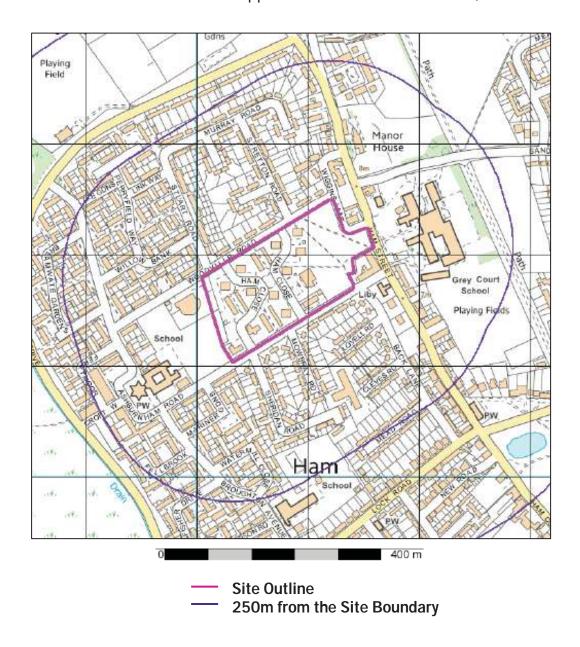
Mr Alec Thomson of Pellings requested a phase 1 environmental desk top study for a site at Ham Close, Richmond upon Thames, London, TW10 7PG on behalf of Richmond Housing Partnership.

The purpose of this report is to assess the risks to sensitive receptors both on and offsite due to soil and groundwater contamination as a result of the proposed development. It is based upon information provided by the client, a site visit, walk over and a Landmark Envirocheck, historical aerial photographs and maps.

This report is based upon available factual data for the site obtained only from the sources described in the text and related to the site on the basis of the location information provided by the Client. The desk study information is not necessarily exhaustive and further information relevant to the site may be available from other sources.

3 SITE VISIT

The site was visited on 21 July 2017. The weather was dry and sunny. Access was available to all external areas of the site, except for the school playing field and the Ham Day Centre and a visual inspection was undertaken. A photographic record was made during the visit and this is contained in appendix B.


The client's confidentiality was maintained at all times during discussion with third parties.

4 SITE LOCATION

The site is situated in the area of Ham, in the London borough of Richmond upon Thames. Refer to Figure 1.

The National Grid Reference for the approximate site centre is 517160, 172360.

Figure 1: Site Location Plan

5 SITE DESCRIPTION

The site is very approximately rectangular shaped in plan and occupies 4.58ha. The north boundary is defined by Woodville Road. The eastern boundary at the southern end is defined by the estate boundary wall, the boundary then runs north-northeast across the school playing field and the Ham Day Centre. The southern boundary is defined by Ashburnham Road. The western boundary is formed by Wiggins Lane and Ham Street and in the southeast corner by the service yard and shops fronting onto Ham Street and Ashburnham Road.

Photograph 1: View of the site from the east

The east end of the site is grassed communal open space with an asphalt surfaced car park in the southeast corner. There is an electricity sub-station in the service yard, immediately next to the southeast corner of the site.

The greater part of the remainder of the site comprises a residential estate, with three, four and five storey blocks, three runs of lock-up garages, small enclosed individual storage areas, asphalt surfaced car parks, a Community Hall, a Clinic the Ham Friends Club building and associated asphalt surfaced estate roads. Areas between the blocks are laid to grass with some trees and bushes. There is an electricity sub-station on site near the west boundary.

There is a school to the east of the site, a school playing field and the Ham Day Centre to the west of the site and a terrace of small shops with a service yard and electricity substation to the southeast of the site. Other than the above the surrounding area appears to be residential.

6 GROUND CONDITIONS

6.1 Geology

Reference to the geological survey of Great Britain indicates that beneath made ground, the area generally is underlain by superficial deposits comprising sand and gravel which is described as Kempton Park Gravel Formation.

The superficial deposits are underlain by bedrock comprising clay and silt described as London Clay Formation.

6.2 Hydrogeology

The Environment Agency maps show the site to be located over a Secondary A Aquifer in the superficial or drift deposits, in the bedrock they show the site to be over an Unproductive Strata.

Secondary A Aquifers comprise permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers.

The soils overlying the aquifers are assumed to have a high leaching potential (U) and a worst case vulnerability classification (H) is assumed due to a lack of data available for restored workings and urban areas.

The Environment Agency maps show the site is not located within a source protection zone of a borehole abstraction point.

The Environment Agency define a zone according to how the groundwater behaves in that area. From this a model of the groundwater environment is developed on which to define the zones.

Groundwater source catchments are divided into three zones:

SPZ1 – Inner protection zone

Defined as the 50 day travel time from any point below the water table to the source. This zone has a minimum radius of 50 metres.

SPZ2 – Outer protection zone

Defined by a 400 day travel time from a point below the water table. This zone has a minimum radius of 250 or 500 metres around the source, depending on the size of the abstraction.

SPZ3 – Source catchment protection zone

Defined as the area around a source within which all groundwater recharge is presumed to be discharged at the source. In confined aquifers, the source catchment may be displaced some distance from the source. For heavily exploited aquifers, the final Source Catchment Protection Zone can be defined as the whole aquifer recharge area where the ratio of groundwater abstraction to aquifer recharge (average recharge multiplied by outcrop area) is >0.75.

6.3 Hydrology

The nearest water course to the site would appear to be a drain which is approximately 295 metres to the southwest at the nearest point. This is considered to be too distant to be significantly impacted by the site

The Environment Agency maps show the site is not located within a flood zone.

The British Geological Society data shows the site lies in an area with potential for groundwater flooding of property situated below ground level and potential for groundwater flooding to occur at surface.

Copy of extracts from the Landmark report are contained in appendix C.

6.4 Ground Stability Hazards

Infilled ground has been identified 41 to the south west, worked ground (Undivided) has been identified 361 to the west and 320 to the south east.

The ground beneath the site has been identified as having a very low risk of potential ground instability due to collapsible ground, landslide ground, running sand ground. These risks would be expected to manifest themselves as excessive settlement in the buildings on the site. However, the risks identified are considered unlikely to be of concern to any new buildings, as the foundation design will be based upon geotechnical information obtained from a site-specific intrusive investigation.

6.5 Mining Activities

Reference to the Coal Authority data indicates that the site is not within an area of known coal mining. There is no other known mining in the area.

6.6 Radon Gas

The Landmark Envirocheck Data also advises that the site lies within an area where less than 1% of properties are above the action level and that no protection measures are required in the construction of new properties.

6.7 Sensitive Land Use

Environmentally Sensitive Areas include Nitrate Sensitive Areas, Sites of Special Scientific Interest (SSSI's), Areas of Outstanding Natural Beauty (AONB), National Parks, National Nature Reserves, Special Areas of Conservation, Special Protection Areas and RAMSAR sites. According to the Landmark Envirocheck Data, the Site is not located on or close to any such Environmentally Sensitive Areas.

7 SITE HISTORY

Copies of the Historical Ordnance Survey maps that have been obtained from The Landmark information group are contained in appendix D.

The maps have been reviewed and items of interest and potential sources of contamination, both on the site and within the surrounding area up to 500 metres from the site boundary are noted hereunder.

Site Usage

From	To	Description
1850	1868	Site appears to be occupied by open land with a path way across
		the south and east part of the site.
1868	1896	Site appears to be occupied by buildings in the eastern part of the
		site and the site is labelled as a farm.
1896	1947	Site appears to have change of buildings in the eastern part of the
		site.
1947	1959	Site appears to now be a residential area with some open grass
		space.
1959	1969	There appears to be a ruin in the east part of the site.
1969	1983	Ruin appears to no longer be onsite. The site appears to no longer
		have any residential buildings in the east part of the site and a
		development of residential housing in the west part of the site.
		The west part of the site overlays part of a school adjacent to the
		site. Appears to be a clinic in the southern part of the site.
1983	2017	A car park shown in the south-eastern part of the site.

Surrounding Area

From	То	Name	Direction	Distance (m)
1868	1959	Pit	E	206
1871	-	Pond	SE	403
1913	1934	Smithy	SE	250
1913	1959	Gravel Pit	W	527
1913	1959	Sewage Works	S	155
1913	-	Riffle Range	NW	323

From	То	Name	Direction	Distance (m)
1933	1960	Cedar Nursery	N	107
1934	1959	Sand and Gravel Works	W	542
1934	1960	Sand and Ballast Works	SW	340
1959	1969	Lake	NW	111
1933	1971	Tanks/Disused Works	S	212
1959	-	Plant Nursery	N	296
1973	-	Pumping Station	S	202
1973	-	Tank	S	195

8 PROPOSED DEVELOPMENT

Plan details for the proposed redevelopment is not available. Proposed development will be residential dwellings with private and communal gardens and non-residential buildings.

9 POTENTIAL CONTAMINATION

9.1 General

From observations made during the site visit and review of the historical maps and the Landmark information, potential sources of on-site contamination and off-site contamination have been identified.

No significant potential sources of contamination have been identified beyond a 250 metre boundary which are considered likely to have any impact on the site. Where there are similar industries and activities in the same direction, only the nearest has been listed.

Copies of the relevant extracts are contained in appendix C.

The legislative framework for the regulation of contaminated land is embodied in Part IIA of the Environmental Protection Act 1990, implemented in the Contaminated Land (England) Regulations 2000. This legislation allows for the identification and remediation of land where contamination is causing unacceptable risks to human health or the wider environment. The approach adopted by UK contaminated land policy is that of "suitability for use" which implies that the land should be suitable for its current use and made suitable for any proposed future use.

In this preliminary contamination assessment, the site has been modelled using the Source-Pathway-Receptor approach to produce a site specific conceptual model.

- Source substances or potential contaminants which may cause harm
- Pathway a linkage or route between a source and receptor
- Receptor humans, plant life, groundwater etc., which could be harmed by a contaminant

Geological records indicate that the site is underlain by an aquifer in the superficial stratum and therefore there is a potential for contaminants to be transported both to and from site in the groundwater.

9.2 Off Site Contamination

Description	Direction	Distance (m)
Discharge Consents:		
Sewage Discharge to Tidal Thames from 1989 to 2010 – Status: Surrendered	SE	214
Sewage Discharge to Tidal Thames from 2010 to 2015 – Status: Temporary Consents	SE	214
Local Authority Pollution Prevention & Controls:		
PG6/46 Dry Cleaning - Permitted	Е	19
Category 1 and 2 Pollution Incidents to Controlled W	/aters:	

Description	Direction	Distance (m)
None identified.	-	-
Prosecutions Relating to Authorised Processes:	·	
None identified.	-	-
Substantiated Category 1 and 2 Pollution Incidents:		
None identified.	_	-
Control of Major Accident Hazards Sites (COMAH) 8	& Planning Haza	rdous Substance
Consents		
None identified.	-	-
Landfill and Other Waste Sites:		
Unknown Filled Ground (Pit, Quarry etc) - 1992	S	92
Historical and Current Land Uses:		
Dry Cleaners	Е	19
Hardware	E	20
Dry Cleaners	Е	20
Window Tinting	E	26
Blast Cleaning	S	138
Laboratory Equipment, Instruments & Supplies	SW	155
Photo & Digital Imaging Bureaus	SW	158
Cinema Equipment	W	160
Office Furniture & Equipment	SE	194
Cleaning Services - Domestic	SW	199
Washing Machines - Servicing & Repairs	SW	241
Artificial Ground and Made Ground:		
Infilled Ground	SW	41
	1	1

Potentially contaminating commercial activities have been identified in the vicinity, the general topography falls to the south, southwest and west towards River Thames this is assumed to be the general direction of the hydraulic gradient, sources to the north, northeast and east are therefore considered to have the potential to impact the site.

Potential sources identified on the historical maps and data sheet include: dry cleaners 19m and 20m, east; hardware 20m, east; window tinting 26 m, east and cedar nursery 107 m, north of the site. A potential source of contamination may also include the electricity sub-station in the service yard, immediately next to the southeast corner of the site.

Credible pathways for ground gas exist from an area of *Unknown Filled Ground*–92m south, Infilled ground 41m southwest and a pit 206m east from the site. These risks are considered further within the risk assessment.

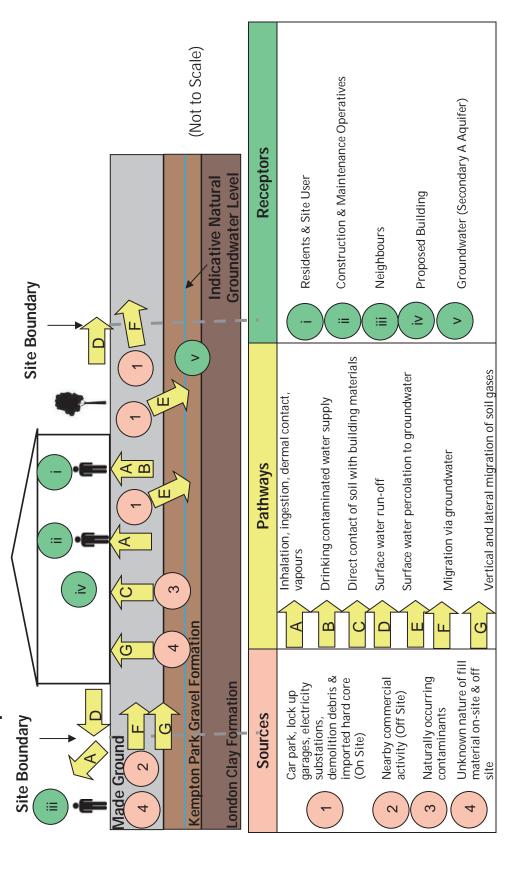
9.3 On Site Contamination

There is potential contamination of the site from its use as a car park, lock up garages and electricity substations present on the site.

Review of the historic maps show the site has undergone redevelopment. Demolition debris may be present at the site and may comprise a potential source of contamination, including asbestos. Any hardcore below ground slabs or paved areas may also comprise a potential source of contamination.

From review of the historical maps, the site would appear to have undergone major redevelopment. It is therefore considered there may potentially be a significant depth of fill material beneath the site, this is considered a potential on-site source of ground gas.

Richmond Upon Thames was subjected to bombing runs during World War II. In accordance with CIRIA C681 a non-specialist UXO assessment of the site has been undertaken. Several records of high explosive bombs have been identified within the site on The Bomb Sight project web-mapping tool, recorded locations are shown on middle section of the site parallel to Woodville Road and Ashburnham Road. It is considered that as the area has since undergone redevelopment, any bombs would have been identified at the time and dealt with during construction. However, those working on the site should be made aware of the potential for unexploded ordnance and given appropriate guidance. Information to be contained in site Health & Safety Plan.


9.4 Preliminary Conceptual Model

	Comments on discounted pathways					Nearest water course too far to be impacted by site.	
	seg broong gas	>	>	>	*	Z	
	Migration via groundwater			>		z	
	Surface water percolation to groundwater						>
	Surface water run-off			>		z	
Potential pathways	Direct contact of soil with building materials				>		
tial pat	Drinking contaminated water supply						
Poteni	sotsadse to noitaladni	>	>	>			
	Direct dermal contact	>	>				
	Direct Soil Ingestion		>				
	Inhalation of contaminated	>	>	>			
	Inhalation of contaminated	_	>	>			
		Site Users / Residents	Construction / Maintenance Operatives	Ptors Neighbours	চ Proposed Building	Watercourse	Aquifer

9324-P1E-1: Ham Close, Richmond Upon Thames Richmond Housing Partnership

Schematic Conceptual Model

10 RISK ASSESSMENT

The level of information provided by the Landmark report and historic Ordnance Survey maps, together with the other information within the report is considered suitable to provide the data for a satisfactory risk assessment for the site. While there will always be uncertainties due to known or unknown gaps in information it is considered that sufficient information is available to reduce those uncertainties to within acceptable limits for the nature of the site under review.

An asbestos survey of existing structures and infrastructure (as defined under Section 5(a) of the Control of Asbestos Regulations 2012) was beyond the brief of this report. The risk assessment has been undertaken on the basis that should asbestos be identified within buildings or infrastructure, these materials will be removed appropriately by licensed contractors and asbestos materials disposed of in accordance with legal requirements prior to demolition or other works in order to avoid contaminating soils at the site.

Comment & control measures		Contamination testing			It is not considered that an upgraded water supply pipe is required, however it is recommended that this report is provided to the water supplier for their comment.
Risk / Significance	Moderate risk	Low risk	Moderate risk	Moderate risk	Low risk
Likelihood of occurrence	Likely	Low likelihood	Likely	Likely	Low likelihood
Hazard severity	Medium	Mild	Medium		Mild
Pathway	Dermal contact	Inhalation of vapours, indoors and outdoors	Soil Ingestion Medium	Inhalation of contaminated Medium dust	Drinking of water from supply impacted by contaminated soil
Receptor			Residents &	olie Osel s	
Potential pollutant			Metals Hydrocarbons	PAHs, PCB	
Sources		Car park, lock	up garages, electricity substations,	debris & imported hard core	

	Comment & control	measures	Information to bo	contained in site Health & Safety Plan. Use of appropriate ppe and	measures. Appropriate	Moderate/Low during construction.		Information to be contained in site Health &	Safety Plan.		
	Risk /	Significance	Moderate/Low risk	Very low risk	Moderate/Low risk	Moderate/Low risk	Low risk	Very low risk	Low risk	Low risk	
	Likelihood of	occurrence	Likely	Likely Low likelihood	Likely	Likely	Low likelihood	Low likelihood	Low likelihood	Low likelihood	
,	Hazard	severity	pliM	Minor	Mild	Mild	Mild	Minor	Mild	Mild	
	Dathway	ratiway	Dermal contact	Inhalation of vapours, indoors and outdoors	Soil Ingestion Mild	Inhalation of contaminated dust	Dermal contact	Inhalation of vapours, indoors and outdoors	Soil Ingestion Mild	Inhalation of contaminated dust	
	Docontor	Neceptol	Construction	operatives			Maintenance				
	Potential	pollutant				Metals	Hydrocarbons PAHs, PCB	Hydrocarbons PAHs, PCB			
	Cources	50000			-	car park, lock up garages, electricity	demolition debris &	imported hard core			

							e
Sources	Potential	Receptor	Pathway	Hazard	Likelihood of	Risk /	Comment & control
	pollutaiit			Severity	Occumente	Jigimicanice	IIICA3AIC3
			Inhalation of vapours, indoors and outdoors	Minor	Unlikely	Very low risk	No further action required
Car park, lock up garages.			Inhalation of contaminated dust	Mild	Likely	Moderate/Low risk	Moderate/Low measures during construction.
electricity substations, demolition debris &	Metals Hydrocarbons PAHs, PCB	Neighbours	Inhalation of contaminated dust (post construction)	Mild	Low likelihood	Low risk	
core			Surface water run-off	Mild	Likely	Moderate/Low risk	Contamination testing
			Migration via groundwater	Mild	Likely	Moderate/Low risk	

Sources	Potential pollutant	Receptor	Pathway	Hazard severity	Likelihood of occurrence	Risk / Significance	Comment & control measures
ock .	Metals	Δαιifer	Vertical percolation to groundwater via Foundations & Drainage	Mild	Likely	Moderate/Low risk	Foundations and drainage should be designed in such a way that they do not create a pathway for surface water percolation.
debris & imported hard core	PAHS, PCB		Vertical percolation to groundwater via soft landscaped and permeable areas	Mild	Likely	Moderate/Low risk	Contamination testing

Sources	Potential	Pecentor	Dathway	Hazard	Likelihood of	Risk /	Comment & control
50000	pollutant	io do constituir de la	r atınvay	severity	occurrence	Significance	measures
		Structures & other confined spaces	Migration via	Severe	Likely	High risk	Ground gas monitoring to
Unknown nature of fill material on-	Methane & carbon dioxide	Construction & Maintenance Operatives	1	Severe	Low likelihood	Moderate risk	be undertaken. Gas protection measures installed if required. Information to be
		Residents & Site Users	confined	Severe	Likely	High risk	contained in site Health & Safety Plan.
		Neighbours		Severe	Low likelihood	Moderate risk	
		Residents & Site Users		Severe	Low likelihood	Moderate risk	Any debris from earlier demolition found during
Demolition debris &	- -	Construction operatives	Inhalation	Severe	Low likelihood	Moderate risk	for aspestos by a suitably experience experienced contractor.
imported hard core	Aspestos	Maintenance Operatives	(during construction)	Severe	Unlikely	Moderate/Low risk	Information to be contained in site Health & Safety Plan.
		Neighbours		Severe	Unlikely	Moderate/Low risk	Moderate/Low Dust control during any risk

							2
Sources	Potential pollutant	Receptor	Pathway	Hazard severity	Likelihood of occurrence	Risk / Significance	Comment & control measures
Demolition debris &		Residents & Site Users	Inhalation of contaminated	Severe	Low likelihood	Moderate risk	
imported hard core	Aspestos	Neighbours	dust (post construction)	Severe	Unlikely	Moderate/Low risk	
Naturally occurring contaminants, Car park, lock up garages, electricity substations, demolition debris & imported hard core	Sulphates, pH	Proposed Building	Direct contact of soil with building materials	Medium	Likely	Moderate risk	As the protection of concrete is normally resolved in the building design process, the designer of the foundations should determine the requirement to undertake any investigation.

9324-P1E-1: Ham Close, Richmond Upon Thames Richmond Housing Partnership

Sources	Potential pollutant	Receptor	Pathway	Hazard severity	Likelihood of occurrence	Risk / Significance	Comment & control measures
		Residents & Site Users	Lateral migration of	Medium	Low likelihood	Moderate/Iow risk	Contamination testing
Nearby commercial activity (Off	Metals Hydrocarbons PAHs, PCB	Construction & Maintenance Operatives		Mild	Low likelihood	Low risk	Information to be contained in site Health & Safety Plan.
		Residents & Site Users	Drinking water supply impacted by groundwater transporting contaminants to site	Medium	Low likelihood	Moderate/Iow risk	It is not considered that an upgraded water supply pipe is required, however it is recommended that this report is provided to the water supplier for their comment.

Sources	Potential pollutant	Receptor	Pathway	Hazard severity	Likelihood of occurrence	Risk / Significance	Comment & control measures
		Residents & Site Users	Lateral migration of groundwater	Mild	Low likelihood	Low risk	
Nursery (offsite)	Pesticides	Construction & Maintenance Operatives	s fe	Mild	Unlikely	Very Low risk	No further action required
		Residents & Site Users	Drinking water supply impacted by groundwater transporting contaminants to site	Mild	Low likelihood	Low risk	

Any visual or olfactory evidence of contamination noted during works should be investigated by a suitably qualified person and their recommendations implemented.

11 SITE WORK

11.1 Investigations

11.1.1 In order to determine if the current or former usage of the property is a potential cause of contamination it is recommended that some site investigation should be undertaken based upon the requirements of BS 10175: 2001 which is the code of practice for the investigation of potentially contaminated sites. It is proposed that soil samples be taken from representative locations around the site and tested for a typical range of determinands, comprising asbestos, heavy metals, pH, speciated aromatic and aliphatic hydrocarbons and speciated PAHs and PCBs.

11.1.2 Due to the unknown nature of fill material on-site & off site monitoring for ground gas should be undertaken, in accordance with BS 8576, in order to determine if gas has migrated to the property. Furthermore, if the site has been filled in the past monitoring will determine if ground gas is being generated by the fill material.

11.2 Site Preparation

During the works a watching brief should be maintained by an experienced person. Should any visual or olfactory evidence of contamination be noted during the Chelmer Site Investigation Laboratories Ltd and the local authority Environmental Health Officer (EHO) should be contacted. Chelmer Site Investigation Laboratories Ltd shall assess if further intrusive investigation and remediation is required. Proposals will be issued to the EHO for comment prior to undertaking the additional investigation or implementing the remediation strategy.

The form of investigation proposed in 11.1.1 will indicate if there is any contamination present and if it is necessary will enable remedial works to be formulated.

If any potentially contaminated spoil is to be removed from site, the Waste Acceptance Criteria (WAC) testing should be agreed with the facility to which the spoil is being transported. It is recommended that consideration is given to this testing as part of the phase 2 investigation. Guidance can be obtained from Environment Agency document *Waste Sampling and Testing for Disposal to Landfill*.

11.3External Works

In regard to water supply reference should be made to the UK Water Industry Research (UKWIR) publication "Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites" (Ref 10/WM/03/21; the 'UKWIR Guidance'). This document provides guidance to ensure that water quality is safeguarded by identifying suitable pipe materials and components to be used below ground in potentially contaminated sites. It is not considered that an upgraded water supply pipe is required, however it is recommended that this report is provided to the water supplier for their comment.

12 SITE DEVELOPMENT CONSIDERATIONS

During the course of the site visit and preparation of this report the following items, whilst not within the scope of this report, have come to our attention and should be considered. This is not necessarily an exhaustive list.

- 12.1 An intrusive geotechnical investigation may be required to provide detailed information about the engineering nature of the ground, in order to allow the most suitable foundations in terms of economy and performance to be designed. This should follow the recommendations of BS 5930, the Code of Practice for site investigations with tests carried out to satisfy the requirements of BS 1377, the Code of Practice for methods of tests for soils for civil engineering purposes. It is recommended that this includes testing for sulphates.
- 12.2 As redevelopment of the property is proposed it is recommended that a full topographical survey is undertaken, if one is not available. This should identify all relevant features, boundaries and levels relating to the site and should also include ground levels on the adjacent properties and roads.
- **12.3** If it is proposed to make use of the existing drainage system, or any existing connections to the mains sewers. A CCTV survey should be considered in order to determine both the general condition and suitability for the proposed use.
- **12.4** If any excavation works are proposed, it is recommended that all the relevant utility companies are contacted to ascertain what pipes, cables, wires, lines and other apparatus exist close to where the work is to take place.

12.5 An asbestos survey of existing structures and infrastructure (as defined under Section 5(a) of the Control of Asbestos Regulations 2012) was beyond the brief of this report. Advice should be sought regarding the potential presence and management of asbestos within existing structures and infrastructure.

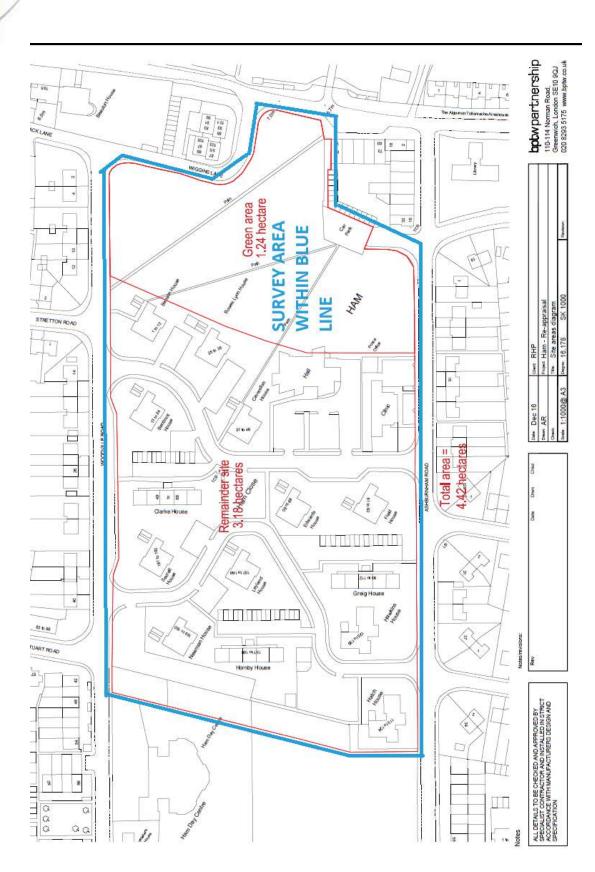
13 CONCLUSIONS

Based upon the information currently available, there would in principle, appear to be some significant contamination issues associated with the site, however, the following should be considered at this stage. It is considered that provided the recommendations of this report are implemented there is no increased risk to human health from redevelopment of the site for the proposed residential and commercial use.

- **13.1** There is potential contamination of the site from its uses as a car park, lock up garages and electricity substations and from demolition debris and imported hard core below ground slabs and paved areas.
- **13.2** It is recommended that some preliminary intrusive environmental site investigation is undertaken to determine if contamination is present on the property.
- **13.3** Study of the historical maps indicate that there is potential for the site to have been impacted by nearby commercial activities.
- **13.4** Due to the unknown nature of fill material on-site & off site, monitoring of potential ground gases, over a suitable period of time, will be required in order to determinate the requirements for gas mitigation measures. Information to be contained in Health & Safety Plan.
- **13.5** It is not considered that an upgraded water supply pipe is required, however it is recommended that this report is provided to the water supplier for their comment.
- 13.6 Should any visual or olfactory evidence of contamination be noted during the works this should be investigated by a suitably qualified person and their recommendations implemented.

13.7 If any potentially contaminated spoil is to be removed from site, the Waste Acceptance Criteria (WAC) testing should be agreed with the facility to which the spoil is being transported.

14 REFERENCES


- Card, G. B., Wilson, S., & Mortimer, S. (2012). *A Pragmatic Approach to Ground Gas Risk Assessment*. London, UK: Contaminated Land: Applications in Real Environments.
- Department of the Environment, Food and Rural Affairs and Environment Agency. (2004). *CLR 11: Model procedures for the management of land contamination*.
- Environment Agency. (2013). *Groundwater protection: principles and practice (GP3)*. Bristol: Environment Agency.
- Environment Agency. (2013). Waste Sampling and Testing for Disposal to Landfill. Bristol, UK: EA.
- Health and Safety Executive in the United Kingdom. (2012). *The Control of Asbestos Regulations 2012*.
- NHBC and Environment Agency. (2008). *Guidance for the Safe Development of Housing on Land Affected by Contamination*. NHBC and Environment Agency.
- UK Water Industry Research Ltd. (2010). *Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites*. UKWIR.
- Wilson, S., Oliver, S., Mallet, H., Hutchings, H., & Card, G. (2007). *CIRIA Report C665. Assessing risks posed by hazardous gases to buildings.* London, UK: Construction Industry Research and Information Association.

This document has been prepared for the titled project and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and the prior written authority of Chelmer Site Investigation Laboratories Ltd being obtained. No responsibility or liability is accepted for the consequences of this document being used for a purpose other than that for which it was commissioned. Any person using or relying on this document for such other purpose will by such use or reliance be taken to confirm his agreement to indemnify Chelmer Site Investigation Laboratories Ltd for all loss or damage resulting therefrom. Chelmer Site Investigation Laboratories Ltd accepts no responsibility or liability for this document to any party other than Richmond Housing Partnership by whom it was commissioned.

Appendix A – Site Location Plan

Appendix B – Photographs

View across site from northwest corner

View across site from the east

Appendix C – Landmark Report Extracts

Where the overview indicates that no data has been found the relevant detail report sections may have been omitted.

Agency & Hydrological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	ACTOR OF THE PROPERTY OF THE P	ooding Susceptibility Potential for Groundwater Flooding to Occur at Surface	A13NW (W)	0	1	517160 172357
		ooding Susceptibility Potential for Groundwater Flooding of Property Situated Below Ground Level	A13SE (SE)	0	ĭ	517200 172300
		ooding Susceptibility Potential for Groundwater Flooding of Property Situated Below Ground Level	A13NE (E)	88	1.	517400 172450
	Particular and the second seco	ooding Susceptibility Potential for Groundwater Flooding of Property Situated Below Ground Level	A8NW (S)	257	7.	517050 171950
		ooding Susceptibility Potential for Groundwater Flooding to Occur at Surface	A12NE (W)	322	ī	516700 172450
		coding Susceptibility Potential for Groundwater Flooding of Property Situated Below Ground Level	A14NW (E)	431	1	517750 172400
	Charles and the control of the contr	ooding Susceptibility Potential for Groundwater Flooding of Property Situated Below Ground Level	A12NE (NW)	475	1	516600 172600
		ooding Susceptibility Potential for Groundwater Flooding of Property Situated Below Ground Level	A12NE (W)	480	1	516550 172500
		eoding Susceptibility Potential for Groundwater Flooding of Property Situated Below Ground Level	A14SW (E)	482	9.	517750 172200
3	Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment Receiving Water. Status:	Thames Water Utilities Ltd PUMPING STATION ON SEWERAGE NETWORK (WATER COMPANY) Ham Environment Agency, Thames Region Not Supplied Femp. 1052 2 Ind September 2010 33th October 2015 Sewage Discharges - Pumping Station - Water Company Saline Estuary Indial Thames Surrendered under EPR 2010 Located by supplier to within 100m	A13SE (SE)	214	*	517300 172100
.1	Property Type: Location Authority: Gatchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Environment: Receiving Water: Status:	Thames Water Utilities Ltd PUMPING STATION ON SEWERAGE NETWORK (WATER COMPANY) Ham Environment Agency, Thames Region Not Supplied Temp 1082 Ind November 1989 2nd November 1989 2nd November 1989 Sid September 2010 Sewage Discharges - Pumping Station - Water Company Saline Estuary Indal Thames Temporary Consents (Water Act 1989, Section 113) Located by supplier to within 100m	A13SE (SE)	214	2	517300 172100

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 1 of 49

Agency & Hydrological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
20	Discharge Consent	8	100000		5.9	.0450079
2	Operator: Properly Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Status: Positional Accuracy:	Environment Agency DOMESTIC PROPERTY (SINGLE) (INCL FARM HOUSE) Teddington Lockteddingtonniddlesex Environment Agency, Thames Region Thames-Teddington/Beverley Brook Casm. 1384 1 21st March 2006 3rd May 2006 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Land/Soakaway Into Land New Consent, by Application, granted by Secretary of State Located by supplier to within 10m	A7SE (SW)	768	2	516620 171580
3	Discharge Consent Operator Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Waler: Status: Positional Accuracy:	British Aerospace Pic MAKING OF OTHER TRANSPORT EQUIP/SHIPS/TRAINS/BIKES British Aerospace Pic, Kingstonupon Thames, Surrey Environment Agency, Thames Region Not Supplied Ctcr 1987 1 25th April 1983 25th April 1983 17th June 1993 Trade Effluent Freshwater Stream/River Thames Authorisation revokedRevoked	A3NE (\$)	966	2	517400 171300
ia.	Discharge Consent Operator Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	J E Perry DOMESTIC PROPERTY (SINGLE) (INCL FARM HOUSE) Palm Beach, Eef Pie Island, Twickenham, London Environment Agency, Thames Region Not Supplied Ctwc.0573 1 20th December 1985 20th December 1985 16th April 1991 Unknown Saline Estuary River Thames Authorisation revokedRevoked	A17NE (NW)	983	2	516500 173200
	-	lution Prevention and Controls	-1			
5	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Ks Dry Cleaners 65 Ham Street, Richmond, Tw10 7hw London Borough of Richmond upon Thames, Environmental Health Department LBRUT/DC/29 29th March 2007 Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Manually positioned to the address or location	A13NE (E)	19	3	517314 172389
	Local Authority Pol	lution Prevention and Controls	20077760	51963.1	-	SHEMOT
6	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Peritional Accuracy:	Divine Dry Cleaners 424 Richmond Road, Ham, Kt2 Spu London Borough of Richmond upon Thames, Environmental Health Department LBRUT/DC/06 1st April 2007 Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Manually positioned to the address or location	A9SW (S€)	935	3.	517805 171565

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 2 of 49

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
r	Name: Location: Authority: Permit Reference: Dated. Process Type. Description: Status:	lution Prevention and Controls Ham Cross Service Station 297 Richmond Road, KINGSTON UPON THAMES, Surrey, KT2 5QU London Borough of Richmond upon Thames, Environmental Health Department 16/PVR 31st December 1998 Local Authority Pollution Prevention and Control PG I/14 Petrol filling station Permitted Automatically positioned to the address	A9SW (SE)	935	3	517745 171527
	Nearest Surface Wa	ater Feature	A12SE (SW)	295	2	516804 172060
8	Property Type: Location: Authority: Pollutant: Note Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Richmond, EEL PIE ISLAND Environment Agency, Thames Region Oils - Unknown Confirmed incident 19th February 1999 THSE 1999042077 Not Given Not Given Not Given Not Given Located by supplier to within 10m	A13NE (E)	182	2	517500 172400
9	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area. Receiving Water; Cause of Incident: Incident Severity:	to Controlled Waters Not Given TEDDINGTON Environment Agency, Thames Region Oils - Unknown Confirmed As A Pollution Incident 25th May 1993 SE930143 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A8SW (S)	628	2	516900 171600
10	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Seventy:	to Controlled Waters Not Given TEDDINGTON Environment Agency, Thames Region Unknown Not Supphed 3rd February 1996 SE960049 Not Given	A7NE (SW)	687	2	516600 171700
11	Property Type Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area; Receiving Water Cause of Incident Incident Severity.	to Controlled Waters Not Given Teddinton Lock Environment Agency, Thames Region Oils - Unknown Confirmed As A Pollution Incident Not Supplied SE950308 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A7SE (SW)	708	2	516700 171600

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 3 of 49

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
12	Prollution Incidents to Controlled Waters Property Type. Location: Authority. Pollutant: Note: Confirmed As A Pollution Incident Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Seventy: Category 3 - Minor Incident Positional Accuracy Located by supplier to within 100m	A8SW (S)	709	2	517000 171500
12	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Richmond Upon, TEDDINGTON Authority: Environment Agency, Thames Region Note: Confirmed incident Incident Date: Incident Date: Incident Reference: THSE 1999042983 Catchment Area: Not Given Roceiving Water: Not Given Incident Seventy: Positional Accuracy Located by supplier to within 10m	A8SW (5)	2714	2	517000 171495
13	Pollution Incidents to Controlled Waters Property Type: Not Given Location: HAM Authority: Environment Agency, Thanies Region Oils - Unknown Note: Not Supplied Incident Date: Incident Ares: Receiving Water. Cause of Incident: Cause of Incident Incident Seventy: Positional Accuracy: Located by supplier to within 100m	A18NW (N)	715	2	517100 173200
14	Pollution Incidents to Controlled Waters Property Type: Not Given Location: TEDDINGTON Authority: Environment Agency, Thames Region Miscellaneous - Unknown Note: Confirmed As A Pollution Incident Incident Date: Incident Date: Incident Date: Incident Reference: SE900046 Catchment Area: Not Given Cause of Incident Incident Severity: Category 3 - Minor Incident Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A7NW (SW)	729	2	516400 171900
15	Pollution Incidents to Controlled Waters Property Type: Not Given Location: TEDDINGTON Authority: Environment Agency, Thames Region Chemicals - Unknown Note, Not Supplied Incident Date: Incident Reference: SE960135 Cutchment Area: Not Given Receiving Water: Not Given Cause of Incident. Incident Severity. Positional Accuracy Positional Accuracy	A7SE (SW)	754	2	516800 171500
16	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Ferry Road, TEDDINGTON Authority: Environment Agency, Thames Region Pollutant: Chemicais - Unknown Note: Confirmed As A Pollution Incident Incident Date: Incident Bate: Incident Reference: SE90141 Catchment Area: Not Given Receiving Water: Not Given Incident Seventy: Not Given Not Given Not Given Not Given Not Given Not Given Cause of Incident Incident Seventy: Category 3 Minor Incident Positional Accuracy: Located by supplier to within 100m	A7SE (SW)	795	2:	516700 171500

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 4 of 48

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
17	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Seventy:	to Controlled Waters Not Given Broom Road Environment Agency, Thames Region Oils - Unknown Confirmed As A Pollution Incident 7th August 1989 N1890418 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	ABSW (S)	807	2	517100 171400
18	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Sevently:	to Controlled Waters Not Given Teddington Lock Environment Agency, Thames Region Oils - Unknown Yes 17th July 1992 SE920227 Not Given Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A8SW (S)	809	2	517000 171400
19	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident. Incident Seventy.	to Controlled Waters Not Given TWICKENHAM Environment Agency, Thames Region Unknown Sewage Confirmed As A Pollubon Incident 17th May 1991 SE910115 Not Given Not Given Not Given Category 2 - Significant Incident Located by supplier to within 100m	A12NW (W)	821	2	516200 172500
20	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water, Cause of Incident: Incident Seventy:	to Controlled Waters Not Given Riverside, TWICKENHAM Environment Agency, Thames Region Oils - Unknown Confirmed As A Pollution Incident 7th August 1990 SE900241 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A17NE (NW)	827	(2)	516800 173200
21	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Seventy:	to Controlled Waters Not Given TEDDINGTON Environment Agency, Thames Region Oils - Unknown Confirmed As A Pollution Incident 22nd September 1990 SE900286 Not Given Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A7SE (SW)	846	2	516600 171500
22	Pollution Incidents Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water Cause of Incident: Incident Seventy:	to Controlled Waters Not Given River Thames At, TEDDINGTON Environment Agency, Thames Region Unknown Sewage Not Supplied 11th June 1997 THSE 1997032324 Not Given Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A7SE (S)	847	2	516805 171400

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 5 of 49

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
22	Pollution Incidents to Controlled Waters Property Type: Not Given Location: TEDDINGTON Authority: Environment Agency, Thames Region Oils - Unknown Note: Confirmed As A Pollution Incident Incident Date: 6th October 1990 Incident Reference: SE900292 Catchment Area: Not Given Roceiving Water: Not Given Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A7SE (S)	849	(2)	516800 171400
22	Pollution Incidents to Controlled Waters Property Type: Not Given Location: TEDDINGTON Authority: Environment Agency, Thames Region Oils - Unknown Note: Not Supplied Incident Date: Agency - Thames Region Oils - Unknown Not Supplied Incident Reference: SE960075 Catchment Area: Not Given Receiving Water: Not Given Incident Seventy: October Not Given Incident Seventy: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A7SE (S)	852	8	516805 171395
22	Pollution Incidents to Controlled Waters Property Type: Not Given Lensburyclub Authority: Environment Agency, Thames Region Oils - Unknown Note: Confirmed As A Pollution Incident Incident Date: Edit July 1991 Incident Area: Not Given Receiving Water Cause of Incident: Not Given Lendert Severity: Category 3 - Minor Incident Positional Accuracy. Located by supplier to within 100m	A7SE (S)	853	2	516800 171395
23	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Ferry Road, TEDDINGTON Authority: Environment Agency, Thames Region Miscellaneous - Natural Note: No Pollution Found Incident Date: 17th November 1998 Incident Reference: Catchment Area: Not Given Roceving Water: Not Given Incident Sevenity: Cause of Incident Incident Sevenity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A7SE (SW)	885	2	516700 171400
24	Pollution Incidents to Controlled Waters Property Type: Not Green Location: RICHMOND Authority: Environment Agency, Thames Region Unknown Sewage Note: Not Supplied Incident Date: 25th June 1997 Incident Reference: THSE 1997032339 Catchment Area: Not Green Receiving Water: Not Green Incident Seventy: October Not Green Incident Seventy: Cause of Incident Incident Seventy: Category 3 - Minor Incident Cause of Located by supplier to within 100m	A7SW (SW)	900	2	516400 171600
25	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Marble Hill Park Authority: Environment Agency, Thames Region Pollutant: Oils - Unknown Note: Confirmed As A Pollution Incident Incident Date: 17th November 1991 Incident Reference: SE910330 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Not Given Incident Seventy: Not Given Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A239E (N)	903	2.	517300 173400

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 6 of 49

Map		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
26	Pollution Incidents to Controlled Waters Property Type. Location: Authority Pollutant: Note: Incident Date: Incident Area: Catchment Area: Cause of Incident: Incident Severity: Located by supplier to	bon Incident	A3NW (S)	909	2	517000 171300
27	Pollution Incidents to Controlled Waters Property Type: Location Authority Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water- Cause of Incident Incident Seventy: Category 3 - Minor Inc Posibonal Accuracy: Located by supplier to	odent	ATINE (W)	910	2	516100 172395
27	Pollution Incidents to Controlled Waters Property Type; Location: Authority: Pollutant: Note: Incident Date: Incident Area: Catchment Area: Cause of Incident: Incident Severity: Cause of Incident Incident Severity: Category 3 - Minor Incident Severity: Cocated by supplier to	Thames Region	ATINE (W)	910	2	516100 172400
28	Pollution Incidents to Controlled Waters Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Category 3 - Minor Inc. Positional Accuracy: Located by supplier to	ion Incident	A7NW (SW)	911	2	516200 171900
29	Pollution Incidents to Controlled Waters Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water- Cause of Incident Incident Seventry: Positional Accuracy:	ion Incident	A7NW (SW)	917	2	516300 171700
29	Pollution incidents to Controlled Waters Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Area: Receiving Water. Cause of Incident: Incident Severity: Positional Accuracy: Located by supplier to	ion Incident	A7NW (SW)	920	72	516300 171695

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 7 of 49

Agency & Hydrological

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
30	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Swan Island Authority: Environment Agency, Thames Regio Pollutant: Oils - Unknown Note: Confirmed As A Pollution Incident Incident Reference: SE890431 Catchment Area; Not Given Receiving Water: Not Given Cause of Incident: Not Given Incident Seventy; Category 3 - Minor Incident Positional Accuracy; Located by supplier to within 100m	A11NE (W)	920	2	516100 172500
31	Pollution Incidents to Controlled Waters Property Type: Not Given Location: TEDDINGTON Authority: Environment Agency, Thames Regio Oils - Unknown Note: Confirmed As A Pollution Incident Incident Date: 100 August 1993 Incident Reference: \$5930250 Catchment Area: Not Given Receiving Water: Not Given Located by Supplier to within 100m	A3NE (S)	966	[M]	517400 171300
31	Pollution Incidents to Controlled Waters Property Type. Location: Authority: Pollutant: Note: Not Supplied Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m.	A3NE (S)	968	(4)	517405 171300
31	Pollution Incidents to Controlled Waters Property Type: Not Given Location: British Aerospace Environment Agency, Thames Regio Pollutant: Oils - Unknown Note: Continned As A Pollution Incident Incident Date: Not Supplied Incident Reference: SE930192 Catchment Area: Not Given Cause of Incident Incident Sevenity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A3NE (8)	971	2	517400 171295
31	Pollution Incidents to Controlled Waters Property Type. Location. Authority. Pollutant. Note: Incident Date: Incident Date: Incident Reference: Catchment Area: Cauchment Agency, Thames Regio	A3NE (S)	973	2	517405 171295
32	Pollution Incidents to Controlled Waters Property Type: Not Given Location: KINGSTON Authority: Environment Agency, Thames Regio Pollutant: Miscellaneous - Uniknown Note: Strict - Str	ASSW (SE)	967	300	517600 171400

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 8 of 49

Agency & Hydrological

Map		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Pollution Incidents	to Controlled Waters				
33	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident; Incident Severity: Positional Accuracy:	Not Given STRAWBERRY HILL Environment Agency, Thames Region Miscellaneous - Unknown Confirmed As A Pollution Incident 1th August 1992 SE920269 Not Given Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A11NE (W)	973	2	516040 172450
	Pollution Incidents	to Controlled Waters				
34	Property Type. Locabon. Authority. Pollutant. Note: Incident Date. Incident Area. Receiving Water. Cause of Incident. Incident Seventy. Positional Accuracy.	Not Given Swan Island Environment Agency, Thames Region Oils - Unknown Confirmed As A Pollution Incident 26th May 1992: SE920170 Not Given Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	ATINE (W)	991	2	516030 172510
	River Quality		10042840007	0.0000	151	
	Name. GQA Grade. Reach: Estimated Distance (km): Flow Rate: Flow Type: Year.	Not Supplied Unclassified Tidal River Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied 1995	A18NW (N)	750	2	516857 173164
	River Quality		100216803	30947	570	16/2/07/07/07
	Name: GQA Grade Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Thames River Quality 8 Hogsmill - Teddington 2.7 Flow less than 80 cumecs River 2000	A8SW (5)	844	2	516915 171375

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 9 of 49

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Chemistry Sampling Points					
35	Name: Reach: Estimated Distance: Objective:	Istry Sampling Points Tharmes Hogsmill To Teddington 2.70 Not Supplied Located by supplier to within 10m 1990 River Quality Chemistry GQA Grade C - Fairly Good Not Supplied 1993 River Quality Chemistry GQA Grade C - Fairly Good Not Supplied 1994 River Quality Chemistry GQA Grade C - Fairly Good Not Supplied 1995 River Quality Chemistry GQA Grade C - Fairly Good Not Supplied 1996 River Quality Chemistry GQA Grade C - Fairly Good Not Supplied 1996 River Quality Chemistry GQA Grade C - Fairly Good Not Supplied 1997 River Quality Chemistry GQA Grade C - Fairly Good Not Supplied 1998 River Quality Chemistry GQA Grade B - Good Not Supplied 1999 River Quality Chemistry GQA Grade B - Good Not Supplied 2000 River Quality Chemistry GQA Grade B - Good Not Supplied 2001 River Quality Chemistry GQA Grade B - Good Not Supplied 2002 River Quality Chemistry GQA Grade B - Good Not Supplied 2002 River Quality Chemistry GQA Grade B - Good Not Supplied 2003 River Quality Chemistry GQA Grade B - Good Not Supplied 2003 River Quality Chemistry GQA Grade B - Good Not Supplied 2003 River Quality Chemistry GQA Grade B - Good Not Supplied 2004 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2005 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2006 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2006 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2006 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2006 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2006 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2006 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2006 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2006	ASSW (S)	837	2	517020 171370
	Year GQA Grade: Compliance: Year: GQA Grade: Compliance: Year: GQA Grade: Compliance:	2007 River Quality Chemistry GQA Grade B - Good Not Supplied 2008 River Quality Chemistry GQA Grade B - Good Not Supplied 2009 River Quality Chemistry GQA Grade B - Good Not Supplied 2009 River Quality Chemistry GQA Grade B - Good Not Supplied				
	NOTE OF THE PARTY.	tion Incident Register				
36	Authority: Incident Date: Incident Reference: Water Impact: Air Impact; Land Impact;	Environment Agency - Thames Region, South East Area 11th March 2002 63255 Category 2 - Significant Incident Category 4 - No Impact Category 4 - No Impact Located by supplier to within 10m Oils - Diesel (Including Agricultural)	A7SE (SW)	714	2	516740 171570

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 10 of 49

Agency & Hydrological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions Operator Licence Number Permit Version: Location: Authority: Abstraction: Abstraction: Abstraction Type; Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start; Authorised End Permit Start Date: Permit End Date: Positional Accuracy;	D.G. Tilles & R. H. Tilles 28/39/34/0008 102 Borehole At The Exiles Ground; Twickenham Environment Agency, Thames Region Sports Grounds/Facilities: Spray Impation - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied The Exiles Ground, Twickenham 01 October 30 September 14th September 2001 Not Supplied Located by supplier to within 10m	AZANE (NE)	1487	2	517840 173860
	Water Abstractions Operator. Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Oetails: Authorised Start; Authorised End Permit End Date: Positional Accuracy:	Threadneedle Property Part. 28/39/34/0008 101 Borehole At The Exiles Ground, Twickenham Environment Agency, Thames Region Sports Grounds/Facilities: Spray Irrigation - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied The Exiles Ground, Twickenham 01. January 31 December 31st March 2000 Not Supplied Located by supplier to within 10m	AZ4NE (NE)	1487	2	517840 173860
	Water Abstractions Operator Licence Number: Permit Version: Location: Authority: Abstraction: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Cable & Wireless (Meadowbank) Ltd 28/39/34/0008 10 Borehole At The Exiles Ground, Twickenham Environment Agency, Thames Region Sports Grounds/Facilities: Spray Imgation - Direct Water may be abstracted from a single point Groundwater 56 5300 The Exiles Ground, Twickenham 01 January 31 December 15th October 1996 Not Supplied Not Supplied Located by supplier to within 100m	AZ4NE (NE)	1487	2	517840 173860
	Groundwater Vulner Soil Classification: Map Sheet: Scale:	rability Soils of High Leaching Potential (U) - Soil information for restored mineral workings and urban areas is based on fewer observations than elsewhere. A worst case valnerability classification (H) assumed, until proved otherwise Sheet 39 West London 1:100,000	A13NW (W)	0	2	517160 172367
	Drift Deposits None Bedrock Aquifer De		A13NW	0	1	517160
	Superficial Aquifer I	CAMPATERIC O SOUGHOO	(W) A13NW	0	1	172357 517160
	Extreme Flooding fr	om Rivers or Sea without Defences	(W)		*1	172357
	Areas Benefiting fro	m Flood Defences				
	Flood Water Storage None	e Areas				

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 17 of 49

Agency & Hydrological

Map	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Flood Defences None				
41	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 379.3 Watercourse Level: On ground surface Formanent: True Watercourse Name: Not Supplied Catchment Name: 1 1	A12SE (SW)	295	3	516804 172060
42	OS Water Network Lines Watercourse Ferm: Inland rivet Watercourse Levet On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy:	A12SE (SW)	309	4	516768 172102
43	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 15.7 Watercourse Level On ground surface Permanent: Under True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A12NE (W)	339	.4	516671 172391
44	OS Water Network Lines Watercourse Form. Inland river Watercourse Level On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A14NE (E)	711	4	518001 172613
45	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 162.9 Watercourse Level Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy:	A14NE (E)	721	4	518023 172568
46	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 424.2 Watercourse Level On ground surface True Watercourse Name: River Thames Catchment Name: Thames Primacy: 2	A7SE (SW)	726	4	516785 171536
47	OS Water Network Lines Watercourse Form. Inland river Watercourse Length: 239 1 Watercourse Level On ground surface Permanent. True Watercourse Name: River Thames Catchment Name: Thames Primacy: 2	A7SE (SW)	731	4	516643 171609
48	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 21.1 Watercourse Level: On ground surface Permanent. True Watercourse Name: River Thames Catchment Name: Thames Primacy: 2	A7SE (SW)	745	4	516681 171568
49	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 873.4 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Thames Primacy: 1	A14NE (E)	750	4	518020 172685

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 18 of 49

Waste

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Local Authority La			10000	17.40	rate and the same
	Name_	London Borough of Richmond Upon Thames - Has no landfill data to supply		0	5	517160 172357
	Local Authority Landfill Coverage		2,544			
	Name	Royal Borough of Kingston Upon Thames - Has supplied landfill data		667	7)63	517531 171710
	Potentially Infilled	Land (Non-Water)				-0.0000023
77	Bearing Ref: Use: Date of Mapping:	S Unknown Filled Ground (Pit, quarry etc.) 1992	A135W (8)	92	55	517100 172121
	Potentially Infilled	Land (Non-Water)				
78	Bearing Ref. Use: Date of Mapping:	NW Unknown Filled Ground (Pit, quarry etc.) 1992	A13NW (NW)	329	2	516880 172668

Geological

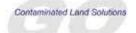
Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS 1:625,000 Solid Description	Geology Thames Group	A13NW (W)	0	.91	517160 172357
	BGS Estimated Soil No data available	Chemistry				377557
79	Location: Source Reference: Type: Status: Operator: Operator: Operator Location: Periodic Type: Geology. Commodity.	ral Sites Ham , Ham, Richmond, Surrey British Geological Survey, National Geoscience Information Service 19674 Opencast Ceased Not Supplied Not Supplied Ouaternary Kempton Park Gravel Formation Sand and Gravel Located by supplier to within 10m	A12NE (NW)	457	(8	516620 172600
80	Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity:	Ham , Ham, Richmond, Surrey British Geological Survey, National Geoscience Information Service 19676 Opencast Ceased Not Supplied	A7NE (SW)	480	13	516825 171790
81	Location: Source: Reference: Type: Status: Operator: Operator: Operator: Desiredic: Type: Geology: Commodity:	ral Sites Ham , Ham, Richmond, Surrey British Geological Survey, National Geoscience Information Service 19675 Opencast Ceased Not Supplied Not Supplied Ouatermary Kempton Park Gravel Formation Sand and Gravel Located by supplier to within 10m	A12SE (SW)	577	13	516500 172050
82	Location. Source Reference. Type: Status: Operator Operator Location: Periodic Type Geology. Commodity:	ral Sites Ham Gravel Pit , Ham, Richmond, Surrey British Geological Survey, National Geoscience Information Service 164161 Opencast Ceased Not Supplied Not Supplied Not Supplied Coustemary, Devension Kempton Park Gravel Formation Sand and Gravel Located by supplier to within 10m	A128W (W)	611	131	516417 172208
	Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromisum Measured Concentration: Lead Meissured Concentration:	British Geological Survey, National Geoscience Information Service 517196, 172203 Topsoll London 18 90 mg/kg	A13SE (S)	71	3	517196 172203

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 23 of 49

Geological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Measured Urban Soll Chemistry					
	Source Gnd: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromium Measured Concentration: Lead Measured Concentration:	TOTALDIDE	A129E (W)	268	1	516775 172208
		27.70 mg/kg				
	BGS Measured Urba	n Soil Chemistry	-			
	Concentration: Cadmium Measured Concentration: Chromium Measured Concentration: Lead Measured Concentration		A18SW (N)	306	1	517162 172797
_		The Mark Colleges				
	Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromium Measured Concentration:	British Geological Survey, National Geoscience Information Service 517224, 171792 Topodi London 16.20 mg/kg	ABNE (S)	444	1	517224 171792
	BGS Measured Urba	m Soil Chemistry				
	Concentration:		A17SE (NW)	488	1	516653 172693
	BGS Measured Urba	. 마이팅 집에 가고있어 어디어야 해보였다. 트립 경에 아이어 보고 있다고 있다면 보고 있다. 그리고 있다고 있는데 보고 있다. 그리고 있다. 그리고 있다. 그리고 있다. 그리고 있다. 그리고 있다.	(9/09/69)	69890	796	aggarage a
	Arsenic Measured Concentration: Cadmium Measured Concentration. Chromium Measured Concentration. Lead Measured Concentration.		ATNE (SW)	553	*	516754 171749

Order Number 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 24 of 49



Geological

Map		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Measured Urba	an Soil Chemistry				
	Source Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Chromium Measured Concentration: Lead Measured Concentration: Lead Measured Concentration: Nicket Measured	British Geological Survey, National Geoscience Information Service 517870, 172143 Topsoil London 17.80 mg/kg	A14SE (E)	614	*	517870 172143
	Concentration					
	BGS Measured Urbs Source Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromium Measured Concentration: Lead Measured Concentration: Lickel Measured	British Geological Survey, National Geoscience Information Service 517880, 172804 Topsoil London 13.90 mg/kg	A19SE (NE)	674	1	517880 172804
	Concentration	ALCONOMIC CONTRACTOR C				
	BGS Measured Urbs Source Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromium Measured Concentration: Lead Measured Concentration: Nickel Measured Concentration:	British Geological Survey, National Geoscience Information Service 517229, 173180 Topsoil Lendon 18 30 mg/kg	A18NE (N)	681	t	517228 173180
	BGS Measured Urba	50 TO BE THE WORLD STATE OF THE	(60000000	000000	161	5000000
	Source: Ceid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromium Measured Concentration: Lead Measured Concentration Nickel Measured Concentration:	49.80 mg/kg 98.50 mg/kg 27.70 mg/kg	A128W (W)	718	1.	516303 172232
	BGS Measured Urba		5000000	76667	gri	NEW CONTRACTOR
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration; Chromium Measured Concentration Lead Measured Concentration Nickel Measured Concentration Concentration	N P 1 1 1 1 1 1 1 1 1	A9NW (SE)	738	1	517788 171803

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 25 of 49

Geological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Measured Urbo	on Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Catminum Measured Concentration: Chromium Measured Concentration:	British Geological Survey, National Geoscience Information Service 516264, 172716 Topsoil Lendon 22.90 mg/kg 0.40 mg/kg	A17SW (W)	826	(4)	516264 172716
	Lead Measured Concentration:	89.90 mg/kg				
	Nickel Measured Concentration:	30.20 mg/kg				
	BGS Measured Urba	an Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Lead Measured Concentration: Nickel Measured Concentration:	British Geological Survey, National Geoscience Information Service 517785, 173299 Topsoil London 22.20 mg/kg 0.30 mg/kg	A19NW (NE)	967	880	517785 173299
_	BGS Measured Urba	on Soll Chamistry	_			
	Source: Grid: Soll Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromium Measured Concentration: Lead Measured Concentration: Nickel Measured Concentration:	Ale Total Control of the Control of	A15SW (E)	992	1	518303 172289
	BGS Urban Soll Che	[발전하다][변경 [10] [10] [10] [10] [10] [10] [10] [10]	703926566	2.00	100.0	200000
	Source: Sample Area: Count Id Arsenic Minimum Concentration: Arsenic Average Concentration: Arsenic Maximum Concentration: Cadmium Minimum Concentration: Cadmium Maximum Concentration: Cadmium Maximum Concentration: Chromium Maximum Concentration: Chromium Average Concentration: Chromium Maximum Concentration: Lead Minimum Concentration: Lead Minimum Concentration: Lead Minimum Concentration: Lead Maximum Concentration: Lead Maximum Concentration: Lead Maximum Concentration: Lead Maximum Concentration: Nickel Minimum Concentration: Nickel Minimum Concentration: Nickel Average Concentration: Nickel Average Concentration: Nickel Average Concentration: Nickel Average Concentration: Concentration: Nickel Average Concentration: Concentr	0.90 mg/kg 165-20 mg/kg 13.00 mg/kg 79.00 mg/kg	A13NW (W)	0	1	517160

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 26 of 49

Geological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Coal Mining Affecte In an area that might	d Areas not be affected by coal mining				
	Non Coal Mining Ar No Hazard	eas of Geeat Britain				
	Potential for Collaps Hazard Potential: Source:	sible Ground Stability Hazards Very Low British Geplogical Survey, National Geoscience Information Service	A13NW (W)	0	1	517160 172357
	Potential for Compr Hazard Potential: Source:	essible Ground Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13NW (W)	307	13	517160 172357
	Potential for Compr Hazard Potential Source	essible Ground Stability Hazards Moderate British Geological Survey, National Geoscience Information Service	A135W (\$W)	41	1	516986 172263
	Potential for Ground Hazard Potential Source	d Dissolution Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13NW (W)	0	38	517160 172357
	Potential for Landsl Hazard Potential: Source:	ide Ground Stability Hazards Very Low British Geological Survey, National Geoscience Information Service	A13NW (W)	0	.23	517160 172357
	Potential for Runnin Hazard Potential Source	ng Sand Ground Stability Hazards Very Low British Geological Survey, National Geoscience Information Service	A13NW (W)	0	Û	517160 172357
	Potential for Shrink Hazard Potential: Source:	ing or Swelling Clay Ground Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13NW (W)	0	78	517160 172357
	Potential for Shrink Hazard Potential: Source	Ing or Swelling Clay Ground Stability Hazards Moderate British Geological Survey, National Geoscience Information Service	A13SE (SE)	78	1	517300 172260
	Radon Potential - R Affected Area: Source	adon Affected Areas The property is in a Lower probability radon area (less than 1% of homes are estimated to be at or above the Action Level). British Geological Survey, National Geoscience Information Service	A13NW (W)	0		517160 172357
		adon Protection Measures No radon protective measures are necessary in the construction of new dwellings or extensions British Geological Survey, National Geoscience Information Service	A13NW (W)	0	18	517160 172357

Industrial Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
83	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries K S Dry Cleaners Ltd 65, Ham Street, Richmond, TW10 7HW Dry Cleaners Active Automatically positioned to the address	AT3NE (E)	19	723	517311 172387
83	Contemporary Trad Name. Location: Classification: Status: Positional Accuracy.	e Directory Entries Peter'S Cleaners 65, Ham Street, Richmond, Surrey, TW10 7HW Dry Cleaners Inactive Aufomatically positioned to the address	A13NE (E)	20	(6)	517312 172387
83	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Mica Hardware 12. Ashbumham Road, Richmond, Surrey, TW10 7NF Hardware Inactive Automatically positioned to the address	A13NE (E)	20	050	517302 172362
83	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Peels Of London Ltd 63, Ham Street, Richmond, Surrey, TW 10 7HW Window Tinting Inactive Automatically positioned to the address	AT3NE (E)	26	983	517315 172382
84	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Www.Enviro-Blast-Clean.Com 32. Mowbray Road, Richmond, Surrey, TW10 7NQ Blast Cleaning Inactive Automatically positioned to the address	A13SE (S)	138	(0%)	517212 172135
85	Contemporary Trad Name: Location: Classification: Status:		A13SW (SW)	155	(8)	516888 172223
85	Contemporary Trad Name: Location: Classification: Status:	The Control of the Co	A13SW (SW)	158	283	516882 172233
85	Contemporary Trad Name: Location: Classification: Status:		A13SW (W)	160	9967	516873 172258
86	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy.	e Directory Entries Intech Marketing (Uk) Ltd 32, Back Lane, Richmond, Surrey, TW10 7LF Office Furniture & Equipment Inactive Automatically positioned to the address	A13SE (SE)	194	7900	517400 172186
87	Contemporary Trad Name: Location: Classification: Status:	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	A13SW (SW)	199		516907 172085
87	Contemporary Trad Name: Location: Classification: Status:	No. of the second secon	A13SW (SW)	241	124	516889 172041
88	Contemporary Trad Name . Location : Classification . Status :	30111	A13SW (SW)	251	- (6)	516828 172112

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 28 of 49

Industrial Land Use

Map		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
89	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy	e Directory Entries Designer Carpets 2, Ham Street, Richmond, Surrey, TW10 7HT Carpets & Rogs - Manufacturers Inactive Automatically positioned to the address	A13SE (SE)	273	ÿ.	517480 172153
89	Contemporary Trad Name: Location. Classification: Status: Positional Accuracy:	e Directory Entries M W Carpets Ltd 2, Ham Street, Richmond, Surrey, TW10 7HT Carpets & Rugs - Manufacturers Inactive Automatically positioned to the address	A13SE (SE)	273	#	517480 172153
90	Contemporary Trad Name Location. Classification: Status: Positional Accuracy.	e Directory Entries Lifetime Shutters & Blinds Ltd 63, Pernyfield Way, Richmond, Surrey, TW10 7SL Shutters - Internal Inactive Automatically positioned to the address	A13NW (NW)	278	Gi .	516905 172622
91	Contemporary Trad Name Location Classification Status: Positional Accuracy	e Directory Entries B & S Car Disposal Service 29, Meadlands Drive, Richmond, Surrey, TW10 7EF Car Breakers & Dismantlers Inactive Automatically positioned to the address	A19SW (NE)	388	23	517566 172737
92	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Key Cleaning Flat 1, 200, Riverside Drive, Richmond, Surrey, TW 10 7RP Commercial Cleaning Services Inactive Automatically positioned to the address	ASNW (S)	415	940	517006 171795
93	Contemporary Trad Name: Location: Classification; Status:		A8NE (S)	433	5	517194 171793
94	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Az Clean Ltd 10, Mornington Walk, Richmond, Surrey, TW10 7LY Commercial Cleaning Services Inactive	A8NE (SE)	445		517469 171932
95	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy	e Directory Entries Surrey Auto Services 156, Dukes Avenue, Richmond, TW 10 7YL Garage Services Active	ABNE (S)	498	Ą	517289 171762
96	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy.	e Directory Entries Airs & Graces 4, Beaufort Road, Richmond, Surrey, TW10 7XS Cleaning Services - Domestic Inactive Automatically positioned to the address	ASNE (S)	525	ŧ	517189 171696
97	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries M.J.W. Print Ltd 7, Lauderdale Drive, Richmond, Surrey, TW18 7BS Printers Inactive Automatically positioned to the address	A14NE (E)	570	8	517872 172950
98	Contemporary Trad Name Location: Classification: Status: Positional Accuracy:	e Directory Entries London Cleaning Service 64, Beaufort Court, Beaufort Road, Richmond, Surrey, TW10 7YO. Cleaning Services - Domestic Inactive Automatically positioned to the address	A8SW (S)	573	*	517129 171637
99	Contemporary Trad Name. Location. Classification. Status: Positional Accuracy.	e Directory Entries Oscar Pet Foods 28, Buckingham Road, Richmond, Surrey, TW10 7EQ Pet Foods & Animal Feeds Inactive Automatically positioned to the address	A19SW (NE)	597	¥.	517788 172803

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service: Page 29 of 49

Industrial Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trade Directory Entries			220		
120	Name: Location:	B 'N' S Salvage Flat 25, Cranmer Court, Richmond Road, Kingston upon Thames, Surrey, KT2 5PY	A9SW (SE)	987	55	517819 171512
	Classification: Status: Positional Accuracy:	Car Breakers & Dismantlers Inactive Automatically positioned to the address				
121	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy.	e Directory Entries Smart Fleet 47, Northweald Lane, Kingston upon Thames, Surrey, KT2 5GN Car Dealers Inactive Automatically positioned to the address	A4NW (S)	987	18	517518 171330
	Contemporary Trad	And the second s				
122	Name: Location: Classification: Status:	Kernetyl Broom Road, Teddington, Middlesex, TW11 9NU Chemical Manufacturers Inactive Manually positioned within the geographical locality	A3NW (S)	990	â	516967 171221
	Fuel Station Entries					
123	Name: Location: Brand; Premises Type: Status: Positional Accuracy.	A S Motors Of Ham Croftway, Riverside Drive, Ham, RICHMOND, Surrey, TW10 7NP Obsolete Not Applicable Obsolete Manually positioned to the address or location	A12SE (SW)	260	Ē	516810 172129
	Fuel Station Entries	Ki .				
124	Name. Location: Brand: Premises Type: Status: Positional Accuracy:	Ham Cross Service Station 297, Richmond Road, Kingston upon Thames, Surrey, KT2 5QU Texaco Petrol Station Open Automatically positioned to the address	A9SW (SE)	935	NEW COMMISSION	517745 171527
	-	Commercial Services				
125	Name: Location: Category: Class Code:	Tooth Removals Sarl 10 Watermill Close, Richmond, TW10 7UH Transport, Storage and Delivery Distribution and Haulage Positioned to address or location	A13SW (5)	189	7	517099 172020
	Points of Interest -	Commercial Services				
126	Name: Location: Category: Class Code:	Crown Ltd 297 Richmond Road, Kingston upon Thames, KT2 5QU Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A9SW (SE)	935	7	517745 171527
	Points of Interest -	Commercial Services	12.000.000.000		2000	
126	Name: Location: Category: Class Code: Positional Accuracy:	Crown Motorcycles 297 Richmond Road, Kingston upon Thames, KT2 5QU Répair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A9SW (SE)	935	7	517745 171527
	Points of Interest -	Commercial Services				
126	Location: Category: Class Code:	Vetech Motor Services 297 Richmond Road, Kingston upon Thames, KT2 5QU Répair and Servicing Veticle Repair, Testing and Servicing Positioned to address or location	A9SW (SE)	935	7	517745 171527
	Points of Interest	Commercial Services	DUSATES	2247345	200.70	
126	Name: Location; Category: Class Code: Positional Accuracy;	Crown Garage Kingston Ltd 297 Richmond Road, Kingston upon Thames, KT2 5QU Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A9SW (SE)	935	7	517745 171527
	Points of Interest -	Commercial Services	190300000	195500	29.2	5250000
126	Name: Location: Category: Class Code:	Ham Cross Garage 297 Richmond Road, Kingston upon Tharnes, KT2 5QU Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A9SW (SE)	935	7	517745 171527

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 34 of 49

Industrial Land Use

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
126	Points of Interest - Commercial Services Name: Vetech Motor Services Location: 297 Richmond Road, Kingston upon Thames, KT2 5QU Calegory: Repair and Servicing Class Code. Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A9SW (SE)	936	:7	517745 171526
126	Points of Interest - Commercial Services Name: Crown Garages Kingston Ltd Location: 297 Richmond Road, Kingston upon Thames, KT2 SQU Calegory Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A9SW (SE)	936	3	517745 171526
127	Points of Interest - Commercial Services Name L. J. Motorcycle Repairs Location: Unit D1. 1, Strawberry Vale, Twickenham, TW1.4RP Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A11NE (W)	980	7	516036 172478
128	Points of Interest - Education and Health Name: Cassel Hospital Location: 1 Ham Common, Richmond, TW10 7JF Category: Health Practitioners and Establishments Class Code: Hospitals Positional Accuracy: Positioned to address or location	A9NW (SE)	695	7	517708 171791
129	Points of Interest - Manufacturing and Production Name: Tank Location: TW 10 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A13SE (S)	201	ž	517267 172095
130	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A9NW (SE)	768	7	517822 171795
131	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Gategory: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	ATINE (W)	914	7	516100 172454
131	Points of Interest - Manufacturing and Production Name: Works Location: TW 1 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	ATINE (W)	918	7	516096 172454
131	Points of Interest - Manufacturing and Production Name: Works Location: TW1 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	ATINE (W)	985	7	516030 172468
131	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A11NE (W)	989	ž	516026 172469
132	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A17NE (NW)	935	ä	516573 173189
133	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A17NW (NW)	963	7	516452 173145

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 35 of 49

Contaminated Land Solutions

Industrial Land Use

Map	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
133	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A17NW (NW)	978	¥	516428 173146
133	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A17NW (NW)	979	7	516443 173158
133	Points of Interest - Manufacturing and Production Name: Works Location: TW1 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A17NW (NW)	979	ž	516428 173147
133	Points of Interest - Manufacturing and Production Name: Works Location: TW1 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A17NW (NW)	980	7	516443 173159
134	Points of Interest - Public Infrastructure Name Metropolitan Police Service Location: 18 Ashbumham Road, Richmond, TW 10 7NF Category: Central and Local Government Class Code: Police Stations Positional Accuracy: Positioned to address or location	A13NE (E)	33	7	517324 172379
134	Points of Interest - Public Infrastructure Name Metropolitan Police Service Location: 18 Ashburnham Road, Richmond, TW10 7NF Category. Central and Local Government Class Code: Police Stations Positional Accuracy: Positioned to address or location	AT3NE (E)	33	ž	517324 172379
135	Points of Interest - Public Infrastructure Name Tesco Petrol Filing Station Location: 185 Ashburnham Road, Richmond, TW 10 7NR: Category: Road And Rail Class Code: Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A12SE (SW)	235	7	516818 172182
136	Points of Interest - Public Infrastructure Name: Outfall Location: TW 10 Category: Infrastructure and Facilities Class Code: Waste Storage, Processing and Disposal Positional Accuracy: Positioned to an adjacent address or location	A125W (W)	725	7	516340 172066
137	Points of Interest - Public Infrastructure Name: Sluices Location: TW10 Category: Water Class Code: Wers, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	ASSW (S)	752	7	516893 171474
137	Points of Interest - Public Infrastructure Name: Sluice Location: TW10 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	Assw (S)	767	7	516957 171447
138	Points of Interest - Public Infrastructure Name: Stuces Location: TW11 Category: Water Class Code: Weers, Sluces and Dams Positional Accuracy: Positioned to an adjacent address or location	ASSW (S)	797	7	517008 171411
138	Points of Interest - Public Infrastructure Name: Studes Location: TW11 Category: Water Class Code: Weirs, Sludes and Dams Positional Accuracy: Positioned to an adjacent address or location	ASSW (S)	819	7	517019 171389

Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 36 of 49

Contaminated Land Solutions

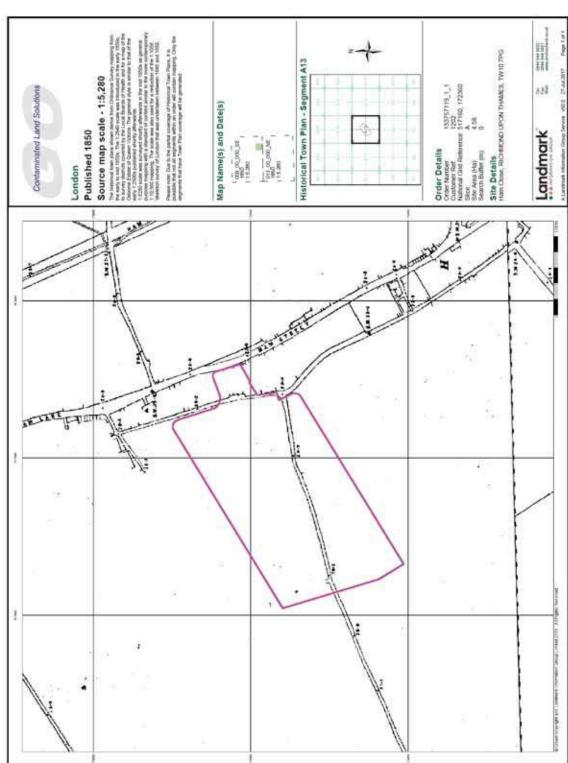
Industrial Land Use

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR	
138	Points of Interest - Public Infrastructure Name: Teddington Weir Location: TW 11 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A8SW (S)	826	7	517021 171381	
139	Points of Interest - Public Infrastructure Name: Centetry Location: TW10 Category: Infrastructure and Facilities Class Code: Cempteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A9NE (SE)	867	7	517983 171831	
139	Polints of Interest - Public Infrastructure Name: Cemetery Location: Not Supplied Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A9NE (SE)	871	7	517988 171832	
140	Points of Interest - Public Infrastructure Name: Hamcross Self Serve Location: 297 Richmond Road, Kingston upon Thames, KT2 5QU Gategory Road And Rail Class Code: Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A9SW (SE)	935	£	517745 171527	
140	Points of Interest - Public Infrastructure Name: Ham Cross Service Station Location: 297 Richmond Road, Kingston upon Thames, KT2 5QU Category. Road And Rait Class Code. Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A9SW (SE)	935	7:	517745 171527	
140	Points of Interest - Public Infrastructure Name: Ham Cross Service Station Location: 297 Richmond Road, Kingston upon Thames, KT2 5QU Category: Road And Rail Class Code: Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A9SW (SE)	935	≇:	517745 171527	
140	Points of Interest - Public Infrastructure Name: Ham Cross Service Station Location: 297 Richmond Road, Kingston upon Thames, KT2 5QU Category: Road And Rail Class Code: Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A95W (SE)	935	7:	517745 171527	
140	Points of Interest - Public Infrastructure Name: Texaco Location: 297 Richmond Road, Kingston upon Thames, KT2 5QU Category. Road And Rail Class Code. Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A9SW (SE)	936	7	517745 171526	
141	Points of Interest - Recreational and Environmental Name: Playground Location: Not Supplied Category Recreational Class Code Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A18SW (N)	323	×	517035 172754	
141	Points of Interest - Recreational and Environmental Name: Playground Location: Riverside Drive, TW 10 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A185W (N)	323	7	517035 172754	
142	Points of Interest - Recreational and Environmental Name: Playground Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positional to an adjacent address or location	A8SW (S)	650	7:	517049 171556	
142	Points of Interest - Recreational and Environmental Name: Playground Location: Fisherman Close, TW10 Category. Recreational Class Code: Playgrounds Positional Accuracy Positional Accuracy	A8SW (S)	650	7	517049 171556	

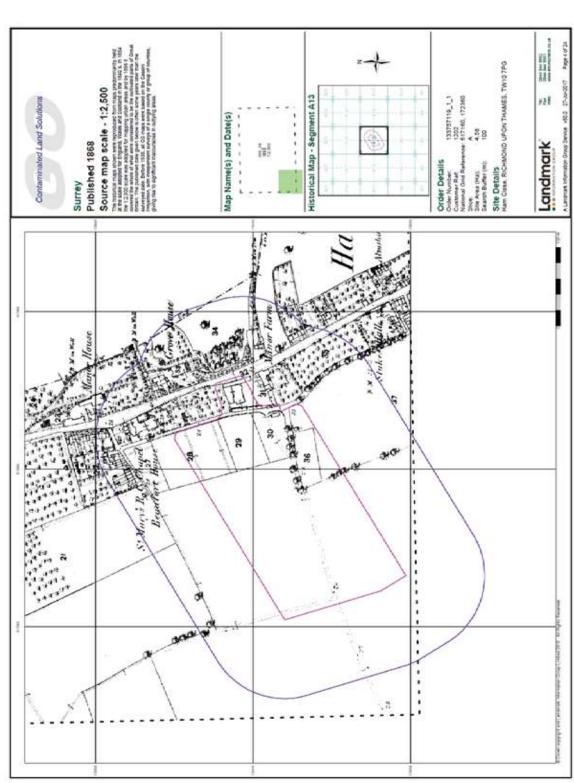
Order Number: 133757119_1_1 Date: 27-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 37 of 49

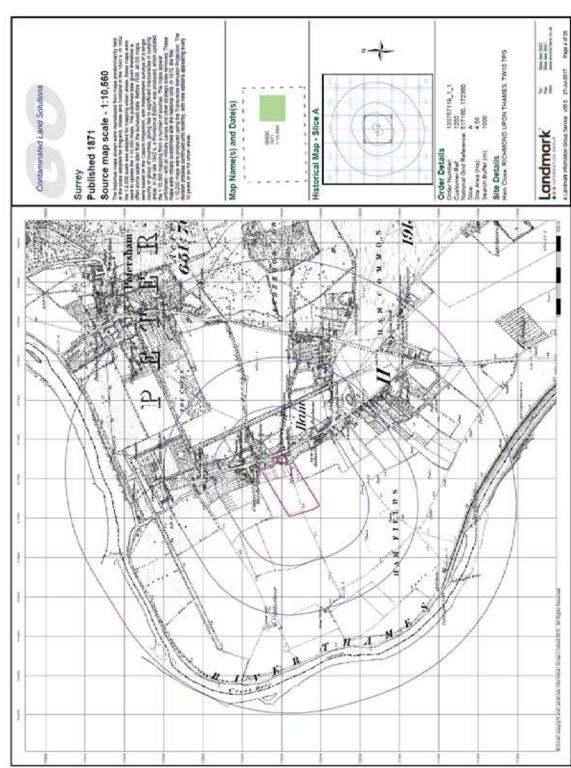
Contaminated Land Solutions

Sensitive Land Use

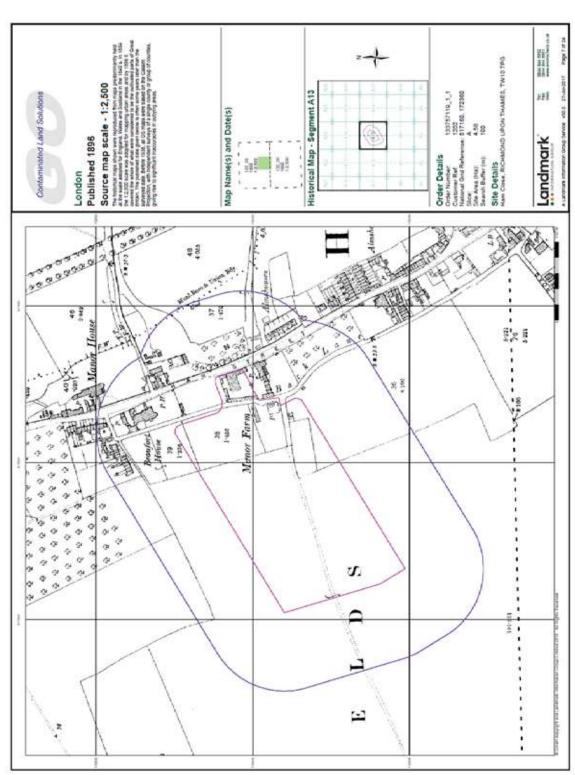

Map	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Local Nature Rese	rves				
145	Name: Multiple Area: Area (m2): Source: Designation Date:	Ham Lands Y 600138.24 Natural England 1st January 1992	A12SE (SW)	290	8	516809 172060
	Local Nature Rese					
146	Name: Multiple Area: Area (m2): Source: Designation Date:	Ham Common, Richmond, London N 402691.94 Natural England 1st January 2001	A14SE (E)	671	8	517897 172074

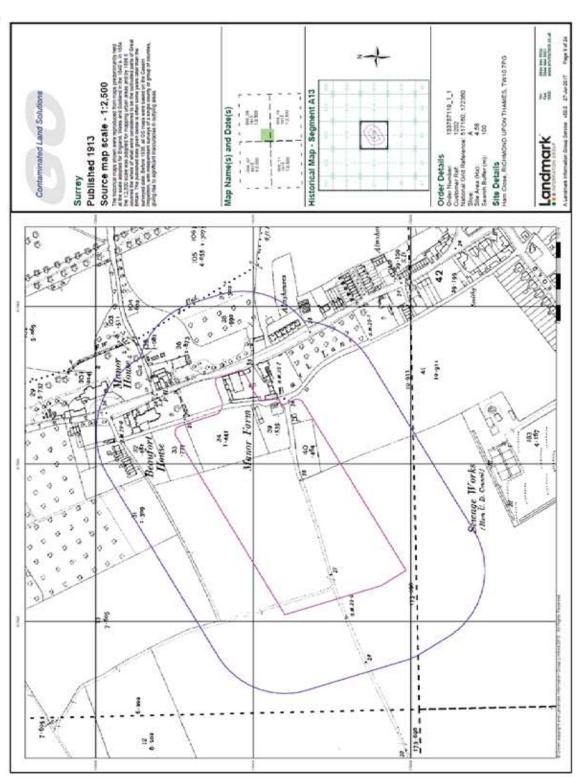
Appendix D - Historical Maps

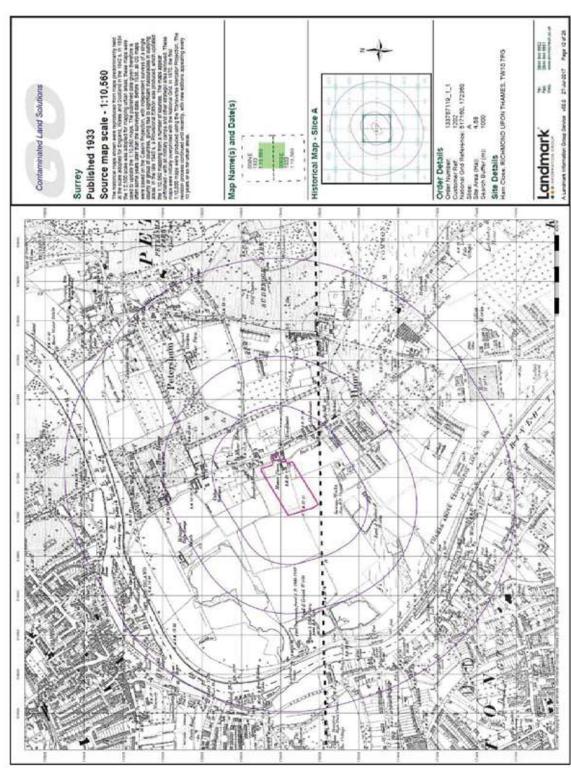

© Crown copyright. All rights reserved. Licence number LAN1001467.

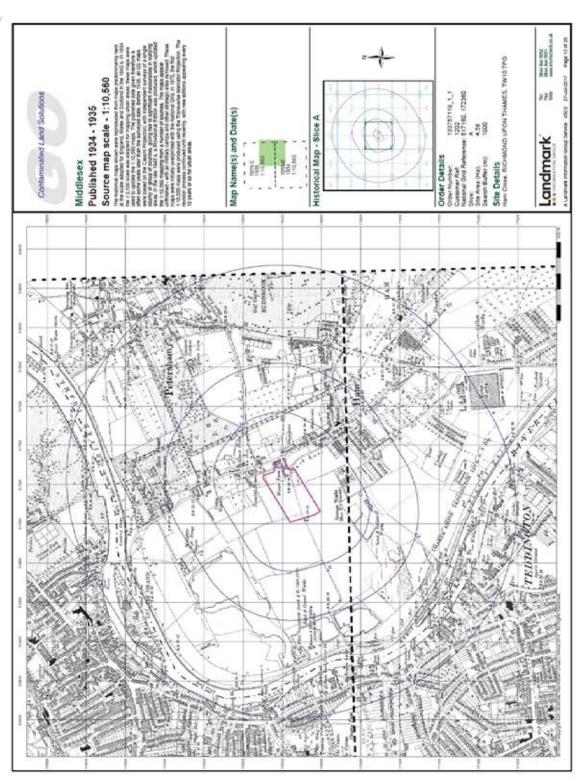


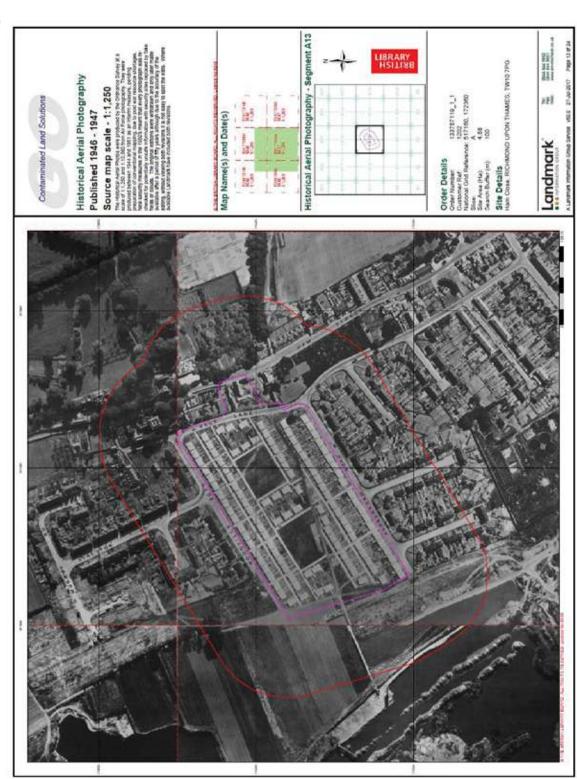
9324-P1E-1: Ham Close, Richmond Upon Thames Richmond Housing Partnership



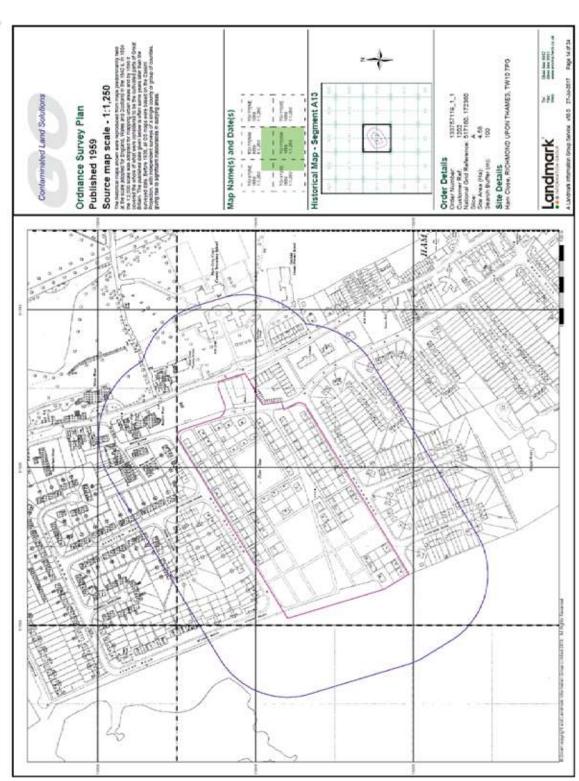




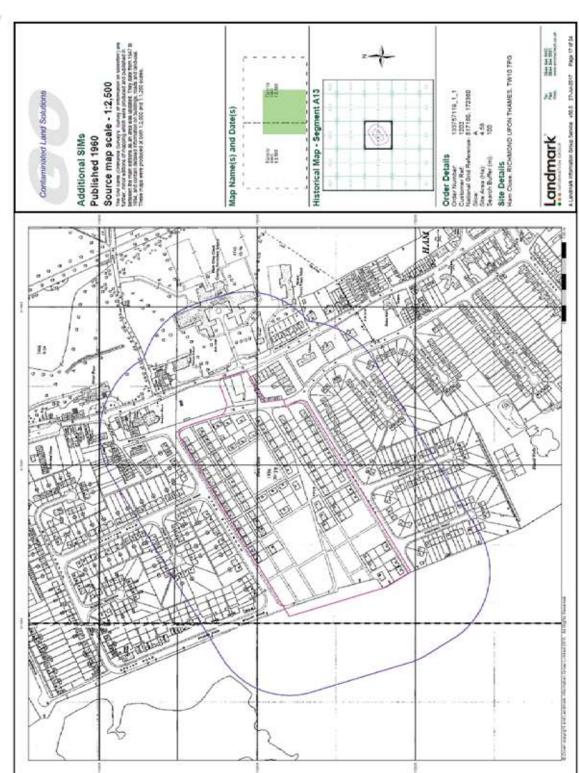

9324-P1E-1: Ham Close, Richmond Upon Thames Richmond Housing Partnership

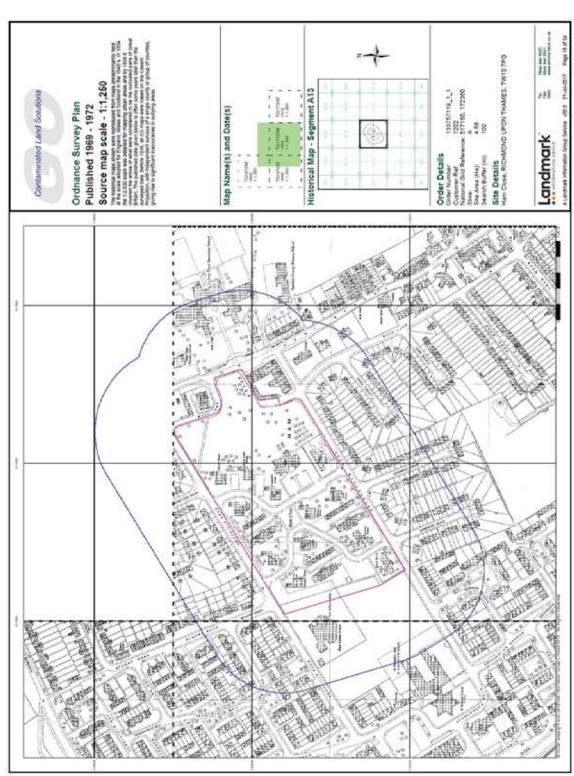


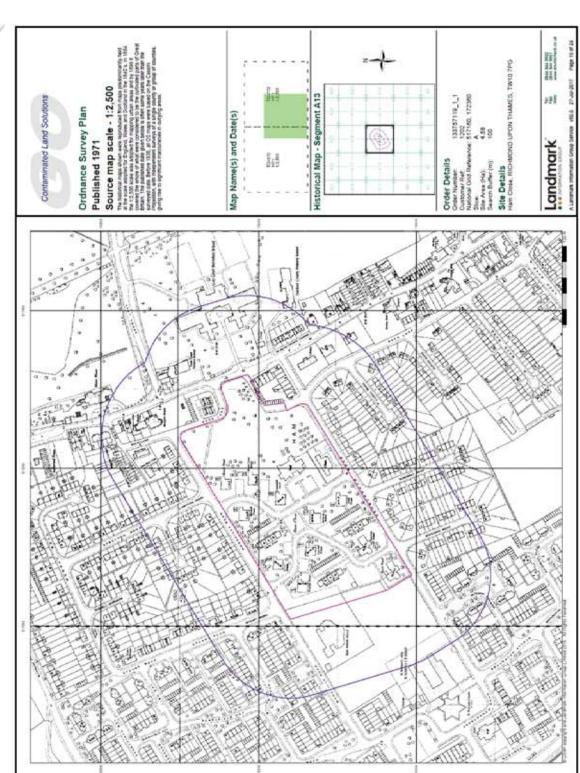
9324-P1E-1: Ham Close, Richmond Upon Thames Richmond Housing Partnership


9324-P1E-1: Ham Close, Richmond Upon Thames Richmond Housing Partnership

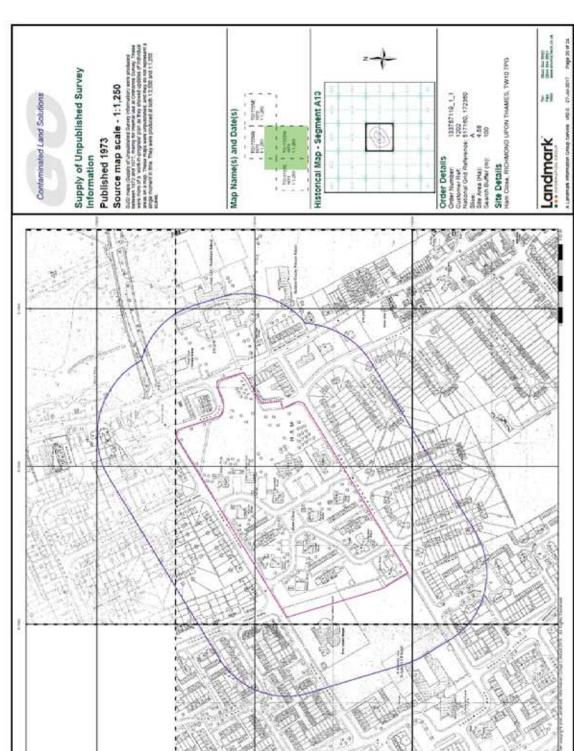
Chelmer


9324-P1E-1: Ham Close, Richmond Upon Thames Richmond Housing Partnership

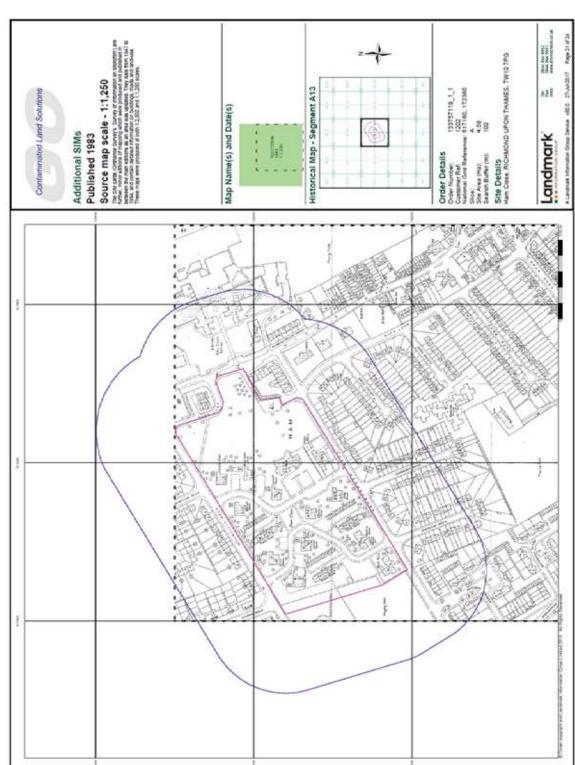

9324-P1E-1: Ham Close, Richmond Upon Thames Richmond Housing Partnership

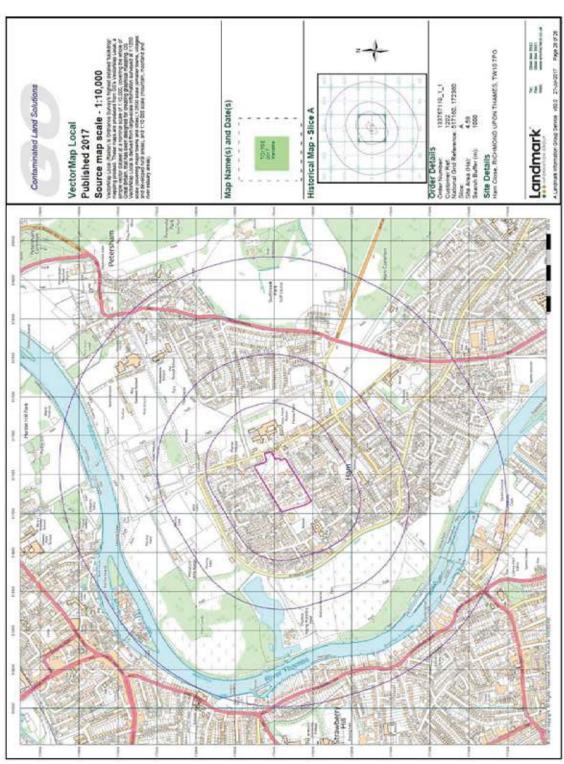


9324-P1E-1: Ham Close, Richmond Upon Thames Richmond Housing Partnership



9324-P1E-1: Ham Close, Richmond Upon Thames Richmond Housing Partnership


9324-P1E-1: Ham Close, Richmond Upon Thames Richmond Housing Partnership


9324-P1E-1: Ham Close, Richmond Upon Thames Richmond Housing Partnership

9324-P1E-1: Ham Close, Richmond Upon Thames Richmond Housing Partnership

Appendix E - Owner's Questionnaire

Questionnaire, for completion by current or previous owner or manager, please enter Not Known where you are unable to provide an answer.

Ham Close, Richmond upon Thames, TW10 7PG

I have owned/managed*	the above site from .2000	tocurrent
(*delete as appropriate)		

Existing site & property details:

Site use:	Mainly residential Youth club/ clinic/ dentist
Number of Buildings:	14 residential blocks
Building 'A', Nature of Use:	residential
Date of Construction	1960's
Land Area (ha):	
Current Tenants:	192 units
Any asbestos containing materials?	Likely due to age of construction
Asbestos Survey available?	no
Any archaeological, geotechnical or environmental reports?	no

Current site utilities:

Commercial/Household Waste Disposal	
Sewage Discharge and Disposal	to main drainage, yes/no, if other please specify
Surface Water Drainage	to main drainage/soakaway, if other please specify
Source of heating and cooling	Individual mains gas/electric
Wells?	no
Septic System?	no

Historical site activities (if answered 'yes', please provide details):

Are you aware of any other past use of the site?	no
Are you aware of any other past use of adjacent areas?	Not to our knowledge
Has anything been buried on or within 250m of the site?	Not to our knowledge
Have any chemicals been stored on or within 250m of the site?	Not to our knowledge
Have any potentially contaminating processes been undertaken either on or within 250m of the site?	Not to our knowledge
Has there been any oil or fuel storage on or within 250m of the site?	Not to our knowledge
Has any fill material been deposited on or within 250m of the site?	Not to our knowledge
Have any animals been kept on site?	Maybe, as originally farmland (approx. 100 years ago)

Signed	Date	.01	Aug 20	17	
NameTracey Elliott					
CompanyRHP					

Appendix F – Contacts

Local Authority	Environmental Health London Borough of Richmond upon Thames 4 Waldegrave Road, Teddington, Middlesex, TW11 8EN	www.richmond.gov.uk Simon.makoni@richmond.gov.uk
Environment Agency	National Customer Contact Centre PO Box 544 Rotherham S60 1BY	08708 506 506 enquiries@environment- agency.gov.uk
Coal Authority	Mining Reports Office 200 Lichfield Lane Berry Hill, Mansfield Notts, HG18 4RG	www.coalminingreports .co.uk
Health Protection Agency, Radiation Protection Division	Chilton Didcot Oxon, OX11 ORQ	01235 822622 radon@hpa.org.uk www.hpa.org.uk/radiation

- a) This report has been prepared for the purpose of providing advice to the client pursuant to its appointment of Chelmer Site Investigation Laboratories Limited (CSI) to act as a consultant.
- b) Save for the client no duty is undertaken or warranty or representation made to any party in respect of the opinions, advice, recommendations or conclusions herein set out.
- c) All work carried out in preparing this report has used, and is based upon, our professional knowledge and understanding of the current relevant English and European Community standards, approved codes of practice, technology and legislation.
- d) Changes in the above may cause the opinion, advice, recommendations or conclusions set out in this report to become inappropriate or incorrect. However, in giving its opinions, advice, recommendations and conclusions, CSI has considered pending changes to environmental legislation and regulations of which it is currently aware. Following delivery of this report, we will have no obligation to advise the client of any such changes, or of their repercussions.
- e) CSI acknowledges that it is being retained, in part, because of its knowledge and experience with respect to environmental matters. CSI will consider and analyse all information provided to it in the context of our knowledge and experience and all other relevant information known to us. To the extent that the information provided to us is not inconsistent or incompatible therewith, CSI shall be entitled to rely upon and assume, without independent verification, the accuracy and completeness of such information.
- f) The content of this report represents the professional opinion of experienced environmental consultants. CSI does not provide specialist legal advice and the advice of lawyers may be required.
- g) In the Summary and Recommendations sections of this report, CSI has set out our key findings and provided a summary and overview of our advice, opinions and recommendations. However, other parts of this report will often indicate the limitations of the information obtained by CSI and therefore any advice, opinions or recommendations set out in the Executive Summary, Summary and Recommendations sections ought not to be relied upon unless they are considered in the context of the whole report.
- h) The assessments made in this report are based on the ground conditions as revealed by walkover survey and/or intrusive investigations, together with the results of any field or laboratory testing or chemical analysis undertaken and other relevant data, which may have been obtained including previous site investigations. In any event, ground contamination often exists as small discrete areas of contamination (hot spots) and there can be no certainty that any or all such areas have been located and/or sampled.
- i) There may be special conditions appertaining to the site, which have not been taken into account in the report. The assessment may be subject to amendment in light of additional information becoming available.
- j) Where any data supplied by the client or from other sources, including that from previous site investigations, have been used it has been assumed that the information is correct. No responsibility can be accepted by CSI for inaccuracies within the data supplied by other parties.
- k) Whilst the report may express an opinion on possible ground conditions between or beyond trial pit or borehole locations, or on the possible presence of features based on either visual, verbal or published evidence this is for guidance only and no liability can be accepted for the accuracy thereof.
- I) Comments on groundwater conditions are based on observations made at the time of the investigation unless otherwise stated. Groundwater conditions may vary due to seasonal or other effects.
- m) This report is prepared and written in the context of the agreed scope of work and should not be used in a different context. Furthermore, new information, improved practices and changes in legislation may necessitate a reinterpretation of the report in whole or part after its original submission.
- n) The copyright in the written materials shall remain the property of the CSI but with a royalty-free perpetual license to the client deemed to be granted on payment in full to CSI by the client of the outstanding amounts.
- o) These terms apply in addition to the CSI Standard Terms of Engagement (or in addition to another written contract which may be in place instead thereof) unless specifically agreed in writing. (In the event of a conflict between these terms and the said Standard Terms of Engagement the said Standard Terms of Engagement shall prevail). In the absence of such a written contract the Standard Terms of Engagement will apply.
- p) This report is issued on the condition that CSI will under no circumstances be liable for any loss arising directly or indirectly from subsequent information arising but not presented or discussed within the current Report.
- q) In addition CSI will not be liable for any loss whatsoever arising directly or indirectly from any opinion within this report.

APPENDIX B – EXPLORATORY HOLE RECORDS

o No CRM	1.1027.0	087	Dates	Start 28 Finish 2	-04-21 28-04-21	Groun	nd Level (1	m)	Co-Ordinates	WS1
ient H	[ill Part	nership	,							Sheet 1 of 1
Vell	Water Levels		nples & I	n Situ Te	sting Results	Depth (m)	Level (mAD)	Legend	Stratum Description	
		0.20 -	0.40	ES		0.45			MADE GROUND: Grass over multicoloured (brown to lighblack) clayey to very clayey occasionally gravelly fine SAN subangular and subrounded, fine to coarse flint, tarmac, b Brown sandy CLAY. Sand is fine.	ID. Gravel is
		0.90 -		D		0.70			Brown clayey fine to medium SAND.	
		1.00 -	1.45	SPT	C 7	1.30			1.00 - 1.45 Loose.	
		1.90 - 2.00 -		D SPT	C 11				Light brown slightly clayey fine to medium SAND.	
						2.20			Brown to light brown very sandy CLAY. Sand is fine.	
		2.90 - 3.00 -		D SPT	C 56	3.00			Light brown slightly clayey gravelly fine to medium SAND. medium flint. Light brown slightly clayey gravelly fine to medium SAND.	
						3.45		· · · · · · · · · · · · · · · · · · ·	medium flint. 3.00 - 3.45 Very dense, refused. Borehole completed at 3.45m.	
						{4.00}				
QUIPN ETHO ASINO ROUN	D: Hand 3: Not use DWATE	rchway dug ins ed. ER: Grou	pection j	pit 0.00m	ountered.	g tracked legl. Dyn	rig. amic sam		-3.00m begl.	
round	lwater		Dat	e		Strike D		Cas	sing Depth Depth After Observation (m) (m)	

Enzygo Ltd

Tel: 01454 269237
Fax: 01454 269760
Web: www.enzygo.com

b No CRM	I.1027.0)87	Dates	Start 27- Finish 2	-04-21 7-04-21	Groun	d Level (m)	Co-Ordinates	WS2
lient H	lill Partı	nership)			-!				Sheet 1 of 1
Well	Water Levels	Sam Depth		No/Type	Results	Depth (m)	Level (mAD)	Legend	Stratum Description	
		0.20 -	0.40	ES		0.20			MADE GROUND: Grass over multicoloured (brown to light black) clayey to very clayey very gravelly fine SAND. Grant and subrounded, fine to coarse flint, ash and brick. 0.00 - 1.80 With roots.	
						0.45			MADE GROUND: Brown to black clayey very gravelly fine angular fine to coarse flint, ash and clinker.	e SAND. Gravel is
		0.90 - 1.00 -		D SPT	C 14				Brown sandy CLAY. Sand is fine.	
						1.40			Brown clayey fine SAND.	
		1.90 - 2.00 -		D SPT	C 29	1.80			Multicoloured (light brown to light grey and very light oran slightly clayey, occasionally gravelly fine to coarse SAND and subrounded fine flint. 2.00 - 2.45 Medium dense.	ge) clayey to locally . Gravel is rounded
		2.90 - 3.00 -		D SPT	C 53	3.00			Multicoloured (light brown to light grey and very light oran slightly clayey, occasionally gravelly fine to coarse SAND and subrounded fine flint. 3.00 - 3.45 Very dense, refused. Borehole completed at 3.45m.	
						{4.00}				
QUIPN IETHO ASINO ROUN	D: Hand G: Not use DWATE	rchway o dug insp ed. R: Grou	pection pectin pection pection pection pection pection pection pection pection	oit 0.00m		egl. Dyn	amic sam	-	n-3.00m begl.	
round	lwater		Dat	e		Strike De (m)	epth	Cas	sing Depth Observation (m) Depth After Observation (m)	

Site Richmond John No. Dates Start 27-44-21 Ground Level (m) Co-Ordinates CRM_1027.087 Finish 27-04-21 Ground Level (m) Co-Ordinates Site CRM_1027.087 Finish 27-04-21 Finish 27-0			1							
	_									
	chmond		_							WS4
				Start 27	-04-21	Groun	d Level (1	m)	Co-Ordinates	
	1027.08	37		Finish 2	7-04-21					
	ll Partne	ership								Sheet 1 of 1
								Legend	Stratum Description	
4044	evels	Depth	(m)	No/Type	Results	(m)	(mAD)	×××××	•	
		0.90 - 1. 1.00 - 1. 1.90 - 2. 2.00 - 2.	00 45	D SPT		1.50 2.00 2.45		00	black) clayey to very clayey occasionally gravelly fine SA subangular and subrounded, fine to coarse flint, brick and Brown CLAY. 1.00 - 1.45 Stiff, high strength. Multicoloured (light orange brown to light grey) gravelly fit Gravel is angular coarse flint. Multicoloured (light orange brown to light grey) gravelly fit Gravel is angular coarse flint.	ND. Gravel is di ash.
EQUIPMI METHOD CASING: GROUND	ENT: Arc D: Hand d Not used WATER	hway co ug inspe : Ground	ction p dwater	not enco	ı-1.00m b ountered.	egl. Dyna	amic sam		n-2.00m begl.	
Groundy	vater		Dat	e		Strike De (m)	epth	Cas	Observation	
All dimer	nsions in reale 1:25	metres								Logged By KC

Enzygo Ltd Tel: 01454 269237

Fax: 01454 269760 Web: www.enzygo.com

Site						
Richmond					MCE	
Job No	Dates Start 27-04-21	Ground Level (1	n)	Co-Ordinates	WS5	
CRM.1027.087	Finish 27-04-21					
Client		•			Sheet	
Hill Partnership	p				1 of 2	

Well Le	Vater	Samples & I			Depth	Level	Legend	Stratum Description	
	evels	Depth (m)	No/Type	Results	(m)	(mAD)	Legena	Ottatum Description	\perp
		0.20 - 0.40	ES		0.20			MADE GROUND: Grass over multicoloured (brown to light brown and light black) clayey to very clayey very gravelly fine SAND. Gravel is subangular and subrounded, fine to coarse flint, ash and brick.	Ţ
					0.45			MADE GROUND: Brown to black clayey very gravelly fine SAND. Gravel is angular fine to coarse flint, ash and clinker.	<u>'</u>
					0.10		0 · · · · · · · · · · · · · · · · · · ·	Brown to light brown clayey very occasionally gravelly fine SAND. Gravel is subrounded fine flint.	}
							· · · · · ·		
		0.90 - 1.00 1.00 - 1.45	D SPT	C 8			0		
								1.00 - 1.45 Loose.	
					1.60		0 . 0	Multicoloured (light brown to light grey and very light orange) clayey to locally	$\frac{1}{2}$
							. · · · · · · · ·	slightly clayey, occasionally gravelly fine to coarse SAND. Gravel is rounded and subrounded fine flint.	
		1.90 - 2.00 2.00 - 2.45	D SPT	C 24			. — . —		
	∇							2.00 - 2.45 Medium dense.	
	-						- · · · · · · ·		
							· · · · · · · · · · · · · · · · · · ·		
							- · · · · · · · · · · · · · · · · · · ·		
		2.90 - 3.00	D				- · · · · · · ·		
		3.00 - 3.45	SPT	C 24			· · · · · ·	3.00 - 3.45 Medium dense.	
							- · · · · · · ·		
							· · · · · · · · · · · · · · · · · · ·		
<u> </u>									
							· · · · · · ·		
		3.90 - 4.00 4.00 - 4.45	D SPT	C 51	4.00				
		+.00 - 4.40	J JF I	031	4.00 {4.00}		^	Continued next sheet	-

General Remarks

Groundwater	Date 27/04/21	Strike Depth (m) 2.20	Casing Depth (m)	Depth After Observation (m)	
	27.0 21	2.20			

Enzygo Ltd

Tel: 01454 269237
Fax: 01454 269760
Web: www.enzygo.com

Site														
R	Richmon	nd											WS5	
Job No CRM	И.1027.0		Dates S	tart 27- inish 2	-04-21 7-04-21		nd Level (m)	Co-Ordinates				WSS	
Client H	Hill Partı	nership				•							Sheet 2 of 2	
Well	Water Levels	Samp Depth	oles & In		sting Results	Depth (m)	Level (mAD)	Legend		;	Stratum Descri	ption		
	1 Remar	·ks				4.45			Multicoloured (li slightly clayey, cand subrounded 4.00 - 4.45 Very Borehole compl	occasionally d fine flint. dense, refus	gravelly fine to c	ery light oran	ge) clayey to locall Gravel is rounded	y
CASINO GROUN BACKF	G: Not use	ed. ER: Grour completio								e zone (3.50n	m-0.50m), bento	onite seal 0.50)m-0.10m, flush st	eel
Ground	dwater		Date			Strike D (m)	epth	Ca	sing Depth (m)	Obser	n After vation n)			
	nensions in												Logged By KC	

G:				
Site				
Richmond				WS6
Job No	Dates Start 27-04-21	Ground Level (m)	Co-Ordinates	W36
CRM.1027.087	Finish 27-04-21			
Client				Sheet
Hill Partnership	າ			1 of 1

10/-11	Water	Samples &	In Situ Tes	sting	Depth	Level		Charles Description	
	Levels	Depth (m)	No/Type		(m)	(mAD)	Legend	Stratum Description	1
		0.20 - 0.40	ES		0.15			MADE GROUND: Grass over multicoloured (brown to light brown and light black) clayey to very clayey very gravelly fine SAND. Gravel is subangular and subrounded, fine to coarse flint and brick.	 -
					0.60			MADE GROUND: Multicoloured (brown to light brown and light black) clayey to very clayey very gravelly fine SAND with asbestos fibres and cast iron pieces. Gravel is subangular and subrounded, fine to coarse flint and ash.	
		0.00 4.00			0.00			Brown to light brown occasionally gravelly sand CLAY. Gravel is subrounded fine flint. Sand is fine.	
		0.90 - 1.00 1.00 - 1.45	SPT	C 9				1.00 - 1.45 Firm, low strength.	-
							0		
					1.70			Delegan CAND with for Owner	
		1.90 - 2.00 2.00 - 2.45	D SPT	C 34				Pale orange yellow slightly gravelly fine to coarse SAND, mostly fine. Gravel is subangular and subrounded fine flint.	
								2.00 - 2.45 Dense.	
		2.50 - 2.60 2.60 - 2.98	D SPT	C 53	2.60				
					2.02			2.60 Sampler barrel refused. 2.60 - 2.98 Very dense, refused. Pale orange yellow slightly gravelly fine to coarse SAND, mostly fine. Gravel is subangular and subrounded fine flint.	
					2.98			Borehole completed at 2.98m.	
					{4.00}				
eneral l		ks rchway compac	et window	sampling		rig.			
IETHOE ASING: ROUNE	D: Hand Not use DWATE LL: On G	dug inspection ed. CR: Groundwate completion, a sle	pit 0.00m er not enco	-1.00m b ountered.	egl. Dyna	amic sam	-	2.60m begl. ranular response zone (2.50m-0.50m), bentonite seal 0.50m-0.10m, flush stee	e
		ш.							
roundy	water	Da	ate		Strike Do		Cas	ng Depth Observation (m) Depth After Observation (m)	

General Remarks

Groundwater	Date	Strike Depth (m)	Casing Depth (m)	Depth After Observation (m)	

Enzygo Ltd Tel: 01454 269237 Fax: 01454 269760

Web: www.enzygo.com

b No CRN	4.1027.0	087		Start 27 Finish 2		Groun	d Level (m)	Co-Ordinates	WS7
lient F	Hill Part	nership)							Sheet 1 of 1
Well	Water Levels	Sam Deptl		No/Type	Results	Depth (m)	Level (mAD)	Legend	Stratum Description	
		0.20 -	0.40	ES		0.55			MADE GROUND: Grass over multicoloured (brown to black) occasionally gravelly clayey to very clayey fine fragments. Gravel is subangular and subrounded, fine and ash. Dark brown to brown occasionally gravelly CLAY. Gra	SAND with glass e to coarse flint, brick
		0.90 - 1.00 -		D SPT	C 16	1.00		0 0	medium flint. 1.00 - 1.45 Medium dense.	
						1.70			Brown to light grey brown clayey very gravelly fine SA and subrounded, fine to medium flint.	
		1.90 -	2.00	D					Very light green to very light brown very slightly claye	y fine SAND.
		2.00 -	2.45	SPT	C 53	2.00			Very light green to very light brown very slightly claye 2.00 - 2.45 Very dense, refused.	y fine SAND.
						2.45			Borehole completed at 2.45m.	
						{4.00}				
QUIPN IETHO ASINO ROUN ACKE	DD: Hand G: Not use NDWATE	rchway o dug insp ed. ER: Grou completion	pection ndwate	pit 0.00m r not enco	ountered.	egl. Dyn	amic sam		n-2.00m begl. granular response zone (2.00m-0.50m), bentonite seal	0.50m-0.10m, flush ste
	dwater		Da	te		Strike D		Cas	sing Depth Depth After Observation (m) (m)	

Site										
	Lichmor	ıd								WS8
Job No			Dates	Start 2/	-04-21	Groun	d Level (m)	Co-Ordinates	1100
	1.1027.	087		Finish 2	27-04-21					at .
Client H	Iill Part	nership)							Sheet 1 of 1
Well	Water Levels		nples & I h (m)	n Situ Te	sting Results	Depth (m)	Level (mAD)	Legend	Stratum Description	
		0.20 -	0.40	D ES		0.15			MADE GROUND: Grass over multicoloured (brown to lig black) clayey to very clayey very gravelly fine SAND. Gra and subrounded, fine to coarse flint and brick.	
				23		0.40			MADE GROUND: Multicoloured (brown to light brown an to very clayey very gravelly fine SAND with asbestos fibro subangular and subrounded, fine to coarse flint, ash, and	es. Gravel is
									Brown to light grey brown clayey fine SAND.	-
		0.90 - 1.00 -		D SPT	C 9					- - - 1
									1.00 - 1.45 Loose.	-
										-
						1.70		· · · · · · · · · · · · · · · · · · ·	Very light green to very light brown very slightly clayey or fine SAND. Gravel is subrounded fine flint.	casionally gravelly
		1.90 - 2.00 -		SPT	C 51	2.00		- · · · · · · ·	Very light green to very light brown very slightly clayey oc	2
									fine SAND. Gravel is subrounded fine flint. 2.00 - 2.45 Very dense, refused.	-
						2.45			Borehole completed at 2.45m.	-
										-
										- 3
										-
										- -
										-
	L	1				{4.00}				- 4
METHO CASINO GROUN	MENT: ADD: Hand G: Not us IDWATE	rchway dug insj ed. ER: Grou	pection indwater	pit 0.00m r not enco		egl. Dyn	amic sam	-	n-2.00m begl.	
Ground	dwater		Da	te		Strike D		Ca	Sing Depth Depth After Observation (m) (m)	
	ensions i		;							Logged By KC
	Scale 1:2	3								I NC

Depth (m) Nol yipe Results (m) (minus) MADE GROUND: Grass over black) clayey to very clayey of subangular and subrounded, subangular and subrounded, subangular and subrounded in the subangular and subrounded in the subangular and subrounded fine flint. 1.00 - 1.45 SPT C 12 1.50 Multicoloured (light brown to slightly clayey occasionally grand subrounded fine flint. 2.00 - 2.45 SPT C 51 2.00 Multicoloured (light brown to slightly clayey occasionally grand subrounded fine flint. 2.00 - 2.45 Very dense, refus 2.45 Borehole completed at 2.45m Borehole completed at 2.45m MIDDINATER: Groundwater not encountered. BOUNDWATER: Groundwater not encountered. BOUNDWATER: Groundwater not encountered. BACKFILL: On completion, a slotted pipe (50mm) was installed to 2.00m begl, granular response zone (2.00m begl. Groundwater Date Strike Depth Casing Depth Observ (m)			izygo.com								
Site											
Ri	chmono									WS9	
				Start 28	-04-21	Groun	d Level (m)	Co-Ordinates	7709	
	1027.0	87]	Finish 2	8-04-21						_
	11 Dartn	erchin								Sheet 1 of 1	
Well	Water							Legend	Stratum Description		_
VVCII	Levels	Depth (r	m)	No/Type	Results	(m)	(mAD)	XXXXXX			_ (
		0.90 - 1.0 1.00 - 1.4	000 445 000	D SPT		0.90 1.50 2.00			Brown very clayey fine SAND. 1.00 - 1.45 Medium dense. Multicoloured (light brown to light grey and very light orar slightly clayey occasionally gravelly fine to coarse SAND and subrounded fine flint. Multicoloured (light brown to light grey and very light orar slightly clayey occasionally gravelly fine to coarse SAND.	nge) clayey to locally Gravel is rounded	
EQUIPM METHOI	ENT: Ard	chway cor lug inspec	mpaction r	window	sampling	{4.00}	rig.	pled 1.00m	Borehole completed at 2.45m.		
CASING: GROUNI BACKFII cover 0.10	Not used DWATEF LL: On co 0m-0.00n	l. R: Ground ompletion,	water, a slo	not enco	ountered.	was insta	alled to 2.	00m begl, ş	granular response zone (2.00m-0.50m), bentonite seal 0.5	0m-0.10m, flush stee	[_
									()		
	nsions in	metres								Logged By	=
	nsions in cale 1:25	menes								KC KC	

Site										
	ichmon	ıd								
Job No					Groun	d Level (m)	Co-Ordinates	WS10	
Client H	ill Part	nership)			1				Sheet 1 of 1
Well	Water Levels	Sam Deptl		No/Type	sting Results	Depth (m)	Level (mAD)	Legend	Stratum Description	
		0.20 -	0.40	B ES		0.15			MADE GROUND: Grass over multicoloured (brown to lig black) clayey to very clayey very occasionally gravelly fin- subangular and subrounded, fine to coarse flint, brick and MADE GROUND: Multicolored (brown to red to light grey	e SAND. Gravel is d ash.) sandy gravelly
						0.60			CLAY. Gravel is angular, fine to coarse flint, brick, concrefine. Brown CLAY.	ete and ash. Sand is
		0.90 - 1.00 -		D SPT	C 28	1.10			Multipolarized (light argangs brown to light grow) grovelly fi	no to coorse SAND
		1.50 - 1.60 -		D SPT	C 52	1.60			Multicoloured (light orange brown to light grey) gravelly fi Gravel is angular coarse flint.	ne to coarse SAND.
		1.60 -	2.05	581	C 52	1.60			1.60 Sampler barrel refused. 1.60 - 2.05 Very dense, refused. Multicoloured (light orange brown to light grey) gravelly fi Gravel is angular coarse flint.	-
						2.05			Borehole completed at 2.05m.	
										- - - -
										-
										- - -
										- - -
						{4.00}				-
EQUIPM METHO CASING GROUN	D: Hand 3: Not use DWATE	rchway o dug insp ed. R: Grou	pection pundwater	oit 0.00m	r sampling n-1.00m b ountered. was back	g tracked egl. Dyn	amic sam	-	n-1.60m begl.	
Ground	lwater		Dat	e		Strike Do		Ca	sing Depth Depth After Observation (m) (m)	
	ensions in									Logged By KC

Site Ric	hmon	d						Sheet 1 of 1				
Job No CRM.	1027.0	087	Dates	Start 28 Finish 2	-04-21 28-04-21	Groun	nd Level (m)	Co-Ordinates	W511		
Client Hil	1 Partr	nership)							Sheet 1 of 1		
	Vater evels	Sam Depth		No/Type	sting Results	Depth (m)	Level (mAD)	Legend	Stratum Description			
		0.20 - 0.90 - 1.00 -	1.00 1.45 2.00	ES D SPT	C 12	0.50 1.20 1.70 2.00			black) clayey to very clayey occasionally gravelly fine SAI subangular and subrounded, fine to coarse flint, brick and Brown sandy CLAY. Sand is fine. Brown clayey fine to medium SAND. Multicoloured (light brown to light grey and very light oran slightly clayey occasionally gravelly fine to coarse SAND, and subrounded fine flint. Multicoloured (light brown to light grey and very light oran slightly clayey occasionally gravelly fine to coarse SAND, and subrounded fine flint. 2.00 - 2.45 Very dense. Refused at 2.45m begl.	ND. Gravel is d ash.		
General I EQUIPME METHOD	ENT: Ar : Hand	chway o	compact	t window pit 0.00n	sampling	4.00} g tracked egl. Dyn	rig. amic sam	pled 1.00n	n-2.00m begl.	1		
CASING: GROUND BACKFIL	Not use WATE	d. R: Grou	ndwater	not ence	ountered.							
Groundv	vater		Dat	e		Strike Do		Ca	sing Depth Depth After Observation (m) (m)			
All dimen	sions ir									Logged By KC		

			$\overline{}$				VVGL	. www.ci	izygo.com		
Site											
R	Richmon	nd								WS12	
Job No			Dates	Start 29	-04-21	Grour	nd Level (m)	Co-Ordinates	VV312	
CRM	1.1027.	087		Finish 2	29-04-21						
Client	Jill Dort	tnership								Sheet 1 of 1	
Well	Water	Sam	ples & I	n Situ Te		Depth	Level	Legend	Stratum Description		
***	Levels	Depth	n (m)	No/Type	Results	(m)	(mAD)	××××		at because and limbs	 0
	2	0.20 -	0.40	ES		0.20			MADE GROUND: Grass over multicoloured (brown to light black) very clayey very occasionally gravelly fine SAND. (Gravel is	-
		0.20	0.40			0.20			subangular and subrounded, fine to coarse flint, brick and		1
									MADE GROUND: Multicolored (brown to red to light grey CLAY. Gravel is angular, fine to coarse flint, brick, concre	sandy gravelly te and ash. Sand is	-
						0.00			fine.		-
	2					0.60			Brown CLAY.		†
		0.90 -	1.00	D							-
		1.00 -	1.45	SPT	C 12				1.00 - 1.45 Firm, medium strength.		- 1
									1.00 - 1.43 Film, mediam strength.		-
											_
						1.50		0 0	Multicoloured (light orange brown to light grey) gravelly fir	ne to coarse SAND	+
	•								Gravel is angular coarse flint.	ie to coarse SAND.	-
								0			
		1.90 -	2.00	D				a			-
	•	2.00 -	2.45	SPT	C 15			0	2.00 - 2.45 Medium dense.		- 2
									2.00 - 2.43 Medium dense.		-
								0			
											-
											-
	2							0			-
									2.70 - 3.00 Becoming very gravelly.		
		2.90 -		D				0			-
		3.00 -	3.45	SPT	C 53	3.00		0	Multicoloured (light orange brown to light grey) gravelly fir		- 3
									Gravel is angular coarse flint.	ic to coarse oalvo.	-
								0	3.00 - 3.45 Very dense, refused.		
						3.45		. · · · · · · · ·			-
									Borehole completed at 3.45m.		-
											-
						{4.00}					- 4
Genera	l Rema	rks									
EQUIPN	MENT: A	Archway o	compac	t window	sampling	g tracked	l rig.	mled 1 00m	n-3.00m begl.		
CASINO	3: Not us	sed.		-		egi. Dyii	iaiiiic Saii	ipied 1.00h	F3.00III begi.		
GROUN BACKF	NDWATI ILL: On	ER: Grou	ndwate	r not ence borehole	ountered. was back	filled wit	th arisngs				
		1	,				8				
Ground	dwater					C4. '1 F	41		Sing Depth After		
			Da	te		Strike D (m)		Ca	sing Depth Observation (m) (m)		
									()		
										I 1D	
	nensions i Scale 1:2	in metres 25								Logged By KC	

Site				
Richmond				\MC42
Job No	Dates Start 29-04-21	Ground Level (m)	Co-Ordinates	WS13
CRM.1027.087	Finish 29-04-21			
Client				Sheet

Hill Partnershin

1 of 1

H	ıll Partı	nership						10	
	Water	Samples &			Depth	Level	Legend	Stratum Description	
	Levels	Depth (m) 0.20 - 0.40	No/Type ES	Results	(m) 0.20	(mAD)		MADE GROUND: Grass over multicoloured (brown to light brown and li black) very clayey very occasionally gravelly fine SAND. Gravel is subangular and subrounded, fine to coarse flint, brick and ash. MADE GROUND: Multicolored (brown to red to light grey) sandy gravel	
					0.65			CLAY. Gravel is angular, fine to coarse flint, brick, concrete and ash. Safine.	
		0.90 - 1.00 1.00 - 1.45	D SPT	C 50	1.00			Brown CLAY.	
					1.45			1.00 - 1.45 Very stiff, very high strength. Refused at 1.45m begl.	
								Borehole completed at 1.45m.	-
					{4.00}				
CASING	IENT: A D: Hand : Not use	rchway compaction			g tracked egl.		3.		
Ground	lwater	Da	ate		Strike De	epth	Ca	sing Depth Depth After Observation (m) (m)	
All dime	ensions in							Logged By Ke	

General Remarks

Groundwater	Date	Strike Depth (m)	Casing Depth (m)	Depth After Observation (m)

	5745							nzygo.com		
Site										
Richr Job No	nond	ъ.				11 1/			WS14	
	27.007	Dates	Start 28		Groun	d Level (m)	Co-Ordinates		
CRM.102	27.087		Finish 2	28-04-21					Classic	
Client	artnershi	2							Sheet 1 of 1	
Wat			n Situ Te	stina	Depth	Level				$\overline{}$
Well Leve		th (m)		Results	(m)	(mAD)	Legend	Stratum Description		L,
	0.20 -	0.40	ES		0.50			MADE GROUND: Grass over multicoloured (brown to lig black) clayey to very clayey occasionally gravelly fine SA subangular and subrounded, fine to coarse flint, brick an Brown sandy CLAY. Sand is fine.	ND. Gravel is	
	0.90 - 1.00 -		D SPT	C 10	1.20			Brown clayey fine to medium SAND.		- - - - -
	1.90 - 2.00 -		D SPT	C 50	1.70			Multicoloured (light brown occasionally Light green to crefine SAND. Gravel is subangular fine flint. Multicoloured (light brown occasionally Light green to crefine SAND. Gravel is subangular fine flint. 2.00 - 2.45 Very dense. Refused at 2.45m begl.		- - - - -
					2.45		. · · · · · · ·	Borehole completed at 2.45m.		
										- (-
										- - -
										- - -
General Re	marl/s				{4.00}			1		
EQUIPMENT METHOD: H CASING: No GROUNDWA	Γ: Archway land dug ins t used. ATER: Grow On complet	pection indwate	pit 0.00n r not ence	n-1.00m b ountered.	egl. Dyn	amic sam		n-2.00m begl. granular response zone (2.00m-0.50m), bentonite seal 0.5	0m-0.10m, flush stee	1
Groundwat	er	Da	te		Strike Do		Ca	sing Depth Depth After Observation (m) (m)		
All dimensio		S							Logged By KC	_

Site				
Richmond				WOAF
Job No	Dates Start 27-04-21	Ground Level (m)	Co-Ordinates	WS15
CRM.1027.087	Finish 27-04-21			
Client				Sheet
				1 of 1

Hill Partnership Samples & In Situ Testing Water Depth Level Well Legend Stratum Description Levels (mAD) No/Type Results (m) Depth (m) 0 MADE GROUND: Grass over multicoloured (brown to light brown and light 0.15 black) clayey to very clayey very gravelly fine SAND. Gravel is subangular 0.20 - 0.40 ES and subrounded, fine to coarse flint and brick. MADE GROUND: Multicoloured (brown to light brown and light black) clayey 0.40 to very clayey occasionally cobbly very gravelly fine SAND. Gravel is subangular and subrounded, fine to coarse flint, ash, brick, and occasional cobble of brick. MADE GROUND: Brown very clayey fine SAND with occasional coarse 0.70 sand-sized brick and ash. Brown to light grey brown clayey very gravelly fine SAND. Gravel is angular 0.90 - 1.00 and subrounded, fine to medium flint. 1.00 - 1.45 SPT C 9 1.00 - 1.45 Loose. 1.70 Very light green to very light brown very slightly clayey occasionally gravelly fine SAND. Gravel is subrounded fine flint. 190 - 200 D SPT 2.00 - 2.45 C 55 2.00 2 Very light green to very light brown very slightly clayey occasionally gravelly fine SAND. Gravel is subrounded fine flint. 2.00 - 2.45 Very dense, refused. 2.45 Borehole completed at 2.45m. 3

General	Remarks
Ochiciai	1 CHILLIAN IX

EQUIPMENT: Archway compact window sampling tracked rig.

METHOD: Hand dug inspection pit 0.00m-1.00m begl. Dynamic sampled 1.00m-2.00m begl.

CASING: Not used.

WS LOG CRM:1027.087 RICHMOND.GPJ

GROUNDWATER: Groundwater not encountered.

BACKFILL: On completion, the borehole was backfilled with arisings.

Groundwater	Date	Strike Depth (m)	Casing Depth (m)	Depth After Observation (m)	
All dimensions in metres Scale 1:25					Logged By KC

Site				
Richmond	WS16			
Job No	Dates Start 28-04-21	Ground Level (m)	Co-Ordinates	VVSIO
CRM.1027.087	Finish 28-04-21			
Client				Sheet
Hill Partnershir	•			1 of 1

Hill Part	nersnip							_
Well Water	•	Samples & In Situ Testing		Depth	Level	Legend	Stratum Description	
Levels	Depth (m)	No/Type	Results	(m)	(mAD)	2030	Statum 2000 page	ļ
	0.20 - 0.40	ES		0.50			MADE GROUND: Grass over multicoloured (brown to light brown and light black) clayey to very clayey occasionally gravelly fine SAND. Gravel is subangular and subrounded, fine to coarse flint, brick and ash.	-
				0.50			Brown sandy CLAY. Sand is fine.	ļ
				0.80				
	0.90 - 1.00	D		0.00		- 	Brown clayey fine to medium SAND.	Ī
	1.00 - 1.45	SPT	C 8				1.00 - 1.45 Loose.	
						. · - · . · · - ·		
						· · . · . · . · . · . · . · . · .		
				1.70		· · · · · · · · · · · · · · · · · · ·	Light brown to very light green very slightly clayey very occasionally gravelly	_
	1.90 - 2.00	D				- · · · · · · · · · · · · · · · · · · ·	fine SAND. Gravel is subangular fine flint.	
	2.00 - 2.45	SPT	C 29			0	2.00 - 2.45 Medium dense.	
				2.20		0	Multicoloured (light brown to light grey and very light orange) clayey to locally	1
							slightly clayey occasionally gravelly fine to coarse SAND. Gravel is rounded and subrounded fine flint.	
						- · · · · · · · ·		
	2.90 - 3.00 3.00 - 3.45	D SPT	C 50	3.00		· · · · · ·	; 	_
						. — a . —	Multicoloured (light brown to light grey and very light orange) clayey to locally slightly clayey occasionally gravelly fine to coarse SAND. Gravel is rounded and subrounded fine flint.	
				3.45		- · · · · · · · · · · · · · · · · · · ·	3.00 - 3.45 Very dense. Refused at 3.45m begl.	
				J.4J			Borehole completed at 3.45m.	1
				{4.00}				

General Remarks

.0 ENZYGO WS LOG CRM.1027.087 RICHMOND.GPJ GINT STD AGS 3_1 ENZYGO.GPJ 3/5/21

EQUIPMENT: Archway compact window sampling tracked rig.
METHOD: Hand dug inspection pit 0.00m-1.00m begl. Dynamic sampled 1.00m-3.00m begl.
CASING: Not used.
GROUNDWATER: Groundwater not encountered.
BACKFILL: On completion, a slotted pipe (50mm) was installed to 3.00m begl, granular response zone (3.00m-1.00m), bentonite seal 1.00m-0.10m, flush steel cover 0.10m-0.00m.

Groundwater	Date	Strike Depth (m)	Casing Depth (m)	Depth After Observation (m)
Groundwater	Date	, , 1	\mathcal{L} . 1	Observat

		, (Web	: www.er	nzygo.com	
Site										
R	Richmon	d								o.4=
Job No			Dates C	44-07	04.21	Groun	d Level (m)	Co-Ordinates V	NS17
CRM	4.1027.0	87	S F	tart 27 inish 2	7-04-21					
Client									Sheet	
F	Hill Partr	nership								1 of 1
	Water		les & In	Situ Te	stina	Depth	Level			
Well	Levels	Depth			Results	(m)	(mAD)	Legend	Stratum Description	0
		0.20 - 0.	.40	ES		0.40			MADE GROUND: Grass over multicoloured (brown to light brown a black) clayey to very clayey very gravelly fine SAND. Gravel is substand subrounded, fine to coarse flint, ash and brick. MADE GROUND: Multicoloured (brown to light brown occasionally	angular -
		0.90 - 1. 1.00 - 1.		D SPT	C 7				grey) occasionally gravelly slightly to very sandy CLAY with sewer pragments. Gravel is subangular and subrounded medium flint, brid ash, Sand is fine. 1.00 - 1.45 Soft, low strength.	pipe :k, and
						1.20			Brown sandy CLAY. Sand is fine.	
		1.90 - 2.	.00	D		1.60			Multicoloured (light brown to light grey and very light orange) clayer slightly clayey, occasionally gravelly fine to coarse SAND. Gravel is and subrounded fine flint.	
		2.00 - 2.	.45	SPT	C 15				2.00 - 2.45 Medium dense.	- 2 - - - - -
77000		2.90 - 3. 3.00 - 3.		D SPT	C 50	3.00			Multicoloured (light brown to light grey and very light orange) clayer slightly clayer, occasionally gravelly fine to coarse SAND. Gravel is and subrounded fine flint. 3.00 - 3.45 Very dense. Refused at 3.45m begl.	y to locally s rounded
10 AGO 5 1 ENZ 1GO GT						3.45			Borehole completed at 3.45m.	- - - - - - - -
² C	1 D - · ·	 I				{4.00}				
EQUIPMETHO CASING	1 Remari MENT: An DD: Hand G: Not use NDWATE ILL: On c	chway co dug inspe d. R: Ground	ection pi dwater i	it 0.00m	n-1.00m b ountered.	egl. Dyna	amic sam	•	n-3.00m begl.	
Ground	dwater		Date			Strike De (m)	epth	Cas	Sing Depth Depth After Observation (m) (m)	
All dim	nensions in Scale 1:25								Logged	By KC

b No	Richmon M.1027.0		Dates	Start 27- Finish 2	-04-21 7-04-21	Groun	d Level (1	m)	Co-Ordinates	WS18
lient H	Hill Part	nershij	p							Sheet 1 of 1
Well	Water Levels		nples & li th (m)	No/Type	Results	Depth (m)	Level (mAD)	Legend	Stratum Description	
		0.20 -		ES	resuits	0.45	(MADE GROUND: Grass over multicoloured (brown to light black) clayey to very clayey very gravelly fine SAND. Grand subrounded, fine to coarse flint, ash and brick.	
		0.90 - 1.00 -		D SPT	C 10	1.20			Brown sandy CLAY. Sand is fine.	
						1.20			Brown clayey fine to medium SAND.	
		1.90 -	2.00	D		1.70		· · · · · · · · · · · · · · · · · · ·	Multicoloured (brown to light brown and light grey) claye medium to coarse SAND. Gravel is subrounded fine flin	
		2.00 -	2.45	SPT	C 13	2.00			2.00 - 2.45 Medium dense. Multicoloured (light brown to light grey and very light ora slightly clayey, occasionally gravelly fine to coarse SANI and subrounded fine flint.	
		2.90 - 3.00 -		D SPT	C 51	3.00			Multicoloured (light brown to light grey and very light ora slightly clayey, occasionally gravelly fine to coarse SANI and subrounded fine flint. 3.00 - 3.45 Very dense, refused.	
						3.45		a	Borehole completed at 3.45m.	
						{4.00}				
QUIPI IETHO ASINO ROUN ACKE	G: Not use NDWATE	rchway dug ins ed. ER: Grou complet	pection purposes	oit 0.00m	-1.00m b ountered.	egl. Dyna	amic sam	-	-3.00m begl. granular response zone (3.00m-1.00m), bentonite seal 1.0	00m-0.10m, flush stee
iroun	dwater		Dat	e		Strike Do	epth	Cas	ing Depth Depth After Observation (m) (m)	

b No CRM	1.1027.0			Start 16 Finish 1	-08-21 7-08-21	Grour	nd Level (m)	Co-Ordinates	BH1
ient H	Hill Part	nership	Ltd							Sheet 1 of 4
Vell	Water Levels	Samp Depth		No/Type	Results	Depth (m)	Level (mAD)	Legend	Stratum Description	1
				,,,		0.60			MADE GROUND: Grass over firm brown slightly CLAY. Gravel is subnagular and fine of brick and	sandy slightly gravelly I flint.
		4.50	. 05	ODT	00	0.00			Firm brown to light brown very sandy slightly grave subnaguar and coarse of flint.	velly CLAY. Gravel is
		1.50 - 1	1.95	SPT	23	1.60			Medium dense to dense light brown slightly clayer and coarse SAND. Gravel is angular and subang	
		3.00 - 3	3.45	SPT	22					
	¥	4.50 - 4	1 .95	SPT	21					
		5.00		D		5.40				
		6.00 - 6	3.45	SPT	11				Stiff greyish brown slightly gravelly CLAY. Gravel claystone. Note: Groundwater encountered at 4.3 m bgl.	l is angular and coarse of
		7.50 - 7	7 .95	SPT	18					
	2					{8.00}			Continued next shee	t
able Po	Remarl ercussive mpletion.	Borehole	e advano	ced from	ground le	vel to 25	5.0 m bgl.	No service	s encountered. Groundwater encountered at 4.3 n	n bgl. Backfilled with arisin
roun	dwater		Date	Э		Strike De (m) 4.30		Cas	ing Depth Depth After Observation (m) (m)	

Finish 17-08-21

CRM.1027.087

Enzygo Ltd Tel: 01454 269237 Fax: 01454 269760

0112	-790	Web: www.e			
Site					
Ashburnh	nam Road, Richmond			D.	ЦА
Job No	Dates Start 16-08-21	Ground Level (m)	Co-Ordinates	В	H1

Client Sheet 2 of 4

9.00 - 9.45 10.00 10.50 - 10.95		Results 20	Depth (m)	Level (mAD)	Legend O O O		Stra	tum Description		
9.00 - 9.45	SPT									
10.00	D	20								
10.00	D	20								- - - - - - - - - - - - - - - - - - -
10.00	D	20								- - - - - - - - - - - - - - - - - - -
10.00	D	20								- - - - - - - - -
10.00	D	20								- - - - - - - - - -
										- - - - - -
										-
										-
										F
										Į.
10.50 - 10.95	QDT				F					
10.50 - 10.95	SDT				- <u>-</u>					-
10.50 - 10.95		30			<u>├</u> °— <u> </u>					F
	5, 1									ļ.
										E
					<u> </u>					+
					- <u>-</u>					F
					<u> </u>					ļ.
					<u> </u>					E
										-
										F
12.00 - 12.45	SPT	25			- <u>-</u>					Ļ
					<u></u>					t
										E
										F
										þ
										ļ.
										E
					<u> </u>					F
13 50 13 05	CDT	28								ļ.
13.30 - 13.85	JF I	20			<u> </u>					ţ
										E
					<u></u>					-
										F
										ļ.
					<u>├</u> °—_=¶					E
										-
										F
15.00	D	46			<u> </u>					Ė
15.00 - 15.45	SPT									E
										F
					<u> </u>					F
										ļ.
										E
			{16 00\				Cont	inued nevt sheet		F
	12.00 - 12.45 13.50 - 13.95 15.00 15.00 - 15.45	13.50 - 13.95 SPT 15.00 D 15.00 - 15.45 SPT	13.50 - 13.95 SPT 28 15.00 15.00 - 15.45 SPT arks	13.50 - 13.95 SPT 28 15.00 15.00 - 15.45 SPT 46 {16.00}	13.50 - 13.95 SPT 28 15.00 15.00 - 15.45 SPT 46 {16.00}	13.50 - 13.95 SPT 28				

Groundwater	Date	Strike Depth (m)	Casing Depth (m)	Depth After Observation (m)

Site					
Ashburnham R		рци			
Job No	Dates Start 16-08-21	Ground Level (m)	Co-Ordinates		BH1
CRM.1027.087	Finish 17-08-21				
Client				Sheet	
				;	3 of 4

Hill Partnership Ltd Samples & In Situ Testing Water Depth Level Well Legend Stratum Description Levels (m) (mAD) No/Type Results Depth (m) SPT 16.50 - 16.95 29 **- 17** 18.00 - 18.45 37 19.50 - 19.95 SPT 37 20.00 D 20 21.00 - 21.45 SPT 37 21 22.50 - 22.95 SPT 39 23

General Remarks

24.00 - 24.45

SPT

41

{24.00}

Cable Percussive Borehole advanced from ground level to 25.0 m bgl. No services encountered. Groundwater encountered at 4.3 m bgl. Backfilled with arisings upon completion.

Continued next sheet

24

Groundwater	Date	Strike Depth (m)	Casing Depth (m)	Depth After Observation (m)	
All dimensions in metres Scale 1:50					Logged By KC

GINT STD AGS 3_1 ENZYGO.GPJ 19/8/21

GPJ

CRM.1027.087 ASHBURNHAM ROAD

WSLOG

All dimensions in metres Scale 1:50

Enzygo Ltd Tel: 01454 269237

Fax: 01454 269760 Web: www.enzygo.com Site Ashburnham Road, Richmond **BH1** Job No Ground Level (m) Co-Ordinates Dates Start 16-08-21 CRM.1027.087 Finish 17-08-21 Client Sheet 4 of 4 Hill Partnership Ltd Samples & In Situ Testing Water Depth Level Well Legend Stratum Description Levels (m) (mAD) Depth (m) No/Type Results 24 25.00 D 25.00 25 Borehole completed at 25.00m. 27 29 30 31 32 {32.00} General Remarks Cable Percussive Borehole advanced from ground level to 25.0 m bgl. No services encountered. Groundwater encountered at 4.3 m bgl. Backfilled with arisings upon completion. Groundwater Depth After Observation (m) Casing Depth (m) Strike Depth Date (m)

Logged By

KC

All dimensions in metres Scale 1:50

Enzygo Ltd Tel: 01454 269237 Fax: 01454 269760

ob No		ham Road, R		u				
		Dates			Groun	d Level (m)	Co-Ordinates BH2
lient	1.1027.0)87		7-08-21				
								Sheet 1 of 4
F		nership Ltd				1	I	
Vell	Water Levels	Samples & I Depth (m)		Results	Depth (m)	Level (mAD)	Legend	Stratum Description
			, . , , , ,			. ,		MADE GROUND: Grass over firm brown slightly sandy slightly gravelly
					0.50			CLAY. Gravel is subangular and fine of brick and flint.
								Firm brown and mottled light brown very sandy slightly gravelly CLAY. Gravel is subangular and fine to coarse of flint.
								Clavel to Subungular and line to course of finite.
		1.50 - 1.95	SPT	14	1.50			Medium dense to dense light brown slightly clayey slightly sandy medium
								and coarse SAND. Gravel is angular and subangular medium and coarse of
								flint.
							-0 -	Note: Groundwater encountered at 3.8 m bgl.
		3.00 - 3.45	SPT	41				
							. · · · · · ·	
	∇							
		4.50 - 4.80	SPT	50				
		4.50 - 4.60	SFI	30				
		5.00	D					
					5.20		8	Stiff greyish brown slightly gravelly CLAY. Gravel is angular and coarse of
								claystone.
		6.00 - 6.45	SPT	14				
							00	
		7.50 - 7.95	SPT	19				
					{8.00}		<u> </u>	Continued next sheet

Logged By

ŔС

urnham Road, F	Richmor	nd		11 17			ВН	2
Dates	Start 16	6-08-21		nd Level (m)	Co-Ordinates		_
7.087	Finish '	17-08-21					Chart	
artnership Ltd							2 of 4	4
			Depth	Level	Legend	Stratum Des	scription	
Deptil (III)	INO/Type	Results	()	(11212)				8
								Ē
								Ė
0.00 0.45	CDT	16						E.
9.00 - 9.45	371	10						- 9
								-
								-
10.00	D							-
10.00								<u> </u>
10 50 - 10 95	SPT	23			<u> </u>			-
10.00								
								- - 1
					-			- '
								-
12.00 - 12.45	SPT	22						- 1:
					<u> </u>			- "
								F
								Ė
								- 1;
								Ė
13.50 - 13.95	SPT	26						-
								Ē
								- 14
								-
								E
15.00	D	25						- - 1
15.00 - 15.45	371							E
								Ė
								-
			{16.00}			Continued ne		- 10
	Partnership Ltd er Samples & Depth (m) 9.00 - 9.45 10.00 10.50 - 10.95 13.50 - 13.95	Partnership Ltd er Samples & In Situ Tels Depth (m) No/Type	Partnership Ltd er Samples & In Situ Testing	Partnership Ltd er Samples & In Situ Testing Depth (m) No/Type Results 9.00 - 9.45 SPT 16 10.00 D 10.50 - 10.95 SPT 23 12.00 - 12.45 SPT 22 13.50 - 13.95 SPT 26 15.00 15.00 - 15.45 SPT 25 SPT 25 SPT 26 15.00 SPT SPT	Partnership Ltd er Samples & In Situ Testing Depth (m) No/Type Results 9.00 - 9.45 SPT 16 10.00 D 10.50 - 10.95 SPT 23 13.50 - 13.95 SPT 26 15.00 15.00 - 15.45 SPT 25	Partnership Ltd er Samples & In Situ Testing Depth Level Legend	Partnership Ltd er Samples & In Situ Testing Depth (m) NoType Results 9.00 - 9.45 SPT 16 10.00 D 10.50 - 10.95 SPT 23 12.00 - 12.45 SPT 22 15.00	Sheet 2 of 2 of

Enzygo Ltd

Tel: 01454 269237
Fax: 01454 269760
Web: www.enzygo.com

Site As Job No									
	chhurnh?	am Road, Ri	ichmon	nd					
	51150111110	Dates			Groun	d Level (m)	Co-Ordinates	BH2
	.1027.08		Start 16	6-08-21 17-08-21					
Client									Sheet
Hi	ill Partne	ership Ltd							3 of 4
Well	Water	Samples & II			Depth (m)	Level (mAD)	Legend	Stratum Descrip	ition
	Levels	Depth (m)	No/Type	e Results	(111)	(IIIAD)			
		16.50 - 16.95	SPT	25					
		10.00 10.45	SPT	27					
		18.00 - 18.45	351	21					
							<u> </u>		
		19.50 - 19.95	SPT	30					
		20.00	D						
		21.00 - 21.45	SPT	24					
		22.50 - 22.95	SPT	30					
		24.00 - 24.45	SPT	34					
		24.00 - 24.40	01 1		{24.00}		1 1	Continued next sl	

KC

Site													
	Ashburr	nham R		chmon	d							BH2	
Job No			Dates	Start 16	-08-21	Groun	d Level (m)	Co-Ordinates			БПZ	
	Л.1027.0	087	ı	Finish 1	7-08-21								
Client												Sheet 4 of 4	
	Hill Part				1		I	1					
Well	Water Levels		nples & Ir h (m)		Results	Depth (m)	Level (mAD)	Legend		Stratum Descr	ription		
				, . , , , ,			, ,	-0					
													F
													E
		25.00		D		25.00							
									Borehole completed a	at 25.00m.			Ŧ,
													E
													F
													- 2
													E
													Ė
													F
													- 2
													E
													F
													Ē
													- 2
													F
													E
													- 2
													Ė.
													F
													E
													<u> </u>
													F
													F
													Ē
													F;
													F
													F
													- 3
 enera	l Remarl	ks				{32.00}							
Cable F		Borehol	e advano	ed from	ground le	vel to 25	5.0 m bgl.	. No service	s encountered. Ground	d water encountered a	t 5.0 m bgl. Ba	ackfilled with arisi	ngs
Grour	ndwater					Strike De	enth.	Cas	ng Denth	Depth After Observation			
			Date	Э	,	(m)	ηUI	Cas	ng Depth (m)	Observation (m)			
ـــــا	nensions ir	n metres										Logged By	
	Scale 1:50	0										KC	

Enzygo Ltd Tel: 01454 269237 Fax: 01454 269760 Web: www.enzygo.com

No			Richmor	iu					DUS
		Dates	Start 16		Groun	nd Level (m)	Co-Ordinates	BH3
JRM. ent	.1027.0	187	Finish '	16-08-21					Sheet
	ill Dort	nership Ltd							1 of 2
	Water	Samples &	In Situ Te	sting	Depth	Level			
/ell	Levels	Depth (m)		Results	(m)	(mAD)	Legend	Stratum Description	
								MADE GROUND: Grass over firm brown slightly sandy sl CLAY. Gravel is subangular and fine of brick and flint.	ightly gravelly
					0.60			OLATE Claver is subungular and line of blick and line.	
					0.00		<u> </u>	Firm brown and mottled light brown very sandy slightly gr	avelly CLAY.
								Gravel is subangular and fine to coarse of flint.	
		1.20 - 1.65	SPT	6					
					1.50				
								Medium dense to dense light brown slightly clayey slightly and coarse SAND. Gravel is angular and subangular and	gravelly medium coarse of flint.
								Note: Groundwater encountered at 3.4 m bgl.	
							. · · · · · · ·		
		3.00 - 3.45	SPT	33					
	∇								
							-		
		4.50 - 4.95	SPT	13					
8									
		5.00	D						
					5.30				
								Firm greyish brown CLAY.	
#									
		6.00 - 6.45	SPT	14					
8							<u> </u>		
8									
		7.50 - 7.95	SPT	23					
					{8.00}			Continued next sheet	

- 11 - 11 - 12 - 12
Sheet 2 of 2
2 of 2
2 of 2
- 10 - 10 - 11
- 10 - 10 - 11 - 11
- 11 - 11 - 12 - 12
- 11 - 11 - 12
- 11 - 11 - 12
- 11 - 11 - 12
- - - - - - - - - - - - - - - - - - -
- 11 - 12 - 12 - 13
- - - - - - - - - - - - - - - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - - - - -
- - - - - - - - - - - - - - - - - - -
- - - - - - - - - - -
- 13 - - - - -
- - - - - -
Ę
L
F
<u></u> 14
- - 15
F
<u> </u>
- - - - - - - - 16

Enzygo Ltd Tel: 01454 269237 Fax: 01454 269760 Web: www.enzygo.com

b No		ham Road, F		iu					BILL
		Dates	Start 18	3-08-21	Groun	ıd Level (ı	m)	Co-Ordinates	BH4
	.1027.0)87		18-08-21					
ient									Sheet 1 of 2
Н	ill Part	nership Ltd							
Vell	Water Levels	Samples & Depth (m)		e Results	Depth (m)	Level (mAD)	Legend	Stratum Description	
220	2070.0	Deptil (III)	1NO/ Type	resuits	()	()		MADE GROUND: Firm brown slightly sandy slightly grave	llv CLAY. Gravel is
								subangular and fine of brick and flint.	, · · · · E
					0.60				
								Firm light brown and orangish brown very sandy CLAY. Sa coarse.	and is fine to
									-
									Ė
H		1.50 - 1.95	SPT	17					E
							<u> </u>		F
									-
Ħ									E
					2.50				
Ţ,								Medium dense light brown slightly clayey slightly gravelly i coarse SAND. Gravel is angular and subangular and coar	medium and
		3.00 - 3.45	SPT	13					se of fillit.
								Note: Groundwater encountered at 4.3 m bgl.	
									-
									Ē
B									
Q									-
	∇								E
		4.50 - 4.95	SPT	11					_
×									-
X.		5.00	D						E
\$					5.20			Firm greyish brown CLAY.	
								THIN GLEVISH DIOWN CLAT.	-
X									-
×		6.00 - 6.45	SPT	14					Ē
\$									_
\$									-
\$									-
2									E
2									
**									ļ.
		7.50 - 7.95	SPT	19			<u> </u>		F
							<u> </u>		E
					(0.00)				-
	Remark				{8.00}			Continued next sheet	

Site												
	Ashburn	ham R	oad, R	ichmon	d						BH4	
Job No			Dates	Start 18	-08-21	Groun	nd Level (m)	Co-Ordinates		БП4	
	1.1027.0	087		Finish 1	8-08-21					Ol		
Client	Hill Part	nershir	o I td							Sheet	2 of 2	
Well	Water	Sam	ples & I	n Situ Te		Depth	Level	Legend	Stratum Description			
	Levels	Dept	h (m)	No/Type	Results	(m)	(mAD)					- 8
											E	-
											E	
		9.00 -	9.45	SPT	19						-	- - - 9
											-	
											F	
888											F	
		10.00		D		10.00			Borehole completed at 10.00m.		-	- - 10
											-	-
											Ė	-
											E	- - - 11
											E	· · · ·
											-	-
											E	-
											E	- 12 -
											E	-
											F	
											E	- - 13
											F	-
											F	
											F	
											-	- 14 -
											-	
											-	
											-	- 15
											Ė	· -
											Ė	- -
											E	- - 16
General Cable Po upon col		Borehol	e advan	ced from	ground le	{16.00}).0 m bgl.	No service	s encountered. Groundwater encountered at 4.3 m bgl.	3ackfilled v	with arisings	;
Ground	dwater		Dat	e		Strike De	epth	Cas	ing Depth Depth After Observation (m) (m)			
General Cable Poupon con	ensions in Scale 1:50	n metres O								Logged	KC	

o No CRM	1.1027.0	087	Dates	Start 18 Finish 1	-08-21 8-08-21	Grour	nd Level (m)	Co-Ordinates	BH5
ient H	lill Part	nership	Ltd							Sheet 1 of 2
Vell	Water Levels		ples & Ir	n Situ Tes	sting Results	Depth (m)	Level (mAD)	Legend	Stratum Descri	ption
		•		,,,		0.50			MADE GROUND: Brown slightly sandy sligh subangular and fine of brick and flint.	
									Firm brown and mottled light brown very san Gravel is subangular and fine to coarse of fli	
		1.50 -	1.95	SPT	10	1.50			Medium dense to dense light brown slightly and coarse SAND. Gravel is angular and sul	bangular and coarse of flint.
	Ţ								Note: Groundwater encountered at 2.5 m bg	I.
		3.00 -	3.45	SPT	37					
		4.50 -	4.95	SPT	37					
		5.00		D						
		6.00 -	6.45	SPT	13	5.80			Firm to stiff greyish brown CLAY. Note: Claystone between 8.3 and 8.4 m bgl.	
		7.50 -	7.95	SPT	14					
						{8.00}			Continued next s	sheet
able Po	Remark ercussive mpletion.	Borehole	e advano	ced from	ground le	wel to 10).0 m bgl.	No service	s encountered. Groundwater encountered at 2	2.5 m bgl. Backfilled with arisin
roun	dwater		Date	е		Strike De (m) 2.50		Cas	ng Depth Depth After Observation (m)	

1.0 ENZYGO WS LOG CRM.1027.087 ASHBURNHAM ROAD.GPJ GINT STD AGS 3_1 ENZYGO.GPJ 19/8/21

	12	-) =					: www.ei	nzygo.com			
Site											
	shburn		d, Richmon	d						R	H5
Job No			ates Start 18	-08-21		d Level (m)	Co-Ordinates			110
CRM	.1027.0	187	Finish 1	8-08-21						Sheet	
	lill Part	nership L	td							2	of 2
Well	Water		s & In Situ Te		Depth	Level	Legend		Stratum Dagarin	otion	
vveii	Levels	Depth (r	n) No/Type	Results	(m)	(mAD)	Legend		Stratum Descrip	Duon	8
											-
											Ė
											-
		9.00 - 9.4	I5 SPT	19							<u> </u>
											-
											E
		10.00	D		10.00						10
								Borehole comple	eted at 10.00m.		-
											-
											-
											- 11
											E
											E E
											- - 12
											-
											-
											-
											<u> </u>
											-
											-
											- - 14
											-
											-
											-
											<u> </u>
											-
											E E
					(40.00)						- - 16
General	Remarl	(S			{16.00}						
	ercussive	Borehole a	dvanced from	ground le	evel to 10).0 m bgl.	No servic	es encountered. G	roundwater encountered at 2	2.5 m bgl. Backfilled wit	h arisings
ироп сог	прислоги										
Ground	owater		Date		Strike De	pth	Cas	sing Depth (m)	Depth After Observation		
					(''')			VA	(m)		
All dime	ensions in Scale 1:50	metres								Logged By	y KC

b No CRM.1	027.0	Dat 187	Start 17	-08-21 7-08-21	Groun	nd Level (m)	Co-Ordinates	BH6
lient Hil	l Parti	nership Ltd	I						Sheet 1 of 2
Mall \	Vater .evels	Samples	& In Situ Te		Depth (m)	Level (mAD)	Legend	Stratum Descrip	otion
	eveis	Depth (m)	No/Type	Results	0.70	(IIIAD)		MADE GROUND: Firm brown slightly sandy subangular and fine of brick, concrete and fli	slightly gravelly CLAY. Gravel is
		1.50 - 1.95	SPT	13	0.70			Firm light brown and orangish brown very sai	ndy CLAY. Sand is fine.
	∇	3.00 - 3.45	SPT	34	2.80			Medium dense to dense light brown slightly of and coarse SAND. Gravel is angular and sub Note: Groundwater encountered at 3.8 m bgl	pangular and coarse of flint.
		4.50 - 4.95 5.00	SPT	36					- - - - - - - - - - - - - - - - - - -
		6.00 - 6.45	SPT	11	5.40			Frim to stifff greyish brown CLAY.	- - - - - - - - - - - - - - - - - - -
		7.50 - 7.95	SPT	15					- - - - - - - - - - - - - - - - - - -
neral R	omark	<u></u>			{8.00}			Continued next s	heet
	ussive		anced from	ground le	evel to 10).0 m bgl.	No service	es encountered. Groundwater encountered at 3	3.8 m bgl. Backfilled with arisings
Groundv	vater]	Date		Strike De (m) 3.80		Cas	ing Depth Depth After Observation (m) (m)	

Site											
A	shburr	nham R	oad, R	ichmon	d					DUC	
Job No			Dates	Start 17	-08-21	Groun	d Level (m)	Co-Ordinates	BH6	
	.1027.0	087		Finish 1	7-08-21						
Client H	lill Part	tnershir	o Ltd							Sheet 2 of 2	
Well	Water	San	nples & I	n Situ Te		Depth	Level	Legend	Stratum Description		
500P.500	Levels	Dept	h (m)	No/Type	Results	(m)	(mAD)				8
											E
											Ė
		9.00 -	9.45	SPT	18						9
											E
											F
											F
		10.00		D		10.00			Borehole completed at 10.00m.		10
											Ė
											Ė
											- - 11
											Ė
											Ė
											E
											12
											Ė
											F
											13
											F
											F
											Ē.,
											<u></u> 14
											Ė
											Ė
											15
											Ė
											Ė
											- - 16
General Cable Po upon co	ercussive	Borehol	e advan	ced from	ground le	{16.00} evel to 10).0 m bgl.	No service	s encountered. Groundwater encountered at 3.8 m b	gl. Backfilled with arisi	
Groun	dwatar								Death Afr		
Ground	uwater		Dat	е		Strike De (m)	epth	Cas	ing Depth Depth After (m) Depth After (bservation (m)		
All dime	ensions ir	metres								Logged By	
5	Scale 1:5	0								KC	

	IZ	- <i>y</i>					: 01454 26 b: www.en	nzygo.com	
Site Δ	schburn	ham Roac	d, Richmond	d					
Job No	4.1027.0	D	Dates Start 25			nd Level ((m)	Co-Ordinates	WS1
Client H	Iill Partı	nership							Sheet 1 of 1
Well	Water	Sample	es & In Situ Te		Depth	Level	Legend	Stratum Description	
AAAAA	Levels	Depth (n	n) No/Type	e Results	(m) 0.02	(mAD)	XXXXX	MADE GROUND: - Angular fine GRAVEL of basalt.	0
	<u> </u>				0.15			MADE GROUND: Tarmacadam comprising light black to li	
	į	0.30 - 0.4	40 ES					subrounded coarse GRAVEL of flint in tar. Sand is coarse.	
					0.50			MADE GROUND: Multicoloured (yellow to red occasionally occasionally clayey sandy GRAVEL of brick and flint with coash. Gravel is angular fine to coarse flint. Sand is fine to co	oarse sand-sized
		0.70 - 0.8	80 ES					Brown occasionally gravelly sandy CLAY. Gravel is angular	fine flint. Sand is
		0.70 0.0					<u> </u>	fine.	
		ĺ							-
		ĺ					<u> </u>		- 1
	, !	ĺ							Ĺ
		ĺ			1.30		-º9		
								Light brown orange occasionally gravelly slightly clayey me SAND. Gravel is subangular fine flint.	dium to coarse
		Í		!					ţ
		ĺ					[.: <u></u> a-:-]		[
		Í		!					-
	j	Í		!	2.00		. ·a ·		-
17000		Í		!	2.00		ļ ,	Borehole completed at 2.00m.	2
		ĺ					'		-
		ĺ					'		-
		Í		!			'		-
		Í		!			'		-
		Í		!			'		-
		Í		!			'		-
		ĺ		'					- 3
		ĺ		'					-
		ĺ		'					-
		ĺ		'					-
		ĺ		'					
		ĺ		'					-
		ĺ		'					-
		ĺ		'					
		ĺ		'	{4.00}				- 4
General	l Remar	rks			[4.00]				I
EUIPME METHO	ENT: Arc	chway comp	pact window sa tion pit 0.00m	ampling tr 1-1.00m b	acked rig	z. amic samj	pled 1.00m-	·2.00m begl.	
GROUN	IDWATE	ER: Groundy	water not enco the borehole v		illed with	ı arisings.			
Ground	lwater		Date		Strike D	epth	Ca	sing Depth Depth After Observation	
					()			(m)	
	nensions in Scale 1:2								Logged By KC

	12	-) :): www.er	nzygo.com		
Site										
Job No	Ashburni 1.1027.0	Γ	d, Richmo Dates Start 2 Finish	ond 25-10-21 1 25-10-21		nd Level (1	m)	Co-Ordinates	WS2	
Client	Iil Dort	norchin							Sheet 1 of 1	
Well	Water	nership Sample	les & In Situ	Testing	Depth	Level	Logand	Stratum Decemention		
Well Well	Levels	Depth (m) No/Ty	/pe Results		(mAD)	Legend	Stratum Description	-1.4	- 0
					0.15 0.22			MADE GROUND: Tarmacadam comprising light black to lig subrounded coarse GRAVEL of flint in tar. Sand is coarse.	gnt grey very sandy 	<u> </u>
		0.30 - 0.4	40 ES		0.22			MADE GROUND: Subbase comprising light grey to cream coarse SAND. Gravel is angular and subrounded fine to me		[-
					0.55			MADE GROUND: Multicoloured (yellow to red occasionally brown) occasionally clayey sandy, angular fine to coarse G	light black to light	-
		0.60 - 0.8	80 ES		0.00			flint. Sand is fine to coarse.		1-
							<u> </u>	Brown occasionally gravelly sandy CLAY. Gravel is angular fine.	fine flint. Sand is	-
	j									+ ,
							<u> </u>			- 1 -
										-
							<u> </u>			-
										+
					1.75		<u> </u>	Light brown orange occasionally gravelly slightly clayey med	dium to coarse	[
	<u> </u>						. · · · · · · ·	SAND. Gravel is subangular fine flint.	ard 15 C	-
							· · · · · · · ·			- 2
							· · · · · · ·			-
							- · · · · · · · ·			+
							· · · · · ·	7		
	j '						. :a :			-
							· · · · · · ·			+
							. — a			
					3.00		- · · - ·	Borehole completed at 3.00m.		- 3
								Buellot completed at 0.00m.		
										-
										-
										-
					{4.00}					- 4
General	Remar	rks			4.00}					
EUIPME	ENT: Arc	chway comp	pact window	sampling t	tracked rig	ž	1 11 00	200 1 1		
CASING	3: Not use	ed.	ction pit 0.00			ımıc samp	led 1.00III-	-5.00m begi.		
			lwater not en , the borehole			ı arisings.				
		•								
Ground	lwater		Date		Strike D	epth	Ca	sing Depth Depth After Observation		
					(111)			(m)		
	ensions in Scale 1:2								Logged By KC	

	14	- y E					o: www.en	nzygo.com		
Site A	shburn	ham Roa	d, Richmon							
Job No CRM	1.1027.0	Г	Dates Start 25	5-10-21 25-10-21		nd Level (m)	Co-Ordinates	WS3	
Client H	Hill Partı	nership							Sheet 1 of 1	
Well	Water	Sample	es & In Situ Te		Depth	Level	Legend	Stratum Description		
00500	Levels	Depth (r	m) No/Type	e Results	(m) 0.02	(mAD)	******	MADE GROUND: - Angular fine GRAVEL of basalt.		- 0
		0.30 - 0.4	45 ES		0.13			MADE GROUND: - Arigular line GRAVEL of basali. MADE GROUND: Tarmacadam comprising light black to light subrounded coarse GRAVEL of flint in tar. Sand is coarse.	ght grey very sandy	
		0.50 5.	15		0.45			MADE GROUND: Multicoloured (yellow to red occasionally occasionally clayey sandy GRAVEL of brick and flint with colors. Gravel is angular fine to coarse flint. Sand is fine to coarse	parse sand-sized	
		0.60 - 0.7	70 ES					Brown occasionally gravelly sandy CLAY. Gravel is angular fine.		
									-	
									-	- 1
					1 30				-	
					1.30		· · · · · · · · · · · · · · · · · · ·	Light brown orange occasionally gravelly slightly clayey med SAND. Gravel is subangular fine flint.	dium to coarse	
							· · · · · · · ·		-	
									[
					2.00		. — a . —	Borehole completed at 2.00m.		- 2
								,	-	
									-	
									-	
									-	
									_	- 3
									-	
									-	
									_	
									-	
									-	
<u> </u>					{4.00}					- 4
METHO CASING GROUN	ENT: Arc DD: Hand G: Not use IDWATE	chway comp I dug inspec ed. ER: Ground	pact window setion pit 0.00m dwater not ence the borehole	n-1.00m be ountered.	egl. Dyna	amic samp		2.00m begl.		
Ground	lwater		Date		Strike D	epth	Cas	sing Depth Depth After Observation (m) (m)		
	nensions in							<u> </u>	Logged By KC	

	14	- y S					o: www.en	nzygo.com		
Site A	Shburn	ham Roa	d, Richmon							
Job No CRM	1.1027.0	Г	Dates Start 25	5-10-21 25-10-21		nd Level (1	m)	Co-Ordinates	WS4	
Client H	Hill Partı	nership							Sheet 1 of 1	
Well	Water		les & In Situ Te	esting	Depth	Level	Legend	Stratum Description		
**************************************	Levels	Depth (ı	m) No/Type	e Results		(mAD)	Legena			– 0
	j				0.02			MADE GROUND: - Angular fine GRAVEL of basalt. MADE GROUND: Tarmacadam comprising light black to light		-
		0.30 - 0.5	50 ES					subrounded coarse GRAVEL of flint in tar. Sand is coarse.		-
								MADE GROUND: Subbase comprising light grey to cream coarse SAND. Gravel is angular and subrounded fine to me		-
	j				0.55		×××××	Brown occasionally gravelly sandy CLAY. Gravel is angular	fine flint. Sand is	-
		0.70 - 0.8	80 ES					fine.		-
							-º		_	-
	j						<u> </u>		-	- 1
										-
				!						-
	j				1.45			Light brown orange occasionally gravelly slightly clayey med	dium to coarse	-
	<u> </u>						. :a :-	SAND. Gravel is subangular fine flint.		-
							· · · · · · · · ·			-
	<u> </u>				3.00		· · · · · · · ·		-	- [
					2.00			Borehole completed at 2.00m.		- 2
									-	-
										-
									-	-
										-
									-	-
									-	- ,
									-	- 3 -
										-
										-
										-
										-
									<u> </u>	-
										- 4
General	I Remai	rks		لــــــــــــــــــــــــــــــــــــــ	{4.00}			L		
EUIPME METHO CASING GROUN	ENT: Arc DD: Hand G: Not use IDWATE	chway comp I dug inspec ed. ER: Ground	pact window section pit 0.00m dwater not enco, the borehole	n-1.00m be ountered.	egl. Dyna	amic samp		2.00m begl.		
Ground	- Iwater							Double After		
Ground	lwater		Date		Strike D (m)	epth	Cas	sing Depth Depth After Observation (m) (m)		
	ensions in Scale 1:2								Logged By KC	

	14	- y S)					o: www.en	nzygo.com		
Site	shburn	ham Road	d Richt	mond							
Job No CRM	1.1027.0	Г	Dates Sta	art 25-	-10-21 5-10-21	Groun	nd Level (1	m)	Co-Ordinates	WS5	
Client H	Iill Partı	nership								Sheet 1 of 1	
Well	Water	Sample	les & In Si			Depth	Level	Legend	Stratum Description		
000,000	Levels	Depth (r	m) No)/Туре	Results	(m) 0.02	(mAD)		MADE GROUND: - Angular fine GRAVEL of basalt.		0
	<u> </u>	2.25 0				0.13			MADE GROUND: Tarmacadam comprising light black to lig subrounded coarse GRAVEL of flint in tar. Sand is coarse.	ht grey very sandy	
		0.35 - 0.4	48 =	ES		0.45			MADE GROUND: Subbase comprising light grey to cream subrounded medium GRAVEL of flint and concrete. Sand is	sandy rounded to fine.	
	 	0.60 - 0.7	70 E	ES		0.48			MADE GROUND: Orange brown to black rounded to subro GRAVEL of flint with coarse sand-sized ash.	unded coarse	
	j								Brown occasionally gravelly sandy CLAY. Gravel is angular fine.	fine flint. Sand is	
								<u> </u>		_	· 1
						1.10			Brown to light brown very clayey fine SAND.		
	į								, , , ,	[
										t	
	į !					1.60			Light brown groups accessionally growelly slightly clayey may	lium to coarse	
								- · · · · · · · · · · · · · · · · · · ·	Light brown orange occasionally gravelly slightly clayey med SAND. Gravel is subangular fine flint.	lium to coarse	
								· · · · · · · ·		-	
	<u> </u>							· · · · · · ·		-	2
										-	
	j							- · · · · · · · · · · · · · · · · · · ·		-	
								· · · · · · · ·		-	
										-	
						2.90		· · · · · · · · · · · · · · · · · · ·		-	
N /= 1						2.00			Sampler refused. Borehole completed at 2.90m.		3
									Bolefiole completed at 2.30m.		
										-	
										t	
										-	
										-	
~ 1						{4.00}					4
General EUIPME	ENT: Arc	chway comp	nact wind	low sar	mpling tr	acked rig	ŗ.				
METHO CASING	D: Hand G: Not use	l dug inspec ed.	ction pit 0	0.00m-1	1.00m be	gl. Dyna	mic samp	oled 1.00m-2	2.90m begl.		
GROUN	IDWATE	ER: Ground completion,				illed with	arisings.				
		•									
Ground	lwater		Date			Strike De	epth	Cas	sing Depth Depth After (m) Depth After Observation		
						(111)			(m)		
	nensions in Scale 1:2									Logged By KC	

1.0 ENZYGO WS LOG CRM.1027.087 RICHMOND (2).GPJ GINT STD AGS 3_1 ENZYGO.GPJ 28/10/21

		70				Web	: www.er	nzygo.com		
Site										
A	shburn	ham Road, R	Richmond	1					MCC	
Job No		Dates	Start 25	-10-21	Groun	d Level (m)	Co-Ordinates	WS6	
	1.1027.	087	Finish 2	5-10-21						
Client H	lill Part	nership							Sheet 1 of 1	
Well	Water	Samples &			Depth	Level (mAD)	Legend	Stratum Description		
300-300	Levels	Depth (m)	No/Type	Results	(m) 0.02	(MAD)	×××××	MADE GROUND: - Angular fine GRAVEL of basalt.		 0
					0.15			MADE GROUND: Tarmacadam comprising light black to light	ht grey very sandy	Ľ
		0.30 - 0.40	ES		0.35			subrounded coarse GRAVEL of flint in tar. Sand is coarse.		-
					0.00			MADE GROUND: Subbase comprising light grey to cream g coarse SAND. Gravel is angular and subrounded fine to med		<u> </u>
					0.60			MADE GROUND: Multicoloured (yellow to red occasionally li	ght black to light	
		0.70 - 0.80	ES					brown) occasionally clayey sandy, angular fine to coarse GR flint. Sand is fine to coarse.	AVEL OF BRICK and	-
								Brown occasionally gravelly sandy CLAY. Gravel is angular f fine.	ine flint. Sand is	-
								inie.		_ 1
							<u> </u>	1.00 - 1.40 Increasing sand conent.		- '
										<u> </u>
					1.40		-0			Į
							- · · · · · · · · · · · · · · · · · · ·	Light brown orange occasionally gravelly slightly clayey medi SAND. Gravel is subangular fine flint.	ium to coarse	-
686							· · · · · ·			t
							. ::a : -:			-
							· · · · · · ·			}
										- 2
							. · · · · · ·			-
							· · · · · ·			<u> </u>
							. :a ·			[
							- · · · · ·			-
							. · · · · · · · ·			-
							· · · · ·			- 3
							. · · · · · · · ·			
										-
										-
							. :a :			Į.
							· • · · · · ·			-
							. · · · · · · · · · · · · · · · · · · ·			t
					4.00 {4.00}			Borehole completed at 4.00m.		4
Genera	l Remai	rks			(4.00)			Buteriole completed at 4:00m.		
METHO CASINO GROUN	D: Hand 3: Not us DWATE	chway compact dug inspection ed. ER: Groundwate completion, the	pit 0.00m er not enco	-1.00m be ountered.	egl. Dyna	mic samp		4.00m begl.		
Ground	lwater	D	ate		Strike Do	epth	Ca	sing Depth Depth After (m) Depth After Observation		
					(111)			(m)		
All dim	ensions i Scale 1:2	n metres							Logged By KC	

Hill Partnership

Enzygo Ltd Tel: 01454 269237 Fax: 01454 269760

Web: www.enzygo.com

Site				
Ashburnham Ro	CA4			
Job No	Dates Start 27-10-21	Ground Level (m)	Co-Ordinates	SA1
CRM.1027.087	Finish 27-10-21			
Client				Sheet
Hill Doutmonship				1 of 1

Water Levels	Samples & Depth (m)		Results	Depth (m)	Level (mAD)	Legend	Stratum Description	
				0.40			MADE GROUND: Black to dark brown slightly gravelly very sandy CLAY with red tiles. Gravel is subangular and subrounded fine flint and brick. Sand is fine.	-
							Brown CLAY.	T- -
				1.00			Brown slightly sandy CLAY. Sand is fine.	-
								-
				1.80			Brown clayey medium SAND.	+
				2.00			Trial Pit completed at 2.00m.	t
								-
								-
								-
				{4.00}				ļ
Dimensi I. Mach	al Remarks ions: 2.00x0.60; ine excavated p indwater not encipit sides remain impletion, trial p	it from gr	ound leve al and stat ckfilled v	el to 2.00r ole. vith arisin	n begl. gs.			
All dir	mensions in met Scale 1:25	res					Logged By KC	

General Remarks

- Dimensions: 2.00x0.60x2.00

 1. Machine excavated pit from ground level to 2.00m begl.

 2. Groundwater not encountered.

 3. Trial pit sides remained vertical and stable.

 4. On completion, trial pit was backfilled with arisings.

Web: www.enzygo.com

Site				
Ashburnham Ro	CAO			
Job No	Dates Start 27-10-21	Ground Level (m)	Co-Ordinates	SA2
CRM.1027.087	Finish 27-10-21			
Client				Sheet

1 of 1 Hill Partnership

Nater _	Samples & Ir			Depth	Level	Legend	Stratum Description	
evels	Depth (m)	No/Type	Results	(m)	(mAD)	Legend	Stratum Description	
							MADE GROUND: Black to dark brown slightly gravelly very sandy CLAY with red tiles Gravel is subangular and subrounded fine flint and brick. Sand is fine.	S.
				0.30			Brown CLAY.	
				1.10				
							Brown clayey medium SAND.	
				1.50		<u> </u>	Light brown slightly clayey fine SAND.	
							Light brown slightly dayey line SAND.	
				2.00				
				2.00			Trial Pit completed at 2.00m.	
lenera	al Remarks			{4.00}				
imensi	al Remarks ons: 2.00x0.60x ine excavated pit indwater not enco pit sides remaine impletion, trial pi	2.00						
Mach:	ine excavated pit idwater not enco	irom gro untered.	ound leve	ei to 2.00n	ı begi.			
. 1 rial j . On co	pit sides remaine impletion, trial pi	u vertical it was ba	ı and stat ekfilled v	oie. vith arisin	gs.			

General Remarks

- Dimensions: 2.00x0.60x2.00

 1. Machine excavated pit from ground level to 2.00m begl.

 2. Groundwater not encountered.

 3. Trial pit sides remained vertical and stable.

 4. On completion, trial pit was backfilled with arisings.

Web: www.enzygo.com

Site								
Ashburnham Ro		SA3						
Job No CRM.1027.087	Start 26-10-21							
Client Hill Partnership				S	Sheet 1 of 1			

Samples & In Situ Testing Water Depth Level Legend Stratum Description (mAD) Levels (m) No/Type Results Depth (m) 0 MADE GROUND: Grass over black to dark brown slightly gravelly very sandy CLAY. Gravel is subangular and subrounded fine flint and brick. Sand is fine. 0.30 Brown slightly sandy CLAY. Sand is fine. 0.50 Light brown occasionally gravelly sandy CLAY. Gravel is subangular fine flint. Sand is fine. 2.00 Trial Pit completed at 2.00m.

General Remarks

LOG CRM.1027.087 RICHMOND (2).GPJ GINT STD AGS 3_1 ENZYGO.GPJ 28/10/21

Dimensions: 2.00x0.60x2.00

1. Machine excavated pit from ground level to 2.00m begl.

{4.00}

- Groundwater not encountered.
 Trial pit sides remained vertical and stable.
 On completion, trial pit was backfilled with arisings.

Hill Partnership

Enzygo Ltd Tel: 01454 269237 Fax: 01454 269760

Web: www.enzygo.com

Site				
Ashburnham Ro	544			
Job No	Dates Start 26-10-21	Ground Level (m)	Co-Ordinates	SA4
CRM.1027.087	Finish 26-10-21			
Client				Sheet
Hill Dortnorshin				1 of 1

evels	Depth (m)	NIN I WOO I PAG	sults (m)		Legend	Stratum Description	- 1
		No/Type Res	suits (···)	(mAD)	×××××	MADE GROUND: Black to dark brown slightly gravelly very sandy CLAY. Gravel is	+
						subangular and subrounded fine flint and brick. Sand is fine.	ŀ
							ŀ
			0.40				r
			0.40			Brown slightly sandy CLAY. Sand is fine.	寸
			0.60		<u> </u>		Ī
			0.00		· · · · · ·	Light brown clayey gravelly fine to medium SAND. Gravel is subangular fine to medium	T
					. ` ` a `	flint.	
					· · · · · · · · ·		
					. ``` a ` . `		
					F		L
							ļ
					· · · · · · · ·		-
					- · · · · · · ·		-
							-
					- · · · · · · ·		ŀ
					F		ŀ
					·		ŀ
			2.00				ł
			2.00		0	Trial Pit completed at 2.00m.	\forall
							İ
							Ī
							Ī
							-
							ŀ
							ŀ
							ŀ
							ŀ
							ŀ
							İ
							Ì
	l Remarks		{4.00}				_
		00					
ımensıd . Machir	ons: 2.00x0.60x2	.00 from ground	level to 2.001	n begl.			
. Ground	ne excavated pit dwater not encou pit sides remained mpletion, trial pit	ntered.	1.1	Ü			
. Trial p . On cor	of sides remained	was backfil	i stable. led with arisir	ıgs.			
				-8			
All dim	nensions in metre Scale 1:25	s				Logged By KC	_

General Remarks

- Dimensions: 2.00x0.60x2.00

 1. Machine excavated pit from ground level to 2.00m begl.

 2. Groundwater not encountered.

 3. Trial pit sides remained vertical and stable.

 4. On completion, trial pit was backfilled with arisings.

Web: www.enzygo.com

Site				
Ashburnham Ro	CAF			
Job No	Dates Start 26-10-21	SA5		
CRM.1027.087	Finish 26-10-21			
Client		•	Sheet	
Hill Partnership)		1 of 1	

evels	Samples & Ir Depth (m)	No/Type		Depth (m)	Level (mAD)	Legend	Stratum Description
	Бериі (ііі)	Пол туре	Nesuits	()	(2)		MADE GROUND: Black to dark brown slightly gravelly very sandy CLAY. Gravel is subangular and subrounded fine flint and brick. Sand is fine.
				0.30			MADE GROUND: Multicoloured (yellow to red occasionally light black to light brown)
				0.55			occasionally clayey sandy angular fine to coarse GRAVEL of brick, concrete and flint. Sand is fine to coarse.
							Light brown occasionally gravelly sandy CLAY. Gravel is subangular fine flint. Sand is fine.
						0	
						<u> </u>	
				2.00		<u> </u>	Trial Pit completed at 2.00m.
							mar it completed at 2.00m.
				{4.00}			

General Remarks

- Dimensions: 2.00x0.60x2.00

 1. Machine excavated pit from ground level to 2.00m begl.

 2. Groundwater not encountered.

 3. Trial pit sides remained vertical and stable.

 4. On completion, trial pit was backfilled with arisings.

Web: www.enzygo.com

Site					
Ashburnham Ro	CA	•			
Job No	Dates Start 27-10-21	Ground Level (m)	Co-Ordinates	SA	' O
CRM.1027.087	Finish 27-10-21				
Client			•	Sheet	
Hill Partnership) 			1 of	1

Water	Hill Partnershi Samples & In		stina	Depth	Level			
Levels			Results	(m)	(mAD)	Legend	Stratum Description	_
	20pm (m)		1.0000	0.40			MADE GROUND: Black to dark brown slightly gravelly very sandy CLAY with red tiles. Gravel is subangular and subrounded fine flint and brick. Sand is fine.	-
				0.40			Light brown to light orange brown slightly clayey medium SAND.	-
				2.00			Trial Pit completed at 2.00m.	-
	1 Dans der			{4.00}				-
Dimensi . Machi 2. Groun	al Remarks ons: 2.00x0.60x2 ine excavated pit adwater not encoupit sides remained impletion, trial pi	from gro	ound leve l and stab ckfilled w	el to 2.00n ble. vith arising	n begl. gs.			
All din	nensions in metre Scale 1:25	es					Logged By KC	

General Remarks

- Dimensions: 2.00x0.60x2.00

 1. Machine excavated pit from ground level to 2.00m begl.

 2. Groundwater not encountered.

 3. Trial pit sides remained vertical and stable.

 4. On completion, trial pit was backfilled with arisings.

Site..... Ashburnham Rd Richmond Job Number..... CRM.1027.087

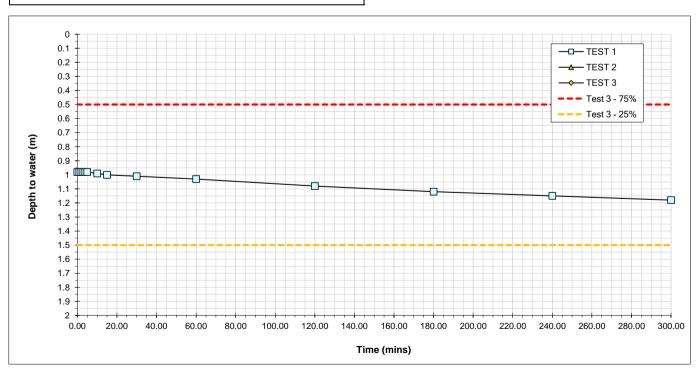
Date of Test...... 26th to 27th October 2021

Soakaway Number.... SA1 1.25 Length..... m Width..... 0.60 m 2.00 Depth..... m

Groundwater Level....

Dry

m


SOIL INFILTRATION RATE TEST

		S	ee B.R.E. Digest 365, 19	991, Soakaway	Design.			
		-	TEST 1		TEST 2		TEST 3	
		Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)	
		0.0	0.98	0.0	0.00	0.0	0.00	
		1.0	0.98	0.0	0.00	0.0	0.00	
		2.0	0.98	0.0	0.00	0.0	0.00	
		3.0	0.98	0.0	0.00	0.0	0.00	
		4.0	0.98	0.0	0.00	0.0	0.00	
		5.0	0.98	0.0	0.00	0.0	0.00	
		10.0	0.99	0.0	0.00	0.0	0.00	
		15.0	1.00	0.0	0.00	0.0	0.00	
		30.0	1.01	0.0	0.00	0.0	0.00	
		60.0	1.03	0.0	0.00	0.0	0.00	
		120.0	1.08	0.0	0.00	0.0	0.00	
				120.0	1.92	0.0	0.00	
Effective Storage Depth 75% Effective Storage Depth (i.e. depth below GL) 25% Effective Storage Depth (i.e. depth below GL) Effective Storage Depth 75%-25%	m m m m m		1.02 0.77 1.24 0.26 1.75 0.51		2.00 1.50 0.50 0.50 1.50 1.00		2.00 1.50 0.50 0.50 1.50	
Time to fall to 75% effective depth Time to fall to 25% effective depth	mins mins							
V (75%-25%)	m3		0.38		0.75		0.75	
a (50%)	m2		2.64		4.45		4.45	
(75%-25%)	mins		0.00		0.00		0.00	
SOIL INFILTRATION RATE	m/s		#DIV/0!		#DIV/0!		#DIV/0!	

DESIGN SOIL INFILTRATION RATE, f

#DIV/0!

m/s

Compiled By:	Date:	Checked By:	Date:	Approved By:	Date:
G.Parr		R.Hamilton		S.Rhodes	
Car	19.04.21	Rotenillo-	19.04.21	SE	19.04.21

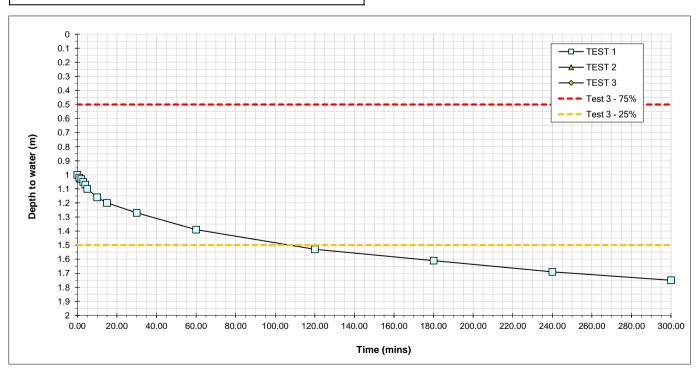
Site..... Ashburnham Rd Richmond Job Number..... CRM.1027.087

Date of Test...... 26th to 27th October 2021

Soakaway Number.... SA2 1.50 Length..... m Width..... 0.60 m 2.00 Depth..... m

Groundwater Level....

Dry


m

SOIL INFILTRATION RATE TEST

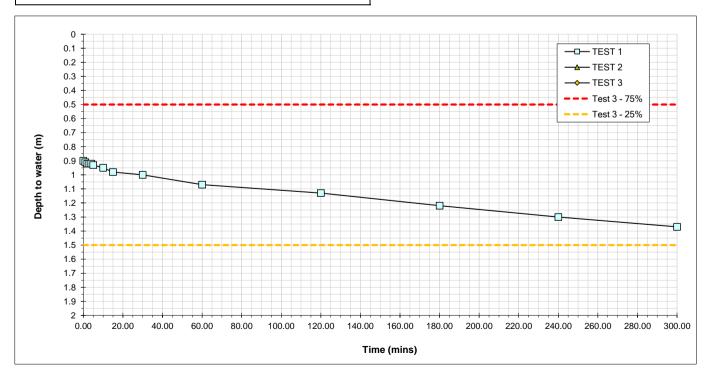
			See B.R.E. Digest 365, 1991, Soakaway Design.					
			TEST 1		TEST 2		TEST 3	
		Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)	
		0.0	1.00	0.0	0.00	0.0	0.00	
		1.0	1.02	0.0	0.00	0.0	0.00	
		2.0	1.03	0.0	0.00	0.0	0.00	
		3.0	1.05	0.0	0.00	0.0	0.00	
		4.0	1.07	0.0	0.00	0.0	0.00	
		5.0	1.10	0.0	0.00	0.0	0.00	
		10.0	1.16	0.0	0.00	0.0	0.00	
		15.0	1.20	0.0	0.00	0.0	0.00	
		30.0	1.27	0.0	0.00	0.0	0.00	
		60.0	1.39	0.0	0.00	0.0	0.00	
		120.0	1.53	0.0	0.00	0.0	0.00	
				120.0	1.92	0.0	0.00	
Effective Storage Depth 75% Effective Storage Depth (i.e. depth below GL) 25% Effective Storage Depth (i.e. depth below GL) Effective Storage Depth 75%-25%	m m m m m		1.00 0.75 1.25 0.25 1.75 0.50		2.00 1.50 0.50 0.50 1.50 1.00		2.00 1.50 0.50 0.50 1.50	
Time to fall to 75% effective depth Time to fall to 25% effective depth	mins mins		25.00 300.00					
V (75%-25%)	m3		0.45		0.90		0.90	
a (50%)	m2		3.00		5.10		5.10	
t (75%-25%)	mins		275.00		0.00		0.00	
SOIL INFILTRATION RATE	m/s		9.09E-06		#DIV/0!		#DIV/0!	

DESIGN SOIL INFILTRATION RATE, f

#DIV/0!

Compiled By:	Date:	Checked By:	Date:	Approved By:	Date:
G.Parr		R.Hamilton		S.Rhodes	
Gar	19.04.21	Rotenillo	19.04.21	SE	19.04.21

Site..... Ashburnham Rd Richmond Job Number..... CRM.1027.087 Date of Test...... 26th to 27th October 2021


SOIL INFILTRATION RATE TEST

See B.R.E. Digest 365, 1991, Soakaway Design.

	Soakav	ay Number	SA3		
				m	
				m	
				m	
	Ground	water Level	Dry	m	
			TEST 3		
tor (m) Time (min)		Time(min)	Donth to Water (m)		

		1	TEST 1	TEST 2		TEST 3	
		Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)
		0.0	0.90	0.0	0.00	0.0	0.00
		1.0	0.91	0.0	0.00	0.0	0.00
		2.0	0.92	0.0	0.00	0.0	0.00
		3.0	0.92	0.0	0.00	0.0	0.00
		4.0	0.92	0.0	0.00	0.0	0.00
		5.0	0.93	0.0	0.00	0.0	0.00
		10.0	0.95	0.0	0.00	0.0	0.00
		15.0	0.98	0.0	0.00	0.0	0.00
		30.0	1.00	0.0	0.00	0.0	0.00
		60.0	1.07	0.0	0.00	0.0	0.00
		120.0	1.13	0.0	0.00	0.0	0.00
				120.0	1.92	0.0	0.00
Effective Storage Depth 75% Effective Storage Depth (i.e. depth below GL) 25% Effective Storage Depth (i.e. depth below GL) Effective Storage Depth 75%-25%	m m m m		1.10 0.83 1.18 0.28 1.73		2.00 1.50 0.50 0.50 1.50 1.00		2.00 1.50 0.50 0.50 1.50 1.00
Time to fall to 75% effective depth Time to fall to 25% effective depth	mins mins						
V (75%-25%)	m3		0.43		0.78		0.78
a (50%)	m2		2.87		4.58		4.58
t (75%-25%)	mins		0.00		0.00		0.00
SOIL INFILTRATION RATE	m/s		#DIV/0!		#DIV/0!		#DIV/0!

DESIGN SOIL INFILTRATION RATE, f #DIV/0!

Compiled By:	Date:	Checked By:	Date:	Approved By:	Date:
G.Parr		R.Hamilton		S.Rhodes	
Car	19.04.21	Rotanilh-	19.04.21	SE	19.04.21

Site	Ashburnham Rd Richmond
Job Number	CRM.1027.087

Date of Test......26th to 27th October 2021

Soakaway Number.... SA4 1.40 Length..... m 0.60 m 2.10 Depth..... m

Groundwater Level....

Dry


m

SOIL INFILTRATION RATE TEST

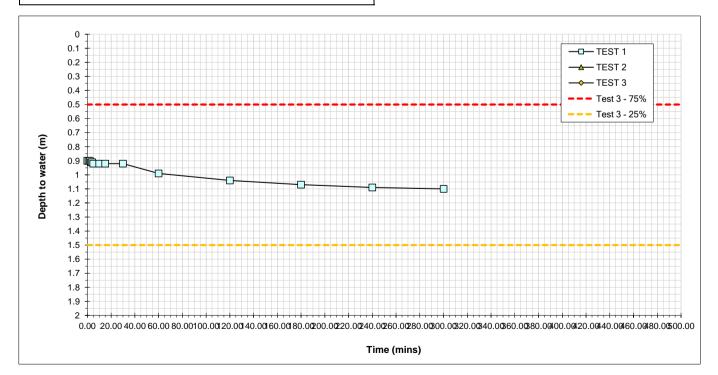
<u> </u>			See B.R.E. Digest 365, 1991, Soakaway Design.					
			TEST 1		TEST 2		TEST 3	
		Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)	
		0.0	0.95	0.0	0.00	0.0	0.00	
		1.0	0.96	0.0	0.00	0.0	0.00	
		2.0	0.97	0.0	0.00	0.0	0.00	
		3.0	0.98	0.0	0.00	0.0	0.00	
		4.0	0.99	0.0	0.00	0.0	0.00	
		5.0	1.00	0.0	0.00	0.0	0.00	
		10.0	1.06	0.0	0.00	0.0	0.00	
		15.0	1.09	0.0	0.00	0.0	0.00	
		30.0	1.18	0.0	0.00	0.0	0.00	
		60.0	1.29	0.0	0.00	0.0	0.00	
		120.0	1.48	0.0	0.00	0.0	0.00	
				120.0	1.92	0.0	0.00	
Effective Storage Depth 75% Effective Storage Depth (i.e. depth below GL) 25% Effective Storage Depth (i.e. depth below GL) Effective Storage Depth 75%-25%	m m m m m		1.15 0.86 1.24 0.29 1.81 0.58		2.10 1.58 0.53 0.53 1.58 1.05		2.10 1.58 0.53 0.53 1.58 1.05	
Time to fall to 75% effective depth Time to fall to 25% effective depth	mins mins		45.00 500.00					
V (75%-25%)	m3		0.48		0.88		0.88	
a (50%)	m2		3.14		5.04		5.04	
t (75%-25%)	mins		455.00		0.00		0.00	
SOIL INFILTRATION RATE	m/s		5.63E-06		#DIV/0!		#DIV/0!	

DESIGN SOIL INFILTRATION RATE, f

#DIV/0!

Compiled By:	Date:	Checked By:	Date:	Approved By:	Date:
G.Parr		R.Hamilton		S.Rhodes	
Gar	19.04.21	potenillo	19.04.21	SE	19.04.21

Site	Ashburnham Rd Richmond
Job Number	CRM.1027.087


Date of Test......26th to 27th October 2021

Soakaway Number.... SA5 1.50 Length..... m 0.60 m 2.00 Depth..... m Dry Groundwater Level.... m

SOIL INFILTRATION RATE TEST

			See B.R.E. Digest 365, 1991, Soakaway Design.					
			TEST 1 TEST 2		TEST 2	TEST 3		
		Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)	
		0.0	0.90	0.0	0.00	0.0	0.00	
		1.0	0.90	0.0	0.00	0.0	0.00	
		2.0	0.90	0.0	0.00	0.0	0.00	
		3.0	0.91	0.0	0.00	0.0	0.00	
		4.0	0.91	0.0	0.00	0.0	0.00	
		5.0	0.92	0.0	0.00	0.0	0.00	
		10.0	0.92	0.0	0.00	0.0	0.00	
		15.0	0.92	0.0	0.00	0.0	0.00	
		30.0	0.92	0.0	0.00	0.0	0.00	
		60.0	0.99	0.0	0.00	0.0	0.00	
		120.0	1.04	0.0	0.00	0.0	0.00	
				120.0	1.92	0.0	0.00	
Effective Storage Depth 75% Effective Storage Depth (i.e. depth below GL) 25% Effective Storage Depth (i.e. depth below GL) Effective Storage Depth 75%-25%	m m m m m		1.10 0.83 1.18 0.28 1.73 0.55		2.00 1.50 0.50 0.50 1.50 1.00		2.00 1.50 0.50 0.50 1.50 1.00	
Time to fall to 75% effective depth Time to fall to 25% effective depth	mins mins							
V (75%-25%)	m3		0.50		0.90		0.90	
a (50%)	m2		3.21		5.10		5.10	
t (75%-25%)	mins		0.00		0.00		0.00	
SOIL INFILTRATION RATE	m/s		#DIV/0!		#DIV/0!		#DIV/0!	

DESIGN SOIL INFILTRATION RATE, f #DIV/0! m/s

Compiled By:	Date:	Checked By:	Date:	Approved By:	Date:
G.Parr		R.Hamilton		S.Rhodes	
Gar	19.04.21	Rotenillo	19.04.21	SE	19.04.21

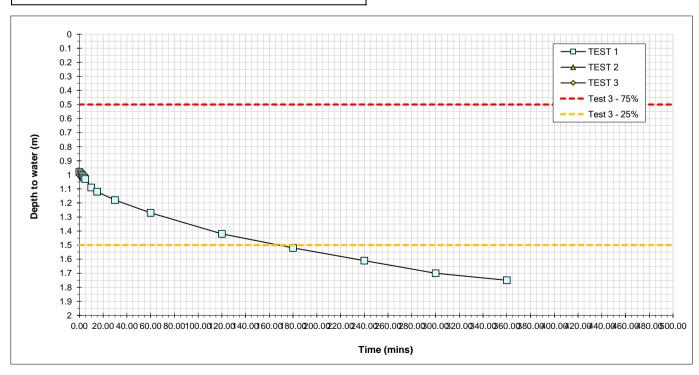
Site	Ashburnham Rd Richmond
Job Number	CRM.1027.087

Date of Test......26th to 27th October 2021

Soakaway Number.... SA6 1.20 Length..... m 0.60 m 2.00 Depth..... m

Groundwater Level....

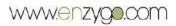
Dry


m

SOIL INFILTRATION RATE TEST

		S	ee B.R.E. Digest 365, 1	991, Soakaway	Design.		
			TEST 1		TEST 2		TEST 3
		Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)
		0.0	0.98	0.0	0.00	0.0	0.00
		1.0	0.99	0.0	0.00	0.0	0.00
		2.0	1.00	0.0	0.00	0.0	0.00
		3.0	1.01	0.0	0.00	0.0	0.00
		4.0	1.02	0.0	0.00	0.0	0.00
		5.0	1.03	0.0	0.00	0.0	0.00
		10.0	1.09	0.0	0.00	0.0	0.00
		15.0	1.12	0.0	0.00	0.0	0.00
		30.0	1.18	0.0	0.00	0.0	0.00
		60.0	1.27	0.0	0.00	0.0	0.00
		120.0	1.42	0.0	0.00	0.0	0.00
						0.0	0.00
Effective Storage Depth	m		1.02		2.00		2.00
75% Effective Storage Depth	m		0.77		1.50		1.50
(i.e. depth below GL)	m		1.24		0.50		0.50
25% Effective Storage Depth	m		0.26		0.50		0.50
(i.e. depth below GL)	m		1.75		1.50		1.50
Effective Storage Depth 75%-25%	m		0.51		1.00		1.00
Time to fall to 75% effective depth	mins		50.00				
Time to fall to 25% effective depth	mins		360.00				
V (75%-25%)	m3		0.37		0.72		0.72
a (50%)	m2		2.56		4.32		4.32
t (75%-25%)	mins		310.00		0.00		0.00
SOIL INFILTRATION RATE	m/s		7.72E-06		#DIV/0!		#DIV/0!

DESIGN SOIL INFILTRATION RATE, f


#DIV/0!

Compiled By:	Date:	Checked By:	Date:	Approved By:	Date:
G.Parr		R.Hamilton		S.Rhodes	
Car	19.04.21	poteni/h	19.04.21	SE	19.04.21

APPENDIX C - CHEMICAL TESTING

Steve Rhodes

Enzygo Geoenvironmental Ltd The Byre Woodend Lane Cromhall Gloucestershire GL12 8AA

e: steve.rhodes@enzygo.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-72260

Project / Site name: Richmond Samples received on: 29/04/2021

Your job number: CRM.1265.087 Samples instructed on/ 30/04/2021

Analysis started on:

Your order number: Analysis completed by: 11/05/2021

Report Issue Number: 1 **Report issued on:** 11/05/2021

Samples Analysed: 22 soil samples

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1856420	1856421	1856422	1856423	1856424
Sample Reference				WS1	WS2	WS2	WS4	WS5
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	0.20-0.45	1.00	0.40	0.40
Date Sampled				28/04/2021	28/04/2021	28/04/2021	28/04/2021	28/04/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time raken				тчопе заррпса	нопе заррпса	чоне заррнеа	тчопе заррнеа	чоне заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	8.3	5.9	10	11	8.4
Total mass of sample received	kg	0.001	NONE	1.2	1.2	0.50	1.2	1.2
Total mass of sample received	.v9	0.001	HOHE	1.2	1.2	0.50	1.2	1.2
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025		Crocidolite		_	
Asbestos in Soil Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Detected	Not-detected	Not-detected	Not-detected
Asbestos (III Soli Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	0.006	Not-detected -	Not-detected -	Not-detected -
Asbestos Quantification (Stage 2) Asbestos Quantification Total	%	0.001	ISO 17025	-	0.006	-	-	-
- SSESTOS Quantinication Total				-	0.000	-		-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.7	7.7	8.2	6.9	8.1
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.4	1.3	0.3	0.9	1.2
rotal organic carson (100)	-			2.1	1.5	0.5	0.5	1.2
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
()	-			. 2.0				. = 10
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	0.74	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.57	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	0.60	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	6.5	< 0.05	< 0.05	0.76	< 0.05
Anthracene	mg/kg	0.05	MCERTS	1.8	< 0.05	< 0.05	0.20	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	15	0.53	< 0.05	1.3	0.46
Pyrene	mg/kg	0.05	MCERTS	14	0.51	< 0.05	1.2	0.46
Benzo(a)anthracene	mg/kg	0.05	MCERTS	8.1	0.36	< 0.05	0.67	0.26
Chrysene	mg/kg	0.05	MCERTS	5.2	0.32	< 0.05	0.55	0.23
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	8.1	0.44	< 0.05	0.63	0.30
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	3.2	0.24	< 0.05	0.33	0.15
Benzo(a)pyrene	mg/kg	0.05	MCERTS	7.0	0.40	< 0.05	0.60	0.27
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	4.0	0.25	< 0.05	0.41	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	1.1	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	4.6	0.29	< 0.05	0.43	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	80.9	3.34	< 0.80	7.12	2.13
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16	40	16	17	16
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	0.8	1.5	0.4	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	26	26	26	28
Copper (aqua regia extractable)	mg/kg	1	MCERTS	52	36	7.6	26	35
Lead (aqua regia extractable)	mg/kg	1	MCERTS	310	150	11	73	84
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.2	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20	19	21	22	23
Selenium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Lab Sample Number				1856420	1856421	1856422	1856423	1856424
Sample Reference				WS1	WS2	WS2	WS4	WS5
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	0.20-0.45	1.00	0.40	0.40
Date Sampled				28/04/2021	28/04/2021	28/04/2021	28/04/2021	28/04/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons		=	="	_				
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
								<u>.</u>
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	7.3	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	38	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	99	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	140	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	140	< 10	< 10	< 10	< 10
								<u>.</u>
TPH (>C5 - C7)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (>C7 - C8)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	7.3	< 4.0	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	38	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	99	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C35 - C44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH Total C5 - C44	mg/kg	10	NONE	140	< 10	< 10	< 10	< 10

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Lab Sample Number			1856425	1856426	1856427	1856428	1856429	
Sample Reference				WS5	WS6	WS6	WS7	WS8
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	0.40	1.00	0.40	1.00
Date Sampled				28/04/2021	28/04/2021	28/04/2021	28/04/2021	28/04/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time raken	T	_	I	None Supplied	Попе Заррнеа	None Supplied	None Supplied	None Заррпеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	-	< 0.1	-
Moisture Content	%	0.01	NONE	10	9.1	-	7.5	-
Total mass of sample received	kg	0.001	NONE	0.50	1.2	-	1.0	=
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	-	Chrysotile	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	< 0.001	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	< 0.001	-	-	-
General Inorganics			T				I	•
pH - Automated	pH Units	N/A	MCERTS	8.4	7.8	-	7.2	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.3	1.5	-	1.6	-
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	-
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	-
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.64	-	0.60	-
Pyrene	mg/kg	0.05	MCERTS	< 0.05	0.57	-	0.55	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.38	-	0.37	-
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.33	-	0.32	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.42	-	0.50	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.23	-	0.28	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.33	-	0.42	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.25	-	< 0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.22	-	< 0.05	-
Total PAH	n	0.0	MCERTO			1	T	
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	3.37	-	3.04	-
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	19	-	18	-
Boron (water soluble)	mg/kg	0.2	MCERTS	1.6	0.7	-	0.8	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	< 0.2	-
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	-	< 4.0	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	26	21	-	25	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	11	32	-	33	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	15	160	-	120	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	22	20	-	21	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	48	110	-	170	-
. (I			110		1,0	

Lab Sample Number				1856425	1856426	1856427	1856428	1856429
Sample Reference				WS5	WS6	WS6	WS7	WS8
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	0.40	1.00	0.40	1.00
Date Sampled				28/04/2021	28/04/2021	28/04/2021	28/04/2021	28/04/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons					•	-		-
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	-	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	-	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	-	< 8.0	-
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	-	< 8.4	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	-	< 10	-
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	-	< 10	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	-	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	-	< 10	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	-	< 10	-
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	-	< 8.4	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	-	< 10	-
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	-	< 10	-
TPH (>C5 - C7)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
TPH (>C7 - C8)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	< 0.1	-
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	-	< 2.0	-
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	-	< 4.0	-
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
TPH (C35 - C44)	mg/kg	10	NONE	< 10	< 10	-	< 10	-
TPH Total C5 - C44	mg/kg	10	NONE	< 10	< 10	-	< 10	-

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

				1		T	T	1
Lab Sample Number				1856430	1856431	1856432	1856433	1856434
Sample Reference				WS8	WS9	WS10	WS11	WS12
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	0.40	0.40	0.40	0.40
Date Sampled				28/04/2021	28/04/2021	28/04/2021	28/04/2021	28/04/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	5.7	7.1	9.3	8.7	9.4
Total mass of sample received	kg	0.001	NONE	0.50	1.2	1.2	1.2	1.2
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	Chrysotile	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	3.127	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	3.13	-	-	-	-
	-							
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.6	8.2	10.8	7.9	8.0
Total Organic Carbon (TOC)	%	0.1	MCERTS	2.7	1.2	1.6	1.0	1.7
				2.,		2.0	2.0	
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Friends (monoriyanc)	9/9			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Control BAIL								
Speciated PAHs	T n .	0.05	MCEDIC					
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	2.2	< 0.05	< 0.05	0.48	< 0.05
Anthracene	mg/kg	0.05	MCERTS	0.43	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	5.9	0.46	0.48	0.81	0.50
Pyrene	mg/kg	0.05	MCERTS	4.8	0.41	0.55	0.72	0.50
Benzo(a)anthracene	mg/kg	0.05	MCERTS	3.8	0.26	0.43	0.44	0.24
Chrysene	mg/kg	0.05	MCERTS	2.3	0.27	0.36	0.38	0.38
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	3.4	0.35	0.47	0.48	0.52
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.5	0.21	0.26	0.26	0.13
Benzo(a)pyrene	mg/kg	0.05	MCERTS	2.6	0.32	0.47	0.42	0.34
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.6	< 0.05	0.31	0.30	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.53	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.7	< 0.05	0.38	0.31	< 0.05
								
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	30.7	2.28	3.71	4.60	2.61
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	34	16	17	19	18
Boron (water soluble)	mg/kg	0.2	MCERTS	2.3	0.9	0.3	0.6	1.1
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	32	22	25	25	25
Copper (aqua regia extractable)	mg/kg	1	MCERTS	110	37	27	30	40
Lead (aqua regia extractable)	mg/kg	1	MCERTS	320	140	250	110	140
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.9	< 0.3	< 0.3	< 0.3	0.9
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	48	18	19	23	21
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
, , , ,	mg/kg	1	MCERTS		1			
Zinc (aqua regia extractable)	/11g/ kg			310	120	160	190	180

Lab Sample Number				1856430	1856431	1856432	1856433	1856434
Sample Reference				WS8	WS9	WS10	WS11	WS12
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	0.40	0.40	0.40	0.40
Date Sampled				28/04/2021	28/04/2021	28/04/2021	28/04/2021	28/04/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	·		··	·	
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	16	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	50	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	66	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	66	< 10	< 10	< 10	< 10
TPH (>C5 - C7)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (>C7 - C8)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	16	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	50	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C35 - C44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH Total C5 - C44	mg/kg	10	NONE	66	< 10	< 10	< 10	< 10

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

				1056105	1056106	1056107	1056100	1056100
Lab Sample Number				1856435	1856436	1856437	1856438	1856439
Sample Reference				WS13	WS13	WS14	WS15	WS16
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	1.00	0.40	0.40	0.40
Date Sampled				28/04/2021	28/04/2021	28/04/2021	28/04/2021	28/04/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
		ğ	š					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	6.3	14	8.7	11	7.9
Total mass of sample received	kg	0.001	NONE	1.2	0.40	1.2	1.2	1.2
			1		00	212		
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	_	_	_	_	_
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification (Stage 2) Asbestos Quantification Total	%	0.001	ISO 17025	_	_		_	
- 5555555 Quantinoudon Total				_	_	_	_	_
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	0.7	0.2	0.4	0.2	7.0
	%	0.1	MCERTS	8.2	8.3	8.4	8.3	7.9
Total Organic Carbon (TOC)	70	0.1	MCLKIS	1.1	0.4	2.5	1.2	1.2
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.31	< 0.05	0.55	0.66	0.27
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.59	< 0.05	0.81	1.7	0.42
Pyrene	mg/kg	0.05	MCERTS	0.54	< 0.05	0.69	1.5	0.39
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.39	< 0.05	0.46	0.73	< 0.05
Chrysene	mg/kg	0.05	MCERTS	0.39	< 0.05	0.41	1.0	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.40	< 0.05	0.48	1.1	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.29	< 0.05	< 0.05	0.66	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.36	< 0.05	0.41	0.87	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.26	0.60	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.30	0.59	< 0.05
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	2 27	< n on	4.37	0 20	1.08
Specialed Total Era-10 FARS	.iig/kg	3.0		3.27	< 0.80	4.3/	9.38	1.08
Heavy Metals / Metalloids			MOFFEE					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	17	18	19	19	16
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	1.2	0.7	0.8	0.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	23	30	28	29	25
Copper (aqua regia extractable)	mg/kg	1	MCERTS	35	14	42	43	27
Lead (aqua regia extractable)	mg/kg	1	MCERTS	110	26	85	170	370
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	22	28	33	28	21
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	160	55	110	150	110

Lab Sample Number				1856435	1856436	1856437	1856438	1856439
Sample Reference				WS13	WS13	WS14	WS15	WS16
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	1.00	0.40	0.40	0.40
Date Sampled				28/04/2021	28/04/2021	28/04/2021	28/04/2021	28/04/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons					-			
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	15	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	22	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	22	< 10
TPH (>C5 - C7)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (>C7 - C8)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	6.8	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	15	< 1.0
TPH (C35 - C44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH Total C5 - C44	mg/kg	10	NONE	< 10	< 10	< 10	22	< 10

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Lab Sample Number				1856440	1856441
Sample Reference				WS17	WS18
Sample Number				None Supplied	None Supplied
Depth (m)				0.40	0.40
Date Sampled				28/04/2021	28/04/2021
Time Taken				None Supplied	None Supplied
Time raken		-	1	топс заррпса	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	7.9	6.1
Total mass of sample received	kg	0.001	NONE	1.2	1.0
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	_	_
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-
Ganaral Ingraphics	-				-
General Inorganics pH - Automated	pH Units	N/A	MCERTS	8.1	8.2
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.1	1.9
• ,					
Total Phenols			MCEDIC		
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0
Speciated PAHs					
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	0.46
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.56	1.0
Pyrene	mg/kg	0.05	MCERTS	0.49	0.87
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.29	0.57
Chrysene	mg/kg	0.05	MCERTS	0.28	0.38
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.71
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.18
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.57
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.33
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.42
Total PAH					
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	1.62	5.49
Heavy Metals / Metalloids					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	17	18
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	25	25
Copper (aqua regia extractable)	mg/kg	1	MCERTS	26	41
Lead (aqua regia extractable)	mg/kg	1	MCERTS	92	280
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20	20
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	120	110

Lab Sample Number	1856440	1856441			
Sample Reference				WS17	WS18
Sample Number				None Supplied	None Supplied
Depth (m)				0.40	0.40
Date Sampled				28/04/2021	28/04/2021
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Petroleum Hydrocarbons					
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10
		0.004	MCEDIC		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10 10	MCERTS MCERTS	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	8.4	NONE	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	10	MCERTS	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg mg/kg	10	NONE	< 10	11
TPH-CWG - Aromatic (EC5 - EC44)	IIIg/kg	10	NONE	< 10	11
TPH (>C5 - C7)	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH (>C7 - C8)	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	2.9
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	7.7
TPH (C35 - C44)	mg/kg	10	NONE	< 10	< 10
TPH Total C5 - C44	mg/kg	10	NONE	< 10	11

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1856421	WS2	0.20-0.45	165	Loose Fibrous Debris	Crocidolite	0.006	0.006
1856426	WS6	0.40	220	Loose Fibrous Debris	Chrysotile	< 0.001	< 0.001
1856430	WS8	0.40	158	Hard/Cement Type Material	Chrysotile	3.127	3.13

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1856420	WS1	None Supplied	0.4	Brown sandy loam with gravel and vegetation.
1856421	WS2	None Supplied	0.20-0.45	Brown sandy loam with gravel and vegetation.
1856422	WS2	None Supplied	1	Brown clay and sand with gravel.
1856423	WS4	None Supplied	0.4	Brown clay and loam with gravel and vegetation.
1856424	WS5	None Supplied	0.4	Brown clay and loam with gravel and brick.
1856425	WS5	None Supplied	1	Brown clay and loam.
1856426	WS6	None Supplied	0.4	Brown loam and clay with gravel and vegetation.
1856428	WS7	None Supplied	0.4	Brown sandy loam with gravel and vegetation.
1856430	WS8	None Supplied	0.4	Brown sandy loam with gravel.
1856431	WS9	None Supplied	0.4	Brown loam and clay with gravel.
1856432	WS10	None Supplied	0.4	Brown loam and clay with gravel and brick.
1856433	WS11	None Supplied	0.4	Brown loam and clay with gravel and brick.
1856434	WS12	None Supplied	0.4	Brown loam and clay with gravel and vegetation.
1856435	WS13	None Supplied	0.4	Brown loam and clay with gravel and brick.
1856436	WS13	None Supplied	1	Brown loam and clay with gravel and vegetation.
1856437	WS14	None Supplied	0.4	Brown clay and loam with gravel.
1856438	WS15	None Supplied	0.4	Brown loam and clay with gravel and vegetation.
1856439	WS16	None Supplied	0.4	Brown sandy clay with gravel and vegetation.
1856440	WS17	None Supplied	0.4	Brown sandy clay with gravel and vegetation.
1856441	WS18	None Supplied	0.4	Brown sandy clay with gravel and vegetation.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Steve Rhodes

Enzygo Geoenvironmental Ltd The Byre Woodend Lane Cromhall Gloucestershire GL12 8AA

e: steve.rhodes@enzygo.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404

f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-72267

Project / Site name: Richmond Samples received on: 29/04/2021

Your job number: CRM.1265.087 Samples instructed on/ 30/04/2021

Analysis started on:

Your order number: Analysis completed by: 12/05/2021

Report Issue Number: Report issued on: 12/05/2021

Samples Analysed: 5 wac multi samples

Signed: <

Zina Abdul Razzak Senior Quality Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

eport No:		21-722	57			
cport no.		/	<i>.</i>			
				Client:	ENZYGOGEO)
Location		Richmo	nd			
Lab Reference (Sample Number)		185645	5	Landfill	Waste Acceptan	ce Criteria
					Limits	1
Sampling Date		28/04/20	21		Stable Non- reactive	
Sample ID		WS1		Inert Waste	HAZARDOUS	Hazardous
Depth (m)		0.40		Landfill	waste in non- hazardous Landfill	Waste Landfill
olid Waste Analysis						
OC (%)**	1.4			3%	5%	6%
oss on Ignition (%) **	3.7					10%
TEX (μg/kg) **	< 10			6000		
um of PCBs (mg/kg) **	< 0.30			1		
lineral Oil (mg/kg) #	95			500		
otal PAH (WAC-17) (mg/kg)	81.9			100		
H (units)**	7.9				>6	
cid Neutralisation Capacity (mol / kg)	3.8				To be evaluated	To be evaluate
luate Analysis	2:1	8:1	Cumulative 10:1	Limit value	es for compliance l	eaching test
	2.1	0.1	Cumulative 10.1	using BS EN	12457-3 at L/S 10) l/ka (ma/ka)
3S EN 12457 - 3 preparation utilising end over end leaching rocedure)	mg/l	mg/l	mg/kg	259 25 2		. 49 (919)
rsenic *	< 0.010	< 0.010	0.080	0.5	2	25
arium *	0.023	0.043	0.41	20	100	300
admium *	< 0.0005	< 0.0005	0.0035	0.04	1	5
hromium *	< 0.0010	0.0010	0.0095	0.5	10	70
opper *	0.032	0.026	0.26	2	50	100
lercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2
lolybdenum *	< 0.0030	< 0.0030	< 0.020	0.5	10	30
ickel *	0.0068	0.0058	0.059	0.4	10	40
ead * ntimony *	0.0098	0.057 0.0060	0.52 0.069	0.5 0.06	10 0.7	50 5
elenium *	< 0.014	< 0.010		0.00	0.7	7
inc *	0.017	0.0398	0.049 0.37	4	50	200
hloride *	< 4.0	< 4.0	38	800	15000	25000
luoride	0.76	0.59	6.1	10	150	500
ulphate *	5.6	6.6	65	1000	20000	50000
DS*	91	60	630	4000	60000	100000
henol Index (Monohydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-
ос	15	23	220	500	800	1000
each Test Information						
				1	1	
tone Content (%)	< 0.1			1		-
ample Mass (kg)	1.2			1	1	
ry Matter (%) loisture (%)	92 8.3	-		1		-
tage 1	0.3	-		1	1	
olume Eluate L2 (litres)	0.34			<u> </u>	1	
iltered Eluate VE1 (litres)	0.19					
	0.15	 	+	1	1	
				1	1	1

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Cuidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:	Results	21-7	2267				
•							
					Client:	ENZYGOGEO)
Location		Rich	mond				
Lab Reference (Sample Number)	1856456				Landfill	Waste Acceptant	ce Criteria
	28/04/2021					Limits	•
Sampling Date						Stable Non- reactive	
Sample ID	WS6			Inert Waste	HAZARDOUS	Hazardous	
Depth (m)	1.00		Landfill	waste in non- hazardous Landfill	Waste Landfil		
Solid Waste Analysis							
TOC (%)**	0.4				3%	5%	6%
Loss on Ignition (%) **	2.2						10%
BTEX (µg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.30				1		
Mineral Oil (mg/kg) #	49				500		
Total PAH (WAC-17) (mg/kg)	< 0.85				100		
pH (units)**	7.5					>6	
Acid Neutralisation Capacity (mol / kg)	1.7					To be evaluated	To be evaluate
Eluate Analysis		0.4			Limit value	es for compliance le	eaching test
•	2:1	8:1		Cumulative 10:1	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 I/kg (mg/kg		
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l	mg/l		mg/kg	using 65 EN	12457-3 dt L/S 10	i/kg (mg/kg)
Arsenic *	< 0.010	< 0.010		< 0.050	0.5	2	25
Barium *	0.0058	0.029		0.27	20	100	300
Cadmium *	< 0.0005	< 0.0005		< 0.0020	0.04	1	5
Chromium *	< 0.0010	< 0.0010		< 0.0050	0.5	10	70
Copper *	0.0086	0.0067		0.069	2	50	100
Mercury *	< 0.0015	< 0.0015		< 0.010	0.01	0.2	2
Molybdenum *	< 0.0030	< 0.0030		< 0.020	0.5	10	30
Nickel *	0.013	0.0040		0.047	0.4	10	40
Lead *	< 0.0050	< 0.0050		< 0.020	0.5	10	50
Antimony *	< 0.0050	< 0.0050		< 0.020	0.06	0.7	5
Selenium *	< 0.010	< 0.010		< 0.040	0.1	0.5	7
Zinc *	0.014	0.0067		0.074	4	50	200
Chloride *	< 4.0	4.7		45	800	15000	25000
Fluoride	0.15	0.16		1.6	10	150	500
Sulphate *	7.4	5.1		53	1000	20000	50000
TDS*	45	34		350	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.13	< 0.13		< 0.50	1	-	-
poc	8.6	21		200	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1					-	
Sample Mass (kg)	0.80					1	
Dry Matter (%)	86					1	
Moisture (%)	14	1				1	
Stage 1	-	Ì				1	
Volume Eluate L2 (litres)	0.32					1	
Filtered Eluate VE1 (litres)	0.15					<u> </u>	
Results are expressed on a dry weight basis, after correction for mo	cture content when	o annlicable			*= IIVAC accredit	ed (liquid eluate ana	alveie only)
			islation				arysis uniy)
Stated limits are for guidance only and i2 cannot be held responsible	ror any discrepend	aes with current leg	JISIALION		** = MCERTS acci	edited	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park

Fax: 01923 237404

Telephone: 01923 225404

Watford, WD18 8YS

email:reception@i2analytical.com

Waste Acceptance Criteria Analytical	Results							
Report No:		21-72	267					
					Client:	ENZYGOGEO)	
Location		Richm	ond					
		Kichin	ona		Landfill Waste Acceptance Criteria			
Lab Reference (Sample Number)		18564	157		Lanum	Limits	e Criteria	
Sampling Date		28/04/				Stable Non-		
Sample ID Depth (m)			reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill				
Solid Waste Analysis								
TOC (%)**	0.6				3%	5%	6%	
Loss on Ignition (%) **	2.2				1		10%	
BTEX (µg/kg) **	< 10				6000		-	
Sum of PCBs (mg/kg) **	< 0.30				1			
Mineral Oil (mg/kg) #	< 10				500			
Total PAH (WAC-17) (mg/kg)	< 0.85				100			
pH (units)**	7.6					>6		
Acid Neutralisation Capacity (mol / kg)	1.4					To be evaluated	To be evaluated	
Eluate Analysis	2.4	0.1		Consideration 10-1	Limit value	es for compliance le	eaching test	
•	2:1	8:1		Cumulative 10:1		12457-3 at L/S 10		
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l	mg/l		mg/kg		12137 3 40 2/3 10		
Arsenic *	< 0.010	< 0.010		< 0.050	0.5	2	25	
Barium *	0.0075	0.031		0.29	20	100	300	
Cadmium *	< 0.0005	< 0.0005		< 0.0020	0.04	1	5	
Chromium *	< 0.0010	< 0.0010		0.0090	0.5	10	70	
Copper *	0.0047	0.017		0.16	2	50	100	
Mercury *	< 0.0015	< 0.0015		< 0.010	0.01	0.2	2	
Molybdenum *	< 0.0030	< 0.0030		< 0.020	0.5	10	30	
Nickel *	0.0042	0.0044		0.044	0.4	10	40	
Lead *	< 0.0050	< 0.0050		< 0.020	0.5	10	50	
Antimony *	< 0.0050	< 0.0050		< 0.020	0.06	0.7	5	
Selenium *	< 0.010	< 0.010		0.046	0.1	0.5	7	
Zinc *	0.013	0.0128		0.13	4	50	200	
Chloride *	< 4.0	4.2		41	800	15000	25000	
Fluoride	0.27	0.24		2.5	10	150	500	
Sulphate *	4.4	6.1		60	1000	20000	50000	
TDS*	52	39		400	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.13	< 0.13		< 0.50	1	-	-	
DOC	9.1	19		180	500	800	1000	
Leach Test Information								
Stone Content (%)	< 0.1					 		
Sample Mass (kg)	0.80					.		
Dry Matter (%)	87					 		
Moisture (%)	13					 		
Stage 1	0.22					.		
Volume Eluate L2 (litres)	0.32					 		
Filtered Eluate VE1 (litres)	0.14							
						 		
Results are expressed on a dry weight basis, after correction for mo	sture content when	e applicable.	Į		*= UKAS accredit	ed (liquid eluate ana	lysis only)	
. , , ,		cies with current legis				, ,		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Waste Acceptance Criteria Analytica								
Report No:	21-72267							

Telephone: 01923 225404

email:reception@i2analytical.com

Fax: 01923 237404

Sampling Date 28/04/2021 Sample TD Sample TD Wistin Wistin Inert Waste Landfill Lan						Clinata	ENTYCOCEO		
Lab Reference (Sample Number) 1856438						Client:	ENZYGOGEO)	
Lab Neterence (sample Number) 1856-658	Location	Richmond							
Sampling Date 28/04/2021 Sample ID Wi510 Inert Waste Landfill Waste Landfill	Lab Reference (Sample Number)		195	5450		Landfill	Landfill Waste Acceptance Criteria		
Depth (m)	Compling Date								
Depth (m) Dept									
Depth (m) Candill Ca	Sample 1D	W510						Hazardous	
10.0 (16)**		0.40				Landfill	hazardous	Waste Landfill	
Company Comp	•								
STEX (µy/kg) ** < 0.0	` '							6%	
Source of PCBs (mg/kg) ** < 0.30								10%	
All color All	(1.5. 5)								
Total PAH (WAC-17) (mg/kg) 3.71 100									
## (units)** ## Acid Neuralisation Capacity (mol / kg) ## Acid Neuralisa	(5. 5)								
Code Neutralisation Capacity (mol / kg) 7.5									
SER 12457 - 3 preparation utilising end over end leaching by societive 0.11	oH (units)**	8.1					>6		
BS EN 12457 - 3 preparation utilising end over end leaching mg/l mg/l mg/kg using BS EN 12457-3 at L/S 10 l/kg (mg/kg procedure) mg/l mg/l mg/kg using BS EN 12457-3 at L/S 10 l/kg (mg/kg procedure) mg/kg using BS EN 12457-3 at L/S 10 l/kg (mg/kg procedure) mg/kg using BS EN 12457-3 at L/S 10 l/kg (mg/kg procedure) mg/kg using BS EN 12457-3 at L/S 10 l/kg (mg/kg procedure) mg/kg using BS EN 12457-3 at L/S 10 l/kg (mg/kg procedure) mg/kg using BS EN 12457-3 at L/S 10 l/kg (mg/kg procedure) mg/kg using BS EN 12457-3 at L/S 10 l/kg (mg/kg procedure) mg/kg using BS EN 12457-3 at L/S 10 l/kg (mg/kg procedure) mg/kg using BS EN 12457-3 at L/S 10 l/kg (mg/kg procedure) mg/kg using BS EN 12457-3 at L/S 10 l/kg (mg/kg procedure) mg/kg using BS EN 12457-3 at L/S 10 l/kg (mg/kg procedure) mg/kg using BS EN 12457-3 at L/S 10 l/kg (mg/kg procedure) using BS EN 12457-3 at L/S 10 l/kg	Acid Neutralisation Capacity (mol / kg)	7.5					To be evaluated	To be evaluated	
mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Eluate Analysis	2:1	8:1		Cumulative 10:1	Limit value	es for compliance le	eaching test	
Mg/I	RS EN 12457 - 3 preparation utilizing and over and leaching					using BS EN	12457-3 at L/S 10	l/kg (mg/kg)	
Sarium *		mg/l	mg/l		mg/kg				
Sarium *	Arsenic *	< 0.010	< 0.010		< 0.050	0.5	2	25	
Chromium * 0.0072 0.012 0.11 0.5 10 7.20pper * 0.012 0.018 0.17 2 50 1 7.20pper * 0.012 0.018 0.17 2 50 1 7.20pper * 0.0015 0.0015 0.0015 0.010 0.01 0.2 10.20pper * 0.0030 0.0042 0.4 10 0.5 10 0.4 10 0.4 10 0.5 10 0.4 10 0.4 10 0.5 10 0.4 10 0.4 10 0.5 10 0.4 10 0.4 10 0.5 10 0.4 10 0.4 10 0.4 10 0.5 10 0.4 10 0.4 10 0.4 10 0.5 10 0.4 10 0.4 10 0.4 10 0.5 10 0.4 10 0.4 10 0.4 10 0.5 10 0.4 10 0.4 10 0.4 10 0.5 10 0.4 10 0.4 10 0.4 10 0.5 10 0.4 10 0.4 10 0.4 10 0.5 10 0.4 10 0.4 10 0.4 10 0.5 10 0.4 10 0.4 10 0.4 10 0.4 10 0.5 10 0.4 1	Barium *	0.020	0.023			20	100	300	
Descriptes Copper	Cadmium *	< 0.0005	< 0.0005		0.0032	0.04	1	5	
Mercury *							10	70	
Mercury * < 0.0015								100	
Molybdenum * < 0.0030								2	
Nickel * 0.0031 0.0043 0.042 0.4 10 4 10 4 10 4 10 4 10 4 10 4 10 4								30	
Lead * < 0.0050 0.026 0.23 0.5 10 1								40	
Antimony * 0.011								50	
Selenium *								5	
200 200								7	
Chloride *								200	
Fluoride 0.54 0.40 4.1 10 150 5 Sulphate * 9.3 23 220 1000 20000 50 FDS* 94 80 820 4000 60000 100 Phenol Index (Monohydric Phenols) * < 0.13 < 0.13								25000	
Sulphate * 9.3 23 220 1000 20000 50 TDS* 94 80 820 4000 60000 100 Phenol Index (Monohydric Phenols) * < 0.13 < 0.13 < 0.50 1 - DOC 8.0 13 120 500 800 10 Leach Test Information Stone Content (%) < 0.1 Sample Mass (kg) 1.2 Dry Matter (%) 9.3 Stage 1 Volume Eluate L2 (litres) 0.33								500	
Present 94 80 820 4000 60000 100000 10000000000000000								50000	
Phenol Index (Monohydric Phenols) *								100000	
Stage 1 Solution	-							-	
Leach Test Information								1000	
Stone Content (%) < 0.1		6.0	13		120	300	800	1000	
Stone Content (%) < 0.1	Leach Test Information								
Sample Mass (kg) 1.2 Dry Matter (%) 91 Moisture (%) 9.3 Stage 1 9.3 Volume Eluate L2 (litres) 0.33									
Ory Matter (%) 91 Moisture (%) 9.3 Stage 1 Volume Eluate L2 (litres) 0.33	` '								
Moisture (%) 9.3 Stage 1 Volume Eluate L2 (litres) 0.33									
Stage 1			ļ	ļ			ļ		
/olume Eluate L2 (litres) 0.33		9.3					ļ		
,	-								
Filtered Eluate VE1 (litres) 0.20	` ,								
	Filtered Eluate VE1 (litres)	0.20							
tesults are expressed on a dry weight basis, after correction for moisture content where applicable. *= UKAS accredited (liquid eluate analysis only				l	l	* LIKAC ""	/::- ' '		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Waste Acceptance Criteria Analytical Results

Report No:

21-72267

Client: ENZYGOGEO

Telephone: 01923 225404

email:reception@i2analytical.com

Fax: 01923 237404

Location		Rich	mond				
Lab Reference (Sample Number)	·			<u> </u>	Landfill	Waste Acceptano Limits	e Criteria
Lab Reference (Sample Number)			6459				
Sampling Date	28/04/2021					Stable Non-	
Sample ID Depth (m)			40		Inert Waste Landfill	reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis							
TOC (%)**	0.9				3%	5%	6%
Loss on Ignition (%) **	3.0						10%
BTEX (µg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.30				1		
Mineral Oil (mg/kg) #	< 10				500		
Total PAH (WAC-17) (mg/kg)	10.4				100		
pH (units)**	7.4					>6	
Acid Neutralisation Capacity (mol / kg)	1.1					To be evaluated	To be evaluated
Eluate Analysis	2:1	8:1		Cumulative 10:1	Limit value	es for compliance le	eaching test
(BS EN 12457 - 3 preparation utilising end over end leaching	mg/l	mg/l		mg/kg	using BS EN	12457-3 at L/S 10	l/kg (mg/kg)
procedure)							
Arsenic *	< 0.010	< 0.010	ļ	< 0.050	0.5	2	25
Barium *	0.017	0.019		0.18	20	100	300
Cadmium *	< 0.0005	< 0.0005		0.0025	0.04	1	5
Chromium *	< 0.0010	< 0.0010		0.0099	0.5	10	70
Copper *	0.021	0.016		0.16	2	50	100
Mercury *	< 0.0015	< 0.0015		< 0.010	0.01	0.2	2
Molybdenum *	< 0.0030	< 0.0030		< 0.020	0.5	10	30
Nickel *	0.0092	0.0046		0.051	0.4	10	40
Lead *	< 0.0050	0.0072		0.070	0.5	10	50
Antimony *	0.024	0.0058		0.075	0.06	0.7	5
Selenium *	< 0.010	< 0.010		< 0.040	0.1	0.5	7
Zinc *	0.0099	0.0230		0.22	4	50	200
Chloride *	< 4.0	< 4.0		33	800	15000	25000
Fluoride	0.58	0.45		4.6	10	150	500
Sulphate *	5.3	8.5		82	1000	20000	50000
TDS*	95	72		740	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.13	< 0.13		< 0.50	1	-	-
DOC	13	17		170	500	800	1000
Leach Test Information							
				_	_		
Stone Content (%)	< 0.1		-	-	-	1	
Sample Mass (kg)	1.0			-			
Dry Matter (%)	94		 	-		1	
Moisture (%)	6.1		 	 	-	1	
Stage 1				 		ļ	
Volume Eluate L2 (litres)	0.34		1	1	-	1	
Filtered Eluate VE1 (litres)	0.16					1	
Results are expressed on a dry weight basis, after correction for moi	sture content when	e applicable.	1	<u> </u>	*= UKAS accredit	ed (liquid eluate ana	lysis only)
Stated limits are for guidance only and i2 cannot be held responsible			islation				-, 0,
Julius minus are for guidance only drid iz callifor be field responsible	. ror arry discrepend	aco with current leg	iaiutiUii		** = MCERTS accr	reaitea	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1856455	WS1	None Supplied	0.4	Brown sandy loam with gravel and vegetation.
1856456	WS6	None Supplied	1	Brown clay and sand.
1856457	WS8	None Supplied	1	Brown clay.
1856458	WS10	None Supplied	0.4	Brown loam and clay with gravel and brick.
1856459	WS18	None Supplied	0.4	Brown sandy clay with gravel and vegetation.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Preparation WAC leachate		In-house method	L043-PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	MCERTS
Chloride in WAC leachate (BS EN 12457-3 Prep)	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride in WAC leachate (BS EN 12457-3 Prep)	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L033-PL	W	ISO 17025
Phenol Index in WAC leachate (BS EN 12457-3 Prep)	Determination of monohydric phenols in leachate by continuous flow analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Sulphate in WAC leachate (BS EN 12457-3 Prep)	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
TDS in WAC leachate (BS EN 12457-3 Prep)	Determination of total dissolved solids in leachate by electrometric measurement.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L031-PL	W	NONE
DOC in WAC leachate (BS EN 12457-3 Prep)	Determination of dissolved organic carbon in leachate by TOC/DOC NDIR analyser.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L037-PL	w	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046-PL	w	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil in Soil C10 - C40	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method based on USEPA 8270	L076-PL	D	NONE
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L023-PL	D	MCERTS
Metals in WAC leachate (BS EN 12457-3 Prep)	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
PCB's by GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX (Sum of BTEX compounds) in soil	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Steve Rhodes

Enzygo Geoenvironmental Ltd The Byre Woodend Lane Cromhall Gloucestershire GL12 8AA

e: steve.rhodes@enzygo.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-18748

Project / Site name: Richmond Samples received on: 26/10/2021

Your job number: CRM 1265 087 Samples instructed on/ 26/10/2021

Analysis started on:

Your order number: Analysis completed by: 02/11/2021

Report Issue Number: 1 **Report issued on:** 02/11/2021

Samples Analysed: 6 soil samples

Signed: Karoline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number		2060566	2060567	2060568	2060569	2060570						
Sample Reference		WS101	WS102	WS103	WS104	WS105						
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied							
Depth (m)	0.30-0.50	0.30-0.40	0.30-0.45	0.30-0.50	0.35-0.45							
Date Sampled	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021							
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status									
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Moisture Content	%	0.01	NONE	12	15	16	10	6.6				
Total mass of sample received	kg	0.001	NONE	1.0	1.0	1.0	1.0	1.0				
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected				
General Inorganics	General Inormanics											
pH - Automated	pH Units	N/A	MCERTS	10.3	9.8	8.9	10.8	11.1				
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.9	1.1	1.7	1.2	1.5				
	· · · · ·			0.5	1.1	1./	1.2	1.5				
Total Phenois												
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Speciated PAHs												
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	0.33	< 0.05	0.28	0.37				
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Fluoranthene	mg/kg	0.05	MCERTS	0.28	0.48	< 0.05	0.59	0.50				
Pyrene	mg/kg	0.05	MCERTS	0.30	0.57	< 0.05	0.50	0.49				
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.28	0.66	< 0.05	0.43	0.37				
Chrysene	mg/kg	0.05	MCERTS	0.20	0.49	< 0.05	0.39	0.33				
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	1.1	< 0.05	0.43	0.29				
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.74	< 0.05	0.26	0.24				
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	1.3	< 0.05	0.34	0.30				
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.72	< 0.05	0.27	< 0.05				
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.91	< 0.05	0.33	< 0.05				
Total PAH												
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	1.06	7.35	< 0.80	3.82	2.89				
Heavy Metals / Metalloids			I		1							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	19	18	30	83	23				
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	0.7	1.7	14	2.5				
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2				
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0				
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	37	25	35	64	32				
Copper (aqua regia extractable)	mg/kg	1	MCERTS	470	28	79	340	180				
Lead (aqua regia extractable)	mg/kg	1	MCERTS	180	1400	130	510	320				
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	1.1	< 0.3	0.6	< 0.3				
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	35	17	44	34	30				
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	470	230	110	340	260				

Lab Sample Number	2060566	2060567	2060568	2060569	2060570			
Sample Reference		WS101	WS102	WS103	WS104	WS105		
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		0.30-0.50	0.30-0.40	0.30-0.45	0.30-0.50	0.35-0.45		
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021		
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6 mg/kg 0.001 MCERTS				< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	5.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	68	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	82	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	36	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	17	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	190	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	210	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	13	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	58	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	30	50	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	27	38	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	36	120	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	63	160	< 10	< 10
TPH (>C5 - C7)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (>C7 - C8)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	5.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	82	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	6.2	140	< 1.0	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	30	86	< 1.0	< 1.0
TPH (C35 - C44)	mg/kg	10	NONE	< 10	27	55	< 10	< 10
TPH Total C5 - C44	mg/kg	10	NONE	< 10	63	370	< 10	< 10

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Lab Sample Number				2060571
Sample Reference	WS106			
Sample Number				None Supplied
Depth (m)	0.30-0.40			
Date Sampled	25/10/2021			
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	9.9
Total mass of sample received	kg	0.001	NONE	1.0
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected
General Inorganics pH - Automated Total Organic Carbon (TOC)	pH Units	N/A 0.1	MCERTS MCERTS	10.3
Total Phenois Total Phenois (monohydric)	mg/kg	1	MCERTS	< 1.0
Speciated PAHs				
Naphthalene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.33
Pyrene	mg/kg	0.05	MCERTS	0.35
, Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.21
Chrysene	mg/kg	0.05	MCERTS	0.21
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05
Total PAH	. 1		-270	
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	1.10
Heavy Metals / Metalloids	mg/kg	1	MCERTS	0.4
Arsenic (aqua regia extractable) Boron (water soluble)	mg/kg mg/kg	0.2	MCERTS	8.4 3.1
Boron (water soluble) Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	3.1 < 0.2
Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg	4	MCERTS	< 0.2 < 4.0
Chromium (nexavalent) Chromium (aqua regia extractable)	mg/kg	1	MCERTS	< 4.0 25
Copper (aqua regia extractable) Copper (aqua regia extractable)	mg/kg	1	MCERTS	17
Lead (aqua regia extractable)	mg/kg	1	MCERTS	45
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	17
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Jaiottan: (====:-3:= =:::-,	mallea		MCEDIC	

49

Zinc (aqua regia extractable)

Lab Sample Number 2060571							
Sample Reference	WS106						
Sample Number	None Supplied						
Depth (m)	0.30-0.40						
Date Sampled	25/10/2021						
Time Taken	None Supplied						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001			
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001			
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001			
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0			
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0			
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0			
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	13			
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	23			
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	13			
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	36			
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001			
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001			
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001			
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0			
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0			
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10			
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	32			
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	62			
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	35			
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	96			
TPH (>C5 - C7)	mg/kg	1	MCERTS	< 1.0			
TPH (>C7 - C8)	mg/kg	1	MCERTS	< 1.0			
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1			
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0			
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0			
TPH (C16 - C21)	mg/kg	1	MCERTS	2.5			
TPH (C21 - C35)	mg/kg	1	MCERTS	45			
TPH (C35 - C44)	mg/kg	10	NONE	85			
TPH Total C5 - C44	mg/kg	10	NONE	130			

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2060566	WS101	None Supplied	0.30-0.50	Grey clay and sand with gravel.
2060567	WS102	None Supplied	0.30-0.40	Brown clay and sand with rubble.
2060568	WS103	None Supplied	0.30-0.45	Brown clay and sand with rubble.
2060569	WS104	None Supplied	0.30-0.50	Brown clay and sand with rubble.
2060570	WS105	None Supplied	0.35-0.45	Brown sand with rubble.
2060571	WS106	None Supplied	0.30-0.40	Brown sand with gravel and rubble.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

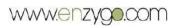
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL		
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodiun hydroxide followed by distillation followed by colorimetry.		L080-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.


Human Health Assessment Reference Values

	Units			GAC Valu	e Residen	tial	
Determinant		Wit	h Plant U		1	out Plant	Uptake
Arsenic	mg/kg		37			40	
Cadmium	mg/kg		11			85	
Chromium	mg/kg		910		910		
Chromium VI	mg/kg		6			6	
Lead	mg/kg		200			310	
Mercury	mg/kg		40			56	
Nickel	mg/kg		180			180	
Selenium	mg/kg		250			430	
Copper	mg/kg		2400			7100	
Zinc	mg/kg		3700			40000	
Cyanide	mg/kg		791			800	
		1	2.5	6	1	2.5	6
SOM	%						
Phenol	mg/kg	2.3	200 5.6	380 13	2.3	690 5.6	1200 13
Napthalene	mg/kg	170	420	920	2.3	4600	6000
Acenaphtylene	mg/kg	210	510	1100	3000	4700	6000
Acenaphthene	mg/kg	_	400		2800		4500
Flourene	mg/kg	170		860		3800	
Phenanthrene	mg/kg	95	220	440	1300	1500	1500
Anthracene	mg/kg	2400	5400	11000	31000	35000	37000
Fluoranthene	mg/kg	280	560	890	1500	1600	1600
Pyrene	mg/kg	620	1200	2000	3700	3800	3800
Benzo(a)Anthracene	mg/kg	7.2	11	13	11	14	15
Chrysene	mg/kg	15	22	27	30	31	32
Benzo(b)Flouranthene	mg/kg	2.6	3.3	3.7	3.9	4.0	4.0
Benzo(k)Flouranthene	mg/kg	77	93	100	110	110	110
Benzo(a)Pyrene	mg/kg	2.2	2.7	3.0	3.2	3.2	3.2
Indeno(123-cd)Pyrene	mg/kg	27	36	41	45	46	46
Dibenzo(a,h)Anthracene	mg/kg	0.24	0.28	0.3	0.31	0.32	0.32
Benzo(ghi)Perylene	mg/kg	320	340	350	360	360	360
TPH C₅-C ₆ Aliphatic	mg/kg	42	78	160	42	78	160
TPH C ₆ -C ₈ Aliphatic	mg/kg	100	230	530	100	230	530
TPH C ₈ -C ₁₀ Aliphatic	mg/kg	27	65	150	27	65	150
TPH C ₁₀ -C ₁₂ Aliphatic	mg/kg	130	330	760	130	330	770
TPH C ₁₂ -C ₁₆ Aliphatic	mg/kg	1100	2400	4300	1100	2400	4400
TPH C ₁₆ -C ₃₅ Aliphatic	mg/kg	65000	92000	110000	65000	92000	110000
TPH C ₃₅ -C ₄₄ Aliphatic	mg/kg	65000	92000	110000	65000	92000	110000
11 11 C ₃₅ C ₄₄ / III priodic	1116/116	03000	32000	110000	03000	32000	110000
TPH C ₅ -C ₇ Aromatic	mg/kg	70	140	300	370	690	1400
TPH C ₇ -C ₈ Aromatic	mg/kg	130	290	660	860	1800	3900
TPH C ₈ -C ₁₀ Aromatic	mg/kg	34	83	190	47	110	270
TPH C ₁₀ -C ₁₂ Aromatic	mg/kg	74	180	380	250	590	1200
TPH C ₁₂ -C ₁₆ Aromatic	mg/kg	140	330	660	1800	2300	2500
TPH C ₁₆ -C ₂₁ Aromatic	mg/kg	260	540	930	1900	1900	1900
TPH C ₂₁ -C ₃₅ Aromatic	mg/kg	1100	1500	1700	1900	1900	1900
TPH C ₃₅ -C ₄₄ Aromatic	mg/kg	1100	1500	1700	1900	1900	1900
		0.007	0.47	0.27	0.30	0.70	4.4
Benzene	mg/kg	0.087	0.17	0.37	0.38	0.70	1.4
Toluene	mg/kg	130	290	660	880	1900	3900
Ethylebenzene	mg/kg	47	110	260	83	190	440
Xylene	mg/kg	56	130	310	79	180	430

Determine	Units			GA	C Value		
Determinant		Re	sidential	POS		Commerc	ial
Arsenic	mg/kg		79			640	
Cadmium	mg/kg		120			190	
Chromium	mg/kg		1500			8600	
Chromium VI	mg/kg		7.7			33	
Lead	mg/kg		630			2330	
Mercury	mg/kg		120			1100	
Nickel	mg/kg		230			980	
Selenium	mg/kg		1100			12000	
Copper	mg/kg		12000			68000	
Zinc	mg/kg		81000			730000	
Cyanide	mg/kg		N/A			16200	
							_
SOM	%	1	2.5	6	1	2.5	6
Phenol	mg/kg	440	690	1300	440	690	1300
Napthalene	mg/kg	4900	4900	4900	190	460	1100
Acenaphtylene	mg/kg	15000	15000	15000	83000	97000	100000
Acenaphthene	mg/kg	15000	15000	15000	84000	97000	100000
Flourene	mg/kg	9900	9900	9900	63000	68000	71000
Phenanthrene	mg/kg	3100	3100	3100	22000	22000	23000
Anthracene	mg/kg	74000	74000	74000	520000	540000	540000
Fluoranthene	mg/kg	3100	3100	3100	23000	23000	23000
Pyrene	mg/kg	7400	7400	7400	54000	54000	54000
Benzo(a)Anthracene	mg/kg	29	29	29	170	170	180
Chrysene	mg/kg	57	57	57	350	350	350
Benzo(b)Flouranthene	mg/kg	7.1	7.2	7.2	44	44	45
Benzo(k)Flouranthene	mg/kg	190	190	190	1200	1200	1200
Benzo(a)Pyrene	mg/kg	5.7	5.7	5.7	35	35	36
Indeno(123-cd)Pyrene	mg/kg	82	82	82	500	510	510
Dibenzo(a,h)Anthracene	mg/kg	0.57	0.57	0.58	3.5	3.6	3.6
Benzo(ghi)Perylene	mg/kg	640	640	640	3900	4000	4000
		ı	ı		ı		
TPH C ₅ -C ₆ Aliphatic	mg/kg	570000	590000	600000	3200	5900	12000
TPH C ₆ -C ₈ Aliphatic	mg/kg	600000	610000	620000	7800	17000	40000
TPH C ₈ -C ₁₀ Aliphatic	mg/kg	13000	13000	13000	2000	4800	11000
TPH C ₁₀ -C ₁₂ Aliphatic	mg/kg	13000	13000	13000	9700	23000	47000
TPH C ₁₂ -C ₁₆ Aliphatic	mg/kg	13000	13000	13000	59000	82000	90000
TPH C ₁₆ -C ₃₅ Aliphatic	mg/kg	250000	250000	250000	1600000	1700000	1800000
TPH C ₃₅ -C ₄₄ Aliphatic	mg/kg	250000	250000	250000	1600000	1700000	1800000
TPH C₅-C7 Aromatic	mg/kg	56000	56000	56000	26000	46000	86000
TPH C ₇ -C ₈ Aromatic	mg/kg	56000	56000	56000	56000	110000	180000
TPH C ₈ -C ₁₀ Aromatic	mg/kg	5000	5000	5000	3500	8100	17000
TPH C ₁₀ -C ₁₂ Aromatic	mg/kg	5000	5000	5000	16000	28000	34000
TPH C ₁₂ -C ₁₆ Aromatic	mg/kg	5100	5100	5000	36000	37000	38000
TPH C ₁₆ -C ₂₁ Aromatic	mg/kg	3800	3800	3800	28000	28000	28000
TPH C ₂₁ -C ₃₅ Aromatic	mg/kg	3800	3800	3800	28000	28000	28000
TPH C ₃₅ -C ₄₄ Aromatic	mg/kg	3800	3800	3800	28000	28000	28000
		1	1				
Benzene	mg/kg	72	72	73	27	47	90
Toluene	mg/kg	56000	56000	56000	56000	110000	180000
Ethylebenzene	mg/kg	24000	24000	25000	5700	13000	27000
Xylene	mg/kg	41000	42000	43000	5900	14000	30000

Determinant	Units			GA	C Value		
Determinant			Park POS	5		Allotmen	its
Arsenic	mg/kg		170			43	
Cadmium	mg/kg		532			1.9	
Chromium	mg/kg		33000			18000	
Chromium VI	mg/kg		220			1.8	
Lead	mg/kg		1300			80	
Mercury	mg/kg		240			19	
Nickel	mg/kg		3400			230	
Selenium	mg/kg		1800			88	
Copper	mg/kg		44000			520	
Zinc	mg/kg		170000			620	
Cyanide	mg/kg						
SOM	%	1	2.5	6	1	2.5	6
Phenol	mg/kg	440	690	1300	23	42	83
Napthalene	mg/kg	1200	1900	3000	4.1	10	24
Acenaphtylene	mg/kg	29000	30000	30000	28	69	160
Acenaphthene	mg/kg	29000	30000	30000	34	85	200
Flourene	mg/kg	20000	20000	20000	27	67	160
Phenanthrene	mg/kg	6200	6200	6300	15	38	90
Anthracene	mg/kg	150000	150000	150000	380	950	2200
Fluoranthene	mg/kg	6300	6300	6400	52	130	290
Pyrene	mg/kg	15000	15000	15000	110	270	620
Benzo(a)Anthracene	mg/kg	49	56	62	2.9	6.5	13
Chrysene	mg/kg	93	110	120	4.1	9.4	19
Benzo(b)Flouranthene	mg/kg	13	15	16	0.99	2.1	3.9
Benzo(k)Flouranthene	mg/kg	370	410	440	37	75	130
Benzo(a)Pyrene	mg/kg	11	12	13	0.97	2.0	3.5
Indeno(123-cd)Pyrene	mg/kg	150	170	180	9.5	21	39
Dibenzo(a,h)Anthracene	mg/kg	1.1	1.3	1.4	0.14	0.27	0.43
Benzo(ghi)Perylene	mg/kg	1400	1500	1600	290	470	640
			1		ı		
TPH C ₅ -C ₆ Aliphatic	mg/kg	95000	130000	180000	730	1700	3900
TPH C ₆ -C ₈ Aliphatic	mg/kg	150000	220000	320000	2300	5600	13000
TPH C ₈ -C ₁₀ Aliphatic	mg/kg	14000	18000	21000	320	770	1700
TPH C ₁₀ -C ₁₂ Aliphatic	mg/kg	21000	23000	24000	2200	4400	7300
TPH C ₁₂ -C ₁₆ Aliphatic	mg/kg	25000	25000	26000	11000	13000	13000
TPH C ₁₆ -C ₃₅ Aliphatic	mg/kg	450000	480000	490000	260000	270000	270000
TPH C ₃₅ -C ₄₄ Aliphatic	mg/kg	450000	480000	490000	260000	270000	270000
TPH C ₅ -C ₇ Aromatic	mg/kg	76000	84000	92000	13	27	57
TPH C ₇ -C ₈ Aromatic	mg/kg	87000	95000	100000	22	51	120
TPH C ₈ -C ₁₀ Aromatic	mg/kg	7200	8500	9300	8.6	21	51
TPH C ₁₀ -C ₁₂ Aromatic	mg/kg	9200	9700	10000	13	31	74
TPH C ₁₂ -C ₁₆ Aromatic	mg/kg	10000	10000	10000	23	57	130
TPH C ₁₆ -C ₂₁ Aromatic	mg/kg	7600	7700	7800	46	110	260
TPH C ₂₁ -C ₃₅ Aromatic	mg/kg	7800	7800	7900	370	820	1600
TPH C ₃₅ -C ₄₄ Aromatic	mg/kg	7800	7800	7900	370	820	1600
-33 -44							
Benzene	mg/kg	90	100	110	0.017	0.034	0.075
Toluene	mg/kg	87000	95000	100000	22	51	120
Ethylebenzene	mg/kg	17000	22000	27000	16	39	91
Xylene	mg/kg	17000	23000	31000	28	67	160

Copyright Land Quality Management Ltd reproduced with permission Publication No S4UL3250. All rights reserved

Controlled Waters Assessment Reference Values

Determinant	Unit	EQS Freshwater	Uk DWS	WHO
Arsenic	ug/l	50	10	10
Boron	ug/l	2000	1000	0.3
Cadmium	ug/l	5	5	3
Chromium	ug/l	5 - 250	50	50
Lead	ug/l	4 - 250	25	10
Mercury	ug/l	1	1	1
Selenium	ug/l		10	10
Copper	ug/l	1 - 28	20000	2000
Nickel	ug/l	50 - 200	20	70
Zinc	ug/l	8 - 50	5000	3000
Sulphate	mg/l	400	250	250
PAH	ug/l		0.1	
Anthracene	ug/l	0.02		
Napthalene	ug/l	10		
Benzo(a)Pyrene	ug/l	0.03		0.01
Fluoranthene	ug/l	0.02		
Benzene	ug/l	30	1	10
Toluene	ug/l	50		
Ethylebenzene	ug/l	20		
Xylene	ug/l	30		
TPH	ug/l			
C ₅ – C ₆ Aliphatic	ug/l			15000
C ₆ – C ₈ Aliphatic	ug/l			15000
C ₈ – C ₁₀ Aliphatic	ug/l			300
C ₁₀ – C ₁₂ Aliphatic	ug/l			300
C ₁₂ – C ₁₆ Aliphatic	ug/l			300
C ₁₆ – C ₃₆ Aliphatic	ug/l			N/A
C ₆ – C ₇ Aromatic	ug/l			10
C ₇ – C ₈ Aromatic	ug/l	50		10
C ₈ – C ₁₀ Aromatic	ug/l	20		300
C ₁₀ – C ₁₂ Aromatic	ug/l			1000
C ₁₂ – C ₁₆ Aromatic	ug/l			1000
C ₁₆ – C ₂₁ Aromatic	ug/l			90
C ₂₁ – C ₃₅ Aromatic	ug/l			90

APPENDIX D - GEOTECHNICAL TESTING

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Enzygo Geoenvironmental Ltd

Client Address: The Byre, Woodend Lane,

Cromhall, Gloucestershire,

GL12 8AA

Contact: Steve Rhodes
Site Address: Richmond

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: CRM 1027 087 Job Number: 21-72520 Date Sampled: 28/04/2021 Date Received: 27/04/2021 Date Tested: 19/05/2021

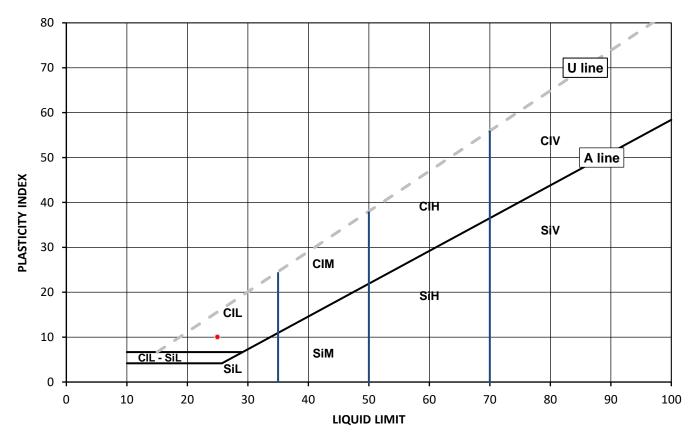
Sampled By: Client

Depth Top [m]: 1.00

Sample Type: D

Depth Base [m]: Not Given

Took Dooulton


Test Results:

Laboratory Reference: 1857736
Hole No.: WS2
Sample Reference: Not Given

Soil Description: Brown clayey SAND with fragments of rootlets

Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
16	25	15	10	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 Low CI Clay L Si Silt Medium 35 to 50 M Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Szczepan Bielatowicz

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Enzygo Geoenvironmental Ltd

> The Byre, Woodend Lane, Cromhall, Gloucestershire,

GL12 8AA

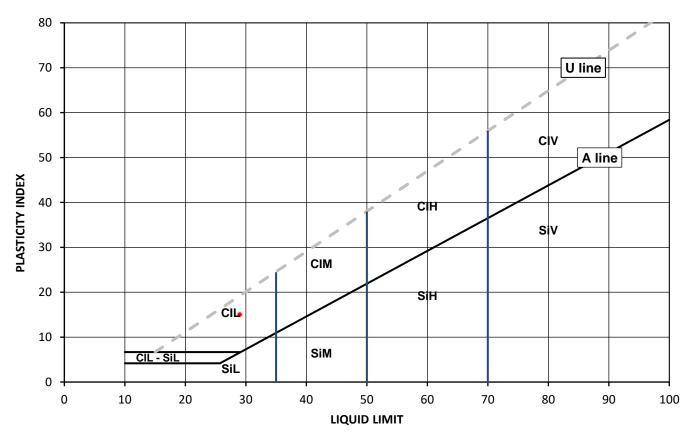
Steve Rhodes Contact: Site Address: Richmond

Client Reference: CRM 1027 087 Job Number: 21-72520 Date Sampled: 28/04/2021 Date Received: 27/04/2021 Date Tested: 19/05/2021

Sampled By: Client

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:


Client Address:

Laboratory Reference: 1857737 Depth Top [m]: 2.00 WS2 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Soil Description: Yellowish brown very gravelly very sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
8.2	29	14	15	29

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 Low CI Clay L Si Silt Medium 35 to 50 M Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Szczepan Bielatowicz

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Enzygo Geoenvironmental Ltd Client Address:

The Byre, Woodend Lane, Cromhall, Gloucestershire,

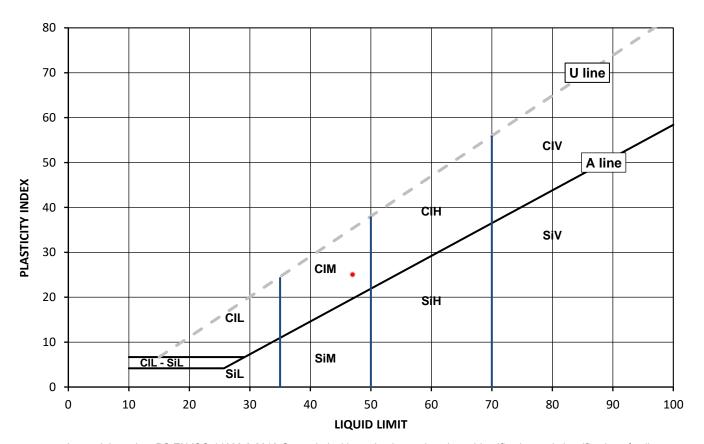
GL12 8AA

Steve Rhodes Contact: Site Address: Richmond

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: CRM 1027 087 Job Number: 21-72520 Date Sampled: 28/04/2021 Date Received: 27/04/2021 Date Tested: 19/05/2021

Sampled By: Client


Test Results:

Laboratory Reference: 1857738 Depth Top [m]: 1.00 WS4 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Soil Description: Brown slightly sandy CLAY

Tested in natural condition Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
22	47	22	25	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 Low CI Clay L Si Silt Medium 35 to 50 M Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Szczepan Bielatowicz

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits Nort

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Enzygo Geoenvironmental Ltd

Client Address: The Byre, Woodend Lane,

Cromhall, Gloucestershire,

GL12 8AA

Contact: Steve Rhodes
Site Address: Richmond

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

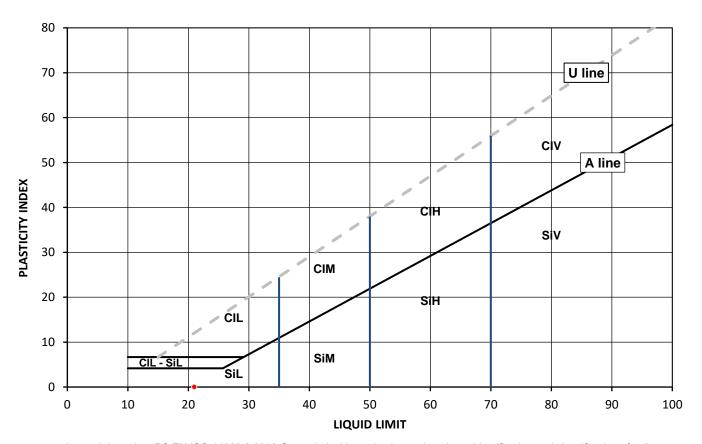
Client Reference: CRM 1027 087 Job Number: 21-72520 Date Sampled: 28/04/2021 Date Received: 27/04/2021 Date Tested: 19/05/2021

Sampled By: Client

Depth Top [m]: 2.00

Sample Type: D

Depth Base [m]: Not Given


Test Results:

Laboratory Reference: 1857739
Hole No.: WS4
Sample Reference: Not Given

Soil Description: Yellowish brown slightly gravelly slightly clayey SAND

Sample Preparation: Tested after >425um removed by hand

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
13	21	NP	NP	68

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit below 35 Low CI Clay L Si Silt Medium 35 to 50 M Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks: NP - non plastic

Signed:

Szczepan Bielatowicz

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Enzygo Geoenvironmental Ltd

Client Address: The Byre, Woodend Lane,

Cromhall, Gloucestershire,

GL12 8AA

Steve Rhodes Contact: Site Address: Richmond

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

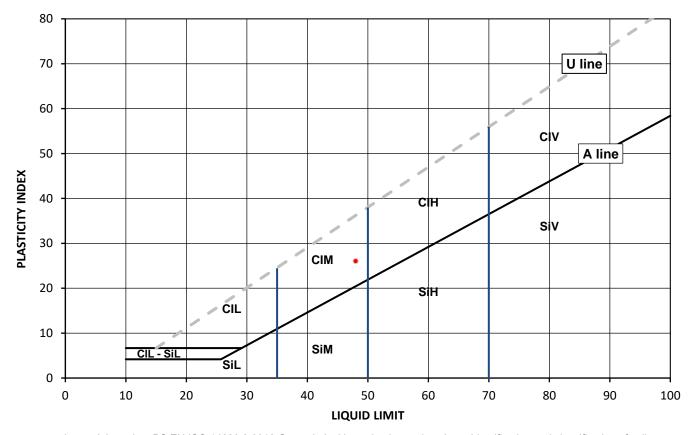
Client Reference: CRM 1027 087 Job Number: 21-72520

Sampled By: Client

Test Results:

Laboratory Reference: 1857740 WS7 Hole No.:

Sample Reference: Not Given Soil Description: Dark brown slightly gravelly slightly sandy CLAY with fragments of flintstone


Tested after >425um removed by hand Sample Preparation:

Date Sampled: 28/04/2021 Date Received: 27/04/2021 Date Tested: 19/05/2021

Depth Top [m]: 1.00 Depth Base [m]: Not Given

Sample Type: D

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
22	48	22	26	

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 M Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Szczepan Bielatowicz

Date Reported: 24/05/2021

PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Enzygo Geoenvironmental Ltd

Client Address: The Byre, Woodend Lane, Cromhall, Gloucestershire,

GL12 8AA

Contact: Steve Rhodes
Site Address: Richmond

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

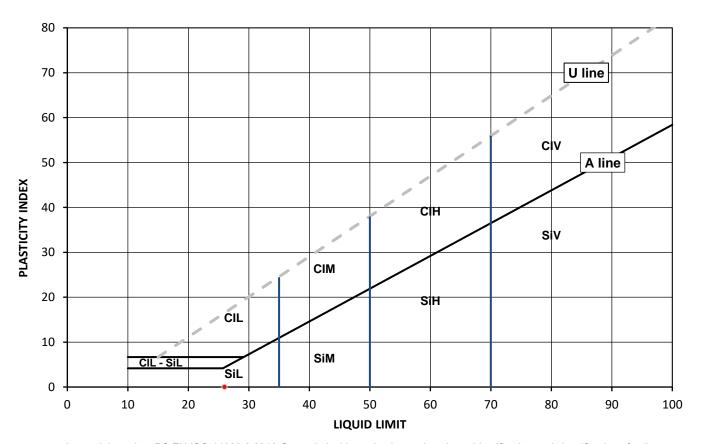
Client Reference: CRM 1027 087 Job Number: 21-72520 Date Sampled: 28/04/2021 Date Received: 27/04/2021 Date Tested: 19/05/2021

Sampled By: Client

Depth Top [m]: 2.00

Sample Type: D

Depth Base [m]: Not Given


Test Results:

Laboratory Reference: 1857741
Hole No.: WS7
Sample Reference: Not Given

Soil Description: Light brown slightly clayey SAND

Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
6.6	26	NP	NP	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit below 35 Low CI Clay L Si Silt Medium 35 to 50 M Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks: NP - non plastic

Signed:

Szczepan Bielatowicz

Date Reported: 24/05/2021

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Enzygo Geoenvironmental Ltd

Client Address: The Byre, Woodend Lane, Cromhall, Gloucestershire,

GL12 8AA

Contact: Steve Rhodes
Site Address: Richmond

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: CRM 1027 087 Job Number: 21-72520 Date Sampled: 28/04/2021 Date Received: 27/04/2021 Date Tested: 19/05/2021

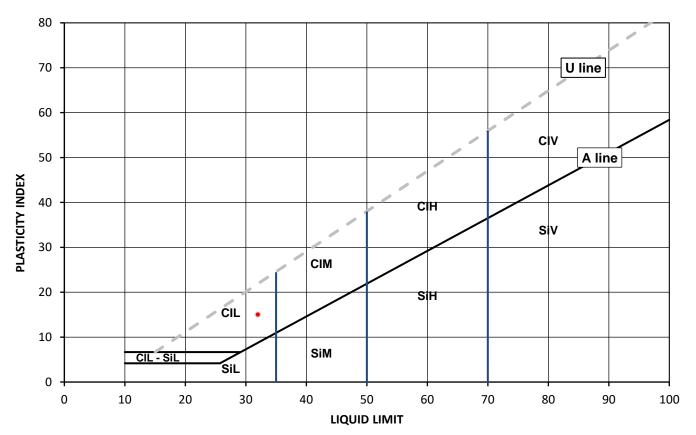
Sampled By: Client

Depth Top [m]: 1.00

Sample Type: D

Depth Base [m]: Not Given

Total December


Test Results:

Laboratory Reference: 1857742 Hole No.: WS9 Sample Reference: Not Given

Soil Description: Brown very sandy CLAY

Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
18	32	17	15	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 Low CI Clay L Si Silt Medium 35 to 50 M Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Szczepan Bielatowicz

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Liquid and Plastic Limits

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5 Client: Enzygo Geoenvironmental Ltd

Client Address: The Byre, Woodend Lane,

Cromhall, Gloucestershire,

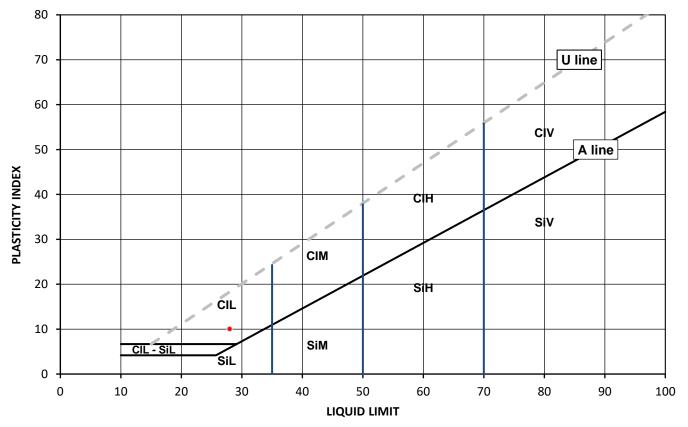
GL12 8AA

Steve Rhodes Contact: Site Address: Richmond

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: CRM 1027 087 Job Number: 21-72520 Date Sampled: 28/04/2021 Date Received: 27/04/2021 Date Tested: 19/05/2021

Sampled By: Client


Test Results:

Laboratory Reference: 1857743 Depth Top [m]: 2.00 WS9 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Soil Description: Light brown slightly gravelly very sandy CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
24	28	18	10	99

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 Low CI Clay L Si Silt Medium 35 to 50 M Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed:

Szczepan Bielatowicz

PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

GF 232.10

Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Liquid and Plastic Limits

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Plastic Limit

[Wp]%

21

Enzygo Geoenvironmental Ltd Client:

Client Address: The Byre, Woodend Lane,

Cromhall, Gloucestershire,

GL12 8AA

Steve Rhodes Contact: Site Address: Richmond

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Liquid Limit

[WL]%

41

Client Reference: CRM 1027 087 Job Number: 21-72520 Date Sampled: 28/04/2021 Date Received: 27/04/2021 Date Tested: 19/05/2021

i2 Analytical Ltd

Sampled By: Client

Depth Top [m]: 1.00

Sample Type: D

[lp] %

20

Depth Base [m]: Not Given

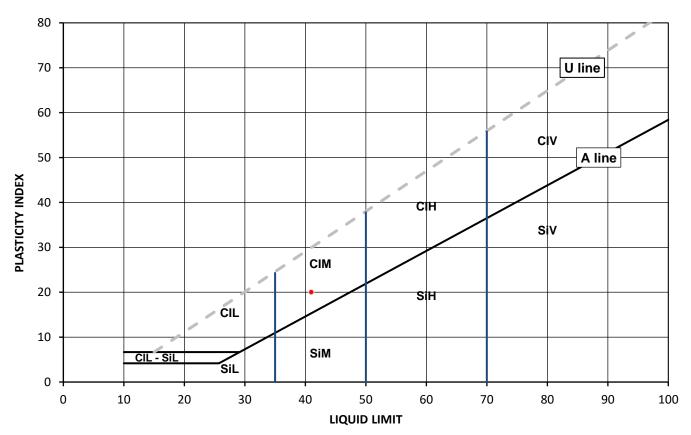
Test Results:

Laboratory Reference: 1857744 WS11 Hole No.: Sample Reference: Not Given

As Received Moisture

Content [W]%

19


Soil Description: Light brown sandy CLAY

Tested in natural condition Sample Preparation:

Plasticity Index	% Passing 425µm

BS Test Sieve

100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Low below 35 CI Clay L Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed:

Szczepan Bielatowicz

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Enzygo Geoenvironmental Ltd

ess: The Byre, Woodend Lane, Cromhall, Gloucestershire,

GL12 8AA

Contact: Steve Rhodes
Site Address: Richmond

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

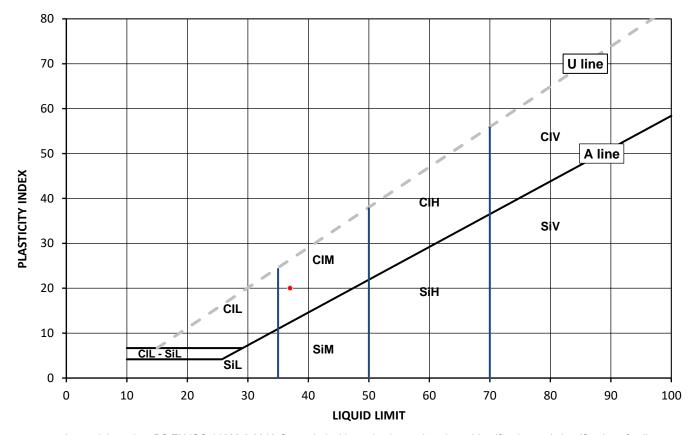
Client Reference: CRM 1027 087 Job Number: 21-72520 Date Sampled: 28/04/2021 Date Received: 27/04/2021 Date Tested: 19/05/2021

Test Results:

Client Address:

Laboratory Reference: 1857745
Hole No.: WS13
Sample Reference: Not Given

Soil Description: Dark brown sandy CLAY


Sample Preparation: Tested in natural condition

Sampled By:	
Depth Top [m]:	1.00

Depth Base [m]: Not Given

Sample Type: D

As Received M	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W	[WL] %	[Wp] %	[lp] %	BS Test Sieve
22	37	17	20	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 M Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Szczepan Bielatowicz

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Liquid and Plastic Limits

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Enzygo Geoenvironmental Ltd

Client Address: The Byre, Woodend Lane,

Cromhall, Gloucestershire,

GL12 8AA

Steve Rhodes Contact: Site Address: Richmond

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

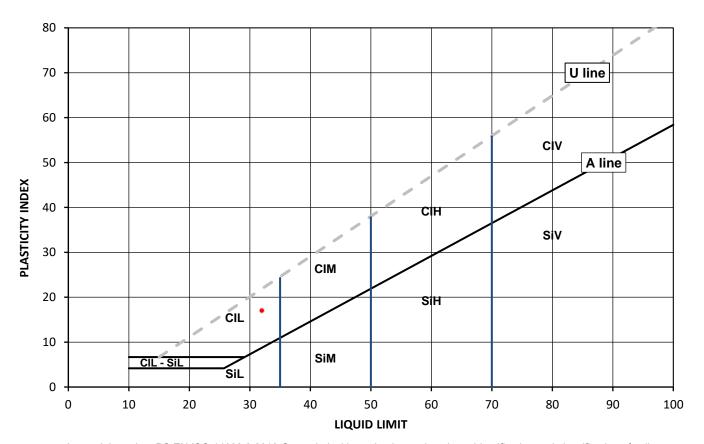
Client Reference: CRM 1027 087 Job Number: 21-72520 Date Sampled: 28/04/2021 Date Received: 27/04/2021 Date Tested: 19/05/2021

Sampled By: Client

Depth Top [m]: 1.00

Sample Type: D

Depth Base [m]: Not Given


Test Results:

Laboratory Reference: 1857746 WS5 Hole No.: Sample Reference: Not Given

Soil Description: Brown very sandy CLAY

Tested in natural condition Sample Preparation:

As Received Moisture Content [W] %	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm BS Test Sieve
17	32	15	17	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 M Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Remarks:

Signed:

Szczepan Bielatowicz

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Enzygo Geoenvironmental Ltd

Client Address: The Byre, Woodend Lane,

Cromhall, Gloucestershire,

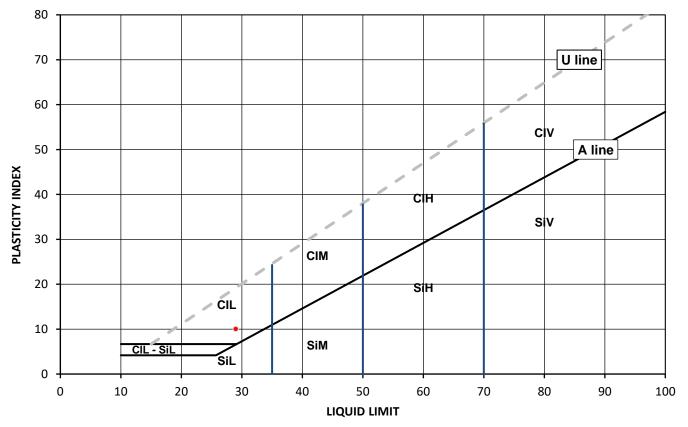
GL12 8AA

Steve Rhodes Contact: Site Address: Richmond

Client Reference: CRM 1027 087 Job Number: 21-72520 Date Sampled: 28/04/2021 Date Received: 27/04/2021 Date Tested: 19/05/2021

Sampled By: Client

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 1857747 Depth Top [m]: 2.00 WS5 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Soil Description: Yellowish brown very sandy CLAY

Tested in natural condition Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
23	29	19	10	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 Low CI Clay L Si Silt Medium 35 to 50 M Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Szczepan Bielatowicz

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 24/05/2021 GF 232.10

Summary of Classification Test Results

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041 Client:

Contact:

Client Address:

Enzygo Geoenvironmental Ltd

The Byre, Woodend Lane, Cromhall, Gloucestershire,

GL12 8AA

Steve Rhodes

Site Address: Richmond

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Tested in Accordance with:

Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

Client Reference: CRM 1027 087

Job Number: 21-72520

Date Sampled: 28/04/2021 Date Received: 27/04/2021

Date Tested: 19/05/2021

Sampled By: Client

Test results

			Sample	•				Content /]	tent		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Moisture Cor	Water Cont [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
1857744	WS11	Not Given	1.00	Not Given	D	Light brown sandy CLAY	Atterberg 1 Point	19		100	41	21	20					
1857745	WS13	Not Given	1.00	Not Given	D	Dark brown sandy CLAY	Atterberg 1 Point	22		100	37	17	20					
1857736	WS2	Not Given	1.00	Not Given	D	Brown clayey SAND with fragments of rootlets	Atterberg 1 Point	16		100	25	15	10					
1857737	WS2	Not Given	2.00	Not Given	D	Yellowish brown very gravelly very sandy CLAY	Atterberg 1 Point	8.2		29	29	14	15					
1857738	WS4	Not Given	1.00	Not Given	D	Brown slightly sandy CLAY	Atterberg 1 Point	22		100	47	22	25					
1857739	WS4	Not Given	2.00	Not Given	D	Yellowish brown slightly gravelly slightly clayey SAND	Atterberg 1 Point	13		68	21	NP	NP					
1857746	WS5	Not Given	1.00	Not Given	D	Brown very sandy CLAY	Atterberg 1 Point	17		100	32	15	17					
1857747	WS5	Not Given	2.00	Not Given	D	Yellowish brown very sandy CLAY	Atterberg 1 Point	23		100	29	19	10					
1857740	WS7	Not Given	1.00	Not Given	D	Dark brown slightly gravelly slightly sandy CLAY with fragments of flintstone	Atterberg 1 Point	22		76	48	22	26					
1857741	WS7	Not Given	2.00	Not Given	D	Light brown slightly clayey SAND	Atterberg 1 Point	6.6		100	26	NP	NP					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Client Address:

Summary of Classification Test Results

Tested in Accordance with:

Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN

17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test),

Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

Client: Enzygo Geoenvironmental Ltd

> The Byre, Woodend Lane, Cromhall, Gloucestershire,

> > GL12 8AA

Steve Rhodes Contact:

Site Address: Richmond

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: CRM 1027 087

Job Number: 21-72520 Date Sampled: 28/04/2021

Date Received: 27/04/2021 Date Tested: 19/05/2021

Sampled By: Client

Test results

			Sample	e				ntent	tent		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Moisture Content [W]	Water Content [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
1857742	WS9	Not Given	m 1.00	Not	D	Brown very sandy CLAY	Atterberg 1 Point	% 18	%	100	% 32	% 17	% 15	Mg/m3	Mg/m3	Mg/m3	%	
1857743	WS9	Not Given	2.00	Given Not Given	D	Light brown slightly gravelly very sandy CLAY	Atterberg 1 Point	24		99	28	18	10					
				Given														

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

> GF 234.12 Page 1 of 1 Date Reported: 24/05/2021

Steve Rhodes

Enzygo Geoenvironmental Ltd The Byre Woodend Lane Cromhall Gloucestershire GL12 8AA

e: steve.rhodes@enzygo.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-72525

Project / Site name: Richmond Samples received on: 27/04/2021

Your job number: CRM 1027 087 Samples instructed on/ 30/04/2021

Analysis started on:

Your order number: Analysis completed by: 14/05/2021

Report Issue Number: 1 **Report issued on:** 20/05/2021

Samples Analysed: 7 soil samples

Signed:

Joanna Wawrzeczko

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Demorado

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1857753	1857754	1857755	1857756	1857757
Sample Reference	WS2	WS2	WS7	WS7	WS11			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	2.00	1.00	2.00	1.00
Date Sampled				28/04/2021	28/04/2021	28/04/2021	28/04/2021	28/04/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	10	11	16	4.5	15
Total mass of sample received	kg	0.001	NONE	0.50	0.50	0.50	0.50	0.50

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.0	7.5	6.8	8.5	7.9
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.013	0.015	0.016	0.0058	0.016

Lab Sample Number				1857758	1857759
Sample Reference				WS5	WS5
Sample Number	None Supplied	None Supplied			
Depth (m)				1.00	2.00
Date Sampled				28/04/2021	28/04/2021
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	10	16
Total mass of sample received	kg	0.001	NONE	0.50	0.50

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.2	8.5
Water Soluble SO4 16hr extraction (2:1 Leachate					
Equivalent)	g/l	0.00125	MCERTS	0.034	0.013

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1857753	WS2	None Supplied	1	Brown clay and sand with gravel.
1857754	WS2	None Supplied	2	Brown sandy clay with gravel and vegetation.
1857755	WS7	None Supplied	1	Brown clay and sand with gravel and vegetation.
1857756	WS7	None Supplied	2	Light brown sand.
1857757	WS11	None Supplied	1	Brown clay and sand with vegetation and gravel
1857758	WS5	None Supplied	1	Brown clay and loam.
1857759	WS5	None Supplied	2	Brown sandy clay with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Steve Rhodes

Enzygo Geoenvironmental Ltd The Byre Woodend Lane Cromhall Gloucestershire GL12 8AA

e: steve.rhodes@enzygo.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-94030

Project / Site name: Richmond Samples received on: 19/08/2021

Your job number: CRM.1265.087 Samples instructed on/ 19/08/2021

Analysis started on:

Your order number: Analysis completed by: 25/08/2021

Report Issue Number: 1 Report issued on: 26/08/2021

Samples Analysed: 17 soil samples

Signed: W. Crerwinski

Agnieszka Czerwińska

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number	•			1979344	1979345	1979346	1979347	1979348
Sample Reference				BH1	BH1	BH1	BH1	BH1
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	5.00	10.00	15.00	20.00	25.00			
Date Sampled	18/08/2021	18/08/2021	18/08/2021	18/08/2021	18/08/2021			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	9.0	15	11	12	11
Total mass of sample received	kg	0.001	NONE	1.0	0.50	0.50	0.50	0.50

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	9.0	9.1	8.8	9.0	9.3
water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.019	0.25	0.45	0.49	0.38

Lab Sample Number				1979349	1979350	1979351	1979352	1979353
Sample Reference				BH2	BH2	BH2	BH2	BH2
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	5.00	10.00	15.00	20.00	25.00			
Date Sampled	18/08/2021	18/08/2021	18/08/2021	18/08/2021	18/08/2021			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	13	11	13	11
Total mass of sample received	kg	0.001	NONE	1.0	0.50	0.50	0.60	0.50

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	9.0	9.2	9.2	9.0	9.3
water Soluble SO4 Tonr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.015	0.31	0.35	0.47	0.50

Lab Sample Number	•			1979354	1979355	1979356	1979357	1979358
Sample Reference				BH3	BH3	BH4	BH4	BH5
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	5.00	10.00	5.00	10.00	5.00			
Date Sampled	18/08/2021	18/08/2021	18/08/2021	18/08/2021	18/08/2021			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	8.7	12	7.6	14	2.6
Total mass of sample received	kg	0.001	NONE	1.0	0.50	1.0	0.60	0.80

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.9	9.2	8.6	9.0	8.9
water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.013	0.27	0.021	0.24	0.0059

Lab Sample Number				1979359	1979531	
Sample Reference				BH6	BH6	
Sample Number		None Supplied	None Supplied			
Depth (m)	5.00	10.00				
Date Sampled	18/08/2021	18/08/2021				
Time Taken	None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	
Moisture Content	%	0.01	NONE	1.7	11	
Total mass of sample received	kg	0.001	NONE	0.90	0.60	

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.8	9.1
water Soluble SO4 16hr extraction (2:1 Leachate					
Equivalent)	g/l	0.00125	MCERTS	0.0087	0.22

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1979344	BH1	None Supplied	5	Brown sand with gravel.
1979345	BH1	None Supplied	10	Brown clay.
1979346	BH1	None Supplied	15	Brown clay.
1979347	BH1	None Supplied	20	Brown clay.
1979348	BH1	None Supplied	25	Brown clay.
1979349	BH2	None Supplied	5	Brown sand with gravel.
1979350	BH2	None Supplied	10	Brown clay.
1979351	BH2	None Supplied	15	Brown clay.
1979352	BH2	None Supplied	20	Grey clay.
1979353	BH2	None Supplied	25	Grey clay.
1979354	BH3	None Supplied	5	Brown sand with gravel.
1979355	BH3	None Supplied	10	Grey clay.
1979356	BH4	None Supplied	5	Brown sand with gravel.
1979357	BH4	None Supplied	10	Grey clay.
1979358	BH5	None Supplied	5	Brown sand with gravel.
1979359	BH6	None Supplied	5	Brown sand with gravel.
1979531	BH6	None Supplied	10	Brown clay.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Enzygo specialise in a wide range of technical services:

Property and Sites Waste and Mineral Planning Waste Technologies and Renewables Landscape and Visual Impact Environmental Assessment Co-ordination Hydrology and Flood Risk Waste Contract Procurement Noise and Vibration Environmental Permitting and Regulation Development Planning & Policy Ecology Services Contaminated Land and Geotechnical Traffic and Transportation Planning Services

BRISTOL OFFICE

The Byre, Woodend Lane, Cromhall. Gloucestershire GL12 8AA

Tel: 01454 269 237

SHEFFIELD OFFICE

Samuel House, 5 Fox Valley Way, Stocksbridge, Sheffield S36 2AA Tel: 0114 321 5151

MANCHESTER OFFICE

76 King Street, Manchester, M2 4NH

Tel: 0161 413 6444

Please visit our website for more information.

Contents

1	Project Information	2
1.1	Project Information	2
1.2	Project Details	2
1.3	Report Details	2
1.4	Project Authorisation	2
2	Introduction	3
2.1	Instruction	3
2.2	Brief	3
3	Site Location & Description	4
3.1	Existing Site Context	4
3.2	Development Proposals	4
3.3	Site Topography	5
3.4	Site Geology	5
3.5	Existing Sewers	5
3.6	Existing runoff rates	6
3.7	Existing Watercourses	7
4	Proposed Development	7
4.1	Development Description	7
4.2	Development Suitability	7
5	Flood Risk	8
5.1	Fluvial Flooding	8
5.2	Overland (Surface Water) Flooding	9
5.3	Flooding from Groundwater	10
5.4	Flooding from Sewers	11
5.5	Flooding from Artificial Sources	11
6	Proposed Drainage Strategy	12
6.1	Works to existing sewers	12
6.2	Foul Water Drainage	12
6.3	Surface Water Drainage	13
6.4	Water Quality	15
7	SuDS Management & Maintenance	16
8	Conclusions and Recommendations	17
App	pendix A: Architectural Plans	18
App	pendix B: Topographical Survey	19
App	pendix C: Soil Investigation Report	20
Арр	pendix D: Existing Drainage Information	21
Арр	pendix E: Proposed Drainage Drawings	22
App	pendix F: Calculations	23
App	pendix G: SuDS Proforma & TW Correspondence	24
Арр	pendix H: Maintenance Schedule	25

Ham Close, Richmond Hill Residential

1 Project Information

1.1 Project Information

Client Hill Residential

1.2 Project Details

Project Name Ham Close, Richmond

Location Ham Close, Ham, Richmond Upon Thames, TW10 7PG

Jubb Project Number 21246

1.3 Report Details

Version V2

Status Planning

Date March 2022

1.4 Project Authorisation

ISSUE HISTORY: AUTHORISATION:

Version	Date	Detail	Prepared By	Approved By
DRAFT	24/01/22	Draft Issue	KG	
V1	07/02/22	First Issue	KG	RL
V2	23/03/22	Updated to suit comments	KG	RL

21246_FRA_V2 2

Ham Close, Richmond Hill Residential

2 Introduction

2.1 Instruction

2.1.1 Jubb has been commissioned by Hill Residential to provide flood risk and drainage advice in relation to proposals for the residential development in Ham Close, Ham, Richmond Upon Thames, TW10 7PG.

2.1.2 This report may not be reproduced by any third party for any use without the written agreement of Jubb Consulting Engineers Ltd.

2.2 Brief

- 2.2.1 This Drainage Statement is prepared in accordance with the requirements of the National Planning Policy Framework (NPPF) published by the Department of Communities and Local Government. The NPPF sets out the government's national policies to protect people and property from flooding in both existing and future situations as a result of development.
- 2.2.2 Section 14 of the NPPF and the associated Planning Practice Guidance for Flood Risk and Coastal Change sets out the framework for planning decisions made by the local, regional and national government and the Environment Agency (EA). In order for planning authorities to make informed decisions on the Development of sites in areas at risk of flooding, NPPF requires the developer to carry out an assessment of flood risk.
- 2.2.3 This report addresses the requirements given in Section 14 of the NPPF and other issues which are deemed relevant to flood risk. These requirements include the following:
 - Assessment of the magnitude and severity of flood risk to the Site, including consideration of current and future impacts of climate change;
 - Assess suitability of the site and future development through the application of the Sequential Test and Exception Test (where required);
 - Assess the impacts of current and future development of the site on flood risk to adjacent developments;
 - Determine ability of existing and proposed drainage to accommodate development flows with respect to surface water runoff and flood risk;
 - Demonstrate that appropriate mitigation measures have been taken to prevent flooding;
 - Demonstrate that appropriate emergency situations have been considered e.g. overland flow path and evacuation routes.
- 2.2.4 This report also considers the disposal of wastewater generated by the proposed Development. Existing infrastructure will be reviewed to identify potential options for the disposal of foul and surface water runoff for future development.

21246_FRA_V2 3

3 Site Location & Description

3.1 Existing Site Context

3.1.1 The Application Site area is 4.69 Hectares. The site is located on Ham Close, between St Richard's CE Primary School and Ham Street/Wiggins Lane, in a predominantly residential setting. The site is centred at National Grid Reference TQ 0030585, OS co-ordinates 550309 158566.

- 3.1.2 The application site currently houses 192 homes, a community centre and a Maker Labs use as part of the existing Ham Close Estate, existing site layout can be seen in Figure 1.
- 3.1.3 Access is provided from Ham Close which forms two parallel minor roads that generally run north-west to south-east, connecting to Ashburnham Road in the south and Woodville Road in the north.

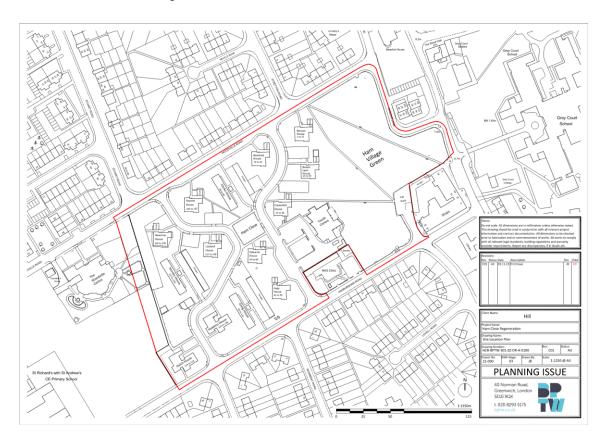


Figure 1: Indicative Site Masterplan

3.2 Development Proposals

- 3.2.1 The development proposals comprise the "demolition of the existing buildings on-site and phased mixed-use development comprising 452 residential homes (Class C3) up to six storeys; a Community/Leisure Facility (Class F2) of up to three storeys in height, a "Maker Labs" (sui generis) of up to two storeys together with basement car parking and site wide landscaping ('the Development')."
- 3.2.2 This application is being submitted to the London Borough of Richmond upon Thames (LBRuT). Architectural layouts can be found in Appendix A.

3.3 Site Topography

3.3.1 The site levels vary between 7.5mAOD at the north boundary (Woodville Road) and 6.7mAOD at the south-eastern boundary (Ashburnham Road).

3.3.2 Refer to Appendix B for topographical survey.

3.4 Site Geology

- 3.4.1 A Geo-Environmental Report prepared by Enzygo Geoenvironmental Ltd (Aug 2021) summarises the ground conditions to comprise Made Ground over firm clay and loose becoming dense with depth sand and gravel. This is underlain by London Clay comprising stiff clay. The report extracts can be found in Appendix C.
- 3.4.2 Groundwater was encountered at depth between 2.2m and 4.3m below ground level.
- 3.4.3 The site is not located within a designated Source Protection Zone.

3.5 Existing Sewers

3.5.1 There are number of existing Thames Water sewers within the site boundary, all avaliable sewer information can be found in Appendix D, extract of the asset map can be seen in Figure 2.

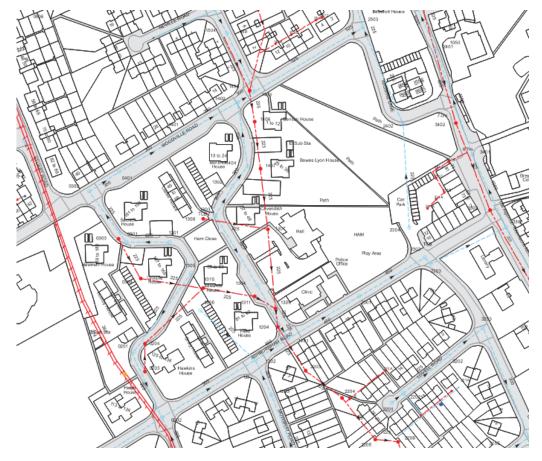


Figure 2, Existing Drainage Layout

3.5.2 The surface water sewers onsite follow the layout of the existing road infrastructure, with 5 total discharge locations: 2 outfalls towards the 300-525mmØ sewer in Woodville Road to the north, and 3 outfalls towards the 300-450mmØ sewer in Ashburnham Road to the south. All surface water outfalls are 225mmØ and have invert levels roughly at 2m below ground levels.

- 3.5.3 There is also an existing 225mmØ surface water sewer running in the northern direction through the eastern part of the Ham Village Green, originating within the existing car park, at a location of the proposed Community Centre. This sewer runs towards Wiggins Lane and joints the 525mmØ sewer in Woodville Road north of the site.
- 3.5.4 The foul water network onsite is connected towards a 225mmØ sewer running directly across the site. This sewer appears to drain the residential properties along Stretton Road north of the site (outside of the site boundary) and is routed in a straight line through the site running under landscaping and car parking areas. Once outside of the site boundary, the sewer crosses Ashburnham Road and is routed through private gardens in the southern direction. The levels of this sewer appear to be relatively flat, with some areas showing no falls between manholes, with an invert level approximately 3m below ground level.
- 3.5.5 Two Thames Water rising mains are also present onsite, running south to north, parallel to each other along the western boundary.
- 3.5.6 To the east of the site, there are two sewers located within Ham Street, a 225mmØ foul water sewer running in the southern direction and a 1050mmØ surface water sewer running in the northern direction.
- 3.5.7 There are private drainage networks onsite, an Underground Survey drawing can be found in Appendix D. The drains appear to serve the development only, with no drains from outside of the site boundary, other than the public sewers described above.

3.6 Existing runoff rates

- 3.6.1 For the purposes of drainage calculations, the Ham Village Green has been excluded from the catchment as the existing and proposed use of this area will remain unchanged and will not drain towards the neighbouring sewers.
- 3.6.2 The Site area discharging to the sewers measures approximately 2.96Ha, of which approximately 1.24Ha is landscaped (30% impermeable). The existing runoff rates have been estimated using Modified Rationale Method, results can be seen in Table 1 below.

Storm	Rainfall Intensity (mm/hr)	Existing Rainfall (I/s)
1 in 1	28.2	231.8
1 in 30	86.0	708.4
1 in 100	113.8	936.9

Table 1, Existing Runoff Rates

3.6.3 The Site is currently split into 5 catchments, each with their own 225mmØ outfall. As the areas are similar in size, it can be assumed the current discharge rate per outfall is ~187 l/s for a 1 in 100 year storm.

3.7 Existing Watercourses

3.7.1 The site is located approximately 750m east from the river Thames. The nearest watercourse appears to be a ditch in Ham Lands, approximately 300m west of the site, Ham Pond is also located approximately 400m southeast of the site. All of these are too distant to be significantly impacted by the site.

4 Proposed Development

4.1 Development Description

4.1.1 The development proposals comprise the "demolition of the existing buildings on-site and phased mixeduse development comprising 452 residential homes (Class C3) up to six storeys; a Community/Leisure Facility (Class F2) of up to three storeys in height, a "Maker Labs" (sui generis) of up to two storeys together with basement car parking and site wide landscaping ('the Development')."

4.2 Development Suitability

4.2.1 The NPPF sets out the Sequential Test to steer developments towards areas of lowest probability of flooding, taking account of their vulnerability to flooding.

Flood Risk	Essential	Water	Highly	More	Less
Vulnerability	Infrastructure	Compatible	Vulnerable	Vulnerable	Vulnerable
Classification					
Flood Zone 1	✓	✓	✓	✓	✓
(<1 in 1000)					
Flood Zone 2	✓	✓	Exception Test	✓	✓
(up to 1 in 1000)					
Flood Zone 3a	Exception Test	✓	X	Exception Test	√
(1 in 100 fluvial)					
(1 in 200 tidal)					
Flood Zone 3b	Exception Test	✓	Х	Х	Х
(functional					
floodplain)					

Table 2, Development Suitability

4.2.2 The development use is classified as a 'More Vulnerable' development. Under Table 2 of the NPPF Planning Practice Guidance as the site is in Flood Zone 1, all vulnerability classes are suitable and thus the proposed scheme is deemed acceptable.

5 Flood Risk

5.1 Fluvial Flooding

5.1.1 The Environment Agency (EA) produces floodplain maps for the UK, which show the area at risk of fluvial and tidal flooding. The EA flood zone maps identify undefended floodplain, giving the horizontal extent of low (Zone 1), medium (Zone 2) and high-risk flood zones (Zones 3a and 3b) depending on the severity of the flood event.

5.1.2 The EA's Flood Map for Planning (Figure 3) indicates the site to be wholly located within Flood Zone 1 (Low Probability) and therefore defined as having less than a 1 in 1,000 annual probability of river flooding.

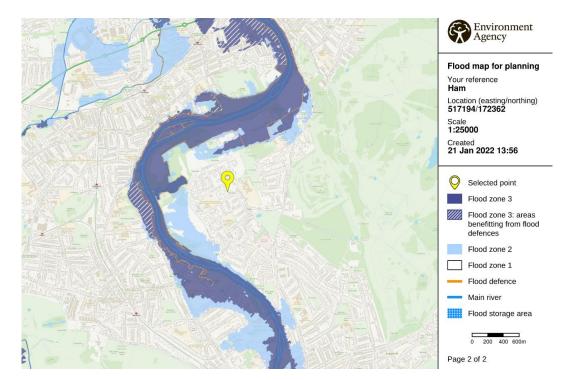


Figure 3, Extract from Environment Agency Tidal and Fluvial Flood Risk Map

- 5.1.3 Table 2 of the NPPF Planning Practice Guidance for Flood Risk and Coastal Change states in terms of flood risk vulnerability, that all types of development are suitable within this flood zone. Sequential and exception tests are not required.
- 5.1.4 The risk of fluvial and tidal flooding to the development is low.

5.2 Overland (Surface Water) Flooding

5.2.1 The EA also produces maps which highlight the risk of flooding from surface water flows. The Long-Term Flood Risk Information maps can illustrate when the capacity of existing surface water drainage networks or channels are exceeded in extreme rainfall events. These maps are produced, as with fluvial modelling, based on generalised information, and need to be verified in terms of topographical ground levels and indicated flow routes.

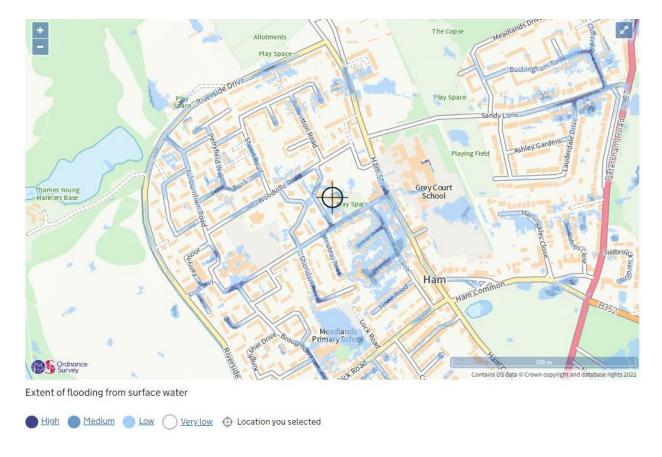


Figure 4, Extract from Environment Agency's Long-Term Flood Risk mapping indicating Surface Water Flood Risk

- 5.2.2 Figure 4 indicates there are number of flood risk areas within the site. The locations shown on the map correspond to topographical low points, which as shown on the topographical survey, have gullies to ensure that area is drained during rainfalls.
- 5.2.3 A review of the capacity of existing pipes shows the maximum capacity of the 225mmØ outlet pipes to be ~63 l/s. The maximum rainfall flows amount to ~187 l/s (as discussed in section 3.6.2). This would result in surface water flooding during times of extreme rainfall which would contribute to the surface water flooding shown above.
- 5.2.4 The proposed development will provide suitable drainage arrangements for all areas within the site boundary, with the onsite drainage designed to accommodate all storms up to and including 1 in 100 year + 40% climate change. The runoff rates from site will also be reduced, as a result helping with any existing sewer capacity concerns.
- 5.2.5 The risk of surface water flooding to the development is low.

5.3 Flooding from Groundwater

5.3.1 Groundwater flooding can occur after a prolonged period of rainfall, a considerable rise in the water table can result in inundation for extended periods of time.

5.3.2 The LBRuT web page contains an interactive map, which compiles information on the geology and the risks of groundwater flooding from numerous sources, such as the Environmental Agency (EA), GLA Drain London and the British Geological Survey (BGS). Summary of the results can be seen in the Table 3:

Source (Map)	Result
EA, Area Susceptible to Groundwater Flooding	75% or more
GLA Drain London, Increased Potential for Elevated Groundwater	Consolidated & Permeable Superficial
BGS, Susceptibility to Groundwater Flooding	Potential for groundwater flooding to occur at surface

Table 3, Groundwater vulnerability mapping summary

- 5.3.3 Based on the mapping information, the site is susceptible to groundwater flooding and mitigation measures will be required to ensure that the proposals are sufficiently protected from groundwater ingress.
- 5.3.4 The Geo-Environmental Report prepared by Enzygo Geoenvironmental Ltd (Aug 2021) states that the groundwater onsite was encountered at depths of between 2.2m and 4.3m below ground level. Further groundwater monitoring is being undertaken and will be used to inform any further design.
- 5.3.5 Groundwater will be considered during construction, especially during excavations and will have an impact on the below ground design, such as the drainage strategy. Additionally, all basements onsite will be designed to be safe from groundwater, a specialist waterproofing design will be implemented, to ensure that the required level of protection is achieved.
- 5.3.6 In terms of risk, the basements onsite are proposed to be used for 'less vulnerable' uses, such as car parking and plant. Therefore, in the unlikely event of the waterproofing measures failing, the consequences will be minimised. A separate Basement Impact Assessment is being submitted as part of the planning application.
- 5.3.7 Given the mitigation measures above, groundwater flooding is considered low risk.

5.4 Flooding from Sewers

5.4.1 The LBRuT web page contains an interactive map, which provides information on historic flooding incidents from sewers. The site lies within an area classified as "0 to 10 incidents recorded", which indicates a low risk of flooding from sewers.

- 5.4.2 The drainage strategy for the development aims to reduce the surface water runoff from site to greenfield. This will increase the capacity within the neighbouring sewer network reducing any potential risk of surface water sewers flooding.
- 5.4.3 Thames Water have been consulted via a pre-development application and confirmed that the neighbouring sewer network has sufficient capacity.
- 5.4.4 The risk of flooding from sewers is low.

5.5 Flooding from Artificial Sources

- 5.5.1 The EA's Long-Term Flood Risk Information mapping indicates the potential extent of flooding from reservoir breach/failure. The site is safe from reservoir flooding while the river levels are normal.
- 5.5.2 Risk of flooding from reservoirs is very low, as in line with the Reservoirs Act 1975, reservoirs need to be regularly inspected and maintained, therefore reservoir flooding is unlikely.
- 5.5.3 Flood risk from artificial sources is considered to be low risk.

6 Proposed Drainage Strategy

6.1 Works to existing sewers

6.1.1 As highlighted in the earlier section of this report, there are numerous existing sewers onsite. There are three sewers which are identified to convey water from outside of the site, which will need to be retained or diverted. A description of the proposed works to the existing sewers can be found in Table 4 below.

Existing route of sewer	Proposed Works	Comment
Pumped Foul Water rising mains to the west of the site.	To be retained.	The proposed layout has allowed for the existing sewer easement. This easement is a big constraint onsite and has a significant impact on the landscaping and the drainage strategy.
Gravity Foul Water 225mmØ sewer between manholes TW1405 – TW1204.	To be diverted.	The existing route of the sewer cannot be accommodated within the proposals and must be diverted towards the 225mmØ sewer in Ham Street, through the Green. Thames Water have been consulted and confirmed capacity for the diversion.
Gravity Surface Water 225mmØ sewer from existing car park (from manhole TW2304).	To be abandoned	Sewer underneath the proposed structure. Any existing connections will be diverted towards the new connection into sewer in Ashburnham Road.
All other drains onsite.	To be abandoned	All other drains onsite appear to only serve the existing development. As the proposals are to demolish the existing buildings, the drains will become redundant and will be abandoned.

Table 4, Works to Existing Sewers

6.1.2 To complete the diversions and sewer abandonments, Section 185 applications will be made to Thames Water during the next design stage.

6.2 Foul Water Drainage

- 6.2.1 A new foul water drainage network will be required to service the proposed development. The new network will collect and convey foul water discharge from the development to a point of connection on the existing sewer network.
- 6.2.2 As shown on the proposed drainage plan (Appendix E) two gravity foul water outfalls can be made to existing manholes TW1403 and TW1204.
- 6.2.3 Thames Water have been contacted via the pre-planning application and confirmed sufficient capacity for the neighbouring development. Confirmation can be found in Appendix G.

6.3 Surface Water Drainage

6.3.1 New surface water drainage will be required to drain surface water runoff from the proposed buildings. In line with the LBRuT Local Plan and the London Plan, the runoff from the proposed development will aim to restrict runoff rates to greenfield rates and the SuDS measures and discharge methods have been evaluated in accordance with the hierarchy, as shown in Table 5.

Hierarchy	Method	Feasibility	Comment
1	Rainwater use as a resource (rainwater harvesting / blue roofs).	✓	The proposals utilise green and blue roofs wherever possible.
2	Rainwater infiltration	X	Infiltration is not suitable for this site, due to minimum space requirements for soakaways to be positioned away from structures and the underlaying clay ground conditions.
3	Rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)	✓	Green roofs, raingardens and permeable paving will be utilised across the scheme.
4	Rainwater discharge direct to a watercourse (unless not appropriate)	Х	There is no suitable watercourse near the site.
5	Controlled rainwater discharge to a surface water sewer or drain	✓	It is proposed to discharge towards the neighbouring surface water sewers at greenfield runoff rates.
6	Controlled rainwater discharge to a combined sewer	X	There are no combined sewers in the area.

Table 5, Surface Water Discharge Hierarchy

6.3.2 As highlighted above, the site will discharge towards the neighbouring surface water sewer. The site can accommodate green and blue roofs, raingardens, permeable paving and below ground attenuation tanks to treat and attenuate runoff. A drainage strategy included in Appendix E shows the possible sizes and locations of these SuDS features, extract can be seen in Figure 5.

Figure 5 Proposed Drainage Layout

- 6.3.3 Greenfield Runoff Tool (from UKSuDS website) was used to calculate the greenfield runoff rate for the site, extract can be found in Appendix F. The site aims to discharge at greenfield runoff rates of 11.7 l/s/ha for all storms up to and including a 1 in 100 year + 40% climate change.
- 6.3.4 The site has been split into catchments taking the phasing and the outfall locations into account. The storage requirement for each outfall has been calculated and summarised on the drainage strategy drawings in Appendix E, all calculations can be found in Appendix F.
- 6.3.5 Constraints within the ground, such as the Thames Water easement, tree root protections and the required space for the services limit how much attenuation can be provided within some of the catchments. As a result, Catchment 1 will only be able to provide 315m³ of the 355m³ required to restrict the runoff to the greenfield target of 8.4 l/s. Based on the avaliable storage, the achievable runoff rate for this catchment is 10.7 l/s (equivalent to ~15 l/s/ha), which still offers a significant improvement compared to the existing unmitigated scenario.
- 6.3.6 It's important to highlight, that although the greenfield rates are shown to be achievable for all other catchments, further constraints may emerge during the detailed design stages and runoff rates may need to be increased (as highlighted above with regards to Catchment 1). The drainage strategy for the Site is a 'best endeavours' aproach, to meet the greenfield rates, without the need for pumping.

6.3.7 In total, approximately 7,000m² of the site area will be attenuated via blue roofs, these will be restricted to approximately 11.1 l/s in total (see blue roof manufacturer calculations in Appendix F). The remaining site area will require approximately 1,570m³ of attenuation below ground. This is estimated to be split as ~340m³ of permeable paving, ~740m³ of podium storage (200mm of geo-cellular storage layer above the basement) and approximately 540m³ of attenuation tank storage.

6.3.8 This will provide a betterment of up to 97% over the existing unrestricted scenario, as shown in Table 6.

Storm	Rainfall Intensity (mm/hr)	Existing Rainfall (I/s)	Proposed Runoff (I/s)	Betterment (%)
1 in 1	28.2	231.8	37	84%
1 in 30	86.0	708.4	37	95%
1 in 100	113.8	936.9	37	96%
1 in 100 + 40%	159.3	1311.7	37	97%

Table 6, Existing vs Proposed Runoff Rates

6.4 Water Quality

- 6.4.1 Surface water management should incorporate sustainable drainage techniques to restrict surface water discharge from the Site, in addition to improving water quality of runoff. Runoff from the proposed development may contain hydrocarbons, pollutants and nutrients which may be harmful if discharged directly to the ground.
- 6.4.2 It is proposed to utilise green and blue roofs, raingardens, permeable paving, and extensive green landscaping throughout the site to provide biodiversity, amenity, treatment and control the rate of runoff.
- 6.4.3 A SuDS pro-forma for LBRuT has been completed and can be found in Appendix G.

7 SuDS Management & Maintenance

7.1.1 SuDs features will be managed in accordance with the guidelines outlined within The SuDS Manual (CIRIA C753, Chapter 32).

- 7.1.2 The drainage infrastructure to be constructed as part of proposed development will be a mixture of adopted and privately owned. All diversions and public sewers will be maintained by Thames Water. All other drainage infrastructure will be maintained privately, by a management company.
- 7.1.3 As the scheme is progressed management and maintenance practices for taking care of the SuDS/drainage infrastructure will be constantly reviewed and updated with a final confirmed plan to be detailed at the completion of the construction.
- 7.1.4 SuDS features will be managed in accordance with the guidelines in Ciria C753, Chapter 32. As this is early in the application process the final details of the SuDS system and exact maintenance requirements are not yet fully known. However, a few fundamental actions can be specified now, these are noted in the maintenance schedule in Appendix H.

8 Conclusions and Recommendations

8.1.1 It is considered that this assessment represents a comprehensive and robust analysis of the flood impact of the current proposals on the Site itself and on adjacent properties. In addition, this report demonstrates that the proposed development can be delivered sustainably in terms of flood risk, which can be summarised as follows:

Subject	Conclusion
TIDAL & FLUVIAL FLOOD RISK	The Development is located in Flood Zone 1 – classified as low probability for tidal and fluvial flooding on the Environment Agency flood maps.
FLOOD RISK FROM OTHER SOURCES	Groundwater risk is considered to be mitigated through waterproofing of the basement and using it for less vulnerable uses such as parking and plant space. All other sources of flood risk are considered low risk.
DEVELOPMENT SUITABILITY	The proposed land-use is considered suitable for the Site which lies within Flood Zone 1 – all vulnerability classifications appropriate in accordance with Table 3 of the NPPG Technical Guidance.
EXISTING DRAINAGE	The existing Site is drained via sewers onsite and within the neighbouring roads. The existing TW rising main will be retained and the foul water sewer will be diverted. Thames Water have been consulted regarding the proposals.
PROPOSED DRAINAGE	The London Plan drainage hierarchy has been followed to provide a reduction in runoff rates to as close as possible to greenfield rates, for all storms of up to and including 1 in 100 years + 40% climate change. The proposals will discharge both surface and foul water towards the neighbouring sewers; Thames Water have been consulted and confirmed capacity for the development.
SURFACE WATER MANAGEMENT	Proposals will utilise green and blue roofs, raingardens, permeable paving, and extensive green landscaping throughout the site to provide biodiversity, amenity, treatment and control the rate of runoff. Overland flow routes have been considered in the design, a SuDS Proforma has been completed and a Maintenance Schedule has been provided as part of this report.

Table 7, Summary Table

Appendix A: Architectural Plans