

Monitoring

7.8 Return visits to monitor groundwater levels were undertaken and during these visits ground gas was also measured.

Laboratory Testing

- 7.9 Samples for geotechnical testing were sent to the laboratories of I2, which is UKAS accredited, for the following analysis:
 - California Bearing Ratio(CBR) tests undertaken on re-compacted samples
 - Atterberg Limits Determinations;
 - Moisture Content; and
 - Soluble sulphate and pH.
- 7.10 Samples for chemical analysis were sent to the laboratories of The I2 Ltd who are UKAS and MCERTS accredited. Samples were tested for the CLEA metal suite, pH, sulphate, cyanide, phenols, speciated Polycyclic Aromatic Hydrocarbons (PAH), organic carbon, banded Total Petroleum Hydrocarbon (TPH), asbestos quantification, and two stage WAC tests.

8.0 GROUND AND GROUNDWATER CONDITIONS

Summary of Ground and Groundwater Conditions

8.1 The investigations undertaken by Enzygo Geoenvironmental Ltd identify the following strata:

Strata	Summary Description	Thickness (m)
Made Ground	Brown and grey clayey fine sand and flint gravel with fragments of brick concrete and ash.	0.4 to 1.2
	Firm and stiff brown clay and gravelly clay.	0 to 0.9
Kempton Park Gravels	Loose becoming medium dense and dense with depth brown sand and flint gravel.	3.8 to 5.3
London Clay	Stiff grey brown silty clay with occasional claystone gravel.	>20
Groundwater	Seepages	2.2m to 4.3 bgl.

8.2 Details of the ground and groundwater conditions encountered are given on the exploratory hole records included in Appendix B and are summarised in the sections below:

Made Ground

- 8.3 Made Ground was encountered across the site comprising brown and grey clayey fine sand and flint gravel with fragments of brick concrete and ash.
- 8.4 This material is consistent with typical Made Ground comprising natural soils with anthropegenic inclusions associated with demolition and removal of historic buildings

Kempton Park Gravels

- 8.5 The Kempton Park Gravels were encountered at depths of between 0.4m and 1.2m below ground level (bgl). The upper horizon of the Kempton Park Gravels generally comprised firm and stiff brown clay and gravelly clay.
- 8.6 The clay layer was underlain by loose becoming medium dense and dense with depth brown sand and flint gravel. The granular Kempton Park Gravels were encountered at depths of between 0.4m and 1.5m bgl.

London Clay

The London Clay was only encountered in deep boreholes and comprised stiff grey brown silty clay with occasional claystone gravel.

Visual and Olfactory Evidence of Contamination

8.7 Potential asbestos fragments were encountered in Window Sampler boreholes WS6 and WS8. No other visual or olfactory evidence of contamination was encountered during the site works. Samples of potential asbestos were collected for laboratory testing and this is discussed in Section 9.

Soil Strength

- 8.8 Undrained shear strength of cohesive Kempton Park Gravels were calculated using the correlations of Stroud and Butler. These show the undrained shear strength values to vary from 45kN/m² to 100kN/m² at 1m bgl. Granular soils ere noted to be loose medium dense and dense with depth. SPT values increasing 7 at 1m bgl to over 50 at 4m bgl being recorded.
- London Clay was noted to have undrained shear strength values increasing from 60kN/m² at
 6m to 170kN/m² at 25m bgl.

Groundwater

8.10 Groundwater was encountered as a seepages at depths of between 2.2m to 4.3 bgl from within the Kempton Park Gravels. The depth to groundwater measured during the monitoring visit is summarised on the table below:

Exploratory		Depth m(bgl)					
Hole	12.5.21	19.5.21	2.6.21	16.6.21	30.6.21	14.7.21	
WS5	Dry	Dry	Dry	Dry	Dry	Dry	
WS6	Dry	Dry	Dry	Dry	Dry	Dry	
WS7	Dry	Dry	Dry	Dry	Dry	Dry	
WS9	Dry	Dry	Dry	Dry	Dry	Dry	
WS14	Dry	Dry	Dry	Dry	Dry	Dry	
WS16	Dry	Dry	Dry	Dry	Dry	Dry	
WS18	Dry	Dry	Dry	Dry	Dry	Dry	

Ground Gas

8.11 Ground gas was monitored during the return visit to monitor groundwater levels and the results are summarised on the table below:

Evaleratory	Atmos	Flow	CH4	l.	CO2		02
Exploratory Hole	pressure (Mb)	(l/hr)	Concentration (%)	GSV (l/hr)	Concentration (%)	GSV (l/hr)	Concentration (%)
12.5.21							
WS5	997	<0.1	<0.1	<0.0001	1.8	<0.0018	19.5
WS6	997	<0.1	<0.1	<0.0001	1.8	<0.0018	19.4
WS7	997	<0.1	<0.1	<0.0001	1.5	<0.0015	19.1
WS9	997	<0.1	<0.1	<0.0001	1.2	<0.0012	19.3

WS14	997	<0.1	<0.1	<0.0001	1.6	<0.0016	18.9
WS16	997	<0.1	<0.1	<0.0001	0.8	<0.0008	18.8
19.5.21					1		
WS5	1017	<0.1	<0.1	<0.0001	1.9	<0.0019	18.1
WS6	1017	<0.1	<0.1	<0.0001	1.1	<0.0011	18.8
WS7	1017	<0.1	<0.1	<0.0001	2.0	<0.0020	18.0
WS9	1017	<0.1	<0.1	<0.0001	1.3	<0.0013	19.6
WS14	1017	<0.1	<0.1	<0.0001	1.7	<0.0017	18.2
WS16	1017	<0.1	<0.1	<0.0001	1.4	<0.0014	18.9
WS18	1017	<0.1	<0.1	<0.0001	1.1	<0.0011	19.6
2.6.21		r					
WS5	1014	<0.1	<0.1	<0.0001	2.1	<0.0021	18.2
WS6	1014	<0.1	<0.1	<0.0001	1.2	<0.0012	18.6
WS7	1014	<0.1	<0.1	<0.0001	1.7	<0.0017	18.5
WS9	1014	<0.1	<0.1	<0.0001	1.2	<0.0012	19.1
WS14	1014	<0.1	<0.1	<0.0001	1.6	<0.0016	18.8
WS16	1014	<0.1	<0.1	<0.0001	1.5	<0.0015	18.7
WS18	1014	<0.1	<0.1	<0.0001	1.0	<0.0010	19.7
16.6.21							
WS5	1009	<0.1	<0.1	<0.0001	2.1	<0.0023	18.3
WS6	1009	<0.1	<0.1	<0.0001	1.4	<0.0014	18.7
WS7	1009	<0.1	<0.1	<0.0001	1.5	<0.0015	18.8
WS9	1009	<0.1	<0.1	<0.0001	1.3	<0.0013	19.2
WS14	1009	<0.1	<0.1	<0.0001	1.6	<0.0016	18.9
WS16	1009	<0.1	<0.1	<0.0001	1.7	<0.0017	18.5
WS18	1009	<0.1	<0.1	<0.0001	0.7	<0.0007	19.9
30.6.21							
WS5	1015	<0.1	<0.1	<0.0001	1.8	<0.0018	18.2
WS6	1015	<0.1	<0.1	<0.0001	1.3	<0.0013	18.9
WS7	1015	<0.1	<0.1	<0.0001	1.6	<0.0016	18.7
WS9	1015	<0.1	<0.1	<0.0001	1.4	<0.0014	18.9
WS14	1015	<0.1	<0.1	<0.0001	1.5	<0.0015	19.0
WS16	1015	<0.1	<0.1	<0.0001	1.6	<0.0016	18.8
WS18	1015	<0.1	<0.1	<0.0001	1.0	<0.0010	19.2
14.7.21	4017		.e.t	-0.0201	1.2	.0.0010	46.2
WS5	1017	<0.1	<0.1	<0.0001	1.9	< 0.0019	18.3
WS6	1017	<0.1	<0.1	<0.0001	1.5	<0.0015	18.9
WS7	1017	<0.1	<0.1	< 0.0001	1.6	< 0.0016	18.7
WS9	1017	<0.1	<0.1	< 0.0001	1.2	< 0.0012	18.7
WS14	1017	<0.1	<0.1	< 0.0001	1.7	< 0.0017	18.8
WS16	1017	<0.1	<0.1	< 0.0001	0.9	< 0.0009	19.3
WS18	1017	<0.1	<0.1	<0.0001	0.8	<0.008	19.5

8.12 No significant ground gas has been measured.

9.0 CONTAMINATION ASSESSMENT

General

- 9.1 A Tier I risk assessment has been undertaken using available and current screening values for human health and where appropriate controlled waters. The risk assessment is undertaken based on the findings of the preliminary conceptual model presented in Section 6. Based on the contamination testing and Tier I assessment a revised Conceptual Model has been prepared, which is presented later in this section.
- 9.2 Where significant risks are identified remedial measures are recommended.

Human Health

- 9.3 Assessment of the risks to human health has been undertaken by comparing the soil quality data with reference values obtained from the Contaminated Land Exposure Assessment (CLEA), Soil Guideline Values (SGV) and General Acceptance Criteria (GAC) published by LQM and derived in consultation with the Chartered Institute of Environmental Health. The LQM/CIEH S4ULs values are used and summary tables of the reference values are included in Appendix C.
- 9.4 Where an exceedance is identified the risk is assessed by considering the sensitivity of the proposed development and the potential pathway. The proposed development comprises conventional residential houses with domestic gardens.
- 9.5 The GAC values for residential use with plant uptake are used as the development includes domestic properties.
- 9.6 The soil quality shows exceedances of the GAC values for the following contaminants.

Exploratory Hole	Determinant	Concentration	n (mg/kg)
	Determinant	GAC	Soil
WS2 0.2m	Asbestos	Absent	0.006%
WSZ 0.2m	Arsenic	37	40
WS6 0.4m	Asbestos	Absent	<0.001%
	Asbestos	Absent	3.127%
	Benzo(b)fluoranthene	2.6	3.4
WS8 0.4m	Benzo(a)pyrene	2.2	2.6
	Dibenz(a,h)anthracene	0.24	0.53
	Lead	200	320
	Benzo(b)fluoranthene	2.6	8.1
WS1 0.4m	Benzo(a)pyrene	2.2	7.0
WS1 0.4m	Dibenz(a,h)anthracene	0.24	1.1
	Lead	200	310
WS10 0.4m	Lead	200	250

www.enzyge.com

9.7 No other exceedances were recorded.

Controlled Waters

- 9.8 Risk to groundwater resources is dismissed due to the absence of any significant source of mobile contamination.
- 9.9 The risk to surface waters risk has been dismissed within the Initial Conceptual Model. No new risks are identified.

Ground Gas

- 9.10 Following the guidance provided in Section 3 of CIRIA C665 an initial assessment is undertaken to determine if there are any significant sources of potential ground gas. Such sources include landfills, organic clays and made ground incorporating putrescible materials such as rags, paper and wood. Where no significant source is identified no further assessment is necessary.
- 9.11 This approach is further supported by supplementary guidance given in RB17, published by CL:AIRE which confirms that gas monitoring is not generally required on sites where Made Ground is less than 5m thick and with low organic matter content or on natural soils such as alluvial clays and Chalk as the ground gas sources are not considered significant. The supplementary guidance given in RB17 also takes account of the current requirements for sealing of floor slabs and substructures to meet air tightness requirements under Part L of the Building Regulations which were not considered in CIRIA C665. The advice given in RB17 is consistent with CIRIA C665 and the Local Authority Guide to Ground Gas published by CIEH.
- 9.12 Where significant potential risk from ground gas is identified from the Initial Conceptual Model and the intrusive ground investigation works ground gas monitoring is undertaken and the results of the monitoring are compared against the Gas Screening Values given in CIRIA Report 665. From this the Characteristic Situation is identified and remedial measures proposed.
- 9.13 When assessing the risk and type of remedial measures appropriate consideration is given to the likely construction of the development, the nature of the gas posing a risk and the nature of the likely source. The use of engineering judgement when determining risk from ground gas is consistent with the recommendations given in CIRIA C665 using a pollutant linkage model.

- 9.14 Gas monitoring was undertaken during return visits which has not recorded elevated concentrations of Methane and no flow. Based on the gas monitoring undertake the Gas Screening Value is less than 0.07l/hr and therefore falls within Characteristic Situation 1 (CS1).
- 9.15 Additional monitoring is being undertaken.

Revised Conceptual Model

9.16 The Initial Conceptual Model presented in Section 6 has been revised based on the findings of the ground investigation and the revised Conceptual Model is presented below:

Source	Location	Exposure Pathway	Potential Receptor	Probability of Exposure	Details
Human Health					
Asbestos, Hydrocarbon	Potential Made	Ingestion dermal	Construction Workers.	Low	Management procedures proposed.
and metals.	Ground.	and inhalation.	Site users.	Low	Remediation proposed.
Asbestos, Hydrocarbon and metals.	Unforeseen Contamination.	Ingestion dermal and inhalation.	Construction Workers.	Dismissed.	Normal PPE will address risk.
and metals.	contamination.		Site users.	Negligible.	No source identified.
Hydrocarbon and metals.	Potential migration from off-site source.	Ingestion dermal and inhalation.	Construction Workers.	Dismissed.	No source and no exceedance of GAC.
			Site users.		
	Historic Landfill.	Inhalation & Explosive.	Construction Workers.		
Ground Gas.			Site users.	Dismissed.	No significant source identified and
	Potential Made Ground.	Inhalation & Explosive.	Construction Workers.		no significant ground gas measured.
	Ground.	Explosive.	Site users.		
Groundwater				•	
Hydrocarbon and metals.	Potential spillage on site	Vertical Migration.	Groundwater	Dismissed.	No mobile source identified.
Surface Water	I				
Hydrocarbon and metals.	Potential spillage on site	Horizontal Migration.	River Network	Dismissed.	No source or credible receptor.
Environmental Receptors	5				
		Ingestion dermal and inhalation.	Ecology.	Dismissed.	No sensitive ecology designation.
		Direct.	Archaeology.	Dismissed.	None present.
On site cont	taminants	Direct.	Geology.	Dismissed.	No sensitive receptor present.
		Phytotoxic.	Woodland.	Dismissed.	None present.
		Phytotoxic. Ingestion dermal and inhalation.	Crops. Livestock.	Dismissed. Dismissed.	No source identified. No source identified.
Building Services					
		Direct.	Historic Buildings.	Dismissed.	None present.
On site cont	taminants	Direct.	Proposed Buildings.	Dismissed.	No source identified.
		Permeate into pipework.	Water Pipes.	Dismissed.	No significant source identified.

- 9.17 Elevated Lead, Arsenic and PAH have been identified and it is recommended that remediation is undertaken.
- 9.18 Within areas of buildings and pavements the use of hardstanding will provide remediation by breaking the potential pollutant linkage. Within proposed soft landscape areas it is

recommended that clean cover soils are provided comprising 600mm in domestic garden areas and 400mm in communal areas over a geotextile no dig layer. Validation of the cover soils should be undertaken using hand pits with testing of cover soils.

- 9.19 Asbestos contaminated material has been identified during the ground investigation and it is possible that further material could be encountered during construction works. The use of clean cover soils discussed above will provide remediation to protect future site users. Measures should to be incorporated in to the Contractors Construction Stage Health and Safety Plan and asbestos management plan as required under the Construction Design and Management (CDM) Regulations to mitigate risk to construction works. Measures may include:
 - Designing temporary works to minimise disturbance of the Back fill material;
 - Separating material and disposal of soils containing asbestos;
 - Wetting down during excavation;
 - Sheeting of stockpiles where asbestos is suspected;
 - Testing of soils and off-site disposal of any soils found or suspected of containing asbestos;
 - Preventing access to the construction site by members of the public;
 - Use of good hygiene measures, including washing down of plant; and
 - Use of appropriate PPE, including face masks..
- 9.20 If unforeseen contamination is encountered during construction works such as localised spillage outside the areas investigated an Environmental consultant will be available on a 'call out' basis to undertake an assessment of risk. If 'unforeseen contamination' is encountered such as hydrocarbon contamination or solvent odours the discovery strategy will be to remove the source as it is likely to be very limited in extent or encapsulate it on site as appropriate and the Local Planning Authority advised.
- 9.21 As part of this discovery strategy it is recommended that additional investigation by trial pits is undertaken in areas of existing hardstanding where access can not currently be obtained to identify potential areas of contamination. This supplementary investigation is best undertaken following demolition works where safe access can be gained.

Waste Classification

- 9.22 Two part WAC test has been undertaken, the results of which are included in Appendix C. These show no exceedances above the inert threshold values PAH, TPH or TOC. Exceedance above leachable thresholds for Inert Waste by Antimony and Lead were recorded. In addition, asbestos above 0.1% has been recorded.
- 9.23 The Waste Management paper 2 has been updated to version 3 which states that sites which previously could be considered 'uncontaminated land' surplus soils if they did not exceed the GAC values now requires the landfill to make an appropriate assessment of the waste classification. As such final assessment, will be undertaken by the receiving landfill based on the requirements of their permit.
- 9.24 Based on the results received it is considered that Made Ground is likely to be classified as Stable Non Reactive Waste.

10.0 GEOTECHNICAL ASSESSMENT

Proposed Development

- 10.1 The proposed development comprises a mixture of residential houses with domestic gardens and apartment blocks. Structural loadings are not known but assumed to be 75kN/m wall run for houses.
- 10.2 It is considered that the scheme meets the criteria of Geotechnical Category 1 of Eurocode 7.

Ground Conditions

- 10.3 Ground Conditions comprise Made Ground over firm clay and loose becoming dense with depth sand and gravel. This is underlain by London Clay comprising stiff clay.
- 10.4 Groundwater was encountered at depths of between 2.2m to 4.3 bgl.

Site Preparation

- 10.5 The site should be cleared and any vegetation below areas of proposed development stripped in accordance with Series 200 of the Specification for Highway Works. This should include:
 - Any redundant services should be sealed off and grubbed out and replaced with suitable compacted engineered fill; and
 - Any tree roots should be grubbed out.

Foundations

- 10.6 It is considered that conventional strip foundations should be suitable for low rise buildings with wall loadings of 75kN/m or les assuming an allowable bearing capacity of 100kN/m² for natural soils at depths of 1.5m bgl. Within the natural firm clay or medium dense sand and gravel. An assessment of likely settlements has been undertaken and these are estimated to be less than 25mm.
- 10.7 Foundations may need to be stepped down locally where Made Ground is deeper. Foundations may also need to be deepened in accordance with NHBC requirements for building near trees. Foundations should be designed assuming soils of moderate shrinkage potential. It is recommended that foundations are reinforced to allow them to span both clay and granular soils.

- 10.8 No evidence of desiccation was noted.
- 10.9 It is likely that apartment blocks and structures with wall loadings above 75kN per m will require piled foundations.
- 10.10 For preliminary purposes and an initial pile assessment has been undertaken using the following assumptions:
 - Upper 1.5m is ignored.
 - Soil properties have been taken from the ground investigation and laboratory testing.
 - A global factor of safety of 2.5 has been used, together with factors of 1.5 on shaft resistance and 3 on base resistance.

Dile douth (m hal)		Working Load kN				
Pile depth (m bgl)	200mm	250mm	300mm	350mm	450mm	600mm
10	80	100	125	150	200	300
15	150	180	235	280	370	530
20	220	290	350	420	560	770
25	320	400	500	590	780	1080

10.11 The following preliminary pile working loads have been calculated:

10.12 Final design should be undertaken by a specialist piling contractor who cause case studies to negotiate more economic pile designs.

Ground Floor Slab

10.13 Based on thickness of Made Ground suspended floor slabs are recommended.

Pavement Construction

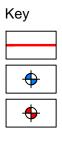
- 10.14 An assessment of the likely California Bearing Ratio (CBR) has been assessed from the following sources:
 - Description of the materials encountered in the exploratory holes; and
 - Guidance given in HD25/94.
- 10.15 Based on the above it is considered that an equilibrium CBR of 3% is suitable.
- 10.16 It is recommended that the sub-formation is proof rolled with any soft materials being excavated and replaced with suitable compacted capping.
- 10.17 Soils are not considered to be frost susceptible.

Drainage

- 10.18 Soakaway drainage maybe feasiable. If soil infiltration is to be used as part of a SuDS train then BRE 365 soakaway tests should be undertaken. Given the public access to the site it is recommended that any soakaway testing is undertaken once possession has been taken.
- 10.19 Chemical results should be provided to the water authority to confirm the design of potable water supply pipes.

Buried Concrete

10.20 Results of the sulphate and pH testing indicate that shallow soils have soluble sulphate concentrations are generally less than 0.5 g/l consistent with DS1 Conditions. Samples from the London Clay below 6m bgl recorded a concentration above 0.5 g/l within the London Clay at 25m bgl but the soils have a neutral pH. Taking account of pH and sulphate concentrations it is considered that shallow buried concrete can be deigned to Class AC1-s.


Excavation and Materials Re-Use

- 10.21 Site observations indicated that excavations should be feasible in the near surface. Where access is required the excavations should be designed in accordance with CIRIA RR97.
- 10.22 Significant dewatering of excavations is not likely to be required.

DRAWINGS

Site Boundary

Window Sampler Locations (WS)

Borehole Locations (BH) (BH1 - BH6)

Samuel House, 5 Fox Valley Way, Stocksbridge, Sheffield, S36 2AA

CLIENT:

Hill Partnership

SCALE:

PROJECT REF: CRM.1027.087

1:1000@A3

DRAWN: MG

SR

CHECKED:

DATE: Aug 2021

PROJECT:

Richmond

TITLE:

Site Plan

DRAWING NO:

CRM.1027.087.GE.D.001.A

Appendix D: Existing Drainage Information

Cornerstone Projects LTD 91Market Street HOYLAKE WIRRAL CH47 5AA

Search address supplied

Ham Close

Your reference20106Our referenceALS/ALS Standard/2017_3577459

Search date

25 May 2017

Notification of Price Changes...

From **1 September 2016** Thames Water Property Searches will be increasing the prices of its Asset Location Searches. This will be the first price rise in three years and is in line with the RPI at 1.84%. The increase follows significant capital investment in improving our systems and infrastructure.

Enquiries received with a higher payment prior to 1 September 2016 will be non-refundable. For further details on the price increase please visit our website at

www.thameswater-propertysearches.co.uk

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0845 070 9148

Search address supplied: Ham Close,

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Waste Water Services

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T0845 070 9148<u>Esearches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T0845 070 9148<u>Esearches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

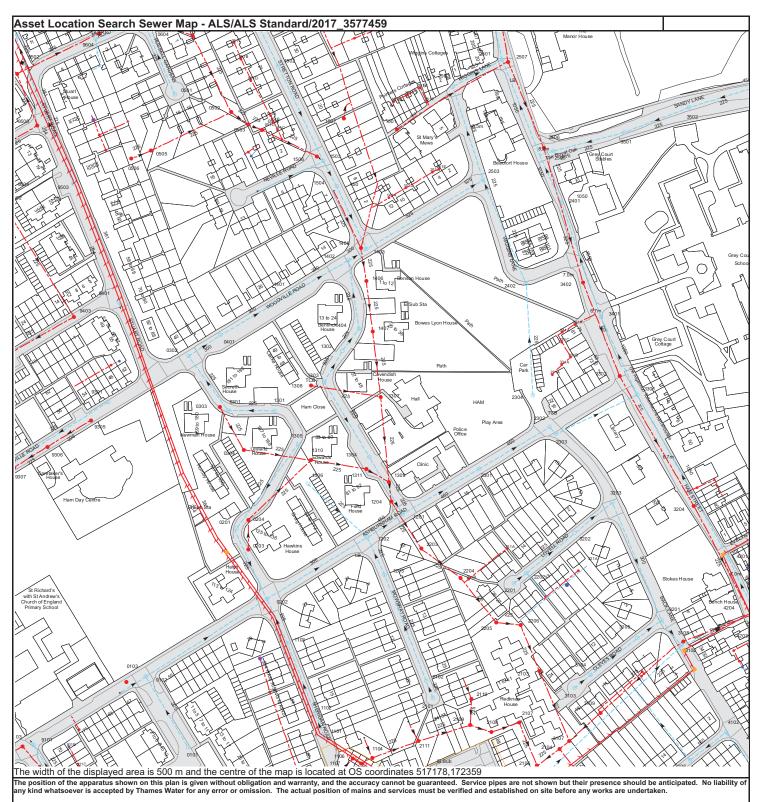
Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

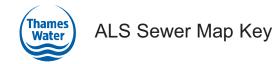

Tel: 0845 850 2777 Email: developer.services@thameswater.co.uk

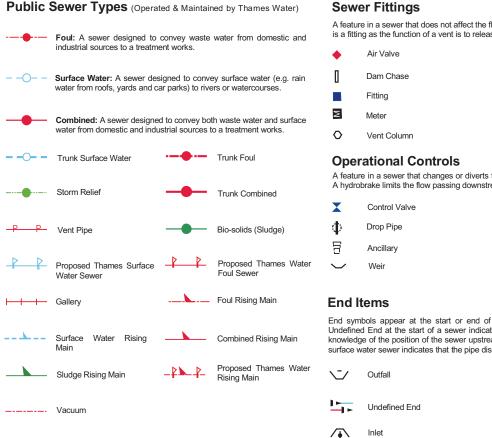
Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0845 850 2777 Email: developer.services@thameswater.co.uk




Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level
061C	n/a	n/a
9604	n/a	n/a
9602	n/a	n/a
0605	n/a	n/a
9603	n/a	n/a
251F	n/a	n/a
151E	n/a	n/a
151F	n/a	n/a
251G	n/a	n/a
2502	n/a	n/a
2507	n/a	n/a
2501	n/a	n/a
161C	n/a	n/a
241A	n/a	n/a
1407	7.25	4.23
1404	7.12	5.32
341A	n/a	n/a
3401	6.69	3.13
1401	7.15	5.13
2402	7.79	5.11
3402	6.96	4.06
1406	7.44	4.41
1402	7.62	4.78
1403	7.83	4.74
1405	7.83	4.74
2401	7.66	3.12
141A	n/a	5.12 n/a
151D	n/a	n/a
1504		
	n/a	n/a
2503	n/a	n/a
251A	n/a	n/a
251E	n/a	n/a
1503	n/a	n/a
1506	n/a	n/a
2505	n/a	n/a
2506	n/a	n/a
3501	n/a	n/a
1501	n/a	n/a
1507	n/a	n/a
3502	n/a	n/a
9507	n/a	n/a
9502	n/a	n/a
9506	n/a	n/a
9503	n/a	n/a
9403	7.6	6.61
951D	n/a	n/a
951F		
	n/a	n/a
951A	n/a	n/a
951B	n/a	n/a
9401	n/a	n/a
0506	n/a	n/a
0505	n/a	n/a
0501	n/a	n/a
0401	7.29	5.52
0502	n/a	n/a
051B	n/a	n/a
0503	n/a	n/a
051F	n/a	n/a
051D	n/a	n/a
051E	n/a	n/a
0504	n/a n/a	n/a
151A	n/a n/a	n/a n/a
151B		
	n/a	n/a
051C	n/a	n/a
1502	n/a	n/a
151C	n/a	n/a
1202	6.83	4.76
3202	6.5	5.1
1201	6.81	4.67
3204	6.62	3.75
3203	6.49	4.88
1204	6.8	3.77
321B	n/a	n/a
1306	6.8	5.1
1309	6.8	4.07
431A	n/a	n/a
2301	6.79	4.46
1311	6.94	4.27
1310	7.23	5.3
1304	6.94	5.27
2303	6.73	4.24
2302	6.73	4.27
1307 2304	6.95	4.07
	6.99	5.11
	6.59	3.21
3301		4.77
3301 1308	7.26	
3301 1308 1303	7.26 7.12	5.31
3301 1308 1303 3302	7.26 7.12 6.62	5.31 3.75
3301 1308 1303 3302 231A	7.26 7.12 6.62 n/a	5.31 3.75 n/a
2304 3301 1308 1303 3302 231A 331A 331B	7.26 7.12 6.62	5.31 3.75

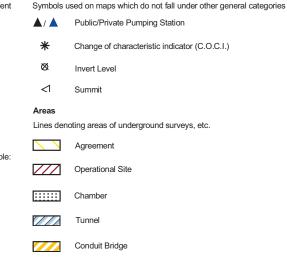
Manhole Reference	Manhole Cover Level	Manhole Invert Level
1302	7.04	5.32
331C	n/a	n/a
1203	6.92	5.23
2203	6.91	3.7
2204	n/a	n/a
221B	n/a	n/a
2205	6.7	3.2
221A	n/a	n/a
2201	6.37	5
2206	6.58	3.17
2202	6.38	4.95
221E 221C	n/a n/a	n/a n/a
221D	n/a	n/a
321C	n/a	n/a
321A	n/a	n/a
3105	6.47	4.76
311C	n/a	n/a
3201	6.61	4.66
3102	6.7	4.63
3108	6.78	2.95
4201	6.92	3.31
411F	n/a	n/a
411G	n/a	n/a
411C	n/a	n/a
421A	n/a	n/a
0102	6.04	5.48
011A	n/a	n/a
1103	7	5.23
0202	7.14	5.11
0203	n/a	n/a
0201	7.16	5.56
0204	7.14	5.74
0304	7.35	5.57
9306	7.72	5.87
1305	7.16	6
9305	7.7	5.97
1301	7.2	6.29
0301	7.32	6.1
0303	7.34	5.8
9301	n/a	n/a
931B	n/a	n/a
931A	n/a	n/a
0302	7.48	5.68
3106	6.77	5.27
2104	6.53	2.52
3107	6.58	2.6
4102	6.95	5.59
3109	6.66	2.7
3103 211B	6.37	5
311B 3104	n/a 6.38	n/a 4.95
311A	n/a	4.95 n/a
1102	6.83	5.42
1102	6.81	5.48
1106	n/a	n/a
1105	n/a	n/a
1104	n/a	n/a
2111	n/a	n/a
2102	6.7	5.28
2101	6.72	5.39
2109	7.6	3.2
2110	6.8	3.27
2108	6.58	3.11
2107	6.51	3
2105	7.59	2.48
2103	6.54	2.94
0101	7.92	5.79
911B	n/a	n/a
9103	7.26	4.47
9101	n/a	n/a
911D	n/a	n/a
	n/a	n/a
111A		
	n/a	n/a
111A		n/a
111A 0103	n/a	
111A 0103 The position of the apparatus shown on this plan		curacy cannot be guaranteed. Service pipes are no

Sewer Fittings

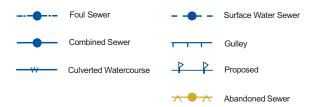
A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.


6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole

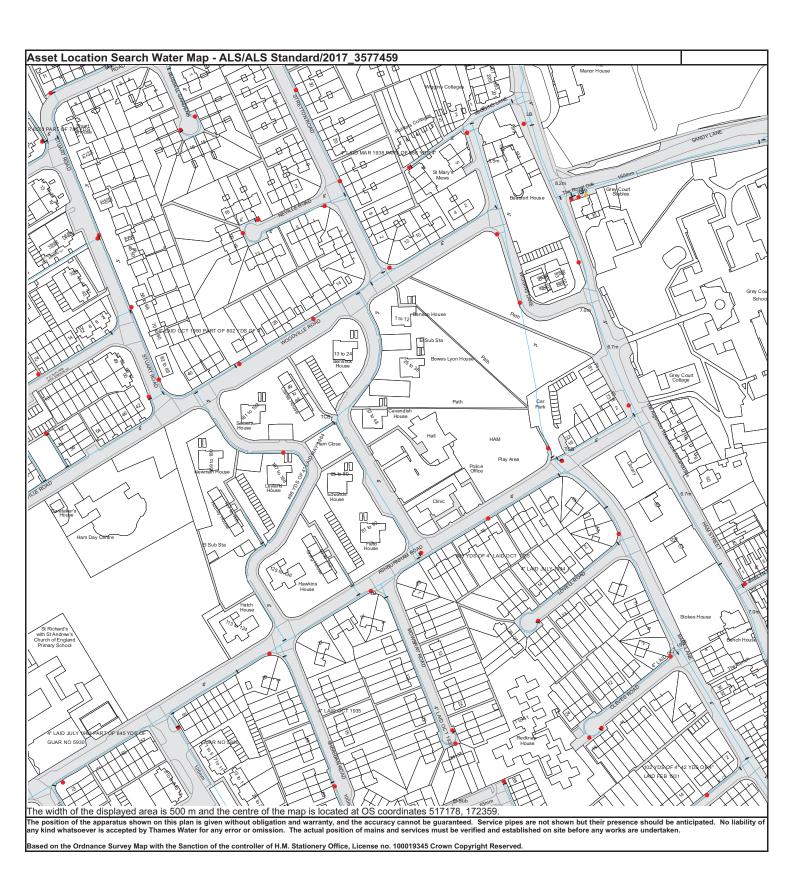
reference number and should not be taken as a measurement. If you are


unsure about any text or symbology present on the plan, please contact a

member of Property Insight on 0845 070 9148.

Other Symbols

Other Sewer Types (Not Operated or Maintained by Thames Water)


Notes:

1) All levels associated with the plans are to Ordnance Datum Newlyn.

2) All measurements on the plans are metric.

- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

Thames Water Utilities Ltd. Property Searches, PO Box 3189, Slough SL1 4W. DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk | www.thameswater-propertysearches.co.uk

ALS Water Map Key

Water Pipes (Operated & Maintained by Thames Water)

- Distribution Main: The most common pipe shown on water maps.
 With few exceptions, domestic connections are only made to
 distribution mains.
- Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
- **Supply Main:** A supply main indicates that the water main is used as a supply for a single property or group of properties.
- SFIRE
 Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
- **Metered Pipe:** A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.
 - Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.
 - Proposed Main: A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.

PIPE DIAMETER	DEPTH BELOW GROUND
Up to 300mm (12")	900mm (3')
300mm - 600mm (12" - 24")	1100mm (3' 8")
600mm and bigger (24" plus)	1200mm (4')

Valves General PurposeValve Air Valve Pressure ControlValve

X Customer Valve

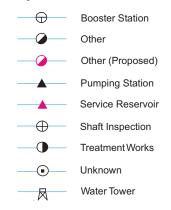
Hydrants

Single Hydrant

Meters

Meter

End Items


 \cap

Symbol indicating what happens at the end of L a water main. Blank Flange Capped End

Emptying Pit

- Manifold
- —— Fire Supply

Operational Sites

Other Symbols

Data Logger

Other Water Pipes (Not Operated or Maintained by Thames Water)

Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.

 Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater.propertysearches.co.uk</u>

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Karol Gyt	Da		Site I	Details		
Site name:	Ham Clos			Latitue	de:	51.43758° N	
				Longi	tude:	0.31669° W	
Site location:	Richmon						
in line with Environme SC030219 (2013) , th	nt Agency gu e SuDS Manı ormation on g	idance "Rainfall runoff n ual C753 (Ciria, 2015) a yreenfield runoff rates m	nanagement for de	ory standards for SuDS	ence:	253435498 Jan 17 2022 16:13	
Runoff estimation	on approa	ch FEH Statistica	al				
Site characteris	tics			Notes			
Total site area (ha):	: 1			(1) Is Q _{BAR} < 2.0 l/s/	ha?		
Methodology				(1) 13 $QBAR < 2.0 1/3/1$			
Q _{MED} estimation m	nethod:	Calculate from BFI a	and SAAR	When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.			
BFI and SPR meth	nod:	Calculate from dom	inant				
HOST class:		HOST 12					
BFI / BFIHOST:		0.271		(2) Are flow rates < 5	5.0 l/s?		
Q _{MED} (I/s):		3.22		M/bara flaur ratas are	loss than E O I/	a concert for discharge is	
Q _{BAR} / Q _{MED} facto	r:	1.14				s consent for discharge is n vegetation and other	
Hydrological ch	aracterist	i cs Default	Edited			flow rates may be set d by using appropriate	
SAAR (mm):		599	599	drainage elements.			
Hydrological regio	n:	6	6	(3) Is SPR/SPRHOS	T < 0.22		
Growth curve facto	or 1 year:	0.85	0.85	(3) 15 35 8/35 8 105	$1 \ge 0.3$		
Growth curve facto	or 30 years	2.3	2.3	Where groundwater		-	
Growth curve facto	or 100 year	's: 3.19	3.19	soakaways to avoid preferred for disposa	-		
Growth curve facto	or 200 year	's: 3.74	3.74				

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	3.66	3.66
1 in 1 year (l/s):	3.11	3.11
1 in 30 years (l/s):	8.41	8.41
1 in 100 year (l/s):	11.67	11.67
1 in 200 years (l/s):	13.68	13.68

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

	ing Engine		(Brist	01)				Page 1
St James's C	ourt, Suit	te B						
round Floor	West, St	James						
ristol, BS1	3LH							_ Micro
ate 26/01/2			Des	lgned b	v KGv	ba		
File OUTFALL		T.S.(W		cked by				Drainac
		<u> </u>		cce Con		2010 -	1	-
innovyze			3001			2019.1	L	
	Cummo art of	Deculte	for 1	0.0	Dota	m Do	ad (1409	-)
	Summary of	Results	TOLI	uu year	. ketu	in re	1100 (+403	5)
	c	Storm	Max	Max	Max	Max	Status	
		Event		Depth Co				
			(m)	(m)		(m³)		
		min Summer				92.1		
		min Summer				116.1 136.7		
		min Summer min Summer			6.0 6.0			
		min Summer			6.0			
		min Summer			6.0			
		min Summer				200.0	0 K	
		min Summer			6.0			
		min Summer				206.6		
		min Summer min Summer			6.0 6.0	202.1		
		min Summer min Summer			6.0 6.0			
		min Summer			6.0			
	2880	min Summer	8.191	0.191	5.8			
	4320	min Summer	8.122	0.122	5.0	38.0	O K	
		min Summer				30.7		
		min Summer			3.3			
		min Summer min Summer				24.6 24.1		
		min Winter				103.5		
	30	min Winter	8.419	0.419	6.0	130.7	ОК	
		torm	Rain			-	ime-Peak	
	E	vent	(mm/hr)	Volume			(mins)	
				(m³)	(m	~)		
	15 m	in Summer	171 000			07 0	18	
			1/1.920	0.0) 2	207.9		
		in Summer	110.600	0.0) 2	235.5	33	
	60 m	in Summer	110.600 67.760	0.(0.() 2) 2	235.5 289.5	33 62	
	60 m 120 m	in Summer in Summer	110.600 67.760 43.120	0.(0.(0.() 2) 2) 3	235.5 289.5 330.8	33 62 122	
	60 m 120 m 180 m	in Summer in Summer in Summer	110.600 67.760 43.120 32.548	0.(0.(0.(0.(2 2 2 2 3 3 3	235.5 289.5 330.8 356.3	33 62 122 182	
	60 m 120 m 180 m 240 m	in Summer in Summer	110.600 67.760 43.120 32.548 26.390	0.0 0.0 0.0 0.0	0 2 0 2 0 3 0 3 0 3 0 3	235.5 289.5 330.8	33 62 122	
	60 m 120 m 180 m 240 m 360 m	in Summer in Summer in Summer	110.600 67.760 43.120 32.548 26.390 19.297	0.0 0.0 0.0 0.0 0.0	D 2 D 2 D 3 D 3 D 3 D 3	235.5 289.5 330.8 356.3 374.0	33 62 122 182 242	
	60 m 120 m 180 m 240 m 360 m 480 m	in Summer in Summer in Summer in Summer in Summer in Summer	110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635		D 2 D 2 D 3 D 3 D 3 D 3 D 3 D 3 D 3 D 3 D 3 D 4 D 4	235.5 289.5 330.8 356.3 374.0 396.8 410.7 420.4	33 62 122 182 242 362 482 584	
	60 m 120 m 180 m 240 m 360 m 480 m 600 m 720 m	in Summer in Summer in Summer in Summer in Summer in Summer in Summer	110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803	0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(D 2 D 2 D 3 D 3 D 3 D 3 D 3 D 3 D 4 D 4 D 4	235.5 289.5 330.8 356.3 374.0 396.8 410.7 420.4 427.8	33 62 122 182 242 362 482 584 614	
	60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m	in Summer in Summer in Summer in Summer in Summer in Summer in Summer in Summer	110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400		D 2 D 2 D 3 D 3 D 3 D 3 D 3 D 4 D 4 D 4 D 4 D 4	235.5 289.5 330.8 356.3 374.0 396.8 410.7 420.4 427.8 438.4	33 62 122 182 242 362 482 584 614 676	
	60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m	in Summer in Summer in Summer in Summer in Summer in Summer in Summer in Summer in Summer	110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851		D 2 D 2 D 3 D 3 D 3 D 3 D 4 D 4 D 4 D 4 D 4 D 4	235.5 289.5 330.8 356.3 374.0 396.8 410.7 420.4 427.8 438.4 451.9	33 62 122 182 242 362 482 584 614 676 896	
	60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m 2160 m	in Summer in Summer in Summer in Summer in Summer in Summer in Summer in Summer	110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400		20 2 20 3 20 3 20 3 20 3 20 3 20 3 20 3 20 3 20 3 20 3 20 3 20 4 20 4 20 4 20 4 20 4	235.5 289.5 330.8 356.3 374.0 396.8 410.7 420.4 427.8 438.4	33 62 122 182 242 362 482 584 614 676	
	60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m 2160 m	in Summer in Summer in Summer in Summer in Summer in Summer in Summer in Summer in Summer in Summer	110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052		D 2 D 2 D 3 D 3 D 3 D 3 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4	235.5 289.5 330.8 356.3 374.0 396.8 410.7 420.4 427.8 427.8 438.4 451.9 468.1	33 62 122 182 242 362 482 584 614 676 896 1236	
	60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m	in Summer in Summer	110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124		D 2 D 2 D 3 D 3 D 3 D 3 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4	235.5 289.5 330.8 356.3 374.0 396.8 410.7 420.4 427.8 427.8 438.4 451.9 468.1 477.1	33 62 122 182 242 362 482 584 614 676 896 1236 1560	
	60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m 5760 m	in Summer in Summer	110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404		D 2 D 2 D 3 D 3 D 3 D 3 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 5 D 5	235.5 289.5 330.8 356.3 374.0 396.8 410.7 420.4 427.8 438.4 451.9 468.1 477.1 491.5 505.7 518.9	33 62 122 182 242 362 482 584 614 676 896 1236 1560 2244 2944 3672	
	60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m 2880 m 4320 m 5760 m 7200 m	in Summer in Summer	110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211		D 2 D 2 D 3 D 3 D 3 D 3 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 5 D 5	235.5 289.5 330.8 356.3 374.0 396.8 410.7 420.4 427.8 438.4 451.9 468.1 477.1 491.5 505.7 518.9 531.9	33 62 122 182 242 362 482 584 614 676 896 1236 1560 2244 2944 3672 4408	
	60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m 2880 m 4320 m 5760 m 7200 m 8640 m	in Summer in Summer	110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211 1.073		D 2 D 2 D 3 D 3 D 3 D 3 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 5 D 5 D 5 D 5 D 5 D 5	235.5 289.5 330.8 356.3 374.0 396.8 410.7 420.4 427.8 438.4 451.9 468.1 477.1 491.5 505.7 518.9 531.9 544.4	33 62 122 182 242 362 482 584 614 676 896 1236 1560 2244 2944 3672 4408 512	
	60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m 2880 m 4320 m 5760 m 7200 m 8640 m 10080 m	in Summer in Summer	110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211 1.073 171.920		D 2 D 2 D 3 D 3 D 3 D 3 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 5 D 5 D 5 D 5 D 5 D 5 D 5 D 5 D 5 D 5	235.5 289.5 330.8 356.3 374.0 396.8 410.7 420.4 427.8 438.4 451.9 468.1 477.1 491.5 505.7 518.9 531.9	33 62 122 182 242 362 482 584 614 676 896 1236 1560 2244 2944 3672 4408	

	ting Enginee		(DIISC	01)				Page 2
	Court, Suite							
Ground Floc	or West, St J	ames	•					
Bristol, BS	1 3LH							_ Micro
Date 26/01/	2022 14:03		Desi	igned b	y KGy	ba		
File OUTFAT	L 1A - 6.0 L	S (W		cked by				Drainago
				rce Con		2010 1		
Innovyze			5001		LIOI	2019.1	-	
	~ ~ ~		c 1			_		
	Summary of	Results	for l	00 year	Retu	irn Pe:	riod (+40%)	-
		orm	Max		Max	Max	Status	
	EV	ent		Depth Co				
			(m)	(m) ((1/s)	(m³)		
	60 m.	in Winter	8.495	0.495	6.0	154.6	ОК	
	120 m.	in Winter	8.597	0.597	6.0	186.1	O K	
	180 mi	in Winter	8.646	0.646	6.0	201.6	ΟK	
	240 mi	in Winter	8.684	0.684	6.0	213.3	O K	
		in Winter			6.0			
		in Winter			6.0			
		in Winter				234.8		
		in Winter in Winter			6.0 6.0			
		in Winter in Winter				156.6		
		in Winter				80.1		
	2880 m.	in Winter	8.145	0.145	5.5	45.2		
	4320 m.	in Winter	8.099	0.099	4.0	30.7	0 K	
	5760 m.	in Winter	8.082	0.082		25.5		
		in Winter				24.8		
		in Winter in Winter				24.3 24.0		
	Sto Eve		Rain (mm/hr)	Flooded Volume		harge T ume	ime-Peak (mins)	
				(m³)	(m	13)		
	60 mir	n Winter	67.760	0.0		307.7	62	
		n Winter n Winter				307.7 353.9	62 120	
	120 mir			0.0	3			
	120 mir 180 mir 240 mir	n Winter n Winter n Winter	43.120 32.548 26.390	0.0 0.0 0.0		353.9 382.5 402.3	120 178 238	
	120 mir 180 mir 240 mir 360 mir	h Winter h Winter h Winter h Winter	43.120 32.548 26.390 19.297	0.0 0.0 0.0 0.0		353.9 382.5 402.3 427.9	120 178 238 354	
	120 mir 180 mir 240 mir 360 mir 480 mir	h Winter h Winter h Winter h Winter h Winter	43.120 32.548 26.390 19.297 15.250	0.0 0.0 0.0 0.0 0.0		353.9 382.5 402.3 427.9 443.4	120 178 238 354 468	
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir	h Winter h Winter h Winter h Winter h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635	0.0 0.0 0.0 0.0 0.0 0.0		353.9 382.5 402.3 427.9 443.4 454.3	120 178 238 354 468 574	
	120 min 180 min 240 min 360 min 480 min 600 min 720 min	h Winter h Winter h Winter h Winter h Winter h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803	0.0 0.0 0.0 0.0 0.0 0.0 0.0		353.9 382.5 402.3 427.9 443.4 454.3 462.6	120 178 238 354 468 574 664	
	120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min	h Winter h Winter h Winter h Winter h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635			353.9 382.5 402.3 427.9 443.4 454.3	120 178 238 354 468 574	
	120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min	h Winter h Winter h Winter h Winter h Winter h Winter h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		353.9 382.5 402.3 427.9 443.4 454.3 462.6 474.5	120 178 238 354 468 574 664 738	
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir	h Winter h Winter h Winter h Winter h Winter h Winter h Winter h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124			353.9 382.5 402.3 427.9 443.4 454.3 462.6 474.5 489.5 507.2 517.3	120 178 238 354 468 574 664 738 968 1280 1560	
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir	h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176			353.9 382.5 402.3 427.9 443.4 454.3 462.6 474.5 489.5 507.2 517.3 533.5	120 178 238 354 468 574 664 738 968 1280 1560 2240	
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir	h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693			353.9 382.5 402.3 427.9 443.4 454.3 462.6 474.5 489.5 507.2 517.3 533.5 549.3	120 178 238 354 468 574 664 738 968 1280 1560 2240 520	
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir	h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404			353.9 382.5 402.3 427.9 443.4 454.3 462.6 474.5 489.5 507.2 517.3 533.5 549.3 564.1	120 178 238 354 468 574 664 738 968 1280 1560 2240 520 528	
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir	h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211			353.9 382.5 402.3 427.9 443.4 454.3 462.6 474.5 489.5 507.2 517.3 533.5 549.3 564.1 578.6	120 178 238 354 468 574 664 738 968 1280 1560 2240 520 528 520	
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir	h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404			353.9 382.5 402.3 427.9 443.4 454.3 462.6 474.5 489.5 507.2 517.3 533.5 549.3 564.1	120 178 238 354 468 574 664 738 968 1280 1560 2240 520 528	
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir	h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211			353.9 382.5 402.3 427.9 443.4 454.3 462.6 474.5 489.5 507.2 517.3 533.5 549.3 564.1 578.6	120 178 238 354 468 574 664 738 968 1280 1560 2240 520 528 520	
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir	h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211			353.9 382.5 402.3 427.9 443.4 454.3 462.6 474.5 489.5 507.2 517.3 533.5 549.3 564.1 578.6	120 178 238 354 468 574 664 738 968 1280 1560 2240 520 528 520	
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir	h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211			353.9 382.5 402.3 427.9 443.4 454.3 462.6 474.5 489.5 507.2 517.3 533.5 549.3 564.1 578.6	120 178 238 354 468 574 664 738 968 1280 1560 2240 520 528 520	
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir	h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211			353.9 382.5 402.3 427.9 443.4 454.3 462.6 474.5 489.5 507.2 517.3 533.5 549.3 564.1 578.6	120 178 238 354 468 574 664 738 968 1280 1560 2240 520 528 520	
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir	h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211			353.9 382.5 402.3 427.9 443.4 454.3 462.6 474.5 489.5 507.2 517.3 533.5 549.3 564.1 578.6	120 178 238 354 468 574 664 738 968 1280 1560 2240 520 528 520	
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir	h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211			353.9 382.5 402.3 427.9 443.4 454.3 462.6 474.5 489.5 507.2 517.3 533.5 549.3 564.1 578.6	120 178 238 354 468 574 664 738 968 1280 1560 2240 520 528 520	
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir	h Winter h Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211 1.073			353.9 382.5 402.3 427.9 443.4 454.3 462.6 474.5 489.5 507.2 517.3 533.5 549.3 564.1 578.6	120 178 238 354 468 574 664 738 968 1280 1560 2240 520 528 520	

Tubb Consulting Engineers Ltd (B	fistol)		Page 3
t James's Court, Suite B			
round Floor West, St James			
Bristol, BS1 3LH			Mission
	Destant here		_ Micro
Date 26/01/2022 14:03	Designed by KGyba	1	Drainag
'ile OUTFALL 1A - 6.0 L_S (W	Checked by		Diamag
nnovyze	Source Control 20)19.1	
Ra	infall Details		
Rainfall Mode		FEH	
Return Period (years		100	
FEH Rainfall Versio		2013	
	on GB 541450 180700 T	Q 41450 80700	
Data Typ		Catchment	
Summer Storm		Yes	
Winter Storm		Yes	
Cv (Summer		0.750	
Cv (Winter	()	0.840	
Shortest Storm (mins		15	
Longest Storm (mins	5)	10080	
Climate Change	00	+40	
T i w	ne Area Diagram		
1 11	le Alea Diagialli		
Tota	al Area (ha) 0.298		
	me (mins) Area		
Fre	om: To: (ha)		
	0 4 0.298		

©1982-2019 Innovyze

Jubb Consulting Engineers Ltd (E	Page 4	
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:03	Designed by KGyba	Drainage
File OUTFALL 1A - 6.0 L_S (W	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time (mins)	Flow (l/s)	Time (mins)	Flow (1/s)	Time (mins)	Flow (1/s)	Time (mins)	Flow (l/s)	Time (mins)	Flow (1/s)	Time (mins)	Flow (1/s)
(11113)	(1/3)	((1/3)	(11113)	(1/3)	(11113)	(1/3)	(11113)	(1/3)	(11113)	(1/3)
2	0.0	102	0.0	202	1.6	302	2.8	402	2.8	502	2.6
4	0.0	104	0.0	204	1.7	304	2.8	404	2.8	504	2.6
6	0.0	106	0.0	206	1.8	306	2.8	406	2.8	506	2.6
8	0.0	108	0.0	208	1.8	308	2.8	408	2.8	508	2.6
10	0.0	110	0.0	210	1.9	310	2.8	410	2.8	510	2.6
12	0.0	112	0.0	212	2.0	312	2.8	412	2.8	512	2.6
14	0.0	114	0.0	214	2.0	314	2.8	414	2.8	514	2.6
16	0.0	116	0.0	216	2.1	316	2.8	416	2.8	516	2.6
18	0.0	118	0.1	218	2.1	318	2.8	418	2.8	518	2.6
20	0.0	120	0.1	220	2.2	320	2.8	420	2.8	520	2.5
22	0.0	122	0.1	222	2.2	322	2.8	422	2.8	522	2.5
24	0.0	124	0.1	224	2.3	324	2.8	424	2.8	524	2.5
26	0.0	126	0.1	226	2.3	326	2.8	426	2.8	526	2.5
28	0.0	128	0.1	228	2.4	328	2.8	428	2.8	528	2.5
30	0.0	130	0.1	230	2.4	330	2.8	430	2.8	530	2.5
32	0.0	132	0.1	232	2.4	332	2.8	432	2.8	532	2.5
34	0.0	134	0.1	234	2.5	334	2.8	434	2.8	534	2.5
36	0.0	136	0.1	236	2.5	336	2.8	436	2.8	536	2.5
38	0.0	138	0.2	238	2.6	338	2.8	438	2.8	538	2.5
40	0.0	140	0.2	240	2.6	340	2.8	440	2.8	540	2.5
42	0.0	142	0.2	242	2.6	342	2.8	442	2.8	542	2.5
44	0.0	144	0.2	244	2.6	344	2.8	444	2.8	544	2.4
46	0.0	146	0.2	246	2.7	346	2.8	446	2.8	546	2.4
48	0.0	148	0.3	248	2.7	348	2.8	448	2.8	548	2.4
50	0.0	150	0.3	250	2.7	350	2.8	450	2.8	550	2.4
52	0.0	152	0.3	252	2.7	352	2.8	452	2.8	552	2.4
54	0.0	154	0.3	254	2.8	354	2.8	454	2.8	554	2.4
56	0.0	156	0.4	256	2.8	356	2.8	456	2.8	556	2.4
58	0.0	158	0.4	258	2.8	358	2.8	458	2.8	558	2.4
60	0.0	160	0.5	260	2.8	360	2.8	460	2.8	560	2.4
62	0.0	162	0.5	262	2.8	362	2.8	462	2.8	562	2.4
64	0.0	164	0.5	264	2.8	364	2.8	464	2.8	564	2.4
66	0.0	166	0.6	266	2.8	366	2.8	466	2.8	566	2.4
68	0.0	168	0.6	268	2.8	368	2.8	468	2.7	568	2.4
70	0.0	170	0.7	270	2.8	370	2.8	470	2.7	570	2.4
72	0.0	172	0.7	272	2.8	372	2.8	472	2.7	572	2.4
74	0.0	174	0.8	274	2.8	374	2.8	474	2.7	574	2.3
76	0.0	176	0.8	276	2.8	376	2.8	476	2.7	576	2.3
78	0.0	178	0.9	278	2.8	378	2.8	478	2.7	578	2.3
80	0.0	180	0.9	280	2.8	380	2.8	480	2.7	580	2.3
82	0.0	182	1.0	282	2.8	382	2.8	482	2.7	582	2.3
84	0.0	184	1.1	284	2.8	384	2.8	484	2.7	584	2.3
86	0.0	186	1.1	286	2.8	386	2.8	486	2.7	586	2.3
88	0.0	188	1.2	288	2.8	388	2.8	488	2.7	588	2.3
90	0.0	190	1.2	290	2.8	390	2.8	490	2.7	590	2.3
92	0.0	192	1.3	292	2.8	392	2.8	492	2.7	592	2.3
94	0.0	194	1.4	294	2.8	394	2.8	494	2.6	594	2.3
96	0.0	196	1.4	296	2.8	396	2.8	496	2.6	596	2.3
98	0.0	198	1.5	298	2.8	398	2.8	498	2.6		2.3
100	0.0	200	1.6	300	2.8	400	2.8	500	2.6		2.2
				©1983							

Jubb Consulting Engineers Ltd (B	ristol)	Page 5
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:03	Designed by KGyba	Drainage
File OUTFALL 1A - 6.0 L_S (W	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(l/s)	(mins)	(l/s)	(mins)	(1/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)
602	2.2	702	1.8	802	1.5	902	1.2	1002	1.0	1102	0.9
604	2.2	704	1.8	804	1.5	904	1.2	1004	1.0	1104	0.9
606	2.2	706	1.8	806	1.5	906	1.2	1006	1.0	1106	0.9
608	2.2	708	1.8	808	1.5	908	1.2	1008	1.0	1108	0.9
610	2.2	710	1.8	810	1.5	910	1.2	1010	1.0	1110	0.8
612	2.2	712	1.8	812	1.5	912	1.2	1010	1.0	1112	0.8
614	2.2	714	1.8	814	1.5	914	1.2	1012	1.0	1114	0.8
616	2.2	716	1.8	816	1.5	916	1.2	1016	1.0	1116	0.8
618	2.2	718	1.8	818	1.5	918	1.2	1018	1.0	1118	0.8
620	2.2	720	1.8	820	1.5	920	1.2	1020	1.0	1120	0.8
622	2.1	722	1.8	822	1.5	922	1.2	1022	1.0	1122	0.8
624	2.1	724	1.8	824	1.4	924	1.2	1022	1.0	1124	0.8
626	2.1	726	1.8	826	1.4	926	1.2	1024	1.0	1124	0.8
628	2.1	728	1.8	828	1.4	928	1.2	1020	1.0	1120	0.8
630	2.1	730	1.7	830	1.4	930	1.2	1020	1.0	1120	0.8
632	2.1	732	1.7	832	1.4	932	1.2	1030	1.0	1130	0.8
634	2.1	734	1.7	834	1.4	934	1.2	1032	1.0	1134	0.8
636	2.1	736	1.7	836	1.4	936	1.2	1034	1.0	1134	0.8
638	2.1	738	1.7	838	1.4	938	1.2	1030	1.0	1130	0.8
640	2.1	740	1.7	840	1.4	940	1.2	1030	1.0	1140	0.8
642	2.1	740	1.7	842	1.4	942	1.2	1040	1.0	1140	0.8
644	2.1	744	1.7	844	1.4	944	1.2	1042	0.9	1144	0.8
646	2.1	746	1.7	846	1.4	946	1.2	1044	0.9	1144	0.8
648	2.1	748	1.7	848	1.4	948	1.1	1048	0.9	1148	0.8
650	2.0	750	1.7	850	1.4	950	1.1	1050	0.9	1150	0.8
652	2.0	752	1.7	852	1.4	952	1.1	1052	0.9	1152	0.8
654	2.0	754	1.7	854	1.4	954	1.1	1054	0.9	1154	0.8
656	2.0	756	1.7	856	1.4	956	1.1	1056	0.9	1156	0.8
658	2.0	758	1.6	858	1.3	958	1.1	1058	0.9	1158	0.8
660	2.0	760	1.6	860	1.3	960	1.1	1060	0.9	1160	0.8
662	2.0	762	1.6	862	1.3	962	1.1	1062	0.9	1162	0.8
664	2.0	764	1.6	864	1.3	964	1.1	1064	0.9	1164	0.8
666	2.0	766	1.6	866	1.3	966	1.1	1066	0.9	1166	0.8
668	2.0	768	1.6	868	1.3	968	1.1	1068	0.9	1168	0.8
670	2.0	770	1.6	870	1.3	970	1.1	1070	0.9	1170	0.8
672	2.0	772	1.6	872	1.3	972	1.1	1072	0.9	1172	0.8
674	2.0	774	1.6	874	1.3	974	1.1	1074	0.9	1174	0.8
676	1.9	776	1.6	876	1.3	976	1.1	1076	0.9	1176	0.8
678	1.9	778	1.6	878	1.3	978	1.1	1078	0.9	1178	0.8
680	1.9	780	1.6	880	1.3	980	1.1	1080	0.9	1180	0.8
682	1.9	782	1.6	882	1.3	982	1.1	1082	0.9	1182	0.8
684	1.9	784	1.6	884	1.3	984	1.1	1084	0.9	1184	0.8
686	1.9	786	1.6	886	1.3	986	1.1	1086	0.9	1186	0.7
688	1.9	788	1.6	888	1.3	988	1.1	1088	0.9	1188	0.7
690	1.9	790	1.5	890	1.3	990	1.1	1090	0.9	1190	0.7
692	1.9	792	1.5	892	1.3	992	1.0	1092	0.9	1192	0.7
694	1.9	794	1.5	894	1.3	994	1.0	1094	0.9	1194	0.7
696	1.9	796	1.5	896	1.3	996	1.0	1096	0.9		0.7
698	1.9	798	1.5		1.2	998	1.0	1098	0.9		0.7
700	1.9	800	1.5	900	1.2	1000	1.0	1100	0.9		0.7
		I.		1				1		1	

Jubb Consulting Engineers Ltd (B	ristol)	Page 6
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:03	Designed by KGyba	Drainage
File OUTFALL 1A - 6.0 L_S (W	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(l/s)										
1202	0.7	1302	0.6	1402	0.5	1502	0.5	1602	0.4	1702	0.3
1204	0.7	1304	0.6	1404	0.5	1504	0.5	1604	0.4	1704	0.3
1206	0.7	1306	0.6	1406	0.5	1506	0.5	1606	0.4	1706	0.3
1208	0.7	1308	0.6	1408	0.5	1508	0.5	1608	0.4	1708	0.3
1210	0.7	1310	0.6	1410	0.5	1510	0.5	1610	0.4	1710	0.3
1212	0.7	1312	0.6	1412	0.5	1512	0.5	1612	0.4	1712	0.3
1214	0.7	1314	0.6	1414	0.5	1514	0.4	1614	0.4	1714	0.3
1216	0.7	1316	0.6	1416	0.5	1516	0.4	1616	0.4	1716	0.3
1218	0.7	1318	0.6	1418	0.5	1518	0.4	1618	0.4	1718	0.3
1220	0.7	1320	0.6	1420	0.5	1520	0.4	1620	0.4	1720	0.3
1222	0.7	1322	0.6	1422	0.5	1522	0.4	1622	0.4	1722	0.3
1224	0.7	1324	0.6	1424	0.5	1524	0.4	1624	0.4	1724	0.3
1226	0.7	1326	0.6	1426	0.5	1526	0.4	1626	0.4	1726	0.3
1228	0.7	1328	0.6	1428	0.5	1528	0.4	1628	0.4	1728	0.3
1230	0.7	1330	0.6	1430	0.5	1530	0.4	1630	0.4	1730	0.3
1232	0.7	1332	0.6	1432	0.5	1532	0.4	1632	0.4	1732	0.3
1234	0.7	1334	0.6	1434	0.5	1534	0.4	1634	0.4	1734	0.3
1236	0.7	1336	0.6	1436	0.5	1536	0.4	1636	0.4	1736	0.3
1238	0.7	1338	0.6	1438	0.5	1538	0.4	1638	0.4	1738	0.3
1240	0.7	1340	0.6	1440	0.5	1540	0.4	1640	0.4	1740	0.3
1242	0.7	1342	0.6	1442	0.5	1542	0.4	1642	0.4	1742	0.3
1244	0.7	1344	0.6	1444	0.5	1544	0.4	1644	0.4	1744	0.3
1246	0.7	1346	0.6	1446	0.5	1546	0.4	1646	0.4	1746	0.3
1248	0.7	1348	0.6	1448	0.5	1548	0.4	1648	0.4	1748	0.3
1250	0.7	1350	0.6	1450	0.5	1550	0.4	1650	0.4	1750	0.3
1252	0.7	1352	0.6	1452	0.5	1552	0.4	1652	0.4	1752	0.3
1254	0.7	1354	0.6	1454	0.5	1554	0.4	1654	0.4	1754	0.3
1256	0.7	1356	0.6	1456	0.5	1556	0.4	1656	0.4	1756	0.3
1258	0.7	1358	0.6	1458	0.5	1558	0.4	1658	0.4	1758	0.3
1260	0.7	1360	0.6	1460	0.5	1560	0.4	1660	0.4	1760	0.3
1262	0.7	1362	0.6	1462	0.5	1562	0.4	1662	0.4	1762	0.3
1264	0.7	1364	0.6	1464	0.5	1564	0.4	1664	0.4	1764	0.3
1266	0.7	1366	0.6	1466	0.5	1566	0.4	1666	0.4	1766	0.3
1268	0.7	1368	0.6	1468	0.5	1568	0.4	1668	0.4	1768	0.3
1270	0.7	1370	0.6	1470	0.5	1570	0.4	1670	0.4	1770	0.3
1272	0.6	1372	0.6	1472	0.5	1572	0.4	1672	0.4	1772	0.3
1274	0.6	1374	0.5	1474	0.5	1574	0.4	1674	0.4	1774	0.3
1276	0.6	1376	0.5	1476	0.5	1576	0.4	1676	0.4	1776	0.3
1278	0.6	1378	0.5	1478	0.5	1578	0.4	1678	0.4	1778	0.3
1280	0.6	1380	0.5	1480	0.5	1580	0.4	1680	0.4	1780	0.3
1282	0.6	1382	0.5	1482	0.5	1582	0.4	1682	0.4	1782	0.3
1284	0.6	1384	0.5	1484	0.5	1584	0.4	1684	0.4	1784	0.3
1286	0.6	1386	0.5	1486	0.5	1586	0.4	1686	0.4	1786	0.3
1288	0.6	1388	0.5	1488	0.5	1588	0.4	1688	0.4	1788	0.3
1290	0.6	1390	0.5	1490	0.5	1590	0.4	1690	0.3	1790	0.3
1292	0.6	1392	0.5	1492	0.5	1592	0.4	1692	0.3	1792	0.3
1294	0.6	1394	0.5	1494	0.5	1594	0.4	1694	0.3	1794	0.3
1296	0.6	1396	0.5	1496	0.5	1596	0.4	1696	0.3		0.3
1298	0.6	1398	0.5	1498	0.5	1598	0.4	1698	0.3		0.3
1300	0.6	1400	0.5	1500	0.5	1600	0.4	1700	0.3	1800	0.3

Jubb Consulting Engineers Ltd (B	ristol)	Page 7
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:03	Designed by KGyba	Drainage
File OUTFALL 1A - 6.0 L_S (W	Checked by	Diamacje
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(l/s)										
1802	0.3	1902	0.3	2002	0.2	2102	0.2	2202	0.2	2302	0.2
1804	0.3	1904	0.3	2004	0.2	2104	0.2	2204	0.2	2304	0.2
1806	0.3	1906	0.3	2006	0.2	2106	0.2	2206	0.2	2306	0.2
1808	0.3	1908	0.3	2008	0.2	2108	0.2	2208	0.2	2308	0.2
1810	0.3	1910	0.3	2010	0.2	2110	0.2	2210	0.2	2310	0.2
1812	0.3	1912	0.3	2012	0.2	2112	0.2	2212	0.2	2312	0.2
1814	0.3	1914	0.3	2014	0.2	2114	0.2	2214	0.2	2314	0.2
1816	0.3	1916	0.3	2016	0.2	2116	0.2	2216	0.2	2316	0.2
1818	0.3	1918	0.3	2018	0.2	2118	0.2	2218	0.2	2318	0.2
1820	0.3	1920	0.3	2020	0.2	2120	0.2	2220	0.2	2320	0.2
1822	0.3	1922	0.3	2022	0.2	2122	0.2	2222	0.2	2322	0.2
1824	0.3	1924	0.3	2024	0.2	2124	0.2	2224	0.2	2324	0.2
1826	0.3	1926	0.3	2026	0.2	2126	0.2	2226	0.2	2326	0.2
1828	0.3	1928	0.3	2028	0.2	2128	0.2	2228	0.2	2328	0.2
1830	0.3	1930	0.3	2020	0.2	2120	0.2	2230	0.2	2320	0.2
1832	0.3	1932	0.3	2030	0.2	2130	0.2	2230	0.2	2330	0.2
1834	0.3	1934	0.3	2032	0.2	2132	0.2	2232	0.2	2332	0.2
1836	0.3	1936	0.3	2034	0.2	2134	0.2	2234	0.2	2334	0.2
1838	0.3	1938	0.3	2038	0.2	2130	0.2	2230	0.2	2338	0.2
1840	0.3	1930	0.3	2038	0.2	2130	0.2	2230	0.2	2330	0.2
1840	0.3	1940	0.3	2040	0.2	2140	0.2	2240	0.2	2340	0.2
										2342	
1844	0.3	1944 1946	0.3	2044	0.2	2144	0.2	2244	0.2		0.2
1846	0.3		0.3	2046	0.2	2146	0.2	2246	0.2	2346	0.2
1848	0.3	1948	0.3	2048	0.2	2148	0.2	2248	0.2	2348	0.2
1850	0.3	1950	0.3	2050	0.2	2150	0.2	2250	0.2	2350	0.2
1852	0.3	1952	0.3	2052	0.2 0.2	2152	0.2	2252	0.2	2352	0.2
1854	0.3	1954	0.3	2054		2154	0.2	2254	0.2	2354	0.2
1856	0.3	1956	0.3	2056	0.2	2156	0.2	2256	0.2	2356	0.2
1858	0.3	1958	0.3	2058	0.2	2158	0.2	2258	0.2	2358	0.2
1860	0.3	1960	0.3	2060	0.2	2160	0.2	2260	0.2	2360	0.2
1862	0.3	1962	0.3	2062	0.2 0.2	2162 2164	0.2 0.2	2262	0.2	2362	0.2
1864	0.3	1964	0.3	2064				2264	0.2	2364	0.2
1866	0.3 0.3	1966 1968	0.3 0.3	2066 2068	0.2 0.2	2166	0.2 0.2	2266 2268	0.2 0.2	2366 2368	0.2 0.2
1868 1870	0.3	1900	0.3	2008	0.2	2168 2170	0.2	2200	0.2	2300	0.2
1872	0.3	1972	0.3	2072	0.2	2172	0.2	2272	0.2	2372	0.2
1874	0.3	1974	0.3	2074	0.2	2174	0.2	2274	0.2	2374	0.2
1876 1878	0.3	1976 1978	0.3	2076	0.2	2176	0.2	2276	0.2	2376 2378	0.2
	0.3		0.3	2078	0.2	2178	0.2	2278	0.2		0.2
1880	0.3	1980	0.3	2080	0.2	2180	0.2	2280	0.2	2380	0.2
1882	0.3	1982	0.3	2082	0.2	2182	0.2	2282	0.2		0.2
1884	0.3	1984	0.3	2084	0.2	2184	0.2	2284	0.2		0.2
1886	0.3	1986	0.3	2086	0.2	2186	0.2	2286	0.2	2386	0.2
1888	0.3	1988	0.3	2088	0.2	2188	0.2	2288	0.2	2388	0.2
1890	0.3	1990	0.3	2090	0.2	2190	0.2	2290	0.2	2390	0.2
1892	0.3	1992	0.2	2092	0.2	2192	0.2	2292	0.2	2392	0.2
1894	0.3	1994	0.2	2094	0.2	2194	0.2	2294	0.2	2394	0.2
1896	0.3	1996	0.2	2096	0.2	2196	0.2	2296	0.2		0.2
1898	0.3	1998	0.2	2098	0.2	2198	0.2	2298	0.2		0.2
1900	0.3	2000	0.2	2100	0.2	2200	0.2	2300	0.2	2400	0.2
) Innov					

Jubb Consulting Engineers Ltd (B	ristol)	Page 8
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:03	Designed by KGyba	Drainage
File OUTFALL 1A - 6.0 L_S (W	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time (mins)	Flow (l/s)	Time (mins)	Flow (1/s)	Time (mins)	Flow (l/s)	Time (mins)	Flow (l/s)	Time (mins)	Flow (l/s)	Time (mins)	Flow (1/s)
2404	0.2	2484	0.2	2564	0.1	2644	0.1	2724	0.1	2804	0.1
2406	0.2	2486	0.2	2566	0.1	2646	0.1	2726	0.1	2806	0.1
2408	0.2	2488	0.2	2568	0.1	2648	0.1	2728	0.1	2808	0.1
2410	0.2	2490	0.2	2570	0.1	2650	0.1	2730	0.1	2810	0.1
2412	0.2	2492	0.2	2572	0.1	2652	0.1	2732	0.1	2812	0.1
2414	0.2	2494	0.2	2574	0.1	2654	0.1	2734	0.1	2814	0.1
2416	0.2	2496	0.2	2576	0.1	2656	0.1	2736	0.1	2816	0.1
2418	0.2	2498	0.2	2578	0.1	2658	0.1	2738	0.1	2818	0.1
2420	0.2	2500	0.2	2580	0.1	2660	0.1	2740	0.1	2820	0.1
2422	0.2	2502	0.2	2582	0.1	2662	0.1	2742	0.1	2822	0.1
2424	0.2	2504	0.2	2584	0.1	2664	0.1	2744	0.1	2824	0.1
2426	0.2	2506	0.1	2586	0.1	2666	0.1	2746	0.1	2826	0.1
2428	0.2	2508	0.1	2588	0.1	2668	0.1	2748	0.1	2828	0.1
2430	0.2	2510	0.1	2590	0.1	2670	0.1	2750	0.1	2830	0.1
2432	0.2	2512	0.1	2592	0.1	2672	0.1	2752	0.1	2832	0.1
2434	0.2	2514	0.1	2594	0.1	2674	0.1	2754	0.1	2834	0.1
2436	0.2	2516	0.1	2596	0.1	2676	0.1	2756	0.1	2836	0.1
2438	0.2	2518	0.1	2598	0.1	2678	0.1	2758	0.1	2838	0.1
2440	0.2	2520	0.1	2600	0.1	2680	0.1	2760	0.1	2840	0.1
2442	0.2	2522	0.1	2602	0.1	2682	0.1	2762	0.1	2842	0.1
2444	0.2	2524	0.1	2604	0.1	2684	0.1	2764	0.1	2844	0.1
2446	0.2	2526	0.1	2606	0.1	2686	0.1	2766	0.1	2846	0.1
2448	0.2	2528	0.1	2608	0.1	2688	0.1	2768	0.1	2848	0.1
2450	0.2	2530	0.1	2610	0.1	2690	0.1	2770	0.1	2850	0.1
2452	0.2	2532	0.1	2612	0.1	2692	0.1	2772	0.1	2852	0.1
2454	0.2	2534	0.1	2614	0.1	2694	0.1	2774	0.1	2854	0.1
2456	0.2	2536	0.1	2616	0.1	2696	0.1	2776	0.1	2856	0.1
2458	0.2	2538	0.1	2618	0.1	2698	0.1	2778	0.1	2858	0.1
2460	0.2	2540	0.1	2620	0.1	2700	0.1	2780	0.1	2860	0.1
2462	0.2	2542	0.1	2622	0.1	2702	0.1	2782	0.1	2862	0.1
2464	0.2	2544	0.1	2624	0.1	2704	0.1	2784	0.1	2864	0.1
2466	0.2	2546	0.1	2626	0.1	2706	0.1	2786	0.1	2866	0.1
2468	0.2	2548	0.1	2628	0.1	2708	0.1	2788	0.1	2868	0.1
2470	0.2	2550	0.1	2630	0.1	2710	0.1	2790	0.1	2870	0.1
2472	0.2	2552	0.1	2632	0.1	2712	0.1	2792	0.1	2872	0.1
2474	0.2	2554	0.1	2634	0.1	2714	0.1	2794	0.1	2874	0.1
2476	0.2	2556	0.1	2636	0.1	2716	0.1	2796	0.1	2876	0.1
2478	0.2	2558	0.1	2638	0.1	2718	0.1	2798	0.1	2878	0.1
2480	0.2	2560	0.1	2640	0.1	2720	0.1	2800	0.1	2880	0.1

	ting Engin	eers Ltd	(Brist	ol)				Page 1
St James's								
Ground Floo	r West, St	James .						
Bristol, BS	•							Micco
Date 26/01/2			Dee	igned b	V KCV	rha		_ Micro
				-		Da		Drainag
File Outfal		_s (1/5.		cked by				J
Innovyze			Sou	rce Con	trol	2019.1		
		_						
	Summary o	f Results	s for 1	00 year	Retu	ırn Pei	riod (+40%	
		Storm	Max		Max		Status	
		Event		Depth Co				
			(m)	(m)	(1/s)	(m³)		
	15	min Summe	r 8.460	0.460	10.7	144.8	O K	
	30	min Summe	r 8.578	0.578	10.7	182.1	O K	
		min Summe			10.7	213.8	0 K	
		min Summe			10.7			
		min Summe			10.7			
		min Summe: min Summe:			10.7	272.2 274.9		
		min Summe:			10.7			
		min Summe:			10.7			
		min Summe				257.4		
	960	min Summe	r 8.740	0.740	10.7	233.0	O K	
	1440	min Summe	r 8.527	0.527	10.7	166.0	O K	
		min Summe				94.6		
		min Summe			10.3			
		min Summe: min Summe:			8.2 6.4			
		min Summe:			5.3			
		min Summe			4.6			
	10080	min Summe	r 8.085	0.085	4.1	26.6	0 K	
	15	min Winte	r 8.517	0.517	10.7	162.9	O K	
	30	min Winte:	r 8.652	0.652	10.7	205.5	ОК	
	-	Storm	Rain				ime-Peak	
	-	Storm Event	Rain (mm/hr)	Volume	Vol	ume	ime-Peak (mins)	
	-				Vol			
	I		(mm/hr)	Volume (m³)	Vol (m	ume		
	15 30	Event min Summer min Summer	(mm/hr)	Volume (m ³) 0.0	Vol (m	.ume 1 ³) 264.9 308.5	(mins) 18 33	
	15 30 60	min Summer min Summer min Summer	(mm/hr) 171.920 110.600 67.760	Volume (m ³) 0.0 0.0	Vol (m	.ume 1 ³) 264.9 308.5 378.3	(mins) 18 33 62	
	15 30 60 120	min Summer min Summer min Summer min Summer	(mm/hr) 171.920 110.600 67.760 43.120	Volume (m ³) 0.0 0.0 0.0	Vol (m	ume 1 ³) 264.9 308.5 378.3 443.7	(mins) 18 33 62 122	
	15 30 60 120 180	min Summer min Summer min Summer min Summer min Summer min Summer	(mm/hr) 171.920 110.600 67.760 43.120 32.548	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Vol (m	ume 1 ³) 264.9 308.5 378.3 443.7 484.1	(mins) 18 33 62 122 180	
	15 30 60 120 180 240	min Summer min Summer min Summer min Summer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m	.ume 1 ³) 264.9 308.5 378.3 443.7 484.1 512.1	(mins) 18 33 62 122 180 240	
	15 30 60 120 180 240 360	min Summer min Summer min Summer min Summer min Summer min Summer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m	ume 1 ³) 264.9 308.5 378.3 443.7 484.1	(mins) 18 33 62 122 180	
	15 30 60 120 180 240 360 480	min Summer min Summer min Summer min Summer min Summer min Summer min Summer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m	<pre>.ume 1³) 264.9 308.5 378.3 443.7 484.1 512.1 548.3</pre>	(mins) 18 33 62 122 180 240 316	
	15 30 60 120 180 240 360 480 600 720	min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m)	<pre>.ume 1³) 264.9 308.5 378.3 443.7 484.1 512.1 548.3 570.3 585.7 597.3</pre>	(mins) 18 33 62 122 180 240 316 378 440 504	
	15 30 60 120 180 240 360 480 600 720 960	min Summer min Summer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m)	<pre>.ume 1³) 264.9 308.5 378.3 443.7 484.1 512.1 548.3 570.3 585.7 597.3 614.2</pre>	(mins) 18 33 62 122 180 240 316 378 440 504 636	
	15 30 60 120 180 240 360 480 600 720 960 1440	Times Summer min Summer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) () () () () () () () () () () () () ()	<pre>.ume 1³) 264.9 308.5 378.3 443.7 484.1 512.1 548.3 570.3 585.7 597.3 614.2 635.5</pre>	(mins) 18 33 62 122 180 240 316 378 440 504 636 868	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160	min Summer min Summer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052	Volume (m ³)	Vol (m) () () () () () () () () () () () () ()	<pre>.ume 1³) 264.9 308.5 378.3 443.7 484.1 512.1 548.3 570.3 585.7 597.3 614.2 635.5 658.6</pre>	(mins) 18 33 62 122 180 240 316 378 440 504 636 868 1196	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	min Summer min Summer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124	Volume (m ³)	Vol (m) () () () () () () () () () () () () ()	<pre>.ume 1³) 264.9 308.5 378.3 443.7 484.1 512.1 548.3 570.3 585.7 597.3 614.2 635.5 658.6 672.9</pre>	(mins) 18 33 62 122 180 240 316 378 440 504 636 868 1196 1528	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	min Summer min Summer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176	Volume (m ³)	Vol (m) () () () () () () () () () () () () ()	<pre>.ume 1³) 264.9 308.5 378.3 443.7 484.1 512.1 548.3 570.3 585.7 597.3 614.2 635.5 658.6</pre>	(mins) 18 33 62 122 180 240 316 378 440 504 636 868 1196	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	min Summer min Summer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693	Volume (m ³)	Vol (m) () () () () () () () () () () () () ()	<pre>.ume 1³) 264.9 308.5 378.3 443.7 484.1 512.1 548.3 570.3 585.7 597.3 614.2 635.5 658.6 672.9 696.0</pre>	(mins) 18 33 62 122 180 240 316 378 440 504 636 868 1196 1528 2204	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	Time Summer min Summer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404	Volume (m ³)	Vol (m) () () () () () () () () () () () () ()	<pre>.ume a³) 264.9 308.5 378.3 443.7 484.1 512.1 548.3 570.3 585.7 597.3 614.2 635.5 658.6 672.9 696.0 717.9 738.9 759.5</pre>	(mins) 18 33 62 122 180 240 316 378 440 504 636 868 1196 1528 2204 2936	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	Event min Summer min Summer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211 1.073	Volume (m ³)	Vol (m) () () () () () () () () () () () () ()	<pre>.ume a³) 264.9 308.5 378.3 443.7 484.1 512.1 548.3 570.3 585.7 597.3 614.2 635.5 658.6 672.9 696.0 717.9 738.9 759.5 779.7</pre>	(mins) 18 33 62 122 180 240 316 378 440 504 636 868 1196 1528 2204 2936 3672 4400 5136	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	Event min Summer min Summer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211 1.073 171.920	Volume (m ³)	Vol (m) () () () () () () () () () () () () ()	<pre>.ume a³) 264.9 308.5 378.3 443.7 484.1 512.1 548.3 570.3 585.7 597.3 614.2 635.5 658.6 672.9 696.0 717.9 738.9 759.5 779.7 283.2</pre>	(mins) 18 33 62 122 180 240 316 378 440 504 636 868 1196 1528 2204 2936 3672 4400 5136 18	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	Event min Summer min Summer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211 1.073 171.920	Volume (m ³)	Vol (m) () () () () () () () () () () () () ()	<pre>.ume a³) 264.9 308.5 378.3 443.7 484.1 512.1 548.3 570.3 585.7 597.3 614.2 635.5 658.6 672.9 696.0 717.9 738.9 759.5 779.7</pre>	(mins) 18 33 62 122 180 240 316 378 440 504 636 868 1196 1528 2204 2936 3672 4400 5136	

	ting Engine		(Brist	ol)				Page 2
	Court, Suit							
Ground Floc	or West, St	James						
Bristol, BS	31 3LH							Micco
	2022 14:02		Dest	igned 1	hv KGv	rha		- Micro
		- (17E		-		ba		Drainag
File Outfal	_1 - al 1.	s (175		cked b	-			
Innovyze			Soui	rce Co	ntrol	2019.1	-	
	Summary of	Results	for 1	00 yea	r Retu	ırn Pei	riod (+40%)	_
	S	torm	Max	Max	Max	Max	Status	
	E	vent	Level	Depth C	Control	Volume		
			(m)	(m)	(l/s)	(m³)		
	60 1	min Winter	8 768	0 768	10.7	242.0	ОК	
		min Winter						
		min Winter				303.8		
		min Winter			10.7	312.0	O K	
	360 r	min Winter	9.001	1.001	10.7	315.4	O K	
		min Winter			10.7			
		min Winter				299.8		
		min Winter			10.7			
		min Winter min Winter			10.7 10.7			
		min Winter min Winter			10.7			
		min Winter			9.0			
		min Winter			6.2			
		min Winter			4.8	29.2	O K	
	7200 r	min Winter	8.082	0.082	3.9	25.8	O K	
		min Winter				23.6		
	100901	min Winter	0.0/1	0.071	3.0	22.2	ОК	
	St	orm	Rain			-	ime-Peak	
		rent	(mm/hr)			ume	(mins)	
	Εv					3)		
	Εv			(m ³)		1 ³)		
		in Winter	67.760	(m³)	(m	1³) 407 . 1	62	
	60 m: 120 m:	in Winter		(m³) 0.	(m 0 4 0 4	407.1 480.3		
	60 m: 120 m: 180 m:	in Winter in Winter	43.120 32.548	(m³) 0. 0.	(m 0 4 0 4	407.1 480.3 525.5	62 118 176	
	60 m: 120 m: 180 m: 240 m:	in Winter in Winter in Winter	43.120 32.548 26.390	(m³) 0. 0. 0. 0.	(m) 0 4 0 4 0 4 0 4	407.1 480.3 525.5 556.9	62 118 176 232	
	60 m. 120 m. 180 m. 240 m. 360 m .	in Winter in Winter in Winter in Winter	43.120 32.548 26.390 19.297	(m³) 0. 0. 0. 0.	(m) 0 4 0 4 0 4 0 4 0 4 0 4	407.1 480.3 525.5 556.9 597.4	62 118 176 232 342	
	60 m: 120 m: 180 m: 240 m: 360 m: 480 m:	in Winter in Winter in Winter <mark>in Winter</mark> in Winter	43.120 32.548 26.390 19.297 15.250	(m ³) 0. 0. 0. 0. 0.	(m) 0 4 0 4 0 4 0 4 0 4 0 4 0 4	407.1 480.3 525.5 556.9 597.4 622.1	62 118 176 232 342 392	
	60 m. 120 m. 180 m. 240 m. 360 m. 480 m. 600 m.	in Winter in Winter in Winter in Winter in Winter in Winter	43.120 32.548 26.390 19.297 15.250 12.635	(m ³) 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 5 0 5 0 5 0 6 0 6	407.1 480.3 525.5 556.9 597.4 622.1 639.4	62 118 176 232 342 392 464	
	60 m. 120 m. 180 m. 240 m. 360 m. 480 m. 600 m. 720 m.	in Winter in Winter in Winter <mark>in Winter</mark> in Winter	43.120 32.548 26.390 19.297 15.250	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 5 0 5 0 6 0 6 0 6 0 6	407.1 480.3 525.5 556.9 597.4 622.1	62 118 176 232 342 392	
	60 m. 120 m. 180 m. 240 m. 360 m. 480 m. 600 m. 720 m. 960 m.	in Winter in Winter in Winter in Winter in Winter in Winter in Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803	(m³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 5 0 5 0 6 0 6 0 6 0 6 0 6	407.1 480.3 525.5 556.9 597.4 622.1 639.4 652.4	62 118 176 232 342 392 464 536	
	60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m: 960 m: 1440 m:	in Winter in Winter in Winter in Winter in Winter in Winter in Winter in Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 5 0 5 0 5 0 6 0 6 0 6 0 6 0 6 0 6 0 6	407.1 480.3 525.5 556.9 597.4 622.1 639.4 652.4 671.3	62 118 176 232 342 392 464 536 684	
	60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 720 m: 960 m: 1440 m: 2160 m:	in Winter in Winter in Winter in Winter in Winter in Winter in Winter in Winter in Winter in Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 5 0 5 0 5 0 6 0 6 0 6 0 6 0 6 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	407.1 480.3 525.5 556.9 597.4 622.1 639.4 652.4 671.3 695.1 720.5 736.6	62 118 176 232 342 392 464 536 684 924 1212 1500	
	60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m: 960 m: 1440 m: 2160 m: 2880 m: 4320 m:	in Winter in Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 5 0 5 0 5 0 6 0 6 0 6 0 6 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	407.1 480.3 525.5 556.9 597.4 622.1 639.4 652.4 671.3 695.1 720.5 736.6 762.6	62 118 176 232 342 392 464 536 684 924 1212 1500 2204	
	60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m: 960 m: 1440 m: 2160 m: 2880 m: 4320 m: 5760 m:	in Winter in Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 4 0 5 0 5 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	407.1 480.3 525.5 556.9 597.4 622.1 639.4 652.4 671.3 695.1 720.5 736.6 762.6 787.0	62 118 176 232 342 392 464 536 684 924 1212 1500 2204 2880	
	60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m: 960 m: 1440 m: 2880 m: 4320 m: 5760 m: 7200 m:	in Winter in Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 5 0 5 0 5 0 6 0 6 0 6 0 6 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	407.1 480.3 525.5 556.9 597.4 622.1 639.4 652.4 671.3 695.1 720.5 736.6 762.6 787.0 810.5	62 118 176 232 342 392 464 536 684 924 1212 1500 2204 2880 3672	
	60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m: 960 m: 1440 m: 2880 m: 4320 m: 5760 m: 7200 m: 8640 m:	in Winter in Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	407.1 480.3 525.5 556.9 597.4 622.1 639.4 652.4 671.3 695.1 720.5 736.6 762.6 787.0 810.5 833.6	62 118 176 232 342 392 464 536 684 924 1212 1500 2204 2880 3672 4408	
	60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m: 960 m: 1440 m: 2880 m: 4320 m: 5760 m: 7200 m: 8640 m:	in Winter in Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	407.1 480.3 525.5 556.9 597.4 622.1 639.4 652.4 671.3 695.1 720.5 736.6 762.6 787.0 810.5	62 118 176 232 342 392 464 536 684 924 1212 1500 2204 2880 3672	
	60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m: 960 m: 1440 m: 2880 m: 4320 m: 5760 m: 7200 m: 8640 m:	in Winter in Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	407.1 480.3 525.5 556.9 597.4 622.1 639.4 652.4 671.3 695.1 720.5 736.6 762.6 787.0 810.5 833.6	62 118 176 232 342 392 464 536 684 924 1212 1500 2204 2880 3672 4408	
	60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m: 960 m: 1440 m: 2880 m: 4320 m: 5760 m: 7200 m: 8640 m:	in Winter in Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	407.1 480.3 525.5 556.9 597.4 622.1 639.4 652.4 671.3 695.1 720.5 736.6 762.6 787.0 810.5 833.6	62 118 176 232 342 392 464 536 684 924 1212 1500 2204 2880 3672 4408	
	60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m: 960 m: 1440 m: 2880 m: 4320 m: 5760 m: 7200 m: 8640 m:	in Winter in Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	407.1 480.3 525.5 556.9 597.4 622.1 639.4 652.4 671.3 695.1 720.5 736.6 762.6 787.0 810.5 833.6	62 118 176 232 342 392 464 536 684 924 1212 1500 2204 2880 3672 4408	
	60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m: 960 m: 1440 m: 2880 m: 4320 m: 5760 m: 7200 m: 8640 m:	in Winter in Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	407.1 480.3 525.5 556.9 597.4 622.1 639.4 652.4 671.3 695.1 720.5 736.6 762.6 787.0 810.5 833.6	62 118 176 232 342 392 464 536 684 924 1212 1500 2204 2880 3672 4408	
	60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m: 960 m: 1440 m: 2880 m: 4320 m: 5760 m: 7200 m: 8640 m:	in Winter in Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	407.1 480.3 525.5 556.9 597.4 622.1 639.4 652.4 671.3 695.1 720.5 736.6 762.6 787.0 810.5 833.6	62 118 176 232 342 392 464 536 684 924 1212 1500 2204 2880 3672 4408	
	60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m: 960 m: 1440 m: 2880 m: 4320 m: 5760 m: 7200 m: 8640 m:	in Winter in Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	407.1 480.3 525.5 556.9 597.4 622.1 639.4 652.4 671.3 695.1 720.5 736.6 762.6 787.0 810.5 833.6	62 118 176 232 342 392 464 536 684 924 1212 1500 2204 2880 3672 4408	
	60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m: 960 m: 1440 m: 2880 m: 4320 m: 5760 m: 7200 m: 8640 m:	in Winter in Winter	43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(m) 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	407.1 480.3 525.5 556.9 597.4 622.1 639.4 652.4 671.3 695.1 720.5 736.6 762.6 787.0 810.5 833.6	62 118 176 232 342 392 464 536 684 924 1212 1500 2204 2880 3672 4408	

Jubb Consulting Engineers Ltd ()	Bristol)		Page 3
St James's Court, Suite B			
Ground Floor West, St James			
Bristol, BS1 3LH			Micco
Date 26/01/2022 14:02	Designed by KGyba		- Micro
			Drainag
File Outfall 1b - 1_s (175			_
Innovyze	Source Control 20	19.1	
Ra	ainfall Details		
_			
Rainfall Moc		FEH	
Return Period (year		100	
FEH Rainfall Versi		2013	
	on GB 541450 180700 TÇ		
Data Ty	-	Catchment	
Summer Stor		Yes	
Winter Stor		Yes	
Cv (Summe		0.750	
Cv (Winte		0.840	
Shortest Storm (mir		15	
Longest Storm (mir		10080	
Climate Change	90 1	+40	
Ti	me Area Diagram		
Tot	al Area (ha) 0.472		
	'ime (mins) Area rom: To: (ha)		
	10. (na)		
	0 4 0.472		
	82-2019 Innovyze		

Jubb Consulting	Engi	neers Ltd	(Bristol)				Page 4
St James's Cour							[
Ground Floor We							
Bristol, BS1 3L							Micco
Date 26/01/2022		2	Designe	d bv KG	vba		Micro
Tile Outfall 1b			2	-	1.0 0		Drainag
Innovyze		<u></u>	Source		2019 1		
			bource	00110101	2019.1		
			Model Det	cails			
		Storage is	Online Cove	r Level	(m) 10.000		
		Tan	nk or Pond	Structu	ire		
		I	nvert Level	(m) 8.000	0		
Dep			Depth (m) Ar				
	0.000	315.0	1.000	315.0	1.100	0.0	
	<u>]</u>	Hydro-Brak	e® Optimum	Outflo	ow Control	<u>-</u>	
		U	nit Reference	e MD-SHE-	-0150-1070-	1000-1070	
			sign Head (m)			1.000	
		Desi	gn Flow (l/s) Flush-Flo ¹		C	10.7 alculated	
					ise upstrea		
			Application		L	Surface	
			ump Available			Yes	
			Diameter (mm) ert Level (m)			150 8.000	
Min	imum O		Diameter (mm)			225	
		-	Diameter (mm)			1200	
		Control	Points	Head (m	a) Flow (1/:	s)	
	De	esign Point	(Calculated)			.7	
			Flush-Flo™				
	Me	an Flow ove	Kick-Flo® r Head Range		- 9	.9	
The hydrological Hydro-Brake® Opt Hydro-Brake Opti invalidated	imum a	s specified	. Should an	other typ	pe of contr	ol device d	other than a
Depth (m) Flow	(1/s)		Clow (l/s) De	epth (m)			Flow (l/s)
0.100	5.4	1.200	11.7	3.000	18.0		27.1
0.200 0.300	10.4	1.400 1.600	12.5 13.4	3.500 4.000	19.4 20.7		28.0 28.9
0.400	10.6	1.800	14.1	4.500	20.7		29.7
	10.3	2.000	14.9	5.000	23.0	9.000	30.5
0.500	9.8	2.200	15.5	5.500	24.1		31.4
0.600			16.2	6.000	25.1		
0.600 0.800	9.6 10.7	2.400 2.600	16.8	6.500	26.1		
0.600	9.6 10.7	2.400	16.8	6.500	26.1		
0.600 0.800			16.8	6.500	26.1	I	

Jubb Consulting Engineers Ltd (B	ristol)	Page 5
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:02	Designed by KGyba	Drainage
File Outfall 1b - 1_s (175	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow
(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)
2	0.0	102	0.0	202	1.6	302	2.8	402	2.8	502	2.6
4	0.0	104	0.0	204	1.7	304	2.8	404	2.8	504	2.6
6	0.0	106	0.0	206	1.8	306	2.8	406	2.8	506	2.6
8	0.0	108	0.0	208	1.8	308	2.8	408	2.8	508	2.6
10	0.0	110	0.0	210	1.9	310	2.8	410	2.8	510	2.6
12	0.0	112	0.0	212	2.0	312	2.8	412	2.8	512	2.6
14	0.0	114	0.0	214	2.0	314	2.8	414	2.8	514	2.6
16	0.0	116	0.0	216	2.1	316	2.8	416	2.8	516	2.6
18	0.0	118	0.1	218	2.1	318	2.8	418	2.8	518	2.6
20	0.0	120	0.1	220	2.2	320	2.8	420	2.8	520	2.5
22	0.0	122	0.1	222	2.2	322	2.8	422	2.8	522	2.5
24	0.0	124	0.1	224	2.3	324	2.8	424	2.8	524	2.5
26	0.0	126	0.1	226	2.3	326	2.8	426	2.8	526	2.5
28	0.0	128	0.1	228	2.4	328	2.8	428	2.8	528	2.5
30	0.0	130	0.1	230	2.4	330	2.8	430	2.8	530	2.5
32	0.0	132	0.1	232	2.4	332	2.8	432	2.8	532	2.5
34	0.0	134	0.1	234	2.5	334	2.8	434	2.8	534	2.5
36	0.0	136	0.1	236	2.5	336	2.8	436	2.8	536	2.5
38	0.0	138	0.2	238	2.6	338	2.8	438	2.8	538	2.5
40	0.0	140	0.2	240	2.6	340	2.8	440	2.8	540	2.5
42	0.0	142	0.2	242	2.6	342	2.8	442	2.8	542	2.5
44	0.0	144	0.2	244	2.6	344	2.8	444	2.8	544	2.4
46	0.0	146	0.2	246	2.7	346	2.8	446	2.8	546	2.4
48	0.0	148	0.3	248	2.7	348	2.8	448	2.8	548	2.4
50	0.0	150	0.3	250	2.7	350	2.8	450	2.8	550	2.4
52	0.0	152	0.3	252	2.7	352	2.8	452	2.8	552	2.4
54	0.0	154	0.3	254	2.8	354	2.8	454	2.8	554	2.4
56	0.0	156	0.4	256	2.8	356	2.8	456	2.8	556	2.4
58	0.0	158	0.4	258	2.8	358	2.8	458	2.8	558	2.4
60	0.0	160	0.5	260	2.8	360	2.8	460	2.8	560	2.4
62	0.0	162	0.5	262	2.8	362	2.8	462	2.8	562	2.4
64	0.0	164	0.5	264	2.8	364	2.8	464	2.8	564	2.4
66	0.0	166	0.6	266	2.8	366	2.8	466	2.8	566	2.4
68	0.0	168	0.6	268	2.8	368	2.8	468	2.7	568	2.4
70	0.0	170	0.7	270	2.8	370	2.8	470	2.7	570	2.4
72	0.0	172	0.7	272	2.8	372	2.8	472	2.7	572	2.4
74	0.0	174	0.8	274	2.8	374	2.8	474	2.7	574	2.3
76	0.0	176	0.8	276	2.8	376	2.8	476	2.7	576	2.3
78	0.0	178	0.9	278	2.8	378	2.8	478	2.7	578	2.3
80	0.0	180	0.9	280	2.8	380	2.8	480	2.7	580	2.3
82	0.0	182	1.0	282	2.8	382	2.8	482	2.7	582	2.3
84	0.0	184	1.1	284	2.8	384	2.8	484	2.7	584	2.3
86	0.0	186	1.1	286	2.8	386	2.8	486	2.7	586	2.3
88	0.0	188	1.2	288	2.8	388	2.8	488	2.7	588	2.3
90	0.0	190	1.2	290	2.8	390	2.8	490	2.7	590	2.3
92	0.0	192	1.3	292	2.8	392	2.8	492	2.7	592	2.3
94	0.0	194	1.4	294	2.8	394	2.8	494	2.6	594	2.3
96	0.0	196	1.4	296	2.8	396	2.8	496	2.6	596	2.3
98	0.0	198	1.5	298	2.8	398	2.8	498	2.6	598	2.3
100	0.0	200	1.6	300	2.8	400	2.8	500	2.6	600	2.2
) Innov					

Jubb Consulting Engineers Ltd (B	ristol)	Page 6
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:02	Designed by KGyba	Drainage
File Outfall 1b - l_s (175	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow
(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)
602	2.2	702	1.8	802	1.5	902	1.2	1002	1.0	1102	0.9
604	2.2	704	1.8	804	1.5	904	1.2	1002	1.0	1102	0.9
606	2.2	706	1.8	806	1.5	906	1.2	1006	1.0	1106	0.9
608	2.2	708	1.8	808	1.5	908	1.2	1008	1.0	1108	0.9
610	2.2	700	1.8	810	1.5	910	1.2	1010	1.0	1110	0.8
612	2.2	710	1.8	812	1.5	912	1.2	1010	1.0	1110	0.8
614	2.2	712	1.8	814	1.5	914	1.2	1012	1.0	1112	0.8
616	2.2	714	1.8	816	1.5	916	1.2	1014	1.0	1114	0.8
618	2.2	718	1.8	818	1.5	918	1.2	1010	1.0	1110	0.8
620	2.2	720	1.8	820	1.5	920	1.2	1018	1.0	1120	0.8
622	2.1	720	1.8	822	1.5	920	1.2	1020	1.0	1120	0.8
624	2.1	724		824	1.4	922 924	1.2	1022		1122	0.8
			1.8						1.0		
626	2.1	726	1.8	826	1.4	926	1.2	1026	1.0	1126	0.8
628	2.1	728	1.8	828	1.4	928	1.2	1028	1.0	1128	0.8
630	2.1	730	1.7	830	1.4	930	1.2	1030	1.0	1130	0.8
632	2.1	732	1.7	832	1.4	932	1.2	1032	1.0	1132	0.8
634	2.1	734	1.7	834	1.4	934	1.2	1034	1.0	1134	0.8
636	2.1	736	1.7	836	1.4	936	1.2	1036	1.0	1136	0.8
638	2.1	738	1.7	838	1.4	938	1.2	1038	1.0	1138	0.8
640	2.1	740	1.7	840	1.4	940	1.2	1040	1.0	1140	0.8
642	2.1	742	1.7	842	1.4	942	1.2	1042	1.0	1142	0.8
644	2.1	744	1.7	844	1.4	944	1.2	1044	0.9	1144	0.8
646	2.1	746	1.7	846	1.4	946	1.2	1046	0.9	1146	0.8
648	2.1	748	1.7	848	1.4	948	1.1	1048	0.9	1148	0.8
650	2.0	750	1.7	850	1.4	950	1.1	1050	0.9	1150	0.8
652	2.0	752	1.7	852	1.4	952	1.1	1052	0.9	1152	0.8
654	2.0	754	1.7	854	1.4	954	1.1	1054	0.9	1154	0.8
656	2.0	756	1.7	856	1.4	956	1.1	1056	0.9	1156	0.8
658	2.0	758	1.6	858	1.3	958	1.1	1058	0.9	1158	0.8
660	2.0	760	1.6	860	1.3	960	1.1	1060	0.9	1160	0.8
662	2.0	762	1.6	862	1.3	962	1.1	1062	0.9	1162	0.8
664	2.0	764	1.6	864	1.3	964	1.1	1064	0.9	1164	0.8
666	2.0	766	1.6	866	1.3	966	1.1	1066	0.9	1166	0.8
668	2.0	768	1.6	868	1.3	968	1.1	1068	0.9	1168	0.8
670	2.0	770	1.6	870	1.3	970	1.1	1070	0.9	1170	0.8
672	2.0	772	1.6	872	1.3	972	1.1	1072	0.9	1172	0.8
674	2.0	774	1.6	874	1.3	974	1.1	1074	0.9	1174	0.8
676	1.9	776	1.6	876	1.3	976	1.1	1076	0.9	1176	0.8
678	1.9	778	1.6	878	1.3	978	1.1	1078	0.9	1178	0.8
680	1.9	780	1.6	880	1.3	980	1.1	1080	0.9	1180	0.8
682	1.9	782	1.6	882	1.3	982	1.1	1082	0.9	1182	0.8
684	1.9	784	1.6	884	1.3	984	1.1	1084	0.9	1184	0.8
686	1.9	786	1.6	886	1.3	986	1.1	1086	0.9	1186	0.7
688	1.9	788	1.6	888	1.3	988	1.1	1088	0.9	1188	0.7
690	1.9	790	1.5	890	1.3	990	1.1	1090	0.9	1190	0.7
692	1.9	792	1.5	892	1.3	992	1.0	1092	0.9	1192	0.7
694	1.9	794	1.5	894	1.3	994	1.0	1094	0.9	1194	0.7
696	1.9	796	1.5	896	1.3	996	1.0	1096	0.9		0.7
698	1.9	798	1.5	898	1.2	998	1.0	1098	0.9		0.7
700	1.9	800	1.5	900	1.2	1000	1.0	1100	0.9	1200	0.7

Jubb Consulting Engineers Ltd (B	ristol)	Page 7
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:02	Designed by KGyba	Drainage
File Outfall 1b - 1_s (175	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow
(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)
1202	0.7	1302	0.6	1402	0.5	1502	0.5	1602	0.4	1702	0.3
1204	0.7	1304	0.6	1404	0.5	1504	0.5	1604	0.4	1704	0.3
1206	0.7	1306	0.6	1406	0.5	1506	0.5	1606	0.4	1706	0.3
1208	0.7	1308	0.6	1408	0.5	1508	0.5	1608	0.4	1708	0.3
1210	0.7	1310	0.6	1410	0.5	1510	0.5	1610	0.4	1710	0.3
1212	0.7	1312	0.6	1412	0.5	1512	0.5	1612	0.4	1712	0.3
1214	0.7	1314	0.6	1414	0.5	1514	0.4	1614	0.4	1714	0.3
1216	0.7	1316	0.6	1416	0.5	1516	0.4	1616	0.4	1716	0.3
1218	0.7	1318	0.6	1418	0.5	1518	0.4	1618	0.4	1718	0.3
1220	0.7	1320	0.6	1420	0.5	1520	0.4	1620	0.4	1720	0.3
1222	0.7	1322	0.6	1422	0.5	1522	0.4	1622	0.4	1722	0.3
1224	0.7	1324	0.6	1424	0.5	1524	0.4	1624	0.4	1724	0.3
1226	0.7	1326	0.6	1426	0.5	1526	0.4	1626	0.4	1726	0.3
1228	0.7	1328	0.6	1428	0.5	1528	0.4	1628	0.4	1728	0.3
1230	0.7	1330	0.6	1430	0.5	1530	0.4	1630	0.4	1730	0.3
1232	0.7	1332	0.6	1432	0.5	1532	0.4	1632	0.4	1732	0.3
1234	0.7	1334	0.6	1434	0.5	1534	0.4	1634	0.4	1734	0.3
1236	0.7	1336	0.6	1436	0.5	1536	0.4	1636	0.4	1736	0.3
1238	0.7	1338	0.6	1438	0.5	1538	0.4	1638	0.4	1738	0.3
1240	0.7	1340	0.6	1440	0.5	1540	0.4	1640	0.4	1740	0.3
1242	0.7	1342	0.6	1442	0.5	1542	0.4	1642	0.4	1742	0.3
1244	0.7	1344	0.6	1444	0.5	1544	0.4	1644	0.4	1744	0.3
1246	0.7	1346	0.6	1446	0.5	1546	0.4	1646	0.4	1746	0.3
1248	0.7	1348	0.6	1448	0.5	1548	0.4	1648	0.4	1748	0.3
1250	0.7	1350	0.6	1450	0.5	1550	0.4	1650	0.4	1750	0.3
1252	0.7	1352	0.6	1452	0.5	1552	0.4	1652	0.4	1752	0.3
1254	0.7	1354	0.6	1454	0.5	1554	0.4	1654	0.4	1754	0.3
1256	0.7	1356	0.6	1456	0.5	1556	0.4	1656	0.4	1756	0.3
1258	0.7	1358	0.6	1458	0.5	1558	0.4	1658	0.4	1758	0.3
1260	0.7	1360	0.6	1460	0.5	1560	0.4	1660	0.4	1760	0.3
1262	0.7	1362	0.6	1462	0.5	1562	0.4	1662	0.4	1762	0.3
1264	0.7	1364	0.6	1464	0.5	1564	0.4	1664	0.4	1764	0.3
1266	0.7	1366	0.6	1466	0.5	1566	0.4	1666	0.4	1766	0.3
1268	0.7	1368	0.6	1468	0.5	1568	0.4	1668	0.4	1768	0.3
1270	0.7	1370	0.6	1470	0.5	1570	0.4	1670	0.4	1770	0.3
1272	0.6	1372	0.6	1472	0.5	1572	0.4	1672	0.4	1772	0.3
1274	0.6	1374	0.5	1474	0.5	1574	0.4	1674	0.4	1774	0.3
1276	0.6	1376	0.5	1476	0.5	1576	0.4	1676	0.4	1776	0.3
1278	0.6	1378	0.5	1478	0.5	1578	0.4	1678	0.4	1778	0.3
1280	0.6	1380	0.5	1480	0.5	1580	0.4	1680	0.4	1780	0.3
1282	0.6	1382	0.5	1482	0.5	1582	0.4	1682	0.4	1782	0.3
1284	0.6	1384	0.5	1484	0.5	1584	0.4	1684	0.4	1784	0.3
1286	0.6	1386	0.5	1486	0.5	1586	0.4	1686	0.4	1786	0.3
1288	0.6	1388	0.5	1488	0.5	1588	0.4	1688	0.4	1788	0.3
1290	0.6	1390	0.5	1490	0.5	1590	0.4	1690	0.3	1790	0.3
1292	0.6	1392	0.5	1492	0.5	1592	0.4	1692	0.3	1792	0.3
1294	0.6	1394	0.5	1494	0.5	1594	0.4	1694	0.3	1794	0.3
1296	0.6	1396	0.5	1496	0.5	1596	0.4	1696	0.3	1796	0.3
1298	0.6	1398	0.5	1498	0.5	1598	0.4	1698	0.3	1798	0.3
1300	0.6	1400	0.5	1500	0.5	1600	0.4	1700	0.3	1800	0.3
) Innov					

Jubb Consulting Engineers Ltd (B	ristol)	Page 8
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:02	Designed by KGyba	Drainage
File Outfall 1b - l_s (175	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(l/s)										
1802	0.3	1902	0.3	2002	0.2	2102	0.2	2202	0.2	2302	0.2
1804	0.3	1904	0.3	2004	0.2	2104	0.2	2204	0.2	2304	0.2
1806	0.3	1906	0.3	2006	0.2	2106	0.2	2206	0.2	2306	0.2
1808	0.3	1908	0.3	2008	0.2	2108	0.2	2208	0.2	2308	0.2
1810	0.3	1910	0.3	2010	0.2	2110	0.2	2210	0.2	2310	0.2
1812	0.3	1912	0.3	2012	0.2	2112	0.2	2212	0.2	2312	0.2
1814	0.3	1914	0.3	2014	0.2	2114	0.2	2214	0.2	2314	0.2
1816	0.3	1916	0.3	2016	0.2	2116	0.2	2216	0.2	2316	0.2
1818	0.3	1918	0.3	2018	0.2	2118	0.2	2218	0.2	2318	0.2
1820	0.3	1920	0.3	2020	0.2	2120	0.2	2220	0.2	2320	0.2
1822	0.3	1922	0.3	2022	0.2	2122	0.2	2222	0.2	2322	0.2
1824	0.3	1924	0.3	2024	0.2	2124	0.2	2224	0.2	2324	0.2
1826	0.3	1926	0.3	2026	0.2	2126	0.2	2226	0.2	2326	0.2
1828	0.3	1928	0.3	2028	0.2	2128	0.2	2228	0.2	2328	0.2
1830	0.3	1930	0.3	2020	0.2	2120	0.2	2230	0.2	2320	0.2
1832	0.3	1932	0.3	2030	0.2	2130	0.2	2230	0.2	2330	0.2
1834	0.3	1934	0.3	2032	0.2	2132	0.2	2232	0.2	2332	0.2
1836	0.3	1936	0.3	2034	0.2	2134	0.2	2234	0.2	2334	0.2
1838	0.3	1938	0.3	2038	0.2	2130	0.2	2230	0.2	2338	0.2
1840	0.3	1930	0.3	2038	0.2	2130	0.2	2230	0.2	2330	0.2
1840	0.3	1940	0.3	2040	0.2	2140	0.2	2240	0.2	2340	0.2
										2342	
1844	0.3	1944 1946	0.3	2044	0.2	2144	0.2	2244	0.2		0.2
1846	0.3		0.3	2046	0.2	2146	0.2	2246	0.2	2346	0.2
1848	0.3	1948	0.3	2048	0.2	2148	0.2	2248	0.2	2348	0.2
1850	0.3	1950	0.3	2050	0.2	2150	0.2	2250	0.2	2350	0.2
1852	0.3	1952	0.3	2052	0.2 0.2	2152	0.2	2252	0.2	2352	0.2
1854	0.3	1954	0.3	2054		2154	0.2	2254	0.2	2354	0.2
1856	0.3	1956	0.3	2056	0.2	2156	0.2	2256	0.2	2356	0.2
1858	0.3	1958	0.3	2058	0.2	2158	0.2	2258	0.2	2358	0.2
1860	0.3	1960	0.3	2060	0.2	2160	0.2	2260	0.2	2360	0.2
1862	0.3	1962	0.3	2062	0.2 0.2	2162 2164	0.2 0.2	2262	0.2	2362	0.2
1864	0.3	1964	0.3	2064				2264	0.2	2364	0.2
1866	0.3 0.3	1966 1968	0.3 0.3	2066 2068	0.2 0.2	2166	0.2 0.2	2266 2268	0.2 0.2	2366 2368	0.2 0.2
1868 1870	0.3	1900	0.3	2008	0.2	2168 2170	0.2	2200	0.2	2300	0.2
1872	0.3	1972	0.3	2072	0.2	2172	0.2	2272	0.2	2372	0.2
1874	0.3	1974	0.3	2074	0.2	2174	0.2	2274	0.2	2374	0.2
1876 1878	0.3	1976 1978	0.3	2076	0.2	2176	0.2	2276	0.2	2376 2378	0.2
	0.3		0.3	2078	0.2	2178	0.2	2278	0.2		0.2
1880	0.3	1980	0.3	2080	0.2	2180	0.2	2280	0.2	2380	0.2
1882	0.3	1982	0.3	2082	0.2	2182	0.2	2282	0.2		0.2
1884	0.3	1984	0.3	2084	0.2	2184	0.2	2284	0.2		0.2
1886	0.3	1986	0.3	2086	0.2	2186	0.2	2286	0.2	2386	0.2
1888	0.3	1988	0.3	2088	0.2	2188	0.2	2288	0.2	2388	0.2
1890	0.3	1990	0.3	2090	0.2	2190	0.2	2290	0.2	2390	0.2
1892	0.3	1992	0.2	2092	0.2	2192	0.2	2292	0.2	2392	0.2
1894	0.3	1994	0.2	2094	0.2	2194	0.2	2294	0.2	2394	0.2
1896	0.3	1996	0.2	2096	0.2	2196	0.2	2296	0.2		0.2
1898	0.3	1998	0.2	2098	0.2	2198	0.2	2298	0.2		0.2
1900	0.3	2000	0.2	2100	0.2	2200	0.2	2300	0.2	2400	0.2
) Innov					

Jubb Consulting Engineers Ltd (B	Page 9	
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Mirro
Date 26/01/2022 14:02	Designed by KGyba	Drainage
File Outfall 1b - l_s (175	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(l/s)										
2402	0.2	2482	0.2	2562	0.1	2642	0.1	2722	0.1	2802	0.1
2404	0.2	2484	0.2	2564	0.1	2644	0.1	2724	0.1	2804	0.1
2406	0.2	2486	0.2	2566	0.1	2646	0.1	2726	0.1	2806	0.1
2408	0.2	2488	0.2	2568	0.1	2648	0.1	2728	0.1	2808	0.1
2410	0.2	2490	0.2	2570	0.1	2650	0.1	2730	0.1	2810	0.1
2412	0.2	2492	0.2	2572	0.1	2652	0.1	2732	0.1	2812	0.1
2414	0.2	2494	0.2	2574	0.1	2654	0.1	2734	0.1	2814	0.1
2416	0.2	2496	0.2	2576	0.1	2656	0.1	2736	0.1	2816	0.1
2418	0.2	2498	0.2	2578	0.1	2658	0.1	2738	0.1	2818	0.1
2420	0.2	2500	0.2	2580	0.1	2660	0.1	2740	0.1	2820	0.1
2422	0.2	2502	0.2	2582	0.1	2662	0.1	2742	0.1	2822	0.1
2424	0.2	2504	0.2	2584	0.1	2664	0.1	2744	0.1	2824	0.1
2426	0.2	2506	0.1	2586	0.1	2666	0.1	2746	0.1	2826	0.1
2428	0.2	2508	0.1	2588	0.1	2668	0.1	2748	0.1	2828	0.1
2430	0.2	2510	0.1	2590	0.1	2670	0.1	2750	0.1	2830	0.1
2432	0.2	2512	0.1	2592	0.1	2672	0.1	2752	0.1	2832	0.1
2434	0.2	2514	0.1	2594	0.1	2674	0.1	2754	0.1	2834	0.1
2436	0.2	2516	0.1	2596	0.1	2676	0.1	2756	0.1	2836	0.1
2438	0.2	2518	0.1	2598	0.1	2678	0.1	2758	0.1	2838	0.1
2440	0.2	2520	0.1	2600	0.1	2680	0.1	2760	0.1	2840	0.1
2442	0.2	2522	0.1	2602	0.1	2682	0.1	2762	0.1	2842	0.1
2444	0.2	2524	0.1	2604	0.1	2684	0.1	2764	0.1	2844	0.1
2446	0.2	2526	0.1	2606	0.1	2686	0.1	2766	0.1	2846	0.1
2448	0.2	2528	0.1	2608	0.1	2688	0.1	2768	0.1	2848	0.1
2450	0.2	2530	0.1	2610	0.1	2690	0.1	2770	0.1	2850	0.1
2452	0.2	2532	0.1	2612	0.1	2692	0.1	2772	0.1	2852	0.1
2454	0.2	2534	0.1	2614	0.1	2694	0.1	2774	0.1	2854	0.1
2456	0.2	2536	0.1	2616	0.1	2696	0.1	2776	0.1	2856	0.1
2458	0.2	2538	0.1	2618	0.1	2698	0.1	2778	0.1	2858	0.1
2460	0.2	2540	0.1	2620	0.1	2700	0.1	2780	0.1	2860	0.1
2462	0.2	2542	0.1	2622	0.1	2702	0.1	2782	0.1	2862	0.1
2464	0.2	2544	0.1	2624	0.1	2704	0.1	2784	0.1	2864	0.1
2466	0.2	2546	0.1	2626	0.1	2706	0.1	2786	0.1	2866	0.1
2468	0.2	2548	0.1	2628	0.1	2708	0.1	2788	0.1	2868	0.1
2470	0.2	2550	0.1	2630	0.1	2710	0.1	2790	0.1	2870	0.1
2472	0.2	2552	0.1	2632	0.1	2712	0.1	2792	0.1	2872	0.1
2474	0.2	2554	0.1	2634	0.1	2714	0.1	2794	0.1	2874	0.1
2476	0.2	2556	0.1	2636	0.1	2716	0.1	2796	0.1	2876	0.1
2478	0.2	2558	0.1	2638	0.1	2718	0.1	2798	0.1	2878	0.1
2480	0.2	2560	0.1	2640	0.1	2720	0.1	2800	0.1	2880	0.1

	ting Engin	leers L	td (Br	ist	ol)				Page 1
St James's					/				
Ground Floo									
		. Jailles	•••						
Bristol, BS						_			— Micro
Date 26/01/2	2022 14:05)			2	by KGy	yba		Drainag
File OUTFAL	L 2 - 13.9) L_S (1	W (Chec	cked b	эү			bidiildgi
Innovyze			2	Sour	cce Co	ontrol	2019	.1	
	Summary o	f Resul	lts fo	r 1(00 ye	ar Ret	urn P	eriod (+40	8)
		Storm	Ma	ax	Max	Max	Max	Status	
		Event			-	Control			
			(1	n)	(m)	(1/s)	(m³)		
	15	min Sum	mer 8.3	391	0.391	13.9	293.	.6 ОК	
		min Sum					372.		
		min Sum					443.		
		min Sum				13.9			
		min Sum				13.9		.5 ОК	
		min Sum					616.		
		min Sum					637.		
		min Sum min Sum					631. 619.		
		min Sum					604.		
		min Sum				13.9		.5 ОК	
	1440	min Sum	mer 8.0	524	0.624	13.9	467.	.9 ОК	
	2160	min Sum	mer 8.4	151	0.451	13.9	338.	.0 ОК	
		min Sum				13.9		.3 ОК	
		min Sum					154.		
		min Sum min Sum				11.8	121. 106.		
		min Sum							
		min Sum							
		min Win					329.	. 8 ОК	
	30	min Win	ter 8.5	559	0.559	13.9	419.	.0 ОК	
	5	Storm	Ra	in	Flood	led Disc	harge	Time-Peak	
		Storm Event			Flood Volu		harge Lume	Time-Peak (mins)	
						me Vol	-		
	I	Event	(mm,	/hr)	Volu (m³)	me Vo:) (r	lume n³)	(mins)	
	1 15	Event min Summ	(mm , ner 171	/hr) .920	Volu (m³)	me Vo:) (r	Lume n ³) 396.6	(mins) 19	
	15 30	Event	(mm, ner 171 ner 110	/hr) .920 .600	Volu (m³) (me Vo:) (r).0	lume n³)	(mins)	
	15 30 60	Event min Summ min Summ	(mm, her 171 her 110 her 67	/hr) .920 .600 .760	Volu (m ³)	me Vo:) (r).0).0	Lume n ³) 396.6 483.3	(mins) 19 33	
	15 30 60 120 180	min Summ min Summ min Summ min Summ min Summ	(mm, her 171 her 110 her 67 her 43 her 32	/hr) .920 .600 .760 .120 .548	Volu (m ³)	me Vol) (r).0 (r).0 (r).0 (r).0 (r	Lume n ³) 396.6 483.3 604.0 734.2 814.6	(mins) 19 33 62 122 182	
	15 30 60 120 180 240	Event min Summ min Summ min Summ min Summ min Summ min Summ	(mm, her 171 her 110 her 67 her 43 her 32 her 26	/hr) . 920 . 600 . 760 . 120 . 548 . 390	Volum (m³) 00 00 00 00 00 00 00 00 00 00 00 00 00	me Vol) (r 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Lume n ³) 396.6 483.3 604.0 734.2 814.6 870.3	(mins) 19 33 62 122 182 242	
	15 30 60 120 180 240 360	Event min Summ min Summ min Summ min Summ min Summ min Summ min Summ	(mm, her 171 her 110 her 67 her 43 her 32 her 26 her 19	<pre>/hr) . 920 . 600 . 760 . 120 . 548 . 390 . 297</pre>	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	me Vol) (r).0 ()).0 ()).0 ()).0 ()).0 ()).0 ()).0 ()).0 ()).0 ()).0 ()	Lume n ³) 396.6 483.3 604.0 734.2 814.6 870.3 942.3	(mins) 19 33 62 122 182 242 360	
	15 30 60 120 180 240 360 480	Event min Summ min Summ min Summ min Summ min Summ min Summ min Summ	(mm, her 171 her 110 her 67 her 43 her 32 her 26 her 19 her 15	<pre>/hr) . 920 . 600 . 760 . 120 . 548 . 390 . 297 . 250</pre>	Volum (m ³) C C C C C C C C C C C C C C C C C C C	me Vo:) (r).0 (r	Lume n ³) 396.6 483.3 604.0 734.2 814.6 870.3 942.3 986.0	(mins) 19 33 62 122 182 242 360 460	
	15 30 60 120 180 240 360 480 600	Event min Summ min Summ min Summ min Summ min Summ min Summ min Summ min Summ	(mm, her 171 her 110 her 67 her 32 her 32 her 26 her 19 her 15 her 12	<pre>/hr) . 920 . 600 . 760 . 120 . 548 . 390 . 297 . 250 . 635</pre>	Volu (m ³) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	me Vo:) (r).0 (r	Lume n ³) 396.6 483.3 604.0 734.2 814.6 870.3 942.3 986.0 016.6	(mins) 19 33 62 122 182 242 360 460 506	
	15 30 60 120 180 240 360 480 600 720	Event min Summ min Summ min Summ min Summ min Summ min Summ min Summ	(mm, her 171 her 110 her 67 her 32 her 32 her 26 her 19 her 15 her 12 her 10	<pre>/hr) . 920 . 600 . 760 . 120 . 548 . 390 . 297 . 250</pre>	Volu (m ³) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	me Vo:) (r).0 1	Lume n ³) 396.6 483.3 604.0 734.2 814.6 870.3 942.3 986.0	(mins) 19 33 62 122 182 242 360 460	
	15 30 60 120 180 240 360 480 600 720 960	Event min Summ min Summ min Summ min Summ min Summ min Summ min Summ min Summ min Summ	(mm, her 171 her 110 her 67 her 32 her 26 her 19 her 15 her 12 her 10 her 8	<pre>/hr) . 920 . 600 . 760 . 120 . 548 . 390 . 297 . 250 . 635 . 803</pre>	Volum (m ³) (m ³) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	me Vo:) (r).0 1).0 1	Lume n ³) 396.6 483.3 604.0 734.2 814.6 870.3 942.3 986.0 016.6 039.6	(mins) 19 33 62 122 182 242 360 460 506 564	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160	Event min Summ min Summ	(mm, her 171 her 110 her 67 her 32 her 26 her 19 her 15 her 12 her 10 her 8 her 5 her 4	<pre>/hr) . 920 . 600 . 760 . 120 . 548 . 390 . 297 . 250 . 635 . 803 . 400</pre>	Volum (m ³) (m ³) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	me Vo:) (r).0 1).0 1).0 1	Lume n ³) 396.6 483.3 604.0 734.2 814.6 870.3 942.3 942.3 986.0 016.6 039.6 072.9	(mins) 19 33 62 122 182 242 360 460 506 564 684	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	Event min Summ min Summ	(mm, her 171 her 110 her 67 her 32 her 26 her 19 her 15 her 12 her 10 her 8 her 5 her 4 her 3	<pre>/hr) . 920 . 600 . 760 . 120 . 548 . 390 . 297 . 250 . 635 . 400 . 851 . 052 . 124</pre>	Volum (m ³)	me Vo:) (r).0 1).0 1).0 1).0 1	Lume n ³) 396.6 483.3 604.0 734.2 814.6 870.3 942.3 986.0 016.6 039.6 072.9 114.8 163.0 191.2	(mins) 19 33 62 122 182 242 360 460 506 564 684 924 1296 1644	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	Event min Summ min Summ	(mm, her 171 her 110 her 67 her 32 her 26 her 19 her 15 her 12 her 10 her 8 her 5 her 4 her 3 her 3 her 2	<pre>/hr) . 920 . 600 . 760 . 120 . 548 . 390 . 297 . 250 . 635 . 803 . 400 . 851 . 052 . 124 . 176</pre>	Volum (m ³)	me Vo:) (r).0 1).0 1).0 1).0 1	Lume n ³) 396.6 483.3 604.0 734.2 814.6 870.3 942.3 986.0 016.6 039.6 072.9 114.8 163.0 191.2 235.5	(mins) 19 33 62 122 182 242 360 460 506 564 684 924 1296 1644 2292	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	Event min Summ min Summ	(mm, her 171 her 110 her 67 her 32 her 26 her 19 her 15 her 12 her 10 her 8 her 5 her 4 her 3 her 3 her 2 her 1 her 171	<pre>/hr) . 920 . 600 . 760 . 120 . 548 . 390 . 297 . 250 . 635 . 803 . 400 . 851 . 052 . 124 . 176 . 693</pre>	Volum (m ³)	me Vo:) (r).0 1).0 1).0 1).0 1).0 1).0 1	Lume n ³) 396.6 483.3 604.0 734.2 814.6 870.3 942.3 986.0 016.6 039.6 072.9 114.8 163.0 191.2 235.5 281.9	(mins) 19 33 62 122 182 242 360 460 506 564 684 924 1296 1644 2292 2992	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	Event min Summ min Summ	(mm, her 171 her 110 her 67 her 32 her 26 her 19 her 15 her 12 her 10 her 8 her 5 her 4 her 3 her 2 her 1 her 1 her 1 her 1 1 her 1 10	<pre>/hr) . 920 . 600 . 760 . 120 . 548 . 390 . 297 . 250 . 635 . 803 . 400 . 8511 . 052 . 124 . 176 . 693 . 404</pre>	Volum (m ³)	me Vo:) (r).0 1).0 1).0 1).0 1).0 1).0 1	Lume n ³) 396.6 483.3 604.0 734.2 814.6 870.3 942.3 986.0 016.6 039.6 072.9 114.8 163.0 191.2 235.5 281.9 323.3	(mins) 19 33 62 122 182 242 360 460 506 564 684 924 1296 1644 2292 2992 3680	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	Event min Summ min Summ	(mm, her 171 her 110 her 67 her 32 her 26 her 19 her 15 her 12 her 10 her 8 her 5 her 4 her 3 her 2 her 1 her 1 he	<pre>/hr) . 920 . 600 . 760 . 120 . 548 . 390 . 297 . 250 . 635 . 803 . 400 . 851 . 052 . 124 . 176 . 693</pre>	Volum (m ³)	me Vo:) (r).0 1).0 1).0 1).0 1).0 1).0 1).0 1	Lume n ³) 396.6 483.3 604.0 734.2 814.6 870.3 942.3 986.0 016.6 039.6 072.9 114.8 163.0 191.2 235.5 281.9	(mins) 19 33 62 122 182 242 360 460 506 564 684 924 1296 1644 2292 2992	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	Event min Summ min Summ	(mm, her 171 her 110 her 67 her 32 her 26 her 19 her 15 her 12 her 10 her 8 her 5 her 4 her 3 her 3 her 1 her 1 he	<pre>/hr) . 920 . 600 . 760 . 760 . 120 . 548 . 390 . 297 . 250 . 635 . 803 . 400 . 8511 . 052 . 124 . 176 . 693 . 404 . 211 . 073</pre>	Volum (m ³)	me Vo:) (r).0 1).0 1).0 1).0 1).0 1).0 1).0 1).0 1	Lume n ³) 396.6 483.3 604.0 734.2 814.6 870.3 942.3 942.3 986.0 016.6 039.6 072.9 114.8 163.0 191.2 235.5 281.9 323.3 363.7	(mins) 19 33 62 122 182 242 360 460 506 564 684 924 1296 1644 2292 2992 3680 4408	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	Event min Summ min Summ	(mm, her 171 her 110 her 67 her 32 her 26 her 19 her 15 her 12 her 10 her 8 her 5 her 4 her 3 her 3 her 1 her 1 her 1 her 1 her 1 her 1 her 1 her 1 her 17	<pre>/hr) . 920 . 600 . 760 . 760 . 120 . 548 . 390 . 297 . 250 . 635 . 803 . 400 . 8511 . 052 . 124 . 176 . 693 . 404 . 211 . 073 . 920</pre>	Volum (m ³)	me Vo:) (r).0 1).0 1).0 1).0 1).0 1).0 1).0 1).0 1).0 1).0 1).0 1	Lume n ³) 396.6 483.3 604.0 734.2 814.6 870.3 942.3 942.3 986.0 016.6 039.6 072.9 114.8 163.0 191.2 235.5 281.9 323.3 363.7 402.6	(mins) 19 33 62 122 182 242 360 460 506 564 684 924 1296 1644 2292 2992 3680 4408 5144	

	ting Enginee Court, Suite		(DIISC	01)				Page 2
Ground Floc	r West, St 3	James						
Bristol, BS	1 3LH							Micro
Date 26/01/	2022 14:05		Desi	igned	by KGy	ba		
File OUTFAI	L 2 - 13.9 I	_ S (W	. Cheo	cked b	У			Drainag
Innovyze				cce Co	ntrol	2019.1	-	
	Summary of	Results	for 1	00 yea	ır Retu	irn Pei	ciod (+40%)	-
	St	orm	Max	Max	Max	Max	Status	
	Ev	rent	Level	Depth (Control	Volume		
			(m)	(m)	(1/s)	(m³)		
	60 m	in Winter	8 668	0 668	13.9	500.9	ОК	
		in Winter			13.9			
		in Winter				667.3		
	240 m	in Winter	8.932	0.932	13.9	698.6	O K	
		in Winter				724.9		
		in Winter			13.9			
		in Winter				705.6		
		in Winter in Winter				684.1 638.0		
		in Winter in Winter				515.1		
		in Winter				325.0		
	2880 m	in Winter	8.273	0.273	13.8			
	4320 m	in Winter	8.161	0.161	11.8	120.9	0 K	
	5760 m	in Winter	8.132	0.132	9.3	99.0	O K	
		in Winter				87.4		
		in Winter in Winter				79.7 74.2		
	10000	III WINCCI	0.000	0.000	5.5	/1.2	0 11	
	S+/	orm	Rain	Flood	d Diccl		ime-Peak	
	Eve		(mm/hr)			ume	(mins)	
				(m³)		1 ³)		
	60 mi	n Winter	67.760	0	.0 6	661.3	62	
	120 mi	n Winter	43.120	0	.0 8	307.1	120	
		n Winter	32.548			397.1	178	
		n Winter				959.5	236	
			19.297			040.1	350	
		n Winter n Winter	15.250			089.0	460	
		n Winter n Winter	12.635 10.803			123.2 149.0	560 584	
		n Winter	8.400			186.2	724	
		n Winter	5.851			232.9	1024	
		n Winter	4.052			286.4	1380	
		n Winter	3.124			318.0	1696	
		n Winter	2.176			368.2	2288	
		n Winter	1.693			419.4	2944	
	/∠UU mi	n Winter	1.404 1.211			465.9 511.4	3712 4416	
		n Winter			• U I .	ノエエ・ヨ	7710	
	8640 mi				.0 1	555.5	5152	
	8640 mi	n Winter n Winter	1.073		.0 15	555.5	5152	
	8640 mi				.0 15	555.5	5152	
	8640 mi				.0 15	555.5	5152	
	8640 mi				.0 15	555.5	5152	
	8640 mi				.0 15	555.5	5152	
	8640 mi				.0 15	555.5	5152	
	8640 mi				.0 15	555.5	5152	

Jubb Consulting Engineers Ltd (Bristol)	Page 3
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micco
Date 26/01/2022 14:05	Designed by KGyba	– Micro
		Drainag
File OUTFALL 2 - 13.9 L_S (W		
Innovyze	Source Control 2019.1	
<u>R</u>	ainfall Details	
Rainfall Mod	del FEH	
Return Period (yea:	rs) 100	
FEH Rainfall Vers	ion 2013	
Site Locat:	ion GB 541450 180700 TQ 41450 80700	
Data T		
Summer Sto		
Winter Sto		
Cv (Summe		
Cv (Winte Shortest Storm (mi)		
Longest Storm (min		
Climate Change		
<u>T</u> 1	ime Area Diagram	
То	tal Area (ha) 0.940	
	Time (mins) Area	
F	rom: To: (ha)	
	0 4 0.940	

Jubb Consulting Engineers Ltd (B	Page 4	
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:05	Designed by KGyba	Drainage
File OUTFALL 2 - 13.9 L_S (W	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(l/s)										
2	0.0	102	0.0	202	1.6	302	2.8	402	2.8	502	2.5
4	0.0	104	0.0	204	1.6	304	2.8	404	2.8	504	2.5
6	0.0	106	0.0	206	1.7	306	2.8	406	2.8	506	2.5
8	0.0	108	0.0	208	1.8	308	2.8	408	2.8	508	2.5
10	0.0	110	0.0	210	1.8	310	2.8	410	2.8	510	2.5
12	0.0	112	0.0	212	1.9	312	2.8	412	2.8	512	2.5
14	0.0	114	0.0	214	1.9	314	2.8	414	2.8	514	2.5
16	0.0	116	0.0	216	2.0	316	2.8	416	2.8	516	2.4
18	0.0	118	0.1	218	2.1	318	2.8	418	2.8	518	2.4
20	0.0	120	0.1	220	2.1	320	2.8	420	2.8	520	2.4
22	0.0	122	0.1	222	2.1	322	2.8	422	2.8	522	2.4
24	0.0	124	0.1	224	2.2	324	2.8	424	2.8	524	2.4
26	0.0	126	0.1	226	2.2	326	2.8	426	2.8	526	2.4
28	0.0	128	0.1	228	2.3	328	2.8	428	2.8	528	2.4
30	0.0	130	0.1	230	2.3	330	2.8	430	2.8	530	2.4
32	0.0	132	0.1	232	2.4	332	2.8	432	2.8	532	2.4
34	0.0	134	0.1	234	2.4	334	2.8	434	2.8	534	2.4
36	0.0	136	0.1	236	2.4	336	2.8	436	2.8	536	2.4
38	0.0	138	0.2	238	2.5	338	2.8	438	2.8	538	2.4
40	0.0	140	0.2	240	2.5	340	2.8	440	2.7	540	2.4
42	0.0	142	0.2	242	2.5	342	2.8	442	2.7	542	2.4
44	0.0	144	0.2	244	2.6	344	2.8	444	2.7	544	2.4
46	0.0	146	0.2	246	2.6	346	2.8	446	2.7	546	2.3
48	0.0	148	0.3	248	2.6	348	2.8	448	2.7	548	2.3
50	0.0	150	0.3	250	2.6	350	2.8	450	2.7	550	2.3
52	0.0	152	0.3	252	2.7	352	2.8	452	2.7	552	2.3
54	0.0	154	0.3	254	2.7	354	2.8	454	2.7	554	2.3
56	0.0	156	0.4	256	2.7	356	2.8	456	2.7	556	2.3
58	0.0	158	0.4	258	2.7	358	2.8	458	2.7	558	2.3
60	0.0	160	0.4	260	2.7	360	2.8	460	2.7	560	2.3
62	0.0	162	0.5	262	2.8	362	2.8	462	2.7	562	2.3
64	0.0	164	0.5	264	2.8	364	2.8	464	2.7	564	2.3
66	0.0	166	0.5	266	2.8	366	2.8	466	2.6	566	2.3
68	0.0	168	0.6	268	2.8	368	2.8	468	2.6	568	2.3
70	0.0	170	0.6	270	2.8	370	2.8	470	2.6	570	2.3
72	0.0	172	0.7	272	2.8	372	2.8	472	2.6	572	2.2
74	0.0	174	0.7	274	2.8	374	2.8	474	2.6	574	2.2
76	0.0	176	0.8	276	2.8	376	2.8	476	2.6	576	2.2
78	0.0	178	0.8	278	2.8	378	2.8	478	2.6	578	2.2
80	0.0	180	0.9	280	2.8	380	2.8	480	2.6	580	2.2
82	0.0	182	0.9	282	2.8	382	2.8	482	2.6	582	2.2
84	0.0	184	1.0	284	2.8	384	2.8	484	2.6	584	2.2
86	0.0	186	1.1	286	2.8	386	2.8	486	2.6	586	2.2
88	0.0	188	1.1	288	2.8	388	2.8	488	2.6	588	2.2
90	0.0	190	1.2	290	2.8	390	2.8	490	2.6	590	2.2
92	0.0	192	1.2	292	2.8	392	2.8	492	2.5	592	2.2
94	0.0	194	1.3	294	2.8	394	2.8	494	2.5	594	2.1
96	0.0	196	1.4	296	2.8	396	2.8	496	2.5	596	2.1
98	0.0	198	1.4	298	2.8	398	2.8	498	2.5	598	2.1
100	0.0	200	1.5	300	2.8	400	2.8	500	2.5	600	2.1

Jubb Consulting Engineers Ltd (B	Page 5	
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Mirm
Date 26/01/2022 14:05	Designed by KGyba	Drainage
File OUTFALL 2 - 13.9 L_S (W	Checked by	Diginarie
Innovyze	Source Control 2019.1	

Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow
(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)
602	2.1	702	1.7	802	1.4	902	1.2	1002	1.0	1102	0.8
604	2.1	702	1.7	804	1.4	904	1.2	1002	1.0	1102	0.8
606	2.1	706	1.7	806	1.4	906	1.2	1006	1.0	1106	0.8
608	2.1	708	1.7	808	1.4	908	1.2	1008	1.0	1108	0.8
610	2.1	700	1.7	810	1.4	910	1.2	1010	1.0	1110	0.0
612	2.1	710	1.7	812	1.4	910	1.2	1010	1.0	1110	0.8
614	2.1	712	1.7	814	1.4	912	1.2	1012	1.0	1112	0.8
616	2.1	714	1.7	816	1.4	914	1.2	1014	0.9	1114	0.8
618	2.1	718	1.7	818	1.4	918 918	1.2	1018	0.9	1110	0.8
620	2.1	710	1.7	820	1.4	920	1.1	1018	0.9	1120	0.8
622	2.1	720	1.7	822	1.4	920	1.1	1020	0.9	1120	0.8
624	2.0	724	1.7	824	1.4	922	1.1	1022	0.9	1122	0.8
626	2.0	724	1.7	826	1.4	924	1.1	1024	0.9	1124	0.8
	2.0										
628		728	1.7	828	1.4	928	1.1	1028	0.9	1128	0.8
630	2.0	730	1.7	830	1.4	930	1.1	1030	0.9	1130	0.8
632	2.0	732	1.6	832	1.3	932	1.1	1032	0.9	1132	0.8
634	2.0	734	1.6	834	1.3	934	1.1	1034	0.9	1134	0.8
636	2.0	736	1.6	836	1.3	936	1.1	1036	0.9	1136	0.8
638	2.0	738	1.6	838	1.3	938	1.1	1038	0.9	1138	0.8
640	2.0	740	1.6	840	1.3	940	1.1	1040	0.9	1140	0.8
642	2.0	742	1.6	842	1.3	942	1.1	1042	0.9	1142	0.8
644	2.0	744	1.6	844	1.3	944	1.1	1044	0.9	1144	0.8
646	2.0	746	1.6	846	1.3	946	1.1	1046	0.9	1146	0.8
648	1.9	748	1.6	848	1.3	948	1.1	1048	0.9	1148	0.8
650	1.9	750	1.6	850	1.3	950	1.1	1050	0.9	1150	0.8
652	1.9	752	1.6	852	1.3	952	1.1	1052	0.9	1152	0.8
654	1.9	754	1.6	854	1.3	954	1.1	1054	0.9	1154	0.8
656	1.9	756	1.6	856	1.3	956	1.1	1056	0.9	1156	0.8
658	1.9	758	1.6	858	1.3	958	1.1	1058	0.9	1158	0.7
660	1.9	760	1.6	860	1.3	960	1.1	1060	0.9	1160	0.7
662	1.9	762	1.6	862	1.3	962	1.1	1062	0.9	1162	0.7
664	1.9	764	1.5	864	1.3	964	1.1	1064	0.9	1164	0.7
666	1.9	766	1.5	866	1.3	966	1.0	1066	0.9	1166	0.7
668	1.9	768	1.5	868	1.3	968	1.0	1068	0.9	1168	0.7
670 672	1.9	770	1.5	870	1.2	970	1.0	1070	0.9	1170	0.7
672	1.9	772	1.5	872	1.2	972	1.0	1072	0.9	1172	0.7
674	1.8	774	1.5	874	1.2	974	1.0	1074	0.9	1174	0.7
676 678	1.8	776 770	1.5	876	1.2	976 978	1.0	1076 1078	0.9	1176 1178	0.7
	1.8	778	1.5	878	1.2		1.0		0.9		0.7
680	1.8	780	1.5	880	1.2	980	1.0	1080	0.9	1180	0.7
682	1.8	782	1.5	882	1.2	982	1.0	1082	0.8	1182	0.7
684	1.8	784	1.5	884	1.2	984	1.0	1084	0.8	1184	0.7
686	1.8	786	1.5	886	1.2	986	1.0	1086	0.8	1186	0.7
688	1.8	788	1.5	888	1.2	988	1.0	1088	0.8	1188	0.7
690	1.8	790	1.5	890	1.2	990	1.0	1090	0.8	1190	0.7
692	1.8	792	1.5	892	1.2	992	1.0	1092	0.8	1192	0.7
694	1.8	794	1.5	894	1.2	994	1.0	1094	0.8	1194	0.7
696	1.8	796	1.4	896	1.2	996	1.0	1096	0.8	1196	0.7
698	1.8	798	1.4	898	1.2	998	1.0	1098	0.8		0.7
700	1.8	800	1.4	900	1.2	1000	1.0	1100	0.8	1200	0.7

Jubb Consulting Engineers Ltd (B	Page 6	
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:05	Designed by KGyba	Drainage
File OUTFALL 2 - 13.9 L_S (W	Checked by	Dialitage
Innovyze	Source Control 2019.1	

Time	Flow	Time	Flow								
(mins)	(l/s)	(mins)	(l/s)								
1202	0.7	1302	0.6	1402	0.5	1502	0.4	1602	0.4	1702	0.3
1204	0.7	1304	0.6	1404	0.5	1504	0.4	1604	0.4	1704	0.3
1206	0.7	1306	0.6	1406	0.5	1506	0.4	1606	0.4	1706	0.3
1208	0.7	1308	0.6	1408	0.5	1508	0.4	1608	0.4	1708	0.3
1210	0.7	1310	0.6	1410	0.5	1510	0.4	1610	0.4	1710	0.3
1212	0.7	1312	0.6	1412	0.5	1512	0.4	1612	0.4	1712	0.3
1214	0.7	1314	0.6	1414	0.5	1514	0.4	1614	0.4	1714	0.3
1216	0.7	1316	0.6	1416	0.5	1516	0.4	1616	0.4	1716	0.3
1218	0.7	1318	0.6	1418	0.5	1518	0.4	1618	0.4	1718	0.3
1220	0.7	1320	0.6	1420	0.5	1520	0.4	1620	0.4	1720	0.3
1222	0.7	1322	0.6	1422	0.5	1522	0.4	1622	0.4	1722	0.3
1224	0.7	1324	0.6	1424	0.5	1524	0.4	1624	0.4	1724	0.3
1226	0.7	1326	0.6	1426	0.5	1526	0.4	1626	0.4	1726	0.3
1228	0.7	1328	0.6	1428	0.5	1528	0.4	1628	0.4	1728	0.3
1230	0.7	1330	0.6	1430	0.5	1530	0.4	1630	0.4	1730	0.3
1230	0.7	1332	0.6	1432	0.5	1532	0.4	1632	0.4	1732	0.3
1232	0.7	1334	0.6	1434	0.5	1534	0.4	1634	0.4	1734	0.3
1234	0.7	1334	0.6	1434	0.5	1536	0.4	1636	0.4	1734	0.3
1230	0.7	1338	0.6	1438	0.5	1538	0.4	1638	0.4	1738	0.3
1240	0.7	1340	0.6	1430	0.5	1540	0.4	1640	0.4	1740	0.3
1240	0.7	1340	0.6	1440	0.5	1540	0.4	1642	0.4	1740	0.3
1242	0.7	1342	0.6	1442	0.5	1542	0.4	1644	0.4	1742	0.3
1244	0.6	1344	0.5	1444	0.5	1544	0.4	1644	0.4	1744	0.3
1240	0.6	1348	0.5	1440	0.5	1548	0.4	1648	0.4	1748	0.3
1240	0.6	1340	0.5	1440	0.5	1540	0.4	1650	0.4	1750	0.3
1250	0.6	1350	0.5	1450	0.5	1550	0.4	1652	0.4	1752	0.3
1252	0.6	1352	0.5	1452	0.5	1552	0.4	1654	0.4	1754	0.3
1254	0.6	1354	0.5	1454	0.5	1554	0.4	1656	0.4	1756	0.3
1258	0.6	1358	0.5	1458	0.5	1558	0.4	1658	0.4	1758	0.3
1250	0.6	1350	0.5	1458	0.5	1550	0.4	1658	0.4	1750	0.3
1260	0.6	1362	0.5	1460	0.5	1562	0.4	1662	0.4	1762	0.3
1262	0.6	1364	0.5	1462	0.5	1564	0.4	1664	0.3	1764	0.3
1264	0.6	1364	0.5	1464	0.5	1566	0.4	1666	0.3	1766	0.3
1268	0.6	1368	0.5	1468	0.5	1568	0.4	1668	0.3	1768	0.3
1200	0.6	1308	0.5	1400	0.5	1500	0.4	1670	0.3	1700	0.3
1270	0.6	1370	0.5	1470	0.5	1570	0.4	1670	0.3	1772	0.3
		1372									
1274	0.6		0.5	1474 1476	0.5	1574 1576	0.4	1674 1676	0.3	1774 1776	0.3
1276 1278	0.6 0.6	1376 1378	0.5 0.5	1476	0.5 0.5	1576 1578	0.4 0.4	1676 1678	0.3 0.3	1776	0.3
	0.6		0.5	1478	0.5				0.3		0.3
1280		1380				1580	0.4	1680		1780	
1282 1284	0.6 0.6	1382 1384	0.5	1482 1484	0.5 0.5	1582 1584	0.4 0.4	1682 1684	0.3 0.3	1782 1784	0.3
			0.5								0.3
1286	0.6 0.6	1386	0.5	1486	0.5	1586	0.4	1686	0.3	1786	0.3
1288		1388	0.5	1488	0.4	1588	0.4	1688	0.3	1788	0.3
1290	0.6	1390	0.5	1490	0.4	1590	0.4	1690	0.3	1790	0.3
1292	0.6	1392	0.5	1492	0.4	1592	0.4	1692	0.3	1792	0.3
1294	0.6	1394	0.5	1494	0.4	1594	0.4	1694	0.3	1794	0.3
1296	0.6	1396	0.5	1496	0.4	1596	0.4	1696	0.3		0.3
1298	0.6	1398	0.5	1498	0.4	1598	0.4	1698	0.3		0.3
1300	0.6	1400	0.5	1500	0.4	1600	0.4	1700	0.3	1800	0.3

Jubb Consulting Engineers Ltd (B	Page 7	
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Mirro
Date 26/01/2022 14:05	Designed by KGyba	Drainage
File OUTFALL 2 - 13.9 L_S (W	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(l/s)										
1802	0.3	1902	0.3	2002	0.2	2102	0.2	2202	0.2	2302	0.2
1804	0.3	1904	0.3	2004	0.2	2104	0.2	2204	0.2	2304	0.2
1806	0.3	1906	0.3	2006	0.2	2106	0.2	2206	0.2	2306	0.2
1808	0.3	1908	0.3	2008	0.2	2108	0.2	2208	0.2	2308	0.2
1810	0.3	1910	0.3	2010	0.2	2110	0.2	2210	0.2	2310	0.2
1812	0.3	1912	0.3	2012	0.2	2112	0.2	2212	0.2	2312	0.2
1814	0.3	1914	0.3	2014	0.2	2114	0.2	2214	0.2	2314	0.2
1816	0.3	1916	0.3	2016	0.2	2116	0.2	2216	0.2	2316	0.2
1818	0.3	1918	0.3	2018	0.2	2118	0.2	2218	0.2	2318	0.2
1820	0.3	1920	0.3	2020	0.2	2120	0.2	2220	0.2	2320	0.2
1822	0.3	1922	0.3	2022	0.2	2122	0.2	2222	0.2	2322	0.2
1824	0.3	1924	0.3	2024	0.2	2124	0.2	2224	0.2	2324	0.2
1826	0.3	1926	0.3	2026	0.2	2126	0.2	2226	0.2	2326	0.2
1828	0.3	1928	0.3	2028	0.2	2128	0.2	2228	0.2	2328	0.2
1830	0.3	1930	0.3	2030	0.2	2130	0.2	2230	0.2	2330	0.2
1832	0.3	1932	0.3	2032	0.2	2132	0.2	2232	0.2	2332	0.2
1834	0.3	1934	0.3	2034	0.2	2134	0.2	2234	0.2	2334	0.2
1836	0.3	1936	0.3	2036	0.2	2136	0.2	2236	0.2	2336	0.2
1838	0.3	1938	0.3	2038	0.2	2138	0.2	2238	0.2	2338	0.2
1840	0.3	1940	0.3	2040	0.2	2140	0.2	2240	0.2	2340	0.2
1842	0.3	1942	0.3	2042	0.2	2142	0.2	2242	0.2	2342	0.2
1844	0.3	1944	0.3	2044	0.2	2144	0.2	2244	0.2	2344	0.2
1846	0.3	1946	0.3	2046	0.2	2146	0.2	2246	0.2	2346	0.2
1848	0.3	1948	0.3	2048	0.2	2148	0.2	2248	0.2	2348	0.2
1850	0.3	1950	0.3	2050	0.2	2150	0.2	2250	0.2	2350	0.2
1852	0.3	1952	0.3	2052	0.2	2152	0.2	2252	0.2	2352	0.2
1854	0.3	1954	0.3	2054	0.2	2154	0.2	2254	0.2	2354	0.2
1856	0.3	1956	0.3	2056	0.2	2156	0.2	2256	0.2	2356	0.2
1858	0.3	1958	0.3	2058	0.2	2158	0.2	2258	0.2	2358	0.2
1860	0.3	1960	0.3	2060	0.2	2160	0.2	2260	0.2	2360	0.2
1862	0.3	1962	0.3	2062	0.2	2162	0.2	2262	0.2	2362	0.2
1864	0.3	1964	0.2	2064	0.2	2164	0.2	2264	0.2	2364	0.2
1866	0.3	1966	0.2	2066	0.2	2166	0.2	2266	0.2	2366	0.2
1868	0.3	1968	0.2	2068	0.2	2168	0.2	2268	0.2	2368	0.2
1870	0.3	1970	0.2	2070	0.2	2170	0.2	2270	0.2	2370	0.2
1872	0.3	1972	0.2	2072	0.2	2172	0.2	2272	0.2	2372	0.2
1874	0.3	1974	0.2	2074	0.2	2174	0.2	2274	0.2	2374	0.2
1876 1878	0.3	1976 1978	0.2	2076 2078	0.2	2176 2178	0.2	2276	0.2	2376	0.2
	0.3 0.3		0.2	2078	0.2	2178	0.2	2278	0.2	2378	0.2
1880		1980	0.2		0.2		0.2	2280	0.2	2380	
1882	0.3 0.3	1982	0.2	2082	0.2 0.2	2182 2184	0.2	2282 2284	0.2		0.2
1884 1886	0.3	1984 1986	0.2 0.2	2084 2086	0.2	2184 2186	0.2 0.2	2284 2286	0.2	2384 2386	0.2 0.2
					0.2						
1888 1890	0.3 0.3	1988 1990	0.2 0.2	2088 2090	0.2	2188 2190	0.2 0.2	2288 2290	0.2 0.2		0.2
1890	0.3	1990	0.2	2090	0.2	2190 2192	0.2	2290	0.2	2390	0.2
1892 1894	0.3	1992 1994	0.2	2092 2094	0.2	2192 2194	0.2	2292 2294	0.2	2392	0.2
1894 1896	0.3	1994 1996	0.2	2094 2096	0.2	2194 2196	0.2	2294 2296	0.2		0.2
1898	0.3	1996	0.2	2096	0.2	2196 2198	0.2	2296	0.2		0.2
1900	0.3	2000	0.2	2098	0.2	2198	0.2	2298	0.2		0.2
± 200	0.5	2000	0.2	2100	0.2	2200	0.2	2000	0.2	2100	0.2

Jubb Consulting Engineers Ltd (B	Page 8	
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Mirro
Date 26/01/2022 14:05	Designed by KGyba	Drainage
File OUTFALL 2 - 13.9 L_S (W	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(l/s)										
2402	0.2	2482	0.1	2562	0.1	2642	0.1	2722	0.1	2802	0.1
2404	0.2	2484	0.1	2564	0.1	2644	0.1	2724	0.1	2804	0.1
2406	0.2	2486	0.1	2566	0.1	2646	0.1	2726	0.1	2806	0.1
2408	0.2	2488	0.1	2568	0.1	2648	0.1	2728	0.1	2808	0.1
2410	0.2	2490	0.1	2570	0.1	2650	0.1	2730	0.1	2810	0.1
2412	0.2	2492	0.1	2572	0.1	2652	0.1	2732	0.1	2812	0.1
2414	0.2	2494	0.1	2574	0.1	2654	0.1	2734	0.1	2814	0.1
2416	0.2	2496	0.1	2576	0.1	2656	0.1	2736	0.1	2816	0.1
2418	0.2	2498	0.1	2578	0.1	2658	0.1	2738	0.1	2818	0.1
2420	0.2	2500	0.1	2580	0.1	2660	0.1	2740	0.1	2820	0.1
2422	0.2	2502	0.1	2582	0.1	2662	0.1	2742	0.1	2822	0.1
2424	0.2	2504	0.1	2584	0.1	2664	0.1	2744	0.1	2824	0.1
2426	0.2	2506	0.1	2586	0.1	2666	0.1	2746	0.1	2826	0.1
2428	0.2	2508	0.1	2588	0.1	2668	0.1	2748	0.1	2828	0.1
2430	0.2	2510	0.1	2590	0.1	2670	0.1	2750	0.1	2830	0.1
2432	0.2	2512	0.1	2592	0.1	2672	0.1	2752	0.1	2832	0.1
2434	0.2	2514	0.1	2594	0.1	2674	0.1	2754	0.1	2834	0.1
2436	0.2	2516	0.1	2596	0.1	2676	0.1	2756	0.1	2836	0.1
2438	0.2	2518	0.1	2598	0.1	2678	0.1	2758	0.1	2838	0.1
2440	0.2	2520	0.1	2600	0.1	2680	0.1	2760	0.1	2840	0.1
2442	0.2	2522	0.1	2602	0.1	2682	0.1	2762	0.1	2842	0.1
2444	0.2	2524	0.1	2604	0.1	2684	0.1	2764	0.1	2844	0.1
2446	0.2	2526	0.1	2606	0.1	2686	0.1	2766	0.1	2846	0.1
2448	0.2	2528	0.1	2608	0.1	2688	0.1	2768	0.1	2848	0.1
2450	0.2	2530	0.1	2610	0.1	2690	0.1	2770	0.1	2850	0.1
2452	0.2	2532	0.1	2612	0.1	2692	0.1	2772	0.1	2852	0.1
2454	0.2	2534	0.1	2614	0.1	2694	0.1	2774	0.1	2854	0.1
2456	0.2	2536	0.1	2616	0.1	2696	0.1	2776	0.1	2856	0.1
2458	0.2	2538	0.1	2618	0.1	2698	0.1	2778	0.1	2858	0.1
2460	0.2	2540	0.1	2620	0.1	2700	0.1	2780	0.1	2860	0.1
2462	0.2	2542	0.1	2622	0.1	2702	0.1	2782	0.1	2862	0.1
2464	0.2	2544	0.1	2624	0.1	2704	0.1	2784	0.1	2864	0.1
2466	0.2	2546	0.1	2626	0.1	2706	0.1	2786	0.1	2866	0.1
2468	0.2	2548	0.1	2628	0.1	2708	0.1	2788	0.1	2868	0.1
2470	0.2	2550	0.1	2630	0.1	2710	0.1	2790	0.1	2870	0.1
2472	0.2	2552	0.1	2632	0.1	2712	0.1	2792	0.1	2872	0.1
2474	0.2	2554	0.1	2634	0.1	2714	0.1	2794	0.1	2874	0.1
2476	0.2	2556	0.1	2636	0.1	2716	0.1	2796	0.1	2876	0.1
2478	0.1	2558	0.1	2638	0.1	2718	0.1	2798	0.1	2878	0.1
2480	0.1	2560	0.1	2640	0.1	2720	0.1	2800	0.1	2880	0.1

C+ Tamarla	ting Engir	neers	Ltd	(Brist	ol)				Page 1
or James's	Court, Sui	lte B							
Ground Floo	or West, St	Jam	es						
Bristol, BS	1 ЗТ.Н								Micco
Date 26/01/		7		Doc	ianod	by KGy	rha		_ Micro
			(2		jua		Drainac
File OUTFAL	ц 3 – 6.9	L_S	(W1		cked 1				
Innovyze				Sou	rce Co	ontrol	2019.	.1	
	Summary c	of Rea	sults	for 1	00 ye	ar Reti	urn Pe	eriod (+40%)
		Storm	ı	Max	Max	Max	Мах	Status	
		Event	:	Level	Depth	Control	Volum	e	
				(m)	(m)	(1/s)	(m³)		
	1 5	min	Summer	8.322	0 322	6.9	119.	1 ОК	
				8.407		6.9			
				8.481			178.		
				8.579					
	180) min :	Summer	8.627	0.627	6.9	231.	8 ОК	
				8.663					
				8.706			261.		
				8.718			265.		
				8.712 8.697			263. 257.		
				8.697					
				8.519					
				8.337			124.		
	2880) min	Summer	8.229	0.229	6.8	84.	6 ОК	
	4320) min	Summer	8.139	0.139	6.3	51.	5 ОК	
				8.112		5.0			
				8.097		4.2			
				8.089 8.082			32. 30.		
				8.362			133.		
				8.458			169.		
	:	Storm		Rain	Flood	led Disc	harge	Time-Peak	
		Storm Event		Rain (mm/hr)			harge Lume	Time-Peak (mins)	
						me Vol	-		
	:	Event		(mm/hr)	Volu (m³	me Vol) (n	Lume n ³)	(mins)	
	15	Event min S		(mm/hr)	Volu (m ³	me Vol) (n	Lume n ³) 234.7	(mins) 18	
	15 30	Event min S	ummer	(mm/hr) 171.920 110.600	Volu (m ³	me Vol) (n).0	Lume n ³) 234.7 270.2	(mins) 18 33	
	15 30 60	min S min S min S	ummer ummer	(mm/hr)	Volu (m ³	me Vol) (n).0).0	Lume n ³) 234.7	(mins) 18	
	15 30 60 120	min S min S min S min S min S	ummer ummer ummer	(mm/hr) 171.920 110.600 67.760	Volu (m ³) (m ³) () () () () () () ()	me Vol) (n).0 .0).0 .0).0 .0	Lume n ³) 234.7 270.2 334.2	(mins) 18 33 62	
	15 30 60 120 180 240	min S min S min S min S min S min S min S	ummer ummer ummer ummer ummer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390	Volum (m ³) (m ³) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0	me Vol) (n).0 0.0).0 0.0).0 0.0).0 0.0).0 0.0	Lume n ³) 234.7 270.2 334.2 387.5	(mins) 18 33 62 122	
	15 30 60 120 180 240 360	min S min S min S min S min S min S min S min S	ummer ummer ummer ummer ummer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297	Volum (m ³) (m ³) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0	me Vol) (n 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Lume n ³) 234.7 270.2 334.2 387.5 420.3 443.1 472.5	(mins) 18 33 62 122 182 242 362	
	15 30 60 120 180 240 360 480	min S min S min S min S min S min S min S min S min S	ummer ummer ummer ummer ummer ummer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250	Volue (m ³) (m ³) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0	me Vol) (n).0).0).0).0).0).0).0).0).0).0).0).0).0).0	Lume a ³) 234.7 270.2 334.2 387.5 420.3 443.1 472.5 490.4	(mins) 18 33 62 122 182 242 362 480	
	15 30 60 120 180 240 360 480 600	min S min S min S min S min S min S min S min S min S min S	ummer ummer ummer ummer ummer ummer ummer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635	Volu (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	me Vol) (n).0 (n	Lume n ³) 234.7 270.2 334.2 387.5 420.3 443.1 472.5 490.4 503.0	(mins) 18 33 62 122 182 242 362 480 572	
	15 30 60 120 180 240 360 480 600 720	min S min S	ummer ummer ummer ummer ummer ummer ummer ummer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	me Vol) (n).0 (n	Lume a ³) 234.7 270.2 334.2 387.5 420.3 443.1 472.5 490.4 503.0 512.4	(mins) 18 33 62 122 182 242 362 480 572 608	
	15 30 60 120 180 240 360 480 600 720 960	Event min S min S min S min S min S min S min S min S min S min S	ummer ummer ummer ummer ummer ummer ummer ummer ummer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	me Vol) (n).0 (n	Lume a ³) 234.7 270.2 334.2 387.5 420.3 443.1 472.5 490.4 503.0 512.4 526.1	(mins) 18 33 62 122 182 242 362 480 572 608 704	
	15 30 60 120 180 240 360 480 600 720 960 1440	min S min S	ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803	Volum (m ³) (m ³) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0	me Vol) (n).0 (n	Lume a ³) 234.7 270.2 334.2 387.5 420.3 443.1 472.5 490.4 503.0 512.4	(mins) 18 33 62 122 182 242 362 480 572 608	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160	Event min S min S	ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851	Volum (m ³) (m	me Vol) (n).0 (n	Lume a ³) 234.7 270.2 334.2 387.5 420.3 443.1 472.5 490.4 503.0 512.4 526.1 543.4	(mins) 18 33 62 122 182 242 362 480 572 608 704 910	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	Event min S min S	ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052	Volum (m ³) 0 0	me Vol) (n).0 (n	Lume a ³) 234.7 270.2 334.2 387.5 420.3 443.1 472.5 490.4 503.0 512.4 526.1 543.4 563.9	(mins) 18 33 62 122 182 242 362 480 572 608 704 910 1256	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	Event min S min S	ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693	Volum (m ³) 0 0	me Vol) (n).0 (n	Lume a ³) 234.7 270.2 334.2 387.5 420.3 443.1 472.5 490.4 503.0 512.4 526.1 543.4 563.9 575.5 594.0 612.4	(mins) 18 33 62 122 182 242 362 480 572 608 704 910 1256 1588 2248 2944	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	Event min S min S	ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404	Volum (m ³) 0 0	me Vol) (n) 0.0	Lume a ³) 234.7 270.2 334.2 387.5 420.3 443.1 472.5 490.4 503.0 512.4 526.1 543.4 563.9 575.5 594.0 612.4 629.4	(mins) 18 33 62 122 182 242 362 480 572 608 704 910 1256 1588 2248 2944 3672	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	Event min S min S	ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	Volum (m ³) 0 0	me Vol) (n	Lume a ³) 234.7 270.2 334.2 387.5 420.3 443.1 472.5 490.4 503.0 512.4 526.1 543.4 563.9 575.5 594.0 612.4 629.4 646.0	(mins) 18 33 62 122 182 242 362 480 572 608 704 910 1256 1588 2248 2944 3672 4408	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	Event min S min S	ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211 1.073	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>me Vol) (n) (n) 0.0</td> <td>Lume a³) 234.7 270.2 334.2 387.5 420.3 443.1 472.5 490.4 503.0 512.4 526.1 543.4 563.9 575.5 594.0 612.4 629.4 646.0 662.1</td> <td>(mins) 18 33 62 122 182 242 362 480 572 608 704 910 1256 1588 2248 2944 3672 4408 5144</td> <td></td>	me Vol) (n) (n) 0.0	Lume a ³) 234.7 270.2 334.2 387.5 420.3 443.1 472.5 490.4 503.0 512.4 526.1 543.4 563.9 575.5 594.0 612.4 629.4 646.0 662.1	(mins) 18 33 62 122 182 242 362 480 572 608 704 910 1256 1588 2248 2944 3672 4408 5144	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	Event min S min S	ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer inter	(mm/hr) 171.920 110.600 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	me Vol) (n) (n) </td <td>Lume a³) 234.7 270.2 334.2 387.5 420.3 443.1 472.5 490.4 503.0 512.4 526.1 543.4 563.9 575.5 594.0 612.4 629.4 646.0</td> <td>(mins) 18 33 62 122 182 242 362 480 572 608 704 910 1256 1588 2248 2944 3672 4408</td> <td></td>	Lume a ³) 234.7 270.2 334.2 387.5 420.3 443.1 472.5 490.4 503.0 512.4 526.1 543.4 563.9 575.5 594.0 612.4 629.4 646.0	(mins) 18 33 62 122 182 242 362 480 572 608 704 910 1256 1588 2248 2944 3672 4408	

t James's Court, Suite B round Floor West, St James						
ristol, BS1 3LH						Micro
ate 26/01/2022 14:07	Desi	igned b	y KGy	ba		
ile OUTFALL 3 - 6.9 L_S (WI	. Cheo	cked by				Draina
nnovyze <u>–</u>	Soui	rce Con	trol	2019.	1	
Summary of Results	for 1	00 year	Retu	rn Pe	riod (+40%)	<u>)</u>
Storm	Max	Max	Max	Max	Status	
Event		Depth Co			9	
	(m)	(m)	(1/s)	(m³)		
60 min Winter	8.544	0.544	6.9	201.2	2 ОК	
120 min Winter			6.9			
180 min Winter			6.9			
240 min Winter				279.8		
360 min Winter 480 min Winter			6.9 6.9			
600 min Winter				299.2		
720 min Winter			6.9			
960 min Winter	8.738	0.738	6.9	272.9	Э ОК	
1440 min Winter			6.9			
2160 min Winter				115.5		
2880 min Winter 4320 min Winter			6.6	65.		
5760 min Winter				41.4		
7200 min Winter				29.0		
8640 min Winter			2.9		3 ОК	
10080 min Winter	8.074	0.074	2.8	27.3	3 ОК	
Storm	Rain			-	Time-Peak	
Event	(mm/hr)	Volume (m³)	Vol: (m		(mins)	
		(111)	(111	,		
60 min Winter	67.760	0.0) 3	357.7	62	
120 min Winter				17.3	120	
180 min Winter	32.548			154.1	178	
240 min Winter 360 min Winter				79.6 12.5	238 354	
480 min Winter				512.5 532.6	466	
600 min Winter				546.6	572	
720 min Winter				57.2	664	
	8.400			572.5	740	
1440 min Winter	5.851			591.9	994	
2160 min Winter				514.4	1320	
2880 min Winter 4320 min Winter	3.124 2.176			527.4 548.2	1612 2248	
5760 min Winter	1.693			568.6	2888	
7200 min Winter	1.404			587.6	3672	
8640 min Winter	1.211			06.3	560	
10080 min Winter	1.073	0.0) 7	24.6	560	

Tubb Consulting Engineers Ltd (B	Bristol)	Page 3
t James's Court, Suite B		
Fround Floor West, St James		
Bristol, BS1 3LH		Micco
ate 26/01/2022 14:07	Designed by KGyba	— Micro
		Drainag
Tile OUTFALL 3 - 6.9 L_S (WI		
nnovyze	Source Control 2019.1	
Ra	infall Details	
Rainfall Mode		
Return Period (years		
FEH Rainfall Versio		
	on GB 541450 180700 TQ 41450 80700	
Data Typ	-	
Summer Storr Winter Storr		
Cv (Summe) Cv (Winter		
Shortest Storm (mins		
Longest Storm (mins		
Climate Change		
Cilillate Change	· · · · · · · · · · · · · · · · · · ·	
Tir	me Area Diagram	
Tota	al Area (ha) 0.384	
Ti	ime (mins) Area	
Fr	rom: To: (ha)	
	0 4 0.384	

St James's Court, Suit	eers Lla	(Bristol)			Page 4
Ground Floor West, St						
Bristol, BS1 3LH		-				Micco
Date 26/01/2022 14:07		Design	ned by KG	vha		Micro
File OUTFALL 3 - 6.9 I	I.S. (WT	_	-	yba		Drainag
Innovyze	<u> </u>		e Control	2010 1		
11110 v y 2 e		JOUICE	e concror	2019.1		
		Model D	etails			
s	Storage is	Online Cov	ver Level	(m) 10.000		
	Tan	k or Pond	d Structı	ire		
	Ir	nvert Level	l (m) 8.00	0		
Depth (m) i	Area (m²)				Area (m²)	
0.000	370.0	1.000	370.0	1.100	0.0	
HŽ	ydro-Brak	e® Optimu	um Outflo	ow Contro	1	
	Ur	nit Referer	nce MD-SHE	-0123-6900-	-1000-6900	
	Des	sign Head	(m)		1.000	
	Desig	yn Flow (l/			6.9	
		Flush-Fl			Calculated	
		Applicati		ise upstrea	Surface	
	Su	mp Availab			Yes	
)iameter (n			123	
	Inve	ert Level	(m)		8.000	
Minimum Out	-				150	
Suggested	d Manhole I				1200	
	Control	Points	Head (m	1) Flow (1/	s)	
		(0	
Des	ign Point					
Des	ign Point	Flush-Fl	o™ 0.29	9 6	.9	
	ign Point n Flow ove:	Flush-Fl Kick-Fl	o™ 0.29 o® 0.65	996 5655		
	n Flow over ations have specified. utilised t	Flush-Fl Kick-Fl r Head Ran e been base Should a then these	o™ 0.29 o® 0.65 ge ed on the a another ty storage r	99 6 56 5 - 6 Head/Discha pe of contr outing calc	.9 .7 .0 arge relation col device of culations with	other than a 11 be
Mea The hydrological calcula Hydro-Brake® Optimum as Hydro-Brake Optimum® be invalidated Depth (m) Flow (1/s)	n Flow over ations have specified. utilised t epth (m) F.	Flush-Fl Kick-Fl r Head Ran e been base Should a then these	o™ 0.29 o® 0.65 ge another ty storage r Depth (m)	9965 - 6 Head/Discha pe of contr outing calc Flow (1/s)	.9 .7 .0 col device of culations with Depth (m)	ther than a ll be
Mea The hydrological calcula Hydro-Brake® Optimum as Hydro-Brake Optimum® be invalidated Depth (m) Flow (1/s) De 0.100 4.4	n Flow over ations have specified. utilised t epth (m) F. 1.200	Flush-Fl Kick-Fl r Head Ran e been base Should a then these low (1/s) 7.5	o™ 0.29 o® 0.65 ge another ty storage r Depth (m) 3.000	99 6 66 5 - 6 Head/Discha pe of controuting calc Flow (1/s) 11.6	.9 .7 .0 arge relation col device of culations with Depth (m) 7.000	Ther than a ll be Flow (1/s) 17.3
Mea The hydrological calcula Hydro-Brake® Optimum as Hydro-Brake Optimum® be invalidated Depth (m) Flow (1/s) De	n Flow over ations have specified. utilised t epth (m) F.	Flush-Fl Kick-Fl r Head Ran e been base . Should a then these	o™ 0.29 o® 0.65 ge another ty storage r Depth (m)	9965 - 6 Head/Discha pe of contr outing calc Flow (1/s)	.9 .7 .0 arge relation col device of culations with Depth (m) 7.000 7.500	Ther than a ll be
Mea The hydrological calcula Hydro-Brake® Optimum as Hydro-Brake Optimum® be invalidated Depth (m) Flow (1/s) De 0.100 4.4 0.200 6.7	n Flow over ations have specified. utilised t epth (m) F. 1.200 1.400	Flush-Fl Kick-Fl r Head Ran e been base Should a then these low (1/s) 7.5 8.1	o™ 0.29 o® 0.65 ge another ty storage r Depth (m) 3.000 3.500	99 6 66 5 - 6 Head/Discha pe of controuting calc Flow (1/s) 11.6 12.5	.9 .7 .0 arge relation col device of culations with Depth (m) 7.000 7.500 8.000	ther than a 11 be Flow (1/s) 17.3 17.9
Mea The hydrological calcula Hydro-Brake® Optimum as Hydro-Brake Optimum® be invalidated Depth (m) Flow (1/s) De 0.100 4.4 0.200 6.7 0.300 6.9	n Flow over ations have specified. utilised t epth (m) F. 1.200 1.400 1.600	Flush-Fl Kick-Fl r Head Ran e been base Should a then these low (1/s) 7.5 8.1 8.6	o™ 0.29 o® 0.65 ge another ty storage r Depth (m) 3.000 3.500 4.000	99 6 66 5 - 6 Head/Discha pe of contro outing calc Flow (1/s) 11.6 12.5 13.3	.9 .7 .0 erge relation col device of culations with Depth (m) 7.000 7.500 8.000 8.500 9.000	Flow (1/s) 17.3 17.3 17.9 18.5 19.0 19.6
Mea The hydrological calcula Hydro-Brake® Optimum as Hydro-Brake Optimum® be invalidated Depth (m) Flow (1/s) De 0.100 4.4 0.200 6.7 0.300 6.9 0.400 6.8 0.500 6.6 0.600 6.2	n Flow over ations have specified. utilised t epth (m) F 1.200 1.400 1.600 1.800 2.000 2.200	Flush-Fl Kick-Fl r Head Ran e been base Should a then these low (1/s) 7.5 8.1 8.6 9.1 9.6 10.0	o™ 0.29 o® 0.65 ge another ty storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500	99 6 66 5 - 6 Head/Discha pe of controuting calc Flow (1/s) 11.6 12.5 13.3 14.0 14.8 15.4	.9 .7 .0 erge relation col device of culations with 7.000 7.500 8.000 8.500 9.000 9.500	Flow (1/s) 17.3 17.9 18.5 19.0
Mea The hydrological calcula Hydro-Brake® Optimum as Hydro-Brake Optimum® be invalidated Depth (m) Flow (1/s) De 0.100 4.4 0.200 6.7 0.300 6.9 0.400 6.8 0.500 6.6 0.600 6.2 0.800 6.2	n Flow over ations have specified. utilised t epth (m) F 1.200 1.400 1.600 1.800 2.000 2.200 2.400	Flush-Fl Kick-Fl r Head Ran e been base Should a then these low (1/s) 7.5 8.1 8.6 9.1 9.6 10.0 10.4	o™ 0.29 o® 0.65 ge another ty storage r Depth (m) 3.000 3.500 4.000 4.500 5.500 6.000	99 6 66 5 - 6 Head/Discha pe of contron outing calc Flow (l/s) 11.6 12.5 13.3 14.0 14.8 15.4 16.1	.9 .7 .0 rrge relations col device of culations with Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (1/s) 17.3 17.3 17.9 18.5 19.0 19.6
Mea The hydrological calcula Hydro-Brake® Optimum as Hydro-Brake Optimum® be invalidated Depth (m) Flow (1/s) De 0.100 4.4 0.200 6.7 0.300 6.9 0.400 6.8 0.500 6.6 0.600 6.2	n Flow over ations have specified. utilised t epth (m) F 1.200 1.400 1.600 1.800 2.000 2.200	Flush-Fl Kick-Fl r Head Ran e been base Should a then these low (1/s) 7.5 8.1 8.6 9.1 9.6 10.0	o™ 0.29 o® 0.65 ge another ty storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500	99 6 66 5 - 6 Head/Discha pe of controuting calc Flow (1/s) 11.6 12.5 13.3 14.0 14.8 15.4	.9 .7 .0 rrge relations col device of culations with Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (1/s) 17.3 17.3 17.9 18.5 19.0 19.6
Mea The hydrological calcula Hydro-Brake® Optimum as Hydro-Brake Optimum® be invalidated Depth (m) Flow (1/s) De 0.100 4.4 0.200 6.7 0.300 6.9 0.400 6.8 0.500 6.6 0.600 6.2 0.800 6.2	n Flow over ations have specified. utilised t epth (m) F 1.200 1.400 1.600 1.800 2.000 2.200 2.400	Flush-Fl Kick-Fl r Head Ran e been base Should a then these low (1/s) 7.5 8.1 8.6 9.1 9.6 10.0 10.4	o™ 0.29 o® 0.65 ge another ty storage r Depth (m) 3.000 3.500 4.000 4.500 5.500 6.000	99 6 66 5 - 6 Head/Discha pe of contron outing calc Flow (l/s) 11.6 12.5 13.3 14.0 14.8 15.4 16.1	.9 .7 .0 rrge relations col device of culations with Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (1/s) 17.3 17.3 17.9 18.5 19.0 19.6

Jubb Consulting Engineers Ltd (B	Page 5	
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:07	Designed by KGyba	Drainage
File OUTFALL 3 - 6.9 L_S (WI	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(l/s)										
2	0.0	102	0.0	202	1.7	302	2.7	402	2.7	502	2.6
4	0.0	104	0.0	204	1.7	304	2.7	404	2.7	504	2.6
6	0.0	106	0.0	206	1.8	306	2.7	406	2.7	506	2.6
8	0.0	108	0.0	208	1.9	308	2.7	408	2.7	508	2.6
10	0.0	110	0.0	210	1.9	310	2.7	410	2.7	510	2.6
12	0.0	112	0.0	212	2.0	312	2.7	412	2.7	512	2.6
14	0.0	114	0.0	214	2.0	314	2.7	414	2.7	514	2.6
16	0.0	116	0.0	216	2.1	316	2.7	416	2.7	516	2.6
18	0.0	118	0.1	218	2.1	318	2.7	418	2.7	518	2.6
20	0.0	120	0.1	220	2.2	320	2.7	420	2.7	520	2.6
22	0.0	122	0.1	222	2.2	322	2.7	422	2.7	522	2.6
24	0.0	124	0.1	224	2.3	324	2.7	424	2.7	524	2.6
26	0.0	126	0.1	226	2.3	326	2.7	426	2.7	526	2.6
28	0.0	128	0.1	228	2.4	328	2.7	428	2.7	528	2.5
30	0.0	130	0.1	230	2.4	330	2.7	430	2.7	530	2.5
32	0.0	132	0.1	232	2.4	332	2.7	432	2.7	532	2.5
34	0.0	134	0.1	234	2.5	334	2.7	434	2.7	534	2.5
36	0.0	136	0.1	236	2.5	336	2.7	436	2.7	536	2.5
38	0.0	138	0.2	238	2.5	338	2.7	438	2.7	538	2.5
40	0.0	140	0.2	240	2.6	340	2.7	440	2.7	540	2.5
42	0.0	142	0.2	242	2.6	342	2.7	442	2.7	542	2.5
44	0.0	144	0.2	244	2.6	344	2.7	444	2.7	544	2.5
46	0.0	146	0.2	246	2.6	346	2.7	446	2.7	546	2.5
48	0.0	148	0.3	248	2.7	348	2.7	448	2.7	548	2.5
50	0.0	150	0.3	250	2.7	350	2.7	450	2.7	550	2.5
52	0.0	152	0.3	252	2.7	352	2.7	452	2.7	552	2.4
54	0.0	154	0.4	254	2.7	354	2.7	454	2.7	554	2.4
56	0.0	156	0.4	256	2.7	356	2.7	456	2.7	556	2.4
58	0.0	158	0.4	258	2.7	358	2.7	458	2.7	558	2.4
60	0.0	160	0.5	260	2.7	360	2.7	460	2.7	560	2.4
62	0.0	162	0.5	262	2.7	362	2.7	462	2.7	562	2.4
64	0.0	164	0.5	264	2.7	364	2.7	464	2.7	564	2.4
66	0.0	166	0.6	266	2.7	366	2.7	466	2.7	566	2.4
68	0.0	168	0.6	268	2.7	368	2.7	468	2.7	568	2.4
70	0.0	170	0.7	270	2.7	370	2.7	470	2.7	570	2.4
72	0.0	172	0.7	272	2.7	372	2.7	472	2.7	572	2.4
74	0.0	174	0.8	274	2.7	374	2.7	474	2.7	574	2.4
76	0.0	176	0.8	276	2.7	376	2.7	476	2.7	576	2.4
78	0.0	178	0.9	278	2.7	378	2.7	478	2.7	578	2.4
80	0.0	180	1.0	280	2.7	380	2.7	480	2.7	580	2.4
82	0.0	182	1.0	282	2.7	382	2.7	482	2.7	582	2.3
84	0.0	184	1.1	284	2.7	384	2.7	484	2.7	584	2.3
86	0.0	186	1.1	286	2.7	386	2.7	486	2.7	586	2.3
88	0.0	188	1.2	288	2.7	388	2.7	488	2.7	588	2.3
90	0.0	190	1.3	290	2.7	390	2.7	490	2.7	590	2.3
92	0.0	192	1.3	292	2.7	392	2.7	492	2.7	592	2.3
94	0.0	194	1.4	294	2.7	394	2.7	494	2.7	594	2.3
96	0.0	196	1.5	296	2.7	396	2.7	496	2.7	596	2.3
98	0.0	198	1.5	298	2.7	398	2.7	498	2.6	598	2.3
100	0.0	200	1.6	300	2.7	400	2.7	500	2.6	600	2.3

Jubb Consulting Engineers Ltd (E	Page 6	
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:07	Designed by KGyba	Drainage
File OUTFALL 3 - 6.9 L_S (WI	Checked by	Diamage
Innovyze	Source Control 2019.1	

(mins)	(l/s)										
<u> </u>		(mins)	(l/s)	(mins)	(1/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)
602	2.3	702	1.9	802	1.6	902	1.3	1002	1.1	1102	0.9
604	2.3	704	1.9	804	1.6	904	1.3	1004	1.1	1104	0.9
606	2.3	706	1.9	806	1.6	906	1.3	1006	1.1	1106	0.9
608	2.3	708	1.9	808	1.6	908	1.3	1008	1.1	1108	0.9
610	2.3	710	1.9	810	1.6	910	1.3	1010	1.1	1110	0.9
612	2.2	712	1.9	812	1.6	912	1.3	1012	1.1	1112	0.9
614	2.2	714	1.9	814	1.5	914	1.3	1012	1.1	1114	0.9
616	2.2	716	1.9	816	1.5	916	1.3	1014	1.0	1116	0.9
618	2.2	718	1.9	818	1.5	918	1.3	1010	1.0	1110	0.9
620	2.2	720	1.9	820	1.5	920	1.2	1010	1.0	1120	0.9
622	2.2	720	1.9	822	1.5	922	1.2	1020	1.0	1120	0.9
624	2.2	724	1.8	824	1.5	924	1.2	1022	1.0	1122	0.9
626	2.2	724	1.8	826	1.5	926	1.2	1024	1.0	1124	0.9
628	2.2	728	1.8	828	1.5	928		1028	1.0	1120	0.9
630	2.2	728	1.8	830	1.5	920	1.2 1.2	1028	1.0	1120	0.9
632	2.2	730	1.8	832	1.5	930	1.2	1030		1130	0.9
634	2.2	734	1.8	834	1.5	932 934	1.2	1032	1.0	1132	0.8
											0.8
636 638	2.2	736	1.8	836	1.5	936 938	1.2	1036	1.0	1136	
	2.2	738	1.8	838	1.5		1.2	1038	1.0	1138	0.8
640	2.1	740	1.8	840	1.5	940	1.2	1040	1.0	1140	0.8
642	2.1	742	1.8	842	1.5	942	1.2	1042	1.0	1142	0.8
644	2.1	744	1.8	844	1.5	944	1.2	1044	1.0	1144	0.8
646	2.1	746	1.8	846	1.4	946	1.2	1046	1.0	1146	0.8
648	2.1	748	1.8	848	1.4	948	1.2	1048	1.0	1148	0.8
650	2.1	750	1.8	850	1.4	950	1.2	1050	1.0	1150	0.8
652	2.1	752	1.7	852	1.4	952	1.2	1052	1.0	1152	0.8
654	2.1	754	1.7	854	1.4	954	1.2	1054	1.0	1154	0.8
656	2.1	756	1.7	856	1.4	956	1.2	1056	1.0	1156	0.8
658	2.1	758	1.7	858	1.4	958	1.2	1058	1.0	1158	0.8
660	2.1	760	1.7	860	1.4	960	1.2	1060	1.0	1160	0.8
662	2.1	762	1.7	862	1.4	962	1.2	1062	1.0	1162	0.8
664	2.1	764	1.7	864	1.4	964	1.2	1064	1.0	1164	0.8
666	2.1	766	1.7	866	1.4	966	1.2	1066	1.0	1166	0.8
668	2.0	768	1.7	868	1.4	968	1.2	1068	1.0	1168	0.8
670 672	2.0	770	1.7	870	1.4	970	1.1	1070	1.0	1170	0.8
672	2.0	772	1.7	872	1.4	972	1.1	1072	1.0	1172	0.8
674	2.0	774	1.7	874	1.4	974	1.1	1074	1.0	1174	0.8
676	2.0	776	1.7	876	1.4	976	1.1	1076	0.9	1176	0.8
678	2.0	778	1.7	878	1.4	978	1.1	1078	0.9	1178	0.8
680	2.0	780	1.7	880	1.4	980	1.1	1080	0.9	1180	0.8
682	2.0	782	1.6	882	1.3	982	1.1	1082	0.9	1182	0.8
684	2.0	784	1.6	884	1.3	984	1.1	1084	0.9	1184	0.8
686	2.0	786	1.6	886	1.3	986	1.1	1086	0.9	1186	0.8
688	2.0	788	1.6	888	1.3	988	1.1	1088	0.9	1188	0.8
690	2.0	790	1.6	890	1.3	990	1.1	1090	0.9	1190	0.8
692	1.9	792	1.6	892	1.3	992	1.1	1092	0.9	1192	0.8
694	1.9	794	1.6	894	1.3	994	1.1	1094	0.9	1194	0.8
696	1.9	796	1.6	896	1.3	996	1.1	1096	0.9		0.8
698	1.9	798	1.6	898	1.3	998	1.1	1098	0.9		0.8
700	1.9	800	1.6	900	1.3	1000	1.1	1100	0.9	1200	0.8

Jubb Consulting Engineers Ltd (B	Page 7	
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Mirro
Date 26/01/2022 14:07	Designed by KGyba	Drainage
File OUTFALL 3 - 6.9 L_S (WI	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(l/s)										
1202	0.8	1302	0.6	1402	0.6	1502	0.5	1602	0.4	1702	0.4
1204	0.8	1304	0.6	1404	0.6	1504	0.5	1604	0.4	1704	0.4
1206	0.8	1306	0.6	1406	0.6	1506	0.5	1606	0.4	1706	0.4
1208	0.7	1308	0.6	1408	0.6	1508	0.5	1608	0.4	1708	0.4
1210	0.7	1310	0.6	1410	0.5	1510	0.5	1610	0.4	1710	0.4
1212	0.7	1312	0.6	1412	0.5	1512	0.5	1612	0.4	1712	0.4
1214	0.7	1314	0.6	1414	0.5	1514	0.5	1614	0.4	1714	0.4
1216	0.7	1316	0.6	1416	0.5	1516	0.5	1616	0.4	1716	0.4
1218	0.7	1318	0.6	1418	0.5	1518	0.5	1618	0.4	1718	0.4
1220	0.7	1320	0.6	1420	0.5	1520	0.5	1620	0.4	1720	0.4
1222	0.7	1322	0.6	1422	0.5	1522	0.5	1622	0.4	1722	0.4
1224	0.7	1324	0.6	1424	0.5	1524	0.5	1624	0.4	1724	0.4
1226	0.7	1326	0.6	1426	0.5	1526	0.5	1626	0.4	1726	0.4
1228	0.7	1328	0.6	1428	0.5	1528	0.5	1628	0.4	1728	0.4
1230	0.7	1330	0.6	1430	0.5	1530	0.5	1630	0.4	1730	0.3
1232	0.7	1332	0.6	1432	0.5	1532	0.5	1632	0.4	1732	0.3
1234	0.7	1334	0.6	1434	0.5	1534	0.5	1634	0.4	1734	0.3
1236	0.7	1336	0.6	1436	0.5	1536	0.5	1636	0.4	1736	0.3
1238	0.7	1338	0.6	1438	0.5	1538	0.5	1638	0.4	1738	0.3
1240	0.7	1340	0.6	1440	0.5	1540	0.5	1640	0.4	1740	0.3
1242	0.7	1342	0.6	1442	0.5	1542	0.5	1642	0.4	1742	0.3
1244	0.7	1344	0.6	1444	0.5	1544	0.5	1644	0.4	1744	0.3
1246	0.7	1346	0.6	1446	0.5	1546	0.5	1646	0.4	1746	0.3
1248	0.7	1348	0.6	1448	0.5	1548	0.5	1648	0.4	1748	0.3
1250	0.7	1350	0.6	1450	0.5	1550	0.5	1650	0.4	1750	0.3
1252	0.7	1352	0.6	1452	0.5	1552	0.5	1652	0.4	1752	0.3
1254	0.7	1354	0.6	1454	0.5	1554	0.4	1654	0.4	1754	0.3
1256	0.7	1356	0.6	1456	0.5	1556	0.4	1656	0.4	1756	0.3
1258	0.7	1358	0.6	1458	0.5	1558	0.4	1658	0.4	1758	0.3
1260	0.7	1360	0.6	1460	0.5	1560	0.4	1660	0.4	1760	0.3
1262	0.7	1362	0.6	1462	0.5	1562	0.4	1662	0.4	1762	0.3
1264	0.7	1364	0.6	1464	0.5	1564	0.4	1664	0.4	1764	0.3
1266	0.7	1366	0.6	1466	0.5	1566	0.4	1666	0.4	1766	0.3
1268	0.7	1368	0.6	1468	0.5	1568	0.4	1668	0.4	1768	0.3
1270	0.7	1370	0.6	1470	0.5	1570	0.4	1670	0.4	1770	0.3
1272	0.7	1372	0.6	1472	0.5	1572	0.4	1672	0.4	1772	0.3
1274	0.7	1374	0.6	1474	0.5	1574	0.4	1674	0.4	1774	0.3
1276	0.7	1376	0.6	1476	0.5	1576	0.4	1676	0.4	1776	0.3
1278	0.7	1378	0.6	1478	0.5	1578	0.4	1678	0.4	1778	0.3
1280	0.7	1380	0.6	1480	0.5	1580	0.4	1680	0.4	1780	0.3
1282	0.7	1382	0.6	1482	0.5	1582	0.4	1682	0.4	1782	0.3
1284	0.7	1384	0.6	1484	0.5	1584	0.4	1684	0.4	1784	0.3
1286	0.7	1386	0.6	1486	0.5	1586	0.4	1686	0.4	1786	0.3
1288	0.7	1388	0.6	1488	0.5	1588	0.4	1688	0.4	1788	0.3
1290	0.7	1390	0.6	1490	0.5	1590	0.4	1690	0.4	1790	0.3
1292	0.7	1392	0.6	1492	0.5	1592	0.4	1692	0.4	1792	0.3
1294	0.6	1394	0.6	1494	0.5	1594	0.4	1694	0.4	1794	0.3
1296	0.6	1396	0.6	1496	0.5	1596	0.4	1696	0.4	1796	0.3
1298	0.6	1398	0.6	1498	0.5	1598	0.4	1698	0.4		0.3
1300	0.6	1400	0.6	1500	0.5	1600	0.4	1700	0.4	1800	0.3

Jubb Consulting Engineers Ltd (B	ristol)	Page 8
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:07	Designed by KGyba	Drainage
File OUTFALL 3 - 6.9 L_S (WI	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(l/s)										
1802	0.3	1902	0.3	2002	0.3	2102	0.2	2202	0.2	2302	0.2
1804	0.3	1902	0.3	2002	0.3	2102	0.2	2202	0.2	2302	0.2
1806	0.3	1906	0.3	2001	0.3	2101	0.2	2206	0.2	2306	0.2
1808	0.3	1908	0.3	2008	0.3	2100	0.2	2208	0.2	2308	0.2
1810	0.3	1910	0.3	2000	0.3	2110	0.2	2210	0.2	2310	0.2
1812	0.3	1912	0.3	2010	0.3	2110	0.2	2210	0.2	2310	0.2
1814	0.3	1914	0.3	2012	0.3	2112	0.2	2212	0.2	2312	0.2
1816	0.3	1916	0.3	2011	0.3	2116	0.2	2216	0.2	2311	0.2
1818	0.3	1918	0.3	2010	0.3	2110	0.2	2210	0.2	2318	0.2
1820	0.3	1920	0.3	2010	0.3	2120	0.2	2220	0.2	2320	0.2
1822	0.3	1920	0.3	2020	0.3	2120	0.2	2222	0.2	2320	0.2
1824	0.3	1924	0.3	2022	0.3	2122	0.2	2224	0.2	2322	0.2
1826	0.3	1924	0.3	2024	0.3	2124	0.2	2224	0.2	2324	0.2
1828	0.3	1928	0.3	2020	0.3	2120	0.2	2228	0.2	2328	0.2
1830	0.3	1930	0.3	2020	0.3	2120	0.2	2220	0.2	2320	0.2
1832	0.3	1932	0.3	2030	0.3	2130	0.2	2230	0.2	2330	0.2
1834	0.3	1934	0.3	2032	0.3	2132	0.2	2232	0.2	2332	0.2
1836	0.3	1936	0.3	2034	0.2	2134	0.2	2234	0.2	2336	0.2
1838	0.3	1938	0.3	2030	0.2	2130	0.2	2238	0.2	2338	0.2
1840	0.3	1940	0.3	2030	0.2	2130	0.2	2230	0.2	2340	0.2
1842	0.3	1940	0.3	2040	0.2	2140	0.2	2240	0.2	2340	0.2
1844	0.3	1944	0.3	2042	0.2	2142	0.2	2242	0.2	2342	0.2
1846	0.3	1944	0.3	2044	0.2	2144	0.2	2244	0.2	2344	0.2
1848	0.3	1948	0.3	2040	0.2	2140	0.2	2240	0.2	2348	0.2
1850	0.3	1950	0.3	2050	0.2	2150	0.2	2250	0.2	2350	0.2
1852	0.3	1952	0.3	2050	0.2	2150	0.2	2250	0.2	2352	0.2
1854	0.3	1954	0.3	2052	0.2	2152	0.2	2254	0.2	2352	0.2
1856	0.3	1954	0.3	2054	0.2	2154	0.2	2254	0.2	2354	0.2
1858	0.3	1958	0.3	2050	0.2	2158	0.2	2258	0.2	2358	0.2
1860	0.3	1960	0.3	2050	0.2	2160	0.2	2260	0.2	2360	0.2
1862	0.3	1962	0.3	2062	0.2	2162	0.2	2262	0.2	2362	0.2
1864	0.3	1964	0.3	2064	0.2	2164	0.2	2264	0.2	2364	0.2
1866	0.3	1966	0.3	2066	0.2	2166	0.2	2266	0.2	2366	0.2
1868	0.3	1968	0.3	2068	0.2	2168	0.2	2268	0.2	2368	0.2
1870	0.3	1970	0.3	2070	0.2	2170	0.2	2270	0.2	2370	0.2
1872	0.3	1972	0.3	2072	0.2	2172	0.2	2272	0.2	2372	0.2
1874	0.3	1974	0.3	2074	0.2	2174	0.2	2274	0.2	2374	0.2
1876	0.3	1976	0.3	2076	0.2	2176	0.2	2276	0.2	2376	0.2
1878	0.3	1978	0.3	2078	0.2	2178	0.2	2278	0.2	2378	0.2
1880	0.3	1980	0.3	2080	0.2	2180	0.2	2280	0.2	2380	0.2
1882	0.3	1982	0.3	2082	0.2	2182	0.2	2282	0.2	2382	0.2
1884	0.3	1984	0.3	2082	0.2	2182	0.2	2284	0.2		0.2
1886	0.3	1986	0.3	2086	0.2	2186	0.2	2286	0.2	2386	0.2
1888	0.3	1988	0.3	2088	0.2	2188	0.2	2288	0.2	2388	0.2
1890	0.3	1990	0.3	2090	0.2	2190	0.2	2290	0.2	2390	0.2
1892	0.3	1992	0.3	2090	0.2	2190	0.2	2290	0.2	2392	0.2
1894	0.3	1994	0.3	2092	0.2	2192	0.2	2292	0.2	2392	0.2
1896	0.3	1996	0.3	2094	0.2	2194	0.2	2294	0.2		0.2
1898	0.3	1998	0.3	2090	0.2	2190	0.2	2298	0.2		0.2
1900	0.3	2000	0.3	2000	0.2	2200	0.2		0.2		0.2
1000	5.5	2000	5.5	2100	J.2	2200	J.2	2000	5.2	1 2100	0.2

Jubb Consulting Engineers Ltd (B	Page 9	
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Mirro
Date 26/01/2022 14:07	Designed by KGyba	Drainage
File OUTFALL 3 - 6.9 L_S (WI	Checked by	Diamacje
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(l/s)	(mins)	(1/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)
2402	0.2	2482	0.2	2562	0.1	2642	0.1	2722	0.1	2802	0.1
2404	0.2	2484	0.2	2564	0.1	2644	0.1	2724	0.1	2804	0.1
2406	0.2	2486	0.2	2566	0.1	2646	0.1	2726	0.1	2806	0.1
2408	0.2	2488	0.2	2568	0.1	2648	0.1	2728	0.1	2808	0.1
2410	0.2	2490	0.2	2570	0.1	2650	0.1	2730	0.1	2810	0.1
2412	0.2	2492	0.2	2572	0.1	2652	0.1	2732	0.1	2812	0.1
2414	0.2	2494	0.2	2574	0.1	2654	0.1	2734	0.1	2814	0.1
2416	0.2	2496	0.2	2576	0.1	2656	0.1	2736	0.1	2816	0.1
2418	0.2	2498	0.2	2578	0.1	2658	0.1	2738	0.1	2818	0.1
2420	0.2	2500	0.2	2580	0.1	2660	0.1	2740	0.1	2820	0.1
2422	0.2	2502	0.2	2582	0.1	2662	0.1	2742	0.1	2822	0.1
2424	0.2	2504	0.2	2584	0.1	2664	0.1	2744	0.1	2824	0.1
2426	0.2	2506	0.2	2586	0.1	2666	0.1	2746	0.1	2826	0.1
2428	0.2	2508	0.2	2588	0.1	2668	0.1	2748	0.1	2828	0.1
2430	0.2	2510	0.2	2590	0.1	2670	0.1	2750	0.1	2830	0.1
2432	0.2	2512	0.2	2592	0.1	2672	0.1	2752	0.1	2832	0.1
2434	0.2	2514	0.2	2594	0.1	2674	0.1	2754	0.1	2834	0.1
2436	0.2	2516	0.2	2596	0.1	2676	0.1	2756	0.1	2836	0.1
2438	0.2	2518	0.2	2598	0.1	2678	0.1	2758	0.1	2838	0.1
2440	0.2	2520	0.2	2600	0.1	2680	0.1	2760	0.1	2840	0.1
2442	0.2	2522	0.2	2602	0.1	2682	0.1	2762	0.1	2842	0.1
2444	0.2	2524	0.2	2604	0.1	2684	0.1	2764	0.1	2844	0.1
2446	0.2	2526	0.2	2606	0.1	2686	0.1	2766	0.1	2846	0.1
2448	0.2	2528	0.2	2608	0.1	2688	0.1	2768	0.1	2848	0.1
2450	0.2	2530	0.2	2610	0.1	2690	0.1	2770	0.1	2850	0.1
2452	0.2	2532	0.2	2612	0.1	2692	0.1	2772	0.1	2852	0.1
2454	0.2	2534	0.2	2614	0.1	2694	0.1	2774	0.1	2854	0.1
2456	0.2	2536	0.2	2616	0.1	2696	0.1	2776	0.1	2856	0.1
2458	0.2	2538	0.2	2618	0.1	2698	0.1	2778	0.1	2858	0.1
2460	0.2	2540	0.2	2620	0.1	2700	0.1	2780	0.1	2860	0.1
2462	0.2	2542	0.2	2622	0.1	2702	0.1	2782	0.1	2862	0.1
2464	0.2	2544	0.2	2624	0.1	2704	0.1	2784	0.1	2864	0.1
2466	0.2	2546	0.2	2626	0.1	2706	0.1	2786	0.1	2866	0.1
2468	0.2	2548	0.2	2628	0.1	2708	0.1	2788	0.1	2868	0.1
2470	0.2	2550	0.2	2630	0.1	2710	0.1	2790	0.1	2870	0.1
2472	0.2	2552	0.2	2632	0.1	2712	0.1	2792	0.1	2872	0.1
2474	0.2	2554	0.1	2634	0.1	2714	0.1	2794	0.1	2874	0.1
2476	0.2	2556	0.1	2636	0.1	2716	0.1	2796	0.1	2876	0.1
2478	0.2	2558	0.1	2638	0.1	2718	0.1	2798	0.1	2878	0.1
2480	0.2	2560	0.1	2640	0.1	2720	0.1	2800	0.1	2880	0.1

	ing Engin		d (Brist	ol)				Page 1
St James's (Court, Sui	te B.						
Ground Floo:	r West, St	James						
Bristol, BSI	L 3LH							Micco
Date 26/01/2		}	Des	igned	by KGy	ba		_ Micro
File OUTFAL				cked b				Drainac
	J 4A J.2					0010 1		-
Innovyze			Sou	rce Co	ntrol	2019.1	-	
	_					_		
	Summary o	f Resul	ts for 1	00 yea	ır Retu	ırn Pei	riod (+40%)
		Storm	Max	Max	Max	Max	Status	
		Event	(m)	(m)	Control (1/s)	(m ³)		
			(111)	(111)	(1/5)	(111)		
	15	min Sum	mer 8.392	0.392	3.2	47.0	O K	
	30	min Sum	mer 8.493	0.493	3.2	59.1	O K	
	60	min Sum	mer 8.579	0.579	3.2	69.4	O K	
			mer 8.690		3.2			
			mer 8.734		3.2			
			mer 8.768 mer 8.809		3.2 3.2			
			mer 8.816		3.2			
			mer 8.809		3.2			
			mer 8.793		3.2			
			mer 8.738		3.2			
			mer 8.548		3.2			
			mer 8.307		3.2			
			mer 8.188		3.1			
			mer 8.104 mer 8.081		2.6 2.1			
			mer 8.069		1.7			
			mer 8.063		1.5			
	10080	min Sum	mer 8.062	0.062	1.5	7.4		
			ter 8.441					
	30	min Win	ter 8.556	0.556	3.2	66.7	ΟK	
	\$	Storm	Rain			-	ime-Peak	
	1	Event	(mm/hr)	Volum			(mins)	
				(m³)	(m	13)		
	15	min Summ	er 171.920) 0	.0 1	107.2	18	
			er 110.600			121.4	33	
			er 67.760			147.5	62	
			er 43.120			168.7	122	
			er 32.548			181.8	182	
			er 26.390 er 19.297			190.9 202.6	242 360	
			er 19.29			202.8	476	
			er 12.635			214.8	510	
		min Summ				218.5	558	
	720		am 0.400) ()	.0 2	224.0	672	
	960	min Summ					000	
	960 1440	min Summ min Summ	er 5.851	L 0		230.9	906	
	960 1440 2160	min Summ min Summ min Summ	er 5.851 er 4.052	L 0 2 0	.0 2	238.4	1232	
	960 1440 2160 2880	min Summ min Summ min Summ min Summ	er 5.851 er 4.052 er 3.124	L 0 2 0 4 0	.0 2 .0 2	238.4 243.0	1232 1556	
	960 1440 2160 2880 4320	min Summ min Summ min Summ min Summ min Summ	er 5.851 er 4.052 er 3.124 er 2.176	L 0 2 0 4 0 5 0	.0 2 .0 2 .0 2	238.4 243.0 250.6	1232 1556 2208	
	960 1440 2160 2880 4320 5760	min Summ min Summ min Summ min Summ	er 5.851 er 4.052 er 3.124 er 2.176 er 1.693	L 0 2 0 4 0 5 0 8 0	.0 2 .0 2 .0 2 .0 2	238.4 243.0 250.6 257.6	1232 1556 2208 2936	
	960 1440 2160 2880 4320 5760 7200	min Summ min Summ min Summ min Summ min Summ min Summ	er 5.851 er 4.052 er 3.124 er 2.176 er 1.693 er 1.404	L 0 2 0 1 0 5 0 3 0 4 0	.0 2 .0 2 .0 2 .0 2 .0 2	238.4 243.0 250.6	1232 1556 2208	
	960 1440 2160 2880 4320 5760 7200 8640	min Summ min Summ min Summ min Summ min Summ min Summ min Summ	er 5.851 er 4.052 er 3.124 er 2.176 er 1.693 er 1.404 er 1.211	L 0 2 0 4 0 5 0 3 0 4 0 L 0	.0 2 .0 2 .0 2 .0 2 .0 2 .0 2	238.4 243.0 250.6 257.6 264.4	1232 1556 2208 2936 3672	
	960 1440 2160 2880 4320 5760 7200 8640 10080 15	min Summ min Summ min Summ min Summ min Summ min Summ min Summ min Summ min Summ	er 5.851 er 4.052 er 3.124 er 2.176 er 1.693 er 1.404 er 1.211	L 0 2 0 4 0 5 0 8 0 4 0 L 0 3 0 0 0	.0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2	238.4 243.0 250.6 257.6 264.4 271.1	1232 1556 2208 2936 3672 4400	

	lting Engineers Ltd	(Brist	01)				Page 2
	Court, Suite B						
Ground Flo	or West, St James	•					
Bristol, B	S1 3LH						Micro
Date 26/01	/2022 14:08	Desi	igned by	v KGvb	a		
	LL 4A - 3.2 L S (W		cked by		-		Drainag
	<u> </u>				010 1		
Innovyze		Sour	rce Cont	trol 2	019.1	-	
	Summary of Results	for 10	00 year	Retur	n Pei	riod (+40%)	
	Storm	Max		Max	Max	Status	
	Event		Depth Co				
		(m)	(m) (1/s)	(m³)		
	60 min Winter	8.657	0.657	3.2	78.9	ОК	
	120 min Winter				94.2		
	180 min Winter	8.839	0.839	3.2	100.7	O K	
	240 min Winter	8.876	0.876	3.2	105.2	0 K	
	360 min Winter	8.922	0.922	3.2	110.6	O K	
	480 min Winter			3.2	111.6		
	600 min Winter			3.2			
	720 min Winter 960 min Winter			3.2			
	960 min Winter 1440 min Winter			3.2 3.2	99.6 71.6		
	2160 min Winter			3.2	31.0		
	2880 min Winter				15.4		
	4320 min Winter				9.6		
	5760 min Winter	8.065	0.065		7.9 7.6		
	7200 min Winter	8.064	0.064			O K	
	8640 min Winter 10080 min Winter			1.5 1.5		О К О К	
	Storm	Rain			-	ime-Peak	
			Volume	Volu	me	ime-Peak (mins)	
					me		
	Event	(mm/hr)	Volume (m³)	Volu (m³	me)	(mins)	
		(mm/hr) 67.760	Volume (m³) 0.0	Volu (m ³	me		
	Event 60 min Winter	(mm/hr) 67.760	Volume (m ³) 0.0 0.0	Volu (m ³ 15	me) 56.9	(mins) 62	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter	(mm/hr) 67.760 43.120 32.548 26.390	Volume (m ³) 0.0 0.0 0.0 0.0	Volu (m ³ 15 18 19 20	me) 56.9 30.6 95.3 05.4	(mins) 62 120 178 236	
	60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Volu (m ³ 15 18 20 21	me) 56.9 30.6 95.3 05.4 L8.6	(mins) 62 120 178 236 350	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Volu (m ³ 15 18 20 21 22	me) 30.6 95.3 05.4 L8.6 26.6	(mins) 62 120 178 236 350 460	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volu (m ³ 15 18 20 21 22 23	me) 56.9 30.6 95.3 05.4 L8.6 26.6 32.2	(mins) 62 120 178 236 350 460 554	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volu (m ³ 15 16 20 21 22 23 23	me 56.9 30.6 35.3 05.4 18.6 26.6 32.2 36.4	(mins) 62 120 178 236 350 460 554 572	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volu: (m ³ 15 18 19 20 21 22 23 23 23 24	me) 56.9 30.6 95.3 05.4 18.6 26.6 32.2 36.4 42.5	(mins) 62 120 178 236 350 460 554	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu: (m ³ 15 18 20 21 22 23 23 24 25	me 56.9 30.6 35.3 05.4 18.6 26.6 32.2 36.4	(mins) 62 120 178 236 350 460 554 572 712	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu: (m ³ 15 18 20 21 22 23 23 24 25 25	me) 56.9 30.6 35.3 05.4 18.6 26.6 32.2 36.4 42.5 50.2	(mins) 62 120 178 236 350 460 554 572 712 982	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 1440 min Winter 1440 min Winter 280 min Winter 4320 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 15 18 19 20 21 22 23 23 24 25 25 26 25 26 25	me 56.9 30.6 35.3 05.4 18.6 26.6 32.2 36.4 42.5 50.2 58.5 53.7 72.2	(mins) 62 120 178 236 350 460 554 572 712 982 1260 1556 2204	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 1440 min Winter 1440 min Winter 280 min Winter 5760 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 15 18 20 21 22 23 23 24 25 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	me 56.9 30.6 35.3 05.4 18.6 26.6 32.2 36.4 42.5 50.2 58.5 53.7 72.2 30.0	(mins) 62 120 178 236 350 460 554 572 712 982 1260 1556 2204 456	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 480 min Winter 720 min Winter 1440 min Winter 1440 min Winter 2160 min Winter 280 min Winter 5760 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 15 18 19 20 21 22 23 23 24 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	b b c c c c c c c c	(mins) 62 120 178 236 350 460 554 572 712 982 1260 1556 2204 456 456	
	Event 60 min Winter 120 min Winter 130 min Winter 240 min Winter 360 min Winter 480 min Winter 480 min Winter 720 min Winter 1440 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 5760 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 15 18 19 20 21 22 23 24 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	56.9 30.6 35.3 05.4 18.6 26.6 32.2 36.4 42.5 50.2 53.7 72.2 30.0 37.6 95.1	(mins) 62 120 178 236 350 460 554 572 712 982 1260 1556 2204 456 456 456	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 480 min Winter 720 min Winter 1440 min Winter 1440 min Winter 2160 min Winter 280 min Winter 5760 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 15 18 19 20 21 22 23 24 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	b b c c c c c c c c	(mins) 62 120 178 236 350 460 554 572 712 982 1260 1556 2204 456 456	
	Event 60 min Winter 120 min Winter 130 min Winter 240 min Winter 360 min Winter 480 min Winter 480 min Winter 720 min Winter 1440 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 5760 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 15 18 19 20 21 22 23 24 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	56.9 30.6 35.3 05.4 18.6 26.6 32.2 36.4 42.5 50.2 53.7 72.2 30.0 37.6 95.1	(mins) 62 120 178 236 350 460 554 572 712 982 1260 1556 2204 456 456 456	
	Event 60 min Winter 120 min Winter 130 min Winter 240 min Winter 360 min Winter 480 min Winter 480 min Winter 720 min Winter 1440 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 5760 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 15 18 19 20 21 22 23 24 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	56.9 30.6 35.3 05.4 18.6 26.6 32.2 36.4 42.5 50.2 53.7 72.2 30.0 37.6 95.1	(mins) 62 120 178 236 350 460 554 572 712 982 1260 1556 2204 456 456 456	
	Event 60 min Winter 120 min Winter 130 min Winter 240 min Winter 360 min Winter 480 min Winter 480 min Winter 720 min Winter 1440 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 5760 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 15 18 19 20 21 22 23 24 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	56.9 30.6 35.3 05.4 18.6 26.6 32.2 36.4 42.5 50.2 53.7 72.2 30.0 37.6 95.1	(mins) 62 120 178 236 350 460 554 572 712 982 1260 1556 2204 456 456 456	
	Event 60 min Winter 120 min Winter 130 min Winter 240 min Winter 360 min Winter 480 min Winter 480 min Winter 720 min Winter 1440 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 5760 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 15 18 19 20 21 22 23 24 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	56.9 30.6 35.3 05.4 18.6 26.6 32.2 36.4 42.5 50.2 53.7 72.2 30.0 37.6 95.1	(mins) 62 120 178 236 350 460 554 572 712 982 1260 1556 2204 456 456 456	
	Event 60 min Winter 120 min Winter 130 min Winter 240 min Winter 360 min Winter 480 min Winter 480 min Winter 720 min Winter 1440 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 5760 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 15 18 19 20 21 22 23 24 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	56.9 30.6 35.3 05.4 18.6 26.6 32.2 36.4 42.5 50.2 53.7 72.2 30.0 37.6 95.1	(mins) 62 120 178 236 350 460 554 572 712 982 1260 1556 2204 456 456 456	
	Event 60 min Winter 120 min Winter 130 min Winter 240 min Winter 360 min Winter 480 min Winter 480 min Winter 720 min Winter 1440 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 5760 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 15 18 19 20 21 22 23 24 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	56.9 30.6 35.3 05.4 18.6 26.6 32.2 36.4 42.5 50.2 53.7 72.2 30.0 37.6 95.1	(mins) 62 120 178 236 350 460 554 572 712 982 1260 1556 2204 456 456 456	
	Event 60 min Winter 120 min Winter 130 min Winter 240 min Winter 360 min Winter 480 min Winter 480 min Winter 720 min Winter 1440 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 5760 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 67.760 43.120 32.548 26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 15 18 19 20 21 22 23 24 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	56.9 30.6 35.3 05.4 18.6 26.6 32.2 36.4 42.5 50.2 53.7 72.2 30.0 37.6 95.1	(mins) 62 120 178 236 350 460 554 572 712 982 1260 1556 2204 456 456 456	

Jubb Consulting Engineers Ltd (1	Bristol)		Page 3
St James's Court, Suite B			
Ground Floor West, St James			
Bristol, BS1 3LH			
			_ Micro
Date 26/01/2022 14:08	Designed by KGyba		Drainag
File OUTFALL 4A - 3.2 L_S (W	Checked by		Diamacy
 Innovyze	Source Control 201	9.1	
Ra	ainfall Details		
Rainfall Mod	lel	FEH	
Return Period (year	s)	100	
FEH Rainfall Versi		2013	
	on GB 541450 180700 TQ		
Data Ty		Catchment	
Summer Stor	-	Yes	
Winter Stor		Yes	
Cv (Summe		0.750	
Cv (Winte		0.840	
Shortest Storm (min		15	
Longest Storm (min		10080	
Climate Change	2	+40	
Ti	me Area Diagram		
	al Area (ha) 0.153		
	'ime (mins) Area rom: To: (ha)		
	0 4 0.153		

Jubb Consulting Engi	neers Ltd (H	Bristol)				Page 4
St James's Court, Su	ite B					
Ground Floor West, S	t James					
Bristol, BS1 3LH						Micco
Date 26/01/2022 14:0	8	Designed	hy KG	vha		Micro
		_		ура		Drainag
'ile OUTFALL 4A - 3.	Z L_S (W	Checked	-	0.01.0.1		J
nnovyze		Source C	Control	2019.1		
	l	Model Det	ails			
	Storage is Or	nline Cover	Level	(m) 10.000		
	Tank	or Pond S	Structu	ire		
	Inve	ert Level (m) 8.000)		
Depth (m)	Area (m²) De	pth (m) Are	ea (m²)	Depth (m)	Area (m²)	
0.000	120.0	1.000	120.0	1.100	0.0	
	Hydro-Brake®	🛛 Optimum	Outflo	w Contro	<u>1</u>	
		t Reference		-0085-3200-		
		gn Head (m)			1.000 3.2	
	Design	Flow (l/s) Flush-Flo™		C	3.2 Calculated	
				ise upstrea		
	2	Application			Surface	
	Sum	p Available			Yes	
		ameter (mm)			85	
Minimum		t Level (m)			8.000	
	Outlet Pipe Dia ed Manhole Dia				100 1200	
	Control Po	oints	Head (m) Flow (1/	s)	
De	esign Point (C				.2	
		Flush-Flo™				
	-1	Kick-Flo®	0.62		.6	
	ean Flow over				.8	
The hydrological calcu Hydro-Brake® Optimum a Hydro-Brake Optimum® k invalidated	as specified.	Should ano	ther typ	pe of contr	col device (other than a
Depth (m) Flow (1/s)	Depth (m) Flo	w (l/s) Dep	oth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
0.100 2.6	1.200	3.5	3.000	5.3	7.000	7.9
0.200 3.1	1.400	3.7	3.500	5.7		8.2
0.300 3.2	1.600	4.0	4.000	6.1		8.5
0.400 3.1	1.800	4.2	4.500	6.4		
0.500 3.0 0.600 2.7	2.000 2.200	4.4 4.6	5.000 5.500	6.8 7.1		8.9 9.2
0.800 2.9	2.200	4.8	6.000	7.1		2.2
1.000 3.2	2.600	5.0	6.500	7.7		

Jubb Consulting Engineers Ltd (B	ristol)	Page 5
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:08	Designed by KGyba	Drainage
File OUTFALL 4A - 3.2 L_S (W	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow
(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)
2	0.0	102	0.0	202	0.8	302	1.4	402	1.4	502	1.3
4	0.0	102	0.0	202	0.9	304	1.4	404	1.4	502	1.3
6	0.0	104	0.0	201	0.9	306	1.4	406	1.4	506	1.3
8	0.0	100	0.0	200	0.9	308	1.4	408	1.4	508	1.3
10	0.0	110	0.0	210	0.9	310	1.4	410	1.4	510	1.3
12	0.0	112	0.0	210	1.0	312	1.4	412	1.4	512	1.3
14	0.0	114	0.0	212	1.0	314	1.4	414	1.4	514	1.3
16	0.0	114	0.0	214	1.0	314	1.4	416	1.4	514	1.2
18	0.0	110	0.0	210	1.0	318	1.4	410	1.4	518	1.2
20	0.0	120	0.0	220	1.1	320	1.4	420	1.4	520	1.2
20	0.0	120	0.0	220	1.1	320	1.4	420	1.4	520	1.2
24	0.0	122	0.0	222	1.1	324	1.4	422	1.4	524	1.2
24	0.0	124	0.0	224	1.1	324	1.4	424	1.4	526	1.2
28	0.0	120	0.0	228	1.1	328	1.4	420	1.4	528	1.2
30	0.0	130	0.1	230	1.2	330	1.4	430	1.4	530	1.2
32	0.0	132	0.1	232	1.2	332	1.4	432	1.4	532	1.2
34	0.0	134	0.1	234	1.2	334	1.4	434	1.4	534	1.2
36	0.0	136	0.1	236	1.2	336	1.4	436	1.4	536	1.2
38	0.0	138	0.1	238	1.2	338	1.4	438	1.4	538	1.2
40	0.0	140	0.1	240	1.3	340	1.4	440	1.4	540	1.2
42	0.0	142	0.1	242	1.3	342	1.4	442	1.4	542	1.2
44	0.0	144	0.1	244	1.3	344	1.4	444	1.4	544	1.2
46	0.0	146	0.1	246	1.3	346	1.4	446	1.4	546	1.2
48	0.0	148	0.1	248	1.3	348	1.4	448	1.4	548	1.2
50	0.0	150	0.1	250	1.3	350	1.4	450	1.4	550	1.2
52	0.0	152	0.2	252	1.3	352	1.4	452	1.4	552	1.2
54	0.0	154	0.2	254	1.3	354	1.4	454	1.4	554	1.2
56	0.0	156	0.2	256	1.4	356	1.4	456	1.3	556	1.2
58	0.0	158	0.2	258	1.4	358	1.4	458	1.3	558	1.2
60	0.0	160	0.2	260	1.4	360	1.4	460	1.3	560	1.2
62	0.0	162	0.2	262	1.4	362	1.4	462	1.3	562	1.2
64	0.0	164	0.3	264	1.4	364	1.4	464	1.3	564	1.2
66	0.0	166	0.3	266	1.4	366	1.4	466	1.3	566	1.2
68	0.0	168	0.3	268	1.4	368	1.4	468	1.3	568	1.2
70	0.0	170	0.3	270	1.4	370	1.4	470	1.3	570	1.1
72	0.0	172	0.4	272	1.4	372	1.4	472	1.3	572	1.1
74	0.0	174	0.4	274	1.4	374	1.4	474	1.3	574	1.1
76 78	0.0	176	0.4	276 278	1.4	376 378	1.4	476	1.3	576	1.1
	0.0	178	0.4		1.4		1.4	478	1.3	578	1.1
80	0.0	180	0.5	280	1.4	380	1.4	480	1.3	580	1.1
82	0.0	182	0.5	282	1.4	382	1.4	482	1.3	582	1.1
84	0.0	184	0.5	284	1.4	384	1.4	484	1.3	584	1.1
86	0.0	186	0.6	286	1.4	386	1.4	486	1.3	586	1.1
88	0.0	188	0.6	288	1.4	388	1.4	488	1.3	588	1.1
90	0.0	190	0.6	290	1.4	390	1.4	490	1.3	590	1.1
92	0.0	192	0.7	292	1.4	392	1.4	492	1.3	592	1.1
94	0.0	194	0.7	294	1.4	394	1.4	494	1.3	594	1.1
96	0.0	196	0.7	296	1.4	396	1.4	496	1.3	596	1.1
98	0.0	198	0.8	298	1.4	398	1.4	498	1.3		1.1
100	0.0	200	0.8	300	1.4	400	1.4	500	1.3	600	1.1

Jubb Consulting Engineers Ltd (B	ristol)	Page 6
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:08	Designed by KGyba	Drainage
File OUTFALL 4A - 3.2 L_S (W	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow
(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)
602	1.1	702	0.9	802	0.8	902	0.6	1002	0.5	1102	0.4
604	1.1	704	0.9	804	0.8	904	0.6	1004	0.5	1104	0.4
606	1.1	706	0.9	806	0.8	906	0.6	1006	0.5	1106	0.4
608	1.1	708	0.9	808	0.8	908	0.6	1008	0.5	1108	0.4
610	1.1	700	0.9	810	0.8	910	0.6	1010	0.5	1110	0.4
612	1.1	710	0.9	812	0.8	910	0.6	1010	0.5	1110	0.4
614	1.1	712	0.9	814	0.8	912	0.6	1012	0.5	1112	0.4
616	1.1	714	0.9	816	0.7	914	0.6	1014	0.5	1114	0.4
618	1.1	718	0.9	818	0.7	918	0.6	1010	0.5	1110	0.4
620	1.1	720	0.9	820	0.7	920	0.6	1018	0.5	1120	0.4
622	1.1	720	0.9	822	0.7	920	0.6	1020	0.5	1120	0.4
624	1.1	724		824	0.7	922 924	0.6	1022	0.5	1122	0.4
			0.9				0.6				
626	1.1	726	0.9	826	0.7	926 928	0.6	1026	0.5	1126	0.4
628	1.0	728	0.9	828	0.7			1028	0.5	1128	0.4
630	1.0	730	0.9	830	0.7	930	0.6	1030	0.5	1130	0.4
632	1.0	732	0.9	832	0.7	932	0.6	1032	0.5	1132	0.4
634	1.0	734	0.9	834	0.7	934	0.6	1034	0.5	1134	0.4
636	1.0	736	0.9	836	0.7	936	0.6	1036	0.5	1136	0.4
638	1.0	738	0.9	838	0.7	938	0.6	1038	0.5	1138	0.4
640	1.0	740	0.9	840	0.7	940	0.6	1040	0.5	1140	0.4
642	1.0	742	0.9	842	0.7	942	0.6	1042	0.5	1142	0.4
644	1.0	744	0.9	844	0.7	944	0.6	1044	0.5	1144	0.4
646	1.0	746	0.9	846	0.7	946	0.6	1046	0.5	1146	0.4
648	1.0	748	0.9	848	0.7	948	0.6	1048	0.5	1148	0.4
650	1.0	750	0.8	850	0.7	950	0.6	1050	0.5	1150	0.4
652	1.0	752	0.8	852	0.7	952	0.6	1052	0.5	1152	0.4
654	1.0	754	0.8	854	0.7	954	0.6	1054	0.5	1154	0.4
656	1.0	756	0.8	856	0.7	956	0.6	1056	0.5	1156	0.4
658	1.0	758	0.8	858	0.7	958	0.6	1058	0.5	1158	0.4
660	1.0	760	0.8	860	0.7	960	0.6	1060	0.5	1160	0.4
662	1.0	762	0.8	862	0.7	962	0.6	1062	0.5	1162	0.4
664	1.0	764	0.8	864	0.7	964	0.6	1064	0.5	1164	0.4
666	1.0	766	0.8	866	0.7	966	0.6	1066	0.5	1166	0.4
668	1.0	768	0.8	868	0.7	968	0.6	1068	0.5	1168	0.4
670	1.0	770	0.8	870	0.7	970	0.6	1070	0.5	1170	0.4
672	1.0	772	0.8	872	0.7	972	0.6	1072	0.5	1172	0.4
674	1.0	774	0.8	874	0.7	974	0.5	1074	0.5	1174	0.4
676	1.0	776	0.8	876	0.7	976	0.5	1076	0.5	1176	0.4
678	1.0	778	0.8	878	0.7	978	0.5	1078	0.4	1178	0.4
680	1.0	780	0.8	880	0.7	980	0.5	1080	0.4	1180	0.4
682	1.0	782	0.8	882	0.7	982	0.5	1082	0.4	1182	0.4
684	1.0	784	0.8	884	0.7	984	0.5	1084	0.4	1184	0.4
686	0.9	786	0.8	886	0.7	986	0.5	1086	0.4	1186	0.4
688	0.9	788	0.8	888	0.6	988	0.5	1088	0.4	1188	0.4
690	0.9	790	0.8	890	0.6	990	0.5	1090	0.4	1190	0.4
692	0.9	792	0.8	892	0.6	992	0.5	1092	0.4	1192	0.4
694	0.9	794	0.8	894	0.6	994	0.5	1094	0.4	1194	0.4
696	0.9	796	0.8	896	0.6	996	0.5	1096	0.4	1196	0.4
698	0.9	798	0.8	898	0.6	998	0.5	1098	0.4	1198	0.4
700	0.9	800	0.8	900	0.6	1000	0.5	1100	0.4	1200	0.4
) Innov					

Jubb Consulting Engineers Ltd (B	ristol)	Page 7
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:08	Designed by KGyba	Drainage
File OUTFALL 4A - 3.2 L_S (W	Checked by	Diamacje
Innovyze	Source Control 2019.1	

Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow
(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)
1202	0.4	1302	0.3	1402	0.3	1502	0.2	1602	0.2	1702	0.2
1204	0.4	1304	0.3	1404	0.3	1504	0.2	1604	0.2	1704	0.2
1206	0.4	1306	0.3	1406	0.3	1506	0.2	1606	0.2	1706	0.2
1208	0.4	1308	0.3	1408	0.3	1508	0.2	1608	0.2	1708	0.2
1210	0.4	1310	0.3	1410	0.3	1510	0.2	1610	0.2	1710	0.2
1212	0.4	1312	0.3	1412	0.3	1512	0.2	1612	0.2	1712	0.2
1212	0.4	1314	0.3	1414	0.3	1514	0.2	1614	0.2	1714	0.2
1216	0.4	1316	0.3	1416	0.3	1516	0.2	1616	0.2	1716	0.2
1210	0.4	1318	0.3	1410	0.3	1518	0.2	1618	0.2	1718	0.2
1220	0.4	1320	0.3	1410	0.3	1510	0.2	1620	0.2	1720	0.2
1220	0.4	1320	0.3	1420	0.3	1520	0.2	1620	0.2	1720	0.2
1222	0.3	1322	0.3	1422	0.3	1522	0.2	1622	0.2	1724	0.2
					0.3						
1226	0.3	1326	0.3	1426		1526	0.2	1626	0.2	1726	0.2
1228	0.3	1328	0.3	1428	0.3	1528	0.2	1628	0.2	1728	0.2
1230	0.3	1330	0.3	1430	0.3	1530	0.2	1630	0.2	1730	0.2
1232	0.3	1332	0.3	1432	0.3	1532	0.2	1632	0.2	1732	0.2
1234	0.3	1334	0.3	1434	0.3	1534	0.2	1634	0.2	1734	0.2
1236	0.3	1336	0.3	1436	0.3	1536	0.2	1636	0.2	1736	0.2
1238	0.3	1338	0.3	1438	0.2	1538	0.2	1638	0.2	1738	0.2
1240	0.3	1340	0.3	1440	0.2	1540	0.2	1640	0.2	1740	0.2
1242	0.3	1342	0.3	1442	0.2	1542	0.2	1642	0.2	1742	0.2
1244	0.3	1344	0.3	1444	0.2	1544	0.2	1644	0.2	1744	0.2
1246	0.3	1346	0.3	1446	0.2	1546	0.2	1646	0.2	1746	0.2
1248	0.3	1348	0.3	1448	0.2	1548	0.2	1648	0.2	1748	0.2
1250	0.3	1350	0.3	1450	0.2	1550	0.2	1650	0.2	1750	0.2
1252	0.3	1352	0.3	1452	0.2	1552	0.2	1652	0.2	1752	0.2
1254	0.3	1354	0.3	1454	0.2	1554	0.2	1654	0.2	1754	0.2
1256	0.3	1356	0.3	1456	0.2	1556	0.2	1656	0.2	1756	0.2
1258	0.3	1358	0.3	1458	0.2	1558	0.2	1658	0.2	1758	0.2
1260	0.3	1360	0.3	1460	0.2	1560	0.2	1660	0.2	1760	0.2
1262	0.3	1362	0.3	1462	0.2	1562	0.2	1662	0.2	1762	0.2
1264	0.3	1364	0.3	1464	0.2	1564	0.2	1664	0.2	1764	0.2
1266	0.3	1366	0.3	1466	0.2	1566	0.2	1666	0.2	1766	0.2
1268	0.3	1368	0.3	1468	0.2	1568	0.2	1668	0.2	1768	0.2
1270	0.3	1370	0.3	1470	0.2	1570	0.2	1670	0.2	1770	0.2
1272	0.3	1372	0.3	1472	0.2	1572	0.2	1672	0.2	1772	0.2
1274	0.3	1374	0.3	1474	0.2	1574	0.2	1674	0.2	1774	0.2
1276	0.3	1376	0.3	1476	0.2	1576	0.2	1676	0.2	1776	0.2
1278	0.3	1378	0.3	1478	0.2	1578	0.2	1678	0.2	1778	0.2
1280	0.3	1380	0.3	1480	0.2	1580	0.2	1680	0.2	1780	0.2
1282	0.3	1382	0.3	1482	0.2	1582	0.2	1682	0.2		0.2
1284	0.3	1384	0.3	1484	0.2	1584	0.2	1684	0.2		0.2
1286	0.3	1386	0.3	1486	0.2	1586	0.2	1686	0.2		0.2
1288	0.3	1388	0.3	1488	0.2	1588	0.2	1688	0.2		0.2
1290	0.3	1390	0.3	1400	0.2	1590	0.2	1690	0.2		0.2
1290	0.3	1390	0.3	1490	0.2	1590	0.2	1690	0.2		0.2
	0.3				0.2		0.2				
1294		1394	0.3	1494		1594		1694	0.2	1794	0.2
1296	0.3	1396	0.3	1496	0.2	1596	0.2	1696	0.2		0.2
1298	0.3	1398	0.3	1498	0.2	1598	0.2	1698	0.2		0.2
1300	0.3	1400	0.3	1500	0.2	1600	0.2	1700	0.2	1800	0.2
) Innov					

Jubb Consulting Engineers Ltd (B	ristol)	Page 8
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:08	Designed by KGyba	Drainage
File OUTFALL 4A - 3.2 L_S (W	Checked by	Dialitage
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(l/s)										
1802	0.2	1902	0.1	2002	0.1	2102	0.1	2202	0.1	2302	0.1
1804	0.2	1904	0.1	2004	0.1	2104	0.1	2204	0.1	2304	0.1
1806	0.2	1906	0.1	2006	0.1	2106	0.1	2206	0.1	2306	0.1
1808	0.2	1908	0.1	2008	0.1	2108	0.1	2208	0.1	2308	0.1
1810	0.2	1910	0.1	2000	0.1	2110	0.1	2210	0.1	2310	0.1
1812	0.2	1912	0.1	2010	0.1	2110	0.1	2210	0.1	2310	0.1
1814	0.2	1914	0.1	2012	0.1	2112	0.1	2212	0.1	2312	0.1
1816	0.2	1916	0.1	2011	0.1	2116	0.1	2216	0.1	2316	0.1
1818	0.2	1918	0.1	2010	0.1	2110	0.1	2210	0.1	2318	0.1
1820	0.2	1920	0.1	2020	0.1	2110	0.1	2220	0.1	2320	0.1
1822	0.2	1920	0.1	2020	0.1	2120	0.1	2222	0.1	2320	0.1
1824	0.2	1924	0.1	2022	0.1	2122	0.1	2224	0.1	2322	0.1
1826	0.2	1924	0.1	2024	0.1	2124	0.1	2224	0.1	2324	0.1
1828	0.2	1928	0.1	2020	0.1	2120	0.1	2228	0.1	2328	0.1
1830	0.2	1930	0.1	2020	0.1	2120	0.1	2230	0.1	2320	0.1
1832	0.2	1932	0.1	2030	0.1	2130	0.1	2230	0.1	2332	0.1
1834	0.2	1934	0.1	2032	0.1	2132	0.1	2232	0.1	2332	0.1
1836	0.1	1936	0.1	2034	0.1	2134	0.1	2234	0.1	2336	0.1
1838	0.1	1938	0.1	2030	0.1	2130	0.1	2238	0.1	2338	0.1
1840	0.1	1940	0.1	2030	0.1	2130	0.1	2230	0.1	2340	0.1
1842	0.1	1942	0.1	2040	0.1	2140	0.1	2242	0.1	2342	0.1
1844	0.1	1944	0.1	2012	0.1	2144	0.1	2244	0.1	2344	0.1
1846	0.1	1946	0.1	2046	0.1	2146	0.1	2246	0.1	2346	0.1
1848	0.1	1948	0.1	2048	0.1	2148	0.1	2248	0.1	2348	0.1
1850	0.1	1950	0.1	2050	0.1	2110	0.1	2250	0.1	2350	0.1
1852	0.1	1952	0.1	2052	0.1	2152	0.1	2252	0.1	2352	0.1
1854	0.1	1954	0.1	2054	0.1	2154	0.1	2254	0.1	2354	0.1
1856	0.1	1956	0.1	2056	0.1	2156	0.1	2256	0.1	2356	0.1
1858	0.1	1958	0.1	2058	0.1	2158	0.1	2258	0.1	2358	0.1
1860	0.1	1960	0.1	2060	0.1	2160	0.1	2260	0.1	2360	0.1
1862	0.1	1962	0.1	2062	0.1	2162	0.1	2262	0.1	2362	0.1
1864	0.1	1964	0.1	2064	0.1	2164	0.1	2264	0.1	2364	0.1
1866	0.1	1966	0.1	2066	0.1	2166	0.1	2266	0.1	2366	0.1
1868	0.1	1968	0.1	2068	0.1	2168	0.1	2268	0.1	2368	0.1
1870	0.1	1970	0.1	2070	0.1	2170	0.1	2270	0.1	2370	0.1
1872	0.1	1972	0.1	2072	0.1	2172	0.1	2272	0.1	2372	0.1
1874	0.1	1974	0.1	2074	0.1	2174	0.1	2274	0.1	2374	0.1
1876	0.1	1976	0.1	2076	0.1	2176	0.1	2276	0.1	2376	0.1
1878	0.1	1978	0.1	2078	0.1	2178	0.1	2278	0.1	2378	0.1
1880	0.1	1980	0.1	2080	0.1	2180	0.1	2280	0.1	2380	0.1
1882	0.1	1982	0.1	2082	0.1	2182	0.1	2282	0.1	2382	0.1
1884	0.1	1984	0.1	2084	0.1	2184	0.1	2284	0.1	2384	0.1
1886	0.1	1986	0.1	2086	0.1	2186	0.1	2286	0.1	2386	0.1
1888	0.1	1988	0.1	2088	0.1	2188	0.1	2288	0.1	2388	0.1
1890	0.1	1990	0.1	2090	0.1	2190	0.1	2290	0.1	2390	0.1
1892	0.1	1992	0.1	2092	0.1	2192	0.1	2292	0.1	2392	0.1
1894	0.1	1994	0.1	2094	0.1	2194	0.1	2294	0.1	2394	0.1
1896	0.1	1996	0.1	2096	0.1	2196	0.1	2296	0.1	2396	0.1
1898	0.1	1998	0.1	2098	0.1	2198	0.1	2298	0.1	2398	0.1
1900	0.1	2000	0.1	2100	0.1	2200	0.1	2300	0.1		0.1

Jubb Consulting Engineers Ltd (B	ristol)	Page 9
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:08	Designed by KGyba	Drainage
File OUTFALL 4A - 3.2 L_S (W	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time Flow	Flow	Time	Flow								
(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)
2402	0.1	2482	0.1	2562	0.1	2642	0.1	2722	0.1	2802	0.1
2404	0.1	2484	0.1	2564	0.1	2644	0.1	2724	0.1	2804	0.1
2406	0.1	2486	0.1	2566	0.1	2646	0.1	2726	0.1	2806	0.1
2408	0.1	2488	0.1	2568	0.1	2648	0.1	2728	0.1	2808	0.1
2410	0.1	2490	0.1	2570	0.1	2650	0.1	2730	0.1	2810	0.1
2412	0.1	2492	0.1	2572	0.1	2652	0.1	2732	0.1	2812	0.1
2414	0.1	2494	0.1	2574	0.1	2654	0.1	2734	0.1	2814	0.1
2416	0.1	2496	0.1	2576	0.1	2656	0.1	2736	0.1	2816	0.1
2418	0.1	2498	0.1	2578	0.1	2658	0.1	2738	0.1	2818	0.1
2420	0.1	2500	0.1	2580	0.1	2660	0.1	2740	0.1	2820	0.1
2422	0.1	2502	0.1	2582	0.1	2662	0.1	2742	0.1	2822	0.1
2424	0.1	2504	0.1	2584	0.1	2664	0.1	2744	0.1	2824	0.1
2426	0.1	2506	0.1	2586	0.1	2666	0.1	2746	0.1	2826	0.1
2428	0.1	2508	0.1	2588	0.1	2668	0.1	2748	0.1	2828	0.1
2430	0.1	2510	0.1	2590	0.1	2670	0.1	2750	0.1	2830	0.1
2432	0.1	2512	0.1	2592	0.1	2672	0.1	2752	0.1	2832	0.1
2434	0.1	2514	0.1	2594	0.1	2674	0.1	2754	0.1	2834	0.1
2436	0.1	2516	0.1	2596	0.1	2676	0.1	2756	0.1	2836	0.1
2438	0.1	2518	0.1	2598	0.1	2678	0.1	2758	0.1	2838	0.1
2440	0.1	2520	0.1	2600	0.1	2680	0.1	2760	0.1	2840	0.1
2442	0.1	2522	0.1	2602	0.1	2682	0.1	2762	0.1	2842	0.1
2444	0.1	2524	0.1	2604	0.1	2684	0.1	2764	0.1	2844	0.1
2446	0.1	2526	0.1	2606	0.1	2686	0.1	2766	0.1	2846	0.1
2448	0.1	2528	0.1	2608	0.1	2688	0.1	2768	0.1	2848	0.1
2450	0.1	2530	0.1	2610	0.1	2690	0.1	2770	0.1	2850	0.1
2452	0.1	2532	0.1	2612	0.1	2692	0.1	2772	0.1	2852	0.1
2454	0.1	2534	0.1	2614	0.1	2694	0.1	2774	0.1	2854	0.1
2456	0.1	2536	0.1	2616	0.1	2696	0.1	2776	0.1	2856	0.1
2458	0.1	2538	0.1	2618	0.1	2698	0.1	2778	0.1	2858	0.1
2460	0.1	2540	0.1	2620	0.1	2700	0.1	2780	0.1	2860	0.1
2462	0.1	2542	0.1	2622	0.1	2702	0.1	2782	0.1	2862	0.1
2464	0.1	2544	0.1	2624	0.1	2704	0.1	2784	0.1	2864	0.1
2466	0.1	2546	0.1	2626	0.1	2706	0.1	2786	0.1	2866	0.1
2468	0.1	2548	0.1	2628	0.1	2708	0.1	2788	0.1	2868	0.1
2470	0.1	2550	0.1	2630	0.1	2710	0.1	2790	0.1	2870	0.1
2472	0.1	2552	0.1	2632	0.1	2712	0.1	2792	0.1	2872	0.1
2474	0.1	2554	0.1	2634	0.1	2714	0.1	2794	0.1	2874	0.1
2476	0.1	2556	0.1	2636	0.1	2716	0.1	2796	0.1	2876	0.1
2478	0.1	2558	0.1	2638	0.1	2718	0.1	2798	0.1	2878	0.1
2480	0.1	2560	0.1	2640	0.1	2720	0.1	2800	0.1	2880	0.1

Jubb Consulting Eng	-	(Brist	01)				Page 1
t James's Court, S	Suite B						
round Floor West,	St James	•					
ristol, BS1 3LH							Micco
Date 26/01/2022 14	:09	Des	lgned b	v KGvl	ba		- Micro
File OUTFALL 4B - !			cked by				Drainac
	<u> </u>		cce Con		2010	1	
innovyze		50u.	Le con	LIOI .	2019.	L	
Cummo ros	r of Dogulto	for 1	00	Dotu	rn Do	rid (+10%)	N N
Summary	y of Results	5 101 1	UU year	Retu	III Fe	1100 (+40%)	<u>)</u>
	Storm	Max	Max	Max	Max	Status	
	Event		Depth Co				
		(m)	(m)		(m³)		
	15 min Summer				91.4		
	30 min Summer				115.4		
	60 min Summe 120 min Summe				136.2		
	120 min Summer 180 min Summer			5.5 5.5			
	240 min Summer			5.5	185.7		
	360 min Summer			5.5	198.6	ОК	
	480 min Summer			5.5	202.5	о к	
	600 min Summer			5.5			
	720 min Summer			5.5			
	960 min Summe: 440 min Summe:			5.5	180.3		
	440 min Summe 160 min Summe			5.5 5.5	142.0 90.6		
	880 min Summer				61.5		
	320 min Summer				37.9		
5	760 min Summer	8.101	0.101	3.9	30.4	ОК	
	200 min Summer			3.3			
	640 min Summer				24.1		
10	080 min Summer 15 min Winter				22.3		
	30 min Winter				102.7		
	Storm	Rain	Flooded	l Disch	arge 1	lime-Peak	
	Event	(mm/hr)	Volume	Volu	ume	(mins)	
			(m³)	(m ²	³)		
	15 min Summer	171 920	0.0	ı 1	81.8	18	
	30 min Summer				09.0	33	
	60 min Summer	67.760			56.9	62	
	20 min Summer				97.8	122	
					23.0	182	
	80 min Summer						
2	40 min Summer	26.390	0.0) 3	40.5	242	
2	40 min Summer 60 min Summer	26.390 19.297	0.0 0.0) 3) 3	40.5 63.1	362	
2 3 4	40 min Summer 60 min Summer 80 min Summer	26.390 19.297 15.250	0.0 0.0 0.0) 3) 3) 3	40.5 63.1 76.9	362 480	
2 3 4 6	40 min Summer 60 min Summer	26.390 19.297 15.250 12.635	0.0 0.0 0.0) 3) 3) 3	40.5 63.1 76.9 86.5	362 480 568	
2 3 4 6 7	40 min Summer 60 min Summer 80 min Summer 00 min Summer	26.390 19.297 15.250	0.0 0.0 0.0 0.0) 3) 3) 3) 3	40.5 63.1 76.9	362 480	
2 3 4 6 7 9	40 min Summer 60 min Summer 80 min Summer 00 min Summer 20 min Summer	26.390 19.297 15.250 12.635 10.803	0.0 0.0 0.0 0.0 0.0) 3) 3) 3) 3) 3) 3	40.5 63.1 76.9 86.5 93.8	362 480 568 606	
2 3 4 6 7 9 14 21	40 min Summer 60 min Summer 80 min Summer 00 min Summer 20 min Summer 60 min Summer 40 min Summer 60 min Summer	26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052) 3) 3) 3) 3) 3) 4) 4) 4	40.5 63.1 76.9 86.5 93.8 04.3 17.6 33.1	362 480 568 606 676 908 1252	
2 3 4 6 7 9 14 21 28	40 min Summer 60 min Summer 80 min Summer 00 min Summer 20 min Summer 60 min Summer 40 min Summer 80 min Summer	26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124) 3) 3) 3) 3) 3) 4) 4) 4) 4	40.5 63.1 76.9 86.5 93.8 04.3 17.6 33.1 42.0	362 480 568 606 676 908 1252 1584	
2 3 4 6 7 9 14 21 28 43	40 min Summer 60 min Summer 80 min Summer 00 min Summer 20 min Summer 60 min Summer 40 min Summer 80 min Summer 20 min Summer	26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176) 3) 3) 3) 3) 4) 4) 4) 4) 4) 4	40.5 63.1 76.9 86.5 93.8 04.3 17.6 33.1 42.0 56.2	362 480 568 606 676 908 1252 1584 2248	
2 3 4 6 7 9 14 21 28 43 57	40 min Summer 60 min Summer 80 min Summer 00 min Summer 20 min Summer 60 min Summer 40 min Summer 80 min Summer 20 min Summer 60 min Summer	26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693) 3) 3) 3) 3) 4) 4) 4) 4) 4) 4	40.5 63.1 76.9 86.5 93.8 04.3 17.6 33.1 42.0 56.2 70.3	362 480 568 606 676 908 1252 1584 2248 2944	
2 3 4 6 7 9 14 21 28 43 57 72	40 min Summer 60 min Summer 80 min Summer 00 min Summer 20 min Summer 60 min Summer 40 min Summer 80 min Summer 20 min Summer 60 min Summer 60 min Summer 00 min Summer	26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404		3) 3 3) 3 3) 3 4) 4 4) 4 4) 4 4) 4	40.5 63.1 76.9 86.5 93.8 04.3 17.6 33.1 42.0 56.2 70.3 83.3	362 480 568 606 676 908 1252 1584 2248 2944 3672	
2 3 4 6 7 9 14 21 28 43 57 72 86	40 min Summer 60 min Summer 80 min Summer 00 min Summer 20 min Summer 60 min Summer 40 min Summer 80 min Summer 20 min Summer 60 min Summer	26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404		3) 3) 3) 3) 3) 3) 3) 3) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4)	40.5 63.1 76.9 86.5 93.8 04.3 17.6 33.1 42.0 56.2 70.3	362 480 568 606 676 908 1252 1584 2248 2944	
2 3 4 6 7 9 14 21 28 43 57 72 86 100	40 min Summer 60 min Summer 80 min Summer 00 min Summer 20 min Summer 60 min Summer 40 min Summer 80 min Summer 20 min Summer 60 min Summer 40 min Summer 40 min Summer	26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211 1.073		3) 3) 3) 3) 3) 3) 3) 3) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 5) 5)	40.5 63.1 76.9 86.5 93.8 04.3 17.6 33.1 42.0 56.2 70.3 83.3 96.1	362 480 568 606 676 908 1252 1584 2248 2944 3672 4408	
2 3 4 6 7 9 14 21 28 43 57 72 86 100	40 min Summer 60 min Summer 80 min Summer 00 min Summer 20 min Summer 60 min Summer 40 min Summer 80 min Summer 20 min Summer 60 min Summer 40 min Summer 80 min Summer 80 min Summer	26.390 19.297 15.250 12.635 10.803 8.400 5.851 4.052 3.124 2.176 1.693 1.404 1.211 1.073 171.920		3) 3) 3) 3) 3) 3) 3) 3) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 5) 1	40.5 63.1 76.9 86.5 93.8 04.3 17.6 33.1 42.0 56.2 70.3 83.3 96.1 08.6	362 480 568 606 676 908 1252 1584 2248 2944 3672 4408 5144	

	lting Engineers	Ltd (Bris	tol)				Page 2
	Court, Suite B						
Ground Flo	or West, St Jame	s					
Bristol, B	S1 3LH						_ Micro
Date 26/01	/2022 14:09	Des	signed b	y KGył	ba		
File OUTFA:	LL 4B - 5.5 L S	(W Che	ecked by				Drainag
Innovyze			irce Con		2019.1		
				0101 1		-	
	Summary of Res	ults for i	100 vear	Retu	rn Pei	ciod (+40%)	
	<u></u>						_
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth Co	ontrol	Volume		
		(m)	(m)	(l/s)	(m³)		
	60 min M	inton 0 E12	0 510		154 0	O K	
		inter 8.513 inter 8.621		5.5 5.5			
		inter 8.675		5.5			
		inter 8.711			213.4		
	360 min W	inter 8.754	0.754	5.5	226.3	O K	
		inter 8.767		5.5			
		inter 8.761			228.3		
		inter 8.741			222.2		
		inter 8.687 inter 8.510		5.5	206.1 153.1		
		inter 8.274		5.5	82.3		
		inter 8.157			47.1		
	4320 min W	inter 8.101	0.101	3.8	30.3	O K	
	5760 min W	inter 8.083	0.083		24.8		
		inter 8.072			21.7		
	8640 min W. 10080 min W.	inter 8.069		2.3 2.2			
						0 10	
	Storm Event	Rain (mm/hr) Volume	l Disch Volu	arge T	ime-Peak (mins)	
				l Disch	arge T	ime-Peak	
	Event) Volume (m³)	l Disch Volu (m ³	arge T	ime-Peak	
	Event 60 min Wi 120 min Wi	(mm/hr nter 67.76 nter 43.12) Volume (m ³)	1 Disch Volu (m ³) 2) 3	arge T: me 3) 74.9 20.7	ime-Peak (mins)	
	Event 60 min Wi 120 min Wi 180 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54	<pre>> Volume (m³) 0 0.0 0 0.0 8 0.0</pre>	l Disch Volu (m ³) 2) 3) 3	arge T. 1me 3) 74.9 20.7 48.9	ime-Peak (mins) 62 120 178	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39	Volume (m ³) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	d Disch Volu (m ³) 2) 3) 3) 3	arge T me 3) 74.9 20.7 48.9 68.5	ime-Peak (mins) 62 120 178 238	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29	Volume (m ³) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 7 0.0	d Disch Volu (m ³) 2) 3) 3) 3) 3	arge T: me 3) 74.9 20.7 48.9 68.5 93.9	ime-Peak (mins) 62 120 178 238 354	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25	Volume (m³) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	d Disch Volu (m ³) 2) 3) 3) 3) 3) 4	arge T me 3) 74.9 20.7 48.9 68.5	ime-Peak (mins) 62 120 178 238	
	60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi 480 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25 nter 12.63	Volume (m ³) 0 0.0 0 0.0 0 0.0 8 0.0 0 0.0 7 0.0 0 0.0 5 0.0	d Disch Volu (m ³) 2) 3) 3) 3) 3) 4) 4	arge T. me 3) 74.9 20.7 48.9 68.5 93.9 09.3	ime-Peak (mins) 62 120 178 238 354 466	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi 480 min Wi 600 min Wi 720 min Wi 960 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25 nter 12.63 nter 10.80 nter 8.40	Volume (m³) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 5 0.0 3 0.0 0 0.0	d Disch Volu (m ³) 2) 3) 3) 3) 3) 4) 4) 4) 4) 4) 4	arge T: me 3) 74.9 20.7 48.9 68.5 93.9 09.3 20.0 28.2 40.0	ime-Peak (mins) 62 120 178 238 354 466 572 658 738	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi 480 min Wi 600 min Wi 720 min Wi 960 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25 nter 12.63 nter 10.80 nter 8.40 nter 5.85	Volume (m³) 0 0.0 0 0.0 0 0.0 8 0.0 0 0.0 7 0.0 5 0.0 3 0.0 1 0.0	 Disch Volu (m³) 2 3 3 3 4 4 4 4 	arge T. me 3) 74.9 20.7 48.9 68.5 93.9 09.3 20.0 28.2 40.0 54.9	ime-Peak (mins) 62 120 178 238 354 466 572 658 738 980	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi 480 min Wi 600 min Wi 720 min Wi 960 min Wi 1440 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25 nter 12.63 nter 10.80 nter 8.40 nter 5.85 nter 4.05	Volume (m ³) 0 0.00 0 0.00 8 0.00 7 0.00 5 0.00 3 0.00 1 0.00 2 0.00	 d Disch Volu (m³) 2 3 3 3 4 4 4 4 4 4 4 4 4 	arge T: me 3) 74.9 20.7 48.9 68.5 93.9 09.3 20.0 28.2 40.0 54.9 71.8	ime-Peak (mins) 62 120 178 238 354 466 572 658 738 980 1300	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi 480 min Wi 600 min Wi 720 min Wi 960 min Wi 1440 min Wi 2160 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25 nter 12.63 nter 10.80 nter 8.40 nter 5.85 nter 4.05 nter 3.12	Volume (m³) 0 0.00 0 0.00 8 0.00 0 0.00 7 0.00 5 0.00 3 0.00 1 0.00 4 0.00	 Disch Volu (m³) 2 3 3 3 4 	arge T. me 3) 74.9 20.7 48.9 68.5 93.9 09.3 20.0 28.2 40.0 54.9 71.8 81.8	ime-Peak (mins) 62 120 178 238 354 466 572 658 738 980 1300 1588	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi 480 min Wi 600 min Wi 720 min Wi 960 min Wi 1440 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25 nter 12.63 nter 10.80 nter 8.40 nter 5.85 nter 4.05 nter 3.12 nter 2.17	Volume (m³) 0 0.00 0 0.00 8 0.00 0 0.00 7 0.00 5 0.00 3 0.00 1 0.00 2 0.00 4 0.00 6 0.00	A Disch Volu (m ³) 2 3 3 3 4	arge T: me 3) 74.9 20.7 48.9 68.5 93.9 09.3 20.0 28.2 40.0 54.9 71.8 81.8 97.9	ime-Peak (mins) 62 120 178 238 354 466 572 658 738 980 1300 1588 2248	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi 480 min Wi 600 min Wi 720 min Wi 960 min Wi 1440 min Wi 2160 min Wi 2880 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25 nter 12.63 nter 10.80 nter 8.40 nter 5.85 nter 4.05 nter 3.12 nter 2.17 nter 1.69	Volume (m³) 0 0.00 0 0.00 8 0.00 0 0.00 7 0.00 5 0.00 3 0.00 1 0.00 4 0.00 3 0.00 3 0.00	d Disch Volu (m ³) 2) 2) 3) 3) 3) 3) 3) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4	arge T. me 3) 74.9 20.7 48.9 68.5 93.9 09.3 20.0 28.2 40.0 54.9 71.8 81.8	ime-Peak (mins) 62 120 178 238 354 466 572 658 738 980 1300 1588	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi 480 min Wi 600 min Wi 720 min Wi 960 min Wi 1440 min Wi 2160 min Wi 2880 min Wi 4320 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25 nter 12.63 nter 10.80 nter 8.40 nter 5.85 nter 4.05 nter 3.12 nter 2.17 nter 1.69 nter 1.40	Volume (m³) 0 0.00 0 0.00 8 0.00 0 0.00 7 0.00 5 0.00 3 0.00 1 0.00 4 0.00 3 0.00 4 0.00	I Disch Volu (m ³)	arge T: me 3) 74.9 20.7 48.9 68.5 93.9 09.3 20.0 28.2 40.0 54.9 71.8 81.8 97.9 13.4	ime-Peak (mins) 62 120 178 238 354 466 572 658 738 980 1300 1588 2248 2888	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi 480 min Wi 480 min Wi 720 min Wi 960 min Wi 1440 min Wi 2160 min Wi 2880 min Wi 4320 min Wi 5760 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25 nter 12.63 nter 10.80 nter 8.40 nter 5.85 nter 4.05 nter 3.12 nter 2.17 nter 1.69 nter 1.21	Volume (m³) 0 0.00 0 0.00 8 0.00 0 0.00 7 0.00 5 0.00 3 0.00 1 0.00 4 0.00 3 0.00 4 0.00 1 0.00	I Disch Volu (m ³)) 2) 3) 3) 3) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 5) 5	arge T. me 3) 74.9 20.7 48.9 68.5 93.9 09.3 20.0 28.2 40.0 54.9 71.8 81.8 97.9 13.4 28.1	ime-Peak (mins) 62 120 178 238 354 466 572 658 738 980 1300 1588 2248 2888 3680	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi 480 min Wi 480 min Wi 720 min Wi 960 min Wi 1440 min Wi 2480 min Wi 2880 min Wi 5760 min Wi 5760 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25 nter 12.63 nter 10.80 nter 8.40 nter 5.85 nter 4.05 nter 3.12 nter 2.17 nter 1.69 nter 1.21	Volume (m³) 0 0.00 0 0.00 8 0.00 0 0.00 7 0.00 5 0.00 3 0.00 1 0.00 4 0.00 3 0.00 4 0.00 1 0.00	I Disch Volu (m ³)) 2) 3) 3) 3) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 5) 5	arge T. me 3) 74.9 20.7 48.9 68.5 93.9 09.3 20.0 28.2 40.0 54.9 71.8 81.8 97.9 13.4 28.1 42.5	ime-Peak (mins) 62 120 178 238 354 466 572 658 738 980 1300 1588 2248 2888 3680 536	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi 480 min Wi 480 min Wi 720 min Wi 960 min Wi 1440 min Wi 2480 min Wi 2880 min Wi 5760 min Wi 5760 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25 nter 12.63 nter 10.80 nter 8.40 nter 5.85 nter 4.05 nter 3.12 nter 2.17 nter 1.69 nter 1.21	Volume (m³) 0 0.00 0 0.00 8 0.00 0 0.00 7 0.00 5 0.00 3 0.00 1 0.00 4 0.00 3 0.00 4 0.00 1 0.00	I Disch Volu (m ³)) 2) 3) 3) 3) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 5) 5	arge T. me 3) 74.9 20.7 48.9 68.5 93.9 09.3 20.0 28.2 40.0 54.9 71.8 81.8 97.9 13.4 28.1 42.5	ime-Peak (mins) 62 120 178 238 354 466 572 658 738 980 1300 1588 2248 2888 3680 536	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi 480 min Wi 480 min Wi 720 min Wi 960 min Wi 1440 min Wi 2480 min Wi 2880 min Wi 5760 min Wi 5760 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25 nter 12.63 nter 10.80 nter 8.40 nter 5.85 nter 4.05 nter 3.12 nter 2.17 nter 1.69 nter 1.21	Volume (m³) 0 0.00 0 0.00 8 0.00 0 0.00 7 0.00 5 0.00 3 0.00 1 0.00 4 0.00 3 0.00 4 0.00 1 0.00	I Disch Volu (m ³)) 2) 3) 3) 3) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 5) 5	arge T. me 3) 74.9 20.7 48.9 68.5 93.9 09.3 20.0 28.2 40.0 54.9 71.8 81.8 97.9 13.4 28.1 42.5	ime-Peak (mins) 62 120 178 238 354 466 572 658 738 980 1300 1588 2248 2888 3680 536	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi 480 min Wi 480 min Wi 720 min Wi 960 min Wi 1440 min Wi 2480 min Wi 2880 min Wi 5760 min Wi 5760 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25 nter 12.63 nter 10.80 nter 8.40 nter 5.85 nter 4.05 nter 3.12 nter 2.17 nter 1.69 nter 1.21	Volume (m³) 0 0.00 0 0.00 8 0.00 0 0.00 7 0.00 5 0.00 3 0.00 1 0.00 4 0.00 3 0.00 4 0.00 1 0.00	I Disch Volu (m ³)) 2) 3) 3) 3) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 5) 5	arge T. me 3) 74.9 20.7 48.9 68.5 93.9 09.3 20.0 28.2 40.0 54.9 71.8 81.8 97.9 13.4 28.1 42.5	ime-Peak (mins) 62 120 178 238 354 466 572 658 738 980 1300 1588 2248 2888 3680 536	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi 480 min Wi 480 min Wi 720 min Wi 960 min Wi 1440 min Wi 2480 min Wi 2880 min Wi 5760 min Wi 5760 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25 nter 12.63 nter 10.80 nter 8.40 nter 5.85 nter 4.05 nter 3.12 nter 2.17 nter 1.69 nter 1.21	Volume (m³) 0 0.00 0 0.00 8 0.00 0 0.00 7 0.00 5 0.00 3 0.00 1 0.00 4 0.00 3 0.00 4 0.00 1 0.00	I Disch Volu (m ³)) 2) 3) 3) 3) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 5) 5	arge T. me 3) 74.9 20.7 48.9 68.5 93.9 09.3 20.0 28.2 40.0 54.9 71.8 81.8 97.9 13.4 28.1 42.5	ime-Peak (mins) 62 120 178 238 354 466 572 658 738 980 1300 1588 2248 2888 3680 536	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi 480 min Wi 480 min Wi 720 min Wi 960 min Wi 1440 min Wi 2480 min Wi 2880 min Wi 5760 min Wi 5760 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25 nter 12.63 nter 10.80 nter 8.40 nter 5.85 nter 4.05 nter 3.12 nter 2.17 nter 1.69 nter 1.21	Volume (m³) 0 0.00 0 0.00 8 0.00 0 0.00 7 0.00 5 0.00 3 0.00 1 0.00 4 0.00 3 0.00 4 0.00 1 0.00	I Disch Volu (m ³)) 2) 3) 3) 3) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 5) 5	arge T. me 3) 74.9 20.7 48.9 68.5 93.9 09.3 20.0 28.2 40.0 54.9 71.8 81.8 97.9 13.4 28.1 42.5	ime-Peak (mins) 62 120 178 238 354 466 572 658 738 980 1300 1588 2248 2888 3680 536	
	Event 60 min Wi 120 min Wi 180 min Wi 240 min Wi 360 min Wi 480 min Wi 480 min Wi 720 min Wi 960 min Wi 1440 min Wi 2480 min Wi 2880 min Wi 5760 min Wi 5760 min Wi	(mm/hr nter 67.76 nter 43.12 nter 32.54 nter 26.39 nter 19.29 nter 15.25 nter 12.63 nter 10.80 nter 8.40 nter 5.85 nter 4.05 nter 3.12 nter 2.17 nter 1.69 nter 1.21	Volume (m³) 0 0.00 0 0.00 8 0.00 0 0.00 7 0.00 5 0.00 3 0.00 1 0.00 4 0.00 3 0.00 4 0.00 1 0.00	I Disch Volu (m ³)) 2) 3) 3) 3) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 5) 5	arge T. me 3) 74.9 20.7 48.9 68.5 93.9 09.3 20.0 28.2 40.0 54.9 71.8 81.8 97.9 13.4 28.1 42.5	ime-Peak (mins) 62 120 178 238 354 466 572 658 738 980 1300 1588 2248 2888 3680 536	

Nubb Consulting Engineers Ltd (B	Bristol)	Page 3
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		
		— Micro
Date 26/01/2022 14:09	Designed by KGyba	Drainag
'ile OUTFALL 4B - 5.5 L_S (W	Checked by	Drainiag
Innovyze	Source Control 2019.1	
Ra	infall Details	
<u>Na</u>		
Rainfall Mode		
Return Period (years		
FEH Rainfall Versio		
	on GB 541450 180700 TQ 41450 80700	
Data Typ	-	
Summer Storn		
Winter Storn		
Cv (Summe:		
Cv (Winte:		
Shortest Storm (min:		
Longest Storm (mins		
Climate Change	% +40	
Tir	me Area Diagram	
Tot	al Area (ha) 0.295	
	ime (mins) Area com: To: (ha)	
	0 4 0.295	

©1982-2019 Innovyze

St James's Court, Suite B Ground Floor West, St James Bristol, BS1 3LH Date 26/01/2022 14:09	Jubb Consulting Eng	ineers Ltd	(Bristol)				Page 4
Ground Floor West, St James Designed by KGyba Bristol, BSI 3.H4 Designed by KGyba Date 26/01/2022 14:09 Designed by KGyba File OUTFALL 4B - 5.5 L_S (W Checked by Innovyze Source Control 2019.1 Model Details Storage is Online Cover Level (m) 10.000 Tank or Pond Structure Invert Level (m) 8.000 Depth (m) Area (m²) Depth (m) Area (m²) Optimum Outflow Control Unit Reference MD-SHE-OI10-5500-1000-5500 Design Flow (I/s) Strage Flow (I/s) Strage Flow (I/s) Strage Flow (I/s) Diameter (mm) Invert Level (m) Non-Pio* Calculated Optimum Outflow Control Unit Reference MD-SHE-OI10-5500-1000-5500 Design Flow (I/s) Sump Availabe type Yes Diameter (mm) Invert Level (m) Sump Availabe							Tage 4
Bristol, BS1 3LH Designed by KGyba Dimovial File OUTFALL 4B - 5.5 L_S (W Checked by Checked by Innovyze Source Control 2019.1 Model Details Storage is Online Cover Level (m) 10.000 Tank or Pond Structure Invert Level (m) 8.000 Depth (n) Area (m ²) Opt (m) Area (m ²) 0.000 300.0 1.000 300.0 Depth (m) Area (m ²) Opt (m) Area (m ²) Opt (m) Area (m ²) Opt (m) Area (m ²) Depth (m) Area (m ²) Opt (m) Area (m ²) Opt (m) Area (m ²) Depth (m) Area (m ²) Opt (m) Area (m ²) Depth (m) Area (m ²) Opt (m) Area (m ²) Depth (m) Flow (l/s) Depth (m) Flow (l/s) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Date 26/01/2022 14:09 Designed by KGyba Designed by KGyba File OUTFALL 4B - 5.5 L_S (W Checked by Checked by Innovyze Source Control 2019.1 Model Details Source Control 2019.1 Model Details Storage is Online Cover Level (m) 10.000 Tank or Pond Structure Invert Level (m) 8.000 Depth (m) Area (m ²) Depth (m) Area (m ²) Depth (m) Area (m ²) 0.000 300.0 1.000 300.0 1.100 0.0 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0110-5500-1000-5500 Design Head (m) 1.000 Design Head (m) 1.000 Design Head (m) 5.5 Flush-Flow Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 150 Suggested Mahole Diameter (mm) 1200 Control Points Head (m) Flow (l/s) Design Point (Calculated) 1.000 5.5 Kick-Flo@ 0.645 4.5 Mean Flow over Head Range		se dances	•				
File OUTFALL 4B - 5.5 L S (W Checked by Innovyze Source Control 2019.1 Model Details Storage is Online Cover Level (m) 10.000 Tank or Pond Structure Invert Level (m) 8.000 Depth (m) Area (m') Depth (m) Area (m') Depth (m) Area (m') Depth (m) Area (m') 0.000 300.0 1.000 300.0 1.100 0.0 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0110-5500-1000-5500 Design Head (m) 1.000 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0110-5500-1000-5500 Design Flow (1/s) Design Flow (1/s) Invert Level (m) Design Flow (1/s) Design Flow (1/s) Design Flow (1/s) Invert Level (m) Invert Level (m) Diameter (mm) Diameter (mm) Invert Level (m) Design Flow (L/s) Design Flow (L/s) Design Flow (L/s) </td <td></td> <td>0.9</td> <td>Design</td> <td>ad by KG</td> <td>wha</td> <td></td> <td></td>		0.9	Design	ad by KG	wha		
Innovyze Source Control 2019.1 Model Details Storage is Chline Cover Level (m) 10.000 Tank or Pond Structure Invert Level (m) 8.000 Depth (m) Area (m*) Design Flow (l/s) Design Flow (l/s) Design Flow (l/s) Diameter (mm) Diameter (mm) Suggested Manhole Diameter (mm) Suggested Manhole Diameter (mm) Suggested Manhole Diameter (mm) Design Point (Calculated) Numer Flow over Head Range - Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s)			_	-	ryba		Drainage
Model Details Storage is Online Cover Level (m) 10.000 Tank or Pond Structure Invert Level (m) 8.000 Depth (m) Area (m') 0.000 300.0 1.000 Depth (m) Area (m') Design Head (m) 1.000 Design Flow (1/a) Sump Available Yes Diameter (mm) 10 Invert Level (m) Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (l/s) Design Flow (Calculated) 1.000 5.5 Flush-Flow 0.298 Suggested Manhole Diameter (mm) 1200							
Journey Level (m) 10.000 Storage is Online Cover Level (m) 10.000 Tank or Pond Structure Invert Level (m) 8.000 Depth (m) Area (n²) 0.000 Journet Level (m) Area (n²) Diameter (mm) Surgested Manhole Diameter (mm) Invert Level (m) Surgested Manhole Diameter (mm) Lesign Foint (Calculated) Surgested Manhole Diameter (mm) Lesign Foint (Calculated) Note of Colspan="2">Surgested Manhole Diameter (mm) Lesign Foint (Calculated) Surgested Manhole Diameter (mm) Legistree Fold (m) Flow (l/s) Depth (colspan="2">Control device other than a Marea Flow cover Head Range - 4.8	тшолдае		Source	CONCLOI	2019.1		
Tank or Pond Structure Invert Level (m) 8.000 Depth (m) Area (m²) Depth (m) Area (m²) Opth (m) Area (m²) Depth (m) Area (m²) 0.000 300.0 1.000 300.0 1.100 0.0 High (m) Area (m²) Depth (m) Area (m²) 0.000 300.0 1.000 300.0 1.100 0.0 High Calculated Objective Mnimise upstream storage Application Surface Sump Available Yes Diameter (mm) 110 Invert Level (m) 1.000 Starface Suggested Manhole Diameter (mm) 1200 100 Mort of Point Catculated) 1.000 Suggested Manhole Diameter (mm) 1200 Diameter (am) 100 Control Point Read (m) Flow (l/s) Design Point (Catculated) 1.000 5.5 Flush-Flow 0.208 5.5 Man Flow over Head Rang - - An Flow over Head Range Control Point (ls) <td></td> <td></td> <td>Model De</td> <td>etails</td> <td></td> <td></td> <td></td>			Model De	etails			
Invert Level (m) 8.000 Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 300.0 1.000 300.0 1.100 0.0 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0110-5500-1000-5500 Design Head (m) 1.000 Design Flow (1/s) 5.5 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 110 Invert Level (m) 100 Stagested Manhole Diameter (mm) 1200 Cotrol Points Head (m) Flow (1/s) Stagested Manhole Diameter (mm) 1200 Design Point (Calculated) 1.000 5.5 Flush-Flo [®] 0.298 5.5 Mean Flow over Head Range - 4.8 4.8 The hydrological calculations have been based on the Head/Discharge relationship for the hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum as specified. Should another type of protection will be invalidated Pepth (m) Flow (1/s)Pepth (m) Flow (1/s)Pepth (m) Flow (1/s) Opt (m)Flow (1/s)Pepth (m) Flow (1/s) 0.1003.6 </td <td></td> <td>Storage is</td> <td>Online Cove</td> <td>er Level</td> <td>(m) 10.000</td> <td></td> <td></td>		Storage is	Online Cove	er Level	(m) 10.000		
Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 300.0 1.000 300.0 1.100 0.0 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0110-5500-1000-5500 Design Flow (1/s) 5.5 Flush-Flo* Calculated 0bjective Minimise upstream storage Application Surface Sump Available Yes 110 110 100 Invert level (m) 110 100 150 Suggested Mahole Diameter (mm) 1200 5.5 Flush-Flo* Control Points Head (m) Flow (1/s) 5.5 Flush-Flo* Design Point (Calculated) 1.000 5.5 Flush-Flo* 0.298 Kick-Flo@ 0.645 4.5 5 Mean Flow over Head Range - Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated 1.000 5.5 1.000 0.100 3.8 1.200 6.0 3.000 9.2 7.000 13.8 0.200 5.4 1.400 6.4 3.500		Tan	k or Pond	Structu	ire		
0.000 300.0 1.000 300.0 1.100 0.0 Hydro-Brake® Optimum Outflow Control Unit Reference MD-SHE-0110-5500-1000-5500 Design Head (m) 1.000 Design Flow (1/s) 5.5 Flush-Flow Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 110 Invert Level (m) 8.000 Minimum Outlete Pipe Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.000 5.5 Flush-Flow 0.298 5.5 Kick-Flo® 0.645 4.5 Mean Flow over Head Range - 4.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) <tht< td=""><td></td><td>I</td><td>nvert Level</td><td>(m) 8.00</td><td>0</td><td></td><td></td></tht<>		I	nvert Level	(m) 8.00	0		
Hydro-Brake® Optimum Outflow Control Unit Reference MD-SHE-0110-5500-1000-5500 Design Head (m) Lossing Head (m) Design Head (m) Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) Diameter (mm) Noncolspan="2">Control Points Head (m) Flow (l/s) Design Point (Calculated) Noncolspan="2">Ontrol Points Head (m) Flow (l/s) Design Point (Calculated) Diserser Colspan="2">Control Points Design Point (Calculated) Los Flow Main Flow over Head Range - Associations have been based on the Head/Discharge relationship for th Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be Invert Level (n) Flow (l/s) Depth (n) Flow (l/s) Depth (n) Flow (l/s) Design Point (Calculated) Sump Flow Association have bee	Depth (r	n) Area (m²)	Depth (m) A	rea (m²)	Depth (m)	Area (m²)	
Unit Reference MD-SHE-0110-5500-1000-5500 Design Head (m) 1.000 1.000 Design Flow (1/s) 5.5 Flush-Flow Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 110 Invert Level (m) 8.000 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.000 5.5 Kick-Flow 0.298 5.5 Kick-Flow 0.298 5.5 Kick-Flow 0.645 4.5 Mean Flow over Head Range - 4.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) 0.100 3.8 1.200 6.0 3.000 9.9 7.500 13.8	0.00	300.0	1.000	300.0	1.100	0.0	
Design Head (m) 1.000 Design Flow (1/s) 5.5 Flush-Flo [™] Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 110 Invert Level (m) 8.000 Minimum Outlet Pipe Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.000 5.5 Flush-Flo [™] 0.298 5.5 Kick-Flo [®] 0.298 5.5 Mean Flow over Head Range - 4.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Pepth (m) Flow (1/s) 0.100 3.8 1.200 6.0 3.000 9.2 7.000 13.8 0.200 5.4 1.400 6.4 3.500 9.9 7.500 14.2 0.300 5.5 1.600 6.8 4.000 10.5 8.000 14.7 </td <td></td> <td>Hydro-Brak</td> <td>e® Optimu</td> <td>m Outflo</td> <td>ow Contro</td> <td>1</td> <td></td>		Hydro-Brak	e® Optimu	m Outflo	ow Contro	1	
Design Head (m) 1.000 Design Flow (1/s) 5.5 Flush-Flo [™] Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 110 Invert Level (m) 8.000 Minimum Outlet Pipe Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.000 5.5 Flush-Flo [™] 0.298 5.5 Kick-Flo [®] 0.298 5.5 Mean Flow over Head Range - 4.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Pepth (m) Flow (1/s) 0.100 3.8 1.200 6.0 3.000 9.2 7.000 13.8 0.200 5.4 1.400 6.4 3.500 9.9 7.500 14.2 0.300 5.5 1.600 6.8 4.000 10.5 8.000 14.7 </td <td></td> <td>U</td> <td>nit Referenc</td> <td>ce MD-SHE</td> <td>-0110-5500-</td> <td>-1000-5500</td> <td></td>		U	nit Referenc	ce MD-SHE	-0110-5500-	-1000-5500	
Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 110 Invert Level (m) 8.000 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (l/s) Design Point (Calculated) 1.000 5.5 Flush-Flo ^m 0.298 5.5 Kick-Flo® 0.645 4.5 Mean Flow over Head Range - 4.8 The hydrological calculations have been based on the Head/Discharge relationship for th Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be 0.100 3.8 1.200 6.0 3.000 9.2 7.000 13.8 0.200 5.4 1.400 6.4 3.500 9.9 7.500 14.2 0.300 5.2 1.600 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Objective Minimise upstream storage Application Surface Surp Available Sump Available Yes Diameter (mm) 110 Invert Level (m) 8.000 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (l/s) Design Point (Calculated) 1.000 5.5 Flush-Flo ^m 0.298 5.5 Kick-Flo@ 0.645 4.5 Mean Flow over Head Range - 4.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (l/s) Pepth (m) Flow (l/s) Pepth (m) Flow (l/s) Pepth (m) Flow (l/s) 0.100 3.8 1.200 6.0 3.000 9.2 7.000 13.8 0.200 5.4 1.400 6.4 3.500 9.9 7.500 14.2 0.300 5.5 1.600 6.8 4.000 10.5 8.		Desid	-				
Application Surface Sump Available Yes Diameter (mm) 110 Invert Level (m) 8.000 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.000 5.5 Flush-Flor* 0.228 5.5 Kick-Flo@ 0.645 4.5 Mean Flow over Head Range - 4.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) 0.100 3.8 1.200 6.0 3.000 9.2 7.000 13.8 0.200 5.4 1.400 6.4 3.500 9.9 7.500 14.2 0.300 5.5 1.600 6.8 4.000 10.5 8.000 14.7 0.400 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Sump Available Yes Diameter (mm) 110 Invert Level (m) 8.000 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.000 5.5 Flush-Flo™ 0.298 5.5 Kick-Flo® 0.645 4.5 Mean Flow over Head Range - 4.8 The hydrological calculations have been based on the Head/Discharge relationship for th Hydro-Brake® Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 3.8 1.200 6.0 3.000 9.2 7.000 13.8 0.200 5.4 1.400 6.4 3.500 9.9 7.500 14.2 0.300 5.5 1.600 6.8 4.000 10.5 8.000 14.7 0.400 5.4 1.800 7.2 4.500 11.2 8.500					ise upstrea		
Invert Level (m) 8.000 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (l/s) Design Point (Calculated) 1.000 5.5 Flush-Flo™ 0.298 5.5 Kick-Flo® 0.645 4.5 Mean Flow over Head Range - 4.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (l/s) Pepth (m) Flow (l/s) Pepth (m) Flow (l/s) Pepth (m) Flow (l/s) 0.100 3.8 1.200 6.0 3.000 9.2 7.000 13.8 0.200 5.4 1.400 6.4 3.500 9.9 7.500 14.2 0.300 5.5 1.600 6.8 4.000 10.5 8.000 14.7 0.400 5.4 1.800 7.2 4.500 11.2 8.500 15.1 0.500 5.2 2.000 7.6 5.000 11.7 9.000		Si					
Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.000 5.5 Flush-Flo™ 0.298 5.5 Kick-Flo® 0.645 4.5 Mean Flow over Head Range - 4.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) 0.100 3.8 1.200 6.0 3.000 9.2 7.000 13.8 0.200 5.4 1.400 6.4 3.500 9.9 7.500 14.2 0.300 5.5 1.600 6.8 4.000 10.5 8.000 14.7 0.400 5.4 1.800 7.2 4.500 11.2 8.500 15.1 0.500 5.2 2.000 7.6 5.000 11.7 9.000 15.5 <tr< td=""><td></td><td>1</td><td>Diameter (mr</td><td>n)</td><td></td><td>110</td><td></td></tr<>		1	Diameter (mr	n)		110	
Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (l/s) Design Point (Calculated) 1.000 5.5 Flush-Flo ^m 0.298 5.5 Kick-Flo® 0.645 4.5 Mean Flow over Head Range - 4.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) 0.100 3.8 1.200 6.0 3.000 9.2 7.000 13.8 0.200 5.4 1.400 6.4 3.500 9.9 7.500 14.2 0.300 5.5 1.600 6.8 4.000 10.5 8.000 14.7 0.400 5.4 1.600 6.8 4.000 10.5 8.000 14.7 0.500 5.2 2.000 7.6 5.000 11.7 9.000 15.5							
Design Point (Calculated) 1.000 5.5 Flush-Flo™ 0.298 5.5 Kick-Flo® 0.645 4.5 Mean Flow over Head Range - 4.8 The hydrological calculations have been based on the Head/Discharge relationship for th Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake® Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 3.8 1.200 6.0 3.000 9.2 7.000 13.8 0.200 5.4 1.400 6.4 3.500 9.9 7.500 14.2 0.300 5.5 1.600 6.8 4.000 10.5 8.000 14.7 0.400 5.4 1.800 7.2 4.500 11.2 8.500 15.1 0.500 5.2 2.000 7.6 5.000 11.7 9.000 15.5 0.600 4.8 2.200 7.9 5.500 12.3 9.500 15.9 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>		-					
Flush-Flor 0.298 5.5 Kick-Flo® 0.645 4.5 Mean Flow over Head Range - 4.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 3.8 1.200 6.0 3.000 9.2 7.000 13.8 0.200 5.4 1.400 6.4 3.500 9.9 7.500 14.2 0.300 5.5 1.600 6.8 4.000 10.5 8.000 14.7 0.400 5.4 1.800 7.2 4.500 11.2 8.500 15.1 0.500 5.2 2.000 7.6 5.000 11.7 9.000 15.5 0.600 4.8 2.200 7.9 5.500 12.3 9.500 15.9 0.800 5.0 2.400 8.3 6.000 12.8 15.9		Control	Points	Head (m	n) Flow (1/	s)	
Kick-Flo® 0.645 4.5 Mean Flow over Head Range - 4.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 3.8 1.200 6.0 3.000 9.2 7.000 13.8 0.200 5.4 1.400 6.4 3.500 9.9 7.500 14.2 0.300 5.5 1.600 6.8 4.000 10.5 8.000 14.7 0.400 5.4 1.800 7.2 4.500 11.2 8.500 15.1 0.500 5.2 2.000 7.6 5.000 11.7 9.000 15.5 0.600 4.8 2.200 7.9 5.500 12.3 9.500 15.9 0.800 5.0 2.400 8.3 6.000 12.8 9.500 15.9		Design Point				.5	
Mean Flow over Head Range - 4.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s)							
The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 3.8 1.200 6.0 3.000 9.2 7.000 13.8 0.200 5.4 1.400 6.4 3.500 9.9 7.500 14.2 0.300 5.5 1.600 6.8 4.000 10.5 8.000 14.7 0.400 5.4 1.800 7.2 4.500 11.2 8.500 15.1 0.500 5.2 2.000 7.6 5.000 11.7 9.000 15.5 0.600 4.8 2.200 7.9 5.500 12.3 9.500 15.9 0.800 5.0 2.400 8.3 6.000 12.8 9.500 15.9		Maan Flam and					
Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 3.8 1.200 6.0 3.000 9.2 7.000 13.8 0.200 5.4 1.400 6.4 3.500 9.9 7.500 14.2 0.300 5.5 1.600 6.8 4.000 10.5 8.000 14.7 0.400 5.4 1.800 7.2 4.500 11.2 8.500 15.1 0.500 5.2 2.000 7.6 5.000 11.7 9.000 15.5 0.600 4.8 2.200 7.9 5.500 12.3 9.500 15.9 0.800 5.0 2.400 8.3 6.000 12.8 9.500 15.9		Mean Flow ove	r Head Kang	е	- 4	.8	
0.1003.81.2006.03.0009.27.00013.80.2005.41.4006.43.5009.97.50014.20.3005.51.6006.84.00010.58.00014.70.4005.41.8007.24.50011.28.50015.10.5005.22.0007.65.00011.79.00015.50.6004.82.2007.95.50012.39.50015.90.8005.02.4008.36.00012.815.9	Hydro-Brake® Optimum Hydro-Brake Optimum® invalidated	as specified be utilised	. Should an then these s	nother typ storage re	pe of contr outing calc	col device c culations wi	other than a ll be
0.2005.41.4006.43.5009.97.50014.20.3005.51.6006.84.00010.58.00014.70.4005.41.8007.24.50011.28.50015.10.5005.22.0007.65.00011.79.00015.50.6004.82.2007.95.50012.39.50015.90.8005.02.4008.36.00012.815.9							
0.3005.51.6006.84.00010.58.00014.70.4005.41.8007.24.50011.28.50015.10.5005.22.0007.65.00011.79.00015.50.6004.82.2007.95.50012.39.50015.90.8005.02.4008.36.00012.85.00012.8							
0.4005.41.8007.24.50011.28.50015.10.5005.22.0007.65.00011.79.00015.50.6004.82.2007.95.50012.39.50015.90.8005.02.4008.36.00012.85.00012.8							
0.5005.22.0007.65.00011.79.00015.50.6004.82.2007.95.50012.39.50015.90.8005.02.4008.36.00012.89.50015.9							
0.800 5.0 2.400 8.3 6.000 12.8							
							15.9
1.000 5.5 2.000 6.6 6.500 13.3							
		1 2.000				1	
©1982-2019 Innovyze			1000 0010	T			

Jubb Consulting Engineers Ltd (E	Bristol)	Page 5
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:09	Designed by KGyba	Drainage
File OUTFALL 4B - 5.5 L_S (W	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(1/s)	(mins)	(1/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)
2	0.0	102	0.0	202	1.3	302	2.2	402	2.2	502	2.0
4	0.0	104	0.0	204	1.4	304	2.2	404	2.2	504	2.0
6	0.0	106	0.0	206	1.4	306	2.2	406	2.2	506	2.0
8	0.0	108	0.0	208	1.5	308	2.2	408	2.2	508	2.0
10	0.0	110	0.0	210	1.5	310	2.2	410	2.2	510	2.0
12	0.0	112	0.0	212	1.6	312	2.2	412	2.2	512	2.0
14	0.0	114	0.0	214	1.6	314	2.2	414	2.2	514	2.0
16	0.0	116	0.0	216	1.6	316	2.2	416	2.2	516	2.0
18	0.0	118	0.0	218	1.7	318	2.2	418	2.2	518	2.0
20	0.0	120	0.0	220	1.7	320	2.2	420	2.2	520	2.0
22	0.0	122	0.1	222	1.8	322	2.2	422	2.2	522	2.0
24	0.0	124	0.1	224	1.8	324	2.2	424	2.2	524	2.0
26	0.0	126	0.1	226	1.8	326	2.2	426	2.2	526	2.0
28	0.0	128	0.1	228	1.9	328	2.2	428	2.2	528	2.0
30	0.0	130	0.1	230	1.9	330	2.2	430	2.2	530	2.0
32	0.0	132	0.1	232	1.9	332	2.2	432	2.2	532	2.0
34	0.0	134	0.1	234	2.0	334	2.2	434	2.2	534	2.0
36	0.0	136	0.1	236	2.0	336	2.2	436	2.2	536	1.9
38	0.0	138	0.1	238	2.0	338	2.2	438	2.2	538	1.9
40	0.0	140	0.1	240	2.0	340	2.2	440	2.2	540	1.9
42	0.0	142	0.2	242	2.1	342	2.2	442	2.2	542	1.9
44	0.0	144	0.2	244	2.1	344	2.2	444	2.2	544	1.9
46	0.0	146	0.2	246	2.1	346	2.2	446	2.2	546	1.9
48	0.0	148	0.2	248	2.1	348	2.2	448	2.2	548	1.9
50	0.0	150	0.2	250	2.1	350	2.2	450	2.2	550	1.9
52	0.0	152	0.3	252	2.2	352	2.2	452	2.2	552	1.9
54	0.0	154	0.3	254	2.2	354	2.2	454	2.2	554	1.9
56	0.0	156	0.3	256	2.2	356	2.2	456	2.2	556	1.9
58	0.0	158	0.3	258	2.2	358	2.2	458	2.2	558	1.9
60	0.0	160	0.4	260	2.2	360	2.2	460	2.2	560	1.9
62	0.0	162	0.4	262	2.2	362	2.2	462	2.2	562	1.9
64	0.0	164	0.4	264	2.2	364	2.2	464	2.2	564	1.9
66	0.0	166	0.5	266	2.2	366	2.2	466	2.1	566	1.8
68	0.0	168	0.5	268	2.2	368	2.2	468	2.1	568	1.8
70	0.0	170	0.5	270	2.2	370	2.2	470	2.1	570	1.8
72	0.0	172	0.6	272	2.2	372	2.2	472	2.1	572	1.8
74	0.0	174	0.6	274	2.2	374	2.2	474	2.1	574	1.8
76	0.0	176	0.7	276	2.2	376	2.2	476	2.1	576	1.8
78	0.0	178	0.7	278	2.2	378	2.2	478	2.1	578	1.8
80	0.0	180	0.8	280	2.2	380	2.2	480	2.1	580	1.8
82	0.0	182	0.8	282	2.2	382	2.2	482	2.1	582	1.8
84	0.0	184	0.9	284	2.2	384	2.2	484	2.1	584	1.8
86	0.0	186	0.9	286	2.2	386	2.2	486	2.1	586	1.8
88	0.0	188	1.0	288	2.2	388	2.2	488	2.1	588	1.8
90	0.0	190	1.0	290	2.2	390	2.2	490	2.1	590	1.8
92	0.0	192	1.1	292	2.2	392	2.2	492	2.1	592	1.8
94	0.0	194	1.1	294	2.2	394	2.2	494	2.1	594	1.8
96	0.0	196	1.2	296	2.2	396	2.2	496	2.1	596	1.8
98	0.0	198	1.2	298	2.2	398	2.2	498	2.1	598	1.8
100	0.0	200	1.3	300	2.2	400	2.2	500	2.1	600	1.8

Jubb Consulting Engineers Ltd (B	ristol)	Page 6
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:09	Designed by KGyba	Drainage
File OUTFALL 4B - 5.5 L_S (W	Checked by	Diamaye
Innovyze	Source Control 2019.1	

Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow
(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)	(mins)	(l/s)
602	1.8	702	1.4	802	1.2	902	1.0	1002	0.8	1102	0.7
604	1.0	702	1.4	802	1.2	902 904	1.0	1002	0.8	1102	0.7
604 606	1.7	704		806	1.2	904 906	1.0	1004	0.8	1104	0.6
608	1.7	708	1.4 1.4	808	1.2	908	1.0	1008	0.8	1108	0.6
610	1.7	710	1.4	810	1.2	910	1.0	1010 1012	0.8	1110	0.6
612	1.7	712	1.4	812	1.2	912	1.0 0.9		0.8	1112	0.6
614	1.7	714	1.4	814	1.2	914		1014	0.8	1114	0.6
616	1.7	716	1.4	816	1.2	916	0.9 0.9	1016	0.8	1116 1118	0.6
618	1.7	718	1.4	818	1.1	918		1018	0.8		0.6
620	1.7	720	1.4	820	1.1	920	0.9 0.9	1020	0.8	1120	0.6
622	1.7	722	1.4	822	1.1	922		1022	0.8	1122	0.6
624	1.7	724	1.4	824	1.1	924	0.9	1024	0.8	1124	0.6
626	1.7	726	1.4	826	1.1	926	0.9	1026	0.8	1126	0.6
628	1.7	728	1.4	828	1.1	928	0.9	1028	0.8	1128	0.6
630	1.7	730	1.4	830	1.1	930	0.9	1030	0.8	1130	0.6
632	1.6	732	1.4	832	1.1	932	0.9	1032	0.8	1132	0.6
634	1.6	734	1.4	834	1.1	934	0.9	1034	0.7	1134	0.6
636	1.6	736	1.4	836	1.1	936	0.9	1036	0.7	1136	0.6
638	1.6	738	1.3	838	1.1	938	0.9	1038	0.7	1138	0.6
640	1.6	740	1.3	840	1.1	940	0.9	1040	0.7	1140	0.6
642	1.6	742	1.3	842	1.1	942	0.9	1042	0.7	1142	0.6
644	1.6	744	1.3	844	1.1	944	0.9	1044	0.7	1144	0.6
646	1.6	746	1.3	846	1.1	946	0.9	1046	0.7	1146	0.6
648	1.6	748	1.3	848	1.1	948	0.9	1048	0.7	1148	0.6
650	1.6	750	1.3	850	1.1	950	0.9	1050	0.7	1150	0.6
652	1.6	752	1.3	852	1.1	952	0.9	1052	0.7	1152	0.6
654	1.6	754	1.3	854	1.1	954	0.9	1054	0.7	1154	0.6
656	1.6	756	1.3	856	1.1	956	0.9	1056	0.7	1156	0.6
658	1.6	758	1.3	858	1.1	958	0.9	1058	0.7	1158	0.6
660	1.6	760	1.3	860	1.1	960	0.9	1060	0.7	1160	0.6
662	1.6	762	1.3	862	1.1	962	0.9	1062	0.7	1162	0.6
664	1.6	764	1.3	864	1.0	964	0.9	1064	0.7	1164	0.6
666	1.6	766	1.3	866	1.0	966	0.9	1066	0.7	1166	0.6
668	1.5	768	1.3	868	1.0	968	0.9	1068	0.7	1168	0.6
670	1.5	770	1.3	870	1.0	970	0.8	1070	0.7	1170	0.6
672	1.5	772	1.3	872	1.0	972	0.8	1072	0.7	1172	0.6
674	1.5	774	1.3	874	1.0	974	0.8	1074	0.7	1174	0.6
676 679	1.5	776	1.2	876	1.0	976	0.8	1076	0.7	1176	0.6
678	1.5	778 780	1.2	878 880	1.0	978 980	0.8	1078	0.7 0.7	1178	0.6
680	1.5		1.2		1.0		0.8	1080		1180	0.6
682	1.5	782	1.2	882	1.0	982	0.8	1082	0.7	1182	0.6
684	1.5	784	1.2	884	1.0	984	0.8	1084	0.7	1184	0.6
686	1.5	786	1.2	886	1.0	986	0.8	1086	0.7	1186	0.6
688	1.5	788	1.2	888	1.0	988	0.8	1088	0.7	1188	0.6
690	1.5	790	1.2	890	1.0	990	0.8	1090	0.7	1190	0.6
692	1.5	792	1.2	892	1.0	992	0.8	1092	0.7	1192	0.6
694	1.5	794	1.2	894	1.0	994	0.8	1094	0.7	1194	0.6
696	1.5	796	1.2	896	1.0	996	0.8	1096	0.7		0.6
698 700	1.5	798	1.2	898	1.0	998	0.8	1098	0.7		0.6
700	1.5	800	1.2	900	1.0	1000	0.8	1100	0.7	1200	0.6

Jubb Consulting Engineers Ltd (B	ristol)	Page 7
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:09	Designed by KGyba	Drainage
File OUTFALL 4B - 5.5 L_S (W	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(l/s)										
1202	0.5	1302	0.5	1402	0.4	1502	0.3	1602	0.3	1702	0.3
1204	0.5	1304	0.5	1404	0.4	1504	0.3	1604	0.3	1704	0.3
1206	0.5	1306	0.5	1406	0.4	1506	0.3	1606	0.3	1706	0.3
1208	0.5	1308	0.5	1408	0.4	1508	0.3	1608	0.3	1708	0.3
1210	0.5	1310	0.5	1410	0.4	1510	0.3	1610	0.3	1710	0.3
1212	0.5	1312	0.5	1412	0.4	1512	0.3	1612	0.3	1712	0.3
1214	0.5	1314	0.5	1414	0.4	1514	0.3	1614	0.3	1714	0.3
1216	0.5	1316	0.5	1416	0.4	1516	0.3	1616	0.3	1716	0.3
1218	0.5	1318	0.4	1418	0.4	1518	0.3	1618	0.3	1718	0.3
1220	0.5	1320	0.4	1420	0.4	1520	0.3	1620	0.3	1720	0.3
1222	0.5	1322	0.4	1422	0.4	1522	0.3	1622	0.3	1722	0.3
1224	0.5	1324	0.4	1424	0.4	1524	0.3	1624	0.3	1724	0.3
1226	0.5	1326	0.4	1426	0.4	1526	0.3	1626	0.3	1726	0.3
1228	0.5	1328	0.4	1428	0.4	1528	0.3	1628	0.3	1728	0.3
1230	0.5	1330	0.4	1430	0.4	1530	0.3	1630	0.3	1730	0.3
1232	0.5	1332	0.4	1432	0.4	1532	0.3	1632	0.3	1732	0.3
1234	0.5	1334	0.4	1434	0.4	1534	0.3	1634	0.3	1734	0.2
1236	0.5	1336	0.4	1436	0.4	1536	0.3	1636	0.3	1736	0.2
1238	0.5	1338	0.4	1438	0.4	1538	0.3	1638	0.3	1738	0.2
1240	0.5	1340	0.4	1440	0.4	1540	0.3	1640	0.3	1740	0.2
1242	0.5	1342	0.4	1442	0.4	1542	0.3	1642	0.3	1742	0.2
1244	0.5	1344	0.4	1444	0.4	1544	0.3	1644	0.3	1744	0.2
1246	0.5	1346	0.4	1446	0.4	1546	0.3	1646	0.3	1746	0.2
1248	0.5	1348	0.4	1448	0.4	1548	0.3	1648	0.3	1748	0.2
1250	0.5	1350	0.4	1450	0.4	1550	0.3	1650	0.3	1750	0.2
1252	0.5	1352	0.4	1452	0.4	1552	0.3	1652	0.3	1752	0.2
1254	0.5	1354	0.4	1454	0.4	1554	0.3	1654	0.3	1754	0.2
1256	0.5	1356	0.4	1456	0.4	1556	0.3	1656	0.3	1756	0.2
1258	0.5	1358	0.4	1458	0.4	1558	0.3	1658	0.3	1758	0.2
1260	0.5	1360	0.4	1460	0.4	1560	0.3	1660	0.3	1760	0.2
1262	0.5	1362	0.4	1462	0.4	1562	0.3	1662	0.3	1762	0.2
1264	0.5	1364	0.4	1464	0.4	1564	0.3	1664	0.3	1764	0.2
1266	0.5	1366	0.4	1466	0.4	1566	0.3	1666	0.3	1766	0.2
1268	0.5	1368	0.4	1468	0.4	1568	0.3	1668	0.3	1768	0.2
1270	0.5	1370	0.4	1470	0.4	1570	0.3	1670	0.3	1770	0.2
1272	0.5	1372	0.4	1472	0.4	1572	0.3	1672	0.3	1772	0.2
1274	0.5	1374	0.4	1474	0.4	1574	0.3	1674	0.3	1774	0.2
1276	0.5	1376	0.4	1476	0.4	1576	0.3	1676	0.3	1776	0.2
1278	0.5	1378	0.4	1478	0.4	1578	0.3	1678	0.3	1778	0.2
1280	0.5	1380	0.4	1480	0.4	1580	0.3	1680	0.3	1780	0.2
1282	0.5	1382	0.4	1482	0.4	1582	0.3	1682	0.3	1782	0.2
1284	0.5	1384	0.4	1484	0.3	1584	0.3	1684	0.3	1784	0.2
1286	0.5	1386	0.4	1486	0.3	1586	0.3	1686	0.3	1786	0.2
1288	0.5	1388	0.4	1488	0.3	1588	0.3	1688	0.3	1788	0.2
1290	0.5	1390	0.4	1490	0.3	1590	0.3	1690	0.3	1790	0.2
1292	0.5	1392	0.4	1492	0.3	1592	0.3	1692	0.3	1792	0.2
1294	0.5	1394	0.4	1494	0.3	1594	0.3	1694	0.3	1794	0.2
1296	0.5	1396	0.4	1496	0.3	1596	0.3	1696	0.3		0.2
1298	0.5	1398	0.4	1498	0.3	1598	0.3	1698	0.3		0.2
1300	0.5	1400	0.4	1500	0.3	1600	0.3	1700	0.3	1800	0.2

Jubb Consulting Engineers Ltd (B	ristol)	Page 8
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:09	Designed by KGyba	Drainage
File OUTFALL 4B - 5.5 L_S (W	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(l/s)										
1802	0.2	1902	0.2	2002	0.2	2102	0.2	2202	0.1	2302	0.1
1804	0.2	1904	0.2	2004	0.2	2104	0.2	2204	0.1	2304	0.1
1806	0.2	1906	0.2	2001	0.2	2101	0.2	2201	0.1	2306	0.1
1808	0.2	1908	0.2	2000	0.2	2100	0.2	2200	0.1	2308	0.1
1810	0.2	1908	0.2	2008	0.2	2100	0.2	2200	0.1	2300	0.1
1810	0.2	1910	0.2	2010	0.2	2110	0.2	2210	0.1	2310	0.1
1814	0.2	1912	0.2	2012	0.2	2112	0.2	2212	0.1	2312	0.1
1816	0.2	1914	0.2	2014	0.2	2114	0.2	2214		2314	0.1
1818	0.2	1918	0.2	2018	0.2	2110	0.2	2210	0.1	2318	0.1
1820	0.2	1910	0.2	2018	0.2	2110	0.2	2210	0.1	2310	0.1
1820	0.2	1920	0.2	2020	0.2	2120	0.2	2220	0.1	2320	0.1
1824	0.2	1922	0.2	2022	0.2	2122	0.2	2222	0.1	2322	0.1
1826	0.2	1926	0.2	2026	0.2	2126	0.2	2226	0.1	2326	0.1
1828	0.2	1928	0.2	2028	0.2	2128	0.2	2228	0.1	2328	0.1
1830	0.2	1930	0.2	2030	0.2	2130	0.2	2230	0.1	2330	0.1
1832	0.2	1932	0.2	2032	0.2	2132	0.2	2232	0.1	2332	0.1
1834	0.2	1934	0.2	2034	0.2	2134	0.2	2234	0.1	2334	0.1
1836	0.2	1936	0.2	2036	0.2	2136	0.2	2236	0.1	2336	0.1
1838	0.2	1938	0.2	2038	0.2	2138	0.2	2238	0.1	2338	0.1
1840	0.2	1940	0.2	2040	0.2	2140	0.2	2240	0.1	2340	0.1
1842	0.2	1942	0.2	2042	0.2	2142	0.2	2242	0.1	2342	0.1
1844	0.2	1944	0.2	2044	0.2	2144	0.2	2244	0.1	2344	0.1
1846	0.2	1946	0.2	2046	0.2	2146	0.2	2246	0.1	2346	0.1
1848	0.2	1948	0.2	2048	0.2	2148	0.2	2248	0.1	2348	0.1
1850	0.2	1950	0.2	2050	0.2	2150	0.2	2250	0.1	2350	0.1
1852	0.2	1952	0.2	2052	0.2	2152	0.2	2252	0.1	2352	0.1
1854	0.2	1954	0.2	2054	0.2	2154	0.2	2254	0.1	2354	0.1
1856	0.2	1956	0.2	2056	0.2	2156	0.2	2256	0.1	2356	0.1
1858	0.2	1958	0.2	2058	0.2	2158	0.2	2258	0.1	2358	0.1
1860	0.2	1960	0.2	2060	0.2	2160	0.2	2260	0.1	2360	0.1
1862	0.2	1962	0.2	2062	0.2	2162	0.2	2262	0.1	2362	0.1
1864	0.2	1964	0.2	2064	0.2	2164	0.2	2264	0.1	2364	0.1
1866	0.2	1966	0.2	2066	0.2	2166	0.2	2266	0.1	2366	0.1
1868	0.2	1968	0.2	2068	0.2	2168	0.2	2268	0.1	2368	0.1
1870	0.2	1970	0.2	2070	0.2	2170	0.2	2270	0.1	2370	0.1
1872	0.2	1972	0.2	2072	0.2	2172	0.2	2272	0.1	2372	0.1
1874	0.2	1974	0.2	2074	0.2	2174	0.2	2274	0.1	2374	0.1
1876	0.2	1976	0.2	2076	0.2	2176	0.2	2276	0.1	2376	0.1
1878	0.2	1978	0.2	2078	0.2	2178	0.2	2278	0.1	2378	0.1
1880	0.2	1980	0.2	2080	0.2	2180	0.2	2280	0.1	2380	0.1
1882	0.2	1982	0.2	2082	0.2	2182	0.2	2282	0.1	2382	0.1
1884	0.2	1984	0.2	2084	0.2	2184	0.2	2284	0.1	2384	0.1
1886	0.2	1986	0.2	2086	0.2	2186	0.2	2286	0.1	2386	0.1
1888	0.2	1988	0.2	2088	0.2	2188	0.2	2288	0.1	2388	0.1
1890	0.2	1990	0.2	2090	0.2	2190	0.2	2290	0.1	2390	0.1
1892	0.2	1992	0.2	2092	0.2	2192	0.2	2292	0.1	2392	0.1
1894	0.2	1994	0.2	2094	0.2	2194	0.2	2294	0.1	2394	0.1
1896	0.2	1996	0.2	2096	0.2	2196	0.2	2296	0.1		0.1
1898	0.2	1998	0.2	2098	0.2	2198	0.2	2298	0.1		0.1
1900	0.2	2000	0.2	2100	0.2	2200	0.1	2300	0.1	2400	0.1

Jubb Consulting Engineers Ltd (B	ristol)	Page 9
St James's Court, Suite B		
Ground Floor West, St James		
Bristol, BS1 3LH		Micro
Date 26/01/2022 14:09	Designed by KGyba	Drainage
File OUTFALL 4B - 5.5 L_S (W	Checked by	Diamage
Innovyze	Source Control 2019.1	

Time	Flow										
(mins)	(l/s)										
2402	0.1	2482	0.1	2562	0.1	2642	0.1	2722	0.1	2802	0.1
2404	0.1	2484	0.1	2564	0.1	2644	0.1	2724	0.1	2804	0.1
2406	0.1	2486	0.1	2566	0.1	2646	0.1	2726	0.1	2806	0.1
2408	0.1	2488	0.1	2568	0.1	2648	0.1	2728	0.1	2808	0.1
2410	0.1	2490	0.1	2570	0.1	2650	0.1	2730	0.1	2810	0.1
2412	0.1	2492	0.1	2572	0.1	2652	0.1	2732	0.1	2812	0.1
2414	0.1	2494	0.1	2574	0.1	2654	0.1	2734	0.1	2814	0.1
2416	0.1	2496	0.1	2576	0.1	2656	0.1	2736	0.1	2816	0.1
2418	0.1	2498	0.1	2578	0.1	2658	0.1	2738	0.1	2818	0.1
2420	0.1	2500	0.1	2580	0.1	2660	0.1	2740	0.1	2820	0.1
2422	0.1	2502	0.1	2582	0.1	2662	0.1	2742	0.1	2822	0.1
2424	0.1	2504	0.1	2584	0.1	2664	0.1	2744	0.1	2824	0.1
2426	0.1	2506	0.1	2586	0.1	2666	0.1	2746	0.1	2826	0.1
2428	0.1	2508	0.1	2588	0.1	2668	0.1	2748	0.1	2828	0.1
2430	0.1	2510	0.1	2590	0.1	2670	0.1	2750	0.1	2830	0.1
2432	0.1	2512	0.1	2592	0.1	2672	0.1	2752	0.1	2832	0.1
2434	0.1	2514	0.1	2594	0.1	2674	0.1	2754	0.1	2834	0.1
2436	0.1	2516	0.1	2596	0.1	2676	0.1	2756	0.1	2836	0.1
2438	0.1	2518	0.1	2598	0.1	2678	0.1	2758	0.1	2838	0.1
2440	0.1	2520	0.1	2600	0.1	2680	0.1	2760	0.1	2840	0.1
2442	0.1	2522	0.1	2602	0.1	2682	0.1	2762	0.1	2842	0.1
2444	0.1	2524	0.1	2604	0.1	2684	0.1	2764	0.1	2844	0.1
2446	0.1	2526	0.1	2606	0.1	2686	0.1	2766	0.1	2846	0.1
2448	0.1	2528	0.1	2608	0.1	2688	0.1	2768	0.1	2848	0.1
2450	0.1	2530	0.1	2610	0.1	2690	0.1	2770	0.1	2850	0.1
2452	0.1	2532	0.1	2612	0.1	2692	0.1	2772	0.1	2852	0.1
2454	0.1	2534	0.1	2614	0.1	2694	0.1	2774	0.1	2854	0.1
2456	0.1	2536	0.1	2616	0.1	2696	0.1	2776	0.1	2856	0.1
2458	0.1	2538	0.1	2618	0.1	2698	0.1	2778	0.1	2858	0.1
2460	0.1	2540	0.1	2620	0.1	2700	0.1	2780	0.1	2860	0.1
2462	0.1	2542	0.1	2622	0.1	2702	0.1	2782	0.1	2862	0.1
2464	0.1	2544	0.1	2624	0.1	2704	0.1	2784	0.1	2864	0.1
2466	0.1	2546	0.1	2626	0.1	2706	0.1	2786	0.1	2866	0.1
2468	0.1	2548	0.1	2628	0.1	2708	0.1	2788	0.1	2868	0.1
2470	0.1	2550	0.1	2630	0.1	2710	0.1	2790	0.1	2870	0.1
2472	0.1	2552	0.1	2632	0.1	2712	0.1	2792	0.1	2872	0.1
2474	0.1	2554	0.1	2634	0.1	2714	0.1	2794	0.1	2874	0.1
2476	0.1	2556	0.1	2636	0.1	2716	0.1	2796	0.1	2876	0.1
2478	0.1	2558	0.1	2638	0.1	2718	0.1	2798	0.1	2878	0.1
2480	0.1	2560	0.1	2640	0.1	2720	0.1	2800	0.1	2880	0.1

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	Ham Close, Richmond, TV	V10 - Roof A	
Prepared for:	Jubb Consulting, Winches	ter.	
Date:	07/01/2022		
ABG Project ID:	24502	Calculator version:	1.30
Prepared by:	Andrew Keer, andrew@al	ogltd.com, 07525-808700	
Notes/description:	Green roof or biodiverse	roof, with potential for free-	standing/ballasted PV panels to
	be installed, on top of the	blue roof' system (recomm	ended); and maintenance access
	only (access on roof via a	man-safe system) - TBC. Wa	rm roof/inverted roof,

construction, with zero falls - TBC.

Return period:	100 years	As supplied by Client
Allowance for Climate Change:	40 %	As supplied by Client
OS grid reference selected for FEH data:	TQ 17035 72290	
Input Parameters - Roof Information		
Total catchment area:	350 m ²	As supplied by Client
Total catchment area: Attenuation area:	350 m ² 288 m ²	As supplied by Client As supplied by Client

creative geosynthetic engineering

Allowance for Climate Change:	40 %	As supplied by	Client
OS grid reference selected for FEH data:	TQ 17035 72290		
Input Parameters - Roof Information			
Total catchment area:	350 m ²	As supplied by	Client
Attenuation area:	288 m ²	As supplied by	Client
Maximum allowable runoff:	0.6 l/s	As supplied by	Client
Output - Rainfall Calculation			
Duration	Ti	ime to Empty	Restricted Outflow (I/s)
15 mins	14 hc	ours and 0 minutes	0.4
30 mins	16 ho	urs and 30 minutes	0.4
1 hour	18 ho	urs and 50 minutes	0.5
2 hours	21 ho	urs and 20 minutes	0.5
4 hours	23 ho	urs and 10 minutes	0.6
6 hours	23 ho	urs and 20 minutes	0.6
10 hours	22 ho	urs and 30 minutes	0.5
24 hours		urs and 50 minutes	0.4

Total attenuation required: 30.9 m³ Half empty time: 8 hours and 20 minutes.

Output - Recommended Blue Re	pof System
System Name:	ABG blueroof VF HD 129mm
Description:	The blue roof depth of 129mm, includes for a 25mm reservoir board. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Additional 'tell-tale' parapet overflow outlets, may also be added by the architect.
Total attenuation capacity:	32.8 m ³
Number of Blue Roof outlets:	2

7 hours and 10 minutes

48 hours

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

0.2

Notes:

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	Ham Close, Richmo	nd, TW10 - Roof B		
Prepared for:	Jubb Consulting, Wi	inchester.		
Date:	07/01/2022			
ABG Project ID:	24502	Calculator version:	1.30	
Prepared by:	Andrew Keer, andre	ew@abgltd.com, 07525-808700)	
Notes/description:	Green roof or biodi	verse roof, with potential for fr	ee-standing/ballaster	d PV panels to
	be installed, on top	of the 'blue roof' system (reco	mmended); and mair	itenance access
	only (access on roo	f via a man-safe system) - TBC.	Warm roof/inverted	roof,

construction, with zero falls - TBC. 3 x small ASHP units - appropriate plant support method TBC with ABG, structural and M&E engineers.

Input Parameters - Rainfall Information (Floo	d Estimation Handbook 2013)	
Return period:	100 years	As supplied by Client
Allowance for Climate Change:	40 %	As supplied by Client
OS grid reference selected for FEH data:	TQ 17035 72290	
Input Parameters - Roof Information		
Total catchment area:	550 m ²	As supplied by Client
Attenuation area:	488 m ²	As supplied by Client
Maximum allowable runoff:	0.9 l/s	As supplied by Client
Output Bainfall Calculation		

creative geosynthetic engineering

OS grid reference selected for FEH data:	TQ 17035 72290		
Input Parameters - Roof Information			
Total catchment area:	550 m ²	As supplied b	y Client
Attenuation area:	488 m ²	As supplied b	y Client
Maximum allowable runoff:	0.9 l/s	As supplied b	y Client
Output - Rainfall Calculation			
Duration	Tin	ne to Empty	Restricted Outflow (I/s)
15 mins	13 hour	s and 50 minutes	0.6
30 mins	16 hour	s and 30 minutes	0.7
1 hour	18 hour	s and 40 minutes	0.7
2 hours	21 hour	s and 20 minutes	0.8
4 hours	23 hou	rs and 0 minutes	0.9
6 hours	23 hour	s and 20 minutes	0.9
10 hours	22 hour	s and 30 minutes	0.8
24 hours	16 hour	s and 40 minutes	0.7
48 hours	7 hour	s and 0 minutes	0.4

Total attenuation required: 48.8 m³ Half empty time: 7 hours and 40 minutes.

Output - Recommended Blue Roof Syste	em
System Name:	ABG blueroof VF HD 129mm
Description:	The blue roof depth of 129mm, includes for a 25mm reservoir board. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Additional 'tell-tale' parapet overflow outlets, may also be added by the architect.
Total attenuation capacity:	55.6 m ³
Number of Blue Roof outlets:	3

Notes:

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	Ham Close, Richmond, TW10 - R	oof C	
Prepared for:	Jubb Consulting, Winchester.		
Date:	07/01/2022		
ABG Project ID:	24502 Calc	ulator version:	1.30
Prepared by:	Andrew Keer, andrew@abgltd.co	om, 07525-808700	
Notes/description:	Green roof or biodiverse roof, w	ith potential for fre	e-standing/ballasted PV panels to
	be installed, on top of the 'blue	roof' system (recom	nmended); and maintenance access
	only (access on roof via a man-s	afe system) - TBC. V	Varm roof/inverted roof,

construction, with zero falls - TBC.

Blue Roof Estimat			
lue Roof Estim			
lue Roof Estim			
lue Roof Estim			
lue Roof Es			
lue Roof E			
lue Roof l	_ 1		
lue Roof			

Input Parameters - Rainfall Information (Flood Esti	mation Handbook 2013)	
Return period:	100 years	As supplied by Client
Allowance for Climate Change:	40 %	As supplied by Client
OS grid reference selected for FEH data:	TQ 17035 72290	
Input Parameters - Roof Information		
Input Parameters - Roof Information Total catchment area:	430 m ²	As supplied by Client
•	430 m ² 364 m ²	As supplied by Client As supplied by Client

Output - Rainfall Calculation		
Duration	Time to Empty	Restricted Outflow (I/s)
15 mins	13 hours and 50 minutes	0.5
30 mins	16 hours and 20 minutes	0.5
1 hour	18 hours and 40 minutes	0.6
2 hours	21 hours and 20 minutes	0.6
4 hours	23 hours and 0 minutes	0.7
6 hours	23 hours and 20 minutes	0.7
10 hours	22 hours and 30 minutes	0.7
24 hours	16 hours and 50 minutes	0.5
48 hours	7 hours and 10 minutes	0.3

Total attenuation required: 38.3 m³ Half empty time: 8 hours and 10 minutes.

Output - Recommended Blue R	oof System
System Name:	ABG blueroof VF HD 129mm
Description:	The blue roof depth of 129mm, includes for a 25mm reservoir board. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Additional 'tell-tale' parapet overflow outlets, may also be added by the architect.
Total attenuation capacity:	41.4 m ³
Number of Blue Roof outlets:	2

Notes:

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

creative geosynthetic engineering

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	Ham Close, Richmond, TW10 - Roof CC
Prepared for:	Jubb Consulting, Winchester.
Date:	07/01/2022
ABG Project ID:	24502Calculator version:1.30
Prepared by:	Andrew Keer, andrew@abgltd.com, 07525-808700
Notes/description:	Green roof or biodiverse roof, with potential for free-standing/ballasted PV panels to
	be installed, on top of the 'blue roof' system (recommended); and maintenance access
	only (access on roof via a man-safe system) - TBC. Warm roof/inverted roof,

construction, with zero falls - TBC.

Slue Roof Estimat

creative geosynthetic engineering

Input Parameters - Rainfall Information (Floo	d Estimation Handbook 2013)		
Return period:	100 years	As supplied by Client	
Allowance for Climate Change:	40 %	As supplied by Client	
OS grid reference selected for FEH data:	TQ 17035 72290		
Input Parameters - Roof Information			
Total catchment area:	370 m ²	As supplied by Client	
Attenuation area:	350 m ²	As supplied by Client	
Maximum allowable runoff:	0.6 l/s	As supplied by Client	

Duration	Time to Empty	Restricted Outflow (I/s)
15 mins	13 hours and 40 minutes	0.4
30 mins	16 hours and 20 minutes	0.4
1 hour	18 hours and 30 minutes	0.5
2 hours	21 hours and 10 minutes	0.5
4 hours	22 hours and 50 minutes	0.6
6 hours	23 hours and 10 minutes	0.6
10 hours	22 hours and 20 minutes	0.6
24 hours	16 hours and 40 minutes	0.5
48 hours	7 hours and 0 minutes	0.2

Total attenuation required:33m³Half empty time:7 hours and 0 minutes.

Output - Recommended Blue Ro	of System
System Name:	ABG blueroof VF HD 129mm
Description:	The blue roof depth of 129mm, includes for a 25mm reservoir board. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Additional 'tell-tale' parapet overflow outlets, may also be added by the architect.
Total attenuation capacity:	39.9 m ³
Number of Blue Roof outlets:	2

Notes:

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	Ham Close, Richmor	nd, TW10 - Roof D	
Prepared for:	Jubb Consulting, Wi	Jubb Consulting, Winchester.	
Date:	07/01/2022		
ABG Project ID:	24502	Calculator version:	1.30
Prepared by:	Andrew Keer, andre	w@abgltd.com, 07525-808700)
Notes/description:	Green roof or biodiv	verse roof, with potential for fr	ee-standing/ballasted PV panels to
	be installed, on top	of the 'blue roof' system (reco	mmended); and maintenance access
	only (access on roof	via a man-safe system) - TBC.	Warm roof/inverted roof,

construction, with zero falls - TBC.

		-
-		
-		
_		
-		

creative geosynthetic engineering

Input Parameters - Rainfall Information (Flood Estimation Handbook 2013) As supplied by Client Return period: 100 years Allowance for Climate Change: 40 % As supplied by Client OS grid reference selected for FEH data: TQ 17035 72290 **Input Parameters - Roof Information** Total catchment area: 525 m² As supplied by Client Attenuation area: 467 m² As supplied by Client Maximum allowable runoff: 0.8 l/s As supplied by Client **Output - Rainfall Calculation**

output Rainfair calculation		
Duration	Time to Empty	Restricted Outflow (I/s)
15 mins	15 hours and 10 minutes	0.5
30 mins	18 hours and 10 minutes	0.6
1 hour	20 hours and 40 minutes	0.6
2 hours	23 hours and 40 minutes	0.7
4 hours	25 hours and 40 minutes	0.7
6 hours	26 hours and 10 minutes	0.8
10 hours	25 hours and 30 minutes	0.7
24 hours	19 hours and 50 minutes	0.6
48 hours	10 hours and 0 minutes	0.4

Total attenuation required: 47.9 m³ Half empty time: 9 hours and 0 minutes.

Output - Recommended Blue Roof	System
System Name:	ABG blueroof VF HD 129mm
Description:	The blue roof depth of 129mm, includes for a 25mm reservoir board. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Additional 'tell-tale' parapet overflow outlets, may also be added by the architect.
Total attenuation capacity:	53.2 m ³
Number of Blue Roof outlets:	2

Notes:

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	Ham Close, Richmond, TW10 - Roof E
Prepared for:	Jubb Consulting, Winchester.
Date:	07/01/2022
ABG Project ID:	24502 Calculator version: 1.30
Prepared by:	Andrew Keer, andrew@abgltd.com, 07525-808700
Notes/description:	Green roof or biodiverse roof, with potential for free-standing/ballasted PV panels to
	be installed, on top of the 'blue roof' system (recommended); and maintenance access
	only (access on roof via a man-safe system) - TBC. Warm roof/inverted roof,

construction, with zero falls - TBC.

	8		
L			

Input Parameters - Rainfall Information (Flood Estimation Handbook 2013)						
Return period:	100 years	As supplied by Client				
Allowance for Climate Change:	40 %	As supplied by Client				
OS grid reference selected for FEH data: TQ	17035 72290					
Input Parameters - Roof Information						
Input Parameters - Roof Information Total catchment area:	435 m ²	As supplied by Client				
	435 m ² 376 m ²	As supplied by Client As supplied by Client				

Output - Rainfall Calculation		
Duration	Time to Empty	Restricted Outflow (I/s)
15 mins	14 hours and 0 minutes	0.4
30 mins	16 hours and 40 minutes	0.5
1 hour	19 hours and 0 minutes	0.6
2 hours	21 hours and 40 minutes	0.6
4 hours	23 hours and 30 minutes	0.7
6 hours	23 hours and 50 minutes	0.7
10 hours	23 hours and 0 minutes	0.7
24 hours	17 hours and 20 minutes	0.5
48 hours	7 hours and 40 minutes	0.3

Total attenuation required: 38.9 m³ Half empty time: 8 hours and 20 minutes.

Output - Recommended Blue Roc	of System
System Name:	ABG blueroof VF HD 129mm
Description:	The blue roof depth of 129mm, includes for a 25mm reservoir board. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Additional 'tell-tale' parapet overflow outlets, may also be added by the architect.
Total attenuation capacity:	42.8 m ³
Number of Blue Roof outlets:	2

Notes:

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

creative geosynthetic engineering

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	Ham Close, Richmon	d, TW10 - Roof I		
Prepared for:	Jubb Consulting, Win	Jubb Consulting, Winchester.		
Date:	07/01/2022			
ABG Project ID:	24502	Calculator version:	1.30	
Prepared by:	Andrew Keer, andrev	Andrew Keer, andrew@abgltd.com, 07525-808700		
Notes/description:	Green roof or biodiverse roof, with potential for free-standing/ballasted PV panels to			
	be installed, on top c	be installed, on top of the 'blue roof' system (recommended); and maintenance access		
	only (access on roof	only (access on roof via a man-safe system) - TBC. Warm roof/inverted roof,		

Slue Roof Estima

creative geosynthetic engineering

Input Parameters - Rainfall Information (Flood Estimation Handbook 2013)					
100 years	As supplied by Client				
40 %	As supplied by Client				
TQ 17035 72290					
435 m ²	As supplied by Client				
376 m ²	As supplied by Client				
0.7 l/s	As supplied by Client				
	100 years 40 % TQ 17035 72290 435 m ² 376 m ²	100 yearsAs supplied by Client40 %As supplied by ClientTQ 17035 72290435 m²As supplied by Client376 m²As supplied by Client			

construction, with zero falls - TBC.

Duration	Time to Empty	Restricted Outflow (I/s)
15 mins	14 hours and 0 minutes	0.4
30 mins	16 hours and 40 minutes	0.5
1 hour	19 hours and 0 minutes	0.6
2 hours	21 hours and 40 minutes	0.6
4 hours	23 hours and 30 minutes	0.7
6 hours	23 hours and 50 minutes	0.7
10 hours	23 hours and 0 minutes	0.7
24 hours	17 hours and 20 minutes	0.5
48 hours	7 hours and 40 minutes	0.3

Total attenuation required: 38.9 m³ Half empty time: 8 hours and 20 minutes.

Output - Recommended Blue Roo	f System
System Name:	ABG blueroof VF HD 129mm
Description:	The blue roof depth of 129mm, includes for a 25mm reservoir board. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Additional 'tell-tale' parapet overflow outlets, may also be added by the architect.
Total attenuation capacity:	42.8 m ³
Number of Blue Roof outlets:	2

Notes:

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	Ham Close, Richmo	Ham Close, Richmond, TW10 - Roof M		
Prepared for:	Jubb Consulting, W	Jubb Consulting, Winchester.		
Date:	07/01/2022			
ABG Project ID:	24502	Calculator version:	1.30	
Prepared by:	Andrew Keer, andr	rew@abgltd.com, 07525-808700		
Notes/description:	Green roof or biod	Green roof or biodiverse roof, with potential for free-standing/ballasted PV panels to		
	be installed, on to	be installed, on top of the 'blue roof' system (recommended); and maintenance access		
	only (access on roo	only (access on roof via a man-safe system) - TBC. Warm roof/inverted roof,		

construction, with zero falls - TBC. 3 x larger ASHP units - appropriate plant support method TBC with ABG, structural and M&E engineers.

15 hours and 0 minutes

5 hours and 40 minutes

Input Parameters - Rainfall Information (Flood Estimation Handbook 2013)				
Return period:	100 years	As supplied by Client		
Allowance for Climate Change:	40 %	As supplied by Client		
OS grid reference selected for FEH data:	TQ 17035 72290			
Input Parameters - Roof Information				
Total catchment area:	600 m ²	As supplied by Client		
Attenuation area:	520 m ²	As supplied by Client		
Maximum allowable runoff:	1.0 l/s	As supplied by Client		

slue Roof Estimat		
oof Estim:		
oof Estim:		
loof		
slue Roof		
slue Roof		

creative geosynthetic engineering

Allowance for Climate Change:	40 %	As supplied by	/ Client
OS grid reference selected for FEH data:	TQ 17035 72290		
Input Parameters - Roof Information			
Total catchment area:	600 m ²	As supplied by	/ Client
Attenuation area:	520 m ²	As supplied by	/ Client
Maximum allowable runoff:	1.0 l/s	As supplied by	v Client
Output - Rainfall Calculation			
Duration	Ti	me to Empty	Restricted Outflow (I/s)
15 mins	12 hou	irs and 50 minutes	0.7
30 mins	15 hou	irs and 20 minutes	0.8
1 hour	17 hou	irs and 30 minutes	0.8
2 hours	19 hou	irs and 50 minutes	0.9
4 hours	21	irs and 30 minutes	1.0
4 110415	21 NOL	is and 50 minutes	1.0
6 hours		irs and 40 minutes	1.0

Total attenuation required: 52.7 m³ Half empty time: 7 hours and 20 minutes.

Output - Recommended Blue Roof System			
System Name:	ABG blueroof VF HD 129mm		
Description:	The blue roof depth of 129mm, includes for a 25mm reservoir board. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Additional 'tell-tale' parapet overflow outlets, may also be added by the architect.		
Total attenuation capacity:	59.2 m ³		
Number of Blue Roof outlets:	3		

Notes:

24 hours

48 hours

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

0.8

0.4

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	Ham Close, Richmond, TW	/10 - Roof N	
Prepared for:	Jubb Consulting, Winchest	er.	
Date:	07/01/2022		
ABG Project ID:	24502	Calculator version:	1.30
Prepared by:	Andrew Keer, andrew@ab	gltd.com, 07525-808700	
Notes/description:	Green roof or biodiverse r	oof, with potential for free-	standing/ballasted PV panels to
	be installed, on top of the	'blue roof' system (recomm	ended); and maintenance access
	only (access on roof via a	man-safe system) - TBC. Wa	rm roof/inverted roof,

construction, with zero falls - TBC.

Return period:	100 years	As supplied by Client	
Allowance for Climate Change:	40 %	As supplied by Client	
OS grid reference selected for FEH data:	TQ 17035 72290		
Input Parameters - Roof Information			
T - 1 - 1	390 m ²	As supplied by Client	
l otal catchment area:			
Total catchment area: Attenuation area:	342 m ²	As supplied by Client	

creative geosynthetic engineering

Allowance for Climate Change:	40 %	As supplied b	y Client
OS grid reference selected for FEH data:	TQ 17035 72290		
Input Parameters - Roof Information			
Total catchment area:	390 m ²	As supplied b	y Client
Attenuation area:	342 m ²	As supplied b	y Client
Maximum allowable runoff:	0.6 l/s	As supplied b	y Client
Output - Rainfall Calculation			
Duration	Ti	me to Empty	Restricted Outflow (I/s)
Duration 15 mins		me to Empty urs and 10 minutes	Restricted Outflow (I/s) 0.4
	14 hou	• •	
15 mins	14 hou 16 hou	urs and 10 minutes	0.4
15 mins 30 mins	14 hou 16 hou 19 ho	urs and 10 minutes urs and 50 minutes	0.4 0.5
15 mins 30 mins 1 hour	14 hou 16 hou 19 ho 21 hou	urs and 10 minutes urs and 50 minutes urs and 0 minutes	0.4 0.5 0.5
15 mins 30 mins 1 hour 2 hours	14 hou 16 hou 19 ho 21 hou 23 hou	urs and 10 minutes urs and 50 minutes urs and 0 minutes urs and 40 minutes	0.4 0.5 0.5 0.6

Total attenuation required: 34.7 m³ Half empty time: 8 hours and 0 minutes.

Output - Recommended Blue Root	System
System Name:	ABG blueroof VF HD 129mm
Description:	The blue roof depth of 129mm, includes for a 25mm reservoir board. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Additional 'tell-tale' parapet overflow outlets, may also be added by the architect.
Total attenuation capacity:	38.9 m ³
Number of Blue Roof outlets:	2

17 hours and 20 minutes

7 hours and 30 minutes

Notes:

24 hours

48 hours

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

0.5

0.3

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	Ham Close, Richmond, TW10 - Roof O
Prepared for:	Jubb Consulting, Winchester.
Date:	07/01/2022
ABG Project ID:	24502 Calculator version: 1.30
Prepared by:	Andrew Keer, andrew@abgltd.com, 07525-808700
Notes/description:	Green roof or biodiverse roof, with potential for free-standing/ballasted PV panels to
	be installed, on top of the 'blue roof' system (recommended); and maintenance access
	only (access on roof via a man-safe system) - TBC. Warm roof/inverted roof,

construction, with zero falls - TBC.

Return period:	100 years	As supplied by Client	
Allowance for Climate Change:	40 %	As supplied by Client	
OS grid reference selected for FEH data:	TQ 17035 72290		
Input Parameters - Roof Information			
Total catchment area:	325 m ²	As supplied by Client	
Attenuation area:	280 m ²	As supplied by Client	

creative geosynthetic engineering

Allowance for Climate Change:	40 %	As supplied b	by Client
OS grid reference selected for FEH data:	TQ 17035 72290		
Input Parameters - Roof Information			
Total catchment area:	325 m ²	As supplied b	oy Client
Attenuation area:	280 m ²	As supplied b	by Client
Maximum allowable runoff:	0.6 l/s	As supplied b	oy Client
Output - Rainfall Calculation			
Duration	Ti	me to Empty	Restricted Outflow (I/s)
15 mins	13 hou	irs and 10 minutes	0.4
30 mins	15 hou	irs and 40 minutes	0.4
1 hour	17 hou	irs and 40 minutes	0.5
2 hours	20 hou	irs and 10 minutes	0.5
4 hours	21 hou	irs and 40 minutes	0.5
6 hours	21 hou	irs and 50 minutes	0.5
10 hours	21 ho	urs and 0 minutes	0.5
24 hours	15 hou	irs and 10 minutes	0.4
48 hours	5 hou	rs and 50 minutes	0.2

Total attenuation required: 28.4 m³ Half empty time: 7 hours and 20 minutes.

Output - Recommended Blue Roof System				
System Name:	ABG blueroof VF HD 129mm			
Description:	The blue roof depth of 129mm, includes for a 25mm reservoir board. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Additional 'tell-tale' parapet overflow outlets, may also be added by the architect.			
Total attenuation capacity:	31.9 m ³			
Number of Blue Roof outlets:	2			

Notes:

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	Ham Close, Richmon	d, TW10 - Roof R	
Prepared for:	Jubb Consulting, Win	ichester.	
Date:	07/01/2022		
ABG Project ID:	24502	Calculator version:	1.30
Prepared by:	Andrew Keer, andrev	w@abgltd.com, 07525-808700)
Notes/description:	Green roof or biodive	erse roof, with potential for fr	ee-standing/ballasted PV panels to
	be installed, on top o	of the 'blue roof' system (reco	mmended); and maintenance access
	only (access on roof	via a man-safe system) - TBC.	Warm roof/inverted roof,

. = Est Ч

creative geosynthetic engineering

Input Parameters - Rainfall Information (Flood Estimation Handbook 2013)			
Return period:	100 years	As supplied by Client	
Allowance for Climate Change:	40 %	As supplied by Client	
OS grid reference selected for FEH data:	TQ 17035 72290		
Input Parameters - Roof Information			
Total catchment area:	400 m ²	As supplied by Client	
Attenuation area:	350 m ²	As supplied by Client	
Maximum allowable runoff:	0.6 l/s	As supplied by Client	

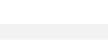
construction, with zero falls - TBC.

Duration	Time to Empty	Restricted Outflow (I/s)
15 mins	14 hours and 30 minutes	0.4
30 mins	17 hours and 10 minutes	0.5
1 hour	19 hours and 30 minutes	0.5
2 hours	22 hours and 20 minutes	0.6
4 hours	24 hours and 10 minutes	0.6
6 hours	24 hours and 30 minutes	0.6
10 hours	23 hours and 40 minutes	0.6
24 hours	18 hours and 0 minutes	0.5
48 hours	8 hours and 10 minutes	0.3

Total attenuation required: 35.8 m³ Half empty time: 8 hours and 10 minutes.

Output - Recommended Blue R	oof System
System Name:	ABG blueroof VF HD 129mm
Description:	The blue roof depth of 129mm, includes for a 25mm reservoir board. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Additional 'tell-tale' parapet overflow outlets, may also be added by the architect.
Total attenuation capacity:	39.9 m ³
Number of Blue Roof outlets:	2

Notes:


1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	Ham Close, Richmor	nd, TW10 - Roof S	
Prepared for:	Jubb Consulting, Wi	nchester.	
Date:	07/01/2022		
ABG Project ID:	24502	Calculator version:	1.30
Prepared by:	Andrew Keer, andre	w@abgltd.com, 07525-808700)
Notes/description:	Green roof or biodiv	verse roof, with potential for fr	ee-standing/ballasted PV panels to
	be installed, on top	of the 'blue roof' system (reco	mmended); and maintenance access
	only (access on roof	via a man-safe system) - TBC.	Warm roof/inverted roof,

Blue Roof Estima

creative geosynthetic engineering

Input Parameters - Rainfall Information (Flood Estimation Handbook 2013)					
Return period:	100 years	As supplied by Client			
Allowance for Climate Change:	40 %	As supplied by Client			
OS grid reference selected for FEH data: TQ 17035 72290					
Input Parameters - Roof Information					
Total catchment area:	485 m ²	As supplied by Client			
Attenuation area:	421 m ²	As supplied by Client			
Maximum allowable runoff:0.8 l/sAs supplied by Client					

construction, with zero falls - TBC.

Output - Rainfall Calculation		
Duration	Time to Empty	Restricted Outflow (I/s)
15 mins	14 hours and 0 minutes	0.5
30 mins	16 hours and 30 minutes	0.6
1 hour	18 hours and 50 minutes	0.6
2 hours	21 hours and 30 minutes	0.7
4 hours	23 hours and 20 minutes	0.7
6 hours	23 hours and 40 minutes	0.8
10 hours	22 hours and 50 minutes	0.7
24 hours	17 hours and 10 minutes	0.6
48 hours	7 hours and 30 minutes	0.3

Total attenuation required: 43.4 m³ Half empty time: 8 hours and 10 minutes.

Output - Recommended Blue Roo	of System
System Name:	ABG blueroof VF HD 129mm
Description:	The blue roof depth of 129mm, includes for a 25mm reservoir board. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Additional 'tell-tale' parapet overflow outlets, may also be added by the architect.
Total attenuation capacity:	47.9 m ³
Number of Blue Roof outlets:	2

Notes:

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	Ham Close, Richmond	, TW10 - Roof T	
Prepared for:	Jubb Consulting, Winc	hester.	
Date:	07/01/2022		
ABG Project ID:	24502	Calculator version:	1.30
Prepared by:	Andrew Keer, andrew	@abgltd.com, 07525-808700	
Notes/description:	be installed, on top of	· ·	e-standing/ballasted PV panels to mended); and maintenance access Varm roof/inverted roof,

Blue Roof Estima

creative geosynthetic engineering

			_
Input Parameters - Rainfall Information (Floo	d Estimation Handbook 2013)		
Return period:	100 years	As supplied by Client	
Allowance for Climate Change:	40 %	As supplied by Client	
OS grid reference selected for FEH data:	TQ 17035 72290		
Input Parameters - Roof Information			
Total catchment area:	520 m ²	As supplied by Client	
Attenuation area:	464 m ²	As supplied by Client	
Maximum allowable runoff:	0.8 l/s	As supplied by Client	
Output Painfall Calculation			

construction, with zero falls - TBC.

Duration	Time to Empty	Restricted Outflow (I/s)
15 mins	15 hours and 0 minutes	0.5
30 mins	18 hours and 0 minutes	0.6
1 hour	20 hours and 30 minutes	0.6
2 hours	23 hours and 30 minutes	0.7
4 hours	25 hours and 30 minutes	0.7
6 hours	25 hours and 50 minutes	0.7
10 hours	25 hours and 10 minutes	0.7
24 hours	19 hours and 40 minutes	0.6
48 hours	9 hours and 40 minutes	0.4

Total attenuation required: 47.4 m³ Half empty time: 8 hours and 50 minutes.

Output - Recommended Blue Root	f System
System Name:	ABG blueroof VF HD 129mm
Description:	The blue roof depth of 129mm, includes for a 25mm reservoir board. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Additional 'tell-tale' parapet overflow outlets, may also be added by the architect.
Total attenuation capacity:	52.8 m ³
Number of Blue Roof outlets:	2

Notes:

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	Ham Close, Richmond, TW	/10 - Roof U	
Prepared for:	Jubb Consulting, Winchest	ter.	
Date:	07/01/2022		
ABG Project ID:	24502	Calculator version:	1.30
Prepared by:	Andrew Keer, andrew@ab	gltd.com, 07525-808700	
Notes/description:	Green roof or biodiverse r	oof, with potential for free-	standing/ballasted PV panels to
	be installed, on top of the	'blue roof' system (recomm	ended); and maintenance access
	only (access on roof via a	man-safe system) - TBC. Wa	rm roof/inverted roof,

construction, with zero falls - TBC.

Return period:	100 years	As supplied by Client	
Allowance for Climate Change:	40 %	As supplied by Client	
OS grid reference selected for FEH data:	TQ 17035 72290		
Input Parameters - Roof Information			
•	353 m ²	As supplied by Client	
Input Parameters - Roof Information Total catchment area: Attenuation area:	353 m ² 306 m ²	As supplied by Client As supplied by Client	

creative geosynthetic engineering

Output - Rainfall Calculation		
Duration	Time to Empty	Restricted Outflow (I/s)
15 mins	10 hours and 10 minutes	0.5
30 mins	12 hours and 0 minutes	0.6
1 hour	13 hours and 30 minutes	0.6
2 hours	15 hours and 20 minutes	0.7
4 hours	16 hours and 20 minutes	0.7
6 hours	16 hours and 20 minutes	0.7
10 hours	15 hours and 10 minutes	0.7
24 hours	9 hours and 20 minutes	0.5
48 hours	1 hour and 30 minutes	0.2

Total attenuation required: 29.3 m³ Half empty time: 5 hours and 10 minutes.

Output - Recommended Blue Roof System	
System Name:	ABG blueroof VF HD 129mm
Description:	The blue roof depth of 129mm, includes for a 25mm reservoir board. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Additional 'tell-tale' parapet overflow outlets, may also be added by the architect.
Total attenuation capacity:	34.8 m ³
Number of Blue Roof outlets:	2

Notes:

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

BLUE ROOF SYSTEM AND OUTFLOW SUMMARY

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	Ham Close, Richmond	Ham Close, Richmond, TW10 - Roof V			
Prepared for:	Jubb Consulting, Winc	Jubb Consulting, Winchester.			
Date:	07/01/2022				
ABG Project ID:	24502	Calculator version:	1.30		
Prepared by:	Andrew Keer, andrew	Andrew Keer, andrew@abgltd.com, 07525-808700			
Notes/description:	Green roof or biodive	Green roof or biodiverse roof, with potential for free-standing/ballasted PV panels to			
	be installed, on top of	be installed, on top of the 'blue roof' system (recommended); and maintenance access			
	only (access on roof v	ia a man-safe system) - TBC.	Warm roof/inverted roof,		

construction, with zero falls - TBC.

	9
L	

creative geosynthetic engineering

Input Parameters - Rainfall Information (Flood Estimation Handbook 2013)						
Return period:	100 years	As supplied by Client				
Allowance for Climate Change:	40 %	As supplied by Client				
OS grid reference selected for FEH data: TQ 17035 72290						
Input Parameters - Roof Information						
Total catchment area:	466 m ²	As supplied by Client				
Attenuation area:	402 m ²	As supplied by Client				
Maximum allowable runoff:0.7 l/sAs supplied by Client						
Output Poinfall Calculation						

Duration	Time to Empty	Restricted Outflow (I/s)
15 mins	15 hours and 0 minutes	0.4
30 mins	17 hours and 50 minutes	0.5
1 hour	20 hours and 20 minutes	0.6
2 hours	23 hours and 20 minutes	0.6
4 hours	25 hours and 20 minutes	0.7
6 hours	25 hours and 40 minutes	0.7
10 hours	25 hours and 0 minutes	0.7
24 hours	19 hours and 30 minutes	0.5
48 hours	9 hours and 30 minutes	0.3

Total attenuation required: 42.3 m³ Half empty time: 9 hours and 10 minutes.

Output - Recommended Blue R	Output - Recommended Blue Roof System				
System Name:	ABG blueroof VF HD 129mm				
Description:	The blue roof depth of 129mm, includes for a 25mm reservoir board. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Additional 'tell-tale' parapet overflow outlets, may also be added by the architect.				
Total attenuation capacity:	45.8 m ³				
Number of Blue Roof outlets:	2				

Notes:

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

1. DEFINITIONS

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

part of the appointment process prior to ABG Geosynthetics commencing work.

BLUE ROOF SYSTEM AND OUTFLOW SUMMARY

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	Ham Close, Richmond, TW10 - Roof W			
Prepared for:	Jubb Consulting, Winches	Jubb Consulting, Winchester.		
Date:	07/01/2022	07/01/2022		
ABG Project ID:	24502	Calculator version:	1.30	
Prepared by:	Andrew Keer, andrew@al	Andrew Keer, andrew@abgltd.com, 07525-808700		
Notes/description:	Green roof or biodiverse roof, with potential for free-standing/ballasted PV panels to			
	be installed, on top of the	be installed, on top of the 'blue roof' system (recommended); and maintenance access		
	only (access on roof via a	man-safe system) - TBC.	Warm roof/inverted roof,	

construction, with zero falls - TBC. 3 x small ASHP units - appropriate plant support method TBC with ABG, structural and M&E engineers.

Input Parameters - Rainfall Information (Flood Estimation Handbook 2013)						
100 years	As supplied by Client					
40 %	As supplied by Client					
OS grid reference selected for FEH data: TQ 17035 72290						
Input Parameters - Roof Information						
330 m ²	As supplied by Client					
277 m ²	As supplied by Client					
Maximum allowable runoff: 0.6 l/s As supplied by Client						
	100 years 40 % TQ 17035 72290 330 m ² 277 m ²	100 yearsAs supplied by Client40 %As supplied by ClientTQ 17035 72290330 m²330 m²As supplied by Client277 m²As supplied by Client				

Soof Estima		
oof Estim:		
lue		

creative geosynthetic engineering

OS grid reference selected for FEH data:	TQ 17035 72290		
Input Parameters - Roof Information			
Total catchment area:	330 m ²	As supplied b	oy Client
Attenuation area:	277 m ²	As supplied b	oy Client
Maximum allowable runoff:	0.6 l/s	As supplied b	by Client
Output - Rainfall Calculation			
Duration	Tin	ne to Empty	Restricted Outflow (I/s)
15 mins	11 hour	rs and 50 minutes	0.4
30 mins	14 hou	rs and 0 minutes	0.5
1 hour	15 hour	rs and 50 minutes	0.5
2 hours	17 hour	rs and 50 minutes	0.6
4 hours	19 hour	rs and 10 minutes	0.6
6 hours	19 hour	rs and 10 minutes	0.6
10 hours	18 hour	rs and 10 minutes	0.6
24 hours	12 hour	rs and 20 minutes	0.4
48 hours	3 hours	s and 30 minutes	0.2

Total attenuation required: 28 m³ Half empty time: 6 hours and 20 minutes.

Output - Recommended Blue Roo	Output - Recommended Blue Roof System				
System Name:	ABG blueroof VF HD 129mm				
Description:	The blue roof depth of 129mm, includes for a 25mm reservoir board. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Additional 'tell-tale' parapet overflow outlets, may also be added by the architect.				
Total attenuation capacity:	31.5 m ³				
Number of Blue Roof outlets:	2				

Notes:

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

1. DEFINITIONS

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

part of the appointment process prior to ABG Geosynthetics commencing work.

Appendix G: SuDS Proforma & TW Correspondence

GREATERLONDONAUTHORITY

	Project / Site Name (including sub- catchment / stage / phase where appropriate)	Ham Close
	Address & post code	Ham Close, Richmond, TW10 7PD
	OS Grid ref. (Easting, Northing)	E 517098
	OS GHUTEL (Easting, Northing)	N 172336
1. Project & Site Details	LPA reference (if applicable)	SA 15 Ham Close, Ham
	Brief description of proposed work	Demolition of existing buildings on-site and phased mixed-use development comprising 452 residential homes a Community/Leisure Facility, a "Makers Lab" together with basement car parking and site wide landscaping.
	Total site Area	46900 m ²
	Total existing impervious area	17360 m ²
	Total proposed impervious area	22605 m ²
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	No
	Existing drainage connection type and location	5no locations - TW0302, TW1402, TW0202, TW1202, TW1201
	Designer Name	Karol Gyba
	Designer Position	Senior Civil Engineer

	2a. Infiltration Feasibility			
	Superficial geology classification	Kemptor	n Park Gravel F	ormation
	Bedrock geology classification	Lon	don Clay Form	ation
	Site infiltration rate		m/s	
	Depth to groundwater level	2.2 - 4.3	3 m belov	w ground level
	Is infiltration feasible?		No	
	2b. Drainage Hierarchy			
ments			Feasible (Y/N)	Proposed (Y/N)
ange	1 store rainwater for later use		Y	Y
Irge Arra	2 use infiltration techniques, such a surfaces in non-clay areas	as porous	Ν	Ν
2. Proposed Discharge Arrangements	3 attenuate rainwater in ponds or o features for gradual release	open water	Ν	Ν
Propose	4 attenuate rainwater by storing in sealed water features for gradual re		Y	Y
7	5 discharge rainwater direct to a watercourse		Ν	Ν
	6 discharge rainwater to a surface water sewer/drain		Y	Y
	7 discharge rainwater to the combined sewer.		N	Ν
	2c. Proposed Discharge Details			
	Proposed discharge location		Drainage Stra W0202, TW12	
	Has the owner/regulator of the discharge location been	Yes, Thame	s Water confirr	med capacity

C

GREATERLONDONAUTHORITY

Designer Company	Jubb
------------------	------

consulted?

GREATERLONDONAUTHORITY

	3a. Discharge Rat	es & Required Sto	orage		
		Greenfield (GF) runoff rate (l/s)	Existing discharge rate (I/s)	Required storage for GF rate (m ³)	Proposed discharge rate (l/s)
	Qbar	11	\geq	\geq	\geq
	1 in 1	9.2	231.8	480	37
	1 in 30	24.9	708.4	940	37
	1 in 100	34.6	936.9	1270	37
	1 in 100 + CC		\geq	1960	37
	Climate change a	llowance used	40%		
ategy	3b. Principal Method of Flow Control		Blue Roofs and Hydrobrakes		
e Sti	3c. Proposed SuD	S Measures			
3. Drainage Strategy			Catchment area (m²)	Plan area (m²)	Storage vol. (m ³)
З. Г	Rainwater harves	ting	0	>	0
3. D	Rainwater harves	-	0 0		0 0
З. С		-		0	0 0 0
З. Г	Infiltration system	-	0	0 6071	0 0 0 790
З. Г	Infiltration system Green roofs	-	0 6963	_	0 0 790 0
З. Г	Infiltration system Green roofs Blue roofs	-	0 6963 0	6071	0 0 790 0 0
3. L	Infiltration system Green roofs Blue roofs Filter strips	ns	0 6963 0 0	6071 0	0
3. L	Infiltration system Green roofs Blue roofs Filter strips Filter drains	e pits	0 6963 0 0	6071 0 0	0
3. D	Infiltration system Green roofs Blue roofs Filter strips Filter drains Bioretention / tre Pervious pavemen Swales	e pits	0 6963 0 0 0 200	6071 0 200	0 0 0
3. D	Infiltration system Green roofs Blue roofs Filter strips Filter drains Bioretention / tre Pervious pavemen	e pits	0 6963 0 0 0 200 2300	6071 0 200 2300	0 0 0
3. D	Infiltration system Green roofs Blue roofs Filter strips Filter drains Bioretention / tre Pervious pavemen Swales	e pits nts	0 6963 0 0 0 200 2300 400	6071 0 200 2300 400	0 0 0

	4a. Discharge & Drainage Strategy	Page/section of drainage report	
	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	SI report, Appendix C, Site Geology section 3.4 of Drainage Report.	
	Drainage hierarchy (2b)	Section 6.3 from Drainage Report	
=	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	Drainage Plans, Appendix E. Approvals from TW, Appendix G.	
ormatio	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	Calculations in Appendix F, Drianage Drawings Appendix E.	
4. Supporting information	Proposed SuDS measures & specifications (3b)	Section 6.3 from Drainage Report	
	4b. Other Supporting Details	Page/section of drainage report	
nc .	Detailed Development Layout	Appendix A & E	
4	Detailed drainage design drawings, including exceedance flow routes	Appendix E	
	Detailed landscaping plans	Appendix A	
	Maintenance strategy	Appendix H	
	Demonstration of how the proposed SuDS measures improve:		
	a) water quality of the runoff?	Section 6.4 of Drainage Report.	
	b) biodiversity?	Section 6.4 of Drainage Report.	
	c) amenity?	Section 6.4 of Drainage Report.	

J

Karol Gyba

Jubb Ground Floor Crondall House 1 Exchange Square Jewry Street Winchester Hampshire SO23 8FJ Wastewater pre-planning Our ref DS6088658

2nd December 2021

Pre-planning enquiry: Confirmation of sufficient capacity

Site Address: Ham Close, Richmond, London, TW10 7PL

Dear Mr Gyba,

Thank you for providing information on the proposals to construct 452 residential units (410 flats and 42 houses) and a new youth centre, NHC clinic and hobby club replacing 192 flats and the existing youth centre, NHC clinic and hobby club at the above location.

We have completed the assessment of the foul water flows and surface water run-off based on the information submitted in your application with the purpose of assessing sewer capacity within the existing Thames Water sewer network.

Foul Water

If your proposals progress in line with the details you've provided, we're pleased to confirm that there will be sufficient sewerage capacity in the adjacent foul water sewer network to serve your development.

This is based on the foul water flows from the majority of the development gravitating from the site and discharging to the 225mm dia. foul water sewer to the South of the site between manhole refs 1204 and 2203 and the foul water flows from the youth centre gravitating from the site and discharging to the diverted 225mm dia. foul water sewer.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

Please note that you must keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient sewerage capacity.

Surface Water

Please note that discharging surface water to the public sewer network should only be considered after all other methods of disposal have been investigated and proven to not be viable. In accordance with the Building Act 2000 Clause H3.3, positive connection to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. The disposal hierarchy being: 1st Soakaways; 2nd Watercourses; 3rd Sewers.

Only when it can be proven that soakage into the ground or a connection into an adjacent watercourse is not possible would we consider a restricted discharge into the public surface water sewer network.

When redeveloping an existing site, policy 5.13 of the London Plan and Policy 3.4 of the Supplementary Planning Guidance (Sustainable Design And Construction) states that every attempt should be made to use flow attenuation and SUDS/storage to reduce the surface water discharge from the site as much as possible.

If they are consulted as part of any planning application, Thames Water's Planning team would ask to see why it is not practicable to attenuate the flows to Greenfield run-off rates i.e. 5l/s/hectare of the total site area. Should the policy above be followed, we would envisage no capacity concerns with regards to surface water for this site.

Please note that the Local Planning authority may comment on surface water discharge under the planning process.

Please Note

There are existing public sewers crossing the site. New buildings will need to be kept between 3 and 6.5m away from existing sewer depending on the size and depth of the sewer. Alternatively, it may be possible for sewers to be diverted around the new development. If you wish us to review a diversion proposal please submit this via a Section 185 Diversion application. On some occasions it may be possible to abandon existing public sewers. Please contact us for further information on this process.

All connection requests are subject to a full Section 106 (Water Industry Act 1991) application before the Company can confirm approval to the connection itself. Please also note that capacity in the public sewerage system cannot be reserved. Please make sure you submit your connection application giving us at least 21 days' notice of the date you wish to make your new connection/s.

The discharge of non-domestic effluent is not permitted until a valid trade effluent consent has been issued by Thames Water. If anything other than domestic sewage is discharged into the public sewers without the above agreement an offence is committed and the applicant will be liable to the penalties contained in Section 109(1) (WIA 1991).

Applicants should contact Trade Effluent prior to seeking a connection approval, to discuss trade effluent consent and conditions of discharge. For Trade Effluent queries and to apply for Discharge Consents please call 0203 577 9200 or email trade.effluent@thameswater.co.uk.

The views expressed by Thames Water in this letter are in response to this pre-planning enquiry at this time and do not represent our final views on any future planning applications made in relation to this site.

Yours sincerely,

Wither in

Jonathan Shildrick BSc Development Engineer Developer Services

Karol Gyba

From:	DEVELOPER.SERVICES@THAMESWATER.CO.U <developer.services@thameswater.co.uk></developer.services@thameswater.co.uk>
Sent:	23 November 2021 11:24
То:	Karol Gyba
Subject:	RE: RE: RE: 21246 Ham Close - TW Diversion - Initial Enquiry

Hi Karol,

Natayla is currently off recuporating after an accident so I will take this forward for you.

I note that our Asset Planners have confirmed that they would have no concerns in regards to capacity for the proposed diversion of the 225mm dia. from MH1405 into a new manhole downstream of MH3402 in Ham Street.

In regards to the flows from the new development, I cannot see that Natayla managed to also consult our Asset Planners on this before she went off work so I will do this now. Apologies for the delay but we will need to give our Asset Planners another 5 working days to get back to us on this element. I will issue our formal response as soon as I can after hearing from them.

Regards

Jonathan Shildrick BSc Development Engineer Sewer Adoptions Team Developer Services Helpdesk: 0800 009 3921 Clearwater Court, Vastern Road, Reading, RG1 8DB Find us online at developers.thameswater.co.uk

Original Text

From: Karol Gyba <K.Gyba@jubb.uk.com>
DEVELOPER.SERVICES@THAMESWATER.CO.U <DEVELOPER.SERVICES@THAMESWATER.CO.UK>
CC:
Sent: 19.11.21 15:02:53
Subject: RE: RE: 21246 Ham Close - TW Diversion - Initial Enquiry

This email contains a reference to Coronavirus or COVID-19. Please be aware of coronavirus-themed active phishing campaigns, and use extra vigilance when responding or clicking.

<color="salmon">

Good afternoon,

I'm just following up on this, as I haven't seen any responses. Can you please let me know if you're after anymore information from us? Also, if the two applications are now separate, could you let me know the application numbers, for our reference in the future?

Regards, **Karol Gyba** Senior Civil Engineer

Direct: +44 (0) 1962 279979

Ground Floor, Crondall House, 1 Exchange Square, Jewry Street, Winchester, SO23 8FJ | <u>www.jubb.uk.com</u> <![if !vml]>

<![endif]>

In light of the Coronavirus pandemic I am best contacted by email, mobile or via Microsoft Teams. The office landline may not get me if I'm working from home.

Information supplied by electronic means:

The information contained within these files is the copyright property of Jubb Consulting Engineers Limited and is issued solely for the use of the addressee(s). It may contain information that is covered by legal, professional or other privilege, and no part of it may be reproduced without prior written approval from the issuing office of Jubb Consulting Engineers Limited. If you have received this in error, you must take no action based on it, nor should this be copied, distributed or

shown to any third party. Please notify us of the error as soon as possible and destroy the original. Jubb is the trading name of Jubb Consulting Engineers Ltd. Company No: 4080619. Registered Office: Ensign House, Parkway Court, Longbridge Road, Plymouth PL6 8LR

From: Karol Gyba Sent: 21 October 2021 13:25 To: DEVELOPER.SERVICES@THAMESWATER.CO.U <DEVELOPER.SERVICES@THAMESWATER.CO.UK> Subject: RE: RE: 21246 Ham Close - TW Diversion - Initial Enquiry [Filed 21 Oct 2021 13:24]

Hi Natalya,

That sounds like a good idea to keep the two items separate.

Correct, the existing flats will be demolished.

Regards, **Karol Gyba** Senior Civil Engineer

Jub

Direct: +44 (0) 1962 279979

Ground Floor, Crondall House, 1 Exchange Square, Jewry Street, Winchester, SO23 8FJ | <u>www.jubb.uk.com</u> <![if !vml]>

<![endif]>

In light of the Coronavirus pandemic I am best contacted by email, mobile or via Microsoft Teams. The office landline may not get me if I'm working from home.

Information supplied by electronic means:

The information contained within these files is the copyright property of Jubb Consulting Engineers Limited and is issued solely for the use of the addressee(s). It may contain information that is covered by legal, professional or other privilege, and no part of it may be reproduced without prior written approval from the issuing office of Jubb Consulting Engineers Limited. If you have received this in error, you must take no action based on it, nor should this be copied, distributed or shown to any third party. Please notify us of the error as soon as possible and destroy the original. Jubb is the trading name of Jubb Consulting Engineers Ltd. Company No: 4080619. Registered Office: Ensign House, Parkway Court, Longbridge Road, Plymouth PL6 8LR

From: DEVELOPER.SERVICES@THAMESWATER.CO.U <DEVELOPER.SERVICES@THAMESWATER.CO.UK> Sent: 21 October 2021 11:29 To: Karol Gyba <<u>K.Gyba@jubb.uk.com</u>>

Subject: RE: RE: RE: 21246 Ham Close - TW Diversion - Initial Enquiry

Hi Karol,

I have raised a separate consulation for a diversion purpose and will raise a separate enquiry for the proposed site. What happens to the existing 192 flats? are they being demolished?

Thank you

Natalya

Original Text

 From:
 Karol Gyba < K.Gyba@jubb.uk.com>

 To:
 DEVELOPER.SERVICES@THAMESWATER.CO.U < DEVELOPER.SERVICES@THAMESWATER.CO.UK>

 CC:
 I8.10.21 12:46:42

 Subject:
 RE: RE: 21246 Ham Close - TW Diversion - Initial Enquiry

This email contains a reference to Coronavirus or COVID-19. Please be aware of coronavirus-themed active phishing campaigns, and use extra vigilance when responding or clicking.

<color="salmon">

Hi Natalya,

I think the reference is this: DS6088658

Confirmation Email attached FYI.

Regards, **Karol Gyba** Senior Civil Engineer

Direct: +44 (0) 1962 279979

Ground Floor, Crondall House, 1 Exchange Square, Jewry Street, Winchester, SO23 8FJ | <u>www.jubb.uk.com</u> <![if !vml]>

<![endif]>

In light of the Coronavirus pandemic I am best contacted by email, mobile or via Microsoft Teams. The office landline may not get me if I'm working from home.

Information supplied by electronic means:

The information contained within these files is the copyright property of Jubb Consulting Engineers Limited and is issued solely for the use of the addressee(s). It may contain information that is covered by legal, professional or other privilege, and no part of it may be reproduced without prior written approval from the issuing office of Jubb Consulting Engineers

Limited. If you have received this in error, you must take no action based on it, nor should this be copied, distributed or shown to any third party. Please notify us of the error as soon as possible and destroy the original. Jubb is the trading name of Jubb Consulting Engineers Ltd. Company No: 4080619. Registered Office: Ensign House, Parkway Court, Longbridge Road, Plymouth PL6 8LR

From: <u>DEVELOPER.SERVICES@THAMESWATER.CO.U</u> <<u>DEVELOPER.SERVICES@THAMESWATER.CO.UK</u>> Sent: 18 October 2021 12:36 To: Karol Gyba <<u>K.Gyba@jubb.uk.com</u>> Subject: RE: 21246 Ham Close - TW Diversion - Initial Enquiry

Hi Karol,

Thanks for this. Can you please confirm if you have submitted an application form? I can't seem to find it. If you have, please can you provide a reference number? You would have received it in a courtesy email sent to you when application was submitted.

Thank you

Natalya

Original Text

 From:
 Karol Gyba < K.Gyba@jubb.uk.com>

 To:
 DEVELOPER.SERVICES@THAMESWATER.CO.U < DEVELOPER.SERVICES@THAMESWATER.CO.UK>

 CC:
 Sent:
 11.10.21 17:24:03

 Subject:
 RE: 21246 Ham Close - TW Diversion - Initial Enquiry

This email contains a reference to Coronavirus or COVID-19. Please be

aware of coronavirus-themed active phishing campaigns, and use extra vigilance when responding or clicking.

<color="salmon">

Hi Natalya,

Thank you for a quick response,

In addition to the residential aspect, there are 3 other uses:

- **NHS Clinic / dentistry** it falls outside of the site boundary and will remain the same as the existing scenario (the flows will be directed to new MH between ExMH 1204 2203).
- **'Makers Lab' (a hobby DYI club)** with capacity of ~10 people it will be re-provided onsite with the same occupancy as existing (the flows will be directed to new MH between ExMH 1204 2203).
- Youth Club (community centre) with the sports hall these facilities will be re-located towards the east of the site and discharge towards the new manhole formed online of the existing sewer as part of the diversion (new MH between ExMH 3402-3302). The Community Centre / youth club will be re-provided in the same capacity as the existing scenario.

We're in the process of finalising the proposals, hence the surface water flows and the exact areas are not yet avaliable. I've completed the table below assuming that each of the 5 connections takes approximately $1/5^{th}$ of the site (0.61ha), as shown they're all limited by the capacity of the outfalls. We will look to lower the runoff rates further with use of SuDS to as close to greenfield rates as possible, in line with the policy, but for now please assess based on the below:

<u>Connections to MHs 1402, 0302, 1202, 1201 and 0202</u>, all limited to max 20 l/s:

Storm	Rainfall Intensity (mm/hr)	Existing Rainfall (I/s)	Existing Runoff (I/s) *	Proposed Runoff (I/s) **	Betterment (%)
1 in 1	28.2	47.8	40	20	58%
1 in 30	86.0	145.9	40	20	86%
1 in 100	113.8	193.0	40	20	90%

* Existing Runoff Based on capacity of a 225mmØ pipe at 1:170,

** Proposed Runoff TBC following co-ordination of onsite proposals,

<u>Diversion of existing car-park to the east (MH 2302)</u>: The development only accounts for 400m² of the new area to MH 2302, the remaining 2,000m² is the existing car-park re-routed from MH 2304 as part of the diversion, the car-park is not within the works boundary, hence the flows from that area cannot be controlled. The community centre section (400m²) is summarised in the table below:

Storm	Rainfall Intensity (mm/hr)	Existing Rainfall (I/s)	Existing Runoff (I/s) *	Proposed Runoff (l/s) **	Betterment (%)
1 in 1	28.2	3.1	3.1	1.6	50%
1 in 30	86.0	9.6	9.6	4.8	50%
1 in 100	113.8	12.7	12.7	6.3	50%

* Existing Runoff Based on capacity of a 225mmØ pipe at 1:170,

** Proposed Runoff TBC following co-ordination of onsite proposals,

I've copied the text from the form below, please let me know if there's anything else you need:

"Re-use existing 5no 225mmØ connections to SW sewers & provide min. 50% betterment over the existing scenario. Existing rates assumed 40 l/s per connection, based on 225mmØ @ 1:170.

Assumed the same IMP. area ratios as in existing scenario:

Northern sewer: ~0.5 ha to MH 1402 ~0.5 ha to MH 0302

Southern sewer: ~0.5 ha to MH 1202 ~0.75 ha to MH 1201 ~0.75 ha to MH 0202

Easter Sewer (Community Centre): 400m² to MH 2302 Remove sewer between MHs 2304-2402 to accommodate new building and re-direct max ~0.2 ha of carparking towards MH 2302."

Regards,

Karol Gyba Senior Civil Engineer

Direct: +44 (0) 1962 279979

Ground Floor, Crondall House, 1 Exchange Square, Jewry Street, Winchester, SO23 8FJ | <u>www.jubb.uk.com</u> <![if !vml]>

<![endif]>

In light of the Coronavirus pandemic I am best contacted by email, mobile or via Microsoft Teams. The office landline may not get me if I'm working from home.

Information supplied by electronic means:

The information contained within these files is the copyright property of Jubb Consulting Engineers Limited and is issued solely for the use of the addressee(s). It may contain information that is covered by legal, professional or other privilege, and no part of it may be reproduced without prior written approval from the issuing office of Jubb Consulting Engineers Limited. If you have received this in error, you must take no action based on it, nor should this be copied, distributed or shown to any third party. Please notify us of the error as soon as possible and destroy the original. Jubb is the trading name of Jubb Consulting Engineers Ltd. Company No: 4080619. Registered Office: Ensign House, Parkway Court, Longbridge Road, Plymouth PL6 8LR

From: DEVELOPER.SERVICES@THAMESWATER.CO.U <DEVELOPER.SERVICES@THAMESWATER.CO.UK> Sent: 05 October 2021 11:58 To: Karol Gyba <<u>K.Gyba@jubb.uk.com</u>> Subject: 21246 Ham Close - TW Diversion - Initial Enquiry

Hi Karol,

Thank you for the submitted application form. I have noted from our records the current site is more than 192 flats. Can you please provide full description of the current site? I think it could include a sports hall, NHS clinic and a dentistry. Can you please provide full details in sqm and occupancy number?

Also, a part of a section describing "amount of proposed impermeable area per connection* is not visible. can you please re-submit these details separately?

Can you please summarise runoff for each connection as per table below:

Existing	Proposed
Runoff (l/s)	Runoff (l/s)

1 in 1	
1 in 30	
1 in 100	

Thank you

Natalya

Original Text

 From:
 Karol Gyba < K.Gyba@jubb.uk.com>

 To:
 DEVELOPER.SERVICES@THAMESWATER.CO.U < DEVELOPER.SERVICES@THAMESWATER.CO.UK>

 CC:
 Sent:
 04.10.21 12:31:40

 Subject:
 RE: RE: 21246 Ham Close - TW Diversion - Initial Enquiry

This email contains a reference to Coronavirus or COVID-19. Please be aware of coronavirus-themed active phishing campaigns, and use extra vigilance when responding or clicking.

<color="salmon">

Hi Jonathan,

Thanks for your response, good question regarding the additional flows from the development. Our current approach is that the diverted sewer will only serve the existing (~150) properties north of our site, the new flows from site will drain via the outfall towards the south (to the MH which will now be head of the run due to the diversion).

I've completed the Pre-development application (attached), I've also updated the sketch (P3) to highlight the proposed discharge locations. The SW / FW flows for the proposed development are all very provisional at this stage, the important check is the FW diversion capacity please.

Regards, **Karol Gyba** Senior Civil Engineer

Direct: +44 (0) 1962 279979

Ground Floor, Crondall House, 1 Exchange Square, Jewry Street, Winchester, SO23 8FJ | <u>www.jubb.uk.com</u> <![if !vml]>

<![endif]>

In light of the Coronavirus pandemic I am best contacted by email, mobile or via Microsoft Teams. The office landline may not get me if I'm working from home.

Information supplied by electronic means:

The information contained within these files is the copyright property of Jubb Consulting Engineers Limited and is issued solely for the use of the addressee(s). It may contain information that is covered by legal, professional or other privilege, and no part of it may be reproduced without prior written approval from the issuing office of Jubb Consulting Engineers Limited. If you have received this in error, you must take no action based on it, nor should this be copied, distributed or shown to any third party. Please notify us of the error as soon as possible and destroy the original. Jubb is the trading name of Jubb Consulting Engineers Ltd. Company No: 4080619. Registered Office: Ensign House, Parkway Court,

Longbridge Road, Plymouth PL6 8LR

From: DEVELOPER.SERVICES@THAMESWATER.CO.U <DEVELOPER.SERVICES@THAMESWATER.CO.UK> Sent: 01 October 2021 13:57 To: Karol Gyba <<u>K.Gyba@jubb.uk.com</u>> Subject: RE: 21246 Ham Close - TW Diversion - Initial Enquiry

Hi Karol,

Many thanks for your email below.

As I mentioned in my previous email, we would need to assess the proposals as part of a Pre-Planning Enquiry application as we would need to consult with our Asset Planners for their comments on whether to sewers to the East of the area would have capacity to accommodate the diverted flows. Can you please complete the attached on this basis.

As part of that application can you please confirm whether the estimate of 150 properties served by the sewer that you wish to divert includes the new properties on the proposed development?

Regards

Jonathan Shildrick BSc Development Engineer Sewer Adoptions Team Developer Services Helpdesk: 0800 009 3921 Clearwater Court, Vastern Road, Reading, RG1 8DB Find us online at developers.thameswater.co.uk

Original Text

 From:
 Karol Gyba < K.Gyba@jubb.uk.com</td>

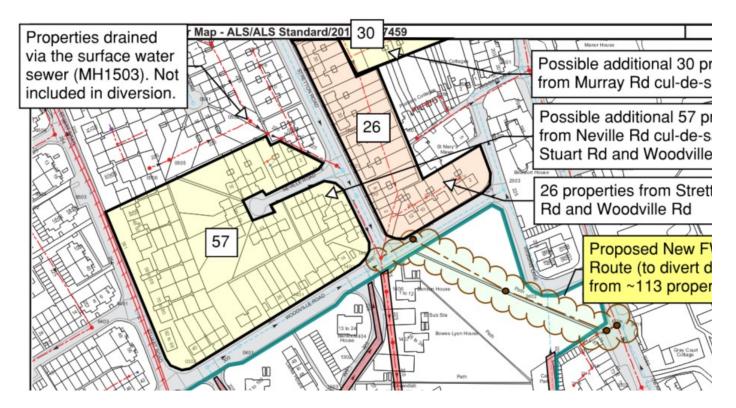
 To:
 DEVELOPER.SERVICES@THAMESWATER.CO.U < DEVELOPER.SERVICES@THAMESWATER.CO.UK</td>

 CC:
 Sent:
 28.09.21 10:40:18

 Subject:
 RE: 21246 Ham Close - TW Diversion - Initial Enquiry

This email contains a reference to Coronavirus or COVID-19. Please be

aware of coronavirus-themed active phishing campaigns, and use extra vigilance when responding or clicking.


<color="salmon">

Good morning,

Thank you very much for a quick response. We estimate a maximum of approximately 113 properties are currently drained via this sewer (based on the road layout and the avaliable TW asset information). Could we check if a diversion would be possible based on a conservative value of \sim 150 properties please? I also note from the maps that the sewers do eventually combine south of Cleves Rd, hence only a small section of the network will be impacted.

Understood & agree with regards to Section 185 and 3rd party agreements. Could you also confirm if a S98 (Sewer Requisition) agreement could be used for this diversion (it's not our intention, but would like to know our options)?

I've attached an updated mark-up now also showing the assumptions for the number of properties drained via the existing drain.

Please let me know if there's any more information you need,

Regards,

Karol Gyba Senior Civil Engineer

Ground Floor, Crondall House, 1 Exchange Square, Jewry Street, Winchester, SO23 8FJ | <u>www.jubb.uk.com</u> <![if !vml]>

<![endif]>

In light of the Coronavirus pandemic I am best contacted by email, mobile or via Microsoft Teams. The office landline may not get me if I'm working from home.

Information supplied by electronic means:

The information contained within these files is the copyright property of Jubb Consulting Engineers Limited and is issued solely for the use of the addressee(s). It may contain information that is covered by legal, professional or other privilege, and no part of it may be reproduced without prior written approval from the issuing office of Jubb Consulting Engineers Limited. If you have received this in error, you must take no action based on it, nor should this be copied, distributed or shown to any third party. Please notify us of the error as soon as possible and destroy the original. Jubb is the trading name of Jubb Consulting Engineers Ltd. Company No: 4080619. Registered Office: Ensign House, Parkway Court, Longbridge Road, Plymouth PL6 8LR

To: Karol Gyba <<u>K.Gyba@jubb.uk.com</u>> Subject: RE: 21246 Ham Close - TW Diversion - Initial Enquiry

Dear Mr Gyba,

Many thanks for your email below.

As you propose to divert an existing sewer into a different part of the network, as part of the Pre-Planning Enquiry application we may need to undertake an assessment of the capacity of that receiving sewer to accommodate the existing flows as well as the proposed flows from the new development. If an accurate figure of the number of properties served by the existing sewer cannot be provided as part of this then we may need you to install flow meters to determine the existing level of flow that would be diverted into the sewer East of the site.

If we provide confirmation that there is sufficient capacity to accommodate the flows then in principle the diversion of this sewer would be possible and could be undertaken by a contractor or your client's choosing subject to a detailed technical review of the design of the diverted sewer and a Section 104/116 legal agreement being in place before works are undertaken on the public sewer. Please submit the Section 185 application initially.

In regards to the route of the proposed diversion, unfortunately you would need to secure all rights to constuct the sewer across any third party owned land. As part of the application please provide evidence that this has been obtained.

Regards

Jonathan Shildrick BSc Development Engineer Sewer Adoptions Team Developer Services Helpdesk: 0800 009 3921 Clearwater Court, Vastern Road, Reading, RG1 8DB Find us online at developers.thameswater.co.uk

Original Text

To: <u>developer.services@thameswater.co.u</u> <<u>developer.services@thameswater.co.uk</u>>

CC: Rob Lowe <<u>r.lowe@jubb.uk.com</u>>

Sent: 20.09.21 16:07:47

Subject: 21246 Ham Close - TW Diversion - Initial Enquiry

This email contains a reference to Coronavirus or COVID-19. Please be aware of coronavirus-themed active phishing campaigns, and use extra vigilance when responding or clicking.

<color="salmon">

Good afternoon,

We're working on a project in Richmond Upon Thames, the site area is ~ 4ha and the nearest postcode is TW10 7PN. We're looking to submit the scheme for planning approval soon, the proposals are still being finalised, but based on the position of the existing TW assets, diversions will be required.

We would like to divert the foul water sewer between manholes **1405** and **2203**, to run from manhole **1405** to a new manhole between **3402** and **3302**. We will submit a diversion application once at the detailed design stage, but for now could you please let us know if the proposed diversion is possible and let us know if you have any comments ahead of the planning application.

I've attached a markup showing the proposed diversion and highlighting the sewers running through our development site.

The route proposed is within a 'protected open space' highlighted in the London Plan, could you advise if there are any restrictions on providing a diversion through this area? Looking through the policies and based on the presence of existing assets in the area, we presume it is acceptable, but please let us know if you have any comments.

We'll submit the pre-planning capacity enquiry for the discharges from the development once we have finalised the proposals.

Looking forward to hearing back from you,

Regards, **Karol Gyba** Senior Civil Engineer

Direct: +44 (0) 1962 279979

Ground Floor, Crondall House, 1 Exchange Square, Jewry Street, Winchester, SO23 8FJ | <u>www.jubb.uk.com</u> <![if !vml]>

In light of the Coronavirus pandemic I am best contacted by email, mobile or via Microsoft Teams. The office landline may not get me if I'm working from home.

Information supplied by electronic means:

The information contained within these files is the copyright property of Jubb Consulting Engineers Limited and is issued solely for the use of the addressee(s). It may contain information that is covered by legal, professional or other privilege, and no part of it may be reproduced without prior written approval from the issuing office of Jubb Consulting Engineers Limited. If you have received this in error, you must take no action based on it, nor should this be copied, distributed or shown to any third party. Please notify us of the error as soon as possible and destroy the original. Jubb is the trading name of Jubb Consulting Engineers Ltd. Company No: 4080619. Registered Office: Ensign House, Parkway Court, Longbridge Road, Plymouth PL6 8LR

Visit us online <u>www.thameswater.co.uk</u>, follow us on twitter <u>www.twitter.com/thameswater</u> or find us on <u>www.facebook.com/thameswater</u>. We're happy to help you 24/7.

Thames Water Limited (company number 2366623) and Thames Water Utilities Limited (company number 2366661) are companies registered in England and Wales, both are registered at Clearwater Court, Vastern Road, Reading, Berkshire RG1 8DB. This email is confidential and is intended only for the use of the person it was sent to. Any views or opinions in this email are those of the author and don't necessarily represent those of Thames Water Limited or its subsidiaries. If you aren't the intended recipient of this email, please don't copy, use, forward or disclose its contents to any other person – please destroy and delete the message and any attachments from your system.

Visit us online <u>www.thameswater.co.uk</u>, follow us on twitter <u>www.twitter.com/thameswater</u> or find us on <u>www.facebook.com/thameswater</u>. We're happy to help you 24/7.

Thames Water Limited (company number 2366623) and Thames Water Utilities Limited (company number 2366661) are companies registered in England and Wales, both are registered at Clearwater Court, Vastern Road, Reading, Berkshire RG1 8DB. This email is confidential and is intended only for the use of the person it was sent to. Any views or opinions in this email are those of the author and don't necessarily represent those of Thames Water Limited or its subsidiaries. If you aren't the intended recipient of this email, please don't copy, use, forward or disclose its contents to any other person – please destroy and delete the message and any attachments from your system.

Visit us online <u>www.thameswater.co.uk</u>, follow us on twitter <u>www.twitter.com/thameswater</u> or find us on <u>www.facebook.com/thameswater</u>. We're happy to help you 24/7.

Thames Water Limited (company number 2366623) and Thames Water Utilities Limited (company number 2366661) are companies registered in England and Wales, both are registered at Clearwater Court, Vastern Road, Reading, Berkshire RG1 8DB. This email is confidential and is intended only for the use of the person it was sent to. Any views or opinions in this email are those of the author and don't necessarily represent those of Thames Water Limited or its subsidiaries. If you aren't the intended recipient of this email, please don't copy, use, forward or disclose its contents to any other person – please destroy and delete the message and any attachments from your system.

Visit us online <u>www.thameswater.co.uk</u>, follow us on twitter <u>www.twitter.com/thameswater</u> or find us on <u>www.facebook.com/thameswater</u>. We're happy to help you 24/7.

Thames Water Limited (company number 2366623) and Thames Water Utilities Limited (company number 2366661) are companies registered in England and Wales, both are registered at Clearwater Court, Vastern Road, Reading, Berkshire RG1 8DB. This email is confidential and is intended only for the use of the person it was sent to. Any views or opinions in this email are those of the author and don't necessarily represent those of Thames Water Limited or its subsidiaries. If you aren't the intended recipient of this email, please don't copy, use, forward or disclose its contents to any other person – please destroy and delete the message and any attachments from your system.

Visit us online <u>www.thameswater.co.uk</u>, follow us on twitter <u>www.twitter.com/thameswater</u> or find us on <u>www.facebook.com/thameswater</u>. We're happy to help you 24/7.

Thames Water Limited (company number 2366623) and Thames Water Utilities Limited (company number 2366661) are companies registered in England and Wales, both are registered at Clearwater Court, Vastern Road, Reading, Berkshire RG1 8DB. This email is confidential and is intended only for the use of the person it was sent to. Any views or opinions in this email are those of the author and don't necessarily represent those of Thames Water Limited or its subsidiaries. If you aren't the intended recipient of this email, please don't copy, use, forward or disclose its contents to any other person – please destroy and delete the message and any attachments from your system.

Visit us online www.thameswater.co.uk , follow us on twitter www.twitter.com/thameswater or find us on www.facebook.com/thameswater. We're happy to help you 24/7.

Thames Water Limited (company number 2366623) and Thames Water Utilities Limited (company number 2366661) are companies registered in England and Wales, both are registered at Clearwater Court, Vastern Road, Reading, Berkshire RG1 8DB. This email is confidential and is intended only for the use of the person it was sent to. Any views or opinions in this email are those of the author and don't necessarily represent those of Thames Water Limited or its subsidiaries. If you aren't the intended recipient of this email, please don't copy, use, forward or disclose its contents to any other person – please destroy and delete the message and any attachments from your system.

Appendix H: Maintenance Schedule

Title:SuDS Management & Maintenance Technical NoteProjectHam Close, Richmond,Date:1st Feb 2022

1.0 Introduction

1.1 Jubb have been appointed by Hill Residential to produce a Sustainable Drainage Systems (SuDS) Maintenance and Management plan to support the planning application at Ham Close, Richmond.

2.0 Drainage Description

- 2.1 Reference should be made to drainage layouts submitted as part of this application. The development will have Surface water and Foul water sewer networks, as described below:
 - Foul water will be conveyed from the buildings towards the external sewers and routed towards the outfalls from site. The main site has 2no foul water outfalls to Thames Water (TW) sewers, one to the north and one to the south. The community centre has 1no outfall to sewer in Ham Street (formed as part of the new diversion). All FW from ground level and above aims to leave site via gravity, any flows from the basements will require to be pumped.
 - Surface water will be collected and controlled by green and blue roofs, where possible. From there it will be conveyed via pipes, raingardens, or permeable paving towards the belowground drainage which will control the runoff via hydrobrakes located on the outfall manholes. The main site will have 4no outfalls to TW sewers, 3no to the south and 1no to the north. The community centre will have 1no outfall to the south. All surface water will flow via gravity.

3.0 SuDS Features

- 3.1 SuDS drainage networks are designed to prevent flooding of a site, whilst providing water quality benefits and amenity value. SuDS and other proposed drainage infrastructure within the site as shown in the proposed drainage strategy include:
 - Gully drains,
 - Manholes,
 - Pipes,
 - Pumps,
 - Petrol Interceptors,
 - Green Roofs,
 - Blue Roofs,
 - Permeable Paving,
 - Raingardens,
 - Geocellular Attenuation,
 - Hydrobrake,

4.0 SuDS Management & Ownership

- 4.1 The drainage infrastructure to be constructed as part of proposed development will be a mixture of adopted and privately owned. All diversions and public sewers will be maintained by Thames Water. All other drainage infrastructure will be maintained privately.
- 4.2 All private drainage features will be managed and maintained by Hill either through an internal maintenance team or an external site management company.
- 4.3 A contractor will be held on standby for emergency reactive maintenance such as the removal of oil from the petrol interceptor after an oil spill on site.
- 4.4 As the scheme is progressed management and maintenance practices for taking care of the SuDS/drainage infrastructure will be constantly reviewed and updated with a final confirmed plan to be detailed at the completion of the construction.

5.0 SuDS Maintenance

General Requirements

Regular Maintenance	Frequency
Litter Collect all litter or other debris and remove from site at each site visit.	Monthly or when deemed necessary
Grass maintenance	
Amenity Grass – Mow all grass verges, paths and amenity grass at 35- 50mm with 75mm max. All cuttings to remain in situ.	Monthly or when deemed necessary
Flood Routes	
Make visual inspection of proposed overland flow routes. Check that the route is not obstructed by rubbish, new features etc. Remove obstructions as necessary.	Monthly

Catch Pit

Regular Maintenance	Frequency
Silt Trap, Inspection chambers	
Open cover to inspect level of silt present, where required remove the excess silt.	Monthly within first year, annually thereafter
Reactive Maintenance	Frequency

Gullies, Manholes

Regular Maintenance	Frequency
Gully Inlets	
Inspect physical structure of gully removing surface obstructions and silt as necessary. Check there is no physical damage.	Monthly
Silt Trap, Inspection chambers	
Remove cover and inspect ensuring water is flowing freely and that the existing route for water is unobstructed. Remove debris and silt.	Annually
Undertake inspection after leaf fall in autumn in which silt build up is more likely to occur.	
Reactive Maintenance	Frequency
Replace gully grating and manhole if physical damage has occurred.	
If a blockage in the drainage system occurs rod the necessary region within the system to ensure the blockage is removed.	As required

Petrol Interceptor

Regular Maintenance	Frequency
Inspection Chambers	
Remove cover and inspect ensuring water is flowing freely and that the existing route for water is unobstructed.	Annually
Undertake inspection after leaf fall in autumn in which silt build up is more likely to occur.	
Alarm System	A 11
Run a test to the alarm system to ensure that it is still operational.	Annually
Reactive Maintenance	Frequency
In the instance that the alarm within the system goes off silt/oil from	
the interceptor is to be removed and properly disposed of offsite.	As required
In the case of an oil/chemical spill relevant pipes within the drainage system will be jetted and the oil flushed into the separator removed	
appropriately afterwards.	

Hydrobrake

Regular Maintenance	Frequency
Inspection Chamber Remove cover to inspect and note any high-water levels, re-inspect 24hrs later to evaluate reduction of water levels.	Monthly or following severe storms, within first year.
Inspect ensuring that water is flowing appropriately through the flow control device and there are no obstructions to the flow of water immediately upstream or within the device. Remove debris and silt where necessary.	Monthly for 3 months, then every 6 months.
Reactive Maintenance	Frequency
If a blockage within the hydrobrake unit occurs, it will need to be either jetted or replaced depending on the severity of the blockage.	As required

Permeable Paving

Regular Maintenance	Frequency
Surface Protection	
Remove litter and debris.	Monthly
Brush or suction sweep surface to remove silt build up and replace grit as required	Annually
Bedding Replacement	
Lift blocks and remove bedding material. Clean geotextile and replace bedding material with new silt-free granular material.	Every 10 years or as required
Reactive Maintenance	Frequency
Brush or suction sweep to remove any materials left on surface.	
Lift and re-bed blocks where movement has occurred. In case of settlement, full reconstruction and compaction of sub-base may be required. Sub-grade should be checked to washout of fines.	As required

Bio-retention Areas / Raingardens

Regular Maintenance	Frequency
Remove debris, litter and weeds	Quarterly
Inspect surface for infiltration, ponding/siltation	Quarterly
Inspect perforated pipe drainage	Annually (after rain)
Maintain planting and replace where required	Annually (during growing season)
Remove sediment	Annually or as required
Reactive Maintenance	Frequency
Replace planting and filter medium as required	
Relevel uneven surfaces and reinstate design levels	As required

Green / Blue / Brown Roofs

Regular Maintenance	Frequency
Vegetation Management	
Remove debris that includes fallen leaves and litter to prevent clogging of inlet drains and interference with plant growth	Six monthly and annually or as required
Remove nuisance and invasive vegetation, including weeds. Mow grasses, prune shrubs and manage other planting as required	Six monthly or as required
During establishment (i.e. year one), replace dead plants as required. Post establishment, replace dead plants as required (where >5% of coverage)	Annually (in autumn)
Inspections Inspect all components including soil substrate, vegetation, drains, irrigation systems (if applicable), membranes and roof structure for proper operation, integrity of waterproofing and structural stability Inspect underside of roof for evidence of leakage Inspect soil substrate for evidence of erosion channels and identify and sediment sources	Annually and after severe storms
Reactive Maintenance	Frequency
If erosion channels are evident, these should be stabilised with extra soil substrate similar to the original material, and sources of erosion damage should be identified and controlled If drain inlet has settled, cracked or moved, investigate and repair as appropriate	As required

Pump Installations

Regular Maintenance	Frequency
Visual inspection of the unit. Rise and inspection of the pump. Seal chamber oil check. Level control equipment cleaned and tested. Inspection and test of Control Panel functionality. Motor Insulation tested and recorded.	Annually or as agreed with manufacturer to maintain efficient and reliable system in operation
Reactive Maintenance	Frequency
Repair / rehabilitation of inlets, outlets, vents and other components	As required or stated by manufacturer

Attenuation Tank

Regular Maintenance	Frequency
Remove cover and inspect ensuring water inflow is unobstructed and check for siltation and debris. Remove debris and silt. Undertake inspection after leaf fall in autumn in which silt build up is more likely to occur.	Annually
Review covers and surface for signs of settlement or structural degradation	Annually
Reactive Maintenance	Frequency
Replace inspection cover if physical damage has occurred. If siltation is impeding flow and reducing volumne then the tank is to be flushed and cleared with a gully sucker or similar. Visual inspection or CCTV survey of the tank to be carried out where possible.	As required