

Subject:	Surface Water Drainage Assessment
Prepared By:	Elizabeth Edney
Date:	May 2022
Note No:	TN001
Job No:	332511103
Job Name:	St. Mary's Grove Garages, Richmond

1. Introduction

- 1.1. This Note outlines the existing and proposed surface water drainage arrangements for the redevelopment of the St. Mary's Grove garages in Richmond-upon-Thames.
- 1.2. Stantec has many years of experience in, amongst other areas, the assessment of flood risk, hydrology, flood defence and river engineering. The authors and reviewers of this Note are experienced engineers and are members of the Chartered Institution of Water and Environmental Management (CIWEM).
- 1.3. This Note has been prepared in accordance with the relevant national, regional and local planning policy, and statutory authority guidance as follows:
 - National policy contained within the **National Planning Policy Framework (NPPF)** updated July 2021 with reference to Section 14 'Meeting the challenge of climate change, flooding and coastal change;
 - The **NPPF Planning Practice Guidance (PPG)** released in March 2014 ('Flood Risk and Coastal Change' section) and most recently updated in August 2021;
 - The Environment Agency (EA) 'Flood Risk Assessments: Climate Change Allowances' guidance, released in February 2016 and last updated May 2022;
 - The 'London Plan; The Spatial Development Strategy for Greater London March 2021', with specific reference to Policy SI 12 'Flood Risk Management' and Policy 5.13 'Sustainable Drainage';
 - The **DEFRA 'Non-Statutory Technical Standards for Sustainable Drainage Systems'**, dated March 2015;
 - CIRIA SuDS Manual C753, dated November 2015; and
 - The 'London Borough of Richmond-upon-Thames Local Plan' adopted July 2018, with specific reference to Policy LP21 'Flood Risk and Sustainable Drainage'.

2. Site Setting and Proposals

2.1. The site is 0.115 hectares (ha) in area and is located on Grena Gardens off St. Mary's Grove in the London Borough of Richmond-upon-Thames (LBR) (OS grid reference site centre 518,745m E; 175,202m N; nearest postcode TW9 1UY) – see Figure 2.1 overleaf.

J:\332511103\WP\332511103_TN001_St Marys Grove Richmond Drainage Note_May2022_Rev A.docx

- 2.2. The site is mostly impermeable and currently consists of an access road leading to garages and a small parking area. A small area of grass is present in the northern part of the site equating to 64 square metres (sqm).
- 2.3. The site is bordered by gardens of adjacent residential properties and is accessed from the east via St. Mary's Grove.
- 2.4. The site topographic survey undertaken by Twickenham Surveys in May 2012 (to an arbitrary datum of 10.00m) is provided in **Appendix TN001-A** and shows the following:
 - The access road into the site slopes from 10.39m within the site to approximately 9.95m at the junction with St. Mary's Grove;
 - The remainder of the site is relatively flat with levels ranging from 10.65m along the southern boundary to 9.20m along the northern boundary.
- 2.5. The proposals are for the demolition of the garages and the construction of 5 no. self-contained elderly person dwellings (including 4 no. wheelchair accessible units) with retained access road from St. Mary's Grove, disabled parking bay and landscaping as shown on the drawings by Clive Chapman Architects in Appendix TN001-B.

J:\332511103\WP\332511103_TN001_St Marys Grove Richmond Drainage Note_May2022_Rev A.docx

3. Existing Surface Water Drainage Regime

- 3.1. The topographic survey in **Appendix TN001-A** shows the presence of a drainage channel within the site which receives surface water runoff from the car parking spaces along the southern edge of the site and a small area immediately north of the channel. The remainder of the site slopes northwards and drains into a second drainage channel in the northern part of the site.
- 3.2. Two soakaways are present to the west of the garages which have a layer of sludge and have likely not been cleared or maintained frequently. It is likely that the drainage channels within the site drain to the southern soakaway however no connections are shown.
- 3.3. The access road onto St. Mary's Grove slopes from west to east and drains into the highway drainage system on St. Mary's Grove.
- 3.4. The existing impermeable area is 0.109ha. The area access road that will be retained and will continue to drain to the highway drainage system is approximately 260sqm (0.026ha). The total existing impermeable area that drains to the existing soakaways is 0.083ha.
- 3.5. The brownfield runoff rates, and volume have been calculated using the Modified Rational Method and are provided in Table 3.1. A copy of the calculations is provided in Appendix TN001-C.

Return Period	Brownfield Runoff Rate 0.083ha (I/s)
1 in 1 year	8.5
1 in 2 year	11.0
1 in 30 year	20.9
1 in 100 year	27.1

Table 3.1: Summary of Existing Surface Water Runoff Rates

Return Period	Existing Brownfield Runoff Volume 0.083ha (m ³)		
1 in 100 year	59.6		

Table 3.2: Existing Surface Water Runoff Volumes 100 Year 360 Minute Rainfall Event

4. Surface Water Drainage Discharge Destination

- 4.1. The NPPF recognises that flood risk and other environmental damage can be managed by minimising changes in the volume and rate of surface water runoff from development sites and recommends that priority be given to the use of SuDS in new development.
- 4.2. As the intention of SuDS is to mimic the natural drainage regime of the undeveloped site, the NPPF PPG states the following (consistent with the Building Regulations H3 hierarchy):

...the aim should be to discharge surface water runoff as high up the following hierarchy of drainage options as reasonably practicable:

- into the ground (infiltration),

- to a surface water body,
- to a surface water sewer, highway drain or another drainage system,
- to a combined sewer

J:\332511103\WP\332511103_TN001_St Marys Grove Richmond Drainage Note_May2022_Rev A.docx

4.3. This is expanded by the London Plan March 2021 SuDS hierarchy as follows:

i) Rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation) ii) Rainwater for infiltration to ground or close to source iii) Rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens) iv) Rainwater discharge direct to a watercourse (unless not appropriate) v) Controlled rainwater discharge to a surface water sewer or drain vi) Controlled rainwater discharge to a combined sewer.

4.4. The hierarchy is considered in order below:

i) Rainwater use as resource

4.5. Green roofs will be used over the roof area (0.016ha) as shown on the plan in **Appendix TN001-B**. It may also be feasible to incorporate rainwater butts but for the purposes of this assessment, this has been omitted from any attenuation volume calculations, since the capacity within the system is not guaranteed for any particular storm. The indicative rainwater downpipes are shown on **Stantec drawing 332511103/SK01** in **Appendix TN001-D**.

ii) **Discharge to Ground (Infiltration)**

- 4.6. The online British Geological Survey (BGS) viewer indicates that the area of the site is underlain by the Kempton Park Gravel Member (Sand and Gravel) over the London Clay Formation (Clay and Silt).
- 4.7. A BGS borehole located approximately 150m to the north-east of the site (BGS ref. 18478303) indicates that the ground conditions in the area are as follows:
 - Made Ground (brown clayey silty SAND with some GRAVEL) to 0.80metres below ground level (m bgl);
 - Soft brown sandy **CLAY** to 1.50m bgl, with some fine to medium flint **GRAVEL** from 1.00-1.50m bgl;
 - Silty to fine to coarse **SAND** to 2.80m bgl;
 - Medium dense brown fine to coarse SAND with some GRAVEL and flint to 3.90m bgl;
 - Medium dense brown slightly clayey silty fine to coarse SAND and fine to coarse GRAVEL to 5.00m bgl;
 - Very sandy **GRAVEL** to 6.00m bgl;
 - Stiff fissured grey-brown **CLAY** to 15.00m bgl (base of borehole).
- 4.8. Groundwater was struck at 3.00m bgl rising to 2.70m bgl.

J:\332511103\WP\332511103_TN001_St Marys Grove Richmond Drainage Note_May2022_Rev A.docx

- 4.9. The above information and the presence of existing soakaway drainage at the site would indicate that the soils would have a permeability that is suitable for infiltration drainage. Given the presence of groundwater at depth, any infiltration drainage features would need to be no greater than 1.5m in depth.
- 4.10. An infiltration rate of 1 x 10⁻⁵ m/s (0.036m/hr) has been assumed as a conservative approach for the sizing of the proposed infiltration drainage features at the site. The infiltration rate at the site will need to be confirmed by intrusive site testing at the detailed design stage.

iii) Attenuation in Green Infrastructure Features

- 4.11. Sufficient space is not available for the use of open infiltration basins due to the requirement for a minimum 5 metre easement from the proposed building and the boundary with adjacent properties.
- 4.12. The use of rainwater gardens/planters adjacent to the residential units themselves and within landscaped areas is feasible and this will be considered further at the detailed design stage.

5. **Proposed Runoff Rates and Volumes**

5.1. The DEFRA '*Non-statutory Technical Standards for Sustainable Drainage Systems*' (2015) states the following in relation to surface water runoff and volume control for previously developed sites:

"S3 For developments which were previously developed, the peak runoff rate from the development to any drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event must be as close as reasonably practicable to the greenfield runoff rate from the development for the same event, but should never exceed the rate of discharge from the development prior to redevelopment for that event.

S5 Where reasonably practicable, for developments which have been previously developed, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event must be constrained to a value as close as is reasonably practicable to the greenfield runoff volume for the same event, but should never exceed the runoff volume from the development site prior to the redevelopment for that event.

S6 Where it is not reasonably practicable to constrain the volume of runoff to any drain, sewer or surface water body in accordance with **S4** or **S5** above, the runoff volume must be discharged at a rate that does not adversely affect flood risk."

- 5.2. The proposed impermeable area has been calculated as 0.070ha (including green roof areas). The existing impermeable area is 0.083ha and therefore there will be a reduction in impermeable area and therefore runoff rates/volumes from the site post re-development before further mitigation is considered.
- 5.3. The London Plan 2021 Policy 5.13 'Sustainable Drainage' states that:

"B Development proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible."

- 5.4. The greenfield runoff rates have been calculated using the Institute of Hydrology (IoH)/ICP SuDS Method for an area of 1ha and are provided in Appendix TN001-C. It is proposed to dispose of surface water runoff from the proposed development via infiltration. The proposed 'filtration' rate through the sub-base is 1.0 l/s.
- 5.5. The attenuation volumes provided at the site are discussed in **Section 6**.

J:\332511103\WP\332511103_TN001_St Marys Grove Richmond Drainage Note_May2022_Rev A.docx

6. Surface Water Drainage – Proposed Approach

- 6.1. The proposals are for the demolition of the garages and the construction of 5 no. self-contained elderly person dwellings (including 4 no. wheelchair accessible units) with retained access road from St. Mary's Grove, disabled parking bay and landscaping as shown on the drawings by Clive Chapman Architects in Appendix TN001-B.
- 6.2. The London Plan 2021 Policy 5.13 'Sustainable Drainage' states that:

"C Development proposals for impermeable surfacing should normally be resisted unless they can be shown to be unavoidable, including on small surface was such as front gardens and driveways.

D Drainage should be designed and implemented in ways that promote multiple benefits including increased water use efficiency improved water quality and enhanced biodiversity, urban greening, amenity and recreation."

- 6.3. The proposed surface water drainage arrangements are shown on **Stantec drawing** 332511103/SK01 in Appendix TN001-D.
- 6.4. It is proposed to incorporate 0.016ha of green roof over most of the unit roof areas and permeable surfacing with underlying storage across the external hard standing and disabled parking bay in the central part of the site, with infiltration to ground through the base of the sub-base. The downpipes from all roof areas will connect to the sub-base beneath the permeable surfacing. The permeable pavement sub-base will consist of a layer of stone with a 30% porosity (250mm depth) to provide water quality treatment before runoff filtrates to the underlying 150mm cellular layer with a 95% porosity.
- 6.5. The access road and parking spaces to be retained in the south-western part of the site (0.016ha) will remain at existing levels/tarmac surfacing and will continue to drain to the existing drainage channel in the area. The drainage channel will be connected to the sub-base beneath the adjacent permeable surfacing. The remainder of the existing access road (0.026ha) will also remain at existing levels/tarmac surfacing and continue to drain as existing to St. Mary's Grove.
- 6.6. The volume of attenuation utilised within the permeable pavement for the 1 in 100 annual probability +40% allowance for climate change rainfall event is approximately 38m³. The green roof potentially has an attenuation volume of approximately 11m³ based on an assumed 80mm depth of drainage layer with a 90% porosity.
- 6.7. The MicroDrainage results in **Appendix TN001-D** also demonstrate that there is no flooding of the proposed surface water drainage system up to and including the 1 in 100 annual probability +40% allowance for climate change rainfall event. In the event of a rainfall event greater than the design rainfall event, the external hard standing will be laid to fall away from the proposed units so that surface water runoff would be conveyed to/pond in the paved and landscaped areas to mitigate against the residual risk of surface water ingress in an extreme rainfall event.

7. Water Quality and Maintenance

- 7.1. The sources of surface water runoff from the proposed development will be from the roof areas which will consist of green roofs, footpaths which will not be subject to vehicular traffic and the disabled parking bay which will be subject to light vehicular movements. The external hardstanding draining into the central part of the site will consist of permeable surfacing which will provide appropriate water quality treatment through filtration through the stone sub-base layer before surface water runoff is infiltrated to ground through the base of the underlying cellular sub-base layer.
- 7.2. All rainwater downpipe sumps should be inspected at least monthly to remove any build-up of silt and debris.

J:\332511103\WP\332511103_TN001_St Marys Grove Richmond Drainage Note_May2022_Rev A.docx

7.3. Typical maintenance tasks and frequency for the permeable pavements and green roofs as taken from the CIRIA SuDS Manual C753 are shown in Table 7.1 and Table 7.2. The proposed surface water drainage system will be managed by the Habinteg Housing Group once constructed.

Permeable Paving	
Regular Maintenance	Frequency
Cleaning: Brush regularly and remove sweepings from all hard surfaces. Clean inlets	Monthly
Occasional Tasks	Frequency
Brush and Vacuum Surface	End of winter (April) to collect winter debris Mid - summer to collect dust, flower and grass type deposits. After autumn leaf fall (November)
Remedial Work	Frequency
Monitor effectiveness of permeable pavement (use an observation well) and when water does not infiltrate immediately advise client	Monthly for the first 6 months of operation, then as required.

Table 7.1: Typical Maintenance Tasks and Frequency for Permeable Pavements

Green Roof	
Regular Maintenance	Frequency
Remove debris and litter to prevent clogging of inlet drains and interference with plant growth	Six monthly and annually
Replace dead plant as required during establishment (i.e. year one)	Monthly (but usually responsibility of manufacturer)
Post establishment, replace dead plants as required (where <5% coverage)	Annually (in autumn)
Remove fallen leaves and debris from deciduous plant foliage, and nuisance/invasive vegetation	Six monthly or as required
Inspections	Frequency
Inspect all components including soil substrate, vegetation, drains, irrigation systems (if applicable), membranes & roof structure for proper operation, integrity of waterproofing & structural stability	Annually and after severe storms
Inspect drain inlets to ensure unrestricted runoff from the drainage layer to the conveyance or roof drainage system	Annually and after severe storms
Inspect underside of roof for evidence of leakage	Annually and after severe storms
Remedial Work	Frequency
Stabilise erosion channels if these have formed	As required
Repairs to drainage inlets/outlets	As required

Table 7.2: Typical Maintenance Tasks and Frequency for Green Roofs

J:\332511103\WP\332511103_TN001_St Marys Grove Richmond Drainage Note_May2022_Rev A.docx

8. Summary

- 8.1. The proposed surface water drainage system has been designed to comply with national policy and London Plan requirements. The site currently drains via infiltration to on-site soakaways with minimal water quality treatment.
- 8.2. The proposed surface water drainage strategy will incorporate SuDS techniques including green roofs, rain gardens where feasible and permeable pavements across the new external hardstanding in the central part of the site. Downpipes from the proposed roof areas will connect to the permeable pavement sub-base via rainwater diffuser units with infiltration through the underlying sub-base. Filtration through the permeable pavement sub-base will provide an appropriate level of water quality treatment.
- 8.3. Intrusive testing will be undertaken at the detailed design stage to confirm ground conditions, groundwater levels and infiltration rates for the site.

DOCUMENT ISSUE RECORD

Technical Note No	Rev	Date	Prepared	Reviewed	Approved
332511103/TN001	-	04/05/22	E Edney	J.N Pulsford	J.N Pulsford
332511103/TN001	A	23/05/22	E Edney	J.N Pulsford	J.N Pulsford

This report has been prepared by Stantec UK Limited ('Stantec') on behalf of its client to whom this report is addressed ('Client') in connection with the project described in this report and takes into account the Client's particular instructions and requirements. This report was prepared in accordance with the professional services appointment under which Stantec was appointed by its Client. This report is not intended for and should not be relied on by any third party (i.e. parties other than the Client). Stantec accepts no duty or responsibility (including in negligence) to any party other than the Client and disclaims all liability of any nature whatsoever to any such party in respect of this report. T: +44 (0)118 9500 761 E: PBA.Reading@stantec.com

J:\332511103\WP\332511103_TN001_St Marys Grove Richmond Drainage Note_May2022_Rev A.docx

Appendix TN001-A

Drawing 1272LSa by Twickenham Surveys dated May 2012

J:\332511103\WP\332511103_TN001_St Marys Grove Richmond Drainage Note_May2022_Rev A.docx

Appendix TN001-B

Drawing SMGG21-02 by Clive Chapman Architects dated May 2022

J:\332511103\WP\332511103_TN001_St Marys Grove Richmond Drainage Note_May2022_Rev A.docx

WEBSITE WWW.CCAR.CO.UK

Appendix TN001-C

Brownfield Runoff Rates & Volume 0.083ha

Greenfield Runoff Rates 1ha

J:\332511103\WP\332511103_TN001_St Marys Grove Richmond Drainage Note_May2022_Rev A.docx

Brownfield Runoff Rates Modified Rational Method

Project Title	St. Mary's G	St. Mary's Grove Garages, Richmond					
Project No	332511103	100					

Existing Site Condition

Rainfall Model	FSR	
Storm Duration	15.0	mins
Global Time of Entry	5.0	mins
Volumetric Runoff Coefficient Cv	0.90	
Routing Coefficient Cr	1.30	
Contributing Area A	0.083	ha

	Average Rainfall Intensity, i (mm/hr)	Runoff Rate , Q (I/s)
1 in 1 Year	31.5	8.5
1 in 2 Year	40.7	11.0
1 in 30 Year	77.3	20.9
1 in 100 Year	100.4	27.1

Rainfall intensity extracted from MicroDrainage rainfall profiles (v.2020.1)

Based on the Modified Rational Method as described in CIRIA C753 - The SuDS Manual 2015

Runoff Volume 100yr 6hour storm

Rainfall intensity 6 hour storm

10.22 mm/hr

Runoff Volume (m³)

59.6

DOCUMENT ISSUE RECORD

Rev	Comments	Prepared	Date	Checked	Date
-	Original calculation	E Edney	19/04/2022	J Pulsford	27/04/2022

Stantec UK Ltd		Page 1
Caversham Bridge House		
Waterman Place		
Reading, RG1 8DN		Mirro
Date 27/04/2022 11:36	Designed by eedney	Dcainago
File	Checked by	Diamage
Innovyze	Source Control 2020.1	

ICP SUDS Mean Annual Flood

Input

Return	Period	(ye	ears)	100		Soil	0.30	00
	Ar	rea	(ha)	1.000		Urban	0.00	00
	SA	AR	(mm)	600	Region	Number	Region	6

Results 1/s

QBAR Rural 1.5 QBAR Urban 1.5 Q100 years 4.9 Q1 year 1.3 Q30 years 3.4 Q100 years 4.9

Appendix TN001-D

Stantec sketch 332511103/SK01

MicroDrainage Source Control outputs

J:\332511103\WP\332511103_TN001_St Marys Grove Richmond Drainage Note_May2022_Rev A.docx

Stantec UK Ltd						Page 1				
Caversham Bridge House	3	3251110	3 St Mary	's Gro	ve					
Waterman Place	P	ermeabl	e Pavemen	ıt						
Reading, RG1 8DN						Micco				
Date 04/05/2022 15:04	D	esigned	by eedne	v						
File 220428 332511103 ST MAR.	File 220428 332511103 ST MAR Checked by INP									
 Innovyze	S	ource C	ontrol 20	20.1						
Summary of Re	esults	s for 1	vear Ret	urn Pei	riod					
			4							
Half	Drain	Time : 1	110 minutes	· •						
Storm	Max	Max	Max	Max	Status					
Event	Level	Depth In	filtration	Volume						
	(m)	(m)	(1/s)	(m³)						
15 min Summer	8.485	0.015	0.3	2.7	ОК					
30 min Summer	8.490	0.020	0.4	3.7	O K					
60 min Summer	8.497	0.027	0.5	4.9	O K					
120 min Summer	8.501	0.031	0.6	5.7	O K					
180 min Summer	8.503	0.033	0.6	6.1	ОК					
240 min Summer	8.504	0.034	0.7	6.3	O K					
360 min Summer	8.5U5	0.035	0.7	6.4	U K					
480 min Summer	8.504	0.034	0.7	6.3	OK					
720 min Summer	8 503	0.033	0.0	6.0	O K O K					
960 min Summer	8 501	0.033	0.0	5.6	O K O K					
1440 min Summer	8.497	0.027	0.5	5.0	0 K					
2160 min Summer	8.493	0.023	0.5	4.2	ОК					
2880 min Summer	8.490	0.020	0.4	3.7	ΟK					
4320 min Summer	8.486	0.016	0.3	3.0	0 K					
5760 min Summer	8.484	0.014	0.3	2.5	O K					
7200 min Summer	8.482	0.012	0.2	2.2	0 K					
8640 min Summer	8.480	0.010	0.2	1.9	0 K					
10080 min Summer	8.479	0.009	0.2	1.7	OK					
IJ MIII WINCEL	0.403	0.013	0.3	2.1	ΟK					
Storm		Rain	Flooded Ti	lme-Peak						
Event		(mm/nr)	(m ³)	(mins)						
15 min S	Summer	31.497	0.0	18						
30 min S	Summer	20.396	0.0	38						
60 min S	Summer	12.800	0.0	62						
120 min S	Summer	7.865	0.0	110						
180 min S	Summer	5.886	0.0	140						
240 min S	Summer	4.785	0.0	170						
360 min S	summer	3.558	0.0	236						
400 min 5	Summor	2.013	0.0	202 202						
720 min 9	Summer	2.433	0.0	200 434						
960 min S	Summer	1.715	0.0	560						
1440 min S	Summer	1.268	0.0	808						
2160 min S	Summer	0.938	0.0	1172						
2880 min S	Summer	0.758	0.0	1532						
4320 min S	Summer	0.560	0.0	2252						
5760 min S	Summer	0.452	0.0	2992						
7200 min S	Summer	0.383	0.0	3696						
8640 min 5 10000 min 6	Summor	U.JJJ N 200	0.0	4416 5150						
15 min 0	Vinter	31.497	0.0	18						
(C	01982-	-2020 In	nnovyze							

Stantec UK Ltd		Page 2
Caversham Bridge House	332511103 St Mary's Grove	
Waterman Place	Permeable Pavement	
Reading, RG1 8DN		Mirm
Date 04/05/2022 15:04	Designed by eedney	Desinado
File 220428_332511103 ST MAR	Checked by JNP	Diamage
Innovyze	Source Control 2020.1	

Summary of Results for 1 year Return Period

	Storm Event		Max Level	Max Depth	Max Infiltration	Max Volume	Status
			(m)	(m)	(1/s)	(m ³)	
30	min	Winter	8.490	0.020	0.4	3.7	ОК
60	min	Winter	8.497	0.027	0.5	4.9	ОК
120	min	Winter	8.501	0.031	0.6	5.8	ОК
180	min	Winter	8.503	0.033	0.6	6.1	ОК
240	min	Winter	8.504	0.034	0.7	6.2	ОК
360	min	Winter	8.503	0.033	0.6	6.1	ОК
480	min	Winter	8.502	0.032	0.6	5.9	ОК
600	min	Winter	8.501	0.031	0.6	5.6	ОК
720	min	Winter	8.499	0.029	0.6	5.4	ОК
960	min	Winter	8.497	0.027	0.5	4.9	ОК
1440	min	Winter	8.492	0.022	0.4	4.1	ОК
2160	min	Winter	8.488	0.018	0.4	3.3	ОК
2880	min	Winter	8.485	0.015	0.3	2.8	ОК
4320	min	Winter	8.482	0.012	0.2	2.1	ОК
5760	min	Winter	8.479	0.009	0.2	1.7	ОК
7200	min	Winter	8.478	0.008	0.2	1.5	ОК
8640	min	Winter	8.477	0.007	0.1	1.3	ΟK
10080	min	Winter	8.476	0.006	0.1	1.1	ОК

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	20.396	0.0	38
60	min	Winter	12.800	0.0	62
120	min	Winter	7.865	0.0	114
180	min	Winter	5.886	0.0	144
240	min	Winter	4.785	0.0	180
360	min	Winter	3.558	0.0	252
480	min	Winter	2.873	0.0	322
600	min	Winter	2.433	0.0	390
720	min	Winter	2.124	0.0	456
960	min	Winter	1.715	0.0	588
1440	min	Winter	1.268	0.0	840
2160	min	Winter	0.938	0.0	1208
2880	min	Winter	0.758	0.0	1560
4320	min	Winter	0.560	0.0	2280
5760	min	Winter	0.452	0.0	3056
7200	min	Winter	0.383	0.0	3816
8640	min	Winter	0.335	0.0	4504
10080	min	Winter	0.298	0.0	5040

Stant	ec UK I	Ltd								Pac	je 3
Caver	Caversham Bridge House 332511103 St Mary's Grove										
Waterman Place Permeable Pavement											
Reading, RG1 8DN											
Date	Date 04/05/2022 15:04 Designed by eedney Designed										
File 2	220428	_3325111	03 ST	MAR	Check	ed by	JNP				anaye
Innov	yze				Sourc	e Cont	crol 2	020.1			
				R	ainfall	Deta	ils				
		Pain	fəll M	odel		FGD		Winter 9	torms	Ves	
	Re	turn Peri	od (ye	ars)		1 1		Cv (Su	mmer)	0.900	
			Re	gion Eng	land and	Wales		Cv (Wi	nter)	0.900	
			M5-60 Rat	(mm) io R		20.000	Longes	st Storm (st Storm (mins) mins)	15 10080	
		Sum	mer St	orms		Yes	Cl	Limate Cha	.nge %	+0	
					Green	Roof					
				Area	(m³) 156	Evapo	ration	(mm/day)	3		
		Depre	ession	Storage	(mm) 5	De	cay Coe	fficient	0.050		
Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	То:	(ha)	From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	1	0 002025	20	26	0 000572	E A	60	0 000116	0.6	100	0 000000
4	4 8	0.002835	32	30 40	0.000372	64 68	00 72	0.000116	100	100	0.000023
8	12	0.001900	40	44	0.000384	72	76	0.000077	104	108	0.000016
12	16	0.001556	44	48	0.000314	76	80	0.000063	108	112	0.000013
20	20 24	0.001274	48 52	5∠ 56	0.000257	80	84 88	0.000052	112	116	0.000010
24	28	0.000854	56	60	0.000172	88	92	0.000035			
28	32	0.000699	60	64	0.000141	92	96	0.000028			
				Т	ime Area	a Diac	ram				
							<u>, </u>				
				То	tal Area	(ha) (.054				
					Time (mi	ns) Aı	rea				
				F	from: To	o: (ł	na)				
					0	40.	054				
					0	1 0.	001				
				T	ime Area	a Diag	gram				
				_							
				10	tal Area	(na) (0.000				
					Time (mi	.ns) Aı	rea				
				F	From: To	o: (ł	na)				
					0	4 0.	000				
				©1	982-202) Innc	ovyze				

Stantec UK Ltd					Page 4
Caversham Bridge House	332513	L103 St M	lary's Gro	ove	
Waterman Place	Permea	able Pave	ement		
Reading, RG1 8DN					Micco
Date 04/05/2022 15:04	Design	ned by ee	dney		
File 220428 332511103 ST MAR	Checke	ed by JNF	-		Diamada
 Innovyze	Source	e Control	2020.1		
<u> </u>	Aodel I	etails			
Storage is Or	nline Co	over Level	(m) 9.000		
Con	nplex S	tructure			
	pron e	01400410			
Ce	llular	Storage			
_		()	70 6 5 1	De et la c	
Inver Infiltration Coefficient	ct Level Base (m	(m) 8.4 /hr) 0.036	500 Saiety Pr	rosity 0.95	
Infiltration Coefficient	Side (m	/hr) 0.000	000	0.99	
Depth (m) Area (m ²) Inf. Are	∋a (m²)	Depth (m)	Area (m²)	Inf. Area (,m²)
0.000 194.0	194.0	0.151	0.0	20	5.8
0.150 194.0	205.8				
Pro	orous ('ar Park			
<u> </u>	01005 0	ar rark			
Infiltration Coefficient Base	(m/hr)	0.00000		Width (m)	10.0
Membrane Percolation (mm/hr)	1000		Length (m)	19.4
Max Percolation	(l/s) Factor	53.9 20 De	nression S	Slope (1:X)	300.0
Po	rosity	0.30	Evaporati	on (mm/day)	3
Invert Lev	el (m)	8.620	Cap Volume	e Depth (m)	0.250
©198	32-2020	Innovvz	е		

Stantec UK Ltd						Page 1
Caversham Bridge Ho	ouse	332511	103 St Mar	y's Gro	ve	
Waterman Place						
Reading, RG1 8DN	Micco					
Date 04/05/2022 15:						
File 220428 3325111	03 ST MAR	Checke	d by JNP	01		Drainage
111100 y 20		Source	CONCLOT 2	020.1		
Sum	mary of Resi	ilts for	30 vear Be	turn Pa	riod	
<u>5 un</u>	mary or nest	1105 101	JU YEAL NE		1100	
	Half D	rain Time	: 172 minute	s.		
	Storm M	fax Max	Max	Max	Status	
	Event Le	evel Depth	Infiltration	n Volume		
	((m) (m)	(1/s)	(m³)		
15	min Summer 8.	516 0.046	0.9	9 8.4	ОК	
30	min Summer 8.	532 0.062	1.0	0 11.4	ОК	
60	min Summer 8.	549 0.079	1.0	0 14.5	ΟK	
120	min Summer 8.	561 0.091	1.0	0 16.7	0 K	
180	min Summer 8.	563 0.093	1.0	0 17.2	O K	
240	min Summer 8.	563 0.093	1.0	17.2	ОК	
360	min Summer 8.	562 0.092	1.0	U 17.0	ОК	
480	min Summer 8.	559 0.089	1.(J 16.5	OK	
600	min Summer 8.	550 0.080	1.0	J 15.9 0 15-2	OK	
720	min Summer 8.	545 0.082	1.0	J 13.2 N 13.8	OK	
1440	min Summer 8.	531 0.061	1.(0 11.2	0 K	
2160	min Summer 8.	518 0.048	0.0	9 8.8	0 K	
2880	min Summer 8.	511 0.041	0.8	B 7.5	0 K	
4320	min Summer 8.	502 0.032	0.0	6 5.9	ОК	
5760	min Summer 8.	497 0.027	0.5	5 4.9	ОК	
7200	min Summer 8.	493 0.023	0.4	4 4.2	ОК	
8640	min Summer 8.	490 0.020	0.4	4 3.7	ΟK	
10080	min Summer 8.	488 0.018	0.3	3 3.3	O K	
15	min Winter 8.	516 0.046	0.9	9 8.4	ΟK	
	Storm	Rair	Flooded I	'ime-Peak		
	Event	(mm/h	r) Volume (m³)	(mins)		
	15 min Sur	mmer 77.2	97 0.0	26		
	30 min Sur	mmer 49.9	20 0.0	38		
	60 min Sur	mmer 30.8	11 0.0	64		
	120 min Sur	mmer 18.4	62 0.0	122		
	180 min Sur	mmer 13.5	43 0.0	164		
	240 min Sur	mmer 10.8	2/ 0.0	194		
	JOU MIN SUR	mmer /.8	72 U.U	258		
	600 min Sur	mmer 5.2	, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	324 300		
	720 min Sur	mmer 45	58 0.0	456		
	960 min Sur	mmer 3.6	28 0.0	586		
	1440 min Sur	mmer 2.6	28 0.0	828		
	2160 min Sur	mmer 1.9	0.0	1172		
	2880 min Sur	mmer 1.5	11 0.0	1536		
	4320 min Sur	mmer 1.0	91 0.0	2252		
	5760 min Sur	mmer 0.8	66 0.0	2992		
	7200 min Sur	mmer 0.7	24 0.0	3696		
	8640 min Sur	mmer 0.6	25 0.0	4416		
	10080 min Sur	mmer 0.5		5144		
	TO ULTU MII	110EL //.Z	. 0.0	20		
	©1	982-2020	Innovyze			

Stantec UK Ltd		Page 2
Caversham Bridge House	332511103 St Mary's Grove	
Waterman Place	Permeable Pavement	
Reading, RG1 8DN		Mirm
Date 04/05/2022 15:03	Designed by eedney	Dcainago
File 220428_332511103 ST MAR	Checked by JNP	Diamage
Innovyze	Source Control 2020.1	

Summary of Results for 30 year Return Period

	Storm Event		Max Level	Max Depth	Max Infiltration	Max Volume	Status
			(m)	(m)	(1/s)	(m³)	
30	min	Winter	8.532	0.062	1.0	11.4	ОК
60	min	Winter	8.549	0.079	1.0	14.5	ОК
120	min	Winter	8.561	0.091	1.0	16.7	ОК
180	min	Winter	8.563	0.093	1.0	17.1	ОК
240	min	Winter	8.562	0.092	1.0	17.0	ОК
360	min	Winter	8.559	0.089	1.0	16.4	ОК
480	min	Winter	8.554	0.084	1.0	15.5	ОК
600	min	Winter	8.549	0.079	1.0	14.5	ОК
720	min	Winter	8.543	0.073	1.0	13.5	ОК
960	min	Winter	8.532	0.062	1.0	11.5	ОК
1440	min	Winter	8.518	0.048	0.9	8.8	ОК
2160	min	Winter	8.507	0.037	0.7	6.9	ОК
2880	min	Winter	8.501	0.031	0.6	5.7	ОК
4320	min	Winter	8.493	0.023	0.5	4.2	ОК
5760	min	Winter	8.489	0.019	0.4	3.4	ОК
7200	min	Winter	8.486	0.016	0.3	2.9	ОК
8640	min	Winter	8.483	0.013	0.3	2.5	ОК
10080	min	Winter	8.482	0.012	0.2	2.1	ОК

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	49.920	0.0	38
60	min	Winter	30.811	0.0	62
120	min	Winter	18.462	0.0	118
180	min	Winter	13.543	0.0	172
240	min	Winter	10.827	0.0	200
360	min	Winter	7.872	0.0	270
480	min	Winter	6.278	0.0	344
600	min	Winter	5.265	0.0	414
720	min	Winter	4.558	0.0	482
960	min	Winter	3.628	0.0	608
1440	min	Winter	2.628	0.0	836
2160	min	Winter	1.902	0.0	1212
2880	min	Winter	1.511	0.0	1584
4320	min	Winter	1.091	0.0	2288
5760	min	Winter	0.866	0.0	3024
7200	min	Winter	0.724	0.0	3816
8640	min	Winter	0.625	0.0	4496
10080	min	Winter	0.552	0.0	5152

Stantec UK Ltd						Page 1
Caversham Bridge House	3	3251110	3 St Mary	's Gro	ve	
Waterman Place						
Reading, RG1 8DN	Micco					
Date 04/05/2022 15:02						
File 220428 332511103 ST MAE		'hecked	by JNP	1		Urainage
		lourgo ($\frac{1}{2}$	20 1		
IIIIOVyze	2	Source c	JULIOI 20	20.1		
Cummors of D	~~]+~	for 10	0 waar Ba	turn D	ariad	
Summary OF R	esuits	101 10	U year ke	LUIII PE	<u>er 10u</u>	
Hal	f Drair	n Time :	216 minutes			
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth In	filtration	Volume		
	(m)	(m)	(l/s)	(m³)		
15 min Summer	8 5 3 3	0 063	1 0	11 6	ОК	
30 min Summer	8.556	0.086	1.0	15.9	ОК	
60 min Summer	8.579	0.109	1.0	20.1	ОК	
120 min Summer	8.598	0.128	1.0	23.6	ОК	
180 min Summer	8.603	0.133	1.0	24.5	O K	
240 min Summer	8.603	0.133	1.0	24.4	O K	
360 min Summer	8.600	0.130	1.0	24.0	O K	
480 min Summer	8.596	0.126	1.0	23.3	ОК	
600 min Summer	8.592	0.122	1.0	22.5	ΟK	
720 min Summer	8.588	0.118	1.0	21.7	ОК	
960 min Summer	8.578	0.108	1.0	19.9	OK	
1440 min Summer	8.559	0.089	1.0	10.4	OK	
2160 min Summer	2 8.33/	0.067	1.0	12.3	OK	
4320 min Summer	8 510	0.032	1.0	9.0 7 4	0 K 0 K	
5760 min Summer	8.503	0.033	0.6	6.1	0 K	
7200 min Summer	8.498	0.028	0.5	5.2	ОК	
8640 min Summer	8.495	0.025	0.5	4.5	ОК	
10080 min Summer	8.492	0.022	0.4	4.1	ОК	
15 min Winter	8.533	0.063	1.0	11.6	O K	
		Daia	Tlaadad mi	me Deek		
Stor	rm	Rain (mm/hm)	Flooded Ti	(mine)		
	10	(1111)	(m ³)	(1113)		
15 min	Summer	100.377	0.0	30		
30 min	Summer	65.356	0.0	43		
60 min	Summer	40.510	0.0	64		
120 min	Summer	24.265	0.0	122		
180 min	Summer	L/./49	0.0	180		
240 min 360 min	Summer	10 220	0.0	218 270		
300 Min 480 min	Summer	8 120	0.0	2/8 340		
600 min	Summer	6.789	0.0	408		
720 min	Summer	5.862	0.0	476		
960 min	Summer	4.647	0.0	608		
1440 min	Summer	3.345	0.0	866		
2160 min	Summer	2.405	0.0	1216		
2880 min	Summer	1.901	0.0	1556		
4320 min	Summer	1.363	0.0	2252		
5760 min	Summer	1.075	0.0	2992		
7200 min	Summer	0.894	0.0	3696		
8640 min 10000 min	Summer	0./69	0.0	4416 5177		
15 min	Winter	100.377	0.0	30		
				00		
	©1982	-2020 I	nnovyze			

Stantec UK Ltd		Page 2
Caversham Bridge House	332511103 St Mary's Grove	
Waterman Place	Permeable Pavement	
Reading, RG1 8DN		Mirro
Date 04/05/2022 15:02	Designed by eedney	Dcainago
File 220428_332511103 ST MAR	Checked by JNP	Diamage
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Volume (m³)	Status	
30	min	Winter	8.556	0.086	1.0	15.9	ОК
60	min	Winter	8.579	0.109	1.0	20.1	ОК
120	min	Winter	8.598	0.128	1.0	23.5	ОК
180	min	Winter	8.603	0.133	1.0	24.4	ΟK
240	min	Winter	8.602	0.132	1.0	24.4	ОК
360	min	Winter	8.597	0.127	1.0	23.5	ОК
480	min	Winter	8.592	0.122	1.0	22.5	ОК
600	min	Winter	8.586	0.116	1.0	21.3	ОК
720	min	Winter	8.579	0.109	1.0	20.0	ОК
960	min	Winter	8.564	0.094	1.0	17.4	ОК
1440	min	Winter	8.539	0.069	1.0	12.7	ОК
2160	min	Winter	8.518	0.048	0.9	8.8	ОК
2880	min	Winter	8.509	0.039	0.8	7.2	ОК
4320	min	Winter	8.499	0.029	0.6	5.3	ОК
5760	min	Winter	8.493	0.023	0.5	4.2	ОК
7200	min	Winter	8.489	0.019	0.4	3.5	ОК
8640	min	Winter	8.487	0.017	0.3	3.0	ОК
10080	min	Winter	8.485	0.015	0.3	2.7	ОК

Storm			Rain	Flooded	Time-Peak	
Event			(mm/hr)	Volume	(mins)	
				(m³)		
30	min	Winter	65.356	0.0	43	
60	min	Winter	40.510	0.0	66	
120	min	Winter	24.265	0.0	120	
180	min	Winter	17.749	0.0	176	
240	min	Winter	14.138	0.0	228	
360	min	Winter	10.220	0.0	286	
480	min	Winter	8.120	0.0	360	
600	min	Winter	6.789	0.0	434	
720	min	Winter	5.862	0.0	506	
960	min	Winter	4.647	0.0	644	
1440	min	Winter	3.345	0.0	894	
2160	min	Winter	2.405	0.0	1208	
2880	min	Winter	1.901	0.0	1560	
4320	min	Winter	1.363	0.0	2296	
5760	min	Winter	1.075	0.0	3000	
7200	min	Winter	0.894	0.0	3744	
8640	min	Winter	0.769	0.0	4408	
10080	min	Winter	0.677	0.0	5096	

Stantec UK Ltd							Page 1
Caversham Bridge House		3	3251110	03 St Mar	y's Gro	ve	
Waterman Place		E	Permeabl	le Paveme	nt		
Reading, RG1 8DN							Micco
Date 04/05/2022 15:02		E	esigned	d bv eedn	ev		
File 220428 332511103	ST MAR		Checked	by JNP	- 1		Urainage
			Source (Control 2	020 1		
		<u>ــــــــــــــــــــــــــــــــــــ</u>	Jource		020.1		
Summary of	Result	s foi	r 100 v	ear Retur	n Perio	d (+20%)	
<u>Dammary Of</u>	ICDUIC	20 101	L 100 y		<u>II ICIIO</u>	<u>a (+200)</u>	
	Half	Drair	n Time :	268 minute	s.		
Sto:	rm	Max	Max	Max	Max	Status	
Eve	nt	Level	Depth I	nfiltratio	n Volume		
		(m)	(m)	(1/5)	(m ⁻)		
15 min	Summer	8.549	0.079	1.	0 14.5	O K	
30 min	Summer	8.577	0.107	1.0	0 19.7	ОК	
60 min	Summer	8.605	0.135	1.0	U 24.9	O K	
120 min 180 min	Summer	0.08U 8.705	0.210	1.0	J 29.3	0 K 0 K	
240 min	Summer	8.708	0.238	1.0	0 31.0	O K	
360 min	Summer	8.698	0.228	1.	30.4	ΟK	
480 min	Summer	8.686	0.216	1.0	0 29.7	O K	
600 min	Summer	8.670	0.200	1.0	28.8	ΟK	
720 min	Summer	8.642	0.172	1.0	0 27.9	ОК	
960 Min 1440 min	Summer	8.590	0.120	1.0	25.9	0 K	
2160 min	Summer	8.562	0.092	1.0	0 17.0	0 K	
2880 min	Summer	8.541	0.071	1.	0 13.1	ΟK	
4320 min	Summer	8.518	0.048	0.	9 8.9	O K	
5760 min	Summer	8.510	0.040	0.	8 7.3	ОК	
/200 min	Summer	8.504	0.034	0.	/ 6.3 C 5.5	OK	
10080 min	Summer	8.497	0.027	0.	5 4.9	0 K	
15 min	Winter	8.549	0.079	1.0	0 14.5	0 K	
	Storr	n	Rain	Flooded 1	'ime-Peak		
	Event	t	(mm/hr)	Volume	(mins)		
				(m³)			
	15 min	Summer	120.453	3 0.0	33		
	30 min	Summer	78.427	0.0	47		
	60 min	Summer	48.611	0.0	68		
	120 min	Summer	29.118	8 0.0	122		
	180 min	Summer	21.298	s 0.0	182		
	240 MILN 360 min	Summer	12.264		∠40 298		
	480 min	Summer	9.745	5 0.0	358		
	600 min	Summer	8.147	0.0	424		
	720 min	Summer	7.035	5 0.0	492		
	960 min	Summer	5.577	0.0	626		
	440 min 160 min	Summer	4.015 > 2 00F		888 1954		
2	880 min	Summer	2.281	0.0	1612		
4	320 min	Summer	1.635	5 0.0	2252		
5	760 min	Summer	1.290	0.0	3000		
7	200 min	Summer	1.073	3 0.0	3744		
8	640 min	Summer	0.923	3 0.0	4416		
10	15 min	summer Winter	120.453	. U.U 3 0.0	5144 33		
		©1982	-2020 I	Innovyze			

Stantec UK Ltd					Page 2
Caversham Bridge House	33251110	3 St Mar	y's Gro	ve	
Waterman Place	Permeabl	.e Paveme	nt		
Reading, RG1 8DN					Micco
Date 04/05/2022 15:02	Designed	l by eedn	еу		
File 220428 332511103 ST MAR	Checked	by JNP	-		Dialitada
 Innovyze	Source C	 Control 2	020.1		
Summary of Results f	or 100 ye	ear Retur	n Perio	d (+20응)	
Storm Max	x Max	Max	Max	Status	
Event Leve	al Depth In	nfiltratio	n Volume		
(m)	(m)	(1/s)	(m ³)		
30 min Winter 8.57	77 0.107	1.0	0 19.7	ОК	
60 min Winter 8.60)5 0.135	1.0	0 24.9	O K	
120 min Winter 8.65	79 0.209	1.0	0 29.3 0 30 7	ОК	
240 min Winter 8.70)8 0.238	1.0	0 30.9	0 K	
360 min Winter 8.69	0.222	1.0	0 30.0	O K	
480 min Winter 8.67	74 0.204	1.0	29.0	OK	
600 min Winter 8.63	36 U.166 4 0 147	1.0	U 27.8	0 K	
960 min Winter 8.59	98 0.128	1.0	23.5	0 K	
1440 min Winter 8.50	58 0.098	1.0	0 18.1	O K	
2160 min Winter 8.53	33 0.063	1.0	0 11.6	ОК	
2880 min Winter 8.51 4320 min Winter 8.50	17 0.047	0.9	9 8.7 7 6.4	ОК	
5760 min Winter 8.49	98 0.028	0.5	5 5.1	ОК	
7200 min Winter 8.49	0.023	0.5	5 4.3	O K	
8640 min Winter 8.49	0.020	0.4	4 3.7	ОК	
10080 min Winter 8.48	38 0.018	0	3 3.2	ΟK	
Storm	Rain	Flooded 1	'ime-Peak		
Event	(mm/hr)	Volume	(mins)		
		(m-)			
30 min Wint	er 78.427	0.0	47		
60 min Wint	er 48.611	0.0	68		
120 min Wint 180 min Wint	er 29.118 er 21.298	0.0	178		
240 min Wint	er 16.966	0.0	232		
360 min Wint	er 12.264	0.0	316		
480 min Wint	er 9.745	0.0	374		
600 min Wint 720 min Wint	er 7.035	0.0	448 522		
960 min Wint	er 5.577	0.0	666		
1440 min Wint	er 4.015	0.0	936		
2160 min Wint	er 2.885	0.0	1276		
2880 min Wint 4320 min Wint	er 2.281 er 1.635	0.0	1584 2292		
5760 min Wint	er 1.290	0.0	3008		
7200 min Wint	er 1.073	0.0	3744		
8640 min Wint	er 0.923	0.0	4432		
10080 min Wint	er 0.812	0.0	J144		
©198	32-2020 I	nnovyze			

Stantec UK Ltd							Page 1
Caversham Bridge Ho	use	3	3325111	03 St Mar	y's Gro	ve	
Waterman Place		I	Permeab	le Paveme	nt		
Reading, RG1 8DN							Micco
Date 04/05/2022 15:	01	I	Designe	d by eedn	ev		
File 220428 3325111	0.3 ST MAR		Checked	by JNP	- 1		Urainage
	00 01 1111		Source	Control 2	020 1		
111100 920			JOUICE		020.1		
Summary	of Result	ts fo	r 100 v	vear Retur	n Perio	d (+40%)	
Summary	OI Resul	<u>LS IU</u> .	<u>1 100 y</u>	ear Netur	II TELIO		
	Hal:	f Drain	n Time :	332 minute	s.		
	Storm	Max	Max	Max	Max	Status	
:	Event	Level	Depth 1	Infiltratio	n Volume		
		(m)	(m)	(1/s)	(m³)		
15	min Summer	8.564	0.094	1.0	0 17.4	ΟK	
30	min Summer	8.598	0.128	1.0	23.6	O K	
60	min Summer	8.687	0.217	1.(29.7	O K	
120	min Summer	8.780	0.310	1.(J 35.1	O K	
240	min Summer	8 823	0.344	1.0) 37.1) 37.6	OK	
360	min Summer	8.813	0.343	1.0	37.1	ΟK	
480	min Summer	8.801	0.331	1.0	36.3	0 K	
600	min Summer	8.785	0.315	1.0	35.4	ОК	
720	min Summer	8.768	0.298	1.0	34.5	ОК	
960	min Summer	8.732	0.262	1.0	J 32.4	OK	
2160	min Summer	8.592	0.122	1.0	23.1	0 K	
2880	min Summer	8.566	0.096	1.0	17.6	0 K	
4320	min Summer	8.531	0.061	1.0	0 11.2	O K	
5760	min Summer	8.517	0.047	0.9	9 8.6	0 K	
7200	min Summer	8.510	0.040	0.8	3 7.3	ОК	
10080	min Summer	8.505	0.035	0.	/ 6.4 6 5.7	OK	
15	min Winter	8.564	0.094	1.0) 17.4	0 K	
	Stor	m	Rain	Flooded I	'ime-Peak		
	Even	t	(mm/hr) Volume	(mins)		
				(m³)			
	15 min	Summer	r 140 52	8 0 0	36		
	30 min	Summer	r 91.49	8 0.0	50		
	60 min	Summer	r 56.71	3 0.0	72		
	120 min	Summer	r 33.97	1 0.0	124		
	180 min	Summer	r 24.84	8 0.0	182		
	240 min 360 min	Summer	r 14 30	3 U.U 8 0.0	∠40 २1 ହ		
	480 min	Summer	r 11.36	9 0.0	380		
	600 min	Summer	r 9.50	5 0.0	442		
	720 min	Summer	r 8.20	7 0.0	506		
	960 min	Summer	r 6.50	6 0.0	644		
	1440 min	Summer	r 4.68	4 0.0	910		
	∠⊥o∪ min 2880 min	Summer	∟ 3.36 r 2.66	1 0.0	1648		
	4320 min	Summer	r 1.90	8 0.0	2332		
	5760 min	Summer	r 1.50	5 0.0	2992		
	7200 min	Summer	r 1.25	2 0.0	3704		
	8640 min	Summer	r 1.07	6 0.0	4416		
	15 min	Winter	∟ 0.94 r 140.52	8 0.0	5144 36		
	10 mill		2		00		
		©1982	2-2020	Innovyze			

Stantec UK Ltd					Page 2
Caversham Bridge House	33251110	03 St Mar	y's Gro	ve	
Waterman Place	Permeab	le Paveme	ent		
Reading, RG1 8DN					Micco
Date 04/05/2022 15:01	Designed	d by eedr	ney		
File 220428 332511103 ST MAR	Checked	by JNP	-		Digiliga
 Innovyze	Source (Control 2	2020.1		
	000200				
Summary of Results f	for 100 y	ear Retui	rn Perio	d (+40%)	
	1			· ·	
Storm Ma	x Max	Max	Max	Status	
Event Lev	el Depth I	nfiltratio	n Volume		
(m) (m)	(1/s)	(m³)		
30 min Winter 8.5	98 0.128	1.	0 23.6	O K	
60 min Winter 8.6	86 0.216	1.	0 29.7	O K	
120 min Winter 8.7	79 0.309	1.	0 35.1	O K	
240 min Winter 8.8	10.043 23 0.353	⊥. 1	0 37.6	0 K	
360 min Winter 8.8	13 0.343	1.	0 37.0	0 K	
480 min Winter 8.7	92 0.322	1.	0 35.8	O K	
600 min Winter 8.7	72 0.302	1.	0 34.7	O K	
960 min Winter 8.6	40 0.278 97 0.227	⊥• 1.	0 30.3	0 K	
1440 min Winter 8.6	02 0.132	1.	0 24.2	ОК	
2160 min Winter 8.5	59 0.089	1.	0 16.4	O K	
2880 min Winter 8.5	29 0.059	1.	0 10.9	ОК	
4320 min Winter 8.5 5760 min Winter 8.5	11 U.U41 03 0 033	0.	8 /.5 6 6 0	OK	
7200 min Winter 8.4	97 0.027	0.	5 5.0	0 K	
8640 min Winter 8.4	93 0.023	0.	5 4.3	O K	
10080 min Winter 8.4	91 0.021	0.	4 3.8	O K	
Storm	Rain	Flooded !	Time-Peak		
Event	(mm/hr)	Volume	(mins)		
		(m³)			
30 min Wint	er 91.498	3 0.0	50		
60 min Wint	er 56.713	3 0.0	72		
120 min Wint	er 33.971	L 0.0	122		
180 min Wint 240 min Wint	er 24.848. er 19.793	5 U.U 3 0.0	1/8 234		
360 min Wint	er 14.308	3 0.0	340		
480 min Wint	er 11.369	0.0	390		
600 min Wint	er 9.505	5 0.0	462		
720 min Wint 960 min Wint	er 8.207		538 684		
1440 min Wint	ter 4.684	1 0.0	966		
2160 min Wint	er 3.366	5 0.0	1340		
2880 min Wint	er 2.661	L 0.0	1644		
4320 min Wint	er 1.908		2292		
7200 min Wint	er 1.252	2 0.0	3744		
8640 min Wint	er 1.076	5 0.0	4496		
10080 min Wint	er 0.947	0.0	5144		
©19	82-2020 I	Innovyze			

