DEMOLITION OF EXISTING GARAGES AND ERECTION OF FIVE ONE-BED SINGLE-STOREY ALMSHOUSE DWELLINGS

AT

ST MARY'S GROVE GARAGES SITE, RICHMOND

Energy & Sustainability Report June 2022

CLIVE CHAPMAN A R C H I T E C T S SUSTAINABILITY CONSULTANTS

4 EEL PIE ISLAND TWICKENHAM MIDDX TWI 3DY TELEPHONE 020 8891 4837 EMAIL INFO@CCAR.CO.UK WEBSITE WWW.CCAR.CO.UK

CONTENTS

1.0 Introduction

2.0 LBRUT – Sustainable Construction Checklist

2.1 SCC Requirements

2.2 SCC Assumptions and Compliance

3.0 Water Efficiency Measures

4.0 Overheating Assessment

5.0 Energy Efficiency Measures

5.1 Suitable Renewable/Low or Zero Carbon Technologies

5.2 Renewable Technologies, Options, Calculations and Results

5.3 Calculations - SAP 2012 Assessment CO₂ Emission Data

5.4 Conclusion

6.0 Appendices

Appendix A - LBRUT Sustainable Construction Checklist Appendix B - SAP Assessment Worksheets - Base Case Scenario Appendix C - SAP Assessment Worksheets - Improved Case Scenario Appendix D - Energy Summary Sheet Appendix E - Water Calculator Appendix F - Overheating Assessment Appendix G - Renewable Energy Technologies, Supporting Data

I.0 Introduction

Clive Chapman Architects has been appointed to carry out a sustainability assessment and energy report for a proposed residential development at St Mary's Grove garage site, Richmond.

The proposed development is for 5 No. almshouse dwellings for the over 65s, comprising of 4 No. I-bed / 2-person M4(3) wheelchair accessible units at 60m², and I No. I-bed, 2-person M4(2) accessible and adaptable unit at 50m², together with provision of parking spaces, cycle / refuse / recycling storage and associated amenity space.

For new-build residential schemes of between 1 - 9 dwellings, the London Borough of Richmond upon Thames (LBRuT) requires a 35% reduction of carbon dioxide emissions (regulated) beyond Part L, as outlined within the Local Plan 2018 LP 22(B). This is to be demonstrated by an Energy Report, together with a submitted Sustainable Construction Checklist (June 2020). It is noted that a cash-in-lieu contribution to the Council's Carbon Offset fund would be sought in cases where it is not technically feasible to achieve this target.

Beyond the carbon emissions reduction, water conservation measures are required demonstrating a maximum water consumption of 110 litres per person per day, including an allowance of 5 litres or less per head per day for external water consumption. This is based on Part G2 of the Building Regulations and the Sustainability Construction Checklist (June 2020), Minimal Compliance IB (LBRuT Local Plan 2018 Policy LP 22 & London Plan 2021 Policy S1 5).

2.0 LBRUT Sustainable Construction Checklist

2.1 SCC Requirements:

The Sustainable Construction Checklist (June 2020) states that all developments and applications undertaken in the London Borough of Richmond upon Thames will be expected to be assessed against the following seven checklist items:

2.2 SCC Assumptions and Compliance:

Category	Score
Minimum Policy Compliance IB (Residential)	
Energy Use and Pollution	25
Transport	9
Biodiversity	18
Flooding and Drainage	13
Improving Resource Efficiency	6
Accessibility	4
TOTAL	76

An overall score achieved of **76 credits** will be achieving an **A+** rating – Project strives to achieve higher standard in energy efficient sustainable development. Please see Appendix A for the completed Sustainable Construction Checklist.

3.0 Water Efficiency Standards New Homes

The LBRuT has adopted the 'optional' higher national technical standard for water consumption of 110 litres per person per day (including an allowance of 5 litres or less per person per day for external water consumption) in line with the national technical standard set out in Part G2 of the Building Regulations (updated 2016). All new residential developments including conversions, reversions, change of use and extensions that create one or more new dwellings must meet this target.

Within the Building Regulations Approved Document G2, maximum flow rates of specific fittings are specified, which cannot be exceeded, and are listed below:

WC full/part flush:	4/2.6	litres (dual flush)
Shower:	8	litres/minute
Bath capacity:	170	litres to overflow
Basin taps:	5	litres/minute
Kitchen taps:	6	litres/minute

This is further supported by the LBRuT Sustainable Construction Checklist (June 2020) Policy IB Minimum Policy Compliance (Residential) - Water Usage. It specifies that calculations using a 'water efficiency calculator' need to be submitted to demonstrate compliance.

Therefore, a completed water efficiency calculation has been carried out and the results page is appended to this report. It demonstrates the achieved reduction of this higher standard of water consumption efficiency of **93.25 litres person per day on average per each new dwelling.**

4.0 Overheating Assessment

The London Plan overheating checklist (GLA Energy Assessment Guidance 2018 - Appendix 5) has been used to assess the risk of overheating in the almshouses. The impact of solar gain has been incorporated into the SAP analysis for compliance with Part L, and is in-line with the CIBSE TM59 Design methodology for the assessment of overheating risk in homes 2017.

In this case, the sample used follows the guidance principles and Plot 2 was assessed, being a typical layout and predominantly facing west. Following the overheating checklist, and results of the SAP assessment, the risk over solar overheating is minimised, with the maximum summer internal temperature of 21.29 °C being achieved. Refer to Overheating Assessment within the appendix.

5.0 Energy Efficiency Measures

This section sets out the detailed analysis and results of the annual CO_2 emission calculations of the proposed dwelling. The dwelling has been modelled using the Government Standard Assessment Procedure (SAP) 2012 to determine the impact of building services options and to investigate the use of renewable energy sources, their impact on emissions, and their approximate cost of installation. The reductions of CO_2 emissions achieved through the application of renewable energy technologies have been tested and calculated in accordance with London Borough of Richmond upon Thames' Sustainable Construction Checklist Guidance adopted in June 2020 (Appendix A).

- I. Be Lean: reduce the energy demand through fabric efficiency measures
- 2. Be Clean: supply energy for space and water heating efficiently via small-scale renewable technology (air-source heat pumps)
- 3. Be Green: producing, storing and using renewable energy on-site through (PV arrays)
- 4. Be Seen: monitor, verify and report energy on-site

Note: That assumptions will need to be confirmed by an M&E Consultant and that any changes will have an impact on the SAP results and therefore the achieved reduction in CO₂ and % Renewables.

5.1 Suitable Renewable/Low or Zero Carbon Technologies

The London Plan 2021 stipulates that the development plans for all London Boroughs should eventually comply with the requirements set out in the plan. The Mayor's Energy Hierarchy, described in the London Plan, comprises three stages of application: use less energy, use renewable energy and supply energy efficiently. This hierarchy has been adopted for this project and various high efficiency communal services systems, and renewable energy systems have been investigated.

Further information, specification and information on renewables considered appropriate for the development is provided in Appendix F. This includes considerations for monitoring of energy demand and use as well as CO2 emissions and offset to ensure planning commitments are delivered (plus display Energy Certificate (DEC) and reporting to the Mayor for at least five years via an online portal to enable the GLA to identify good practice and report on the operational performance of new development in London. (London Plan 2021, Policy S1 2, paragraph 9.2.10)

The feasibility of renewable energy systems for this development has been investigated using the broad guidelines published by the Mayor of London in the document *Integrating Renewable Energy into New Developments: A toolkit for planners, Developers and Consultants* (Normally referred to as *The Toolkit*). The Toolkit includes a list of renewable energy system options which should be considered for specific building types in London.

The table below summarises the systems available and their suitability for this project:

System	Preliminary Assessment	Decision
Wind generators	Planning and local community issues associated with noise and visual	Rejected
	obstruction.	
Photovoltaic panels	The dwellings have flat green roofs that can be used for photovoltaic panels. They will be marginally tilted to target best orientation. PV panels are a commonly used renewable technology and not prohibitively expensive.	
Solar water	As above, the building has a sufficient flat roof that can be used for	May be

Renewable energy technologies suitable for London

St Mary's Grove Garages, Richmond, Development - Energy & Sustainability Report

<u>,</u>		
heating	Solar Thermal tubes. However, the contribution of solar hot water	suitable for
panels	towards the LBRUT 20% renewables requirement is significantly	this site
	lower than the contribution of Photovoltaic Panels. The reason being	
	that the solar water panels reduce the running times of boilers for	
	space and hot water generation, whereas PVs reduce the electricity	
	consumption of the building, and electricity generation has a larger	
	carbon footprint.	
Biomass CHP	Biomass CHP is a renewable and energy efficient system providing	
	electricity and space and hot water heating. As this is a small-scale	Rejected
	development, it is not suitable for a communal biomass CHP. Micro	
	biomass CHPs are not readily available on the open market and	
	there are limited suppliers to the London area.	
Ground source	The site is suitable for an individual, vertical system, with circa 5	Likely to be
heat pumps for	boreholes of 75m depth at the centre of the plot, in front of each	suitable for
heating (space and	unit, and away from neighbouring residential buildings. The boring via	this site
hot water)	a water/auger system would generate very minimal noise disturbance	
	and unlikely take more than 5 days.	
Ground source	There is no need of a mechanical cooling system.	Rejected
inc. borehole	8 7 7 7	,
cooling, either		
0		
direct or via a		
chiller		

Acceptable renewable energy technologies (not covered in detail in the toolkit); _London renewables, Toolkit for planners, developers and consultants' September 2004

System	Preliminary Assessment	Decision
Micro-hydro, small and	Not appropriate for this suburban London location.	Rejected
low head		
Gas from anaerobic	Technology being developed.	Rejected
digestion		
Geothermal heat, hot	Could be available in London but unlikely due to expected	Rejected
rocks	locations geology.	
Solar air collectors	Very small energy contribution and difficult to calculate and	Rejected
Solar all collectors	measure.	
Ground cooling air	No experience currently in the UK.	Rejected
systems		
Fuel cells using hydrogen	Not currently commercially available.	Rejected
from renewable sources		

LZC technologies (not covered in the toolkit; www.lowcarbonbuildings.org.uk/micro/)

System	Preliminary Assessment	Decision
Air source heat pumps (ASHP) for heating (space and domestic hot water)	Air is an easily accessible means of heating especially with the use of a low temperature system such as under floor heating. As it runs on electricity, the system could use the energy generated from PV panels and it is preferred small-scale renewable tech. However, following concerns from neighbours during the public consultation, a GSHP system is the preferred choice.	Likely to be suitable for this site
Micro Combined Heat and Power (CHP) Micro Combined Heat and Power (CHP) Micro CHP units are energy efficient system electricity and providing space and hot water he gas fired systems are available for domestic u developments. However, the proposal is too s any meaningful benefit from this type of system.		Rejected
Biomass heating. Fuels – wood, pellets, woodchips, some industrial waste products.	Biomass heating is a renewable energy technology. However, the system requires extensive space for storing the fuel (chips/pellets). The London Plan advises that the use of Biomass should be limited.	Rejected

5.2 Renewable Energy Technologies: Options, Calculations and Results

Options have been modelled using the approved by the Government NHER SAP 2012 to calculate the energy use of the property and predict the reduction of CO_2 emissions achieved through the application of renewable energy technologies.

The SAP Assessment looks into the energy performance of one individual unit, considered the 'worst' case scenario given its orientation and proportions of exposed areas to the elements. The demonstration for compliance on the chosen unit will ensure other dwellings could only score better.

Note: In most assessment situations the Base Case is set by the 'Limiting U-values for new fabric elements and air permeability in new dwellings', as outlined in Building Regulations Part L1A: Conservation and fuel and power – Volume I Dwellings 2021 edition. This is the threshold of compliance which is to be improved upon by the specification of more efficient fabric U-values and the introduction of renewable technologies. This is typically due to the unknown fabric construction at the planning application stage of a project. In this case the building performance has already been evaluated using a Base Case with U-values related to 'Limiting' values (refer to Approved Document L1A Table 4.1). The results are documented in Appendix B. Then further improvements have been assessed to achieve the enhanced LBRuT requirements with the addition of energy efficiency measures and renewables, refer to Appendix C.

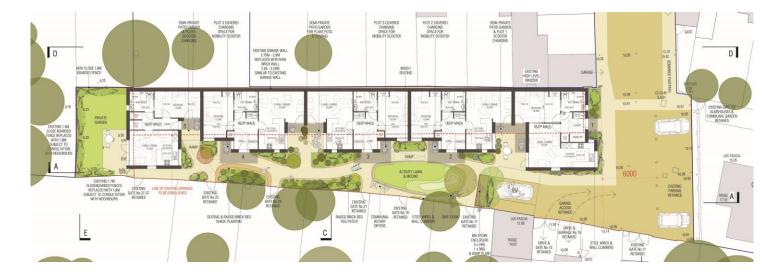
Option	Specification		DER/TER Variance LBRUT TARGET -35% (minimum)	% reduction through renewables
Base Case	- External walls U = - Floor U = - Windows (double-glazed) U =	ric elements and e 4.1) = 0.16 W/m ² K = 0.26 W/m ² K = 0.18 W/m ² K	44.54% Not compliant	0.0% Not compliant

5.3 Calculations – SAP CO₂ Emission Data

			C I I I III D I
St Marv's (arove (a	arages, Richmond, Dev	/elopment - Energy &	Sustainability Report
001101/00101000	a agos, racinnond, Dov	ciopinicite Energy or	

Improved Case	U-values in accordance with B.Regs Part L1A 2021 Edition – Notional dwelling specification for new dwelling (Table 1.1). Plus low carbon / renewable measures to reach LBRuT carbon reduction targets.	- 70.28% Compliant	41.74% Compliant
	- Roof $U = 0.11 \text{ W/m}^2\text{K}$ - External walls $U = 0.17 \text{ W/m}^2\text{K}$ - Floor $U = 0.13 \text{ W/m}^2\text{K}$ - Windows (double-glazed) $U = 0.79 \text{ W/m}^2\text{K}$ - Front door (solid) $U = 1.0 \text{ W/m}^2\text{K}$		
	 Thermal bridging: standard psi values Air permeability 5.0 m³/hrm² Ground Source Heat Pump – Individual vertical system 120L water storage cylinder per unit Underfloor heating 6 x 350kW PV panels per unit Triple glazed windows & rooflights Enhanced wall insulation Passive (natural) cross-ventilation 100% energy efficient lighting 		

		Total kgCO ₂ /yr
	Base Case Limiting U-values	Improved Case to achieve 35% reduction over Part L of the Building Regulations
Space Heating	1203.88	466.31
Secondary Heating	0	0
Hot Water Heating	445.64	705.41
Fixed Electrical	15.57	15.57
Lighting	141.63	143.7
Appliances	17.01	17.01
Cooking	2.78	2.78
Less amount of renewables	0	-828.86
TOTAL	1826.51	521.92
DER/TER Variance % reduction overall ¹	44.54%	-70.28%
% reduction through energy efficiency measures ²	0%	28.54%
% reduction through renewables ³	0%	41.74%


¹ This is the total % reduction in kgCO₂/year over Part L of the Building Regulations.
 ² This is the total % reduction in kgCO₂/year achieved through energy efficiency measures – This is based on the Improved Case but without PV renewables (1023.10 Total kgCO₂/yr).

³ This is the total % reduction in kgCO₂/year achieved through the incorporation of renewable energy installations.

The numbers refer to one dwelling only – worst case scenario Plot 2 out of 5 No. total dwellings.

Proposed Roof Plan, Floor Plans and Front Elevation:

5.4 Conclusion

The proposal gives an opportunity to provide a new residential development of 5 No. almshouses for the over 65s, in a single-storey terrace, appropriate to the scale of the site and the neighbouring buildings, improving the long term sustainability of the site. Much attention has been given by the applicant, The Richmond Charities, and their consultants to reduce the environmental impact of the building during its lifetime. The project suggests a structure of significantly improved fabric performance complemented with the incorporation of renewables that ensure less CO_2 emissions demonstrating compliance with local and regional policies.

The results show that providing Photovoltaic Panels (PVs) for energy generation and combined Ground Source Heat Pumps (GSHPs) for space and water heating will be appropriate and practical strategy to meet the energy-efficiency and carbon reduction targets set by the council for the small scale residential developments. This report demonstrates compliance with the required standards and policies set out by LBRuT adopting the London Plan listed below:

- Can achieve the LBRuT requirement to reduce the carbon dioxide emissions by at least -70.28% over Building Regulations Part L1A 2010, 2013 edition, 2016 revision;
- Provides a **41.74%** reduction of predicted carbon emissions through the use of small-scale renewable energy technologies (in this case PVs);
- Provides a portion of **28.54%** reduction in CO₂ emissions and CO₂ sequestration through the provision of energy efficiency measures alone (though inclusive of the GSHPs);
- Achieves an A+ rating assessed against the LBRUT Sustainable Construction Checklist 2020
- Achieves an overall SAP Rating of A [93];
- Achieves the higher standard of water consumption efficiency of **93.25** litres person per day per one new dwelling;
- Solar overheating is minimised with a mean internal temperature of 21.29°C being achieved.

St Mary's Grove Garages, Richmond, Development - Energy & Sustainability Report 6.0 Appendices

Appendix A - LBRUT Sustainable Construction Checklist

LBRUT Sustainable Construction Checklist - June 2020

This document forms part of the Sustainable Construction Checklist SPD. This document **must** be filled out as part of the planning application for the following developments: all residential development providing **ne or more new residential units (including conversions leading to one or more new units)**, and all other forms of development providing **100sqm or more of non-residential floor space**. Developments including new non-residential development of less than 100sqm floor space, extensions less than 100sqm, and other conversions are strongly encouraged to comply with this checklist. Where further information is requested, please either fill in the relevant section, or refer to the document where this information may be found in detail, e.g. Flood Risk Assessment or similar. **Further guidance** on completing the Checklist may be found in the Justification and Guidance section of this SPD.

Property Name (if relevant):	St Mary's Grove Garage Site Application No. (if	known): N/A
Address (include. postcode)	St Mary's Grove Garage Site, Richmond	
Completed by:	Olive Observers Andrika de	
	Clive Chapman Architects	
For Non-Residential	For Residential	
Size of development (m2)	Number of dwellings	5
1 MINIMUM COMPLIA	NCE (RESIDENTIAL AND NON-RESIDENTIAL)	
Energy Assessment		
	sment been submitted that demonstrates the expected energy and carbon dioxide emissions saving from energy efficier	ncy and TRUE
renewable energy me	asures, including the feasibility of CHP/CCHP and community heating systems? If yes, please select TRUE.	
Carbon Dioxide emissions re	duction	
	rbon dioxide emissions reduction against a Building Regulations Part L (2013) baseline	70.28 %
Policy LP 22 B. and D	raft London Plan Policy 9.2.5 require a 35% onsite reduction in CO ₂ emissions beyond Building Regulations 2013.	
What is the percentage	e reduction from efficiency measures alone	28.54 %
	Praft London Plan Policy 9.2.6 require a 10% onsite reduction in CO2 emissions	
beyond Building Reg	ulations 2013 from efficiency measures for residential and 15% for non-residential.	
Percentage of total si	te CO2 emissions saved through renewable energy installation?	41.74 %
	ining carbon to be offset raft London Plan Policy 9.2.4 require Major developments to achieve Zero Carbon after offsetting.	0.503 Tonne
Are remaining emission	ons going to be offset through offset fund payment in accordance with current guidelines issued for the cost per tonne of	of CO2? FALSE
What is the total predi	cted cost of offset?	£
The London Plan sets	this as £95/tonne per year over 30 years, this should be updated based on As Build calculations.	
1A MINIMUM POLICY C	OMPLIANCE (NON-RESIDENTIAL AND DOMESTIC REFURBISHMENT)	
	Please check the Guidance Section of this SPD for the policy requirements	
Environmental Rating of dev	elopment:	
Non-Residential new-build (10		
BREEAM Level Excellent required under Policy	Please Select Have you attached a pre-asses	sment to support this?
Extensions and conversions for		
BREEAM Domestic R		sment to support this?
Excellent required under Policy Extensions and conversions for		
BREEAM Level	Please Select Have you attached a pre-asses	sment to support this?
Excellent required under Polic	γ LP 22	
L		
Score awarded for En		Subtotal 0
BREEAM:	Good = 0, Very Good = 4, Excellent = 8, Outstanding = 16	
1B MINIMUM POLICY C	OMPLIANCE (RESIDENTIAL)	
Water Usage		Score
	after gray/rainwater systems limited to 105 litres person per day. (Excluding an allowance 5 litres per person per day for	r external water
	ations using the water efficiency calculator for new dwellings have been submitted.	1

consumption). Calculations using the valuer efficiency calculator for end wellings have been submitted. 110/p/d Required for new dwellings under Policy LP22 A 2 105/p/d required under Draft London Plan Policy SI5

Subtotal 1

2.1 N	eed for Cooling	Score
a.	How does the development incorporate cooling measures? Tick all that apply:	
	Energy efficient design incorporating specific heat demand to less than or equal to 15 kWh/sqm	6
	Reduce heat entering a building through providing/improving insulation and living roofs and walls	2
	Reduce heat entering a building through shading	3
	Exposed thermal mass and high ceilings	4
	Passive ventilation	3
		3
	Mechanical ventilation with heat recovery	1
	Active cooling systems, i.e. Air Conditioning Unit	0
	See Draft London Plan SI4	
2.2 He	at Generation	
) .	How have the heating and cooling systems, with preference to the heating system hierarchy, been selected (defined in London Plan policy SI3) Tick all heating and	
	cooling systems that will be used in the development:	Score
	Connection to existing heating or cooling networks powered by renewable energy	6
	Connection to existing heating or cooling networks powered by gas or electricity	5
	Site wide CHP network powered by renewable energy	4
	Site wide CHP network powered by gas	3
	Communal heating and cooling powered by renewable energy	2
	Communal heating and cooling powered by gas or electricity	1
	Individual heating and cooling	0
	See Draft London Plan SI3	
2.3 Pc	Illution: Air, Noise and Light	
a.	Does the development plan to implement reduction strategies for dust emissions from construction sites?	2
) .	Does the development plan to include a biomass boiler?	
	bees the development plan to instage or beinnass optimizer optimizer of the biomass guidelines for the Borough of Richmond, please see guidance for supplementary	
	in yes, prease neries to the bonnass guidemiss for the bologin of reclamolity, prease see guidance to supprementary information. If the proposed boiler is of a qualifying size, you may need to complete the information request form found on	
	the Richmond website.	
) .	Has an air quality impact assessment been provided	
	If yes, has 'Emissions Neutral' been achieved	1
	If yes, have occupants of new development been protected from existing pollution	1
	If no to any of the above are there any sensitive receptors as defined in Policy LP 10 present?	-1
	see Policy LP 10	
ł.	Please tick only one option below	
<i>.</i>	Please lick only one option below Has the development taken measures to reduce existing noise and enhance the existing soundscape of the site?	3
		1
	Has the development taken care to not create any new noise generation/transmission issues in its intended operation? see Policy LP 10	1
э.	Has the development taken measures to reduce light pollution impacts on character, residential amenity and biodiversity?	3
	see Policy LP 10	
-	Have you attached a Lighting Pollution Report?	-
		Subtotal
Please	e give any additional relevant comments to the Energy Use and Pollution Section below	
	egards to air quality, though no specific 'mechanical' measures have been proposed to protect residents, the design follows passive 'natural' cross ventilation as a best practice	e measure.
Opena	able windows and rooflights are provided.	

 3. TRANSPORT

 3.1 Provision for the safe efficient and sustainable movement of people and goods

 a.
 Does your development provide opportunities for occupants to use innovative travel technologies?

As the	explain: scheme is for over 65s, and that an internal bike survey has been carried, the proposed residents will not be using bicycles in comparison to a general needs residential sch ds have been followed for 'specific older person housing' as set out in the London Plan.	eme. However,
b.	Does your development provide for 100% active provision for electric vehicle charging point(s) and have you successfully demonstrated that it would be able to operate satisfactorily in the future expectation of all vehicles being electrically powered?	Score 2
C.	For major developments ONLY: Has a Transport Assessment been produced for your development based on TfL's Best Practice Guidance? If you have provided a Transport Assessment as part of your planning application, please tick here and move to Section 3 of this Checklist. See policy LP44	5
ł.	For smaller developments ONLY: Have you provided a Transport Statement?	5
ı.	Does your development provide cycle storage? (Standard space requirements are set out in the Council's Parking Standards - Local Plan Appendix 3) If so, for how many bicycles? Is this shown on the site plans? See Local Plan Appendix 3	2
	Will the development create or improve links with local and wider transport networks? If yes, please provide details.	2
lease	give any additional relevant comments to the Transport Section below	Subtotal
	will be near zero parking due to its highly sustainable location, though a disabled bay and two visitor bays are provided, that will have charging facilities.	

4	BIODIVERSITY				
4.1 M a.		biodiversity from new buildings, lighting, hard surfacing and people ent involve the loss of an ecological feature or habitat, including a loss of ga If so, please state how much in sqm?	arden or other green s	space? (Indicate if yes)	-2 7.5 sqm
b.	Does your developme	ent involve the removal of any tree(s)? (Indicate if yes) If so, has a tree report been provided in support of your application? (In	dicate if yes)		
C.	Does your developme	ent plan to add (and not remove) any tree(s) on site? (Indicate if yes)			
d.	Please indicate which	n features and/or habitats that your development will incorporate to improve Pond, reedbed or extensive native planting An extensive green roof Garden space Additional native and/or wildlife friendly planting to peripheral areas Additional planting to peripheral areas A living wall Bat boxes Bird boxes Swift boxes Other	e on site biodiversity: 6 5 4 4 3 2 2 2 0.5 0.5 0.5 0.5 0.5	Area provided: Area provided: Area provided: Area provided: Area provided: Area provided: Area provided:	47 sqm 166 sqm 55 sqm 47 sqm 8qm sqm
e.	Does your developme Policy LP 17 requires	ent use at least 70% of available roof plate as green/brown roof 70%			1
The e	existing site consisting of	evant comments to the Biodiversity Section below 94% concrete/tarmac hardstanding and garages is being replaced with 5 d pace for ecology/biodiversity.	wellings with substant	ial green roofs and permeable	Subtotal 1
5	FLOODING AND DR				
Mitiga a.		ng and other impacts of climate change in the borough a high flood risk zone (Zone 3)? (Indicate if yes) Have you submitted a Flood Risk Assessment? (Indicate if yes)			-2
b.	Which of the following	g measures of the drainage hierarchy are incorporated onto your site? (tick	all that apply)		
		Store rainwater for later use Use of infiltration techniques such as porous surfacing materials to allow	w drainage on-site		5 3
		Attenuate rainwater in ponds or open water features			4
		Store rainwater in tanks for gradual release to a watercourse Discharge rainwater directly to watercourse			3 2
		Discharge rainwater to surface water drain Discharge rainwater to combined sewer			1 0
		Have you submitted a Drainage Statement (Indicate if yes)			0
c.	Please give the chan	I Draft London Plan SL 13 ge in area of permeable surfacing which will result from your development s of the permeable surfacing below		present a loss in permeable area as	690 sqm
			,	, ,	Subtotal 1
The e	existing site of 1118m ² ha	evant comments to the Flooding and Drainage Section below is an existing garden of circa 64m ² . The proposal increases the permeable in permeable area). Part of the landscaping will be used as rainwater gard		ofs to all proposed dwellings a	Ind additional gardens/landscaping
6 6.1 R a.		JRCE EFFICIENCY I and amount disposed of by landfill though increasing level of re-use quired on your site prior to construction? <i>(Points will only be awarded if 10</i> 9)		tion waste is reused/recvcled]	1
		If so, what percentage of demolition waste will be reused in the new dev	-	·····	5 %
			olopinont:		
		What percentage of demolition waste will be recycled?			5 %
b.	Does your site have a	any contaminated land?			1
		Have you submitted an assessment of the site contamination?			2
		Are plans in place to remediate the contamination? Have you submitted a remediation plan?			2
		Are plans in place to include composting on site?			1
c.	Will a waste manage	ment plan and facilities be in place in line with Policy LP24			Yes
	educing levels of water				
a.	Will the following mea	asures of water conservation be incorporated into the development? (Pleas Fitting of water efficient taps, shower heads etc	e tick all that apply):		1
		Use of water efficient A or B rated appliances			1
		Rainwater harvesting for internal use Greywater systems			4 4
		Fit a water meter			1
Pleas	e give any additional rele	evant comments to the Improving Resource Efficiency Section below			Subtotal
	<u> </u>				

11 Ensure facible adpabble and long-been use of structures If the development is readianable. Will most the majority described space standard for internal space and layout? If the development is readianable. Will most the majority described space standard for internal space and layout? If the development is readianable. Will most the space below, please provide details of the internal space and layout? If the development is readianable. Will most the space below, please provide details of the internal space and layout? If the development is readianable. Will most the space below, please provide details of any accessibility measures included in the development. If the development is not met, in the space below, please provide details of any accessibility measures included in the development. If the development is most met, in the space below, please provide details of any accessibility measures included in the development. If the development is most met, in the space below, please provide details of any accessibility measures included in the development. If the development is met and the space below, please provide details of any accessibility measures included in the development. If the development is met and the space below, please and the space below, please provide details of the accessibility measures specified in the local Plan tar. If the development is met and the development is met and the development is met and adaptable development is met andis development is met and ada	7	ACCESSIBILITY			
If the standards are not met, in the space below, please provide details of the interioral spice and layout If the dovelopment is residential. Will it meet Building Regulation Requirement M4 (2) 'accessible and adaptable development. If the dovelopment is residential development, are 10% or nore of the units in the dovelopment to Building Regulation Requirement. If the dovelopment is nor mediantial, does it comply with requirement included in Richmond's Local Plan LP1, LP28.B, LP30 & LP30 If the dovelopment is nor evelopment is nor evelopment. If the dovelopment is nor mediantial, does it comply with requirements included in the local Plan LP1, LP28.B, LP30 & LP30 Source C Meta Rese provide details of the accessibility measures specified in the Local Plan LP1, LP28.B, LP30 & LP30 Source C Meta Rese provide details of the accessibility measures specified in the Local Plan LP1, LP28.B, LP30 & LP30 Source C Meta Rese provide details of the accessibility accessible and adaptable M4(2), with a wheelchair accessible and adaptable M4(2), with a wheelchair accessible and adaptable M4(2), with a wheelchair accessible and adaptable M4(2) with a wheelchair accessible and adaptable M4(2), with a wheelchair accessible and adaptable for the cost source to the source source to thesource source complance. TotAL	7.1	Ensure flexible adapta	ble and long-t	term use of structures	
AND 2 D. If the development is residential, will it meet Building Regulation Requirement M4 (2) accessable and adgatable development. 2 If this is not met, in the space below, please provide details of any accessable and adgatable development. 1 M0 3 4 M1 (3) wheel/bair user developments, are 10% or more of the units in the development to Building Regulation Requirement 1 M1 (3) wheel/bair user development, are 10% or more of the units in the development to Building Regulation Requirement 1 M1 (3) wheel/bair user development, are 10% or more of the units in the development to Building Regulation Requirement 1 M1 (3) wheel/bair user development, are 10% or more of the units in the development to Building Regulation Requirement 1 M2 (3) wheel/bair user development is not metabolic details of the accessability measures specified in the Local Plan LP1, LP28.B, LP30 & LP30 2 Pease provide details of the accessability Section bolow Subtor 1 More development is not major being 01% 5 develops.4 of the units are wheelchair development for the development is not major being 01% 5 develops.4 of the units are wheelchair development for the development for the cost active to accessability and 1 unit is wheelcahir accessable and adaptable M4(2), with a wheelchair accessable and adaptable M4(2), with a wheelchair accessable for the cost active to accessability for the cost active to accessability and no accessability for the cost active to accessability for the cost active to accessabi	a.	If the development is r	residential, will	it meet the requirements of the nationally described space standard for internal space and layout?	1
b. If the development is residential, will it met Building Regulation Requirement M4 (2) accessibility measures included in the development. 2 If the is not met, in the space below, please provide details of any accessibility measures included in the development. 1 M(3) wheelchaar user dowlings? 1 M(3) wheelchaar user dowlings? 2 Please provide details of the accessibility measures specified in the Local Plan that will be included in the development. 2 M(4) wheelchaar user dowlings. 2 M(5) wheelchaar accessibility measures specified in the Local Plan that will be included in the development. 2 M(4) wheelchaar accessibility measures specified in the Local Plan that will be included in the development. 2 Measure user additional relevant comments to the Design Standards and Accessibility Section below. 2 Newtoon. Nort-Residential and domestic relux). 7074 70 Measure book with the Arm proper status to hole on the proper status and the development. 7074 70 Measure book with SPD Deloiy. Score Mattin to recore st			If the standard	Is are not met, in the space below, please provide details of the functionality of the internal space and layout	
b. If the development is residential, will it meet Building Regulation Requirement W4 (2) accessible and adaptable dwellings? 2 If the is not met, in the space below, please provide details of any accessibility measures included in the development. 1 M(2) Tor major residential developments, are 10% or more of the units in the development to Building Regulation Requirement M4 (2) wheelchair user dwellings? 2 M Tor major residential developments, are 10% or more of the units in the development to Building Regulation Requirement M4 (2) wheelchair user dwellings? 2 M Tor major residential development is not major being details of the accessibility measures specified in the Local Plan LP1, LP28, B, LP30 & LP35 2 Please provide details of the accessibility measures specified in the Local Plan that will be included in the development Subtota 2 Please growide details of the accessibility Section below Subtota 2 2 Reservery additional relevant comments to the Design Standards and Accessibility Section below Tor Accessibility accessible and adaptable M4(2), with a wheelchair accessible and adaptable M4(2), with a wheelchair accessibility measures accessibility accessibility accessibility accessible and adaptable M4(2), with a wheelchair accessibility accessibili					
b. If the development is residential, will it met Building Regulation Requirement M4 (2) accessibility measures included in the development. 2 If the is not met, in the space below, please provide details of any accessibility measures included in the development. 1 M(3) wheelchaar user dowlings? 1 M(3) wheelchaar user dowlings? 2 Please provide details of the accessibility measures specified in the Local Plan that will be included in the development. 2 M(4) wheelchaar user dowlings. 2 M(5) wheelchaar accessibility measures specified in the Local Plan that will be included in the development. 2 M(4) wheelchaar accessibility measures specified in the Local Plan that will be included in the development. 2 Measure user additional relevant comments to the Design Standards and Accessibility Section below. 2 Newtoon. Nort-Residential and domestic relux). 7074 70 Measure book with the Arm proper status to hole on the proper status and the development. 7074 70 Measure book with SPD Deloiy. Score Mattin to recore st					
b. If the development is residential, will it met Building Regulation Requirement M4 (2) accessibility measures included in the development. 2 If the is not met, in the space below, please provide details of any accessibility measures included in the development. 1 M(3) wheelchaar user dowlings? 1 M(3) wheelchaar user dowlings? 2 Please provide details of the accessibility measures specified in the Local Plan that will be included in the development. 2 M(4) wheelchaar user dowlings. 2 M(5) wheelchaar accessibility measures specified in the Local Plan that will be included in the development. 2 M(4) wheelchaar accessibility measures specified in the Local Plan that will be included in the development. 2 Measure user additional relevant comments to the Design Standards and Accessibility Section below. 2 Newtoon. Nort-Residential and domestic relux). 7074 70 Measure book with the Arm proper status to hole on the proper status and the development. 7074 70 Measure book with SPD Deloiy. Score Mattin to recore st					
b. If the development is residential, will it met Building Regulation Requirement M4 (2) accessibility measures included in the development. 2 If the is not met, in the space below, please provide details of any accessibility measures included in the development. 1 M(3) wheelchaar user dowlings? 1 M(3) wheelchaar user dowlings? 2 Please provide details of the accessibility measures specified in the Local Plan that will be included in the development. 2 M(4) wheelchaar user dowlings. 2 M(5) wheelchaar accessibility measures specified in the Local Plan that will be included in the development. 2 M(4) wheelchaar accessibility measures specified in the Local Plan that will be included in the development. 2 Measure user additional relevant comments to the Design Standards and Accessibility Section below. 2 Newtoon. Nort-Residential and domestic relux). 7074 70 Measure book with the Arm proper status to hole on the proper status and the development. 7074 70 Measure book with SPD Deloiy. Score Mattin to recore st					
If this is not met, in the space below, please provide details of any accessibility measures included in the development. 1 If this is not met, in the space below, please provide details of any accessibility measures included in the development. 1 If this is not met, in the space below, please provide details of any accessibility measures included in the development. 1 If this is not met, in the space below, please provide details of any accessibility measures included in the development. 1 If this is not met, in the space below, please provide details of the accessibility measures specified in the Local Plan L11, L28, R, L930 & L945. 2 If the development is non-residential, does it comply with requirements included in Richmond's Local Plan L11, L28, R, L930 & L945. 2 Measures are provide details of the accessibility measures specified in the Local Plan L11, L28, R, L930 & L945. 2 Measures are provide details of the accessibility measures specified in the Local Plan L11, L28, R, L930 & L945. 2 Measures are provide details of the accessibility measures specified in the Local Plan L11, L28, R, L930 & L945. 2 Measures are provide details of the accessibility measures specified in the Local Plan L11, L28, R, L930 & L945. 2 Measures are provide details of the accessibility measures specified in the Local Plan L11, L28, R, L930 & L945. 2 Measures are provide details of the accessibility measures reprovide details development in R11, Plan L20, R, L930 & L930		If the development is r	residential will	it meet Building Regulation Regulirement M4 (2) 'accessible and adaptable dwellings'?	2
	<i>b</i> .				-
M4 (3) "wheelchair user dweilings? If the development is non-residential, does it comply with requirements included in Richmond's Local Plan LP1, LP28.B, LP30 & LP45 2 Please provide details of the accessability measures specified in the Local Plan that will be included in the development					
M4 (3) "wheelchair user dweilings? If the development is non-residential, does it comply with requirements included in Richmond's Local Plan LP1, LP28.B, LP30 & LP45 2 Please provide details of the accessability measures specified in the Local Plan that will be included in the development					
M4 (3) "wheelchair user dweilings? If the development is non-residential, does it comply with requirements included in Richmond's Local Plan LP1, LP28.B, LP30 & LP45 2 Please provide details of the accessability measures specified in the Local Plan that will be included in the development					
M4 (3) "wheelchair user dweilings? If the development is non-residential, does it comply with requirements included in Richmond's Local Plan LP1, LP28, B, LP30, & LP30 2 Please provide details of the accessibility measures specified in the Local Plan that will be included in the development					
M4 (3) "wheelchair user dweilings? If the development is non-residential, does it comply with requirements included in Richmond's Local Plan LP1, LP28, B, LP30, & LP30 2 Please provide details of the accessibility measures specified in the Local Plan that will be included in the development					
OR If the development is non-residential, does it comply with requirements included in Richmond's Local Plan Lth 1, LP28. B, LP30 & LP45 2 Please provide details of the accessibility measures specified in the Local Plan that will be included in the development					1
	OB		WI4 (3) Wheeld	chair user dweilings ?	
Please provide details of the accessibility measures specified in the Local Plan that will be included in the development included in the development included in the development included in the development is not major being only 5 dwellings, 4 of the units are wheelchair dwellings M4(3) and 1 unit is wheelchair accessible and adaptable M4(2), with a wheelchair accessible to the development is not major being only 5 dwellings, 4 of the units are wheelchair dwellings M4(3) and 1 unit is wheelchair accessible and adaptable M4(2), with a wheelchair accessible to the development is not major being only 5 dwellings, 4 of the units are wheelchair dwellings M4(3) and 1 unit is wheelchair accessible and adaptable M4(2), with a wheelchair accessible to the development is not major being only 5 dwellings, 4 of the units are wheelchair dwellings M4(3) and 1 unit is wheelchair accessible and adaptable M4(2), with a wheelchair accessible to the development is not major being only 5 dwellings, 4 of the units are wheelchair dwellings M4(3) and 1 unit is wheelchair accessible and adaptable M4(2), with a wheelchair accessible and adaptable M4(2), with a wheelchair accessible development is forthore. LBRUT Sustainable Construction Checklist- Scoring Matrix for New Construction (Non-Residential and domestic refur). Tor or or or or helps to significance is ustainable development is forhored. LBRUT Sustainable Construction Checklist- Scoring Matrix for New Construction Development in Richmond is 3 or desis or fALL Desis not comply with SPD Policy. Residential new-build LBRUT Sustainable Construction Checklist- Scoring Matrix for New Construction Development is forhored. Residential new build LBRUT Sustainable Construction Checklist- Scoring Matrix for New Construction Development is inclumont distribution towards achieving		If the development is r	on recidentia	I does it comply with requirements included in Dichmond's Local Dian LP1 LP28 B. LP30 & LP45	2
Subtral A A A A A A A A A A A A A	U.	ii the development is i	ion-residentia		2
Subtral A A A A A A A A A A A A A			Please provid	e details of the accessibility measures specified in the Local Plan that will be included in the development	
Please give any additional relevant comments to the Design Standards and Accessibility Section below The development is not major being only 5 dwellings, 4 of the units are wheelchair dwellings M4(3) and 1 unit is wheelcahir accessible and adaptable M4(2), with a wheelchair accessible wellow. LISENT Sustainable Construction Checklist- Scoring Matrix for New Construction (Non-Residential and domestic refurb) TOTAL 76 Score Rating Significance Total velopment is not major being only 5 dwellings, and the units are wheelchair dwellings wellow and the units are wheelchair dwellings wellow. Total 76 Score Rating Significance Total 75 Tota					
Please give any additional relevant comments to the Design Standards and Accessibility Section below The development is not major being only 5 dwellings, 4 of the units are wheelchair dwellings M4(3) and 1 unit is wheelcahir accessible and adaptable M4(2), with a wheelchair accessible wellow. LISENT Sustainable Construction Checklist- Scoring Matrix for New Construction (Non-Residential and domestic refurb) TOTAL 76 Score Rating Significance Total velopment is not major being only 5 dwellings, and the units are wheelchair dwellings wellow and the units are wheelchair dwellings wellow. Total 76 Score Rating Significance Total 75 Tota					
Please give any additional relevant comments to the Design Standards and Accessibility Section below The development is not major being only 5 dwellings, 4 of the units are wheelchair dwellings M4(3) and 1 unit is wheelcahir accessible and adaptable M4(2), with a wheelchair accessible wellow. LISENT Sustainable Construction Checklist- Scoring Matrix for New Construction (Non-Residential and domestic refurb) TOTAL 76 Score Rating Significance Total velopment is not major being only 5 dwellings, and the units are wheelchair dwellings wellow and the units are wheelchair dwellings wellow. Total 76 Score Rating Significance Total 75 Tota					
Please give any additional relevant comments to the Design Standards and Accessibility Section below The development is not major being only 5 dwellings, 4 of the units are wheelchair dwellings M4(3) and 1 unit is wheelcahir accessible and adaptable M4(2), with a wheelchair accessible wellow. LISENT Sustainable Construction Checklist- Scoring Matrix for New Construction (Non-Residential and domestic refurb) TOTAL 76 Score Rating Significance Total velopment is not major being only 5 dwellings, and the units are wheelchair dwellings wellow and the units are wheelchair dwellings wellow. Total 76 Score Rating Significance Total 75 Tota					
Please give any additional relevant comments to the Design Standards and Accessibility Section below The development is not major being only 5 dwellings, 4 of the units are wheelchair dwellings M4(3) and 1 unit is wheelcahir accessible and adaptable M4(2), with a wheelchair accessible wellow. LISENT Sustainable Construction Checklist- Scoring Matrix for New Construction (Non-Residential and domestic refurb) TOTAL 76 Score Rating Significance Total velopment is not major being only 5 dwellings, and the units are wheelchair dwellings wellow and the units are wheelchair dwellings wellow. Total 76 Score Rating Significance Total 75 Tota					
Twough the development is not major being only 5 dwellings, 4 of the units are wheelchair dwellings M4(3) and 1 unit is wheelcahir accessible and adaptable M4(2), with a wheelchair accessible wet-room. LBRUT Sustainable Construction Checklist- Scoring Matrix for New Construction (Non-Residential and domestic refurb) TOTAL 76 Score Rating Significance Makes a major contribution towards achieving sustainable development Total 76 40-55 C Minimal effort to increase sustainability beyond general compliance Total 76 LBRUT Sustainable Construction Checklist- Scoring Matrix for New Construction Residential new-build Total 76 84 or more A+ Project strives to achieve highest standard in energy efficient sustainable development Total 76 40-55 C Minimal effort to increase sustainability beyond general compliance Total 76 LBRUT Sustainable Construction Checklist- Scoring Matrix for New Construction Residential new-build Total 76 LBRUT Sustainable Construction Checklist- Scoring Matrix for New Construction Residential new-build Score 84 A+ Project strives to achieve highest standard in energy efficient sustainable development 56 56 56 56 56 56 56 56 56 5					Subtotal 4
Understand Wetroom. Construction Checklist-Scoring Matrix for New Construction (Non-Residential and domestic refurb) TOTAL 76 Score Rating Significance Sig					
LBRUT Sustainable Construction Checklist-Scoring Matrix for New Construction (Non-Residential and domestic refurb) TOTAL 76 Score Rating Significance Signifi			najor being onig	y 5 dwellings, 4 of the units are wheelchair dwellings ($w4(5)$ and 1 unit is wheelcanir accessible and adaptable ($w4(2)$, with a wheelcha	all accessible
Score Rating Significance 84 or more A+ Project strives to achieve highest standard in energy efficient sustainable development 75-83 A Makes a major contribution towards achieving sustainable development in Richmond 56-74 B Helps to significantly improve the Borough's stock of sustainable developments 40-55 C Minimal effort to increase sustainability beyond general compliance 39 or less FAIL Does not comply with SPD Policy LBRUT Sustainable Construction Checklist-Scoring Matrix for New Construction Residential new-build Score Rating Significance 85 or more A++ Project strives to achieve highest standard in energy efficient sustainable development 59-67 A Makes a major contribution towards achieving sustainable development in Richmond 39-58 B Helps to significantly improve the Borough's stock of sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy	wet-100				
Score Rating Significance 84 or more A+ Project strives to achieve highest standard in energy efficient sustainable development 75-83 A Makes a major contribution towards achieving sustainable development in Richmond 56-74 B Helps to significantly improve the Borough's stock of sustainable developments 40-55 C Minimal effort to increase sustainability beyond general compliance 39 or less FAIL Does not comply with SPD Policy LBRUT Sustainable Construction Checklist-Scoring Matrix for New Construction Residential new-build Score Rating Significance 85 or more A++ Project strives to achieve highest standard in energy efficient sustainable development 59-67 A Makes a major contribution towards achieving sustainable development in Richmond 39-58 B Helps to significantly improve the Borough's stock of sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy					
Score Rating Significance 84 or more A+ Project strives to achieve highest standard in energy efficient sustainable development 75-83 A Makes a major contribution towards achieving sustainable development in Richmond 56-74 B Helps to significantly improve the Borough's stock of sustainable developments 40-55 C Minimal effort to increase sustainability beyond general compliance 39 or less FAIL Does not comply with SPD Policy LBRUT Sustainable Construction Checklist-Scoring Matrix for New Construction Residential new-build Score Rating Significance 85 or more A++ Project strives to achieve highest standard in energy efficient sustainable development 59-67 A Makes a major contribution towards achieving sustainable development in Richmond 39-58 B Helps to significantly improve the Borough's stock of sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy					
Score Rating Significance 84 or more A+ Project strives to achieve highest standard in energy efficient sustainable development 75-83 A Makes a major contribution towards achieving sustainable development in Richmond 56-74 B Helps to significantly improve the Borough's stock of sustainable developments 40-55 C Minimal effort to increase sustainability beyond general compliance 39 or less FAIL Does not comply with SPD Policy LBRUT Sustainable Construction Checklist-Scoring Matrix for New Construction Residential new-build Score Rating Significance 85 or more A++ Project strives to achieve highest standard in energy efficient sustainable development 59-67 A Makes a major contribution towards achieving sustainable development in Richmond 39-58 B Helps to significantly improve the Borough's stock of sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy					
Score Rating Significance 84 or more A+ Project strives to achieve highest standard in energy efficient sustainable development 75-83 A Makes a major contribution towards achieving sustainable development in Richmond 56-74 B Helps to significantly improve the Borough's stock of sustainable developments 40-55 C Minimal effort to increase sustainability beyond general compliance 39 or less FAIL Does not comply with SPD Policy LBRUT Sustainable Construction Checklist-Scoring Matrix for New Construction Residential new-build Score Rating Significance 85 or more A++ Project strives to achieve highest standard in energy efficient sustainable development 59-67 A Makes a major contribution towards achieving sustainable development in Richmond 39-58 B Helps to significantly improve the Borough's stock of sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy	I BRUT Su	stainable Construction	Checklist- Sco	ving Matrix for New Construction (Non-Residential and domestic refurb)	TOTAL 76
84 or more A+ Project strives to achieve highest standard in energy efficient sustainable development 75-83 A Makes a major contribution towards achieving sustainable development in Richmond 56-74 B Helps to significantly improve the Borough's stock of sustainable developments 40-55 C Minimal effort to increase sustainability beyond general compliance 39 or less FAIL Does not comply with SPD Policy LBRUT Sustainable Construction Checklist- Scoring Matrix for New Construction Residential new-build Score Rating Significance 85 or more A++ Project strives to achieve highest standard in energy efficient sustainable development 58-67 A Makes a major contribution towards achieving sustainable development 59-67 A Makes a major contribution towards achieving sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy	22.10.00				IOTAL IO
75-83 A Makes a major contribution towards achieving sustainable development in Richmond 56-74 B Helps to significantly improve the Borough's stock of sustainable developments 40-55 C Minimal effort to increase sustainability beyond general compliance 39 or less FAIL Does not comply with SPD Policy LBRUT Sustainable Construction Checklist- Scoring Matrix for New Construction Residential new-build Score Rating Significance 85 or more A++ Project strives to achieve highest standard in energy efficient sustainable development 68-84 A+ Project strives to achieve higher standard in energy efficient sustainable development 59-67 A Makes a major contribution towards achieving sustainable developments 39-58 B Helps to significantly improve the Borough's stock of sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy					
56-74 B Helps to significantly improve the Borough's stock of sustainable developments 40-55 C Minimal effort to increase sustainability beyond general compliance 39 or less FAIL Does not comply with SPD Policy LBRUT Sustainable Construction Checklist- Scoring Matrix for New Construction Residential new-build Score Rating Significance 85 or more A++ Project strives to achieve highest standard in energy efficient sustainable development 68-84 A+ Project strives to achieve higher standard in energy efficient sustainable development 59-67 A Makes a major contribution towards achieving sustainable developments 39-58 B Helps to significantly improve the Borough's stock of sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy					
39 or less FAIL Does not comply with SPD Policy LBRUT Sustainable Construction Checklist- Scoring Matrix for New Construction Residential new-build Score Rating Significance 85 or more A++ Project strives to achieve highest standard in energy efficient sustainable development 68-84 A+ Project strives to achieve higher standard in energy efficient sustainable development 59-67 A Makes a major contribution towards achieving sustainable development in Richmond 39-58 B Helps to significantly improve the Borough's stock of sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy		56-74	В		
LBRUT Sustainable Construction Checklist- Scoring Matrix for New Construction Residential new-build Score Rating Significance 85 or more A++ Project strives to achieve highest standard in energy efficient sustainable development 68-84 A+ Project strives to achieve higher standard in energy efficient sustainable development 59-67 A Makes a major contribution towards achieving sustainable development in Richmond 39-58 B Helps to significantly improve the Borough's stock of sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy		40-55		Minimal effort to increase sustainability beyond general compliance	
Score Rating Significance 85 or more A++ Project strives to achieve highest standard in energy efficient sustainable development 68-84 A+ Project strives to achieve higher standard in energy efficient sustainable development 59-67 A Makes a major contribution towards achieving sustainable development in Richmond 39-58 B Helps to significantly improve the Borough's stock of sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy		39 or less	FAIL	Does not comply with SPD Policy	
Score Rating Significance 85 or more A++ Project strives to achieve highest standard in energy efficient sustainable development 68-84 A+ Project strives to achieve higher standard in energy efficient sustainable development 59-67 A Makes a major contribution towards achieving sustainable development in Richmond 39-58 B Helps to significantly improve the Borough's stock of sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy					
85 or more A++ Project strives to achieve highest standard in energy efficient sustainable development 68-84 A+ Project strives to achieve higher standard in energy efficient sustainable development 59-67 A Makes a major contribution towards achieving sustainable development in Richmond 39-58 B Helps to significantly improve the Borough's stock of sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy	LBRUT Su	stainable Construction	Checklist- Sco	bring Matrix for New Construction Residential new-build	
68-84 A+ Project strives to achieve higher standard in energy efficient sustainable development 59-67 A Makes a major contribution towards achieving sustainable development in Richmond 39-58 B Helps to significantly improve the Borough's stock of sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy		Score	Rating	Significance	
68-84 A+ Project strives to achieve higher standard in energy efficient sustainable development 59-67 A Makes a major contribution towards achieving sustainable development in Richmond 39-58 B Helps to significantly improve the Borough's stock of sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy		85 or more	A++	Project strives to achieve highest standard in energy efficient sustainable development	
59-67 A Makes a major contribution towards achieving sustainable development in Richmond 39-58 B Helps to significantly improve the Borough's stock of sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy		68-84	A+		
39-58 B Helps to significantly improve the Borough's stock of sustainable developments 24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy					
24-38 C Minimal effort to increase sustainability beyond general compliance 23 or less FAIL Does not comply with SPD Policy Authorisation:					
23 or less FAIL Does not comply with SPD Policy Authorisation:					
Authorisation:			-		
		23 OF IESS	FAIL		

ith declare that I have filled in this form to the best of my kn

Signature

Date

Appendix B – SAP Worksheets - Base Case Scenario

SAP Worksheet Design - Draft

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor name												
	Andrew G							sessor num	ber	2		
Client	Richmond	l Charities					La	st modified		20/06	/2022	
Address	n/a n/a n/	/a St Mary	's Grove, G	arage site	to rear, Ricl	nmond, UK,	TW9 1UY					
1. Overall dwelling dime	ncione											
1. Overall dwelling dime	nsions			•	ree (m²)		A			Ve	olume (m³)	
				A	rea (m²)			age storey eight (m)		V	nume (m [*])	
Lowest occupied					60.00	(1a) x		2.67	(2a) =		160.20	(3a)
Total floor area	(1a) -	+ (1b) + (1	c) + (1d)(1n) =	60.00] (10) X		2.07	(20) -		100.20] (50)
Dwelling volume	(10)	. (10) . (1	c) · (10)(00.00] (.,	(3a)	+ (3b) + (3d	:) + (3d)(3	3n) =	160.20	(5)
-							()	() (, (,(-] (-)
2. Ventilation rate												
										m	³ per hour	
Number of chimneys								0	x 40 =	:	0	(6a)
Number of open flues								0	x 20 =	:	0	(6b)
Number of intermittent fa	ins							2	x 10 =	-	20	(7a)
Number of passive vents								0	x 10 =	:	0	(7b)
Number of flueless gas fire	es							0	x 40 =	:	0	(7c)
										Air	changes per hour	•
Infiltration due to chimne	ys, flues, fans,	, PSVs		(6a)	+ (6b) + (7	a) + (7b) + (7c) =	20	÷ (5) =	-	0.12	(8)
If a pressurisation test has	been carried	out or is i	ntended, p	roceed to (17), otherw	vise continu	e from (9) t	o (16)				_
Air permeability value, q5	0, expressed i	n cubic m	etres per h	our per squ	uare metre	of envelope	e area				8.00	(17)
If based on air permeabilit		(18) = [(1)]	7) ÷ 20] + (8) otherwi	(4.0) (4							()
ii baseu oli ali permeabilit	ty value, then	() [(-		oj, otnerwi	se (18) = (1	6)					0.52	(18)
Number of sides on which				of, otherwi	se (18) = (1	6)					0.52 3	יינ ר
				s, otherwi	se (18) = (1	6)		1 -	[0.075 x (1	9)] =] (18)
Number of sides on which	the dwelling	is sheltere		s), otherwi	se (18) = (1	6)		1 -	[0.075 x (1 (18) x (2		3] (18)] (19)
Number of sides on which Shelter factor	the dwelling	is sheltere ctor	ed	b), otherwi	se (18) = (1	6)		1-			3 0.78] (18)] (19)] (20)
Number of sides on which Shelter factor Infiltration rate incorporat	the dwelling	is sheltere ctor	ed	May	se (18) = (1 Jun	6) Jul	Aug	1 - Sep			3 0.78] (18)] (19)] (20)
Number of sides on which Shelter factor Infiltration rate incorporat Infiltration rate modified f	the dwelling ting shelter fa for monthly w Feb	is sheltere ctor ind speed Mar	ed :				Aug		(18) x (2	20) =	3 0.78 0.41] (18)] (19)] (20)
Number of sides on which Shelter factor Infiltration rate incorporat Infiltration rate modified f	the dwelling ting shelter fa for monthly w Feb	is sheltere ctor ind speed Mar	ed :				Aug 3.70		(18) x (2	20) =	3 0.78 0.41] (18)] (19)] (20)
Number of sides on which Shelter factor Infiltration rate incorporat Infiltration rate modified f Jan Monthly average wind spe	the dwelling ting shelter fa for monthly w Feb teed from Tabl	is sheltere ctor ind speed Mar e U2	ed : Apr	May	Jun	lut		Sep	(18) x (2 Oct	20) = Nov	3 0.78 0.41 Dec] (18)] (19)] (20)] (21)
Number of sides on which Shelter factor Infiltration rate incorporat Infiltration rate modified f Jan Monthly average wind spe 5.10	the dwelling ting shelter fa for monthly w Feb teed from Tabl	is sheltere ctor ind speed Mar e U2	ed : Apr	May	Jun	lut		Sep	(18) x (2 Oct	20) = Nov	3 0.78 0.41 Dec] (18)] (19)] (20)] (21)
Number of sides on which Shelter factor Infiltration rate incorporat Infiltration rate modified f Jan Monthly average wind spe 5.10 Wind factor (22)m ÷ 4	the dwelling ting shelter fa for monthly w Feb eed from Tabl 5.00	is sheltere ctor ind speed Mar e U2 4.90 1.23	ed : Apr 4.40 1.10	May 4.30	Jun 3.80 0.95	Jul 3.80	3.70	Sep	(18) × (2 Oct 4.30	20) = Nov 4.50	3 0.78 0.41 Dec 4.70] (18)] (19)] (20)] (21)] (22)
Number of sides on which Shelter factor Infiltration rate incorporat Infiltration rate modified f Jan Monthly average wind spe 5.10 Wind factor (22)m ÷ 4 1.28	the dwelling ting shelter fa for monthly w Feb eed from Tabl 5.00	is sheltere ctor ind speed Mar e U2 4.90 1.23	ed : Apr 4.40 1.10	May 4.30	Jun 3.80 0.95	Jul 3.80	3.70	Sep	(18) × (2 Oct 4.30	20) = Nov 4.50	3 0.78 0.41 Dec 4.70] (18)] (19)] (20)] (21)] (22)] (22a)
Number of sides on which Shelter factor Infiltration rate incorporat Infiltration rate modified f Jan Monthly average wind spe 5.10 Wind factor (22)m ÷ 4 1.28 Adjusted infiltration rate (the dwelling ting shelter fa for monthly w Feb eed from Tabl 5.00 1.25 allowing for s 0.51	is sheltere ctor ind speed Mar e U2 4.90 1.23 helter and 0.50	ed : Apr 4.40 1.10 d wind fact 0.45	May 4.30 1.08 or) (21) x (2	Jun 3.80 0.95 22a)m	Jul 3.80 0.95	3.70 0.93	Sep 4.00 1.00	(18) × (2 Oct 4.30	20) = Nov 4.50 1.13	3 0.78 0.41 Dec 4.70] (18)] (19)] (20)] (21)] (22)] (22a)
Number of sides on which Shelter factor Infiltration rate incorporat Infiltration rate modified f Jan Monthly average wind spe 5.10 Wind factor (22)m ÷ 4 1.28 Adjusted infiltration rate (0.52	the dwelling ting shelter fa for monthly w Feb eed from Table 5.00 1.25 allowing for s 0.51 nge rate for th	is sheltere ctor mind speed Mar e U2 4.90 1.23 helter and 0.50 he applica	ed : Apr 4.40 1.10 1 wind fact 0.45 ble case:	May 4.30 1.08 or) (21) x (2 0.44	Jun 3.80 0.95 22a)m	Jul 3.80 0.95	3.70 0.93	Sep 4.00 1.00	(18) × (2 Oct 4.30	20) = Nov 4.50 1.13	3 0.78 0.41 Dec 4.70] (18)] (19)] (20)] (21)] (22)] (22a)
Number of sides on which Shelter factor Infiltration rate incorporat Infiltration rate modified f Jan Monthly average wind spe 5.10 Wind factor (22)m ÷ 4 1.28 Adjusted infiltration rate (0.52 Calculate effective air char	the dwelling ting shelter fa for monthly w Feb eed from Tabl 5.00 1.25 allowing for s 0.51 nge rate for th on: air change	is sheltere ctor ind speed Mar e U2 4.90 1.23 helter and 0.50 he applica	ed : Apr 4.40 1.10 d wind fact 0.45 ble case: ugh system	May 4.30 1.08 or) (21) x (2 0.44	Jun 3.80 0.95 22a)m 0.39	Jul 3.80 0.95 0.39	3.70 0.93	Sep 4.00 1.00	(18) × (2 Oct 4.30	20) = Nov 4.50 1.13	3 0.78 0.41 Dec 4.70 1.18 0.48] (18)] (19)] (20)] (21)] (22)] (22a)] (22b)
Number of sides on which Shelter factor Infiltration rate incorporat Infiltration rate modified f Jan Monthly average wind spe 5.10 Wind factor (22)m ÷ 4 1.28 Adjusted infiltration rate (0.52 Calculate effective air char If mechanical ventilatio	the dwelling ting shelter fa for monthly w Feb eed from Table 5.00 1.25 allowing for s 0.51 nge rate for th on: air change ecovery: effici	is sheltere ctor mind speed Mar e U2 4.90 1.23 helter and 0.50 he applica rate throu iency in %	ed : Apr 4.40 1.10 d wind fact 0.45 ble case: ugh system allowing for	May 4.30 1.08 or) (21) x (2 0.44	Jun 3.80 0.95 22a)m 0.39 ctor from T	Jul 3.80 0.95 0.39	3.70 0.93	Sep 4.00 1.00	(18) × (2 Oct 4.30	20) = Nov 4.50 1.13	3 0.78 0.41 Dec 4.70 1.18 0.48] (18)] (19)] (20)] (21)] (22)] (22a)] (22a)] (22b)] (23a)
Number of sides on which Shelter factor Infiltration rate incorporat Infiltration rate modified f Jan Monthly average wind spe 5.10 Wind factor (22)m ÷ 4 1.28 Adjusted infiltration rate (0.52 Calculate effective air chan If mechanical ventilation	the dwelling ting shelter fa for monthly w Feb eed from Table 5.00 1.25 allowing for s 0.51 nge rate for th on: air change ecovery: effici	is sheltere ctor mind speed Mar e U2 4.90 1.23 helter and 0.50 he applica rate throu iency in %	ed : Apr 4.40 1.10 d wind fact 0.45 ble case: ugh system allowing for	May 4.30 1.08 or) (21) x (2 0.44	Jun 3.80 0.95 22a)m 0.39 ctor from T	Jul 3.80 0.95 0.39	3.70 0.93	Sep 4.00 1.00	(18) × (2 Oct 4.30	20) = Nov 4.50 1.13	3 0.78 0.41 Dec 4.70 1.18 0.48] (18)] (19)] (20)] (21)] (22)] (22a)] (22a)] (22b)] (23a)
Number of sides on which Shelter factor Infiltration rate incorporat Infiltration rate modified f Jan Monthly average wind spe 5.10 Wind factor (22)m ÷ 4 1.28 Adjusted infiltration rate (0.52 Calculate effective air chan If mechanical ventilation If balanced with heat re d) natural ventilation of	the dwelling ting shelter fa for monthly w Feb eed from Table 5.00 1.25 allowing for s 0.51 nge rate for th on: air change ecovery: effici or whole house 0.63	is sheltere ctor mind speed Mar e U2 4.90 1.23 helter and 0.50 he applica rate throu iency in % e positive 0.62	ed	May 4.30 1.08 or) (21) x (2 0.44 or in-use fa ilation from 0.60	Jun 3.80 0.95 22a)m 0.39 ctor from T n loft	Jul 3.80 0.95 0.39 able 4h	0.93	Sep 4.00 1.00 0.41	(18) × (2 Oct 4.30 1.08 0.44	20) = Nov 4.50 1.13 0.46	3 0.78 0.41 Dec 4.70 1.18 0.48 N/A N/A] (18)] (19)] (20)] (21)] (22)] (22a)] (22a)] (22b)] (22b)] (23a)] (23c)

3. Heat losses	and heat lo	ss paramet	er										
Element				Gross rea, m²	Openings m ²		area m²	U-value W/m²K	A x U W		/alue, /m².K	Ахк, kJ/K	
Door						3	.06 x	1.60	= 4.90				(26)
Window						11	L.51 x	1.50	= 17.31				(27)
Roof window						1	.62 x	2.02	= 3.28				(27a)
Ground floor						60	0.00 x	0.18	= 10.80				(28a)
External wall						54	1.87 x	0.26	= 14.27				(29a)
Party wall						21	L.29 x	0.00	= 0.00				(32)
Roof						58	3.65 x	0.16	= 9.38				(30)
Total area of ext	ternal elem	ents ∑A, m²				18	9.71						(31)
Fabric heat loss,	W/K = ∑(A	× U)							(26	5)(30) + (3	32) =	59.93	(33)
Heat capacity Cr	m = ∑(А x к)							(28)	(30) + (32) +	- (32a)(32	2e) =	N/A	(34)
Thermal mass p	arameter (T	·MP) in kJ/n	n²K									250.00	(35)
Thermal bridges	s: Σ(L x Ψ) ca	alculated us	ing Appen	dix K								28.46	(36)
Total fabric heat	t loss									(33) + (3	36) =	88.39	(37)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	_
Ventilation heat	loss calcula	ated month	ly 0.33 x (2	25)m x (5)									
	33.54	33.27	33.00	31.72	31.49	30.38	30.38	30.17	30.81	31.49	31.97	32.47	(38)
Heat transfer co	efficient, W	//K (37)m +	- (38)m										-
	121.93	121.65	121.38	120.11	119.87	118.77	118.77	118.56	119.19	119.87	120.35	120.86	7
				-					Average = ∑	(39)112/	/12 =	120.11	(39)
Heat loss param	eter (HLP),	W/m²K (39	9)m ÷ (4)										-
	2.03	2.03	2.02	2.00	2.00	1.98	1.98	1.98	1.99	2.00	2.01	2.01]
									Average = ∑	(40)112/	/12 =	2.00	(40)
Number of days	in month (⁻	Table 1a)											
	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	(40)
4. Water heati		equiremen	t										7
Assumed occup												1.98	(42)
Annual average				Vd,average								81.26	(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hot water usage	-						-				,	1	7
	89.39	86.14	82.89	79.64	76.39	73.14	73.14	76.39	79.64	82.89	86.14	89.39	
										∑(44)1	.12 =	975.17	(44)
Energy content						•	1					1	-
	132.56	115.94	119.64	104.31	100.08	86.36	80.03	91.83	92.93	108.30	118.22	128.38	
										∑(45)1	.12 =	1278.60	(45)
Distribution loss							1	-1				1	-
	19.88	17.39	17.95	15.65	15.01	12.95	12.00	13.78	13.94	16.25	17.73	19.26	(46)
Water storage lo		1			, i		1	-	i			i	-
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(56)
If the vessel con		1	-				1	, else (56)					-
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(57)
Primary circuit l		1	m Table 3	1	·				·			-	-
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(59)
Combi loss for e				1			1	-				1	-
	45.55	39.65	42.24	39.27	38.93	36.07	37.27	38.93	39.27	42.24	42.48	45.55	(61)

SAP version 9.92

....

Total heat requi	red for wat	er heating o	calculated f	or each mo	onth 0.85 x	(45)m + (4	6)m + (57)r	n + (59)m +	· (61)m				
	178.12	155.59	161.88	143.58	139.01	122.43	117.30	130.76	132.21	150.54	160.70	173.93	(62)
Solar DHW input	t calculated	l using Appe	endix G or A	Appendix H									
	-13.46	-11.84	-12.09	-9.96	-9.25	-7.64	-6.47	-7.83	-8.06	-9.95	-11.51	-13.01	(63)
Output from wa	ter heater f	for each mo	onth (kWh/	month) (62	2)m + (63)m	ı							
	164.66	143.75	149.79	133.62	129.76	114.80	110.83	122.93	124.15	140.59	149.19	160.93]
										∑(64)1	.12 = 1	644.99	(64)
Heat gains from	water heat	ing (kWh/n	nonth) 0.2	5 × [0.85 ×	(45)m + (61	.)m] + 0.8 ×	[(46)m + (57)m + (59)	m]				
	55.47	48.46	50.34	44.50	43.01	37.73	35.93	40.27	40.72	46.57	49.93	54.07	(65)
5. Internal gain													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabolic gains	(Table 5)												_
	118.90	118.90	118.90	118.90	118.90	118.90	118.90	118.90	118.90	118.90	118.90	118.90	(66)
Lighting gains (c	alculated in	Appendix	L, equation	L9 or L9a),	also see Ta	able 5							
	38.63	34.31	27.90	21.12	15.79	13.33	14.40	18.72	25.13	31.91	37.24	39.70	(67)
Appliance gains	(calculated	in Appendi	x L, equatio	on L13 or L1	13a), also se	ee Table 5							
	258.13	260.81	254.06	239.69	221.55	204.50	193.11	190.43	197.18	211.55	229.69	246.74	(68)
Cooking gains (c	alculated ir	n Appendix	L, equation	L15 or L15	a), also see	Table 5							
	48.87	48.87	48.87	48.87	48.87	48.87	48.87	48.87	48.87	48.87	48.87	48.87	(69)
Pump and fan ga	ains (Table	5a)											
	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	(70)
Losses e.g. evap	oration (Ta	ble 5)											
	-79.27	-79.27	-79.27	-79.27	-79.27	-79.27	-79.27	-79.27	-79.27	-79.27	-79.27	-79.27	(71)
Water heating g	ains (Table	5)											
	74.55	72.12	67.66	61.81	57.81	52.41	48.29	54.12	56.55	62.59	69.35	72.68	(72)
Total internal ga	ins (66)m -	+ (67)m + (6	58)m + (69)	m + (70)m ·	+ (71)m + (7	72)m							
	462.81	458.74	441.13	414.12	386.65	361.74	347.31	354.78	370.37	397.56	427.79	450.63	(73)

6. Solar gains

			Access f Table		Area m²		Solar flux W/m ²		g specifi or Tab	c data	F specifi or Tal		Gains W	
North			0.54	1 x	1.73	x	10.63] x 0.9 x	0.7	' 6	x 0.	70 =	4.76	(74)
West			1.00	x	2.98	x	19.64] x 0.9 x	0.7	′ 6	x 0.	70 =	28.02	(80)
West			0.54	4 × [4.59	x	19.64] x 0.9 x	0.7	' 6	x 0.	70 =	23.31	(80)
South			0.54	1 × [2.21] x [46.75] x 0.9 x	0.7	' 6	x 0.	70 =	26.71	(78
South			1.00) x	1.62	x	29.11] x 0.9 x	0.7	' 6	x 0.	80 =	25.80	(78
Solar gains in wat	ts ∑(74)m	(82)m												
[108.61	205.38	326.36	466.08	568.00	581.3	4 553.4	1 476	6.55	375.58	240.0	5 134.0	90.29	(83
Total gains - inter	nal and so	lar (73)m +	(83)m											
[571.42	664.11	767.49	880.21	954.65	943.0	8 900.7	2 831	.33	745.95	637.62	2 561.7	79 540.92	(84
7. Mean interna Temperature duri	-			area from 1	able 9, Th	1(°C)						[21.00	(85
	Jan	Feb	Mar	Apr	May	Jun	Jul	A	ug	Sep	Oct	Nov	/ Dec	·
Utilisation factor f	for gains fo	or living are	ea n1,m (se	e Table 9a)										
Г	0.99	0.98	0.96	0.92	0.82	0.68	0.54	0.	59	0.81	0.94	0.98	3 0.99	(86

	19.43	19.59	19.88	20.26	20.59	20.80	20.88	20.86	20.69	20.26	19.78	19.40	(87)
Temperature du	uring heating	g periods in	the rest of		rom Table 9	, Th2(°C)	I				I	1	
·	19.98	19.99	19.99	20.00	20.00	20.01	20.01	20.01	20.01	20.00	20.00	19.99	(88)
Utilisation facto] (,
	0.99	0.98	0.95	0.90	0.78	0.61	0.43	0.49	0.75	0.93	0.98	0.99	(89)
Mean internal t		I			II		I	0.15	0.75	0.55	0.50	0.55] (00)
	18.54	18.70	18.99	19.37	19.67	19.86	19.91	19.91	19.78	19.38	18.90	18.52	(90)
Living area fract		10.70	10.55	19.57	15.07	19.00	15.51	15.51		ving area ÷	r	0.43	(91)
Mean internal t		for the wh	ole dwellin	α fl Δ v T1 +	.(1 _ fl A) v T	` 2					(4) -	0.45] (31)
wear internate				-	· · ·		20.22	20.21	20.17	10.75	10.27	10.00	
A	18.92	19.08	19.37	19.75	20.06	20.26	20.32	20.31	20.17	19.75	19.27	18.89	(92)
Apply adjustme			-						22.22	10.00			1 (00)
	18.77	18.93	19.22	19.60	19.91	20.11	20.17	20.16	20.02	19.60	19.12	18.74	(93)
8. Space heati	ng requirem	ent											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation facto	or for gains. r	าm		•				Ū					
	0.98	0.97	0.95	0.89	0.78	0.61	0.45	0.50	0.75	0.92	0.97	0.99	(94)
Useful gains, ηn				0.05	0.70	0.01	0.15	0.50	0.75	0.52	0.57	0.55] (3 !)
	561.74	645.50	726.70	781.73	744.49	579.88	405.52	418.53	557.20	586.85	546.50	533.19	(95)
Monthly averag					744.49	575.88	405.52	418.55	557.20	560.65	540.50	555.15] (33)
wontiny averag	4.30	4.90	6.50		11.70	14.60	16.60	16.40	14.10	10.60	7 10	4.20	
Heat loss rate fo		I		8.90			10.00	10.40	14.10	10.60	7.10	4.20	(96)
Heat loss rate fo							124.44	446.24	705.40	4070.00		4757.74	
Constanting of	1763.93	1707.06	1543.94	1284.67	983.96	654.15	424.44	446.21	705.10	1079.20	1446.91	1757.71	(97)
Space heating re													1
	894.42	713.36	608.02	362.12	178.17	0.00	0.00	0.00	0.00	366.31	648.29	911.04]
									∑(98	8)15, 10		681.75] (98)]
Space heating re	equirement	kWh/m²/ye	ear							(98)	÷ (4)	78.03	(99)
9a. Energy req	uirements -	individual	heating sys	stems inclu	ding micro	СНР							
Space heating													
Fraction of space	e heat from	secondary	/sunnlemer	ntary system	m (table 11							0.00	(201)
Fraction of space				itary system						1 - (20	 	1.00	(202)
Fraction of space										1 - (20)_) =	0.00	(202)
Fraction of total									(20)2) x [1- (20	2)] –	1.00	(202)
Fraction of total									(20				1
			system z							(202) x (20		0.00	(205)
Efficiency of ma	· ·								6	0.1		84.00	(206)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating for	. ,		-					1		1	[1
	1064.79	849.24	723.84	431.10	212.11	0.00	0.00	0.00	0.00	436.08	771.78	1084.58]
									∑(21:	1)15, 10	12 = 5	573.51	(211)
Water heating													
Efficiency of wa	ter heater												
	82.46	82.34	82.05	81.37	79.96	75.00	75.00	75.00	75.00	81.29	82.16	82.51	(217)
Water heating f	uel, kWh/m	onth											
	199.68	174.57	182.56	164.22	162.29	153.06	147.77	163.91	165.53	172.94	181.59	195.03]
										∑(219a)1	12 = 2	063.15	(219)
Annual totals													
Space heating for	uel - main sy	stem 1									5	573.51]

Water heating fuel				ſ	2063.15]
Electricity for pumps, fans and electric keep-hot (Table 4	lf)			L		J
central heating pump or water pump within warm air			30.00			(230c)
Total electricity for the above, kWh/year				Γ	30.00	(231)
Electricity for lighting (Appendix L)				[272.89	(232)
Total delivered energy for all uses		(21	.1)(221) + (231) + (232)	(237b) = [7939.54	(238)
		(] ()
10a. Fuel costs - individual heating systems including r	nicro-CHP					
	Fuel kWh/year		Fuel price		Fuel cost £/year	
Space heating - main system 1	5573.51	x	3.48	0.01 =	193.96	(240)
Water heating	2063.15	x	3.48	(0.01 = [71.80	(247)
Pumps and fans	30.00	x	13.19	0.01 =	3.96	(249)
Electricity for lighting	272.89	x	13.19	< 0.01 = [35.99	(250)
Additional standing charges				[120.00	(251)
Total energy cost			(240)(242) + (245	5)(254) = [425.71	(255)
11a. SAP rating - individual heating systems including	micro-CHP			ſ		1
Energy cost deflator (Table 12)				L r	0.42	(256)
Energy cost factor (ECF)				Ĺ	1.70	(257)
SAP value					76.25]
SAP rating (section 13)				l	76	(258)
SAP band				l	С	
12a. CO ₂ emissions - individual heating systems includ	ing micro-CHP					
	Energy		Emission factor		Emissions	
	Energy kWh/year		Emission factor kg CO ₂ /kWh		Emissions kg CO ₂ /year	
Space heating - main system 1		x		= [] (261)
Space heating - main system 1 Water heating	kWh/year	x x	kg CO₂/kWh	= [kg CO₂/year] (261)] (264)
	kWh/year		kg CO ₂ /kWh	= [kg CO ₂ /year 1203.88	
Water heating	kWh/year		kg CO ₂ /kWh 0.216 0.216	= [kg CO ₂ /year 1203.88 445.64	(264)
Water heating Space and water heating	kWh/year 5573.51 2063.15	x	kg CO ₂ /kWh 0.216 0.216 (261) + (262) + (263	= [) + (264) = [kg CO ₂ /year 1203.88 445.64 1649.52] (264)] (265)
Water heating Space and water heating Pumps and fans	kWh/year 5573.51 2063.15 30.00	x x	kg CO ₂ /kWh 0.216 0.216 (261) + (262) + (263 0.519 0.519	= [) + (264) = [= [kg CO ₂ /year 1203.88 445.64 1649.52 15.57	(264) (265) (267)
Water heating Space and water heating Pumps and fans Electricity for lighting	kWh/year 5573.51 2063.15 30.00	x x	kg CO ₂ /kWh 0.216 0.216 (261) + (262) + (263 0.519 0.519 (261) (261) (261) 0.519	= [+ (264) = [= [= [kg CO ₂ /year 1203.88 445.64 1649.52 15.57 141.63) (264)) (265)) (267)) (268)
Water heating Space and water heating Pumps and fans Electricity for lighting Total CO ₂ , kg/year	kWh/year 5573.51 2063.15 30.00	x x	kg CO ₂ /kWh 0.216 0.216 (261) + (262) + (263 0.519 0.519 (261) (261) (261) 0.519	= [+ (264) = [= [5)(271) = [kg CO ₂ /year 1203.88 445.64 1649.52 15.57 141.63 1806.72] (264)] (265)] (267)] (268)] (272)
Water heating Space and water heating Pumps and fans Electricity for lighting Total CO ₂ , kg/year Dwelling CO ₂ emission rate	kWh/year 5573.51 2063.15 30.00	x x	kg CO ₂ /kWh 0.216 0.216 (261) + (262) + (263 0.519 0.519 (261) (261) (261) 0.519	= [+ (264) = [= [5)(271) = [kg CO ₂ /year 1203.88 445.64 1649.52 15.57 141.63 1806.72 30.11] (264)] (265)] (267)] (268)] (272)
Water heating Space and water heating Pumps and fans Electricity for lighting Total CO ₂ , kg/year Dwelling CO ₂ emission rate El value	kWh/year 5573.51 2063.15 30.00	x x	kg CO ₂ /kWh 0.216 0.216 (261) + (262) + (263 0.519 0.519 (261) (261) (261) 0.519	= [+ (264) = [= [5)(271) = [kg CO ₂ /year 1203.88 445.64 1649.52 15.57 141.63 1806.72 30.11 76.94	(264) (265) (267) (268) (272) (273)
Water heating Space and water heating Pumps and fans Electricity for lighting Total CO ₂ , kg/year Dwelling CO ₂ emission rate El value El rating (section 14) El band	kWh/year 5573.51 2063.15 30.00 272.89	x x	kg CO ₂ /kWh 0.216 0.216 (261) + (262) + (263 0.519 0.519 (261) (261) (261) 0.519	= [+ (264) = [= [5)(271) = [kg CO2/year 1203.88 445.64 1649.52 15.57 141.63 1806.72 30.11 76.94 77	(264) (265) (267) (268) (272) (273)
Water heating Space and water heating Pumps and fans Electricity for lighting Total CO ₂ , kg/year Dwelling CO ₂ emission rate El value El rating (section 14)	kWh/year 5573.51 2063.15 30.00 272.89	x x	kg CO ₂ /kWh 0.216 0.216 (261) + (262) + (263 0.519 0.519 (261) (261) (261) (261) (261) (261) (261) (261) (261) (261) (261) (261) (261) (261) (261) (262) (261) (262) (263) (261) (263) (273) (= [+) + (264) = [= [5)(271) = [(271) ÷ (4) = [[kg CO ₂ /year 1203.88 445.64 1649.52 15.57 141.63 1806.72 30.11 76.94 77 C	(264) (265) (267) (268) (272) (273) (273) (274)
Water heating Space and water heating Pumps and fans Electricity for lighting Total CO ₂ , kg/year Dwelling CO ₂ emission rate El value El rating (section 14) El band 13a. Primary energy - individual heating systems inclu	kWh/year 5573.51 2063.15 30.00 272.89 ding micro-CHP Energy kWh/year	x x x	kg CO ₂ /kWh 0.216 0.216 (261) + (262) + (263 0.519 0.519 (261 (262) (263) (273) (2	$= \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	kg CO ₂ /year 1203.88 445.64 1649.52 15.57 141.63 1806.72 30.11 76.94 77 C Primary Energy kWh/year	(264) (265) (267) (268) (272) (273) (273) (274)
Water heating Space and water heating Pumps and fans Electricity for lighting Total CO ₂ , kg/year Dwelling CO ₂ emission rate El value El rating (section 14) El band 13a. Primary energy - individual heating systems inclue Space heating - main system 1	kWh/year 5573.51 2063.15 30.00 272.89 ding micro-CHP Energy kWh/year 5573.51	x x x	kg CO ₂ /kWh 0.216 0.216 (261) + (262) + (263 0.519 0.519 (263 (263 (263) (273) (27	$= \begin{bmatrix} 1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ $	kg CO ₂ /year 1203.88 445.64 1649.52 15.57 141.63 1806.72 30.11 76.94 77 C Primary Energy kWh/year 6799.68	(264) (265) (267) (268) (272) (273) (273) (274)
Water heating Space and water heating Pumps and fans Electricity for lighting Total CO ₂ , kg/year Dwelling CO ₂ emission rate El value El rating (section 14) El band 13a. Primary energy - individual heating systems inclus Space heating - main system 1 Water heating	kWh/year 5573.51 2063.15 30.00 272.89 ding micro-CHP Energy kWh/year	x x x	kg CO ₂ /kWh 0.216 0.216 (261) + (262) + (263 0.519 0.519 (261 (263) (263) (264) (2	$= \begin{bmatrix} 1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ $	kg CO ₂ /year 1203.88 445.64 1649.52 15.57 141.63 1806.72 30.11 76.94 77 C Primary Energy kWh/year 6799.68 2517.05) (264)) (265)] (267)] (268)] (272)] (273)] (274)] (261)] (264)
Water heating Space and water heating Pumps and fans Electricity for lighting Total CO ₂ , kg/year Dwelling CO ₂ emission rate El value El rating (section 14) El band 13a. Primary energy - individual heating systems inclu Space heating - main system 1 Water heating Space and water heating	kWh/year 5573.51 2063.15 30.00 272.89 ding micro-CHP Energy kWh/year 5573.51 2063.15	x x x	kg CO ₂ /kWh 0.216 0.216 (261) + (262) + (263 0.519 (261) (261) Primary factor 1.22 (261) + (262) + (263)	$= \begin{bmatrix} 1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ $	kg CO ₂ /year 1203.88 445.64 1649.52 15.57 141.63 1806.72 30.11 76.94 77 C Primary Energy kWh/year 6799.68 2517.05 9316.72) (264)) (265)] (267)] (268)] (272)] (273)] (273)] (274)] (261)] (261)] (265)
Water heating Space and water heating Pumps and fans Electricity for lighting Total CO ₂ , kg/year Dwelling CO ₂ emission rate El value El rating (section 14) El band 13a. Primary energy - individual heating systems inclu Space heating - main system 1 Water heating Space and water heating Pumps and fans	kWh/year 5573.51 2063.15 30.00 272.89 ding micro-CHP Energy kWh/year 5573.51 2063.15 30.00	x x x	kg CO ₂ /kWh 0.216 0.216 (261) + (262) + (263 0.519 0.519 (261) (261) (262) (262) (263) ($= \begin{bmatrix} 1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ $	kg CO ₂ /year 1203.88 445.64 1649.52 15.57 141.63 1806.72 30.11 76.94 77 C Primary Energy kWh/year 6799.68 2517.05 9316.72 92.10	(264) (265) (267) (268) (272) (273) (273) (273) (274) (274) (264) (264) (265) (267)
Water heating Space and water heating Pumps and fans Electricity for lighting Total CO ₂ , kg/year Dwelling CO ₂ emission rate El value El rating (section 14) El band 13a. Primary energy - individual heating systems inclue Space heating - main system 1 Water heating Space and water heating Pumps and fans Electricity for lighting	kWh/year 5573.51 2063.15 30.00 272.89 ding micro-CHP Energy kWh/year 5573.51 2063.15	x x x x	kg CO ₂ /kWh 0.216 0.216 (261) + (262) + (263 0.519 (261) (261) Primary factor 1.22 (261) + (262) + (263)	$= \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	kg CO ₂ /year 1203.88 445.64 1649.52 15.57 141.63 1806.72 30.11 76.94 77 C Primary Energy kWh/year 6799.68 2517.05 9316.72 92.10 837.76	(264) (265) (267) (268) (272) (273) (273) (273) (274) (274) (261) (264) (265) (265) (267) (268)
Water heating Space and water heating Pumps and fans Electricity for lighting Total CO ₂ , kg/year Dwelling CO ₂ emission rate El value El rating (section 14) El band 13a. Primary energy - individual heating systems inclu Space heating - main system 1 Water heating Space and water heating Pumps and fans	kWh/year 5573.51 2063.15 30.00 272.89 ding micro-CHP Energy kWh/year 5573.51 2063.15 30.00	x x x x x	kg CO ₂ /kWh 0.216 0.216 (261) + (262) + (263 0.519 0.519 (261) (261) (262) (262) (263) ($= \begin{bmatrix} 1 \\ -264 \end{bmatrix} = \begin{bmatrix} 1 \\ -264 \end{bmatrix} = \begin{bmatrix} 1 \\ -264 \end{bmatrix} = \begin{bmatrix} 1 \\ -272 \end{bmatrix} = \begin{bmatrix} 1 \\ -72 \end{bmatrix} = \begin{bmatrix} 1 \\ -72 \end{bmatrix} = \begin{bmatrix} 1 \\ -264 \end{bmatrix} = \begin{bmatrix} 1 $	kg CO ₂ /year 1203.88 445.64 1649.52 15.57 141.63 1806.72 30.11 76.94 77 C Primary Energy kWh/year 6799.68 2517.05 9316.72 92.10	(264) (265) (267) (268) (272) (273) (273) (273) (274) (274) (264) (264) (265) (267)
Water heating Space and water heating Pumps and fans Electricity for lighting Total CO ₂ , kg/year Dwelling CO ₂ emission rate El value El rating (section 14) El band 13a. Primary energy - individual heating systems inclue Space heating - main system 1 Water heating Space and water heating Pumps and fans Electricity for lighting	kWh/year 5573.51 2063.15 30.00 272.89 ding micro-CHP Energy kWh/year 5573.51 2063.15 30.00	x x x x x	kg CO ₂ /kWh 0.216 0.216 (261) + (262) + (263 0.519 0.519 (261) (261) (262) (262) (263) ($= \begin{bmatrix} 1 \\ -264 \end{bmatrix} = \begin{bmatrix} 1 \\ -264 \end{bmatrix} = \begin{bmatrix} 1 \\ -264 \end{bmatrix} = \begin{bmatrix} 1 \\ -272 \end{bmatrix} = \begin{bmatrix} 1 \\ -72 \end{bmatrix} = \begin{bmatrix} 1 \\ -72 \end{bmatrix} = \begin{bmatrix} 1 \\ -264 \end{bmatrix} = \begin{bmatrix} 1 $	kg CO ₂ /year 1203.88 445.64 1649.52 15.57 141.63 1806.72 30.11 76.94 77 C Primary Energy kWh/year 6799.68 2517.05 9316.72 92.10 837.76	(264) (265) (267) (268) (272) (273) (273) (273) (274) (274) (261) (264) (265) (265) (267) (268)

Appendix C – SAP Worksheets – Improved Case Scenario

SAP Worksheet Design - Draft

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

		o										
Assessor name												
Client	Richmon	d Charities					La	st modified		20/06	/2022	
Address	n/a n/a r	n/a St Mary	's Grove, G	arage site	to rear, Ricl	hmond, UK,	TW9 1UY					
1. Overall dwelling dim	ensions			_	(2)						. (2)	
				А	rea (m²)			age storey eight (m)		Vo	olume (m³)	
Lowest occupied					60.00] (1a) x		2.67	(2a) =		160.20	(3a)
Total floor area	(1a)	+ (1b) + (1	c) + (1d)(1n) =	60.00	(4)						
Dwelling volume							(3a)	+ (3b) + (3d	c) + (3d)(3	3n) =	160.20] (5)
2. Ventilation rate												
										m	³ per hour	
Number of chimneys								0	x 40 =	:	0	(6a)
Number of open flues								0	x 20 =	:	0	(6b)
Number of intermittent f	fans							2	x 10 =	:	20	(7a)
Number of passive vents	i							0	x 10 =	:	0	(7b)
Number of flueless gas fi	res							0	x 40 =	:	0	(7c)
										Air	changes per hour	
Infiltration due to chimn	evs. flues. fans	s. PSVs		(6a)	+ (6b) + (7	a) + (7b) + (7c) =	20	÷ (5) =		0.12	(8)
If a pressurisation test ha	• • • •		ntended, p					o (16)	()],,,
Air permeability value, q	50, expressed	in cubic m	etres per h	our per squ	uare metre	of envelope	e area				5.00	(17)
If based on air permeabil	lity value, ther	n (18) = [(1 ⁻	7) ÷ 20] + (8), otherwi	se (18) = (1	6)					0.37	(18)
Number of sides on whic	h the dwelling	g is sheltere	ed								3	(19)
Shelter factor								1 -	[0.075 x (1	9)] =	0.78	
Infiltration rate incorpora	ating shelter fa	actor							(10)			(20)
Infiltration rate modified	for monthly								(18) X (2	20) =	0.29] (20)] (21)
		wind speed	:						(18) X (2	20) =	0.29	יינ ר
Jan	Feb	wind speed Mar	: Apr	Мау	Jun	Jul	Aug	Sep	(18) X (2	20) = Nov	0.29 Dec	יינ ר
	Feb	Mar		May	Jun	lut	Aug	Sep				יינ ר
Jan	Feb beed from Tab	Mar		May 4.30	Jun 3.80	Jul 3.80	Aug 3.70	Sep				יינ ר
Jan Monthly average wind sp	Feb beed from Tab	Mar ole U2	Apr			1			Oct	Nov	Dec] (21)
Jan Monthly average wind sp 5.10	Feb beed from Tab	Mar ole U2	Apr			1			Oct	Nov	Dec] (21)
Jan Monthly average wind sp 5.10 Wind factor (22)m ÷ 4	Feb beed from Tab 5.00 1.25	Mar ole U2 4.90 1.23	Apr 4.40	4.30	0.95	3.80	3.70	4.00	Oct 4.30	Nov 4.50	Dec] (21)
Jan Monthly average wind sp 5.10 Wind factor (22)m ÷ 4 1.28	Feb beed from Tab 5.00 1.25 c (allowing for	Mar ole U2 4.90 1.23	Apr 4.40	4.30	0.95	3.80	3.70	4.00	Oct 4.30	Nov 4.50	Dec] (21)
Jan Monthly average wind sp 5.10 Wind factor (22)m ÷ 4 1.28 Adjusted infiltration rate	Feb beed from Tab 5.00 1.25 c (allowing for 0.36	Mar ole U2 4.90 1.23 shelter and 0.36	Apr 4.40 1.10 d wind fact 0.32	4.30 1.08 or) (21) x (2	3.80 0.95 22a)m	3.80 0.95	3.70 0.93	4.00	Oct 4.30 1.08	Nov 4.50	Dec 4.70 1.18] (21)] (22)] (22a)
Jan Monthly average wind sp 5.10 Wind factor (22)m ÷ 4 1.28 Adjusted infiltration rate 0.37	Feb beed from Tab 5.00 1.25 (allowing for 0.36 ange rate for t	Mar ole U2 4.90 1.23 shelter and 0.36 the applica	Apr 4.40 1.10 d wind fact 0.32 ble case:	4.30 1.08 or) (21) x (2 0.31	3.80 0.95 22a)m	3.80 0.95	3.70 0.93	4.00	Oct 4.30 1.08	Nov 4.50	Dec 4.70 1.18] (21)] (22)] (22a)
Jan Monthly average wind sp 5.10 Wind factor (22)m ÷ 4 1.28 Adjusted infiltration rate 0.37 Calculate effective air ch	Feb beed from Tab 5.00 1.25 (allowing for 0.36 ange rate for t	Mar ole U2 4.90 1.23 shelter and 0.36 the applica e rate thro	Apr 4.40 1.10 d wind fact 0.32 ble case: ugh system	4.30 1.08 or) (21) x (2 0.31	3.80 0.95 22a)m 0.28	3.80 0.95 0.28	3.70 0.93	4.00	Oct 4.30 1.08	Nov 4.50	Dec 4.70 1.18 0.34] (21)] (22)] (22a)] (22b)
Jan Monthly average wind sp 5.10 Wind factor (22)m ÷ 4 1.28 Adjusted infiltration rate 0.37 Calculate effective air ch If mechanical ventilat	Feb Deeed from Tab 5.00 1.25 (allowing for 0.36 ange rate for the cion: air change recovery: efficient	Mar ble U2 4.90 1.23 shelter and 0.36 the applica e rate thro ciency in %	Apr 4.40 1.10 d wind fact 0.32 ble case: ugh system allowing f	4.30 1.08 or) (21) x (2 0.31 n or in-use fa	3.80 0.95 22a)m 0.28	3.80 0.95 0.28	3.70 0.93	4.00	Oct 4.30 1.08	Nov 4.50	Dec 4.70 1.18 0.34 N/A] (21)] (22)] (22a)] (22b)] (22b)] (23a)
Jan Monthly average wind sp 5.10 Wind factor (22)m ÷ 4 1.28 Adjusted infiltration rate 0.37 Calculate effective air ch If mechanical ventilat If balanced with heat	Feb beed from Tab 5.00 1.25 (allowing for 0.36 ange rate for f cion: air chang recovery: effic or whole hou	Mar ble U2 4.90 1.23 shelter and 0.36 the applica e rate thro ciency in %	Apr 4.40 1.10 d wind fact 0.32 ble case: ugh system allowing f	4.30 1.08 or) (21) x (2 0.31 n or in-use fa	3.80 0.95 22a)m 0.28	3.80 0.95 0.28	3.70 0.93	4.00	Oct 4.30 1.08	Nov 4.50	Dec 4.70 1.18 0.34 N/A] (21)] (22)] (22a)] (22b)] (22b)] (23a)
Jan Monthly average wind sp 5.10 Wind factor (22)m ÷ 4 1.28 Adjusted infiltration rate 0.37 Calculate effective air ch If mechanical ventilat If balanced with heat d) natural ventilation	Feb Deeed from Tab 5.00 1.25 (allowing for 0.36 ange rate for the cion: air change recovery: efficion or whole hou 0.57	Mar ble U2 4.90 1.23 shelter and 0.36 the applica e rate thro ciency in % se positive 0.56	Apr 4.40 1.10 d wind fact 0.32 ble case: ugh system allowing f input vent 0.55	4.30 1.08 or) (21) x (2 0.31 or in-use fa ilation from 0.55	3.80 0.95 22a)m 0.28 ctor from T n loft	3.80 0.95 0.28	0.93 0.27	4.00	Oct 4.30 1.08 0.31	Nov 4.50 1.13 0.33	Dec 4.70 1.18 0.34 N/A N/A] (21)] (22)] (22a)] (22a)] (22b)] (23a)] (23c)

3. Heat losses a	and heat los	ss paramet	ter																
Element			a	Gross area, m ²	-	ening m²		et are A, m²			-value //m²K	A	хU	W/K		value, /m².K		Ахк, kJ/K	
Door								3.06	x		1.20	= [3.6	7					(26)
Window							1	1.51	. x		0.77	= [8.8	1					(27)
Roof window								1.62	x		0.73	= [1.1	.8					(27a)
Ground floor							6	50.00	x		0.13	= [7.8	0					(28a)
External wall							2	25.19	x		0.17	= [4.2	8					(29a)
External wall							2	29.68	x		0.14	= [4.1	.6					(29a)
Party wall							2	21.29	x		0.00	- [0.0	0					(32)
Roof							5	58.65	x		0.11	- [6.4	5					(30)
Total area of ext	ternal eleme	ents ∑A, m ²	2				18	89.7	1										(31)
Fabric heat loss,	W/K = ∑(A	× U)											(26)	.(30) + (32) = 🗌		36.35	(33)
Heat capacity Cr	m = ∑(А x к)										(28)	.(30)	+ (32	2) + (3	2a)(3	2e) = 🗍		N/A	(34)
Thermal mass pa	arameter (T	MP) in kJ/r	m²K													Γ	2	250.00	(35)
Thermal bridges	s: ∑(L x Ψ) ca	alculated u	sing Appen	idix K												Ē		28.46	(36)
Total fabric heat	t loss														(33) + (36) =		64.81	(37)
	Jan	Feb	Mar	Apr	м	ay	Jun		Jul		Aug	5	ер		Oct	No	v	Dec	_
Ventilation heat	loss calcula	ited month	nly 0.33 x (25)m x (5)															
	30.06	29.92	29.78	29.13	29	.01	28.45		28.45	Т	28.34	28	3.66		29.01	29.2	26	29.51	(38)
Heat transfer co	efficient, W	/K (37)m -	+ (38)m					•								•			_
	94.87	94.73	94.59	93.94	93	.82	93.26		93.26	Τ	93.15	93	3.48		93.82	94.0)7	94.32	7
					•							Aver	age =	= ∑(39	9)112	/12 = [93.94	(39)
Heat loss param	eter (HLP),	W/m²K (39	9)m ÷ (4)																_
	1.58	1.58	1.58	1.57	1.	56	1.55		1.55	Ť	1.55	1	.56		1.56	1.5	7	1.57	7
			•												0)112	/12 = [1.57	(40)
Number of days	in month (1	Table 1a)																	_
	31.00	28.00	31.00	30.00	31	.00	30.00		31.00		31.00	30	0.00		31.00	30.0	00	31.00	(40)
																•			
4. Water heati		equiremen	it																_
Assumed occupa	ancy, N															L		1.98	(42)
Annual average	hot water u	sage in litr	es per day	Vd,averag	e = (25	x N) +	- 36											81.26	(43)
	Jan	Feb	Mar	Apr	м	ay	Jun		Jul		Aug	S	ep		Oct	No	v	Dec	
Hot water usage	e in litres pe	r day for ea	ach month	Vd,m = fac	ctor fro	m Tal	ole 1c x (4	43)								_			_
	89.39	86.14	82.89	79.64	76	.39	73.14		73.14		76.39	79	9.64		82.89	86.1	L4	89.39	
															∑(44)1	.12 =	ç	975.17	(44)
Energy content	of hot wate	r used = 4.3	18 x Vd,m >	k nm x Tm/	/3600 k	Wh/r	nonth (se	e Ta	bles 1t	o, 1c	: 1d)								_
	132.56	115.94	119.64	104.31	100	0.08	86.36		80.03		91.83	92	2.93	1	.08.30	118.	22	128.38	
															∑(45)1	.12 =	1	278.60	(45)
Distribution loss	6 0.15 x (45)	m																	
	19.88	17.39	17.95	15.65	15	.01	12.95		12.00		13.78	13	3.94		16.25	17.7	73	19.26	(46)
Storage volume	(litres) inclu	ıding any s	olar or WV	VHRS stora	ge witl	nin sa	me vesse	I									1	150.00	(47)
Water storage lo	oss:																		
b) Manufacture	r's declared	loss factor	is not kno	wn															
Hot water sto	orage loss fa	actor from	Table 2 (k\	Wh/litre/da	ay)													0.03	(51)
Volume facto	or from Tabl	e 2a																0.93	(52)
Temperature	e factor from	n Table 2b																0.54	(53)
Energy lost fr	rom water s	torage (kW	/h/day) (4	7) x (51) x	(52) x (53)												2.08	(54)

```
(55)
2.08
```

			Access f Table		Area m²		ar flux //m²	-	g fic data able 6b	FF specific c or Table	lata	Gains W	
L 6. Solar gains	512.52	555.71	521.55	155101	100.00	110.00	123121	100122	101.00		307.00	000.10] (, 5
otal internal gaiı	ns (66)m + 542.32	538.74	8)m + (69) 521.59	m + (70)m · 495.04	+ (71)m + (468.05	72)m 443.66	429.24	436.22	451.35	478.08	507.83	530.15	(73
	153.49	151.61	147.72	142.42	138.98	134.13	130.01	135.29	137.16	142.65	148.84	151.62	(72
ater heating ga/ ۲	•				100.00	10/10	100.51	105.55					٦
	-79.27	-79.27	-79.27	-79.27	-79.27	-79.27	-79.27	-79.27	-79.27	-79.27	-79.27	-79.27	(71
osses e.g. evapo		,									l	1	-
	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	(70
ump and fan gai	ns (Table 5	5a)											_
	48.87	48.87	48.87	48.87	48.87	48.87	48.87	48.87	48.87	48.87	48.87	48.87	(69
ooking gains (ca	lculated in	Appendix I	, equation	L15 or L15	a), also see	Table 5							_
[258.13	260.81	254.06	239.69	221.55	204.50	193.11	190.43	197.18	211.55	229.69	246.74	(68
ppliance gains (calculated	in Appendi	k L, equatio	on L13 or L1	L3a), also s	ee Table 5							
[39.19	34.81	28.31	21.43	16.02	13.53	14.62	19.00	25.50	32.38	37.79	40.28	<mark>(67</mark>
ghting gains (ca	lculated in	Appendix L	, equation	L9 or L9a),	also see Ta	able 5							
[118.90	118.90	118.90	118.90	118.90	118.90	118.90	118.90	118.90	118.90	118.90	118.90	(66
etabolic gains (Table 5)												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
. Internal gains													
	114.20	101.88	109.90	102.54	103.40	96.57	96.73	100.65	98.76	106.13	107.17	112.81	(65
eat gains from v	vater heat	ing (kWh/m	onth) 0.25	5 × [0.85 × ((45)m + (61	.)m] + 0.8 ×	[(46)m + (5	57)m + (59)	m]			1	_
										∑(64)1	12 = 2	310.60	(64
[220.21	195.11	207.29	189.13	187.73	171.19	167.68	179.48	177.75	195.95	203.04	216.03]
utput from wate	er heater f	or each mo	nth (kWh/i	month) (62	2)m + (63)n	า							
[0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(63
olar DHW input	calculated	using Appe	ndix G or A	Appendix H									
[220.21	195.11	207.29	189.13	187.73	171.19	167.68	179.48	177.75	195.95	203.04	216.03	(62
otal heat require	ed for wate	er heating c	alculated f	or each mo	onth 0.85 x	(45)m + (4	6)m + (57)n	n + (59)m +	(61)m				
[0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(6 1
ombi loss for ea	ch month	from Table	3a, 3b or 3	с									
[23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59
imary circuit los	ss for each	month froi	m Table 3		•	•		•					-
	64.39	58.16	64.39	62.31	64.39	62.31	64.39	64.39	62.31	64.39	62.31	64.39	(5
-	ains dedica	ited solar st	orage or d	edicated W	/WHRS (56)m x [(47) -	Vs] ÷ (47),	else (56)					
the vessel conta													

										or Table 6b		or Table 6	5C		
North			0.54	4 x [1.73	x	10.6	i3 x	0.9 x [0.57] x	0.70	=	3.57	(74)
West			1.00) x	2.98	x	19.6	54 x	0.9 x [0.57	x	0.70	=	21.02	(80)
West			0.54	4 x [4.59	x	19.6	54 x	0.9 x [0.57	x	0.70	=	17.48	(80)
South			0.54	4 x	2.21	x	46.7	′5 x	0.9 x [0.57] x	0.70	=	20.04	(78)
South			1.00) x	1.62	x	29.1	.1 X	0.9 x [0.64] x	0.80	=	21.73	(78)
Solar gains in wa	tts ∑(74)m	(82)m													
	83.83	158.83	253.05	362.19	441.97	452	.56	430.74	370.	55 291.4	9	185.84	103.50	69.65	(83)

Total gains - internal and solar (73)m + (83)m

l	626.15	697.57	774.64	857.23	910.02	896.22	859.98	806.77	742.84	663.92	611.32	599.80	(84
7. Mean interna	al tempera	ture (heati	ng season)										
emperature dur	-			area from T	able 9. Th	1(°C)						21.00] (85
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec] (
tilisation factor	for gains fo	or living are	ea n1,m (se	-				0	•				
	0.98	0.97	0.95	0.89	0.78	0.62	0.46	0.51	0.74	0.92	0.97	0.99	(86
ا Iean internal te					1				-]
[19.88	20.01	20.24	20.53	20.76	20.88	20.92	20.91	20.83	20.53	20.15	19.85	(87
emperature dur] (- :
	19.63	19.63	19.63	19.64	19.64	19.65	19.65	19.65	19.64	19.64	19.64	19.63	88)
tilisation factor		ļ] (
	0.98	0.97	0.94	0.86	0.71	0.51	0.33	0.37	0.64	0.88	0.96	0.98	(89
ا Iean internal te					I				0.0.	0.00	0.00	0.00] (01
	18.19	18.38	18.70	19.10	19.38	19.52	19.54	19.54	19.47	19.12	18.59	18.15) (90
ving area fraction		10.00	10.70	13.10	19.50	13.32	15.51	13.31		ving area ÷		0.43] (9:] (9:
1ean internal te		for the wh	ole dwellin	g fLA x T1 +	+(1 - fLA) x ⁻	Т2						0110] (0.
[18.90	19.07	19.36	19.71	19.97	20.10	20.13	20.13	20.05	19.72	19.26	18.87	<mark>) (9</mark> 2
ا pply adjustmen،				_				20.15	20.05	15.72	15.20	10.07] (3.
	18.90	19.07	19.36	19.71	19.97	20.10	20.13	20.13	20.05	19.72	19.26	18.87] (93
l	10.00	10.07	19.00	10.71	10.07	20.10	20.10	20.15	20.05	15.72	15.20	10.07] (55
8. Space heating	g requirem	ent											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Itilisation factor	for gains, r	յՠ											
	0.98	0.96	0.93	0.86	0.73	0.54	0.38	0.42	0.67	0.89	0.96	0.98	(94
Iseful gains, ηm	Gm <i>,</i> W (94)m x (84)m	1										
Jseful gains, ŋm	Gm, W (94 610.68)m x (84)m 670.98	721.24	736.89	664.51	487.39	324.57	340.05	498.02	587.86	586.26	587.04] (9
	610.68	670.98	721.24		664.51	487.39	324.57	340.05	498.02	587.86	586.26	587.04] (95
	610.68	670.98	721.24		664.51	487.39	324.57 16.60	340.05	498.02 14.10	587.86	7.10	4.20	- L
/onthly average	610.68 external te 4.30	670.98 emperature 4.90	721.24 e from Tabl 6.50	e U1 8.90	11.70	14.60		1			1		- L
/onthly average	610.68 external te 4.30	670.98 emperature 4.90	721.24 e from Tabl 6.50	e U1 8.90	11.70	14.60		1			1] (96
/onthly average leat loss rate for 	610.68 e external te 4.30 r mean inte 1385.53	670.98 emperature 4.90 ernal tempe 1342.49	721.24 e from Tabl 6.50 erature, Lm 1216.14	e U1 8.90 , W [(39)m 1015.24	11.70 x [(93)m - 775.65	14.60 (96)m] 512.75	16.60	16.40	14.10	10.60	7.10	4.20] (90
/onthly average leat loss rate for 	610.68 e external te 4.30 r mean inte 1385.53	670.98 emperature 4.90 ernal tempe 1342.49	721.24 e from Tabl 6.50 erature, Lm 1216.14	e U1 8.90 , W [(39)m 1015.24	11.70 x [(93)m - 775.65	14.60 (96)m] 512.75	16.60	16.40	14.10	10.60	7.10	4.20] (96
/onthly average leat loss rate for 	610.68 external to 4.30 r mean inte 1385.53 quirement,	670.98 emperature 4.90 ernal tempe 1342.49 kWh/mon	721.24 e from Tabl 6.50 erature, Lm 1216.14 th 0.024 x	e U1 8.90 , W [(39)m 1015.24 [(97)m - (9	11.70 x [(93)m - 775.65 5)m] x (41)	14.60 (96)m] 512.75 m	16.60 329.05	16.40 347.03	14.10 556.00 0.00	10.60 855.74	7.10	4.20] (95] (96] (97]
Monthly average leat loss rate for pace heating rea	610.68 e external te 4.30 r mean inte 1385.53 quirement, 576.49	670.98 emperature 4.90 ernal tempe 1342.49 kWh/mon 451.25	721.24 e from Tabl 6.50 erature, Lm 1216.14 th 0.024 x 368.21	e U1 8.90 , W [(39)m 1015.24 [(97)m - (9	11.70 x [(93)m - 775.65 5)m] x (41)	14.60 (96)m] 512.75 m	16.60 329.05	16.40 347.03	14.10 556.00 0.00	10.60 855.74 199.30 3)15, 10	7.10 1143.52 401.23 .12 = 2	4.20 1383.90 592.87] (96] (97
Monthly average leat loss rate for pace heating rec pace heating rec	610.68 e external to 4.30 r mean inte 1385.53 quirement, 576.49 quirement	670.98 emperature 4.90 ernal tempe 1342.49 kWh/mon 451.25 kWh/m²/y	721.24 e from Tabl 6.50 erature, Lm 1216.14 th 0.024 x 368.21 ear	e U1 8.90 , W [(39)m 1015.24 [(97)m - (9. 200.41	11.70 x [(93)m - 775.65 5)m] x (41) 82.69	14.60 (96)m] 512.75 m 0.00	16.60 329.05	16.40 347.03	14.10 556.00 0.00	10.60 855.74 199.30 3)15, 10	7.10 1143.52 401.23 .12 = 2	4.20 1383.90 592.87 2872.43] (96] (97]
Monthly average leat loss rate for pace heating rec pace heating rec	610.68 e external to 4.30 r mean inte 1385.53 quirement, 576.49 quirement	670.98 emperature 4.90 ernal tempe 1342.49 kWh/mon 451.25 kWh/m²/y	721.24 e from Tabl 6.50 erature, Lm 1216.14 th 0.024 x 368.21 ear	e U1 8.90 , W [(39)m 1015.24 [(97)m - (9. 200.41	11.70 x [(93)m - 775.65 5)m] x (41) 82.69	14.60 (96)m] 512.75 m 0.00	16.60 329.05	16.40 347.03	14.10 556.00 0.00	10.60 855.74 199.30 3)15, 10	7.10 1143.52 401.23 .12 = 2	4.20 1383.90 592.87 2872.43] (96] (97]
Monthly average Heat loss rate for Space heating rec Space heating rec 9a. Energy requ	610.68 e external to 4.30 r mean inte 1385.53 quirement, 576.49 quirement	670.98 emperature 4.90 ernal tempe 1342.49 kWh/mon 451.25 kWh/m²/y	721.24 e from Tabl 6.50 erature, Lm 1216.14 th 0.024 x 368.21 ear	e U1 8.90 , W [(39)m 1015.24 [(97)m - (9. 200.41	11.70 x [(93)m - 775.65 5)m] x (41) 82.69	14.60 (96)m] 512.75 m 0.00	16.60 329.05	16.40 347.03	14.10 556.00 0.00	10.60 855.74 199.30 3)15, 10	7.10 1143.52 401.23 .12 = 2	4.20 1383.90 592.87 2872.43] (90] (91]] (93
Monthly average leat loss rate for pace heating re- pace heating re- 9a. Energy requ	610.68 e external te 4.30 r mean inte 1385.53 quirement, 576.49 quirement	670.98 emperature 4.90 ernal tempe 1342.49 kWh/mon 451.25 kWh/m²/y individual	721.24 e from Tabl 6.50 erature, Lm 1216.14 th 0.024 x 368.21 ear heating sy	e U1 8.90 , W [(39)m 1015.24 [(97)m - (9: 200.41	11.70 x [(93)m - 775.65 5)m] x (41) 82.69	14.60 (96)m] 512.75 m 0.00	16.60 329.05	16.40 347.03	14.10 556.00 0.00	10.60 855.74 199.30 3)15, 10	7.10 1143.52 401.23 .12 = 2	4.20 1383.90 592.87 2872.43] (9(] (91] (91] (91] (91] (91
Nonthly average leat loss rate for pace heating re- pace heating re- 9a. Energy requ pace heating raction of space	610.68 e external to 4.30 r mean inte 1385.53 quirement, 576.49 quirement irements -	670.98 emperature 4.90 ernal tempe 1342.49 kWh/mon 451.25 kWh/m ² /y individual secondary	721.24 e from Tabl 6.50 erature, Lm 1216.14 th 0.024 x 368.21 ear heating sy /suppleme	e U1 8.90 , W [(39)m 1015.24 [(97)m - (9: 200.41	11.70 x [(93)m - 775.65 5)m] x (41) 82.69	14.60 (96)m] 512.75 m 0.00	16.60 329.05	16.40 347.03	14.10 556.00 0.00	10.60 855.74 199.30 3)15, 10	7.10 1143.52 401.23 .12 = 2 ÷ (4)	4.20 1383.90 592.87 2872.43 47.87] (90] (91] (91] (91] (91] (91] (91
Nonthly average leat loss rate for pace heating re- pace heating re- 9a. Energy requ pace heating raction of space raction of space	610.68 e external to 4.30 r mean inte 1385.53 quirement, 576.49 quirement irements -	670.98 emperature 4.90 ernal tempe 1342.49 kWh/mon 451.25 kWh/m²/y individual secondary main syste	721.24 e from Tabl 6.50 erature, Lm 1216.14 th 0.024 x 368.21 ear heating sy /suppleme em(s)	e U1 8.90 , W [(39)m 1015.24 [(97)m - (9: 200.41	11.70 x [(93)m - 775.65 5)m] x (41) 82.69	14.60 (96)m] 512.75 m 0.00	16.60 329.05	16.40 347.03	14.10 556.00 0.00	10.60 855.74 199.30 3)15, 10 (98)	7.10 1143.52 401.23 .12 = 2 ÷ (4)	4.20 1383.90 592.87 2872.43 47.87 0.00] (96] (97]
Nonthly average leat loss rate for pace heating re- pace heating re- 9a. Energy requ pace heating raction of space raction of space	610.68 e external to 4.30 r mean inte 1385.53 quirement, 576.49 quirement irements -	670.98 emperature 4.90 ernal tempe 1342.49 kWh/mon 451.25 kWh/m ² /y individual secondary main syste main syste	721.24 e from Tabl 6.50 erature, Lm 1216.14 th 0.024 x 368.21 ear heating sy /suppleme em(s) em 2	e U1 8.90 , W [(39)m 1015.24 [(97)m - (9: 200.41	11.70 x [(93)m - 775.65 5)m] x (41) 82.69	14.60 (96)m] 512.75 m 0.00	16.60 329.05	16.40 347.03	14.10 556.00 0.00 Σ(98	10.60 855.74 199.30 3)15, 10 (98)	7.10 1143.52 401.23 .12 = 2 ÷ (4) 01) =	4.20 1383.90 592.87 2872.43 47.87 0.00 1.00] (96] (97] (97] (97] (97] (97] (98] (98] (98] (98] (98] (98] (98] (98] (98] (96] (96] (96] (97] (97)] (97] (97)
Monthly average leat loss rate for pace heating re- pace heating re- 9a. Energy requ 9a. Energy requ fraction of space fraction of space fraction of space	610.68 e external to 4.30 r mean inte 1385.53 quirement, 576.49 quirement irements -	670.98 emperature 4.90 ernal tempe 1342.49 kWh/mon 451.25 kWh/m²/y individual secondary main syste main syste from main	721.24 e from Tabl 6.50 erature, Lm 1216.14 th 0.024 x 368.21 ear heating sy /suppleme em(s) em 2 system 1	e U1 8.90 , W [(39)m 1015.24 [(97)m - (9: 200.41	11.70 x [(93)m - 775.65 5)m] x (41) 82.69 ding micro	14.60 (96)m] 512.75 m 0.00	16.60 329.05	16.40 347.03	14.10 556.00 0.00 Σ(98	10.60 855.74 199.30 3)15, 10 (98) 1 - (2	7.10 1143.52 401.23 .12 = 2 ÷ (4) 01) = 03)] =	4.20 1383.90 592.87 2872.43 47.87 0.00 1.00 0.00] (9)] (9)
Monthly average leat loss rate for pace heating re- pace heating re- pace heating re- pace heating raction of space fraction of space fraction of space fraction of total f fraction of total f	610.68 external to 4.30 r mean inte 1385.53 quirement, 576.49 quirement e heat from e heat from space heat space heat	670.98 emperature 4.90 ernal tempe 1342.49 kWh/mon 451.25 kWh/m²/ye individual secondary main syste main syste from main from main	721.24 e from Tabl 6.50 erature, Lm 1216.14 th 0.024 x 368.21 ear heating sy /suppleme em(s) em 2 system 1	e U1 8.90 , W [(39)m 1015.24 [(97)m - (9: 200.41	11.70 x [(93)m - 775.65 5)m] x (41) 82.69 ding micro	14.60 (96)m] 512.75 m 0.00	16.60 329.05	16.40 347.03	14.10 556.00 0.00 Σ(98	10.60 855.74 199.30 3)15, 10 (98) 1 - (2	7.10 1143.52 401.23 .12 = 2 ÷ (4) 01) = 03)] = 03) =	4.20 1383.90 592.87 2872.43 47.87 0.00 1.00 0.00 1.00) (90)) (91)) (92)] (93)] (94)] (94)] (94)] (94)] (95)]
Useful gains, nm Monthly average Heat loss rate for Space heating red Space heating red Space heating red Space heating Fraction of space Fraction of space Fraction of space Fraction of space Fraction of total for Fraction of total for	610.68 external to 4.30 r mean inte 1385.53 quirement, 576.49 quirement e heat from e heat from space heat space heat	670.98 emperature 4.90 ernal tempe 1342.49 kWh/mon 451.25 kWh/m²/ye individual secondary main syste main syste from main from main	721.24 e from Tabl 6.50 erature, Lm 1216.14 th 0.024 x 368.21 ear heating sy /suppleme em(s) em 2 system 1	e U1 8.90 , W [(39)m 1015.24 [(97)m - (9: 200.41	11.70 x [(93)m - 775.65 5)m] x (41) 82.69 ding micro	14.60 (96)m] 512.75 m 0.00	16.60 329.05	16.40 347.03	14.10 556.00 0.00 Σ(98	10.60 855.74 199.30 3)15, 10 (98) 1 - (2	7.10 1143.52 401.23 .12 = 2 ÷ (4) 01) = 03)] = 03) =	4.20 1383.90 592.87 2872.43 47.87 0.00 1.00 0.00 1.00 0.00) (96)) (97)) (97)) (97)] (97)] (98)] (96)] (97)]
Monthly average Heat loss rate for Space heating rea Space heating rea 9a. Energy requ Space heating Fraction of space Fraction of space Fraction of space	610.68 e external to 4.30 r mean inte 1385.53 quirement, 576.49 quirement irements - e heat from e heat from e heat from space heat space heat n system 1 Jan	670.98 emperature 4.90 ernal tempe 1342.49 kWh/mon 451.25 kWh/m²/y individual secondary main syste main syste from main from main (%) Feb	721.24 e from Tabl 6.50 erature, Lm 1216.14 th 0.024 x 368.21 ear heating sy (suppleme em(s) em 2 system 1 system 2 Mar	e U1 8.90 , W [(39)m 1015.24 [(97)m - (9: 200.41 stems inclu ntary syste	11.70 x [(93)m - 775.65 5)m] x (41) 82.69	14.60 (96)m] 512.75 m 0.00	16.60 329.05 0.00	16.40 347.03 0.00	14.10 556.00 0.00 Σ(98	10.60 855.74 199.30 3)15, 10 (98) 1 - (2)2) x [1- (20 (202) x (2	7.10 1143.52 401.23 .12 = 2 ÷ (4) 01) = 03)] = 03) = 04) = 04) = 05) =	4.20 1383.90 592.87 2872.43 47.87 0.00 1.00 0.00 1.00 0.00 319.70] (96] (97] (97)] (97] (97)
Monthly average Heat loss rate for Space heating read Space heating read Space heating read Space heating Fraction of space Fraction of space Fraction of space Fraction of total state Fraction of total state Fraction of total state Fraction of total state	610.68 e external to 4.30 r mean inte 1385.53 quirement, 576.49 quirement irements - e heat from e heat from e heat from space heat space heat n system 1 Jan	670.98 emperature 4.90 ernal tempe 1342.49 kWh/mon 451.25 kWh/m²/y individual secondary main syste main syste from main from main (%) Feb	721.24 e from Tabl 6.50 erature, Lm 1216.14 th 0.024 x 368.21 ear heating sy (suppleme em(s) em 2 system 1 system 2 Mar	e U1 8.90 , W [(39)m 1015.24 [(97)m - (9: 200.41 stems inclu ntary syste	11.70 x [(93)m - 775.65 5)m] x (41) 82.69	14.60 (96)m] 512.75 m 0.00	16.60 329.05 0.00	16.40 347.03 0.00	14.10 556.00 0.00 Σ(98	10.60 855.74 199.30 3)15, 10 (98) 1 - (2)2) x [1- (20 (202) x (2	7.10 1143.52 401.23 .12 = 2 ÷ (4) 01) = 03)] = 03) = 04) = 04) = 05) =	4.20 1383.90 592.87 2872.43 47.87 0.00 1.00 0.00 1.00 0.00 319.70) (96)) (97)) (97)) (97)] (97)] (98)] (96)] (97)]

SAP version 9.92

Water heating

Efficiency of water heater

Efficiency of wate	er heater											_
[170.00 170.00	170.00	170.00	170.00	170.00	170.00	170.00	170.00	170.00	170.00	170.00	(217)
Water heating fu	el, kWh/month											
[129.54 114.77	121.94	111.25	110.43	100.70	98.63	105.58	104.56	115.27	119.44	127.08	
									∑(219a)11	L2 =	1359.18	(219)
Annual totals												
Space heating fue	el - main system 1										898.48	
Water heating fu	el										1359.18	
Electricity for pur	mps, fans and electric	keep-hot (T	able 4f)									
central heatin	g pump or water pum	np within wa	irm air hea	ating unit				30.00]			(230c)
Total electricity for	or the above, kWh/ye	ar									30.00	(231)
Electricity for lighting (Appendix L)										276.87	(232)	
Energy saving/ge	neration technologies	5										
electricity gen	erated by PV (Append	dix M)									1597.03	(233)
Total delivered er	nergy for all uses						(211)(222	1) + (231) +	(232)(237	b) =	967.49	(238)
10a. Fuel costs -	 individual heating sy 	stems inclu	ding micro	o-CHP				_				
				k\	Fuel Nh/year		Fi	uel price		co	Fuel ost £/year	
Space heating - m	nain system 1				898.48	x		13.19] x 0.01 =	-	118.51	(240)
Water heating				1	.359.18	х		13.19] x 0.01 =	-	179.28	(247)
Pumps and fans					30.00	x		13.19] x 0.01 =	-	3.96	(249)
Electricity for ligh	nting				276.87	x		13.19	x 0.01 =	-	36.52	(250)
Additional standi	ng charges										0.00	(251)
Energy saving/ge	neration technologies	5										
pv savings				-:	1597.03	x		13.19	x 0.01 =	-	-210.65	(252)
Total energy cost							(2	40)(242)	+ (245)(25	4) =	127.61	(255)
11a. SAP rating	- individual heating s	ystems inclu	uding micr	o-CHP								
Energy cost defla	tor (Table 12)										0.42	(256)
Energy cost facto	r (ECF)										0.51	(257)
SAP value											92.88]
SAP rating (section	on 13)										93	(258)
SAP band											A	7
				_								
12a. CO ₂ emission	ons - individual heati	ng systems i	including r	nicro-CHP								
					Energy Wh/year			sion factoı CO₂/kWh			missions CO ₂ /year	
Space heating - m	nain system 1				898.48	x		0.519] =		466.31	(261)
Water heating				1	.359.18	x		0.519] =		705.41	(264)
Space and water	heating						(26	51) + (262) -	+ (263) + (26	4) =	1171.72	(265)
Pumps and fans					30.00	x		0.519] =		15.57	(267)
Electricity for ligh	nting				276.87	х		0.519] =		143.70	(268)
Energy saving/ge	neration technologies	5										
pv savings				:	1597.03	x		0.519] =		-828.86	(269)
Total CO₂, kg/yea	ır								 (265)(27	1) = [502.13	(272)
Dwelling CO₂ emi	ission rate								(272) ÷ (4) =	8.37	(273)
El value											93.59]
												_

El rating (section 14)					94	(274)
EI band					A]
13a. Primary energy - individual heating systems including mi	cro-CHP					
	Energy kWh/year		Primary factor		Primary Energy kWh/year	,
Space heating - main system 1	898.48	x	3.07	=	2758.33	(261)
Water heating	1359.18	x	3.07	=	4172.67	(264)
Space and water heating			(261) + (262) +	(263) + (264) =	6931.00	(265)
Pumps and fans	30.00	x	3.07	=	92.10	(267)
Electricity for lighting	276.87	x	3.07	=	850.00	(268)
Energy saving/generation technologies						
Electricity generated - PVs	-1597.03	x	3.07	=	-4902.90	(269)

Primary energy kWh/year

Dwelling primary energy rate kWh/m2/year

URN: SMGG21 version 2
NHER Plan Assessor version 6.3.4
SAP version 9.92

2970.20

49.50

(272)

(273)

Appendix D – Energy Summary Sheet

	Total kgCO ₂ /yr			
	Base Case to meet Part L of the building regulations	Improved Case to achieve 35% reduction over Part L of the building regulations		
Space Heating	1203.88	466.31		
Secondary Heating	0	0		
Hot Water Heating	445.64	705.41		
Fixed Electrical	15.57	15.57		
Lighting	141.63	143.7		
Appliances	17.01	17.01		
Cooking	2.78	2.78		
Less amount of renewables	0	-828.86		
TOTAL	1826.51	521.92		
DER/TER Variance % reduction overall	44.54%	-70.28%		
% reduction through renewables	0.00%	41.74%		

Appendix E – Water Calculator

Water Efficiency Calculator for New Dwellings (V1f - Aug 2010)

Project Details

Adress/Reference Number of Bedrooms

St Mary's Grove Garage Site, Richmond

1

Appliance/Useage Details

I a	ips (E	xciu	aing i	Kitchen		aps)
_		_			-		-

Tap Fitting Type	Flow Rate	Quantity	Total per
	Litres/Min	(No.)	Fitting type
Tap 1	5.00	1	5.00
			0.00
			0.00
			0.00
			0.00
			0.00
Total No. of Fittings (No.	.)	1	
Total Flow (I/s)			5.00
Maximum Flow (I/s)			5.00
Average Flow (I/s)			5.00
Weighted Average Flow	(I/s)		3.50
Flow for Calculation (I/s)			5.00

Baths

Bath Type	Capacity to Overflow	Quantity (No.)	Total per Fitting type
			0.00
			0.00
			0.00
			0.00
Total No. of Fittings (No	.)	0	
Total Capacity (I)			0.00
Maximum Capacity (I)			0.00
Average Capacity (I)			0.00
Weighted Average Capa	city (I)		0.00
Capacity for Calculation	ι (I)		0.00

Dishwashers

Dishwasher Type	L per Place Setting	Quantity (No.)	Total per Fitting type		
Dish 1	1.25	1	1.25		
			0.00		
Total No. of Fittings (No.) 1					
Total Consumption (I)			1.25		
Maximum Consumption	(I)		1.25		
Average Consumption (I	/s)		1.25		
Weighted Average Cons		0.88			
Consumption for Calcula	ation (I/s)		1 25		

Kitchen Taps

Tap Fitting Type	Flow Rate Litres/Min	Quantity (No.)	Total per Fitting type
Tap 2	6.00	1	6.00
			0.00
			0.00
Total No. of Fittings (No	.)	1	
Total Flow (I/s)			6.00
Maximum Flow (I/s)			6.00
Average Flow (I/s)			6.00
Weighted Average Flow	(I/s)		4.20
Flow for Calculation (I/s)		6.00

Water Use Assessment

Installation Type	Unit	Capacity/ Flow Rate	Use Factor	Fixed use (I/p/day)	Total Use (l/p/day)
WC Single Flush	Volume (I)	0.00	4.42	0.00	0.00
WC Dual Flush	Full Flush (I)	4.00	1.46	0.00	5.84
	Pt Flush (I)	2.60	2.96	0.00	7.70
WC's (Multiple)	Volume (I)	0.00	4.42	0.00	0.00
Taps Exc. Kitchen	Flow Rate	5.00	1.58	1.58	9.48
Bath (shower present)	(l/s)	0.00	0.11	0.00	0.00
Shower (bath present)	(l/s)	0.00	4.37	0.00	0.00
Bath Only	(I)	0.00	0.50	0.00	0.00
Shower Only	(l/s)	8.00	5.60	0.00	44.80
Kitchen Taps	(l/s)	6.00	0.44	10.36	13.00
Washing Machines	(l/kgdry)	8.17	2.10	0.00	17.16
Dishwashers	(l/place)	1.25	3.60	0.00	
Waste Disposal	(l/s)	0.00	3.08	0.00	0.00
Water Softner	(l/s)	0.00	1.00	0.00	
Total Calculated Water	Use (I/p/day)				102.47
Grey/RainWater Reused	l (l)				0.00
Normalisation Factor	(Factor)				0.91
Total Consumption CS					93.25
External Water Use Allo	wance (I)				5.00
Total Comsumption Pa	rt G (l/p/day)				98.25
Assesment Result					PASS

Showers			
Shower fitting	Flow Rate	Quantity	Total per
Туре	Litres/Min	(No.)	Fitting type
Shower 1	8.00	1	8.00
			0.00
			0.00
			0.00
			0.00
			0.00
Total No. of Fittings (No	.)	. 1	
Total Flow (I/s)			8.00
Maximum Flow (I/s)			8.00
Average Flow (I/s)			8.00
Weighted Average Flow (I/s)		5.60	
Flow for Calculation (I/s)		8.00

WCs

WC Type	Full Flush Volume	Part Flush Volume	Quantity (No)
WC 1	4.00	2.60	1

Total number of fittings Average effective flushing volume

Case Reference Occupancy for Calculation Purposes

N/a

Washing Machines

Washing Machine Type	L per Kg Dry Load	Quantity (No.)	Total per Fitting type
Wash 1	8.17	1	8.17
			0.00
Total No. of Fittings (N	No.)	1	-
Total Consumption (I)			8.17
Maximum Consumption	on (l)		8.17
Average Consumption	า (I/s)		8.17
Weighted Average Co	nsumption (I)		5.72
Consumption for Calc	ulation (I/s)		8.17

Waste Disposal Y/N	
Water softner	
Consumption beyond 4% l/p/d	

Total Grey water from WHB taps (I)	
Total Availble Grey Water Supply (I)	89.60
Possible Demand (I)	61.39
Grey/Rain Installed Capacity (I)	
Figure for Calculation lit/person/day	0.00

8.
8. ⁻ 8
5.
8.

Other Fittings

Waste Disposal Y/N	
Water softner	
Consumption beyond 4% l/p/d	

Use of grey water and harvested rainwater

	-
Total Grey water from WHB taps (I)	
Total Availble Grey Water Supply (I)	89.60
Possible Demand (I)	61.39
Grey/Rain Installed Capacity (I)	
Figure for Calculation lit/person/day	0.00

Appendix F – Overheating Assessment

Overheating

The London Plan overheating checklist (GLA Energy Assessment Guidance 2018 - Appendix 5) has been used to assess the risk of overheating in the flats.

Section 1	 Site features affecting vulnerability to overheating 	Yes or No
Site location	Urban – within central London ²⁹ or in a high density	No
	conurbation	
	Peri-urban - on the suburban fringes of London ³⁰	Yes
Air quality and/or	Busy roads / A roads	No
Noise sensitivity -	Railways / Overground / DLR	No
are any of the	Airport / Flight path	No
following in the	Industrial uses / waste facility	No
vicinity of buildings?		
Proposed building	Will any buildings be occupied by vulnerable people (e.g.	Yes
use	elderly, disabled, young children)?	
	Are residents likely to be at home during the day (e.g. students)?	Yes
Dwelling aspect	Are there any single aspect units?	No
Glazing ratio	Is the glazing ratio (glazing: internal floor area) greater than 25%?	No
	If yes, is this to allow acceptable levels of daylighting?	No
Security - Are there	Single storey ground floor units	Yes
any security issues	Vulnerable areas identified by the Police Architectural Liaison	No
that could limit	Officer	
opening of windows	Other	N/A
for ventilation?		

²⁹ Urban - as defined in CIBSE Guide TM49. Broadly equivalent to Central Activities Zone and Inner London areas in Map 2.2 of the London Plan

³⁰ Peri-urban – as defined in CIBSE Guise TM49. Broadly equivalent to Outer London areas in Map 2.2 of the London Plan

Section 2 – Design fe	atures implemented to mitigate overheating risk	Please Respond
Landscaping	Will deciduous trees be provided for summer shading (to windows and pedestrian routes)?	Yes
	Will green roofs be provided?	Yes
	Will other green or blue infrastructure be provided around buildings for evaporative cooling?	Yes
Materials	Have high albedo (light colour) materials been specified?	Yes
Dwelling aspect	% of total units that are single aspect	0%
	% single aspect with NE orientation	0%
	% single aspect with E orientation	0%
	% single aspect with SW orientation	0%
	% single aspect with W orientation	0%
Glazing ratio - What	N	3.0%
is the glazing ratio	E	0%
(glazing; internal	S	4%
floor area) on each facade?	W	13%

Daylighting		TBC
Window opening	Are windows openable?	Yes
Window opening	What is the average percentage of openable area for the windows?	50%
Window opening -	Fully openable	Yes
What is the extent of the opening?	Limited (e.g. for security, safety, wind loading reasons)	Yes
Security	Where there are security issues (e.g. ground floor flats) has an alternative night time natural ventilation method been	Yes - openable
	provided (e.g. ventilation grates)?	rooflights
Shading	Is there any external shading?	Yes - canopy L/E
	Is there any internal shading?	Yes - blinds
Glazing specification	Is there any solar control glazing?	Yes, low emissivity glazing is specified
Ventilation - What is	Natural – background	Yes
the ventilation	Natural – purge	Yes
strategy?	Mechanical – background (e.g. MVHR)	No
	Mechanical – purge	No
	What is the average design air change rate	5
Heating system	Is communal heating present?	Yes - GSHP
	What is the flow/return temperature?	35°C
	Have horizontal pipe runs been minimised?	TBC
	Do the specifications include insulation levels in line with the London Heat Network Manual ³¹	TBC

http://www.londonheatmap.org.uk/Content/uploaded/documents/LHNM_Manl2014Low.pd1

The impact of solar gain has been incorporated into the SAP analysis for compliance with Part L, and is in-line with the CIBSE TM59 Design methodology for the assessment of overheating risk in homes 2017. In this case, the sample used follows the guidance principles, and Plot 2 was assessed, being a typical layout and predominantly facing west.

Following the overheating checklist, and results of the SAP assessment, the risk over solar overheating is minimised, with the maximum summer internal temperature of 21.29 °C being achieved.

Windows will incorporate low emissivity coatings to reduce solar gain, and window proportions have been designed to reduce overheating, together with canopies over set-back living/ dining spaces. Additionally, all of the units have marginal access to dual aspects, plus openable rooflights, and therefore will benefit from cross ventilation with passive openable windows, and blinds to be installed.

Appendix G - Renewable Energy Technologies, Supporting Data

Photovoltaic Panels:

Photovoltaic systems convert sunlight into electricity through semi-conductor cells connected together and mounted into modules. Modules are connected to an inverter to turn their direct current (DC) output into alternating current (AC) electricity for use in the home and / or to export to the national grid. PV systems require only daylight, not sunlight to generate electricity, so energy can still be produced in overcast or cloudy conditions.

PV collectors can be 'bolted on' to a suitable roof, be integrated into the fabric of the roof and to the façade. In order to achieve the optimum results, any obstructions should be minimized and the panels could be placed on a pitch between $30-40^{\circ}$. Currently this report anticipates an angle of no more than 5° for the flat green roof.

Typical domestic systems range from $I - 3.5 kW_p$ rating and can provide between 750 and 3,000kWh per year. From the DTI (domestic field trial performance analysis) domestic systems contribute on average 43% of the electrical load. Depending on the system, the efficiency of PVs range up to 15%.

There should be very little maintenance required as the technology has no moving parts. Technically reliable, they are generally guaranteed to last between 20-25 years.

Smart Tariffs and Utilising Generated Electricity:

On-site electricity production from renewable sources reduces the amount of conventionally generated electricity (from the grid) that needs to be bought from suppliers, further reducing costs.

Encouraged in the Energy White Paper: Powering our Net Zero Future (December 2020) as a successor to the Feed-In Tariff (FIT, suspended in 2020) in order to continue to incentivise the generation of low carbon electricity the Government introduced **Agile Octopus Tariff, Octopus Energy.** It is a 'time-of-use' tariff, which gives the consumers access to half-hourly electricity prices, tied to wholesale prices, which are updated daily; allowing customers to adjust their consumption to times when the wholesale price of energy is cheapest. Thus, monthly and annual bills decrease when the energy prices drop. On the other hand, prices are capped at 35p/kWh* to protect consumers during price spikes; but when prices go 'negative' the consumers can be paid to use energy during that period.

*Details are set-out at: https://octopus.energy/

Appendix G - Renewable Energy Technologies, Supporting Data

Ground Source Heat Pumps – Vertical System:

A ground source heat pump is a renewable heating system that extracts low-temperature solar energy stored in the ground or water using pipework within boreholes and compresses this energy into a higher temperature. A ground source heat pump provides a building with 100% of its heating and hot water all year round.

Heat naturally flows from warmer to cooler places. A ground source heat pump exploits these physics by circulating a cold fluid through ground array pipework in the ground or water. It absorbs low-grade surrounding energy from external heat sources, such as rock, soil, lakes and streams. The ground source heat pump then compresses and condenses this free energy to a higher temperature, and transfers it to the property's heating and hot water system.

Having surrendered the absorbed energy from the ground to the heat pump, the fluid continues its circuit back to the submerged pipework to commence the cycle all over again.

St Mary's Grove Garages, Richmond, Development - Energy & Sustainability Report

Ground source heat pumps keep residents affordably warm all year round. By installing heat pumps, social housing providers can tackle fuel poverty and reduce household heating bills – relieving tenants of the 'heat or eat' ultimatum.

Ground source heat pumps can be combined with smart controls to enhance comfort and savings for tenants. By using smart controls that learn a household's heating preferences and building heat physics, tenants can avoid the peaks of grid strain and shift the heat pump's power consumption to the times when the grid can best accommodate it – when there is lower carbon and lower-cost electricity. The heat pump will turn on when there is extra electrical capacity, and turn off when the grid is under strain from peak electricity times.

Ground source heat pumps have far more potential to participate in load shifting initiatives than air source variants, as the ground is a very stable temperature heat source. A ground source heat pump can be run at the same efficiency any time of day or night.

The grid generally generates excess power overnight, and some of the variable tariffs can go negative. When that happens, people actually get paid for running their heating.