

Greggs Bakery / Twickenham Phase II Geoenvironmental Assessment

Prepared by AP Geotechnics 05 August 2022

51-53 Guildford Street Chertsey Surrey KT16 9BA

t 01932 848460 e mail@apgeotechnics.co.uk www.apgeotechnics.co.uk

GREGGS BAKERY SITE & NO. 2 GOULD ROAD TWICKENHAM TW2 6RT

Phase II Geoenvironmental Investigation

Client London Square Developments Limited

Report No. 4609-2 VI Resi

6th April 2022

AP GEOFECHNICS LID registered in England no. 3127228 at 6 Basing Way, Thames Ditton, Surrey, KT7 ONX

CONTENTS

Sec	ction	Page
SYN	IOPSIS	I
Site	description	2
Dev	velopment proposals	2
Geo	blogy	2
Fiel	d work	3
Lab	oratory testing	4
	, -	
6.I	Stratigraphy	5
	6.1.1 Made Ground	5
	6.1.2 Superficial clay	6
	6.1.3 Kempton Park Gravel	6
	6.1.4 London Clay	6
6.2	Groundwater	7
Dis	cussion	
7.I	General	7
7.2	Spread foundations	8
7.3	Ground floor slabs	9
7.4	Excavations	9
7.5	Contaminant analysis	
	7.5.1 Solid phase	10
	7.5.2 Dissolved phase	12
	7.5.3 Gas phase	13
		13
		14
7.7	Buried concrete	17
	SYN Site Dev Geo Fiel Lab Gro 6.1 6.2 Disc 7.1 7.2 7.3 7.4 7.5	 6.1.1 Made Ground 6.1.2 Superficial clay 6.1.3 Kempton Park Gravel 6.1.4 London Clay 6.2 Groundwater Discussion 7.1 General 7.2 Spread foundations 7.3 Ground floor slabs 7.4 Excavations 7.5 Contaminant analysis 7.5.1 Solid phase 7.5.2 Dissolved phase 7.5.3 Gas phase 7.5.4 Waste Acceptance Criteria (WAC) 7.6 Conclusions and recommendations

Procedural Notes

APPENDICES

- A Figures
- B Borehole Records
- C Standpipe Records
- D Laboratory Test Results

GREGGS BAKERY SITE & No. 2 GOULD ROAD TWICKENHAM TW2 6RT

Phase II Geoenvironmental Investigation

Synopsis

An investigation has been carried out at the now defunct Greggs Bakery in Twickenham on the instructions of London Square Developments Ltd. A Phase I Environmental Assessment¹ has been prepared for the site and should be read in conjunction with this report.

The purpose of the investigation was to determine the ground conditions and to provide recommendations in respect of foundation design and other geoenvironmental matters for the proposed mixed use development.

Five boreholes and 18 continuous open drive (windowless) samplers were carried out, supported by a programme of in situ and laboratory testing.

Conventional spread foundations are envisioned for the development and appropriate design data is provided. Chemical analysis revealed some slight contamination in the Made Ground and dissolved phase hydrocarbons in groundwater but insufficient to prejudice the development.

¹ Report No. 4609-1 V1 resi Phase I Environmental Assessment. Greggs Bakery Site & No. 2 Gould Road, Twickenham TW2 6RT. AP Geotechnics Ltd., 6 April 2022

Site description

The area under investigation is an approximate 'L' shaped plot of land extending to some 1.12 hectares, as shown on Figure 1 at Appendix A. The site was, from 1953 until November 2016, a bakery and distribution depot for Greggs.

A full site description is available in the Phase I report to which the reader is referred.

2

1

Development proposals

It is intended to demolish all buildings (save for a single dwelling) and redevelop the site to provide up to 116 residential units and 175 m² of commercial floorspace with associated hard and soft landscaping, car parking, highways works and other associated works.

The proposed general arrangement is given at Figure 2 of Appendix A.

3

Geology

Published records of the British Geological Survey (BGS) indicate the site to lie on Kempton Park Gravel over London Clay. No Made Ground or Worked Ground is mapped at the subject site.

Field work

The extent of the field work was agreed with London Square and comprised five boreholes drilled by light percussive techniques to a maximum depth of 20 m. The two external BHs were advanced with a conventional rig whilst the three internal ones were drilled with a demountable rig. In addition, 18 window samplers were carried out to give a more detailed description of the near surface soils and to gain greater spatial coverage of the site. The Phase I report includes an unexploded ordnance (UXO) threat assessment which concludes that there is a medium risk of UXOs at the site. The location of the boreholes and window samplers therefore had to be cleared of potential UXOs during drilling which was achieved with a UXO technician, magnetometer and use of stainless steel casing. The location of all exploratory points is shown on Figure I at Appendix A.

Representative soil samples were recovered from the boreholes for subsequent laboratory examination and testing; whilst Standard Penetration Tests (SPT) were carried out as appropriate. Details of the strata encountered are provided on the Borehole Records at Appendix B; together with particulars of the samples recovered, groundwater observations and SPT results. The profile of SPT with depth in the cable percussive boreholes is also presented at Figure 3 of Appendix A.

Standpipes were installed in boreholes 1, 2 & 5 and WS 13, 16 and 17 to allow monitoring of soil gas concentrations and groundwater levels. The results to date are presented at Appendix C.

Whilst positioning the exploratory locations a manhole cover was lifted in front of the offices which revealed a set of stairs descending into a basement. Greggs personnel confirmed there

4

was a basement under part of the northern portion of the offices but its extent is not known. No entry into the basement was made during the field work.

5

Laboratory testing

The following laboratory tests were conducted on soil samples recovered during the field work:-

- ^a Natural moisture content: to assess the in situ condition of the soil.
- ^a Liquid and Plastic Limits: to classify cohesive soil into behavioural groups.
- ^a Particle size distribution: by sieve analysis to classify granular material.
- Unconsolidated undrained triaxial compression: to determine the shear strength of cohesive material and thus to assess its load bearing capacity.
- One-dimensional consolidation: to determine the deformation characteristics of clay under applied loading.
- ^a Soluble sulphate and pH value: for the specification of buried concrete.
- Contamination: chemical analyses to detect the presence of contaminants as indicated by the Phase I Assessment, viz:-

Metals & metalloid	ls: Total arsenic, cadmium, chromium, copper, lead, mercury, nickel,
	selenium and zinc. Water soluble boron and hexavalent
	chromium.
Organic:	Petroleum hydrocarbons (TPH), polyaromatic hydrocarbons
	(PAH), polychlorinated biphenyls (PCBs) and phenols.
Others:	Asbestos screen and Waste Acceptance Criteria
	(WAC) full solid waste suite and 2 stage leachate suite.

Results of these tests are presented at Appendix D and the variation of shear strength with depth is shown at Figure 4 of Appendix A.

6 Ground conditions

6.1

Stratigraphy

The stratigraphy of the site as revealed by the investigation is described in detail at Appendix B and in general terms hereafter.

6.1.1

Made Ground

Made Ground was encountered in all exploratory locations under a surfacing of either asphalt, concrete or the former factory floor and was observed to a maximum depth of 1.7 m in WS2.

The Made Ground comprised both granular and cohesive material with the latter more prevalent. The granular material was represented by a black sand in BH2 and by fragments of brick and concrete in a matrix of silt and sand sized particles elsewhere.

The cohesive member was generally represented by a clay, sometimes sandy and with the addition of fragments of brick, concrete and flint. Relic topsoil was also encountered in WS1, 2, 10 and 18.

Window samplers 6 and 11 were terminated within Made Ground.

6.1.2 Superficial clay

Although not mapped at this location by the BGS, up to 1 m of mottled brown slightly sandy clay with occasional gravel was recorded. The superficial clay was encountered in 12 of the 23 exploratory locations and was observed to a maximum depth of 1.8 m in BH1.

6.1.3

Kempton Park Gravel

This stratum was encountered in all boreholes (save for WS6, 11 & 12) at depths ranging from 0.32 m in WS14 to 1.80 m in BH1. It was generally represented by a brown or orange brown sandy to very sandy flint gravel with occasional sand layers. The gravel was sometimes clayey in its upper reaches and was locally a sand and gravel.

The gravel was observed to a maximum depth of 9.15 m in BH3. The majority of WS holes were terminated within gravel at 4 m depth.

In situ testing indicates the gravels to be often in a very dense to dense state of compaction in the upper reaches, becoming medium dense with depth.

6.1.4

London Clay

London Clay was proved beneath the Kempton Park Gravel in the cable percussive boreholes and extended to the limit of investigation of 20 m depth.

The London Clay was represented by a dark grey clay which was locally fissured and is typical of the unweathered material.

Triaxial testing indicates the London Clay to be predominately stiff to very stiff. A firm result was recorded in the upper part of the London Clay in BH4. However, the other firm results are considered to be a result of premature failure due to fissures.

6.2 Groundwater

Groundwater was encountered at depths ranging from 2.4 m in WS13 to 4.2 m in BH2. However, the speed of drilling, the requirement to add water in granular material to aid the drilling process and the use of casing to support the bore may have masked any small inflows and impinged upon the accuracy of the observations.

Details of all groundwater observations during drilling are provided on the Borehole Records.

Standpipe readings taken during subsequent monitoring visits recorded the depth to groundwater at around the three metre mark in most standpipes. However, groundwater in BH2 has been consistently deeper, at some 6 m depth or so.

7 Discussion

7.1

General

The site has evidently already carried development and the investigation has revealed Made Ground to be present. It is likely that other pockets of Made Ground may also be present; perhaps deeper, of different character or associated with the remains of construction; even though not detected by this investigation.

All remnants of previous construction should be removed prior to redevelopment to enable the proposals to be constructed without hindrance and to perform satisfactorily.

A 375 mm diameter sewer lies under the site and discussions should start at an early stage with Thames Water regarding any potential impact on the proposed site layout. Thames Water may require exclusion zones over or adjacent to their sewer which could potentially affect the foundation design required.

7.2

Spread foundations

Made Ground is inherently variable in both composition and compaction and is therefore prone to large and unpredictable settlement. It does not form a reliable bearing stratum. The thin and laterally inconsistent superficial clay layers are also not considered suitable.

Foundations should therefore bear on the underlying Kempton Park Gravel throughout. Some disturbance may have occurred at the contact of the gravel with the overlying material and foundations should be constructed in undisturbed material. An allowance of 200 to 300 mm is often sufficient in this respect, foundations thus bearing at the minimum recommended depth of 0.9 m in the vicinity of WS14 & 15, increasing to around 2 m depth adjacent to BH1 and WS2.

Based upon the data provided by in situ testing, a net allowable bearing capacity of

200 kPa is available for conventional strip or pad foundations. Pad foundations should not be less than 750 mm side and a minimum width of 0.45m be employed for strip foundations to minimise the risk of overstress of locally weaker material. Deeper trench fill foundations should satisfy the minimum aspect ratio of 3/1 (depth/breadth) for the concrete to reduce the effect of any unintentional eccentricity of loading.

Total settlement of these foundations is not expected to exceed some 25 mm over a 25 year period, with approximately two thirds occurring immediately load is applied and the remainder at gradually decreasing rate over the ensuing years, although actual settlement is likely to be in the order of 15 mm or less.

7.3

Ground floor slabs

As stated in Section 7.2, Made Ground will not form a reliable bearing stratum, therefore suspended ground floor construction should be adopted unless natural gravel is present at shallow depth.

7.4

Excavations

All material likely to be encountered in general construction excavations should be regarded as unstable. Some apparent stability may be present immediately on excavation, especially where there is a high clay content, but this must not be relied upon. All excavations should therefore be supported at all times unless battered to a safe angle of repose. In any event, excavations to greater than 1.2 m depth should be supported at all times. Provision of adequate support is especially important for the safety of personnel when required to work in or close to excavations. Particular care should be exercised where excavations are close to existing structures to ensure they do not experience any loss of support. Temporary and permanent works should be designed to resist the additional lateral earth pressures arising from any superimposed loads in addition to those generated by the soil itself, without significant deformation.

Observations during the intrusive works and the subsequent monitoring visits suggests that significant groundwater inflows are unlikely within general construction excavations. However, a perched water table may be established in the Made Ground, especially after periods of high rainfall but this is expected to drain into the underlying gravels where excavations are of sufficient depth.

7.5 Contaminant analysis 7.5.1

Solid phase

Contaminant testing was undertaken on selected soil samples and the results compared with the limited number of CLEA² Soil Guideline Values (SGVs) for residential land use that have been published to date. Where not available from that source, reference has also been made to the LQM/CIEH S4ULs for Human Health Risk Assessment³. Appropriate trigger levels are given with the results at Appendix D and individual values exceeding the triggers have been highlighted. Although some portions of the site may be developed for commercial use, the

² The Contaminated Land Exposure Assessment Model, Department for Environment, Food and Rural Affairs, The Environment Agency, R & D Publications SGV 1 et al., March 2002

³ The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, 2015

more conservative residential triggers have been used as an initial site wide screen to highlight any potential issues.

Analysis for metals and metalloids revealed all determinands to be below the triggers for residential land use with plant uptake.

No SGV exists for lead (the old SGV of 450 mg/kg having been withdrawn) and LQM have not calculated one. However, provisional Category 4 Screening Levels (C4SLs) have been published by Defra which suggest a maximum concentration of 210 mg/kg lead for residential land use with plant uptake (a number of different concentrations have been published, dependant on differing exposure scenarios). Samples from WS4, 5, 8 & 10 recorded lead in excess of this value with concentrations of 1350, 217, 333 and 230 mg/kg respectfully.

No phenols were recorded above the limit of detection for the test of 5 mg/kg

No polychlorinated biphenyls were recorded above the limit of detection for the test of 0.03 mg/kg in the two samples analysed. The samples were recovered from WS9, the closest location to the existing substation.

Analysis for speciated TPH recorded a maximum concentration of 5910 mg/kg in WS17 at 3.0 m depth. This was also the only sample to record concentrations above the S4UL triggers. Aromatic carbon bands $>C_{12} - C_{16}$ and $>C_{16} - C_{21}$ recorded concentrations of 1020 and 1360 mg/kg respectfully; the S4UL of these carbon bands is 660 & 930 mg/kg respectively. Contrastingly, the samples immediately above and below (from 2.5 m & 4.0 m depth) recorded very little or no TPH. In addition to the foregoing, the sample from WS2 at 2.9 m depth recorded 1190 and 1040 mg/kg TPH in carbon bands $>C_{12} - C_{16}$ and $>C_{16} - C_{21}$

respectfully. Such concentrations would be above the aromatic S4ULs, if the TPH were wholly aromatic.

Fourteen samples were analysed for speciated PAH. A maximum total PAH concentration of 90.4 mg/kg was recorded in WS4 whilst six samples recorded concentrations at or below the limit of detection for the test of 0.1 mg/kg. The sample from WS4 and one from WS2 were the only samples to record individual PAHs above the relevant S4UL and were recovered from Made Ground.

Analysis for asbestos was carried out on 15 samples. No asbestos fibres were detected.

7.5.2 Dissolved phase

Contaminant testing was carried out on purged groundwater samples recovered with a submersible pump from the boreholes on 5 September 2017. The results are presented at Appendix D. There was insufficient groundwater in the window samplers to allow sampling. No UK standards exist for groundwater quality and the results have therefore been compared to the UK Drinking Water Standards (UKDWS) and the Environmental Quality Standard (EQS) where available as an initial screen.

Analysis for metals and metalloids revealed the vast majority of determinands to be below the limit of detection or below the relevant triggers. However, a concentration of 19 μ g/l arsenic and 84 μ g/l nickel was recorded in BH2 versus the UKDWS of 10 μ g/l and 20 μ g/l respectfully.

No phenols were detected above the limit ofd detection for the test of 1 μ g/l.

Analysis for dissolved phase TPH with aromatic/aliphatic split and carbon banding recorded a maximum concentration of 84.9 μ g/l in BH2. All of the TPH was found to be in the >C₂₁ - C₃₅ carbon band range (both aromatic and aliphatic). Borehole I recorded 34.7 μ g/l total TPH, predominately within the same carbon band range.

No MTBE or BTEX was recorded in any of the samples.

Analysis for speciated PAH recorded total concentrations of 41.2, 2.64 & 0.93 μ g/l in BHs 1, 2 & 5 respectively. Benzo(a)pyrene was recorded above the UKDWS of 0.1 μ g/l in all three boreholes; concentrations of 3.94, 0.22 and 0.06 μ g/l were recorded in BHs 1, 2 and 5 respectively. No other PAH was recorded above the UKDWS or EQS.

7.5.3

Gas phase

The standpipes installed in the boreholes are being monitored for gas flow rate and concentrations of oxygen, methane, carbon dioxide, carbon monoxide and hydrogen sulphide. A note is also being made of the weather conditions at the time of reading. Data obtained thus far is presented at Appendix C and the complete set of six will be issued once monitoring is complete.

7.5.4

Waste Acceptance Criteria (WAC)

Five samples were subject to the WAC full solid waste suite and the WAC 2 stage leachate suite. The results have been compared to the criteria contained in the Landfill Regulations 2002 as amended and are presented at Appendix D.

Within the solid waste suite, the vast majority of results were within the Inert Waste Landfill criteria limits save for Total Organic Carbon in WS1 between 0.5-0.8 m depth and in WS9 between 0.5-0.7 m depth which recorded 4.4 and 3.3 % respectfully. This value is above the Inert criteria limit of 3 % but below the Stable Non-reactive Hazardous waste in non-hazardous Landfill criteria limit of 5 %.

Parameters determined on the compliance leaching test were also predominately within the Inert Waste Landfill criteria limits save for antimony in WS9 between 0.5-0.7 m depth. The leachate concentration of 0.08 mg/kg (equivalent) is above the Inert criteria limit of 0.06 mg/kg but below the Stable Non-reactive Hazardous waste in non-hazardous Landfill criteria limit of 0.7 mg/kg.

The results are only marginally above the Inert Waste Landfill criteria limits and any arisings or spoil may be able to go as Inert, when dilution is taken into account. However, this should be confirmed with the disposal facility.

The contamination test results and the WAC results should be forwarded to the contractor appointed to undertake any spoil removal to confirm disposal requirements. Transfer notes and chain of custody sheets should be retained for all arisings removed from site.

7.6

Conclusions and recommendations

The investigation carried out to date has revealed elevated concentrations of lead in the Made Ground at shallow depth in WS4, 5, 8 & 10. In addition, TPH was recorded above the relevant S4UL in WS2⁴ & WS17 and some individual PAHs were above the relevant S4UL in WS2 & WS4, also in Made Ground.

⁴ Assuming all TPH aromatic species

Groundwater samples have revealed low concentrations of dissolved phase hydrocarbons (TPH & PAH) in all BHs and arsenic and nickel above the UKDWS in BH2.

Three underground fuel storage tanks (USTs) are located between the Enessa Works and the building to its north. Surplus diesel was removed from tank No. 3 and the USTs were foam filled between 27 and 29 September 2006. Full details are presented at Appendix B of the Phase I report. The tanks and any remaining pipework will need to be removed and the resultant excavation validated prior to backfill. Window sampler 17 was drilled adjacent to the USTs and was one of only two locations to record TPH bands above the relevant S4UL. There is therefore likely to be some impacted soils around the USTs due to past spillages/leakage.

An interceptor is located adjacent to the former stores building in the south of the site. As for the USTs, this will need to be removed and the resultant excavation validated prior to backfilling.

In addition to the foregoing, a former Greggs employee indicated that two underground cavities or partial voids were present in the northern part of the site; one under the boiler house and one close to the public sewer manhole, as shown on Figure I at Appendix A. The former was apparently caused by hot water/steam 'blow-down' from the boiler and the latter by the force of water coming from a damaged downpipe. The likelihood of actual voids being present within the Kempton Park Gravel is considered unlikely due to its granular nature. However, the subsoil may have been weakened locally and this may account for the anomalous depth to groundwater consistently recorded in BH2. In addition, the construction of the sewer would have disturbed the adjacent ground.

During one of the monitoring visits, a falling head test was attempted in BH2. The aim was to raise the water level within the standpipe and make a note of the time taken for it to drop

back to water table level. However, 50 litres of water was added and the water level only rose 70 mm, dropping back to the pre-fill level within six minutes. The reason for the more than 3 m difference is unclear and unusual as it is assumed that the gravels are in hydraulic continuity across the site. A high rate of pumping would cause such a depression in the water table but this does not appear to be happening at the site as no water abstraction licences are held within 1000 m. Therefore at present the reason for the difference remains unknown.

The proposals include private gardens which may be used for the cultivation and consumption of home grown produce. The current subsoil is considered unsuitable as a garden material due to its visual appearance, chemical composition and as a suitable growing medium. Imported subsoil and topsoil will therefore undoubtedly be required. The soil(s) should be delivered certified clean although the Local Authority Pollution Control Officer (or similar) may also require additional validation of the soil, depending on its source(s).

The shallow lead and PAH contamination in the Made Ground is likely to be removed or diluted by the demolition process. Indeed, the soils tested are unlikely to remain in situ over the course of the redevelopment due to tracking by heavy plant etc. In any event, an appropriate thickness of clean soil will be provided in garden and soft landscaping areas.

The deeper TPH contamination is not considered significant in terms of human health due to its depth. However, the Kempton Park Gravel is a Principle Aquifer and a receptor in its own right. The dissolved phase contaminants recorded at the site are not considered significant enough to warrent modelling or to require remediation. There is likely to be attenuation of the species within the natural environment before any pore water eventually reaches either groundwater or surface waters that may feed potable water supplies. The site lies on a Principle Aquifer underlain by Unproductive strata. There is no groundwater abstracted within 1000 m of the subject site. At this stage no remediation is considered necessary. However, additional investigations are recommended in the vicinity of WS2 and when the tanks and interceptor are removed.

7.7

Buried concrete

Laboratory tests on soil samples within the anticipated depth of construction yielded a maximum soluble sulphate concentration of 0.39 g/I which results in a Design Sulphate Class⁵ of DS-1.

The groundwater is considered to be mobile and all pH determinations were in excess of 6.5. Therefore the Aggressive Chemical Environment for Concrete, ACEC, is classed as AC-1.

R G Chapman AP GEOTECHNICS LTD. 6th April 2022

This report has been prepared for the sole and specific use of London Square Developments Ltd for the purpose of the redevelopment of the Greggs Bakery Site & No. 2 Gould Road, Twickenham TW2 6RT and should not be relied upon by any third party. Any other persons who use any information contained herein without the written permission of AP GEOTECHNICS LTD. do so at their own risk. The copyright to this report remains the property of AP GEOTECHNICS LTD.

⁵ Concrete in aggressive ground. BRE Special Digest 1. Building Research Establishment, 2005

The groundwater is considered to be mobile and all pH determinations were in excess of 6.5. Therefore the Aggressive Chemical Environment for Concrete, ACEC, is classed as AC-1.

R G Chapman AP GEOTECHNICS LTD. 26th September 2017

This report has been prepared for the sole and specific use of London Square for the purpose of the redevelopment of the former Greggs Bakery, Gould Road, Twickenham and should not be relied upon by any third party. Any other persons who use any information contained herein without the written permission of AP GEOTECHNICS LTD. do so at their own risk. The copyright to this report remains the property of AP GEOTECHNICS LTD.

PROCEDURAL NOTES for GROUND INVESTIGATIONS

General

This report is based upon data obtained from field descriptions of the strata and examination of the samples by an engineer, together with the results of in situ and laboratory tests as appropriate. Responsibility cannot be accepted for variations in ground conditions between and around any of the exploratory points that is not revealed by the data. Whilst the report may offer an opinion on the ground conditions between exploratory points and below the depth of investigation, this is for guidance only and no liability is accepted for its accuracy. Unless specifically included in the report, it should be assumed that no testing has been carried out in respect of asbestos or Japanese Knotweed and no liability is inferred or will be accepted.

Drilling procedure

Boring by light cable percussion drilling allows the ground conditions to be reasonably well established. However, a certain amount of disturbance is inevitable and some mixing of soils can occur.

Sampling procedure

"Undisturbed" samples of predominantly cohesive soils are taken with a 100mm diameter open tube sampler, generally in accordance with BS 5930: 1999.

Where appropriate, or where an undisturbed sample is unsuccessful, disturbed samples are recovered and sealed into polythene bags.

Groundwater samples are taken when water is encountered in sufficient quantity.

Standard penetration tests

The test is conducted generally in accordance with BS 1377: Part 9: 1990. The sampler tube is subject to a seating drive of 150mm into the soil at the base of the borehole. Results are given on the Borehole Records as the number of blows required to drive the sampler tube a further 300mm and this is known as the "N" value. Where the driving resistance is such that full penetration is not achieved, the test is generally terminated after 50 blows and the actual distance penetrated is recorded.

Groundwater

Groundwater observations necessarily reflect the conditions encountered at the time of the exploratory work. Long term monitoring of standpipes is usually required to establish an equilibrium water level since the normal rate of boring is too fast to permit steady state conditions to be achieved.

Groundwater levels are subject to variations caused by changes in drainage conditions and seasonal climatic changes.

Water may necessarily be added to advance the bore whilst casing may be required to maintain an open hole. These can both mask subsequent groundwater observations and are therefore noted on the individual Borehole Record.

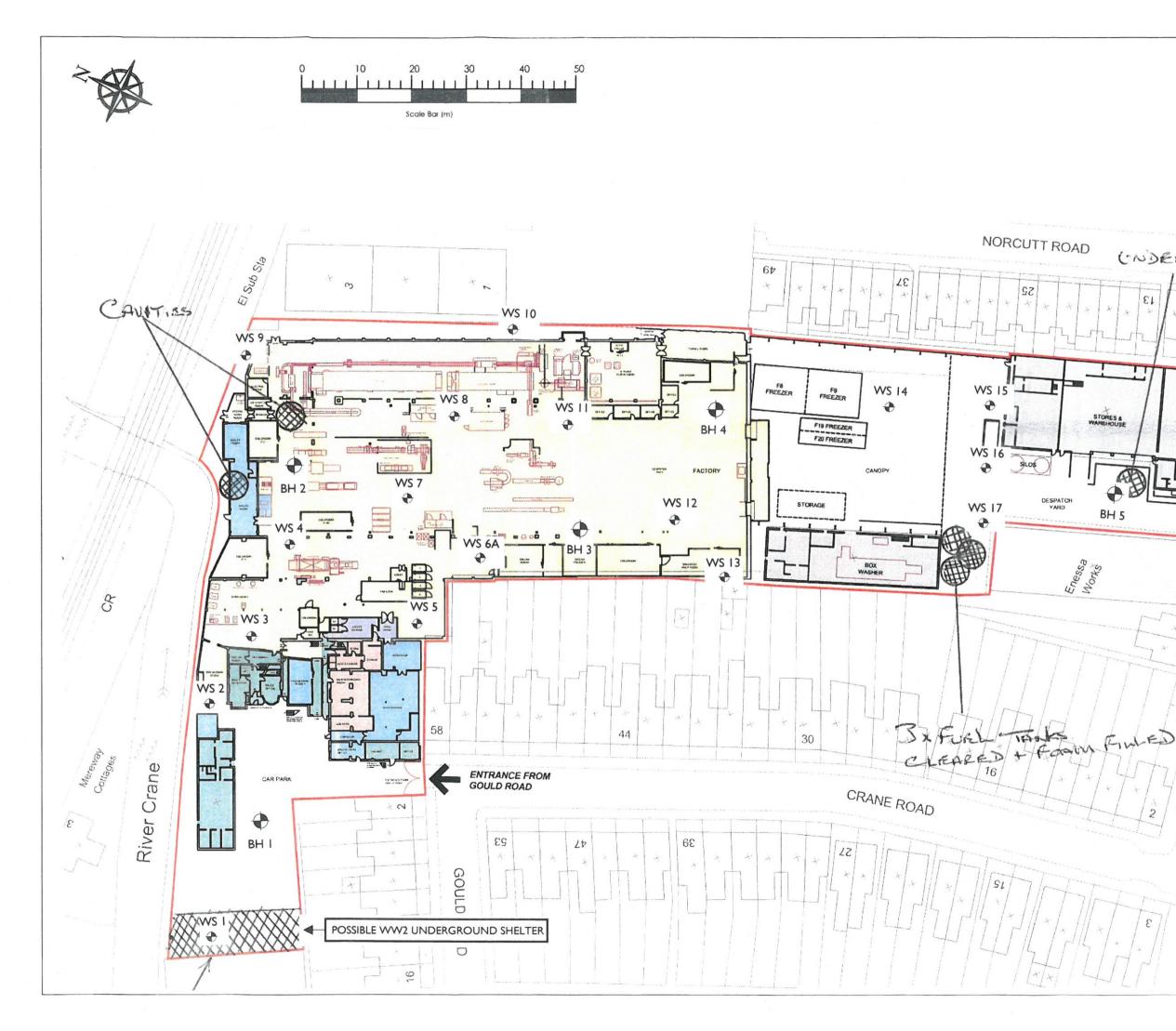
APPENDICES

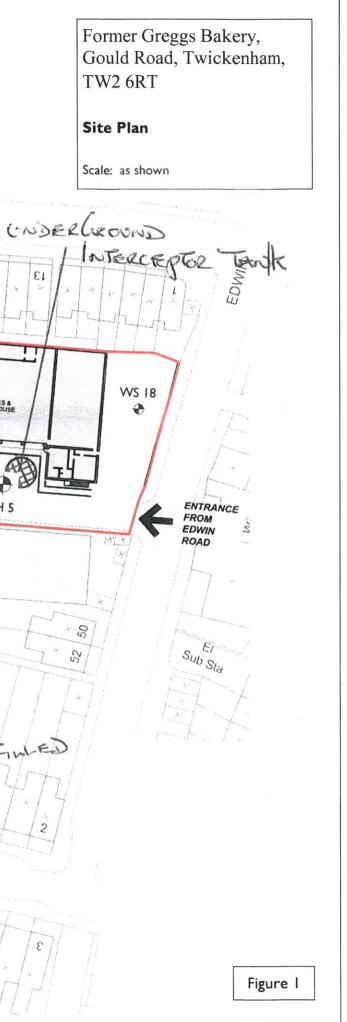
A Figures

Figure I	Site Plan
Figure 2	Proposed arrangement
Figure 3	SPT Profile
Figure 4:	Shear Strength Profile

B Borehole Records

Symbols and Abbreviations Borehole Records

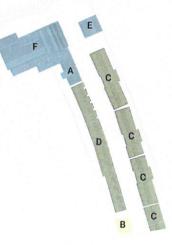

C Standpipe Records

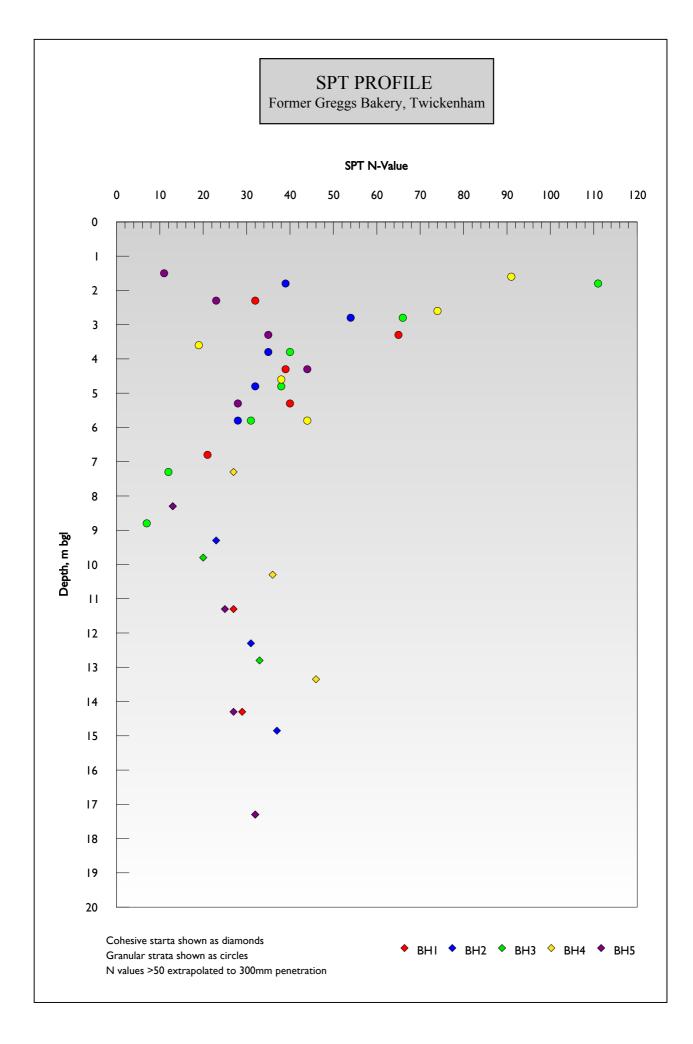

Gas Emissions and Water Levels

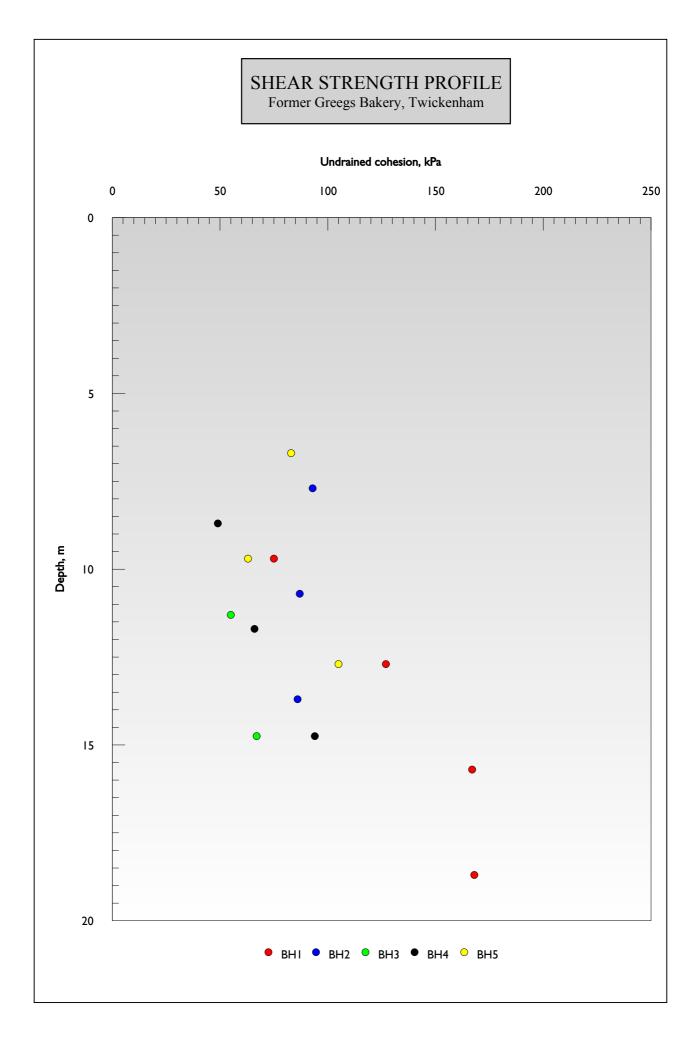
D Laboratory Test Results

Summary of Geotechnical Tests Particle Size Distribution Contaminants in Soil Contaminants in Water Waste Acceptance Criteria (WAC) APPENDIX A

FIGURES






Greggs Bakery Site & No. 2 Gould Road, Twickenham, TW2 6RT

Proposed Development

Scale: unknown

APPENDIX B

BOREHOLE RECORDS

SYMBOLS and ABBREVIATIONS

Samples

Standpipes

Undisturbed Standpipe tubing U Standard open drive "undisturbed" Bentonite seal 102mm dia. in boreholes 38mm dia. in trial pits, window sampler Filter medium and hand auger Т Thin wall open drive Slotted standpipe Piston Ρ CBR CBR mould Windowless sampler liner L Backfilled with arisings Disturbed D Small Bulk В W Water С Contaminants: plastic tub Contaminants: brown glass jar J Piezometer tip In situ tests

SPT	Standard Penetration Test, open shoe
CPT	solid cone
	N value is number of blows for 300mm
	penetration.
	Blow count also given as seating drive
	followed by four increments of 75mm.

- V() Vane test (c_u kPa)
- P() Hand penetrometer ($c_u kg/cm^2$)
- M () Mexe probe (CBR %)

Water records

- Standing level **V**-,
- ∇ Depth encountered

suffix identifies separate strikes

A P	GEOTE	C H N	ICS		T 01932 F 01932 apgeotechr	851255		Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Nu	orehole umber 3H1
Boring Meth		200	Diamete Omm cas Omm cas	r ed to 7.00m ed to 8.60m	Ground	Level (m	OD)	Client London Square			b Imber 609-2
		Location Se	n e site pla	n		3/08/2017 9/08/2017		Engineer		Sheet 1/3	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Dept (m) (Thickn	h ess)	Description	Legend	Water	Instr
1.20-1.65 1.20-1.70 1.70 2.00-2.45 2.00-2.50 2.50 3.00-3.50 3.00-3.27 3.50 4.00-4.45 4.00-4.50 4.50 5.00-5.45	SPT(C) N=10 B1 D1 SPT(C) N=32 B2 D2 B3 SPT(C) 50/115 D3 SPT(C) N=39 B4 D4 SPT(C) N=40	2.00 3.00 4.00	DRY DRY 2.80 3.00	1,1/1,1,3,5 3,5/7,8,8,9 Water strike(1) at 3.00m, rose to 2.80m in 20 mins, sealed at 6.90m. 5,7/9,10,14,17 4,7/7,9,10,13 6,8/8,10,10,12			.15) (27) (27) (.42) (.78) (.60) (.80) (.80)	Asphalt MADE GROUND: Black relic topsoil with brick and fiint MADE GROUND: Soft to firm dark brown very sandy clay with flint and brick Firm brown sandy CLAY with flint gravel Dense to very dense brown very sandy GRAVEL. Gravel is fine to coarse subangular to rounded flint becoming SAND and GRAVEL			
5.00-5.50 6.00 6.50-6.95 6.50-7.00 7.50 8.00-8.45 9.00 9.50-9.95	B5 D5 SPT(C) N=21 B6 D6 SPT N=13 D7 U1	6.50 7.00 8.60	3.50 WET	4,6/5,6,5,5 2,2/3,3,3,4 50 blows		(0.	3.20 .70) 3.90	Medium dnse grey green SAND with black flint gravel and cobbles Stiff to very stiff dark grey CLAY			
Remarks Chiselling from	m 10.00m to 10.10n	n for 0.15 l	hours. W	ater added from 1.80r	m to 3.50n	n.			Scale (approx)	Lc By	ogged /
									1:50 Figure N 4609		ljs H1

Boring Methor Cable Percus		Casing 200	Diamete Omm cas		Ground	Level (mOD)	Client London Square			ob umber 609-2
		Location See site plan			3/08/2017- 9/08/2017	Engineer		Sh	1eet 2/3	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
10.00	D8						Stiff to very stiff dark grey CLAY			***
							claystone from 10.00m to 10.10m			
10.50	D9									
11.00-11.45	SPT N=27 D10	8.60	DRY	3,4/5,7,7,8						
11.00										
12.00	D11									
2.50-12.95	U2	8.60	DRY	70 blows						
3.00	D12									
3.50	D13									
4.00-14.45	SPT N=29	8.60	DRY	4,6/7,7,7,8						
4.00	D14	0.00	DIVI	+,0 <i>11</i> , <i>1</i> ,7,0						
15.00	D45					(13.10)				
15.00	D15									
15.50-15.95	U3	8.60	DRY	75 blows						
	540					- - - -				
16.00	D16						claystone from 16.20 to 16.30m			
6.50	D17									
7.00-17.45 7.00	SPT N=32 D18	8.60	DRY	4,7/7,8,8,9						
8.00	D19									
18.50-18.95	U4	8.60	DRY	75 blows						
19.00	D20									
19.50	D21									
20.00-20.45	SPT N=34	8.60	DRY	5,7/8,8,9,9						
Remarks					to 16 20~	20.00		Scale (approx)	₽ <u>L</u> o	ogged
ansening froi	m 10.00m to 10.10r	0.15 I	iours. Ch	niselling from 16.20m	10 10.30m	1 101 U. 15 MOUIS	5.			
								1:50		ljs

A P	GEOTE		ICS		T 01932 F 01932 apgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM			orehole umber BH1
Boring Meth Cable Percus			Diameter Omm case Omm case	d to 7.00m d to 8.60m		Level (mOD)	Client London Square			ob umber 609-2
		Location See site plan			Dates 08/08/2017- 09/08/2017		Engineer		Sheet 3/3	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
Remarks	D22							Scale		ogged
Remarks								Scale (approx)		ogged Y
								1:50 Figure N		ljs
									9-2.B	H1

A P	GEOTE		ICS		T 01932 F 01932 apgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		N	orehole umber BH2
Boring Meth Cable Percus		-	Diamete Omm cas	r ed to 7.60m	Ground	Level (mOD)	Client London Square		N	ob umber 1609-2
		Locatio Se	n e site pla	n	Dates 14 15	1/08/2017- 5/08/2017	Engineer			heet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.50-1.00	В1					(0.20) 0.20 (1.20) 1.40	CONCRETE (cored floor) MADE GROUND: Black sand			50. 0 0 0 0 0 0 0 0 0 0 0 0 0
1.50-1.95 1.50-1.95	SPT(C) N=39 B2			7/7,9,11,12			Very dense becoming medium dense brown slightly sandy to very sandy GRAVEL. Dense to very dense brown very sandy GRAVEL. Gravel is fine to coarse subangular to rounded flint			
2.50-2.95 2.50-2.95	SPT(C) N=54 B3			11/11,14,14,15						
3.50-3.95 3.50-3.95	SPT(C) N=35 B4			6/7,9,9,10 Fast(1) at 4.20m,		(5.75)			∇ 1	013 102 50 50 50 50 50 50 50 50 50 50 50 50 50
4.50-4.95 4.50-4.95	SPT(C) N=32 B5			sealed at 7.60m. 7/7,8,8,9						
5.50-5.95 5.50-5.95	SPT(C) N=28 B6			4/5,7,7,9		7.15				
7.20 7.50-7.95	`D7 U8					7.15	Stiff dark grey CLAY			
8.50	D9									
9.00-9.45 9.00-9.45	SPT N=23 D10			5/4,5,7,7						
Remarks Excavating fr	rom 0.20m to 1.20m	for 1.5 ho	urs.	<u> </u>		<u> </u>	1	Scale (approx)	Lo B	ogged y
							·	1:50 Figure N		
								Figure F 4609		3H2

A P	GEOTE		ICS		T 01932 F 01932 apgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		N	orehole umber BH2
Boring Meth Cable Percus			Diameter Omm cas	r ed to 7.60m	Ground	Level (mOD)	Client London Square		N	ob umber 1609-2
		Locatio Se	n e site pla	n		/08/2017- 5/08/2017	Engineer		S	heet 2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
10.00	D11						Stiff dark grey CLAY			
10.50-10.95	U12									
11.50	D13						claystone from 11.7 - 11.85 m depth			
12.00-12.45 12.00-12.45	SPT N=31 D14			8/6,8,8,9						
						(7.85)				
13.00	D15									
13.50-13.95	U16									
14.30	D17					(7.85)				
14.55-15.00 14.55-15.00	SPT N=37 D18			8/7,9,10,11 14/08/2017:DRY		15.00				
						L	Complete at 15.00m			
Remarks Chiselling fro	m 11.70m to 11.85m	 n for 0.5 h	ours.			<u> </u>		Scale (approx)	L	ogged y
								1:50 Figure N	lo.	
								4609		H2

A P	GEOTE		ICS		T 01932 F 01932 apgeotechr	851255	FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number BH3
Boring Meth Cable Percus		-	Diameter Omm case	ed to 9.50m	Ground	Level (mOD)) Client London Square		Job Number 4609-2
		Location Se	n e site pla	n	Dates 10/08/2017- 11/08/2017		Engineer		Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
0.50-1.00	В1						CONCRETE (cored floor) MADE GROUND: Brown grey clay with brick and flint		
1.50-1.95 1.50-1.95	B2 SPT(C) N=111			10/08/2017:DRY 11/08/2017: 19/25,26,30,30			Very dense becoming dense brown sandy to very sandy GRAVEL, locally a SAND & GRAVEL		
2.50-2.95 2.50-2.95	SPT(C) N=66 B3			13/11,17,19,19					
3.50-3.95 3.50-3.95	SPT(C) N=40 B4			5/7,9,12,12 Fast(1) at 4.00m, sealed at 9.50m.		(4.60)			Ζ
4.50-4.95 4.50-4.95	SPT(C) N=38 B5			5/7,9,11,11					
5.50-5.95 5.50-5.95	SPT(C) N=31 B6			10/10,7,7,7			Medium dense becoming loose dark grey slightly gravell silty SAND	y	
7.00-7.45 7.00-7.45	SPT(C) N=12 B7			11/08/2017:4.70m 11/08/2017: 3/2,3,3,4		6.00 (3.15)			
8.50-8.95 8.50-8.95	SPT(C) N=7 B8			2/2,2,1,2					
9.20 9.50-9.95 9.50-9.95	D9 SPT N=20 D10			5/3,4,6,7		9.15	Stiff dark grey CLAY		
Borehole bac	stated in concrete ckfilled with arisings rom 0.20m to 1.20m	for 1 hour			1	<u> </u>	Sc (app	ale rox)	Logged By
Excavating fr	om 0.20m to 1.20m	IOI T NOUR					1: Fig	ure N	o. -2.BH3

AP	GEOTE	CHN		E mail@	T 01932 F 01932 apgeotechr	851255 nics.co.uk	FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number BH3
Boring Metho Cable Percus		Casing 150		r ed to 9.50m	Ground	Level (mOD)	Client London Square		Job Number 4609-2
		Location See	n e site pla	n)/08/2017- /08/2017	Engineer		Sheet 2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
0.50 1.00-11.45 2.00 2.50-12.95 2.50-12.95 3.80 4.55-15.00	D11 U12 D13 SPT N=33 D14 D15 U16			6/7,8,8,10 11/08/2017:DRY		(5.85)	Stiff dark grey CLAY		
Remarks								Scale	
Remarks								Scale (approx)	Logged By
								1:50	

A P	GEOTE		ICS		F 01932	848460 851255 nics.co.uk	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Borehole Number BH4
Boring Methor Cable Percus		-	Diamete 0mm cas	r ed to 7.00m	Ground	Level (mOD)	Client London Square		Job Number 4609-2
		Location Se	n e site pla	n		9/08/2017- 0/08/2017	Engineer		Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
1.30-1.75 1.30-1.75 2.30-2.75 2.30-2.75 3.30-3.75 3.30-3.75 4.30-4.75 4.30-4.75 5.50-5.95 5.50-6.00 6.50 7.00-7.45 7.00-7.45 8.00 8.50-8.95 9.50	SPT(C) N=91 B1 SPT(C) N=74 B2 SPT(C) N=19 SPT(C) N=38 B4 SPT(C) N=44 B5 D6 SPT N=27 D7 D8 U9 D10			13/17,24,24,26 19/15,17,21,21 Fast(1) at 3.20m, sealed at 7.00m. 5/3,4,5,7 8/7,9,11,11 5/7,11,12,14 5/5,7,7,8			CONCRETE (cored floor) MADE GROUND: Cobbles of flint, brick and concrete Very dense brown sandy GRAVEL. Medium dense to dense brown silty gravelly SAND Firm to stiff dark grey CLAY		
10.00-10.45	SPT N=36			5/7,9,9,11			1		
Surface reins	kfilled with arisings tated in concrete	. .					(a	Scale approx)	Logged By
Chiselling from	m 0.20m to 1.30m fo	or 2 hours						1:50	
								Figure N	o. -2.BH4

A P	GEOTE				T 01932 F 01932 upgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Borehole Number BH4
Boring Methor Cable Percus		Casing I		r ed to 7.00m	Ground	Level (mOD)	Client London Square		Job Number 4609-2
		Location See	ı e site pla	n	Dates 09 10)/08/2017-)/08/2017	Engineer		Sheet 2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
10.00-10.45	D11					(8.50)	Stiff dark grey CLAY		
11.00	D12								
11.50-11.95	U13								
12.50	D14					(8.50)			
13.05-13.50 13.05-13.50	SPT N=46 D15			7/9,12,12,13					
14.00	D16								
14.55-15.00	U17			10/08/2017:DRY 10/08/2017:			Complete at 15.00m		
Remarks								Scale (approx)	Logged By
								1:50	
								Figure N	lo.)-2.BH4

Boring Meth Cable Percus		Casing	Diamete		apgeotechr Ground	Level (mOD)	Client London Square			b umber 609-2
		Location Se	n e site pla	n	Dates 10)/08/2017	Engineer		Sh	neet 1/3
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
1.20-1.65 1.20-1.70 1.70 2.00-2.45 2.00-2.50 2.50 3.00-3.50 3.00-3.45 3.50 4.00-4.45 4.00-4.50 4.50 5.00-5.45 5.00-5.50	SPT(C) N=11 B1 D1 SPT(C) N=23 B2 D2 B3 SPT(C) N=35 D3 SPT(C) N=35 B4 D4 SPT(C) N=28 B5	2.00 3.00 4.00 5.00	DRY DRY 2.73 3.00 3.50	1,2/2,3,3,3 2,4/4,5,6,8 Water strike(1) at 3.00m, rose to 2.73m in 20 mins, sealed at 6.20m. 4,6/6,8,9,12 6,6/6,9,11,18 3,3/6,7,7,8		(1.50)	CONCRETE MADE GROUND: Brick and concrete fragments in a matrix of silt and sand sized particles Medium dense brown slightly sandy clayey GRAVEL Medium dense to dense brown very sandy GRAVEL becoming a very gravelly sand with depth			
5.00 5.50-6.95 7.00 7.50 8.00-8.45 8.00 9.00 9.50 9.50 9.50 9.50	D5 U1 D6 D7 SPT N=13 D8 D9 D10 U2	6.50 7.00 7.00	WET DRY DRY	50 blows 1,2/2,3,3,5 55 blows		6.20	Stiff dark grey CLAY			
Remarks Water added	from 1.80m to 3.50	m.		1	ı	,		Scale (approx)	Lo By	ogged /
							-	1:50		ljs

A P Boring Metho Cable Percus		Casing	Diamete		apgeotechr Ground	Level (mOD)	FORMER GREGGS BAKERY, GOULD ROA TWICKENHAM Client London Square		Jo Ni	3H5 b umber 609-2
		Location	n e site pla	n	Dates 10)/08/2017	Engineer			neet 2/3
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
10.00	D11						Stiff dark grey CLAY		8	
0.50	D12									
1.00-11.45	SPT N=25	7.00	DRY	2,4/5,6,6,8						
1.00	D13						claystone from 11.30m to 11/40m			
2.00	D14					 				
2.50-12.95	U3	7.00	DRY	65 blows						
3.00	D15									
	2.0									
3.50	D16									
4 00 44 45		7.00		2 5/2 2 7 9						
4.00-14.45 4.00	SPT N=27 D17	7.00	DRY	3,5/6,6,7,8						
						(13.80)				
15.00	D18									
15.50-15.95	U4	7.00	DRY	80 blows						
16.00	D19					-				
16.50	D20					E E				
17.00-17.45 17.00	SPT N=32 D21	7.00	DRY	4,6/7,8,8,9						
18.00	D22									
18.50-18.55	U5 refusal	7.00	WET	100 blows			claystone from 18.55m to 18.65m			
18.50-18.55 18.60	D23						,			
19.50	D24									
		7.00	\A/ 	0.6/6.7.0.40						
20.00-20.45 Remarks Chiselling from	SPT N=31 m 11.30m to 11.40r	7.00 n for 0.25 l	WET	2,6/6,7,8,10	to 18.65m	20.00	<u> </u>	Scale (approx)	Lo	ogged /
					10.001				Ву	
								1:50	1	ljs

A P	GEOTE		ICS		T 01932 F 01932 apgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM			orehole umber 3H5
Boring Meth Cable Percus			Diameter)mm case	d to 7.00m	Ground	Level (mOD)	Client London Square			b umber 609-2
		Location See	n e site plan		Dates 10	/08/2017	Engineer		Sh	n eet 3/3
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
Remarks	D25							Scale		ogged
Remarks								Scale (approx)	Lo By	ogged /
								1:50 Figure N		ljs
								4609		H5

A P	GEOTE		ICS E mail@	T 01932 F 01932 @apgeotechr	851255	FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM	Number WS1
Excavation I Drive-in Wind	Method dow Sampler	Dimens	ions 5mm to 1.00m	Ground	Level (mOD)	Client London Square	Job Number 4609-2
		Location Se	n e site plan	Dates 07	/08/2017	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.00-1.00	L1				(0.13)	Asphalt	
					0.13 0.10) 0.23	MADE GROUND: Brick and concrete fragments in sandy matrix	
						MADE GROUND: Relic topsoil with brick, flint and pockets of sand	
50-0.80	C1						
00 0.00					- 		
					-		
					(1.37)		
00-1.45 00-2.00	SPT(C) N=4 L2		0,0/1,0,1,2		-		
					_		
					-		
					-		
					- 1.60	Very dense orange brown sandy to very sandy GRAVEL	
					-	Very dense orange brown sandy to very sandy GRAVEL with occasional sand layers	
					-		
00-2.45	SPT(C) N=64		23/12,14,17,21		-		
00-3.00	L3						2
					-		
					-		
					-		2
					-		
					(2.40)		
00-3.45	SPT(C) N=46		16/10,11,12,13		-		1
00-4.00	L4		10/10,11,12,13		-		
			Water strike(1) at 3.40m.		_		
			.,		- -		
			07/08/2017:3.30m				1
			07/08/2017:	-	 		
cemarks KO Enginee rata depths	er in attendance s approximate where		is less than 100 %	1	4.00	Scale (approx	Logged By
	approximate wildle		10 1000 that 100 /0			1:20	
						Figure	No.

Excavation	Method	Dimens	ICS E mail@	Ground	hics.co.uk	Client	Job
	low Sampler		5mm to 1.00m	oround	20101 (11102)	London Square	Numbe 4609-2
		Locatio Se	n e site plan	Dates 07	7/08/2017	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
).00-1.00	L1				 (0.23)	Asphalt over reinforced CONCRETE	
					0.23	MADE GROUND: Brown relic topsoil with pockets of clay and fragments of brick and flint	
).40	C1						
					-		
1 00 1 45			2/1,1,1,2		 (1.47)		
1.00-1.45 1.00-2.00	SPT(C) N=5 L2		2/1,1,1,2		- 		
					-		
					- 1.70 - -	Very dense orange brown sandy to very sandy GRAVEL with occasional sand layers. Stained and odorous from 1.9 to 4 m	
2.00-2.45 2.00	SPT(C) N=52 C2		17/11,13,13,15		 - 		
2.00-3.00	L3				-		
					- -		
					- 		
2.90	C3				(2.30)		
3.00-3.45 3.00-4.00	SPT(C) N=52 L4		16/11,13,13,15				
			Water strike(1) at 3.20m.		 - 		
			07/08/2017:3.12m		- -		
4.00	C4		07/08/2017:	-	- -		
Romarks					4.00		
Gravels stair	ed and slightly odore er in attendance approximate where	ous from 1	1.9 m to base of hole at 4 m is less than 100 %			Scale (approx) Logged By
						1:20	1

A P Excavation	G E O T E O			F 01932 il@apgeotechr		FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS3 Job
	dow Sampler		5mm to 1.00m	Ground	Level (mOD)	London Square		4609-2
		Locatio Se	n e site plan	Dates	/08/2017	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
0.00-1.00	L1				(0.20) 0.20 0.20 (0.60)	CONCRETE floor MADE GROUND: Firm brown clay with flint and brick		
.00-1.45 .00-2.00	SPT(C) N=39 L2		4/11,9,9,10		 	Soft to firm brown mottled slightly sandy CLAY		
					- 1.20 	Very dense to dense orange brown sandy to very sand GRAVEL with occasional sand layers	lу	
.00-2.30 .00-3.00	SPT(C) 50/150 L3		29/31,19		- - - - - - - - - - - - - - -			
8.00-3.45 8.00-4.00	SPT(C) N=41 L4		27/9,12,9,11		(2.80) 			
	L4							
Remarks Strata depths	s approximate where	recovery	is less than 100 %		4.00	S (ar	Scale oprox)	Logged By
orehole dry	er in attendence	,					1:20	
						F	igure N	I o .

A P	GEOTE		ICS E mail	T 01932 F 01932 @apgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM	Numb WS	
Excavation	Method dow Sampler	Dimensi	i ons 5mm to 1.00m	Ground	Level (mOD)	Client London Square	andy	
		Location See	n e site plan	Dates 09	/08/2017	Engineer	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
0.00-1.00	L1				(0.20) - 0.20	CONCRETE floor		
					- - - -	MADE GROUND: Brown clay with brick and flint		
					- (0.80) 			
.00-1.45 .00-2.00	SPT N=35 L2		6/7,8,9,11		- 1.00 - (0.30)	Soft to firm brown mottled slightly sandy CLAY		
					1.30	Dense to medium dense orange brown sandy to very sandy GRAVEL with occasional sand layers		
					- - - -			* • * . • .
2.00-2.45 2.00-3.00	SPT(C) N=37 L3		14/10,9,10,8					** * * * * * * *
					- - - -			
					 (2.70) 			• • • • • • • • • • •
3.00-3.45 3.00-4.00	SPT(C) N=33 L4		15/8,9,9,7		- 			
			Water strike(1) at 3.70m. 09/08/2017:3.70m 09/08/2017:	-	-			₽
4.00-4.45 Remarks JXO Engine	SPT(C) N=28 er in attendance		11/7,8,6,7		4.00	Scale (approx	Logge	ed
strata depths	s approximate where	recovery	is less than 100 %			1:20	,,	
						Figure	No. 09-2.WS4	

and with the problem is the proble	Job Numbe 4609-
See site plan OBUSE 017 Site site plan Concentration Concentration Concentration Description .00 1.1 1 Image: site plan Image: site	Sheet
L1 L1 L1 L1 L1 L1 L1 L2	1/1
.45 SPT(C) N=5 1/1,1,12 1/1,1,12 MADE GROUND: Brown clay with brick, concrete and flint. .46 SPT(C) N=5 1/1,1,12 1.60 Dense to medium dense orange brown sandy to very sandy GRAVEL with occasional sand layers .46 SPT(C) N=37 12/8,9,10,10 1.60 (2.40) .45 SPT(C) N=37 2.90 865.7.7 (2.40)	Legend
.45 SPT(C) N=5 1/1,1,1,2 .45 SPT(C) N=37 12/8,9,10,10 .45 SPT(C) N=25 2.90 .45 SPT(C) N=25 2.90 .45 SPT(C) N=25 2.90	
.45 SPT(C) N=25 2.90 8/6.5.7.7	
.45 SPT(C) N=25 2.90 8/6.5.7.7	
08/08/2017:2.92m - 08/08/2017: - 08/08/2017: - - <td< td=""><td>Logge</td></td<>	Logge
Engineer in attendance 1:20	
Figure N	

A P	GEOTE	CHNI	C.S. E. mai	T 01932 F 01932 I@apgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS6
Excavation		Dimensior			Level (mOD)			Job Number 4609-2
		Location See s	ite plan	Dates 08	6/08/2017	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend S
						CONCRETE floor MADE GROUND: Brown clay with pockets of soil and fragments of brick and flint Abandoned at 0.80m		
Remarks No further pr	rogress - borehole at	pandoned and	d relocated to WS6A			1	1:20	Logged By
						Fi	igure No 4609-2	

A P	GEOTE		ICS E mail@	T 01932 F 01932 Dapgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM	Number WS64
Excavation I Drive-in Winc		Dimens	ions 5mm to 1.00m	Ground	Level (mOD)	Client London Square	Job Number 4609-2
		Location Se	n e site plan	Dates 08	8/08/2017	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.00-1.00	L1				(0.23) 0.23 	CONCRETE floor MADE GROUND: Brown clay with pockets of relic topsoil and fragments of brick and flint	
					(0.77)		
1.00-1.45 1.00-2.00	SPT(C) N=6 L2		2/1,2,1,2		1.00 	Soft to firm brown mottled slightly sandy CLAY with a little gravel	
					 	Dense orange brown sandy to very sandy GRAVEL with occasional sand layers	
2.00-2.45 2.00-3.00	SPT(C) N=48 L3		15/10,13,13,12				
					 (2.60)		
3.00-3.45 3.00-4.00	SPT(C) N=34 L4		10/7,8,10,9 Water strike(1) at 3.15m.				
			08/08/2017:2.91m 08/08/2017:		- - - - - - - - - - - - - - - - - - -		
Remarks UXO Enginee	er in attendance approximate where	recovery	is less than 100 %			Scale (appro	e Logged x) By
	approximate where	recovery				1:20	
						Figur	e No.

A P	GEOTE			T 01932 F 01932 apgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS7
Excavation	Method dow Sampler	Dimens 11	ions 5mm to 1.00m	Ground	Level (mOD)	Client London Square		Job Number 4609-2
		Locatio Se	n ee site plan	Dates 07	7/08/2017	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
0.00-1.00	L1				(0.23) 0.23	CONCRETE floor		
					 - - -	MADE GROUND: Brown clay with brick and flint		
					(0.67)			
1.00-1.45 1.00-2.00	SPT(C) N=18 L2		3/1,3,6,8		0.90	Firm brown slightly sandy CLAY with rare gravel		
					(0.60) 			
				1.50	Dense to medium dense orange brown sandy to v GRAVEL with occasional sand layers	ery sandy		
2.00-2.45 2.00-3.00	SPT(C) N=39 L3		13/8,10,10,11					
					- 			
			Water strike(1) at 2.70m.		(2.50)			
3.00-3.45 3.00-4.00	SPT(C) N=25 L4	2.75	7/5,5,7,8		- - - - -			
			07/00/2047 0 77 1					
			07/08/2017:2.77m 07/08/2017:		-			
Remarks UXO Engine Strata depths	er in attendance s approximate where	e recovery	is less than 100 %		4.00	<u> </u>	Scale (approx)	Logged By
							1:20	
							Figure N 4609	lo.)-2.WS7

A P	GEOTE	CHN	ICS E ma	T 01932 F 01932 il@apgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS8
Excavation I Drive-in Winc	Method low Sampler	Dimens 11	ions 5mm to 1.00m	Ground	Level (mOD)	Client London Square		Job Number 4609-2
		Locatio Se	n e site plan	Dates 07	7/08/2017	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
0.00-1.00	L1				(0.20)	CONCRETE floor		· · · · · · · · · · · · · · · · · · ·
					0.20 	MADE GROUND: Brown clay with brick and flint		
					- (0.50) -			
					- 0.70	Firm brown mottled slightly sandy CLAY		
					- -			
1.00-1.45 1.00-2.00	SPT N=16 L2		4/3,4,5,4		- - - (1.00)			
					- - - -			
					 - -			· · · · · · · · · · · · · · · · · · ·
					- 1.70 - -	Dense orange brown sandy to very sandy GRAVEL occasional sand layers	with	
2.00-2.45 2.00-3.00	SPT(C) N=31 L3		13/8,8,7,8					
					- - -			
00.045			11/0 0 7 7		- (2.30)			
3.00-3.45 3.00-4.00	SPT(C) N=31 L4		11/9,8,7,7		-			
					- 			
					 - -			
					 - 			
Remarks Borehole dry					4.00	 	Scale (approx)	Logged By
UXO Enginee Strata depths	er in attendance approximate where	e recovery	is less than 100 %				(арргох) 1:20	_,
						-	Figure N	lo.

A P	GEOTE		IICS E mail@	T 01932 F 01932 Dapgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS9
Excavation	Method dow Sampler	Dimens 11	sions 5mm to 1.00m	Ground	Level (mOD)	Client London Square		Job Number 4609-2
		Locatio Se	n ee site plan	Dates 09	9/08/2017	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
0.00-1.00	L1				(0.30) - (0.30) - 0.30 	ASPHALT over brick fragments MADE GROUND: Brown clay with brick and flint		
1.00-1.45 1.00-2.00	SPT(C) N=29 L2		4/3,6,9,11			Soft to firm orange brown slightly sandy CLAY wi gravel	th rare	
					- 1.20 	Very dense medium dense orange brown sandy f sandy GRAVEL with occasional sand layers	o very	
2.00-2.45 2.00-3.00	SPT(C) N=52 L3		16/12,12,13,15					
3.00-3.45 3.00-4.00	SPT(C) N=29 L4	2.90	Water strike(1) at 2.90m. 11/7,7,7,8					2
Remarks			09/08/2017:2.84m 09/08/2017:	-			Scale	Logged
UXO Engine	er in attendance s approximate where	e recovery	r is less than 100 %				Scale (approx)	Logged By
							1:20 Figure N	No. 9-2.WS9

A P	GEOTE	СНМ	ICS E mail@	 T 01932 F 01932 ⊉apgeotechr 	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS10
Excavation	Method dow Sampler	Dimens 11	ions 5mm to 1.00m	Ground	Level (mOD)	Client London Square		Job Number 4609-2
		Locatio Se	n ee site plan	Dates	9/08/2017	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
0.00-1.00	L1				(0.10) 0.10	CONCRETE MADE GROUND: Brown relic topsoil with brick and t	flint	
					- (0.60) - 0.70 - 0.70 - (0.40)	Soft orange brown slightly sandy CLAY		
1.00-1.45 1.00-2.00	SPT(C) N=60 L2		7/10,13,17,20		- 1.10 - 1.10 	Very dense orange brown sandy to very sandy GRA with occasional sand layers	VEL	
2.00-2.45 2.00-3.00	SPT(C) N=35 L3		11/7,9,9,10		- - - - - - - - - - - - - - - - - - -			
3.00-3.45 3.00-4.00	SPT(C) N=31 L4		Water strike(1) at 2.90m. 10/7,7,8,9		- (2.90) - (2.90) 			2
Remarks UXO Enginer	er in attendance		09/08/2017:2.80m 09/08/2017:				Scale (approx)	Logged
Strata depths	s approximate where	recovery	is less than 100 %				(approx) 1:20	ву
							1.20	L

A P	GEOTE		CS E mai	T 01932 F 01932	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS11
Excavation N Drive-in Wind		Dimension	S	Ground	Level (mOD)	Client London Square		Job Number 4609-2
		Location See si	ite plan	Dates 09	/08/2017	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	ss) Description		Legend
					(0.25)	CONCRETE floor		· · · · · ·
					0.25 (0.08) 0.33			******
						Abandoned at 0.33m		
Remarks o further pro	ogress - obstruction	at 0.33 m dej	pth	1			Scale (approx)	Logged By
							1:50	
						Ī	Figure N	o. 2.WS11

A P	GEOTE		ICS E mail@	T 01932 F 01932 Dapgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		Number WS12	
Excavation Drive-in Win	Method dow Sampler	Dimens 11	ions 5mm to 1.00m	Ground	Level (mOD)	Client London Square		Job Number 4609-2	
		Locatio Se	n e site plan	Dates	9/08/2017	Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend S	
0.00-1.00	L1		21/26,24			CONCRETE floor MADE GROUND: Firm grey and black slightly sand with brick and flint Soft to firm brown mottled slightly sandy CLAY with occasional gravel Abandoned at 1.00m			
Remarks Could not pr	l ogress past 1 m dep	th - shoe a	and liner stuck down hole and	l could not r	ecover		Scale (approx) 1:20	Logged By	_
						-	Figure N		-
							4609-2	2.WS12	

A P	GEOTE	C H N	ICS E mail@	T 01932 F 01932 Dapgeotechr	851255 nics.co.uk	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM			^{ımber} /S13
Excavation N Drive-in Wind		Dimens 11	ions 5mm to 1.00m	Ground	Level (mOD)	Client London Square			b Imber 609-2
		Locatio Se	n e site plan	Dates 09	/08/2017	Engineer			1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.00-1.00	L1				(0.20) 0.20	CONCRETE MADE GROUND: Brown clay with brick and flint		· · · · · 1	
					(0.60) 				
1.00-1.45	SPT(C) N=38 L2		8/10,10,9,9		0.80 	Soft to firm orange brown sandy CLAY with ocasional gravel		- bor	500 Bage
1.00-2.00	L2				- 1.20 	Very dense to medium dense orange brown sandy to very sandy GRAVEL with occasional sand layers		ນດັບອິດທີ່ກຸບ ດັ່ງອີດກວັອິດດີກຸດ ດ້າງອີກກັດ ອິດດາກຸດ ດາງອີກກັດ 	ი და და ეკილი და და ეკილი და და და კალი კალი კალი კალი მინი იკინი რელი და იკინი რელის იკინი იკინი მი ისი და კალი კალი კალი კალი კალი კალი კალი კალ
2.00-2.45 2.00-3.00	SPT(C) N=77 L3		26/19,18,19,21					ອິດດີດດູດດີອີດອີດອີດດີດດູດອີດອັດອັດດີດດູດອີດອັດອີດອີດອີດອີດອີດອີດອີດອີດອີດອີດອີດອີດອີດ	జార్ తిళ్ళారాంది ప్రధాన కొంతుగాంది సంగాదం కొంతుగాంది. సంగా టాజికిలోం చేస్తున్నారు. దాజికిలోం దాజికి రాజుకులోంది. దాజికి రాజు ఆర్టం ఆర్ట్ కోర్ కార్ ఆర్టుత్తున్నారు. ఆర్ట్ రాజ్ కొంతు ఆర్టింగ్ కోరుతారాంది కొంతు తారికొంతున్నారు. ఆర్ట్ రాజుకుల్ రాజుకుల్
			Water strike(1) at 2.40m.		 (2.80) 			⊻1	ૡૺૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ
3.00-3.45 3.00-4.00	SPT(C) N=26 L4	2.35	6/4,5,8,9						
			09/08/2017:2.00m 09/08/2017:	-	- - - - - - - - - - 4.00				
Remarks JXO Enginee Strata depths	er in attendance approximate where	e recoverv	is less than 100 %				Scale (approx)	Lo By	gged
		,				-	1:20	lo. -2.WS	

A P	GEOTE			T 01932 F 01932 apgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM	Number WS14
Excavation I Drive-in Winc		Dimens 11	ions 5mm to 1.00m	Ground	Level (mOD)	Client London Square	Job Number 4609-2
		Locatio Se	n ee site plan	Dates 07	7/08/2017	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.00-1.00	L1				(0.22) (0.22) 0.22 (0.10)	CONCRETE MADE GROUND: Compact flint cobbles in a matrix of silt	
					0.32	MADE GROUND: Compact flint cobbles in a matrix of silt and sand sized particles Very dense to medium dense orange brown sandy to very sandy GRAVEL with occasional sand layers	
1.00-1.45 1.00-2.00	SPT(C) N=67 L2		16/15,17,17,18				
2.00-2.45 2.00-3.00	SPT(C) N=48 L3		16/11,12,12,13		 (3.68) (3.68) 		
			Water strike(1) at 2.70m.		-		₩
3.00-3.45 3.00-4.00	SPT(C) N=25 L4	2.70	6/6,6,6,7				
D			07/08/2017:2.70m				· · · · · · · · · · · · · · · · · · ·
Remarks UXO Enginee Strata depths	er in attendance s approximate where	e recovery	is less than 100 %			Scale (approx	k) Logged By
						1:20	
						Figure	e No. 09-2.WS14

A P	GEOTE		NICS E mail@	T 01932 F 01932 Dapgeotechi	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM	Numl WS	
Excavation		Dimens 11	sions 5mm to 1.00m	Ground	Level (mOD)	Client London Square	Job Numl 4609	
		Locatio Se	on ee site plan	Dates	7/08/2017	Engineer	Shee 1/	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legen	Water
0.00-1.00	L1				(0.25) - 0.25 - (0.35) - 0.60	CONCRETE MADE GROUND: Dark brown and grey sandy clay with brick and flint Very dense to medium dense orange brown sandy to very sandy GRAVEL with occasional sand layers		
1.00-1.30 1.00-2.00	SPT(C) 49/150 L2		25/23,26			sandy GRAVEL with occasional sand layers		
2.00-2.45 2.00-3.00	SPT(C) N=43 L3		16/10,11,10,12		- - - - - - - - - - - - - - - - - - -			
			Water strike(1) at 2.70m.		- - - - -			
3.00-3.45 3.00-4.00	SPT(C) N=22 L4	2.75	5/4,6,6,6 07/08/2017:2.70m					
Remarke			07/08/2017:		4.00			:
UXO Engined Strata depths	er in attendance s approximate where	e recovery	r is less than 100 %			Scale (approx 1:20 Figure		

A P	GEOTE	CHN	ICS E mail@	T 01932 F 01932 Dapgeotechr	851255	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM			^{mber} S16
Excavation N Drive-in Wind		Dimens 11	ions 5mm to 1.00m	Ground	Level (mOD)	Client London Square			b mber 609-2
		Locatio Se	n e site plan	Dates 08	8/08/2017	Engineer		She	eet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.00-1.00	L1				(0.27) 0.27	CONCRETE MADE GROUND: Fragments of brick and concrete in a matrix of silt and sand sized particles		5.	
1.00-1.45	SPT(C) N=39		8/9,9,10,11		(0.63) 	Dense grey clayey sandy GRAVEL (stained)			
1.00-2.00	SPT(C) N=39 L2				 (1.10)				ል የሚነንኛ እንዲነት እንዲነት ማሳት እና የነት እንዲነት የአማሪ እንዲነት እንዲ በሚያለው በሚያለው በሚያለው በሚያለው እንዲነት እንዲ በማስቶ የአማሪ የሚያለው በሚያለው እንዲነት
2.00-2.45 2.00-3.00	SPT(C) N=42 L3		16/10,10,10,12		2.00	Dense orange brown sandy to very sandy GRAVEL with occasional sand layers		τους, ο την την στους, το την την στους, το την τους το την τους τους τους τους τους τους τους τους	ర్మోం ప్రోజించారి హోం ప్రోజించారి హోం సిని హాంచికార్ సిని సిని హాంచి హాం సిని హాంచి హాంచి హాంచి హాంచి హాంచి హాం టార్లె రెడ్డి హాంచికారి ఆంటానికారి ఆర్టీల్లి రాజునికారి ఆంటానికారి హాంచికారి ఆంటానికారి ఆర్ట్ హెం బార్లె రెడ్డి హాంచికారి ఆంటానికారి ఆర్టి హాంచికారి హాంచికారి హాంచికారి ఆర్ట్ హాంచికారి హాంచికారి హాంచికారి హాం
3.00-3.45 3.00-4.00	SPT(C) N=32 L4	2.80	Water strike(1) at 2.80m. 12/8,7,8,9		(2.00) (2.00) 			∑ 1	840, 0473, 874, 974, 974, 974, 974, 974, 974, 974, 9
Remarks Gravel staine	d from 0.9 to 2.0 m	depth	08/08/2017:2.82m 08/08/2017:		 4.00		Scale (approx)	Loi	gged
UXO Enginee Strata depths	er in attendance approximate where	e recovery	is less than 100 %				(approx)	By	-
						-	Figure N	lo. -2.WS	516

A P	GEOTE	CHN		T 01932 F 01932 Dapgeotechr	851255 nics.co.uk	Site FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM		w	^{nber} S17
Excavation M Drive-in Wind		Dimens	ions 5mm to 1.00m	Ground	Level (mOD)	Client London Square			nber 09-2
		Locatio Se	n e site plan	Dates 08	8/08/2017	Engineer		She	eet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.00-1.00	L1				(0.25) 0.25	CONCRETE		8. 	
					(0.35)	MADE GROUND: Brick and concrete fragments in matrix of silt and sand sized particles			
					- 0.60 - (0.20) - 0.80	MADE GROUND: Dark grey and brown slightly sandy clay with brick and flint Soft to firm brown mottled slightly sandy CLAY			
1.00-1.45 1.00-2.00	SPT(C) N=27 L2		4/5,6,7,9		(0.40)			6-0-10/2 = 00/	5 00 000 000 000 5 00 00 00 00 00 2 000 00 00 00 2 000 00 00 00 10 00 00 00 00
					1.20	Medium dense to dense orange brown sandy to very sandy GRAVEL with occasional sand layers - stained and odorous from 3 - 4 m depth		ადად ადეთ. იკი კონიკი და და კარი კონიკი ფინი კი კონიკი ფინი კი კონიკი ფინი კი	રે છે. બે
2.00-2.45 2.00-3.00	SPT(C) N=27 L3		13/7,7,6,7		 (2.80)				స్టాపి సంత్రాంతో నిర్మంతో ప్రస్తుంచిన సంత్రాప్ సంత్రాంతో స్టార్ సంత్రాంతో స్టార్ స్టాంతో స్టార్ స్టాంతో స్టార్ పోట్లా స్టాంతో ప్రధిత్రంతో ప్రధిత్రంతో స్టార్ స్టార్ స్టాంతో ప్రధిత్రంతో స్టార్ స్టాంతో స్టార్ స్టాంతో స్టార్ స పోట్లా ప్రతిక్రి కార్ట్ కార్ స్టార్ ప్రాయాలో ప్రధిత్రంతో ప్రాయాలో ప్రాయాలో ప్రాయాలో ప్రాయాలో ప్రాయాలో ప్రాయాలో ప
3.00-3.45 3.00-4.00	SPT(C) N=34 L4		17/8,9,8,9 Water strike(1) at 3.10m.					∑ 201 201 201 201 201 201 201 201	ర్లు తారిగా రాజు కార్గార్ సినిమా కార్గార్ రాజు కార్రాలు కారికా కార్యాలు కార్లాలు కార్యాలు కార్యాలు కార్రాలు కారికా కార్యాలు కార్యాలు కార్యాలు కార్యాలు కార్యాలు కారికా కార్యాలు కార
			08/08/2017:3.13m 08/08/2017:		- 				
Remarks UXO Enginee	er in attendance approximate where		is less than 100 %		4.00	<u> </u>	Scale (approx)	Log By	gged
Suala ueptiis	approximate where	recovery	וומון ועט %				1:20 Figure N		

AP	GEOTE	CHN		F 01932 Dapgeotechr	iics.co.uk	FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM	WS18
Excavation	Method dow Sampler	Dimens	ions 5mm to 1.00m	Ground	Level (mOD)	Client London Square	Job Number 4609-2
		Locatio	n e site plan	Dates 08	/08/2017	Engineer	Sheet
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.00-1.00	L1				(1111ckness)	CONCRETE MADE GROUND: Relic topsoil with brick	
					 (0.50) 		
					- 0.70 	Brown very clayey slightly sandy GRAVEL	
1.00-1.45 1.00-2.00	SPT(C) N=54 L2		4/9,13,15,17		(0.30) 	Dense to medium dense orange brown sandy to very sandy GRAVEL with occasional sand layers	
2.00-2.45 2.00-3.00	SPT(C) N=41 L3		14/10,10,10,11				
					- - - - - - - - -		
3.00-3.45 3.00-4.00	SPT(C) N=29 L4		12/7,6,8,8 Water strike(1) at 3.20m.		- - - - - - - -		2
					- - - - - -		
			08/08/2017:3.13m	-	- - - - - - - - - - - - - - - - - - -		
Remarks UXO Engine Strata depths	er in attendance s approximate where	recovery	is less than 100 %			Scale (approx)	Logged By
						1:20 Figure	No. 9-2.WS18

APPENDIX C

STANDPIPE RECORDS

STANDPIPE RECORDS

GAS EMISSIONS AND WATER LEVELS

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM Client: London Square

Project No: 4609-2 Sheet No: 1/2

Da	ate	Measurement	Units				Loca	ation			
24/08	/2017			Bł	41	Bł	H2	BI	-15	W	S13
Weather c	conditions			Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady
Temp. °C	24	Flow rate	l/hr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Atmos. mb	1020	Methane	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Carbon dioxide	%	4.4	4.7	1.8	0.3	0.3	0.3	0.7	0.7
Cloud	25 %	Carbon monoxide	ppm	0	0	0	0	0	0	0	0
Sun	bright	Hydrogen sulphide	ppm	0	0	0	0	0	0	0	0
Rainfall	nil	Oxygen	%	21.8	11.4	17.0	20.4	20.0	20.4	20.1	20.1
		PID reading	ppm	0	0	0	0	0	0	0	0
		Water level	m bgl	2.	98	6.	24	2.	89	2.	32

Da	ite	Measurement	Units		-		Loc	ation			
24/08	/2017			W	S16	W	S17				
Weather c	conditions			Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady
Temp. °C	24	Flow rate	l/hr	0.0	0.0	0.2	0.0				
Atmos. mb	1020	Methane	%	0.0	0.0	0.0	0.0				
		Carbon dioxide	%	4.6	5.7	4.4	4.6				
Cloud	25 %	Carbon monoxide	ppm	0	0	0	0				
Sun	bright	Hydrogen sulphide	ppm	0	0	0	0				
Rainfall	nil	Oxygen	%	11.4	9.6	2.3	1.7				
		PID reading	ppm	0	0	0	0				
		Water level	m bgl	2.	80	3.	20				

Da	ate	Measurement	Units				Loc	ation			
5/09/	2017]		Bł	41	Bł	-12	Bł	-15	W:	S13
Weather c	conditions			Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady
Temp. °C	19	Flow rate	l/hr	-0.2	0.0	0.6	0.0	0.0	0.0	-0.3	0.0
Atmos. mb	1017	Methane	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Carbon dioxide	%	5.2	5.2	1.8	1.9	0.3	0.4	1.2	1.2
Cloud	100 %	Carbon monoxide	ppm	0	0	0	0	0	0	0	0
Sun	nil	Hydrogen sulphide	ppm	0	0	0	0	0	0	0	0
Rainfall	nil	Oxygen	%	13.0	12.3	19.4	18.6	20.6	20.0	19.7	19.5
		PID reading	ppm	0	0	0	0	0	0	0	0
		Water level	m bgl	3.	09	6.	22	2.	94	2.	40

Da	ite	Measurement	Units				Loc	ation			
5/09/	2017	1		W	S16	W	SI7				
Weather c	onditions			Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady
Temp. °C	19	Flow rate	l/hr	0.1	0.0	0.6	0.0				
Atmos. mb	1017	Methane	%	3.2	3.6	0.0	0.0				
		Carbon dioxide	%	8.1	8.5	3.3	3.4				
Cloud	100 %	Carbon monoxide	ppm	0	0	0	0				
Sun	nil	Hydrogen sulphide	ppm	0	0	0	0				
Rainfall	nil	Oxygen	%	1.3	0.2	4.1	3.1				
		PID reading	ppm	0	3.5	0	0				
		Water level	m bgl	2.	82	3.	08				

Readings taken with GFM435 manufactured by Gas Data Ltd.

STANDPIPE RECORDS

GAS EMISSIONS AND WATER LEVELS

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM Client: London Square

Project No: 4609-2 Sheet No: 2/2

Da	ate	Measurement	Units				Loc	ation			
19/09	/2017			Bł	-11	Bł	-12	BI	-15	W	S13
Weather c	conditions			Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady
Temp. °C	19	Flow rate	l/hr	0.6	0.0	0.3	0.0	0.1	0.0	0.0	0.0
Atmos. mb	1024	Methane	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Carbon dioxide	%	4.5	4.3	1.2	1.1	0.4	0.4	0.4	0.4
Cloud	10 %	Carbon monoxide	ppm	0	0	0	0	0	0	0	0
Sun	bright	Hydrogen sulphide	ppm	0	0	0	0	0	0	0	0
Rainfall	nil	Oxygen	%	14.1	14.2	19.3	19.4	20.3	20.1	20.4	20.5
		PID reading	ppm	0	0	0	0	0	0	0	0
		Water level	m bgl	3.	15	6.	24	2.	95	Dry (2.42

Da	ate	Measurement	Units				Loc	ation			
19/09	/2017			W:	S16	W	S17				
Weather c	conditions			Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady
Temp. °C	19	Flow rate	l/hr	0.1	0.0	0.1	0.0				
Atmos. mb	1024	Methane	%	1.7	2.1	0.0	0.0				
		Carbon dioxide	%	6.4	6.5	2.0	2.0				
Cloud	10 %	Carbon monoxide	ppm	0	0	0	0				
Sun	bright	Hydrogen sulphide	ppm	0	0	0	0				
Rainfall	nil	Oxygen	%	1.3	0.7	6.8	6.5				
		PID reading	ppm	2.0	2.1	0	0				
		Water level	m bgl	2.	62	2.	99				

Da	ate	Measurement	Units				Loca	ation			
5/09/	2017			Bł	-11	Bł	-12	Bł	-15	W	S13
Weather c	conditions			Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady
Temp. °C	19	Flow rate	l/hr	-0.2	0.0	0.6	0.0	0.0	0.0	-0.3	0.0
Atmos. mb	1017	Methane	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Carbon dioxide	%								1.2
Cloud	100 %	Carbon monoxide	ppm								0
Sun	nil	Hydrogen sulphide	ppm								0
Rainfall	nil	Oxygen	%	13.0	12.3	19.4	18.6	20.6	20.0	19.7	19.5
		PID reading	ppm	0	0	0	0	0	0	0	0
		Water level	m bgl	3.	09	6.	22	2.	94	2.	40

Da	ate	Measurement	Units				Loc	ation			
5/09/	2017			W	S16	W	SI7				
Weather o	conditions			Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady
Temp. °C	19	Flow rate	l/hr	0.1	0.0	0.6	0.0				
Atmos. mb	1017	Methane	%	3.2	3.6	0.0	0.0				
		Carbon dioxide	%	8.1	8.5	3.3	3.4				
Cloud	100 %	Carbon monoxide	ppm	0	0	0	0				
Sun	nil	Hydrogen sulphide	ppm	0	0	0	0				
Rainfall	nil	Oxygen	%	1.3	0.2	4.1	3.1				
		PID reading	ppm	0	3.5	0	0				
		Water level	m bgl	2.	82	3.	08				

Readings taken with GFM435 manufactured by Gas Data Ltd.

APPENDIX D

LABORATORY TEST RESULTS

SUMMARY OF GEOTECHNICAL TESTS

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 1/3

					-	CLAS	SIFICAT	TION				TRIA	XIAL COM	PRESSION	N - TOTAL	STRESS		C	HEMICA	AL
Location	Sample	Depth	Description	Natural	Liquid			Passing	Mod.	Class	Туре		Bulk	Radial	Deviator		esion	11	e (SO4)	
	No		·	Moisture	Limit	Limit	Index	425µm	Plast.			Content	Density	Stress	Stress	cu, kPa	cu, kPa	Water	Soil	
				Content					Index							assuming	Øu, deg		(Sol)	
		m		%	%	%	%	%	%			%	Mg/m ³	kPa	kPa	Øu = 0		g/l	g/l	
BHI	СІ	0.40	MADE GROUND: Black relic topsoil with brick and flint																0.22	7.26
	C2	0.80	MADE GROUND: Soft to firm dark brown very sandy clay with flint and brick																0.19	7.12
	UI	9.50	Stiff dark grey CLAY								UU 102	29	1.98	190	151	75			0.53	7.88
	U2	12.50	Stiff dark grey CLAY								UU 102	25	2.06	250	253	127				
	U3	15.50	Very stiff dark grey CLAY								UU 102	27	2.05	310	334	167				
	U4	18.50	Very stiff dark grey CLAY								UU 102	25	2.09	370	336	168				
BH2	BI	0.50	MADE GROUND: Black sand																0.32	7.20
	B5	4.50	Brown very sandy GRAVEL																0.08	7.11

Note: Soil Classification based upon unmodified Plasticity Index

SUMMARY OF GEOTECHNICAL TESTS

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 2/3

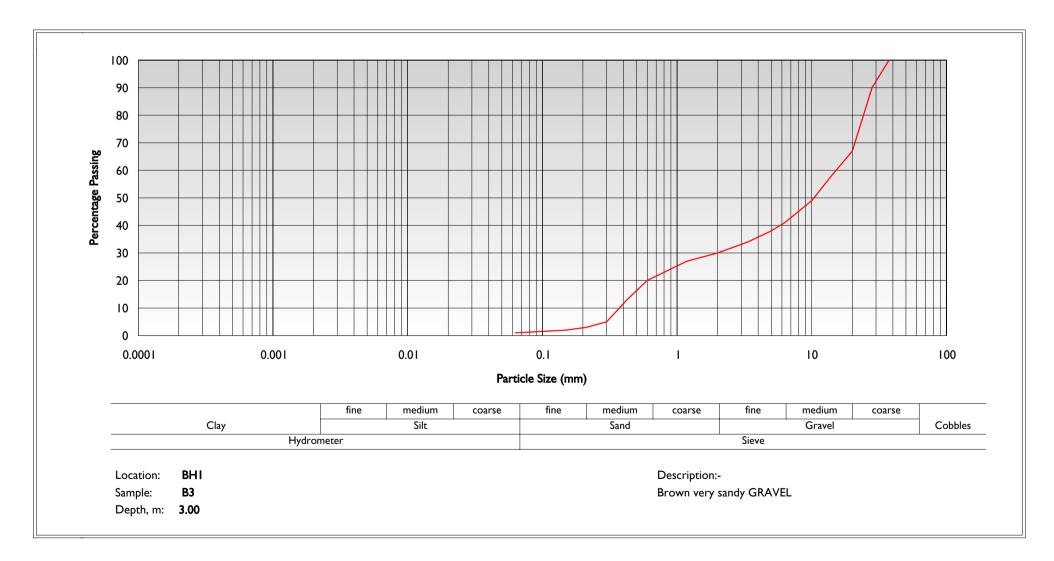
						CLAS	SIFICA	ΓΙΟΝ				TRIA	XIAL COM	PRESSION	I - TOTAL	STRESS		C	HEMICA	AL
Location	Sample	Depth	Description	Natural	Liquid	Plastic	Plast.	Passing		Class	Туре	Moisture	Bulk	Radial	Deviator	Coh	esion	Sulphat	e (SO4)	pH
	No			Moisture	Limit	Limit	Index	425µm	Plast.			Content	Density	Stress	Stress	cu, kPa	cu, kPa	Water	Soil	1
				Content					Index							assuming	Øu, deg		(Sol)	
		m		%	%	%	%	%	%			%	Mg/m ³	kPa	kPa	Øu = 0		g/l	g/l	
BH2	U8	7.50	Stiff dark grey CLAY	29	77	31	46	100		CV	UU 102	26	2.03	150	186	93			0.51	7.49
	UI2	10.50	Stiff dark grey CLAY								UU 102	30	2.04	210	174	87				
	UI6	13.50	Stiff dark grey CLAY								UU 102	26	2.10	270	173	86				
BH3	BI	0.50	MADE GROUND: Brown grey clay with brick and flint																0.39	7.44
	B2	1.50	Brown SAND and GRAVEL																0.06	7.24
	UI2	11.00	Stiff dark grey CLAY (premature failure)								UU 102	32	2.05	220	111	55				
	UI6	14.55	Stiff dark grey CLAY (premature failure)								UU 102	27	2.05	291	135	67				
BH4	U9	8.50	Firm dark grey CLAY	29	74	30	44	100		CV	UU 102	29	2.04	170	98	49			0.36	7.85

Note: Soil Classification based upon unmodified Plasticity Index

SUMMARY OF GEOTECHNICAL TESTS

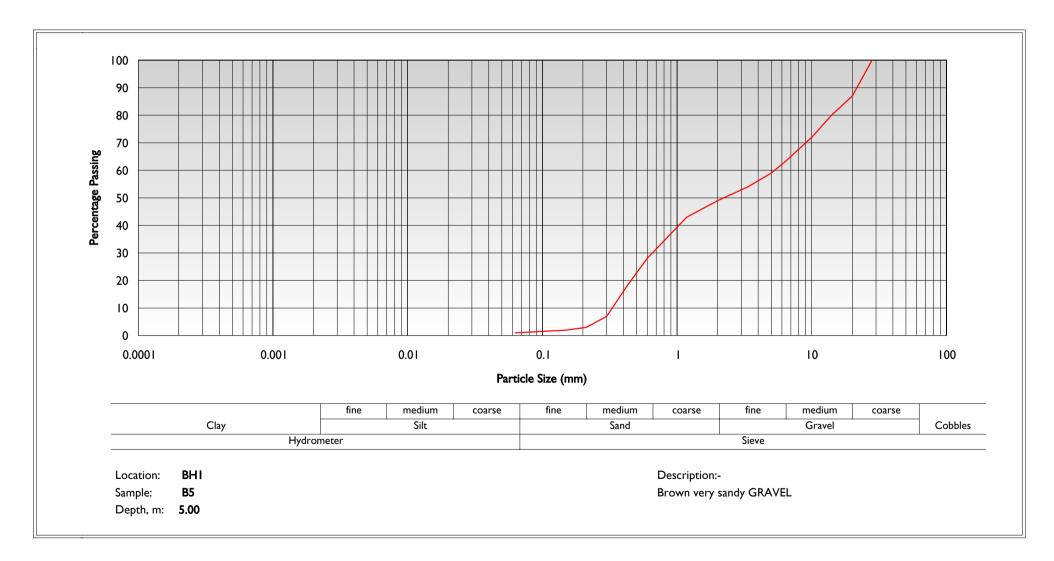
Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

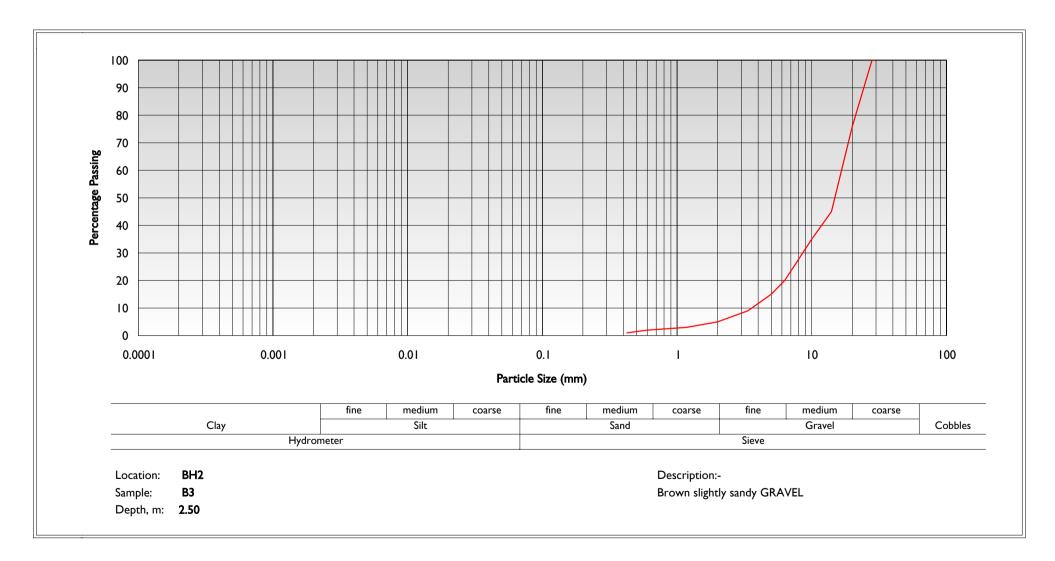

Project No: 4609-2 Sheet No: 3/3

						CLAS	SIFICAT	FION				TRIA	XIAL COM	IPRESSION	N - TOTAL	STRESS		C	HEMICA	4L
Location	Sample	Depth	Description	Natural	Liquid	Plastic	Plast.	Passing	Mod.	Class	Туре	Moisture	Bulk	Radial	Deviator	Cohe	esion	Sulpha	te (SO4)	pН
	No			Moisture	Limit	Limit	Index	425µm	Plast.			Content	Density	Stress	Stress	cu, kPa	cu, kPa	Water	Soil	
				Content					Index							assuming	Øu, deg		(Sol)	
		m		%	%	%	%	%	%			%	Mg/m ³	kPa	kPa	Øu = 0		g/l	g/l	
BH4	UI3	11.50	Stiff dark grey CLAY								UU 102	29	1.91	230	133	66				
	UI7	14.55	Stiff dark grey CLAY								UU 102	27	2.05	291	189	94				
BH5	СІ	0.50	MADE GROUND: Brick and concrete fragments in matrix of silt and sand																0.17	7.02
	B2	2.00	Brown very sandy GRAVEL																0.04	7.09
	UI	6.50	Stiff dark grey CLAY	29	74	31	43	100		CV	UU 102	29	2.00	130	167	83			0.21	7.86
	U2	9.50	Stiff dark grey CLAY (premature failure)								UU 102	30	2.00	190	126	63				
	U3	12.50	Stiff dark grey CLAY								υυ	28	2.02	250	211	105				
	U4	15.50	Stiff dark grey CLAY																0.61	7.59

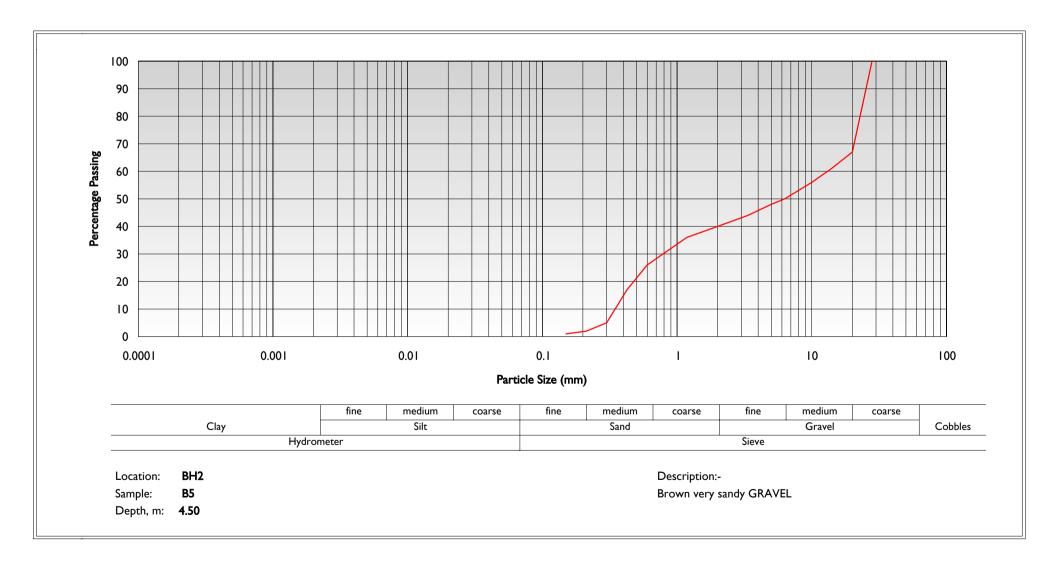
Note: Soil Classification based upon unmodified Plasticity Index


Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT Client: London Square Developments Limited

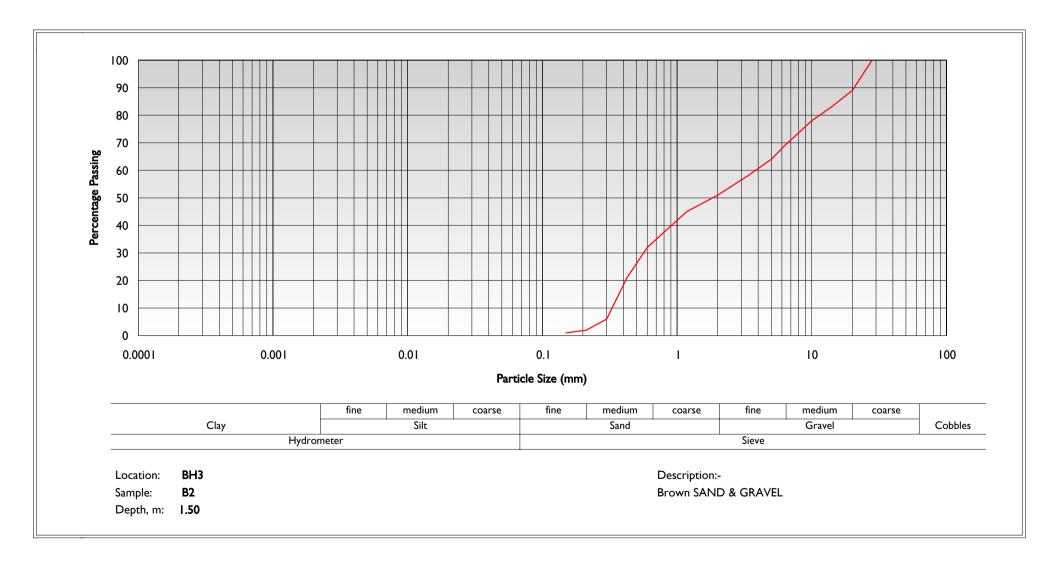
Project No: 4609-2 Sheet No: 1/10


Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT Client: London Square Developments Limited

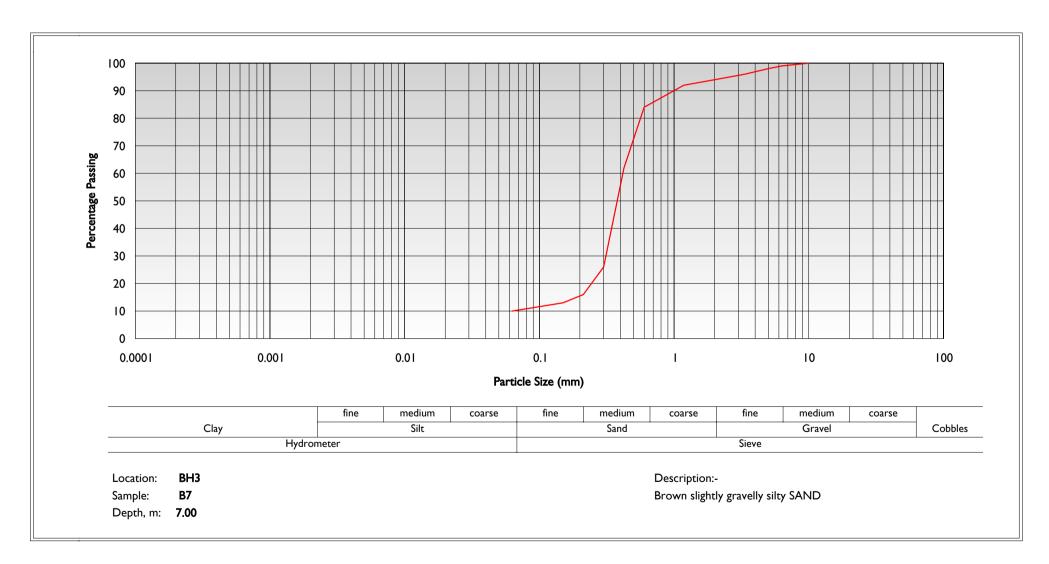
Project No: 4609-2 Sheet No: 2/10


Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT Client: London Square Developments Limited

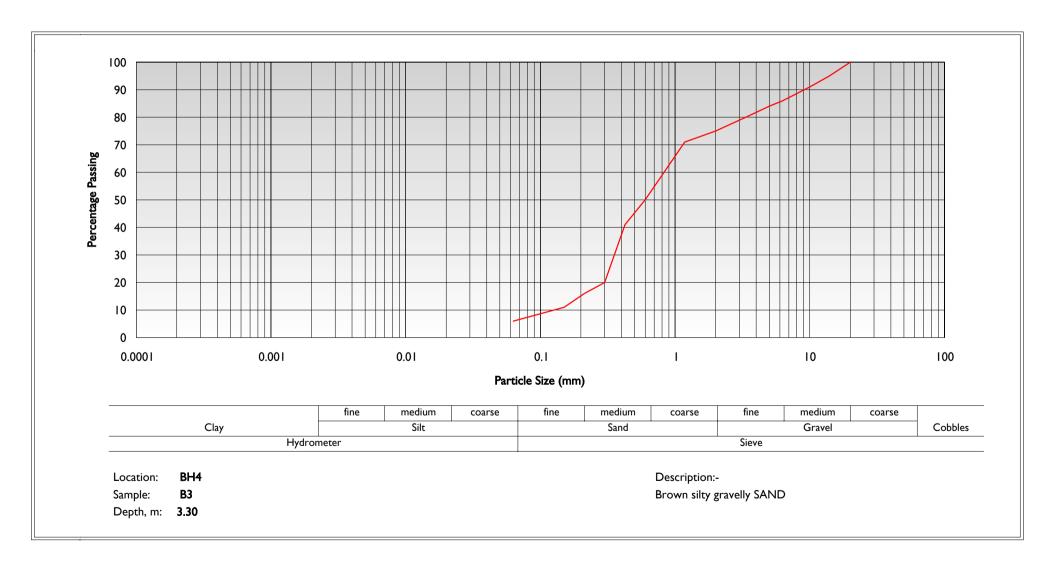
Project No: 4609-2 Sheet No: 3/10


Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT Client: London Square Developments Limited

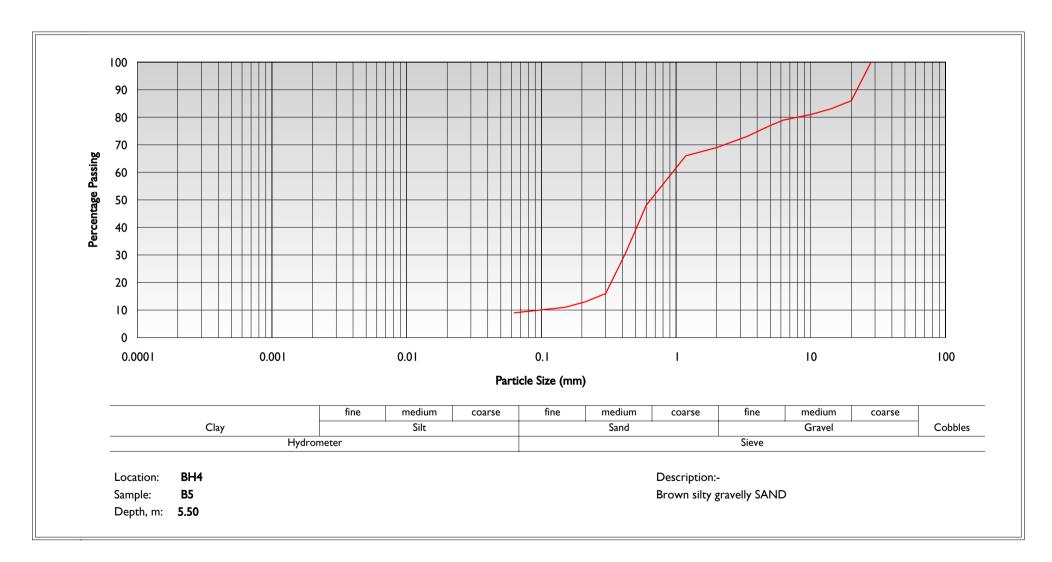
Project No: 4609-2 Sheet No: 4/10


Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT Client: London Square Developments Limited

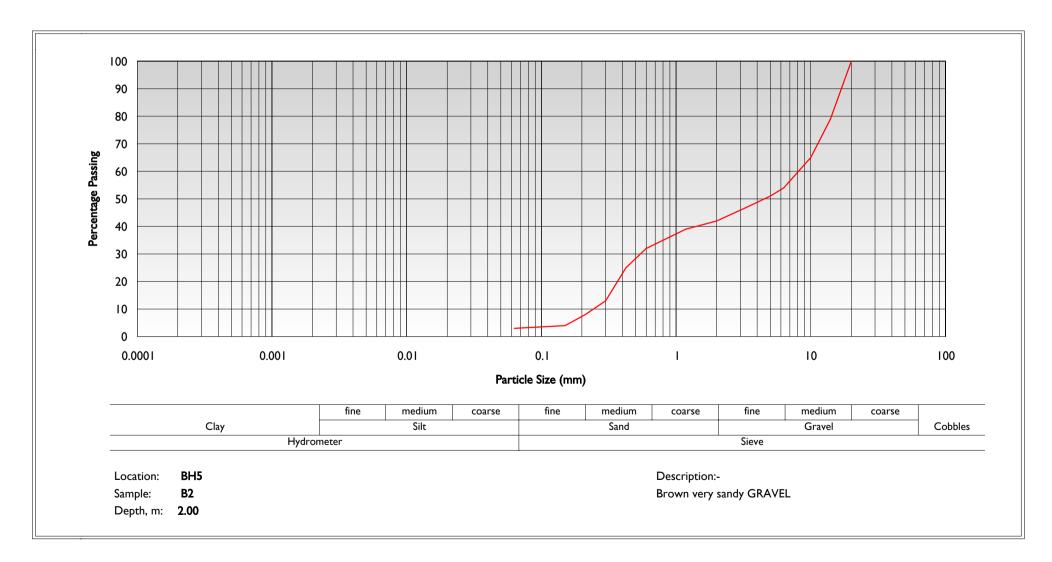
Project No: 4609-2 Sheet No: 5/10


Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT Client: London Square Developments Limited

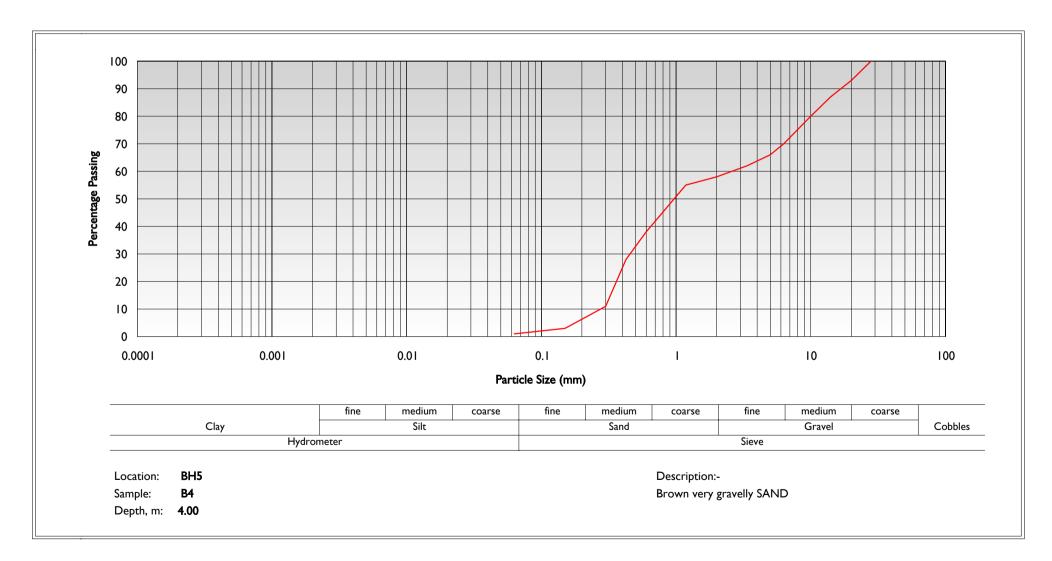
Project No: 4609-2 Sheet No: 6/10


Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 7/10


Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 8/10


Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 9/10

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 10/10

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 1/4

Co.	September	debug	14.000 in the series	o dating	Choning	Barbarbarbarbarbarbarbarbarbarbarbarbarba	<code< th=""><th>Are contraction</th><th>A: tickey</th><th>Seleni Seleni Multi</th><th>The</th><th>8000</th><th>Ononing</th><th>Alenols</th><th>R. R. R</th><th></th><th></th><th>Laura -</th><th>COMP.</th><th></th><th></th><th></th><th>Ha</th></code<>	Are contraction	A: tickey	Seleni Seleni Multi	The	8000	Ononing	Alenols	R. R			Laura -	COMP.				Ha
		¢			tripedan.			ino. Banic				ios of the part of	det de tar	.3.100 TOTO TOTO	ţŎ.	C\$. C9.	6 ⁷⁰ ,012	C12, C16	016. (2)	Q _{2,} G3,	CS.	to to the second	
WS2	C1 C3	0.40 2.90	13.7	<0.5	73.9	56.9	193	0.9	71.3	<1.0	112	2.6	<0.8	<5		84.8	378	1190	1040	318	<1.0	3010	
WS3	CI	0.50	13.8	<0.5	24.2	32.9	136	<0.5	19.4	<1.0	71	0.9	<0.8										
WS4	CI	0.50	18.2	0.9	28.3	49.3	1350	1.6	24.3	1.2	453	2.2	<0.8	<5		<1.0	<1.0	<1.0	<1.0	6.0	<1.0	6.0	
WS5	CI C3	0.50 1.80	24.5	<0.5	44.7	51.4	217	<0.5	31.3	<1.0	161	5.2	<0.8	<5		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
S4UL'			37	11	910	2400		40	180	250	3700	290	6	380									
	reside comm		40 640	85 190	910 8600	7100 68000		56 1100	180 980	430 12000	40000 730000	11000	6 33	200 300									
CLEA ²	resid		32 640	170				170 3600	130 1800	350 350			55	1300									

Notes

I. S4UL given at 6% soil organic matter

2. CLEA SGVs given at 6% soil organic matter

3. Residential with plant uptake

3a. Residential without plant uptake

© AP GEOTECHNICS LTD.

All units are mg/kg dry weight of soil unless otherwise stated, except for pH which is dimensionless

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 2/4

Location Control	Control of	0 by	rd coord	Coloring	Choning	Can	<code< th=""><th>Are contraction</th><th>A.</th><th>Seleniun</th><th>Tinc</th><th>8000</th><th>Choning</th><th>Letter of the second se</th><th>807</th><th></th><th></th><th>Laur .</th><th>COMP 33</th><th></th><th></th><th></th><th>Ha</th></code<>	Are contraction	A.	Seleniun	Tinc	8000	Choning	Letter of the second se	807			Laur .	COMP 33				Ha
		¢			trip alent			ti Benici				ios see	det al	do topological de la construcción de la construcció	Ŷġ	C\$. C9	C10, C12	Cr5 Cr5	C.	(2), (3)	CS.	loten Co.	
WS6A	C2	0.80	10.7	<0.5	32.4	23.9	51.9	<0.5	18.6	<1.0	73.9	1.1	<0.8	<5		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
WS7		1.00 3.50	12.3	<0.5	142	30.1	114	<0.5	31.6	<1.0	89.9	1.1	<0.8	<5		<1.0 <1.0							
WS8		0.50 1.00	16.1 10.7	<0.5 <0.5	30.9 28.4	62.1 23.1	333 44.2	0.8 <0.5	22.8 16.3	1.2 <1.0	208 71.4	2.3 1.2	<0.8 <0.5	<5 <5		<1.0	<1.0	<1.0	<1.0	14.8	1.3	16.1	
WS9		1.00 3.00	10.1	<0.5	29.6	17.5	27.2	<0.5	16.5	<1.0	56.2	0.6	<0.8	<5	<0.03 <0.03								
S4UL'	reside	ntial ³	37	11	910	2400		40	180	250	3700	290	6	380									
	reside		40	85	910	7100		56	180	430	40000	11000	6	1200									
	comm		640	190	8600	68000		1100	980	12000	730000	240000	33	1300									
CLEA ²			32					170	130	350													
	comm	ercial	640					3600	1800	13000													

Notes

I. S4UL given at 6% soil organic matter

2. CLEA SGVs given at 6% soil organic matter

3. Residential with plant uptake

3a. Residential without plant uptake

© AP GEOTECHNICS LTD.

All units are mg/kg dry weight of soil unless otherwise stated, except for pH which is dimensionless

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 3/4

Location (Contraction)	S. Solid	de to	14.000 in the series	Coloring Color	Choning	Constant of the second	Lead	Are cur	A: Hickey	Seleniun	1300	8000	Choning	101000	R. R			Real Providence	COMP.				1HI
		¢			tripedan.			inologianic				ios ojen	Heter Heter	jo totototototototototototototototototot	ţŎ.	04, C8, C10	C10, C10, C12,	Crs, Cre	016. (2)	Q2, C3,	CS.	to to OP OP	
WS10	CI C2	0.40 0.90	17.4 10.9	0.6 <0.5	31.0 30.5	56.3 16.9	230 23.7	<0.5 <0.5	22.7 18.7	<1.0 <1.0	255 53.0	0.8 <0.5	<0.8 <0.8	<5 <5		<1.0	<1.0	<1.0	<1.0	4.5	<1.0	4.5	
WS13	CI C3	0.40 3.00	12.4	<0.5	27.0	33	165	0.6	17.3	<1.0	195	0.7	<0.8	<5		<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	
WS15	CI	3.00												<5									
WS16	CI C4	0.50 2.20	12.0	<0.5	29.0	40.7	167	0.6	20.2	<1.0	186	1.0	<0.8	<5		43.7 <1.0	113 1.5	381 8.1	323 10.6	76.7 5.4	<1.0 <1.0	937 25.6	
S4UL'	reside	ential ³	37	11	910	2400		40	180	250	3700	290	6	380									
	reside		40	85	910	7100		56	180	430	40000	11000	6	1200									
	comm		640	190	8600	68000		1100	980		730000	240000	33	1300									
CLEA ²	resid comn		32 640					170 3600	130 1800	350 3000													

Notes

I. S4UL given at 6% soil organic matter

2. CLEA SGVs given at 6% soil organic matter

3. Residential with plant uptake

3a. Residential without plant uptake

© AP GEOTECHNICS LTD.

All units are mg/kg dry weight of soil unless otherwise stated, except for pH which is dimensionless

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 4/4

in in iteration	Souther State	$Q_{cb_{tl}}$	A. Solic	o dating	Choning	Can	Lead	Are cur	A: Mee	Selenin,	(jac	8000	Choning	P. P	807 807			RAIN	COM ST				141
		ţţ			triped.			tio eee				ios de	tertal aler	to month is	ţ,	C\$. C9.	670. C10.	Cr5, Cr8	Cre, Cz,	Q2, Q3	S. B	en log	
WS17	СІ	2.50														<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
WS18	CI	0.40	9.3	<0.5	158	28.3	102	<0.5	23.4	<1.0	92.7	<0.8	١.5	<5									
S4UL'			37	11	910	2400		40	180	250	3700	290	6	380									
		ential ^{3a}	40	85	910	7100		56	180	430	40000	11000	6	1200									
		nercial	640	190	8600	68000		1100	980		730000	240000	33	1300									
CLEA ²		1	32					170	130	350													
	comm	nercial	640					3600	1800	13000													

Notes

I. S4UL given at 6% soil organic matter

2. CLEA SGVs given at 6% soil organic matter

3. Residential with plant uptake

3a. Residential without plant uptake

© AP GEOTECHNICS LTD.

All units are mg/kg dry weight of soil unless otherwise stated, except for $\ensuremath{\mathsf{pH}}$ which is dimensionless

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 1/2

		Specia	ated Total Petro	leum Hydroca	rbons (Aromati	c / Aliphatic Sp	lit with BTEX)				
Location	WS2	WS2	WS9	WS13	WS13	WS15	WS16	WS16		LQM/CIEH	
Sample	C2	C4	C3	C2	C4	CI	C2	C3		S4UL	
Depth, m	2.00	4.00	3.00	1.50	4.00	3.00	1.00	1.70	residential	allotments	commercial
Determinand			•	Concentra	tion, mg/kg	•	•	•		•	
Aromatic Hydrocarbons	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	200	57	04000
C5 - C7 >C7 - C8	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	300 660	57 120	86000 180000
>C8 - C10	<0.01 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	18.0	<1.0	190	51	17000
>C10 - C12	<1.0 83.9	<1.0	<1.0	<1.0	<1.0	<1.0	40.9	<1.0	380	74	34000
>C12 - C16	453	2.9	<1.0	<1.0	<1.0	<1.0	122	1.6	660	130	38000
>C16 - C21	470	5.2	<1.0	<1.0	<1.0	<1.0	104	2.1	930	260	28000
>C21 - C35	214	4.5	<1.0	<1.0	<1.0	<1.0	24.5	<1.0	1700	1600	28000
>C35 - C40	18.8	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1700	1600	28000
Total Aromatic Hydrocarbons	1240	14	<1.0	<1.0	<1.0	<1.0	309	3.7	1700	1000	20000
Aliphatic Hydrocarbons C5 - C6 >C6 - C8 >C8 - C10 >C10 - C12 >C12 - C16 >C16 - C21 >C21 - C35 >C35 - C40 Total Aliphatic Hydrocarbons Total Petroleum Hydrocarbons	<0.01 <0.01 <1.0 117 534 437 172 19.1 1279 2519	<0.01 <0.01 <1.0 <1.0 3.0 4.8 3.6 1.4 13 27	<0.01 <0.01 <1.0 <1.0 <1.0 <1.0 1.7 <1.0 1.7	<0.01 <0.01 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<0.01 <0.01 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<0.01 <0.01 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<0.01 <0.01 18.2 38.9 112 96.1 20.8 <1.0 286 595	<0.01 <0.01 <1.0 <1.0 1.4 1.9 <1.0 <1.0 3.3 7.0	160 530 150 760 4300	3900 13000 1700 7300 13000	12000 40000 11000 47000 90000
BTEX					tion, μg/kg						
Benzene	<10	<10	<10	<10	<10	<10	<10	<10	370	75	90000
Toluene	<10	<10	<10	<10	<10	<10	<10	<10	660000	120000	18000000
Ethyl Benzene	<10	<10	<10	<10	<10	<10	<10	<10	260000	91000	27000000
Xylenes*	<10	<10	<10	<10	<10	<10	13.8	<10	310000	160000	3000000
MTBE	<10	<10	<10	<10	<10	<10	<10	<10			

Notes

Total = Sum of compounds above detection limit.

S4UL given at 6% soil organic matter

*Results given as total of (ortho), (meta) and (para) xylene. SGV given is the lowest permissible value for any xylene compound

Exceptions denoted thus:

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 2/2

		Speci	iated Total Petr	oleum Hydroca	rbons (Aromati	c / Aliphatic Sp	olit with BTEX)	1			
Location	WS17	WS17								LQM/CIEH	
Sample	C2	C3	Ì	İ	Ì	ĺ	Ì	İ	Ì	S4UL	
Depth, m	3.00	4.00							residential	allotments	commercial
Determinand				Concentra	tion, mg/kg					•	
Aromatic Hydrocarbons											
C5 - C7	<0.01	<0.01							300	57	86000
>C7 - C8	<0.01	<0.01							660	120	180000
>C8 - C10	3.0	<1.0							190	51	17000
>CI0 - CI2	75.6	<1.0							380	74	34000
>CI2 - CI6	1020	1.1							660	130	38000
>CI6 - C2I	1360	1.9							930	260	28000
>C2I - C35	382	<1.0							1700	1600	28000
>C35 - C40	<1.0	<1.0							1700	1600	28000
Total Aromatic Hydrocarbons	2841	3.1									
Aliphatic Hydrocarbons C5 - C6 >C6 - C8 >C8 - C10 >C10 - C12 >C12 - C16 >C16 - C21 >C21 - C35 >C35 - C40 Total Aliphatic Hydrocarbons Total Petroleum Hydrocarbons	<0.01 <0.01 4.0 98.3 1140 1430 390 <1.0 3062 5910	<0.01 <0.01 <1.0 <1.0 <1.0 <1.0 <1.0 <1.							160 530 150 760 4300	3900 13000 1700 7300 13000	12000 40000 11000 47000 90000
BTEX	[Concentra	tion, μg/kg	I					
Benzene	<10	<10							370	75	90000
Toluene	<10	<10							660000	120000	180000000
Ethyl Benzene	<10	<10							260000	91000	27000000
Xylenes*	<10	<10							310000	160000	3000000
MTBE	<10	<10							0.000		

Notes

Total = Sum of compounds above detection limit.

S4UL given at 6% soil organic matter

*Results given as total of (ortho), (meta) and (para) xylene. SGV given is the lowest permissible value for any xylene compound

Exceptions denoted thus:

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 1/2

				Speciat	ed Polyaro	omatic Hyd	lrocarbons	s by GCM	S						
Location	WS2	WS2	WS2	WS3	WS4	WS6A	WS8	WS8	WS10	WSI3	WSI3		LQM/	CIEH	
Sample	CI	C2	C4	CI	CI	C2	CI	C2	CI	CI	C3		S4l	JL³	
Depth, m	0.40	2.00	4.00	0.50	0.50	0.80	0.50	1.00	0.40	0.40	3.00	residential4	residential5	allotments	commercial
Determinand							Con	centration, m	g/kg						
РАН															
Naphthalene	0.2	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	13	13	24	1100
Acenaphthylene	0.9	<0.1	<0.1	<0.1	0.4	<0.1	<0. I	<0.1	<0.I	<0.I	<0.1	920	6000	160	100000
Acenaphthene	<0.1	0.5	<0.1	<0.1	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1100	6000	200	100000
Fluorene	<0.1	0.2	<0.1	<0.1	0.9	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	860	4500	160	71000
Phenanthrene	1.6	1.0	<0.1	0.3	10.9	<0.1	0.3	<0.1	0.4	0.3	<0.1	440	1500	90	23000
Anthracene	0.6	1.0	<0.1	<0.1	17.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	11000	37000	2200	540000
Fluoranthene	8.5	<0. I	<0.1	1.0	13.3	<0. I	1.1	0.1	1.0	0.8	<0.1	890	1600	290	23000
Pyrene	7.9	0.1	<0.1	0.8	9.9	<0.1	0.9	0.1	0.8	0.6	<0.1	2000	3800	620	54000
Benzo(a)anthracene	5.1	<0.1	<0.1	0.6	5.6	<0.1	0.6	<0.1	0.4	0.4	<0.1	13	15	13	180
Chrysene	5.5	<0.I	<0.1	0.7	8.5	<0.1	0.7	<0.1	0.7	0.5	<0.1	27	32	19	350
Benzo(b)fluoranthene	5.7	0.5	<0.1	0.8	4.8	<0.1	0.8	<0.1	0.8	0.4	<0.1	3.7	4.0	3.9	45
Benzo(k)fluoranthene	5.6	0.4	<0.1	0.7	4.7	<0.1	0.8	<0.1	0.9	0.6	<0.1	100	110	130	1200
Benzo(a)pyrene	6.8	<0.1	<0.1	0.7	5.5	<0.1	0.8	<0.1	1.4	0.5	<0.1	3	3.2	3.5	36
Indeno(123-cd)pyrene	5.3	<0.1	<0.1	0.7	3.6	<0.1	0.7	<0.1	1.0	0.5	<0.I	41	46	39	510
Dibenzo(ah)anthracene	1.3	<0.1	<0.1	0.2	1.1	<0.1	0.2	<0.1	0.3	0.2	<0.1	0.3	0.32	0.43	3.6
Benzo(ghi)perylene	4.7	<0.1	<0.1	0.6	3.3	<0.1	0.7	<0.1	1.6	0.4	<0.1	350	360	640	4000
Total PAH (16)	59.7	2.9	<0.4	7.5	90.4	<0.4	7.7	0.6	9.4	5.3	<0.4				

Notes

I. Total PAH = Sum of EPA16 identified components

2. The results are expressed as mg/kg dry weight soil after correction for moisture content

3. S4UL given at 6% soil organic matter

4.Residential with plant uptake

5.Residential without plant uptake

© AP GEOTECHNICS LTD.

Exceptions denoted thus: Residential XX Commercial XX

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 2/2

				Speciated	Polyaron	natic Hy	drocarbon	s by GCM	IS					
Locati	on WSI5	WS16	WS18									LQM	CIEH	
Samp	e CI	CI	CI	ĺ	Í		ĺ				Ì	S4U	JL³	
Depth,	n 3.00	0.50	0.40							resid	ential4	residential5	allotments	commercia
Determinand		-					Сог	ncentration, r	ng/kg				-	
РАН														
Naphthalene	<0.1	3.3	<0.1								3	13	24	1100
Acenaphthylene	<0.1	3.6	<0.1								20	6000	160	100000
Acenaphthene	<0.1	2.0	<0.1								00	6000	200	100000
Fluorene	<0.1	0.8	<0.1								50	4500	160	71000
Phenanthrene	<0.1	2.6	<0.1								40	1500	90	23000
Anthracene	<0.1	1.2	<0.1								000	37000	2200	540000
Fluoranthene	<0.1	2.7	0.1								90	1600	290	23000
Pyrene	<0.1	1.3	<0.1								00	3800	620	54000
Benzo(a)anthracene	<0.1	0.7	<0.1								3	15	13	180
Chrysene	<0.1	0.8	<0.1								.7	32	19	350
Benzo(b)fluoranthene	<0.1	0.7	<0.1								.7	4.0	3.9	45
Benzo(k)fluoranthene	<0.1	0.7	0.1								00	110	130	1200
Benzo(a)pyrene	<0.1	0.6	<0.1								3	3.2	3.5	36
Indeno(123-cd)pyrene	<0.1	0.5	<0.1								1	46	39	510
Dibenzo(ah)anthracene	<0.1	0.2	<0.1								.3	0.32	0.43	3.6
Benzo(ghi)perylene	<0.1	0.5	<0.1								50	360	640	4000
Total PAH (16)	<0.4	22.3	<0.4											

Notes

I. Total PAH = Sum of EPA16 identified components

2. The results are expressed as mg/kg dry weight soil after correction for moisture content

3. S4UL given at 6% soil organic matter

4.Residential with plant uptake

5.Residential without plant uptake

© AP GEOTECHNICS LTD.

Exceptions denoted thus: Residential XX Commercial XX

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 1/1

Location	Sample	Depth	Asbes	stos identification	
		m	Description of matrix	Overall percentage of asbestos identified (approx.)	Type of asbestos identified
WS2	СІ	0.40	Brown soil, stones, brick		none detected
WS2	C2	2.00	Brown sandy soil, stones		none detected
WS3	СІ	0.50	Brown sandy soil, stones		none detected
WS4	СІ	0.50	Brown soil, stones, clinker		none detected
WS5	СІ	0.50	Brown sandy soil, clinker, stones		none detected
WS6A	C2	0.80	Brown soil		none detected
WS7	СІ	1.00	Brown soil, stones		none detected
WS8	СІ	0.50	Brown soil,, stones, brick, clinker		none detected
WS8	C2	1.00	Brown soil		none detected
WS9	C2	1.00	Brown soil, stones		none detected
WS10	СІ	0.40	Brown soil, stones		none detected
WS10	C2	0.90	Brown soil		none detected
WS13	СІ	0.40	Brown soil		none detected
WS16	СІ	0.50	Brown soil		none detected
WS18	СІ	0.40	Brown soil, stones		none detected

CONTAMINANTS IN WATER

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client:

London Square Developments Limited

Project No: 4609-2 Sheet No: 1/1

Location Contraction	Sector	depth	Asenie	Bolog	Contraction of the second	Choring	Jogo	Aponto	4: Actor	Lead	Selenin Selenin	inc	44	in the second se	Heterer Heter				And Contraction of the second				^t Hd
		Ą						tri openet openet					Scheer, Scheer	to the state	A. C.	Co, Clo	C10, C12,	613 C13	Cre, Q2,	Cs, Cs,	CS, CB	en contraction of the contractio	paller
BHI	WI	s'pipe	<5		<	<5	<5	<0.1	8	<	<5	<5		<	<100								
BH2	WI	s'pipe	19		<	<5	<5	<0.1	84	<	<5	14		<	<100								1
BH5	WI	s'pipe	<5		<	<5	<5	<0.1	<5	<	<5	<5		<	<100								
UK Drir	nking V	Vater	10	1000	5	50	2000	1	20	10	10	5000		0.5									
EQS free			50	2000	5	5-250'	I-28'	I	50-200'		-	8-500'		30									

Notes

All units are μ g/l unless otherwise stated, except for pH which is dimensionless

Exceptions denoted thus:

I. Depends on hardness, use lower value if unknown

CONTAMINANTS IN WATER

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 1/1

		Speciated To	tal Petroleum H	Hydrocarbons (Aromatic / Aliphatic Split with BTEX)
Location	BHI	BH2	BH5	
Sample	W3	W3	W3	
Depth, m	s'pipe	s'pipe	s'pipe	
Determinand				Concentration, µg/l
Aromatic Hydrocarbons				
>C5 - C7	<1.0	<1.0	<1.0	
>C7 - C8	<1.0	<1.0	<1.0	
>C8 - C10	<5.0	<5.0	<5.0	
>CI0 - CI2	<5.0	<5.0	<5.0	
>CI2 - CI6	<5.0	<5.0	<5.0	
>C16 - C21	6.2	<5.0	<5.0	
>C2I - C35	18.9	<5.0	31.3	
>C35 - C40	<5.0	<5.0	<5.0	
Total Aromatic Hydrocarbons	25.1	<5.0	31.3	
Aliphatic Hydrocarbons				
>C5 - C6	<1.0	<1.0	<1.0	
>C6 - C8	<1.0	<1.0	<1.0	
>C8 - C10	<5.0	<5.0	<5.0	
>CI0 - CI2	<5.0	<5.0	<5.0	
>C12 - C16	<5.0	<5.0	<5.0	
>C16 - C21	<5.0	<5.0	<5.0	
>C21 - C35	9.6	<5.0	53.6	
>C35 - C40	<5.0	<5.0	<5.0	
Total Aliphatic Hydrocarbons	9.6	<5.0	53.6	
Total Petroleum Hydrocarbons	34.7	<5.0	84.9	
BTEX				Concentration, µg/l
Benzene	<1.00	<1.00	<1.00	
Toluene	<1.00	<1.00	<1.00	
Ethyl Benzene	<1.00	<1.00	<1.00	
Xylenes*	<1.00	<1.00	<1.00	
MTBE	<1.00	<1.00	<1.00	

Notes

Total = Sum of compounds above detection limit.

*Results given as total of (ortho), (meta) and (para) xylene.

CONTAMINANTS IN WATER

Project: FORMER GREGGS BAKERY, GOULD ROAD, TWICKENHAM, TW2 6RT

Client: London Square Developments Limited

Project No: 4609-2 Sheet No: 1/1 Sampled on: 04/05/17

			Sp	eciated Po	lyaromati	c Hydroca	rbons by (GCMS					
Location	BHI	BH2	BH5									UK	EQS
Sample	W2	W2	W2		ĺ	ĺ		ĺ	i i	İ	ĺ	Drinking	Fresh
Depth, m	s'pipe	s'pipe	s'pipe									Water	Water
Determinand					•		Concentra	ation, μg/l	•				
РАН													
Naphthalene	0.05	0.04	0.09										10
Acenaphthylene	0.35	0.04	0.02										
Acenaphthene	0.77	0.03	0.02										
Fluorene	0.21	0.02	0.04										
Phenanthrene	1.21	0.17	0.11										
Anthracene	0.74	0.07	0.03										
Fluoranthene	8.03	0.47	0.13										
Pyrene	6.67	0.39	0.12										
Benzo(a)anthracene	3.84	0.24	0.05										
Chrysene	3.82	0.26	0.06										
Benzo(b)fluoranthene	2.99	0.20	0.04										
Benzo(k)fluoranthene	3.47	0.22	0.06										
Benzo(a)pyrene	3.94	0.22	0.06									0.01	-
Indeno(123-cd)pyrene	2.07	0.11	0.04										
Dibenzo(ah)anthracene	0.76	0.04	0.02										
Benzo(ghi)perylene	2.26	0.13	0.05										
Total PAH(16)	41.2	2.64	0.93										

Notes

Total PAH = Sum of 16 identified components

Exceptions denoted thus: XX

XX

exceeds Drinking Water Standard exceeds Environmental Quality Standarc

2. UKDWS for total PAH = 0.10 µg/l and is the sum of benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene and indeno(1,2,3-cd)pyrene

Image: Constraint of the second sec	WAC Analysis									
Sample ID: WS1 C1 Instrument Instrument Instrument Strument Instrument Hazardous Hazardous Site:	Elab Ref:	109395					· · ·			
Sample ID:W51 C1Image: Constraint of the section of the sectio	Sample Date:							Stable Non		
Depth (m)0.50 - 0.	Sample ID:	WS1 C1								
Image: Constraint of the second sec	Depth (m)	0.50 - 0.80	C				Inert Waste	Hazardous waste in non- hazardous		
DeterminandNoNoNoNoDeterminandNoNoNo4.40356Loss on IgnitionMoMo%04.40356Loss on IgnitionMoMg/kg4.40356Total PCBS (7 ongeners)MoMg/kg23500Th Total VACMMg/kg23500Total (f 17) PAHsMoMg/kg43.01000Acid Neutralisation CapacityMMg/kg43.01000To revaluateFluate AnalysisMoMoMg/kg43.01000To revaluateFluate AnalysisMoMoMg/kgMg/kg1001To revaluateTo revaluateChromiumNN0.01110112001000300CapperN0.0110.112001000300CapperN0.0110.112001000300CopperNN0.0050.010.01300MetydonumN0.0050.005100300CopperNN0.0050.005100300CopperNN0.0050.005100300NekelN0.0050.005100300300CopperNN0.0050.005100300CopperNN0.005 <t< td=""><td>Site:</td><td></td><td></td><td>Greggs</td><td>6</td><td></td><td>Landfill</td></t<>	Site:			Greggs	6		Landfill			
DeterminandCodeUnitsImage for an antiparties of a strain of										
Loss on ignition M M % 4.4 10 Total BTEX M mg/kg < 0.01	Determinand		Code	Units						
Dot M mg/kg K.0.1 6 Total PCBs (7 congeners) M mg/kg <0.03	Total Organic Carbon		Ν	%	4	4.40	3	5	6	
Total PCBs (7 congeners) M mg/kg < 0.03 1 TPH Total WAC M mg/kg 23 500 Total (of 17) PAHs N mg/kg 43.0 100 pH M M 93.3 Total (of 17) PAHs N mg/kg <0.1	Loss on Ignition		М	%		4.4			10	
TPH Total WAC M mg/kg 23 500 Total (of 17) PAHs N mg/kg 43.0 100 pH M M 9.3 >6 Acid Neutralisation Capacity N mol/kg <0.1	Total BTEX		М	mg/kg	<	0.01	6			
Total (of 17) PAHs N mg/kg 43.0 100 pH M M 9.3 >6 Acid Neutralisation Capacity N mol/kg <0.1	Total PCBs (7 congeners)		М	mg/kg	<	0.03	1			
pH M M P3.3 >6 Acid Neutralisation Capacity N mol/kg < 0.1	TPH Total WAC		М	mg/kg		23	500			
Acid Neutralisation CapacityNmol/kg< 0.1-To evaluateTo evaluateEluate Analysis10:110:110:110:1Limit values to complance leaching terArsenicN0.0160.160.5225BariumN0.0110.112001000300CadmiumN0.0110.112001000300CadmiumN0.0110.112001000300CadmiumN<0.005<<0.05100300CopperN<0.005<<0.05100300CopperN<0.005<<0.05100300MolybdenumN<0.005<<0.05100300NickelN<0.005<<0.05100300LeadN<0.005<<0.05100300NickelN<0.005<<0.05100300LeadN<0.005<<0.05100300AntimonyN<0.005<<0.05100300SeleniumN<0.005<<0.050.060.77500SeleniumN<0.005<<0.05<0.051002000ChirideNN<0.005<<0.05<0.051002000SeleniumN<0.005<<0.05<0.05<0.05<0.05<0.05Suphate <th< td=""><td>Total (of 17) PAHs</td><td></td><td>Ν</td><td>mg/kg</td><td>4</td><td>43.0</td><td>100</td><td></td><td></td></th<>	Total (of 17) PAHs		Ν	mg/kg	4	43.0	100			
Eluate Analysis In:1 10:1 Limit values for compliance leaching for using BS En 12457-2 × L/S 10 //S grammed in the second se	pH		М			9.3		>6		
Image Image Image/Lg Image/Lg Using BS EN 12457-2 ± L/S 10 l/kg Arsenic N 0.016 0.16 0.5 2 25 Barium N 0.011 0.11 20 100 300 Cadmium N <0.001	Acid Neutralisation Capacity		Ν	mol/kg	<	< 0.1		To evaluate	To evaluate	
Image: mage: m	Eluate Analysis			10:1		10:1	Limit values	for compliant	ce leaching test	
BariumN0.0110.01120100300CadmiumN<0.001<0.010.04415ChromiumN<0.005<0.050.51070CopperN<0.005<0.05250100MercuryN<0.005<0.010.010.22MolybdenumN<0.005<0.050.51030NickelN<0.001<0.050.51030LeadN0.001<0.050.651050AntimonyN<0.005<0.050.060.75SeleniumN<0.005<0.050.1050200ChorideN<0.005<0.050.1025000FluorideN<0.05<0.05450200ChorideN<10<50450200FluorideN<5<508001500025000FluorideNN<5<10100150SulphateNN160160.0040006000010000Phenol IndexNN2.1020.005000300Dissolved Organic CarbonN7.6<101PHNN7.6<101Dry mass of test portion (g)N151<101Dry Matter (%)<1010.0				mg/l	m	ig/kg		•	•	
Cadmium N < 0.001 < 0.01 0.04 1 5 Chromium N < 0.005	Arsenic		N	0.016	(0.16	0.5	2	25	
Chromium N < 0.005 < 0.05 0.5 10 70 Copper N < 0.005	Barium		N	0.011	(D.11	20	100	300	
Copper N < 0.005 < 0.005 2 50 100 Mercury N < 0.005	Cadmium		N	< 0.001	<	0.01	0.04	1	5	
Marcury N < 0.005 < < 0.01 0.01 0.2 2 Molybdenum N < 0.005	Chromium		N	< 0.005	<	0.05	0.5	10	70	
Molybenum N < 0.005 < 0.05 0.05 10 30 Nickel N 0.001 < 0.05	Copper		N	< 0.005	<	0.05	2	50	100	
Nickel N N 0.001 < < 0.05 0.4 10 40 Lead N 0.001 <	Mercury		N	< 0.005	<	0.01	0.01	0.2	2	
Lead N 0.001 < 0.05 0.5 10 50 Antimony N < 0.005	Molybdenum		N	< 0.005	<	0.05	0.5	10	30	
Antimony N < 0.005 < 0.05 0.06 0.7 5 Selenium N < 0.005	Nickel		N	0.001	<	0.05	0.4	10	40	
Selenium N < 0.005 < < 0.05 0.1 0.5 7 Zinc N < 0.005	Lead		N	0.001	<	0.05	0.5	10	50	
Zinc N < 0.005 < < 0.05 4 50 200 Chloride N < 5	Antimony		N	< 0.005	<	0.05	0.06	0.7	5	
Chloride N < 5 < 50 800 15000 25000 Fluoride N < 5	Selenium		Ν	< 0.005	<	0.05	0.1	0.5	7	
Fluoride N < 5 < 10 10 150 500 Sulphate N N 10 96.50 1000 20000 50000 Total Dissolved Solids N 160 1600.00 4000 60000 100000 Phenol Index N < 0.01	Zinc		Ν	< 0.005	<	0.05	4	50	200	
Sulphate Image: Normal Solution Solutite Solution Solution Solutite Solution Soluti Solut	Chloride		Ν	< 5		< 50	800	15000	25000	
Total Dissolved Solids N 160 1600.00 4000 60000 100000 Phenol Index N × 0.01 < 0.10	Fluoride		Ν	< 5		< 10	10	150	500	
Phenol Index Image: Normal System 2014 Normal System 2014 < 0.01 < 0.10 1 $ -$ Dissolved Organic Carbon Normal System 2014 Normal System 2014 92.00 500 800 1000 Leach Test Information pH Normal System 2014 100 1000 1000 Conductivity (uS/cm) Normal System 2014 103.000 1000 1000 1000 Dry mass of test portion (g) Normal System 2014 103.000 1000 1000 1000 Dry Matter (%) Mormal System 2014 910 1000 1000 1000	Sulphate		Ν	10	9	6.50	1000	20000	50000	
Dissolved Organic CarbonN9.21092.005008001000Leach Test InformationpHN7.6Image: Second S	Total Dissolved Solids		Ν	160	16	00.00	4000	60000	100000	
N 7.6 Image: Conductivity (uS/cm) N 151 Image: Conductivity (uS/cm) Image: Conductity (uS/cm) Image: Con	Phenol Index		Ν	< 0.01	<	0.10	1	-	-	
pH N 7.6 Image: Marrie Mar	Dissolved Organic Carbon		Ν	9.210	9	2.00	500	800	1000	
Conductivity (uS/cm) N 151 Image: Marcine Conductivity (uS/cm) Image: Marcine Conductity (uS/cm) Image: Marcine Conductity (uS/cm)	Leach Test Information	n								
Conductivity (uS/cm) N 151 Image: Marcine Conductivity (uS/cm) Image: Marcine Conductity (uS/cm) Image: Marcine Conductity (uS/cm)	pН		N	7.6						
Dry mass of test portion (g) 103.000 Image: Constraint of the second se	•		N							
Dry Matter (%) 91 91	.,	1								
	,									
Moisture (%)	Moisture (%)			10						
Eluent Volume (ml) 994	. ,									

Results are expressed on a dry weight basis, after correction for moisture content where applicable

MCEI

Results Summary Report No.: 17-13605

WAC Analysis								
Elab Ref:	109396				Landfill Waste Acceptance Criteria Limits			
Sample Date:								
Sample ID:	WS5 C2				1	Stable Non- reactive		
Depth (m)	0.80 - 1.00	C			Inert Waste	Hazardous	Hazardous	
Site:			Greggs	;	Landfill	waste in non-	Waste Landfill	
					1			
Determinand		Code	Units		1	Landfill		
Total Organic Carbon		N	%	0.56	3	5	6	
Loss on Ignition		М	%	1.8			10	
Total BTEX		М	mg/kg	< 0.01	6			
Total PCBs (7 congeners)		М	mg/kg	< 0.03	1			
TPH Total WAC		М	mg/kg	8	500			
Total (of 17) PAHs		N	mg/kg	3.0	100			
рН		М		8.7		>6		
Acid Neutralisation Capacity		N	mol/kg	< 0.1		To evaluate	To evaluate	
Eluate Analysis			10:1	10:1	Limit values	s for complian	ce leaching test	
			mg/l	mg/kg		S EN 12457-2 a		
Arsenic		N	0.006	0.06	0.5	2	25	
Barium		N	< 0.005	< 0.05	20	100	300	
Cadmium		N	< 0.001	< 0.01	0.04	1	5	
Chromium		N	< 0.005	< 0.05	0.5	10	70	
Copper		N	< 0.005	< 0.05	2	50	100	
Mercury		N	< 0.005	< 0.01	0.01	0.2	2	
Molybdenum		N	0.008	0.08	0.5	10	30	
Nickel		N	< 0.001	< 0.05	0.4	10	40	
Lead		N	< 0.001	< 0.05	0.5	10	50	
Antimony		N	< 0.005	< 0.05	0.06	0.7	5	
Selenium		N	< 0.005	< 0.05	0.1	0.5	7	
Zinc		N	< 0.005	< 0.05	4	50	200	
Chloride		N	5	52.00	800	15000	25000	
Fluoride		N	< 5	< 10	10	150	500	
Sulphate		N	31	312.00	1000	20000	50000	
Total Dissolved Solids		N	320	3200.00	4000	60000	100000	
Phenol Index		N	< 0.01	< 0.10	1	-	-	
Dissolved Organic Carbon		N	13.700	137.00	500	800	1000	
Leach Test Information	n			-				
pН		N	7.9					
Conductivity (uS/cm)		N	298					
Dry mass of test portion (g)	1		101.000					
Dry Matter (%)			88					
Moisture (%)			14					
Eluent Volume (ml)			976					
			570		<u> </u>			

Results are expressed on a dry weight basis, after correction for moisture content where applicable

Site: Greggs Landfill waste in non- bareardous Landfill Waste Landfill Determinand Code Units Image: Component of the component of the	WAC Analysis								
Sample ID: WS6A C1 Image: Constraint of the c	Elab Ref:	109397							-
Sample ID:Visible C 1Io <th< th=""><th>Sample Date:</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Stable New</th><th></th></th<>	Sample Date:							Stable New	
Depth (m)0.40 -0.60Image of the second secon	Sample ID:	WS6A C	1						
No. 2019 No. 2019	Depth (m)	0.40 - 0.6	0				Inert Waste	Hazardous	Hazardous Waste Landfill
DeterminandCodeUnitsCodeLandfillTotal Organic CarbonM%0.82356Loss on IgnitionMMg/kg2.010Total BTEXMMg/kg<0.03	Site:			Greggs	5		Landfill		
Determinand Code Units Image of the second seco									
Loss on Ignition M M mg/kg < 0 - - 10 Total BTEX M mg/kg < 0.01	Determinand		Code	Units				Landini	
Total BTEX M Mg/kg < 0.01 6 Total PCBs (7 congeners) M mg/kg < 0.03	Total Organic Carbon		N	%	0.	.82	3	5	6
Total PCBs (7 congeners) M Mg/kg < 0.001 1 TPH Total WAC M Mg/kg 8 500 Total (of 17) PAHs M M mg/kg 14.0 100 pH M M M 10.1 >66 Acid Neutralisation Capacity N mol/kg 0.1 10.0 To evaluate Eluate Analysis 0.1 10:1 Unit values for compliance leaching te using SE N 12457.2 × US 10 lkg Arsenic N < 0.005	Loss on Ignition		М	%	2	2.0			10
TPH Total WAC M mg/kg 8 500 Total (of 17) PAHs N mg/kg 14.0 100 pH M M 11.0 >-6 Acid Neutralisation Capacity N mol/kg 0.1 To evaluate To evaluate Eluate Analysis I 10:1 10:1 Limit values for compliance leaching te using BS EN 12457.2 at L/S 10 l/kg Arsenic N < 0.005	Total BTEX		М	mg/kg	< (0.01	6		
Total (of 17) PAHs N mg/kg 14.0 100 pH M M Ind 11.0 >6 Acid Neutralisation Capacity N mol/kg 0.1 To evaluate To evaluate Eluate Analysis Int 10:1 Imit values for complance tacking te Arsenic N <0.005	Total PCBs (7 congeners)		М	mg/kg	< 0	0.03	1		
pH M M 11.0 >6 Acid Neutralisation Capacity N mol/kg 0.1 To evaluate To evaluate Eluate Analysis 10:1 Imit values Corcompliance teaching	TPH Total WAC		М	mg/kg		8	500		
Acid Neutralisation Capacity N mol/kg 0.1 To evaluate Eluate Analysis N 10:1 10:1 Imit values to compliance To evaluate Arsenic N <0.005 <0.05 0.5 2 25 Barium N <0.005 <0.05 20 10:0 300 Cadmium N <0.005 <0.05 20 100 300 Cadmium N <0.005 <0.05 20 100 300 Cadmium N <0.005 <0.05 0.55 10 70 Copper N <0.005 <0.05 0.05 100 70 Mercury N <0.005 <0.05 0.05 100 70 Mikel N <0.005 <0.05 0.05 10 30 Mikel N <0.005 <0.05 0.4 10 40 Lead N <0.005 <0.05 0.5 10 <td>Total (of 17) PAHs</td> <td></td> <td>N</td> <td>mg/kg</td> <td>14</td> <td>4.0</td> <td>100</td> <td></td> <td></td>	Total (of 17) PAHs		N	mg/kg	14	4.0	100		
Eluate Analysis Init 10:1 10:1 Init values for compliance leaching to using BS I 12457-2 × L/S 10 l/kg Arsenic N < 0.005	рН		М		1 [.]	1.0		>6	
Image Image Image/Lg Image/Lg Using BS EN 12457-2 JLS 10 Mg Arsenic N < 0.005	Acid Neutralisation Capacity		N	mol/kg	0).1		To evaluate	To evaluate
Image Image Image/Lg Image/Lg Using BS EN 12457-2 JLS 10 Mg Arsenic N < 0.005 < 0.05 0.5 2 25 Barium N < 0.005 < 0.05 20 100 300 Cadmium N < 0.001 < 0.01 0.04 1 5 Chromium N < 0.005 < 0.05 0.5 100 70 Copper N < 0.005 < 0.05 0.5 100 70 Molybdenum N < 0.005 < 0.05 10 0.01 0.22 2 Molybdenum N < 0.005 < 0.01 0.01 0.22 2 Molybdenum N < 0.005 < 0.05 0.4 100 300 Lead N < 0.005 < 0.05 0.4 10 50 Selenium N 8 < 0.05 4.05 200 200 Chroride N 8 79.00 800	Eluate Analysis			10:1	1	0:1	Limit values	for compliant	ce leaching test
BariumN< 0.005				mg/l	mg	j/kg		•	•
Cadmium N < 0.001 < 0.04 1 5 Chromium N < 0.005	Arsenic		N	< 0.005	< 0	0.05	0.5	2	25
Chromium N < 0.005 < 0.05 0.5 10 70 Copper N < 0.005	Barium		N	< 0.005	< 0	0.05	20	100	300
Copper N < 0.005 < 0.05 2 50 100 Mercury N < 0.005	Cadmium		Ν	< 0.001	< 0	0.01	0.04	1	5
Mercury N < 0.005 < 0.01 0.01 0.2 2 Molybdenum N N 0.006 0.06 0.5 10 30 Nickel N < 0.001	Chromium		Ν	< 0.005	< 0	0.05	0.5	10	70
Molydenum N 0.006 0.06 0.5 10 30 Nickel N < 0.001	Copper		Ν	< 0.005	< 0	0.05	2	50	100
Nickel N < 0.001 < 0.05 0.4 10 40 Lead N < 0.001	Mercury		Ν	< 0.005	< 0	0.01	0.01	0.2	2
Lead N < 0.001 < 0.05 0.5 10 50 Antimony N < 0.005	Molybdenum		N	0.006	0.	06	0.5	10	30
Antimony N < 0.005 < 0.05 0.06 0.7 5 Selenium N < 0.005	Nickel		N	< 0.001	< 0	0.05	0.4	10	40
Selenium N < 0.005 < < 0.05 0.1 0.5 7 Zinc N < 0.005	Lead		Ν	< 0.001	< 0	0.05	0.5	10	50
Zinc N < 0.005 < 0.055 4 50 200 Chloride N 8 79.00 800 15000 25000 Fluoride N <55	Antimony		Ν	< 0.005	< 0	0.05	0.06	0.7	5
Chloride N 8 79.00 800 15000 25000 Fluoride N <5	Selenium		Ν	< 0.005	< 0	0.05	0.1	0.5	7
Fluoride N < 5 < 10 10 150 500 Sulphate N 84 841.00 1000 20000 50000 Total Dissolved Solids N 300 3000.00 4000 60000 100000 Phenol Index N < 0.01	Zinc		Ν	< 0.005	< 0	0.05	4	50	200
Sulphate N 84 841.00 1000 20000 50000 Total Dissolved Solids N 300 300.00 4000 60000 100000 Phenol Index N <0.01	Chloride		Ν	8	79	.00	800	15000	25000
Total Dissolved Solids N 300 3000.00 4000 60000 100000 Phenol Index N <0.01	Fluoride		Ν	< 5	<	10	10	150	500
Phenol Index N < 0.01 < 0.10 1 - - Dissolved Organic Carbon N 3.510 35.00 35.00 800 1000 Leach Test Information N 10.3 Image: Second Secon	Sulphate		Ν	84	841	1.00	1000	20000	50000
Dissolved Organic CarbonN3.51035.005008001000Leach Test InformationpHN10.3Image: Second Secon	Total Dissolved Solids		Ν	300	300	0.00	4000	60000	100000
N 10.3 Image: Conductivity (uS/cm) N 379 Image: Conductivity (uS/cm) N 379 Image: Conductivity (uS/cm) Image: Condu	Phenol Index		Ν	< 0.01	< (0.10	1	-	-
pH N 10.3 M Image: Model of the state of the	Dissolved Organic Carbon		Ν	3.510	35	5.00	500	800	1000
Conductivity (uS/cm) N 379 Image: Conductivity (uS/cm) Image: Con	Leach Test Information	ı							
Dry mass of test portion (g) 101.000 Image: Constraint of the second se	рН		Ν	10.3					
Dry Matter (%) 86 86 66 66 66 66 66 66 66 66 66 66 66	Conductivity (uS/cm)		N	379					
Dry Matter (%) 86 86 66 66 66 66 66 66 66 66 66 66 66	Dry mass of test portion (g)			101.000					
				86					
Moisture (%) 17 17	Moisture (%)			17					
Eluent Volume (ml) 970				970					

Results are expressed on a dry weight basis, after correction for moisture content where applicable

WAC Analysis									
Elab Ref:	109398				Landf	Landfill Waste Acceptance Criteria Limits			
Sample Date:									
Sample ID:	WS9 C1				1	Stable Non- reactive			
Depth (m)	0.50 - 0.7	C			Inert Waste	Hazardous	Hazardous Waste Landfill		
Site:			Greggs	;	Landfill	waste in non-			
					1	hazardous Landfill			
Determinand		Code	Units		1	Landini			
Total Organic Carbon		N	%	3.30	3	5	6		
Loss on Ignition		М	%	4.4			10		
Total BTEX		М	mg/kg	< 0.01	6				
Total PCBs (7 congeners)		М	mg/kg	< 0.03	1				
TPH Total WAC		М	mg/kg	< 5	500				
Total (of 17) PAHs		N	mg/kg	14.0	100				
рН		М		7.6		>6			
Acid Neutralisation Capacity		N	mol/kg	< 0.1		To evaluate	To evaluate		
Eluate Analysis			10:1	10:1	Limit values	s for complian	ce leaching test		
			mg/l	mg/kg		S EN 12457-2 a			
Arsenic		N	0.010	0.10	0.5	2	25		
Barium		N	0.008	0.08	20	100	300		
Cadmium		N	< 0.001	< 0.01	0.04	1	5		
Chromium		Ν	< 0.005	< 0.05	0.5	10	70		
Copper		Ν	0.008	0.08	2	50	100		
Mercury		Ν	< 0.005	< 0.01	0.01	0.2	2		
Molybdenum		N	< 0.005	< 0.05	0.5	10	30		
Nickel		N	0.001	< 0.05	0.4	10	40		
Lead		N	< 0.001	< 0.05	0.5	10	50		
Antimony		Ν	0.008	0.08	0.06	0.7	5		
Selenium		N	< 0.005	< 0.05	0.1	0.5	7		
Zinc		N	0.007	0.07	4	50	200		
Chloride		Ν	5	50.00	800	15000	25000		
Fluoride		Ν	< 5	< 10	10	150	500		
Sulphate		N	6	63.50	1000	20000	50000		
Total Dissolved Solids		N	< 10	< 100	4000	60000	100000		
Phenol Index		N	< 0.01	< 0.10	1	-	-		
Dissolved Organic Carbon		Ν	15.600	156.00	500	800	1000		
Leach Test Informatio	n								
рН		N	7.4						
Conductivity (uS/cm)		N	74						
Dry mass of test portion (g)			101.000						
Dry Matter (%)			81						
Moisture (%)			23						
Eluent Volume (ml)			950						

Results are expressed on a dry weight basis, after correction for moisture content where applicable

WAC Analysis							
Elab Ref:	109399				Landf	ill Waste Ac Criteria Lim	•
Sample Date:							
Sample ID:	WS14 C	1			7	Stable Non- reactive	Hazardous Waste Landfill
Depth (m)	0.50 - 0.7	0			Inert Waste	Hazardous waste in non- hazardous	
Site:			Greggs		Landfill		
Determinand		Code	Units		7	Landfill	
Total Organic Carbon		N	%	0.09	3	5	6
Loss on Ignition		М	%	0.7			10
Total BTEX		М	mg/kg	< 0.01	6		
Total PCBs (7 congeners)		М	mg/kg	< 0.03	1		
TPH Total WAC		М	mg/kg	< 5	500		
Total (of 17) PAHs		N	mg/kg	< 2	100		
pН		М		7.9		>6	
Acid Neutralisation Capacity		N	mol/kg	< 0.1		To evaluate	To evaluate
Eluate Analysis			10:1	10:1	Limit value	s for complian	ce leaching test
,			mg/l	mg/kg	· -	S EN 12457-2 a	
Arsenic		N	< 0.005	< 0.05	0.5	2	25
Barium		N	< 0.005	< 0.05	20	100	300
Cadmium		N	< 0.001	< 0.01	0.04	1	5
Chromium		N	< 0.005	< 0.05	0.5	10	70
Copper		N	< 0.005	< 0.05	2	50	100
Mercury		N	< 0.005	< 0.01	0.01	0.2	2
Molybdenum		N	0.006	0.06	0.5	10	30
Nickel		N	0.002	< 0.05	0.4	10	40
Lead		N	< 0.001	< 0.05	0.5	10	50
Antimony		N	< 0.005	< 0.05	0.06	0.7	5
Selenium		N	< 0.005	< 0.05	0.1	0.5	7
Zinc		N	0.007	0.07	4	50	200
Chloride		N	18	181.00	800	15000	25000
Fluoride		N	< 5	< 10	10	150	500
Sulphate		N	7	74.40	1000	20000	50000
Total Dissolved Solids		N	130	1300.0	0 4000	60000	100000
Phenol Index		N	< 0.01	< 0.10	1	-	-
Dissolved Organic Carbon		N	16.000	160.00	500	800	1000
Leach Test Informatio	n						
рН		N	7.5				
Conductivity (uS/cm)		N	123				
Dry mass of test portion (g)			103.000				
Dry Matter (%)			97				
Moisture (%)			3				
Eluent Volume (ml)			980				

Results are expressed on a dry weight basis, after correction for moisture content where applicable